u

Universitetet
i Stavanger

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET

MASTEROPPGAVE

Studieprogram/spesialisering: Varsemesteret, 2009
Informasjonsteknologi/Datateknikk

Apen

Forfatter:
Ragnar Stglsmark (signatur forfatter)

Faglig ansvarlig
Erlend Tgssebro
Veileder(e):
Erlend Tgssebro

Tittel p& masteroppgaven: Innsamling og bruk akresilata i et mobilt GIS
Engelsk tittel: Collection and use of uncertainedata mobile GIS

Studiepoeng:
30

Emneord: Sidetall: 73

+ vedlegg/annet: 6
GIS

Energy conservation
Cell phone Stavanger,
GPS dato/ar
Accelerometer

Collection and use of uncertain data in a mobile GIS

Ragnar Stglsmark
University of Stavanger

June 15, 2009

Abstract

This study looked into the possibility of savinga@y in mobile geographical information
systems by extending the interval between GPS apdatJ2ME application has been
developed to test this theory. Via a map it canlguhe user to his destination. The program
displays the current uncertainty of the user’s fomsi This uncertainty spreads out until the
next GPS update is received. To make the long epdtdrvals transparent to the user, a dead
reckoning scheme was included. The applicatios toeguess where the user is, based on
different input like the previous position or d&tam the phone’s accelerometer. Both the
spreading of the uncertainty and the dead reckdmasgdifferent implementations for driving
and walking. The tests of the application showed the phone battery lasted approximately
4 times longer when going from 2 seconds GPS updtgeals, to only updating when the
uncertainty exceeded 500 meters in diameter. Thdtsdead to the conclusion that extending
the update intervals is a great way to achievedobattery life for mobile applications which
rely on a GPS receiver.

Acknowledgements

| would like to thank my supervisor, Erlend Tagssglior coming up with this interesting
assignment. He also helped me with some of thecdiffproblems that | faced during my
study.

Contents

R [01 1 (o To (3 {ox 1 o] o WP PPPPUPUPPPPPPPR 8
1.1 (@ 11 1 11 PP 8
P22 = T Vo3 (o | {00 o Vo PSSR 10
21 Global POSItIONING SYSTEM ...t s 10
2.2 Java MiCro EdItIONcoooiiiiiiiiii et 12
3 Choice of development PRONE...... ..o 15
G200 R Y o] o] (=31 = To] T o IS 16
3.2 NOKIZ INOB ...t emmmme ettt eeeaaa e e e e e e e e e aaeas 17
3.3 SONY EFNCSSON W7B0i.....ciiiiiiieeeeeee s ceeeeeeie e eeennn e 17
4 Overview of the Travel ApPliICAtION.........ocoeeeiiiii e 19
4.1 o 03 T = 20
A 1 01 (== Vo £ RRUUPPPPUPRUPRPPPT 21
o I 1 1 0= o S PUPRP 22
5.1 RASTEI MEAPS ..ot e et e e e e s e e nmr e e e e e eeanas 22
5.2 VA =Toa (0 1 4 F=T 0 PP PP PPPRRRPPPI 23
5.3 OPENSIIEEIMAP ...ttt ettt e ettt e e e e e et ee e e e eeeeenea e e 24
5.3.1 OpenStreetMap ONLOIOQYuuuuiieie i e e e e e 24
5.3.2 OpenStreetMap XML file format and parSing ccc....eeeeeeeneeeeeeeeieeeiieieeiiiinnns 25
0 N N e T= T W = \VZ=T Y o] o] [o= 14 o] g 1 1 = 1 26
54.1 The ontology Of the MaPcoeeiiiiiiceee e 28
5.4.2 Drawing the Mapcoooeeie e e e e e e e e e e e e eaneeaanees 28
L I 01U 1] o PP 33
6.1 Graphs and the shortest-path problem.. .o, 33
6.1 Choice of shortest-path algorithm ... 34
6.2 Implementation of the A* algorithm ... 35
B Tt = T 5 =]] SR 37
7.1 The GPS UNCEIAINTY ...ccoeiiiiiiiiiiiiitmmmmmmm ettt e e e e e e e e ee e e e e e eeees 37
7.2 Determining the uncertainty tyPeccceeeevuerrmriiiiee e e eeeeeeeee e ennnneeeees 38
7.3 WalKiNg UNCEIAINTYuetiiiiiiee ettt e e e e e e e e e e eeeeeee e e ennneeeessennnnns 41
A S B 111V o To U g Lot =T g = 1]] 43
8 Dead reCKONING ...cooeeeeeeee e ——————— e 48
8.1 The OffroadNoRouteReckoning implementation.............cccccevveeiieeeeeeereeeeeniinnns 49
8.2 The OffroadRouteReckoning implementationuuuviiiiiiiiinieeeeeeeee, 0.5
8.3 The RoadRouteReckoning implementation ..ccceeee...eeeeeiiiieeieeeeeiieeeeeeeiiiies 51
8.4 The RoadNoRouteReckoning implementation ... 52
8.5 Intersection road choosing using the accelet@me.............ccccccceeeiiiiiieieeeeen. 53
S T =L £ TP 58
9.1 B AT (o TP PPN 58
9.2 700 o] [0 S TR 58
9.3 Testing the standby tiIMeovviiicommmmm e e e e e e e e e e e 59
9.4 Testing the Travel APPICAtION..........o e 60
9.4.1 Measuring the effect of altering the uncettalevel...............ccccoeevveeeiiennnn. 60
9.4.2 Comparing the two different routing implenaimns.................ccceevvevviinnnnns 61
9.5 GPS listener versus get I0CatioN...... oo eeieiiiiiieeeirr e e e e e 63
9.6 Power consumption of accelerometer and GPS............c.cccooiiiiiiiiiiieieeveeiinn, 56
9.7 Testing a commercial navigation appliCatioNceeeeiveeeeeeeeeiiiiieeeeiiiiiiiennd 67
10 (0] o o3 1] 0] o FU SRR 70

