Array-Based Logic for Realizing Inference Engine in Mobile
Applications

Reggie Davidrajuh
Deaprtment of Electrical & Computer Engineering
University of Stavanger
PO Box 8002, N-4036 Stavanger, Norway
Tel: +47 51831700 Fax: +47 51831750 Emafggie.davidrajuh@uis.no

Biographical notes:

Dr. Reggie Davidrajuh received a master's degre€ontrol Systems Engineering in 1994
and a PhD in Industrial Engineering in 2000, batnT the Norwegian University of Science
and Technology (NTNU). He is currently Associat®fessor of Computer Science at the
Department of Electrical and Computer Engineeringraversity of Stavanger, Norway. His
current research interests include e-commerceg agtual enterprises, discrete event systems
and modeling of distributed information systems.

Abstract

Mobile and wireless devices suffer from technolagionitations such as limited battery life
and limited memory size. Hence, use of technolotpesnobile applications is confined to
those technologies that are faster and take smoatpfint in memory. Firstly, this paper
presents a survey of technologies that can be fmedealization of inference engine,
satisfying the qualities mentioned above. Seconthis paper introduces a Scandinavian
invention called Array-Based Logic that enabledizaion of inference engines for decision
making that are compact and fast. Finally, a casdyss presented to show how easy it is to
use array-based logic for realizing inference eaginmobile applications.

Keywords: Logic modeling, array-based logic, mobile applicai, and mobile ad-hoc
network

1. INTRODUCTION

Mobile devices have become indispensable toolsetltEg/s. Since mobile devices have

limited resources, the research and applicatioredinologies in these areas are confined to

those technologies that are:

* Faster. in order to save battery life and to accommodsyachronous (blocking)
communication,

* Compact and memory friendly. mobile devices have limited memory thus embedded
code shouldn’t take much memory.

* Easy the tools used for development should make ity efms design the mobile
applications so that development can be done faster

This paper introduces a logic technology callechyatrased logic for realizing inference
engines in mobile applications. The next secticett{en-2) presents a literature review of

technologies that can be used for realization feré@nce engines. Section-3 introduces array-
based logic.

As mentioned above, among other issues, battexryahid memory size are critical issues in
mobile devices. Battery life and memory size and tl@pendent variables of the independent
variables like processing time and program code, sespectively. Thus, if array-based logic
minimizes processing time, it also implies that tlsage of array-based logic saves battery
life. Similarly, if array-based logic minimizes g@m code size, it also means that the usage
of array-based logic demands less memory. The sasdy given in section-4 proves
minimization of the two independent variables pssteg time and program code size;
Implication is that battery life is increased aadd memory is needed.

The case study talks about developing an infereng@e for evaluating a mobile host as the
call manager in Mobile Ad-hoc wireless Network (MEN). This is a simple problem
dealing with a small set of logic variables. Sirtlse size of this problem is small, it is true
that many logic technologies could be used to stive problem, and the usage of array-
based logic will not make any considerable diffeeeriThe benefits of array-based logic will
be apparent when large and complex problems withyntagic variables are considered.
However, the case study is intentionally made snealjive emphasis also to the modeling
and simulation approach behind array-based logis;modeling and simulation approach is
unique and is based on the “theory of connectiery.(Davidrajuh, 2000).

2. LITERATURE REVIEW

The aim of logic in industrial applications is tewklop a formal method for modeling

problems so that decisions can be made out of teels, and it can be made automatically
e.g. by an inference engine. In order to createatspdh language is needed with which
sentences can be created in such a way that ftweriegdical structure of the model.

2.1 Propositional Logic

The first language that can be used for logic madeas$ the language of prepositional logic. It
is based propositions, or declarative sentenceshmban be argued as being true or false;
thus, propositional logic is concerned with theidation of an argument consisting of a set of
propositions that are split up into a number ofhmiees and conclusions. The Boolean logical
variables describe the facts in the premises, bagtemises themselves describe the system
when combined together (Davidrajuh, 2000; Huth &R)y2000).

2.1.1 Formal language

In propositional logic, symbols are used to comprémge set of English declarative
statements into compact logic model. Suppose & logdel consists of a set premises
a,%,...,¢and a conclusiop, then the logic model is expressed by the sequent:

BB Bl @
By applying proof rules on these premises, theditgliof the conclusion is found (Huth &
Ryan, 2000).

