
Volume X, No. 2, 2009 472 Issues in Information Systems

DESIGNING A NEW TOOL FOR MODELING AND SIMULATION OF DISCRETE-

EVENT SYSTEMS

Reggie Davidrajuh, University of Stavanger, reggie.davidrajuh@uis.no

Istvan Molnar, Bloomberg University of Pennsylvania, imolnar@bloomu.edu

ABSTRACT

This paper talks about design, development, and

application of a new Petri net simulator for modeling

and simulation of discrete event system (e.g.

information systems). The new tool is called

GPenSIM (General purpose Petri Net Simulator).

Firstly, this paper presents the reason for developing

a new tool, through a brief literature study. Secondly,

the design and architectural issues of the tool is

given. Finally, an application example is given on the

application of the tool.

Keywords: Discrete event systems, modeling and

simulation, Petri net, GPenSIM

INTRODUCTION

Petri net is being widely accepted by the research

community for modeling and simulation of discrete

event-driven systems, mainly due to Petri net‟s

rigorous modeling techniques. There are a number of

Petri net tools available for free academic use; see

PNWorld (2009) for a list of tools. These tools are

advanced tools flexible enough to model complex

and large systems. This paper talks about developing

a new Petri net simulator. The reasons for building a

new simulator are:

 Flexible: the simulator should enable easy

integration with other libraries and tools, so that

developing hybrid models (e.g. Fuzzy Petri nets,

by integrating Petri net with Fuzzy Logic)

becomes easy

 Extensible: the simulator should enable users

writing their own extensions, either extending or

rewriting the existing functions or developing

new functions.

 Easy of use: for those who doesn‟t want to use

mathematics when developing a model, the tool

should provide a natural language user interface,

so that the mathematical details are abstracted

away from the user.

General-purpose Petri net simulator (GPenSIM,

2009) is developed by the first author of this paper, in

order to satisfy the three criteria stated above

(flexible, extensible, and ease of use). GPenSIM is

realized as toolbox for the MATLAB platform, so

that diverse toolboxes that available in the MATLAB

environment (e.g. Fuzzy Logic Toolbox, Control

Systems Toolbox) can be used in the models that are

developed with GPenSIM.

LITERATURE REVIEW ON EXISTING

TOOLS FOR DISCRETE EVENT

SIMULATION

Many tools satisfy some of the three criteria

mentioned above. Automata, Stateflow, and Petri nets

are the well-known tools used for simulation of

discrete event systems. Though automata have a

strong footing in computer science, the serious

shortcoming with it is the lack of structure – the

ability to modularize a system (decompose a system

into modules) [2]. Stateflow is commercial software

that runs in MATLAB environment [8]. Stateflow is

similar to Petri net; converting a Petri net model of a

discrete event system into a Stateflow model and vice

versa is easy. However, learning Stateflow, with its

syntactic, semantic, and graphical details, is much

more difficult than learning Petri net. In addition,

Stateflow also demands some knowledge of

Simulink, in addition to MATLAB.

Petri net is being widely accepted for modeling and

simulation of discrete event systems and there is a

number of Petri net tools available free-of-charge for

academic usage (PNWorld, 2009). These tools are

sophisticated tools flexible enough to model complex

and large systems. However, these tools are stand-

alone systems, and for integrating the functions of

these tools with other tools or libraries, one need to

program in either high-level languages like Java or

C++, or use XML as an intermediary. Thus seamless

integration of these Petri net tools with other types of

tools (e.g. Control Systems) is not possible.

GPenSIM, written in MATLAB language, allows

seamless integration with the other toolboxes that

also available in the MATLAB environment.

Programming in MATLAB Language is also

extremely easy as the language resembles the BASIC

language.

The Business Tradeoffs with the Final – Four Models of Conventional Telephony Systems

Volume X, No. 2, 2009 473 Issues in Information Systems

ARCHITECTURE OF GPenSIM

GPenSIM is designed using the well-proven

paradigms in software engineering such as: layered

architecture, modular components, and natural

language interface.

3.1 Layered Architecture

Figure 1: 3-layer architecture

GPenSIM is built following 3-layer architecture; see

figure-1. The bottom layer deals with Petri net run-

time dynamics; this layer computes newer states with

the help of linear algebraic equations and matrix

manipulations. The middle layer adds more high-

level functionality such as stochastic timing, coloring

of tokens, user-defined conditions („guard-

conditions‟ in some literature), etc. The top layer

offers applications such building a Petri net based

model, running simulations, determining coverability

tree, printing the simulation results, etc.

Modular Components

A model of a discrete event system developed with

GPenSIM consists of a number of files. The main

simulation file (MSF) is the file that will be run

directly by the MATLAB platform. In addition to the

main simulation file, there will be one or more Petri

net definition files (PDFs); definition of a Petri net

graph (static details) is given in the Petri net

Definition File. There may be a number of PDFs, if

the Petri net model is divided into many modules,

and each module is defined in a separate PDF. While

the Petri net definition file has the static details, the

main simulation file contains the dynamic

information (such as initial tokens in places, firing

times of transitions) of the Petri net. In addition to

these files (main simulation file and Petri net

definition files), there can be a number of transition

definition files (TDFs) too.