101 FUINEE WOTK oo e et e e e e e e et e e e e e e e meamn e e e eneanaanaannas 70

(2]][ToTo =T o] 0 Y20 72
Y o] o 1= T [T SUPUPPPPPRPPPPPPPIN 74
PN o] o L= T b q AN Y o o T 11] 1S PSPPSR 74

Appendix A.1 The A* AIQOMTRM ... e 74
Appendix A.2 The update driving uncertainty algomit...............cccoeeeeeeeeeeerreeeeeeennnnns 75
Appendix A.3 The reclassify algorithm ..o, 76
Appendix A.4 The calculate new position algorithm..............c.ooovviiiiiiiieeeneenn. 8.7
Appendix A.5 The calculate position after an ingetn algorithm........................... 79

1 Introduction

In the last years it has become more common withilmphones that support GPS. Using the
GPS receiver consumes a lot of battery power, whdst mobile phones still have a low
battery capacity. Therefore conserving energy isrgoortant issue when developing mobile
GPS applications.

This thesis looks at the possibilities of savingvpoby allowing more uncertainty in a
mobile GIS. GPS inherently has some uncertaintgndigg the current position of the mobile
device. This uncertainty will expand between GP8&atgs. The longer an application allows
this expansion to continue, the less frequentetisdo receive GPS updates.

To test the power saving theory, a travel applicator mobile phones was developed.
The Travel Application is developed for Java Miémdition. It can guide the user to a
destination of his choosing. A major part of treport is dedicated to the design of the Travel
Application. The application use dead reckoningitke longer update intervals acceptable to
the user. The current uncertainty is always disgadayn the map. The application also lets the
user change how much uncertainty he tolerates.

The study has involved experiments with how diffeengroperties affect cell phone
battery life. The experiments included: Testingéffect of allowing more uncertainty in the
Travel Application, using an accelerometer to edttire time needed until next GPS update
and using different routing implementations.

1.1 Outline

Chapter 2 covers background information about tleb& Positioning System (GPS) and
Java Micro Edition (J2ME). The chapter describes KPS works, especially the concept of
trilateration. The differences between J2ME andldnea Standard Edition (J2SE) are also
mentioned.

In chapter 3 the process of choosing the developpteame is described. The chapter
includes a list of requirements such a phone haxeet.

Chapter 4 gives a quick overview of the Travel Agggion. It mentions how the
different features are used. The program’s threadspackages are also described in this
chapter.

The map is the topic of chapter 5. It coverssiierce of the map data,
OpenStreetMap. It also includes the Travel Appiarégs map ontology. In the conclusion of
the chapter the process of drawing the map ondiees is described.