2.1.2 Mathematical reasoning approach

By the use of propositional logic, modeling a logystem can be done exactly like modeling
a physical system (Bjagrke, 2000). First, the funeatal logic variables (also called primitive
logic elements) are identified and each logic \@dais assigned an axis; thus the logic
variables span the whole universe of discoursal(gpace), see figure-la. Then the logic
variables are connected into premises, thus cgeatisubspace of the total space, see figure-
1b. Finally, the premises are combined to form libgic system, connecting subspaces
spanned by the premises. There are some differdérate®en the space span by the physical
systems and logical systems; logical spaces ar@yalinear and discrete.

Lets say that a logic system consists of threeifivienogic variables, Temperature (with
domain values 'low', 'high"), Alarm (‘off', 'ongnd Power (‘off', 'on’).

Power Power
A A

‘qn’ 4 'an’

Temperature Temperature
'offf' . 'offf' /
%'gh' ‘high'
Alarm -}/ low Alarm low'
‘on' ‘off' ‘on' 'off'
5.2a: 5.2b:
The space spanned by the primitive logic The subspace spanned by the combination

variables Power, Alarm, and Temperature ((((Temp is 'low’) AND (Alarm is 'off)) OR (Powes ion'))
=> (Power is 'on'))
AND
(((Alarm is 'on") OR (Power is 'off')) => (Power'ddf'))

Figure-1: Configuration space spanned by the legi@ables

By connection, spaces that do not satisfy the caims$ are removed, leaving a smaller space
that represents the feasible solution (figure-h)s tis after Lagrange, who in analytical
mechanics developed the free variational methodsTlagrange developed the mathematical
foundation for the basic procedures for logic modgland it was Pierce who applied these
procedures (constraint satisfaction) to logicabtems (Mgller, 1995).

2.1.3 Advantages & disadvantages of propositional logic

This logic representation is useful in providingr@al proofs as it offers clarity. Logic
systems modeled with propositional logic is welfiged and easily understood (Kusiak,
1997). Also, by the mathematical approach for miadelogic systems, a Cartesian axis is
assigned to each logic variable in the system, rg¢éing subspaces spanning all possible
states of all the variables, thus providingamplete representatiotiowever, there are two
serious shortcomings of propositional logic thasqdialify itself as the technology for
realizing inference engine:

1) Exponential growth Though propositional logic offers complete sysiemthe
representation is huge; this means,NbBoolean logic variables, the resulting spac&lof
axes will contain2" subspaces. This exponential growth (also knowrc@sbinatorial
explosion’) of the subspaces with increasing nurebeariables makes the modeling and
simulation slower. Thus, propositional logic is mfitable for realizing the inference
engine.

2) Lack of quantifiers: Though propositional logic sseimple Boolean connectives like
negation (‘not’), conjunction (‘and’), disjunctiofior’), if-then (‘direct implication’), it
lacks quantifies like ‘all’, ‘among’, ‘only’, ‘atdast one’, etc. This limitation is restored in
predicate logic.

2.2 Predicate Logic

This is much like propositional logic, but with itgiantifiers, it is possible to express all
arguments occurring in natural language. In otherd®, precise symbolic logic model
equivalent of a set of English language statemsrgessible.

2.2.1 Formal language

A predicate logic formula has three entities: Valga, functions that describe relationships
between variables, and terms that are expressionsisting of constants, variables, and
functions. Because of the power of predicate lotjie,language is much more complex than
that of propositional logic; interested readereferred to Huth & Ryan (2000).

2.2.2 Mathematical reasoning approach

In the mathematical approach for modeling predidatgc systems is similar to that of
propositional logic systems; a Cartesian axis ssgagd to each logic variable in the system,
generating subspaces spanning all possible stdtedl ¢he variables, thus providing a
complete representation making a huge representdtiarge number of logic variables are
involved. Thus, advantages and disadvantages dafigate logic are similar for that of
propositional logic.