A transition definition file consists of additional

conditions that determine whether an enabled

transition can fire or not. The additional conditions

Other
MATLAB

Toolboxes

(Fuzzy,
Control

Systems,

Optimization,
etc.)

MATLAB Engine

GPenSIM

Net Utilities Timer Simulator Analysis Display

Main

Simulation

File

(MSF)

Petri Net

Definition

Files

(PDFs)

Transition

Definition

Files

(TDFs)
Simulation

results:

As ASCII

display,

MATLAB

plots, or

Microsoft

EXCEL files

Figure 2: The architecture of GPenSIM

Designing a New Tool for Modeling and Simulation of Discrete-Event Systems

Volume X, No. 2, 2009 474 Issues in Information Systems

are called „user defined condition‟ in GPenSIM

terminology, whereas in some other literature (e.g.

Colored Petri Net (CPN)) it is referred to as „guard-

functions‟). There can be a separate transition

definition file for each transition in a Petri net model.

Natural Language Interface

Users need not know Petri net mathematics when

creating a Petri net model of a discrete event system.

GPenSIM offers a natural language interface with

which model building mainly deals with identifying

the basic elements of a system and establishing the

connections between these elements. Figure-2 shows

the overall architecture of GPenSIM.

Figure 3: Off-line graphical display of results

Online and Off-line Graphical Display

After simulation runs, the simulation results can be

used for printing results both in ASCII and in graphic

format. The results can be also used for off-line (non-

interactive) graphical display of step-by-step

simulation run; to do the offline display, we need an

external program, written in high level language like

Java or C#. At present, an external Java based

program is under construction. However, step-by-step

online (interactive) monitoring of simulation run in

progress is neither available at present nor planned

for construction in the near future.

The Business Tradeoffs with the Final – Four Models of Conventional Telephony Systems

Volume X, No. 2, 2009 475 Issues in Information Systems

THE METHODOLOGY FOR MODELING &

SIMULATION WITH GPenSIM

Creating a Petri net model consists of two steps:

1) Defining the static Petri net graph, and

2) Assigning initial dynamics in the main

simulation file

Step-1) Defining the Petri net graph in one or more

Petri net Definition Files (PDF): this is the static

part. This step consist of three sub-steps:

a. Identifying the basic elements of a

Petri net graph: the places,

b. Identifying the basic elements of a

Petri net graph: the transitions, and

c. Connecting the elements with arcs

Step-2) Assigning the dynamics of a Petri net in the

Main Simulation File (MSF):

a. The initial markings on the places,

and possibly

b. The firing times of the transitions

After creating a Petri net model, simulations can be

done.

APPLICATION EXAMPLE

GPenSIM has been used for modeling different types

of discrete event system; e.g. Davidrajuh (2007)

presents model of an adaptive supply chain;

Davidrajuh (2009) presents a simulation study of a

Bluetooth Wireless technology based classroom tool.

This application example deals with discretizing of

continuous systems. Generally, Petri net is for

discrete event simulations only. However, if a

continuous system can be discretized, then this

system could also be modeled with Petri nets.

However, discretizing of a continuous system is not

easy and needs some understanding of Petri net

formalism and matrix representation; interest reader

is referred to Wilkinson (2006).

The application example is a prey-predator (e.g.

rabbit-fox) ecological equilibrium. The equilibrium is

stated by 2 simple differential equations (known as

Lotka & Volterra equation):

 The specimen prey (e.g. rabbit - r) mutates

by itself and depleted by predators (e.g.

foxes - f):

 The specimen predator (e.g. fox) grows due

to rabbits (access to food) and depleted by

its own population (competition for food):

 ,,, and are parameters

representing the interaction of the two

species.

The equilibrium is determined by partial differential

equations; equivalent Petri net model for the

interaction is given in figure 4.

Figure 4: Petri net model of the Prey-Predator

interaction

Creating a Model

Petri net definition file (PDF) that defines the static

Petri net graph of figure 3 is given below:

%% file: Petri Net Definition File (PDF)

%% file: predator_prey_def.m:

function [PN_name, set_of_places, set_of_trans,

set_of_arcs]...

 = predator_prey_def(global_info)

PN_name='predator-prey p/151';

set_of_places = {'Prey', 'Predator', 'DUMP'};

set_of_trans = {'t1','t2','t3'};

set_of_arcs = {'Prey','t1',1, 't1','Prey',2,...

 'Prey','t2',1, 'Predator','t2',1, 't2','Predator',2,...

 'Predator','t3',1, 't3','DUMP',1};

The main simulation file (MSF) is give below. MSF

first identifies the PDF and then assigns the initial

dynamics. Then, it runs the simulations using the

function „gpensim‟. Finally, the simulation results are

printed.