Chapter 6 covers the problem of finding the skgirtoute to a destination. The chapter
describes the A* routing algorithm. There is alsseation about the implementation of this
algorithm in the Travel Application.

Uncertainty is an important topic in this thesika@ter 7 is dedicated to all aspects of
the uncertainty related to the estimate of theenrposition. It first gives an overview of the
factors contributing to the uncertainty of GPSh#n describes the two different uncertainty
schemes that the Travel Application utilizes: wagkand driving uncertainty.

Dead reckoning is covered in chapter 8. The chdpstdescribes how the Travel
Application splits the dead reckoning into 4 diffet algorithms based on the current
situation. The chapter also includes a descriptidmow these 4 algorithms calculates the
current position of the device. The topic of chagsivhich road to take in an intersection,
based on accelerometer data, is covered in detail.

Chapter 9 contains the tests that were done coingelattery life. The test setup is
described. In addition to showing the test resthis,chapter also includes some discussion.

8

The last chapter gives a conclusion and suggeshoriarther work.

2 Background
Two technologies were essential to this project.

» TheGlobal Positioning Systemwas used to find the location of the cell phone.
* The Travel Application was developed flava Micro Edition.

2.1 Global Positioning System

The Global Positioning System (GPS) is a satdii#tsed positioning system. It was
developed by the U.S. for military purposes. Thasgoses included missile guidance and
navigation for desert troops. It opened for pubbe in 1993, but had been in development
since the 1960s [1]. A GPS receiver can find itgent location in the form of longitude,
latitude and altitude. This can be achieved witlobazontal uncertainty of less than 10
meters, in high-end receivers. GPS revolutionibedmarket for mobile GIS, for instance car
navigation systems. Today, GPS receivers are fguaderything from missiles to cars and
cell phones.

GPS consists of 24 operational satellites [2] adiam earth orbit, approximately
20 000 km above the earth’s surface. This meanghbaatellites are not geostationary.
Because of this the number of satellites withirgeanof the same location on earth, changes
with time. The 24 satellites are spaced out soahgtplace on earth should be able to
calculate their position all of the time. But deeobstacles, buildings, mountains, etc. and bad
weather conditions, combined with the low signegrsgith of GPS, this is not always possible.
The areas around the equator generally have Isggteail conditions than those near the poles.

In each satellite there are atomic clocks thahta@m accurate time. This is used in the
GPS receivers to calculate the distance to thdlitzde

Distance = (receive time — start time)/speed dftlig
The GPS receiver also knows the current positidradl the satellites. To calculate its
position, the GPS receiver first calculates théatiice to multiple satellites. It combines these
distances with the current position of the satslifThis process is called trilateration. 2D
trilateration is illustrated in Fig. 2.1. GPS ttdaation is similar to 2D trilateration, but since
GPS is a 3-dimensional system, spheres needsapgbied instead of circles [3]. The
intersection point still needs to be calculatece distance to the first satellite will give a
possible sphere surface for the location. Applyarggcond satellite will lead to a circle,
unless the two spheres are just touching each wothnich case it will lead to a point. The
third satellite will give two intersection points) a fourth sphere is needed. This fourth
sphere is the earth’s surface. However to calcagtesition with decent accuracy, 4 satellites
are needed. This is because the fourth satellitsad to correct the receiver’s clock. Without
this correction an extremely expensive clock waeédd to be put in every GPS receiver.
This is not compatible with making inexpensive GiP8s. Since there is some uncertainty
related to each distance estimate (see chapterany GPS receivers use more than the 4
required satellites for higher accuracy.

10

qF

Satelit= A

Mecsiver
position

4P

Satelite B

Fig. 2.1: 2D Trilateration. The receiver is locatedat the intersection point of the three
circles.

To find the approximate location of all the satedl, every GPS satellite transmits the
almanac. Since it is transmitted in intervals,dlmeanac takes 12:30 minutes to receive from
one satellite. However the almanac data from mlelatellites can be combined for a faster
reception. The almanac can be used in the rect\aroid looking for satellites which is not
visible on the horizon. The same almanac can be faseveeks, since it is just utilized to
avoid wasting time on the satellites that are diefiy1 out of reach [4]. This means that the
accuracy demands are not very stringent. Whenrettewer has found a satellite and wants to
calculate the distance to it, more accurate knogéead required. This can be found in the
ephemeris. The ephemeris is unique for each gatdtlicontains highly accurate data about
the satellite’s orbit and position. It is transmdtonce in each GPS frame. This means every
30 seconds. Every few hours it is updated to cofoganinor variations in the satellite’s
orbit.