2.3 Production Rules

Production rules are in effect subsets of predicakulus with an added prescriptive
component indicating how the information in theerilis to be used in reasoning. A
production rule has the following form (Kusiak, 199

IF (condition)

THEN (conclusion)

2.3.1 Mathematical reasoning approach

The basic reasoning approach employed for productite is searching: starting with a set of
facts and look for those rules in which the IF smatches the facts; if such rules are found
(‘'hit"), then proceed to the THEN clause. This oeayg is known as ‘forward reasoning'. In
‘backward-reasoning’, searching starts with afséésired goals and to look for those rules in
which the THEN clause (conclusion) matches the ggdalgure-2 shows an example with 6
rules, using forward reasoning (or bottom-up se€amsh shown in figure-2, it is usual to use
AND/OR tree to illustrate the inference process.

2.3.2 Advantages and disadvantages of production rules

The main advantage is that the simple rules arg sasinderstand, modify, and extend.
However, there are some shortcomings: In productites, a logic system is evaluated with a
couple of 'if-then' statements, taking a linguistiew than a mathematical approach. This
means, foM multi-valued logic variables with valuesN ‘if-then' statements are needed to
span all combinations of the variables; missing @inhese statements may cause unexpected
results. For a large system of many logic varightesill be impossible to write so many if-
then statements to take care of all possible coatioins of variables; thus creating a complete
model is not easy and prone to errors. In addiiothis shortcoming, there is another serious
problem: the reasoning approach based on searishahgw.

The logic system is represented here by the follpwix rules:

Rule-1: IF ((Temp is 'low') AND (Alarm is 'off") THERR1)

Rule-2: IF (R1) OR (Power is 'on') THEN (R2)

Rule-3: IF (R2) THEN (Power is 'on')
Rule-4: IF ((Alarm is 'on’) OR (Power is 'off')) THEN (R3)

Rule-5: IF (R3) THEN (Power is 'off')
Rule-6: IF ((Power is 'off') OR (Power is 'on') THEN dd&l)

Power-OFF

Power-OFF

Figure-2: Forward reasoning inference process

2.4 Fuzzy Logic

In relation to classical logic, Fuzzy logic, in arrow sense, can be considered as an extension
and generalization of classical multi-valued lo@idir & Yuan, 1995). Fuzzy logic is a
promising technology to realize inference enginewl at used in diverse industrial
applications. For a detailed study about Fuzzydogee (Adcock, 1993; Meridian, 1997;
Tsoukalas & Uhrig, 1997; Yager & Zadeh, 1991).

2.4.1 Formal language

Fuzzy logic is a methodology for expressing operati laws of a system in linguistic terms
instead of mathematical equations. Systems thatcareomplex to model accurately using
mathematics, can be easily modeled using fuzzycledinguistic terms. These linguistic
terms are most often expressed in the form of Egplications, such as fuzzy if-then rules.
For example, a fuzzy if-then rule (or simplyuazy rul looks like:

IF delivery_time is LATE

THEN supplier_preference is LOW.

The terms LATE and LOW are actually sets that defranges of values known as
membership functionBy choosing a range of values instead of a sidggerete value to
define the input parameterdélivery tim& we can compute the output value
“supplier_preferencemore precisely.

2.4.2 Inference mechanism

Inference mechanism in fuzzy logic is based on yuz#es that connect input and output
parameters (fuzzy rule base), and the membershigtifuns for input and output parameters.
To create an inference engine, first the memberfsimptions for input and output parameters
are developed; both a range of values and a degfreeembership define membership
functions.

Inputs I - N —— Outputs
uzzification nference efuzzification
I:'> (input interface) ’ ’ (output interface) I:::>

Figure-3: The three phases of inference mechanidorizy logic

Inference mechanism in Fuzzy logic is implementethiree phases (see figure-3):
* Phase-1: Fuzzification phase (converting crisp imalue into fuzzy value).

* Phase-2: Inference phase (computing fuzzy outpgueMay the fuzzy rules base).
* Phase-3: Defuzzification phase (converting fuzzipouvalue into crisp value).

2.4.3 Advantages and disadvantages of fuzzy logic

Fuzzy logic offers fast inference, offers compaaaitable code that can be downloaded into
micro-controllers for embedded applications. Fuiagic is also easy to learn and use.
However, it has some limitations too.