)()(frr
dt

dr

)()(frf
dt

df

Designing a New Tool for Modeling and Simulation of Discrete-Event Systems

Volume X, No. 2, 2009 476 Issues in Information Systems

global_info.MAX_LOOP = 10000;

global_info.c = [1 .005 .6];

global_info.STOCHASTIC = 1; % stochastic timer

pn = petrinetgraph('predator_prey_def');

dynamicpart.initial_markings = {'Prey',50, 'Predator', 100};

sim = gpensim(pn, dynamicpart, global_info);

M = plotp(pn, sim, {'Prey','Predator'}); %fig-4

plot(M(:,1), [M(:,2), M(:,3)]); % fig-5

Stochastic timer: Due to discretization, the

simulations should use stochastic clock, rather than

the inbuilt global timer Wilkinson (2006). The

realization of Gilespi algorithm (Gilespi, 1977) for

advancing stochastic timer is given below.

function [pn, global_info] = time_advancement(pn,

global_info)

c1=global_info.c(1); c2=global_info.c(2);

c3=global_info.c(3);

Prey = get_place(pn, 'Prey');

PRED = get_place(pn, 'Predator');

h1 = c1 * Prey.tokens;

h2 = c2 * Prey.tokens * PRED.tokens;

h3 = c3 * PRED.tokens;

H = h1 + h2 + h3;

%%%% probabilities

global_info.pro1 = (h1/H);

global_info.pro2 = (h2/H);

global_info.pro3 = (h3/H);

delta_T = 1-exp(-1/H);

pn.current_time = pn.current_time + delta_T ;

Finally, Transition Definition File (TDF) for the

transition t1 is given below. TDFs for the transitions

t2 and t3 are similar.

function [fire, new_color, override,

selected_tokens,global_info] = ...

 t1_def (pn, new_color, override,

selected_tokens,global_info)

c1=global_info.c(1); c2=global_info.c(2);

c3=global_info.c(3);

Prey = get_place(pn, 'Prey');

PRED = get_place(pn, 'Predator');

h1 = c1 * Prey.tokens;

h2 = c2 * Prey.tokens * PRED.tokens;

h3 = c3 * PRED.tokens; H = h1 + h2 + h3;

%%%% probabilities

pro1=(h1/H); pro2=(h2/H); pro3=(h3/H);

R = rand*(1);

fire = (R <= pro1);

The Simulation Results

Figure 5: Composition of specimens Prey-

Predator with time

Figure 5 shows variation of prey and predator

population with time. Figure 6 shows how the prey

population varies against the predator population

(prey-predator equilibrium).

Figure 6: Prey-Predator Equilibrium

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

Time

Y

Y1

Y2

0 50 100 150 200 250 300
50

100

150

200

250

300

350

400

Y1

Y
2

The Business Tradeoffs with the Final – Four Models of Conventional Telephony Systems

Volume X, No. 2, 2009 477 Issues in Information Systems

CONCLUDING REMARKS

This paper presents a new Petri net simulator, called

General Purpose Petri Net simulator (GPenSIM), for

modeling and simulation of discrete event systems.

The tool is devised to achieve the following:

 Flexibility: ability to cooperate with diverse tools

and libraries

 Extensibility: ability to offer support for

rewriting or extending existing functions or new

functions

 Ease of use: Tool may be based on rigorous

mathematics, but the user need not know it

At present, GPenSIM has the following limitations:

 It is based on a commercial platform, which is

not free for academic (or commercial) use.

 It does not posses online (interactive) simulator.

Thus, monitoring the system during the

simulation run is not possible. A Java based

program for offline graphical display of the

simulation results is under construction.

 Though GPenSIM offer extensibility, it comes

with a cost. One need to program in MATLAB

language. Though programming in MATLAB is

easy as this language resembles a simpler

BASIC language, still one need to spend some

time to learn the language.

REFERENCES

1. Cassandras, G. and LaFortune, S. (1999)

Introduction to Discrete Event Systems. Hague,

Kluwer Academic Publications

2. Davidrajuh, R. (2007). “A Service-Oriented

Approach for Developing Adaptive Distribution

Chain”, International Journal of Services and

Standards, Vol. 3, No.1, pp. 64 – 78

3. Davidrajuh, R. (2009).”Evaluating Performance

of a Bluetooth-based Classroom Tool”.

International Journal of Mobile Learning and

Organisation, Vol. 3, No. 2, pp. 148-163

4. Extend (2006). Available:

http://www.imaginethatinc.com/

5. Gilespi, D. (1977) “Exact Stochastic Simulation

of Coupled Chemical Reactions”. The Journal of

Physical Chemistry, Vol. 1, No. 25, pp. 2340 –

2351

6. GPenSIM (2009). Available:

http://www.davidrajuh.net/GPenSIM/

7. LabView (2006). Available: http://www.ni.com

8. MATLAB (2006). Available:

http://www.mathworks.com

9. Petri net world (2005). Available:

http://www.daimi.au.dk/CPnets/

10. Pritsker Corporation (1990). SLAM II Quick

Reference Manual. Pritsker Corporation, West

Lafayattee, IN, USA

11. SIMCSRIPTII (2006). Available:

http://www.simscript.com/

12. Wikipedia (2006). Available:

http://www.wikipedia.org

13. Wilkinson, D. (2006) Stochastic Modelling for

Systems Biology. Chapman & Hall / CRC, NY