There are a couple of issues with GPS. Becaussatkéites are so far away, the
signal is weak. This means it won’t penetrate bngd, which renders it useless for indoor
applications. It is also a case when in dense te®@sd other places with limited visibility.

GPS is mainly used in movable devices, sinceostaty ones tend to know their own
location. Many of these devices run on batteriesirfstance cell phones and standard
portable GPS units. Battery life is a critical facthowever GPS tends to use a lot of battery
power (see the test chapter for battery life te6GPS). An application that can provide the
current location with as few GPS updates as passilild be useful. This is the main focus
of this thesis’ Travel Application.

The first time the receiver is turned on, on agiday, is called a cold start. It then
needs to download the ephemeris again. It mayreded a new almanac. Downloading them
could take multiple minutes, depending on timindg &aow many satellites the almanac can be
received from. Even the 30 seconds (worst casggtta new ephemeris has become an
important factor in how quickly a receiver can g&sPS fix. The transmission speed of the

11

satellites is only 50 bits/s. With the introductiohGPS in cell phones, a new way to get these
files has appeared. It is part of a scheme callesisted GPS. Assisted GPS stands for the
cellular network helping the GPS receiver gettingpaition. The current ephemeris and
almanac can be downloaded, on demand, from theetteSince the 3G network can have
download speeds of approximately 1 Megabits pevrs®at is a much faster data source. 3G
supports two-way communication, so there is no nieaudait for the start of the transmission
either.

Some uncertainty regarding the calculated positiost be expected. This topic is
covered thoroughly in the uncertainty chapter.

2.2 Java Micro Edition

Java Micro Edition (J2ME) is a version of the Jalatform that is intended for small devices.
It is mainly used in cell phones. Most of J2ME subset of the standard Java platform for
PCs, J2SE. J2SE is in turn a subset of the Jaegoeise edition, J2EE. This is depicted in
figure 2.2.

Fig. 2.2: The relationship between the different Jaa platforms.

J2ME is divided into two sets of APIs [5]. The mbssic set is the Connected Limited
Device Configuration (CLDC). It contains the bagica classes. The biggest and newest
version, MIDP 2.1, also contains classes for makiciger GUI's. For instance it has its own
game package with support for sprites. It also guiaes support for floating point numbers.
MIDP 2.1 is included in most new cell phones wistva capabilities. The other set of API's,
the Connected Device Configuration (CDC), contailh¢he basic classes from CLDC, but
not the GUI classes. The biggest difference fronDClis that CDC has more classes, and it
is meant for devices with an Internet Connectibhak packages dedicated to network
communication and security. The latest CDC versloh, is also implemented in all new Java
phones. This is because it is hard to find a nemnptthat does not have either a GPRS or 3G
Internet Connection.

The API's consists of many similar or identicasdes to the ones in J2SE, although a
few of the classes are unique to J2ME. A lot ofithekages and classes have been shaved.
For instance the Math class does not contain aadet finding sin*. The GUI class has no

12

method for drawing polygons. And while you in J2&#sion 6 have 54 classes in the
java.util package, the corresponding number forBZBDC is 36. Some of the features that
have been removed from J2SE are the support fanerations and generics. The main
reason for removing these features is that J2Mitesmded for devices with very low memory
capacity and slow processors. The memory conssraiate especially stringent some years
ago. Modern phones, like the Sony Ericsson W7aGietover 10 MB of available runtime
memory. This will of course continue to increaseking the need for a small API decrease.
That is why MIDP 3.0 is being developed. It wilMegamore functionality, and try to make
some of the optional J2ME packages standard.

J2ME contains lots of optional packages, so calla Specification Requests (JSRS).
They are optional since the devices and their daped are so different. One mobile phone
might have a camera, while another has GPS anavarfd enough processor to handle 3D
graphics. One can see the CLDC and CDC as thedeashon denominator, at least on new
phones, and the JSRs as specialized APIs for mgncbimmon extra features. There is 19
JSRs for J2ME at the moment. In the creation asithtg of the Travel Application, 3 of them
were used. It was: JSR 75: File Connection and BBR 179: Location APl and JSR 256:
Mobile Sensor API.