The first limitation of fuzzy logic is tuning; ifre wanted to change the pattern the output
parameters that are computed from the input paes)ethen in-addition to changes in the

fuzzy rule base, the membership functions of theuinand output parameters must be

changed too. The second limitation is that fuzzydaloes not guarantee completeness; it is
up to the designer to include all the fuzzy rulesreecting all possible combinations between
the input and output parameters.

The third limitation is the difficulty in generatinfuzzy rule base. The fuzzy rules generated
for an application must be consistent; they musperly adhere to the process dynamics with
no contradictions between the rules. Generatingtitecedent (the IF part) of a fuzzy rule is

easy; but generating the consequent of a fuzzy(timeTHEN part) is not easy, as it demands
deep understanding of the process dynamics (Dauidra000).

2.5 Array-Based Logic

The previous subsections state that a completeeseptation ofM multi-valued logic
variables with a domain dfl values contain®" subspaces. This exponential growth of the
subspaces with increasing number of variables m#iesnodeling and simulation slower.
Array-Based Logic developed by G. L. Mgller avoitlsis exponential problem by
compressind" subspaces intd! x N linear representation (Mgller, 1995). Array-baksgic
also provides mechanisms for operations to opemtbe compressed representation in linear
time.

2.5.1 Formal language

In addition to Boolean variables and multi-valueatiables, array-based logic allows also
guantitative (intervals, for example) to be treadsdiogic variables. There are three types of
variables in array-based logic: the nominal loga&riables (Boolean and multi-valued),
ordinal logic variables (e.g. Coordinate is [2,[4,2], or [3,3]) and intervals (e.g. Cost is
between <50 and 100>).

Structured Array-based Logic (SABL) is a formaldaage of array-based logic for modeling,
logic programming, and implementation of logic syss§; interested reader is referred to
Davidrajuh (2000).

2.5.2 Inference mechanism

The inference mechanism used in array-based Isggeometry or topology of connections
between the fundamental components of a systenysters consists of three fundamental
components, namelglements connections and sources Elements carry all the physical
properties of the system; thus, elements are thdaimental building blocks of a system.
Connections reflect how elements in a system infteeeach other; thus, connections
represent the structure of a system. Finally, ssureflect the influence between a system and
its environment. Sources are the environment'sémnite on a system.

The inference mechanism consists of three phased)avidrajuh (2000) for details:
* Phase-1: identifying the primitive system

* Phase-2: making the connected system

* Phase-3: applying the sources, and solving theexiad system

2.6 Summary
Table-1 presents the summary of the literatureskeyvi

Technology Property Inference Inference | Complete | Implementation
(Relation) mechanism cycle system
time
Propositional Boolean modus ponus slow yes not compact
logic truth values etc.
Predicate logic any same as slow yes not compact
predicate propositional
Production IF - THEN searching slow no not compact
Rules
Fuzzy logic fuzzy rules membershif fast no compact
functions &
fuzzy rule
base
Array-based any geometry fast yes compact
logic predicate

Table-1: Summary of the survey on approaches fatatimg logic systems

Table-1 reveals that array-based logic satisfiethalrequirements on the qualities for
realizing an inference engine (such as high pracgspeed, and compact size) for mobile
applications. However, this does not mean thatavesed logic is the only or the best option
for realization of every inference engines. Ondbatrary, the type of the inference engine or
the modeling problem under scrutiny determinegébnology for realization. For example,
if the model could be best expressed by a set Eingtatement that approximately describe
the dynamics of the system, then fuzzy logic is'pps the best technology for realization of
the system.

3. STRUCTURED ARRAY-BASED LOGIC

Array-based logic guarantees complete solutionpléxed below), compact code, as well as
fast computation (for real-time applications). Axl@ased logic was written in APL language;
APL is a primitive symbolic language that is haoddgarn and use. Davidrajuh (2000) ported
array-based logic to MATLAB environment with somédaional functions, and named it
“structuredarray-based logic”.

Structured array-based logic toolbox consists af types of functions:
1) Propositional logic functions, and
2) Array-based logic functions

Propositional logic functions are for basic mathtoah treatment of the logic system after
Lagrange and Pierce. By using the propositionaicldgnctions, though the configuration
spaces will be large (exponential growth with imsieg number of variables), it will be
complete; that is, the configuration space includkspossible combinations of the logic
variables. Array-based logic functions are enhantmgic functions for modeling and
simulation of logic systems using a compressionhrietogy that provides compact

representation of configuration space and fastaulsition, without loosing completeness.
The following subsections present these two typésgic functions.

3.1 Propositional logic functions

All the logic variables (primitive elements) thaeaised in a system are to be declared first; it
is the function element that is used for declaratiRelevant to the function element is the
function assign; this function changes the valdeslogic variable.

E.g. Declaration of a multi-valued logic variab@olor' with a domain of three values 'red’,
‘green’, and 'blue”:
Color = element('n',{'red','green’,'blue'},{'gregrColor’);

The first argument 'n' indicates that the varialenulti-valued (or boolean). The second
group of input argument are values (of domain),ttiel group is the default values selected
at the time of declaration (in this example, defardlue is 'green’), and the final input
argument is the label or name of the variable. rAdieclaring a logic variable, values of the
variable could be changed with the function assign:

ColorRED = assign({'red’}, Color);

Definition-1: Basic operations

A logic system can be built by applying the follagvfour basic operations on variables:
disjunction (V), direct-implication (=>), nand, andonverse-implication. These four
operations are known as the Klein four group. Otlugyic operations can be derived from
these four basic operations. The functions fordgHesir operations are, disjunct, dimp, nand,
and cimp respectivelym

E.g. If Premisel = (ColorRED => AlarmON) then Prseil is declared as:
Premisel = dimp(ColorRED, AlarmON);

Definition-2: Colligation

If the same variable occurs more than once in ase or in a combination of premises, then
duplicate axes will be found in the configuratiggase. The process of removing superfluous
axes without losing any information is called Cgdlion. The function that performs
colligation is fuse m

E.g. if System =disjunct(Premisel,Premise2), where

Premisel = dimp(ColorRED, AlarmON), and

Premise2 = dimp(ColorGREEN, AlarmOFF)
Then, the System contains two copies of the logiriables Color and Alarm (or
mathematically, two axes each for Color and Alar)plicates of Color and Alarm must be
removed (or the axes are fused together):

System = fuse(System);

3.2 Array-based logic functions
The following definitions present the main funcsdior array-based logic.

Definition-3: Compressed representation

Compressed representation is to keep the relatmenfises, subsystems, or system; see
figure-2) to a minimal size without loosing any oimmhation. The function used for
compression is compresa.

In compressed form, functions like join, deduct. ehake use of the compressed (compact)
representation for faster computation. The funcfmn connects premises together via the
common variables they posses; the resulting relafBubsystem, or system) will be in
compressed form. Compression technique is sinoldhé Karnaugh map (K-map) reduction
done in digital electronics.

In addition to boolean variables and multi-valueatiables, array-based logic allows also

guantitative (intervals, for example) to be treadsdiogic variables. There are three types of
variables in array-based logic: the nominal logiciables (boolean and multi-valued), ordinal

logic variables (e.g. Coordinate is [2,2], [4,2],[8,3]) and intervals (e.g. Cost is between <50
and 100>).

Definition-4: Intervals aslogic variables
Array-based logic facilitates intervals to be tredtas logic variables too. An interval
variable may contain many intervals, each of whidy be true or falsem

To declare an interval, the function interval iedisE.qg.:
LowerlInterval = interval('ge’, 85, 'It', 98)
This means, the LowerlInterval is greater than araétp 85, and less than 98.

An interval variable is created using the functedement. E.qg.:

InputPrice = element('i', {LowerInterval, Upperintal}, 'Input Price’)
where the first argument 'i' indicates that thealde to be created is an interval variable, and
the final argument is a label of the variable.

SYSTEM
oin(
Subsystems S1 \ S
join() L

Premis: P1 P2 P3

operations digunct(), dimp(),

VI N] A\
ABC EFG |

Primitive logic variables

Figure-4: System perspective of
modeling a logic system

10

Definition-5: Deducing conclusions

Deduction (or inference) is to draw conclusion framconnected system. Deduction is
performed by the function deduct, which makes tle -Oprojection of all the axes
complementary to the variables concerned, on tles ak the variablesa

The final definition is about the state of a system

Definition-6: state of system

The state of a system is the information requirédhe system to uniquely determine an
output for an input to the system. The output iseator of output variables, which is
computed from the input vector of variables andsp&tem (see figure-4), using the function
state.m

Allowing quantitative variables to be treated agido variables facilitates numerous
advantages in modeling large logic systems. Useropositional and array-basic logic
functions will become clear in the next section veh& case study is done on mobile platform.
See Davidrajuh (2000) for more elaborate explanaticthe logic functions.