J2ME has a standard database resembling storaggrs\called RMS. J2ME can also
natively read files within the same JAR archivetasrunning application. However, newer
phones tend to come with removable storage meki@niemory cards. This makes it all the
more important to have direct access to the fitethese file systems. The file connection
APl makes this possible. Most phone implementatsspsarate the phone memory from the
memory card by using different drive letters. Othise accessing a file on a memory card is
identical to accessing one that is stored in th@npls internal memory. Once a file
connection has been opened, the java.io classdsecased to read and write data on the file.
In this thesis JSR 75 was used to store J2ME eorwatipt files from the phone’s GPS and
accelerometer. The files were generated using granothat recorded real life data from
these instruments. This program was developedrasfthis study.

The Location API is mainly for mobile devices wiB@PS capabilities. It can however
also take advantage of external, Bluetooth conde&G®S devices. If no GPS is present or
uncertainty is of no greater concern, the API suggponplementations that use cellular
network trilateration or even simply the conneatell, to determine location. The API has a
location provider class that gives the currenttioca It can also be set up to return the
current location, at a specified interval, to aalib@n listener. It uses the standard WGS-84
datum (longitude, latitude) for all location coardtes. When it returns the position it also
calculates the current uncertainty associated wvitthis uncertainty changes with every
location update.

The Mobile Sensor API is concerned with the usalldfinds of sensors that can be
attached to a mobile device. The most common dterlgdevel, network signal and
accelerometers. But the API can also be used fopeeature, wind or any other sensor. It is
set up very similar to the Location API. The diface is how you locate the correct sensor.
In the Location API you set different criteria, fostance power consumption or maximum
uncertainty, and the best location provider is enos$n the Sensor API one locates the
different sensors via strings. For instance to &ingt accelerometers, on a Sony Ericsson
W760i, one would write:

SensorManager.findSensors("acceleration”, Sens@QANTEXT_TYPE_USER);

There are three different contexts, or classesen$ors: user, device and ambient.
User is intended for sensors that are connectdtetaser, for instance a heart rate sensor.
Device sensors monitors the device, an exampledudoeiremaining battery power. Ambient
sensors measure the environment, for example emtimeter. However the different

13

implementations of the Java Virtual Machine seemisagree about some of the sensors. The
emulator thinks an accelerometer is a device sengmreas Sony Ericsson W760i is certain
it is a user sensor.

The API returns the data either on a get basirough a listener. The API also
supports returning uncertainty, scale or units @hrth the data. This is not always
implemented in the devices however, as is the withethe W760i.

14

3 Choice of development phone

Since this project is partly about the locationentainty of mobile phones, a phone was
needed to test the Travel Application. This waseslly true since one of the most

important features of the application was intentdeble the ability to save battery power and
still be able to navigate properly. There are emougaavailable for most cell phones, but these
features are best tested in the real world. Becalide wide array of phones available, the
following feature list over what was needed for pineject, helped made the choice easier.

1. The phone must have a GPS module. This is absphital, since the intention of the
application is to issue a request for a GPS paositiben the uncertainty is too large.

2. A 3-axes accelerometer must be included in the @hBatween updates the
application uses a dead reckoning scheme, assigtérk accelerometer, to determine
the current position of the device. The acceleremetuld for instance be used to
decide if the user made a left- or right hand @atran intersection.

3. The above features must be programmatically aVaikaban application programmer.
This also means that it must be possible to make gan applications and run them
on the phone. This is standard in most modern ragitibnes.

4. The phone must have a colour display to be abhate a good separation between
the different items on the map. This is standaralliof the phones that support the 2
first criteria.

5. The phone should have some support for measurenguirent power consumption.
This is not an absolute must, since there is alwlay®ption of simply checking how
long it takes before the phone is out of battery.

6. It must be possible to use the developer tools, tlile emulator, on Microsoft
Windows XP/Vista or Linux. This is because they thiee only operating systems that
are accessible on the University.