4. CASE STUDY

The previous section proved that array-based lpgiwides fast computation and compact
code. In this section, a case study is providedhow whether it is also easy to develop
(program) an inference engine. Case study dealsamitinference engine that is to be used to
evaluate a mobile host (MH) as the call manages;ddll manager is to manage MHs in a
specified area in Mobile Ad-hoc Network (MANET). NNET is a mobile network where any
mobile device (mobile phones, personal digitalsiasis, etc.) located inside a specified area
can act as the call manager. Selecting a call nens@n important problem and is discussed
widely in literature; see for example Yan et alG2p

4.1 The Best MH

Yan et al (2004) proposes an algebraic equatiorsébection of the best MH as the call
manager in a specified area in MANET. The equatimmputes the total cost of a MH that is
under evaluation. After calculating the total costsll the MHs, the one with the minimal
cost is selected as the call manager in the spddiiea. The equation is:

G = (Wlxdi) + (WZXSI) + (st pi)
Whered is the distance between the MH to the center osfeeified areas is the average of
speed of the MH, ang is power costwi, W, andws are coefficients (weighting factors).
Thus, the equation calculates total cost of an Mikerms of its distance from the center, its
speed and its battery power. In summary: usingethuation proposed by the Yan et al (2004)
demands calculation of total cost of all the MHgha specified area so that the best MH (the
one with minimal cost) can be selected as thencailager.

Since, calculating total costs afi the MHs in the area to finthe bestMH takes time, this
paper proposes selectiona optimalMH (rather than the best MH) as the call manaljer.
an MH under evaluation satisfies the selectioreast then it is selected as the call manager,
and the selection process is terminated; this mifenselection process does not evaluate all
the MH in that area.

11

4.2 The optimal MH

This paper proposes a selection process that ukggcal equation rather than an algebraic
equation. The logical equation is based Yan e2@0D4) in the sense that the logical approach
uses distance, speed, and power as input paranfieteise selection process. In the logical

approach, first the primitive logic variables (elems) are identified. Then these variables are
grouped into premises using the logic operatoss dilsjunct, dimp, etc. Finally, the premises

are joined to make the compete system.

It is assumed that the inference engine receiviesnration from MHs in the specified area
about their distance from the area center, th&edpand about their power capacities (figure-
5). For brevity, how the information is sent to th&erence engine is not discussed here.

The selection is based on three data (figure-Stadce of MH from the center of the area,
speed of the MH, and the power cost of the MH. Takendecisions based on the data, the
inference engine needs three set points (on fdr Egowt). These set points are fine-tuned to
make the selection process agile; suppose, all [AH# the selection process, then the set
points are relaxed a little, to make some MHs plasselection process.

Figure-6 shows the logic variables and the premtisasmake up the complete system. The
first three premises deal with the input valuese irtput (numeric) values for distance, speed,
and power cost, are used to assign values to sorikéasgy logic variables. In effect, the first
three premises are about converting interval viegimto nominal (Boolean or multi-valued)
variables. Premises 4- to- 5 uses the auxiliariclegriables to compute the conclusion.

4.3 Premises 1-To-3: Dealing with the Input Values

Premises 1 to 3 deal with the input values namednpstDistance, inputSpeed, and
inputPower. Premises 1-to-3 are to convert the timumerical values into auxiliary logic
variables named distance, speed, and power regglgcti

Inputs
(from a MH) Conclusion
distance . o
Inference Selection / Rejectic
speed engine of a MH
> g >
power

il

Set points for selection criteria

Figure-5: The inputs and outputs of the inferenugiree

12

4.3.1 Dealing with inputDistance

If the distance is greater than the set point fistadice, then the distance is 'long'. If the
distance is less than or equal to the set pointdfstance, then the distance is 'short’. To
formulate this logic statement, two logic variabe needed: a multi-valued logic variable
“distance” with the domain values of ‘long’ andoidh and an interval logic variable
“InputDistance” with two intervals, one interval theeen minimum possible distance to set
point and the other interval between set point &ximum possible distance.

To declare the logic variable distance:
distance = element('n',{'short’, 'long'},{}, 'distee’);

Before declaring the interval variable InputDistana value should be assigned to the set
point for distance. It is assumed that the giveluerdor set point is 2 km, the minimum
possible value for distance is 0 km, and the marimpossible value is 5 km.

DistanceSetPoint = 2; MinDistance = 0; MaxDistance

To declare two intervals, the lower interval and tipper interval:
LowerInterval = interval(‘ge’, MinDistance, 'le'istanceSetPoint);
Upperinterval = interval('gt', DistanceSetPoint, MaxDistance);

Declaraing the interval variable InputDistance ingigtance:
InputDistance = element('i', {LowerInterval, Uppaerval},'Input Distance');

Finally, declaring the premise-1: (DistancelsFdignd only if (FairDistanceRange)
ShortDistanceRange = assign(InputDistance, Lowemnrat);
DistancelsShort = assign(distance, {'short’});

Premise_1 = bimp(ShortDistanceRange, DistancelgBhor

premise

premise premise premise SYSTEM premise
= P-5

P-1 P-2 P-3 P-4

\\\

distance speed power
(auxiliary variables)

InputDistance InputSpeed InputPower Conclusion
(Inputs)

Figure-6: Logic model of the inference engine

13

4.3.2 Dealing with speed

If the speed is between the minimum possible speedhe first set point for speed, then the
speed is 'slow'. If the speed is between the &rst second set points, then the speed is
'moderate’. On the other hand, if the speed isdmivthe second set point and the maximum
speed, then the speed of the MH is ‘fast’. To fibate this logic statement, again two logic
variables are needed: a multi-valued logic varidbpeed” with the domain values of 'slow’,
'moderate’, and ‘fast’, and an interval logic \@edInputSpeed” with three intervals. The
first interval (Lowerinterval) is between the minim possible speed and set point-1, the
second interval (Middlelnterval) is between the gmiints, and the third interval
(Upperinterval) is between set point-2 and anti@danaximum speed.

Formulating the premise-2 that deals with the i§peaed is very similar to premise-1 for
inputDistance. The only difference is that, speas three intervals whereas distance has two
intervals. For brevity, detailed formulations acg¢ shown here.

4.3.3 Dealing with power cost
Premise-3 for power is formulated very similarhattof premise-1.

4.4 Premise - 4 and 5: Accepting or Rejecting a MH

The auxiliary logic variables distance, speed, aondt are used to compute premise-4.
Premise-4 is about the conditions for acceptingth &4 the call manager. A MH should be
selected if and only if all three inputs values aithin the acceptable regions, like distance is
'short’, speed is 'moderate’ or ‘fast', and posvenaoderate' or 'superior'.

First the logic variable Conclusion is declared:
Conclusion = element('n’, {'reject’, 'select’},'Gonclusion’);

Now the acceptable conditions:
AcptDIS = assign(distance, {'short});
AcptSPE = assign(speed, {'moderate’, 'fast’});
AcptPOW = assign(power, {'moderate’, 'superior'});
AcptCondtion = conjunct(AcptDIS, AcptSPE, AcptPOW);

For these acceptable inputs, the conclusion iscsel
Action = assign(Conclusion, {'select?});

Finally, the premise-4 is for accepting a MH (setex a MH): Conclusion is 'select’ if and
only if ((distance is 'short) AND (speed is 'maatet/'fast) AND (power is
'moderate'/'superior’)):

Premise_4 = bimp(AcptCondition, Action);

4.4.1 Premise- 5. Rejectinga MH

A MH should be rejected if any one of the followiegnditions is met: either distance is
'long’, or speed is 'slow' or power is 'inferior'.

The conditions for rejection:
RejtDIS = assign(distance, {'long});

14

RejtSPE = assign(speed, {'slow});
RejtPOW = assign(power, {'inferior});
RejtCondtion = disjunct(RejtDIS, RejtSPE, RejtPOW);

For these inputs, conclusion is 'reject”.
Action = assign(Conclusion, {reject});

Finally, the premise-5 for rejecting a MH: (Congtusis 'reject’) if and only if ((distance is
'long") OR (speed is 'slow’) OR (power is 'infefijor
Premise_5 = bimp(RejtCondition, Action);

4.4.2 The Connected System

The system is the combination of the five premiSést is,
System = join(Premise_1,Premise_2,Premise_3,PreiBemise_5);

When the five premises are joined using the fumncjmn, it removes duplicate variables in
the connected system, and leaves the connectednsyist compressed form; the three
auxiliary variables (distance, speed, and powex)oaty to help compute the conclusion from
the input numeric values, thus in the final systéhus, they must be removed.

Inputs = [InputDistance InputSpeed InputPower];

SYSTEM_F = deduct([Inputs Conclusion], System);

The final system (SYSTEM_F) is compact and compl&tas is the core of the inference
engine. Because it is operates in linear timed#@sion made by the inference engine is also
fast.

4.4.3 Simulations on the connected system

Some sample input values are input to the inferenggne:
InputDIS = assign(InputDistance, 1);
InputSPE = assign(InputSpeed, 4);
InputPOW = assign(InputPower, 8.2);

Making a source vector of sample inputs:
TestinputVector = [InputDIS InputSPE InputPOW];

Applying the source (vector of sample inputs) @ slystem, the outputs are generated:
output = state(TestIinputVector, SYSTEM_F);

Using the print system, the output is echoed orstineen:
print(output);

The output of the system (printed on the screen) is

* Conclusion ** : select|:
This means, for the given input values and forgiven set points, the MH is selected as the
call manager.

15

5. Managerial Implications

The most difficult aspect of developing applicasofor the mobile platform is that the
applications must satisfy at least three basieat they must be memory friendly (compact
code), they must run fast (take minimal executioret for example - to save battery), and the
tools for development must facilitate fast and edsyelopment. This paper presents a logic
technology called array-based logic that guararapesications developed by this technology
fulfill the three criteria; array-based logic op®on a linear (compact) space thus the code
size is small, the operations on it are fastereddinear time), and it is also easy to use this
tool.

This paper also presents a structured languageraf-based logic called ‘structured array-
based logic’, which is a toolbox of functions weittin MATLAB language. This toolbox can
be used for modeling and simulation of logic progsaas shown in the case study; the case
study deals with developing an inference enginesédection of a mobile device as the call
manager in MANET mobile wireless network. The cstealy is intentionally kept small just
to give emphasis to the modeling and simulationr@ggh behind array-based logic; this
approach is unique and is based on the theoryrofestion.

REFERENCE

Adcock, T. (1993)What is Fuzzy Logic: An overview of the latest m@mhethodology
Texas Instruments, SPRA028

Bjarke, @. (1995)Manufacturing Systems TheoilyAPIR Publications, Trondheim, Norway

Davidrajuh, R. (2000)Automating Supplier Selection ProcedureiD Thesis, The
Norwegian University of Science and Technology

Huth, M. and Ryan, M. (2000).ogic in Computer Science: Modelling and reasorabgut
systemsCambridge University Press.

Klir, G. and Yuan, B. (1995Fuzzy Sets and Fuzzy Logic: Theory and ApplicatiBrentice
Hall PTR, New Jersey

Kusiak, A. (1997). Knowledge-Based Systeierdic-Baltic Summer School on Applications
of Al to Production Engineering, Ed. K. Wang, Kasitiniversity of Technology Press

Meridian Marketing Group (1997ruzzy Logic Newslette¥ol.2, No.1, 1997.

Mgller, G. (1995)On the Technology of Array-Based LadiD thesis, Technical
University of Denmark

Tsoukalas L. and Uhrig, R. (199 Fuzzy and Neural Approaches in Engineerihghn Wiley
and Sons

Yager and R. and Zadeh, L. (199Ah Introduction to Fuzzy Logic Applications in liiggent
SystemsKluwer Academic Publishers

16

Yan, K., Wang, S., and Chou, Y. (2004). A Power-favAppling to Hierarchical Cellular-
Based Managemerithe 15th International Conference of InformationridgementNew
Orleans, USA

17