7. The price. All these features are wanted as cheg@ossible.

8. J2ME is the preferred programming language.

Originally it was the intention to trilaterate theone using the known position of 3 GSM
base stations and measurements, like received sigeagth (RSS), from these. This soon
proved impossible, since the only information apleation has access to, is the cell ID and
the RSS of the cell the phone is connected to. iSthecause the network information is
constrained within the GSM module of the phondeast on the phones that were examined
during the work with this thesis. Of course youldaget an indication of the position using
only the cell ID, but there would be such a greatantainty related to this position that it
would be useless in a routing application. To estarthe current position with 90% certainty
one have to use a diameter of about 2200 meters ugiag only Cell ID in suburban areas

[6].
With this list in mind, phones from different maaafurers were checked out, to find
the one best suited for the project’s needs.

15

3.1 AppleiPhone 3g

Fig. 3.1: Apple iPhone 3G displaying a map [7].

The first phone examined was Apples new IPhone73dGrlhis was investigated first because
of its widespread popularity. It has a GPS-modahel provides assisted-GPS when there are
poor signal conditions. This results in a quickaetite fix, and can even locate the device
when there is no GPS reception (Through WLAN ol @®). iPhone also includes an
accelerometer. Both the GPS and the accelerometeeachable for application
programmers through the API.

iPhone applications must be written in the ObjextC programming language. It is a
rarely used language, but that was not the deci@dictgr why iPhone was not chosen. The
biggest problem was the fact that the software ldgweent kit (SDK) only worked on Mac
OS, unless some serious tricks were performedSj8Le spending several thousand NOK on
a Mac was out of the question, iPhone 3G was difgrethis project. The price is also
steep, 7488 NOK in February 2008 for an iPhone 3&B8vithout a subscription plan [9].

16

3.2 Nokia N96

Fig. 3.2: The Nokia N96 [10].

The N96 is a smart phone that runs on the Symis&nCs [10]. It supports both GPS (also
assisted) and it has an accelerometer. N96 has i2MEn, but it is also possible to use
C++. It seems that for development on the N96, GHthe way to go. This is mainly because
of Nokia’s somewhat poor java implementation. F@tance you don’'t have access to the
accelerometer data when using J2ME, since it doeaplement the JSR-256 (sensor) API.
The N96 includes WLAN support for Internet accéspositive feature with the N96 is the
power consumption tools. You have tools like Periance Investigator and Nokia Energy
Profiler to help determine the power consumptioa given application. The reason this
phone was skipped, was mainly the poor Java suppdrthe steep price: 4995 NOK [9].

3.3 Sony Ericsson W760i

Fig. 3.3: The Sony Ericsson W760i [11].

The W760i is a walkman (intended for music) mopi@ne, with a sliding keyboard [11]. It
has GPS, assisted GPS and features a 3-axes aooefler. The phone has a 240*320 pixels
colour display. W760i supports the J2ME programmamguage. It also features almost all
possible extensions of J2ME, since it implemengsJh 8.3 Sony Ericsson Java
Implementation. It is a MIDP 2.0 device and soméhefAPIs that are supported include: file
operations (JSR-75), Location and GPS (JSR-17%elécometer and sensors (JSR-256), in
addition to support for 3D graphics and many ofkiers.

W760i features a developer mode. With this turoredit is possible to debug an
application, running on the device, from Eclipsg][10f course the phone needs to be
connected to the computer in order for this to wdithe console output can also be viewed on
the computer when the phone is in this mode. Wg6pports service tests where one can, for
instance, view the output from the accelerometangtgiven time. This comes in handy

17

when determining how the accelerometer reacts gumavement. There is also a profiler
tool to help find out which methods in an applioatreceives the most calls and should
therefore be optimized for performance. Unfortulyatieere are no power consumption tools
for developers, so for testing one will have to tieecrude, which application has the longest
battery life, method. The Java emulator is goodh wasy integration in eclipse and functions
for XML-based GPS scripts so that one can testimtdased applications with pre-recorded
data. The same goes for the accelerometer serfssrislan especially neat feature for GPS,
since it is often the case that there is no GP&asigside an office.

All of these features combined with the lowest @a¢ 2390 NOK [9], caused this
phone to be chosen as development phone.

18

4 Overview of the Travel Application

The Travel Application is a J2ME application for Iofle phones. It is meant to be a simple
program, a proof of concept to whether it is pdssib build a GPS application with extra low
power consumption. Its main goal is to guide a usem where he is, to where he wants to
be. This is done via routing on a map. When the stsets the program he is presented to the
following menu:

"F il Jenss (r

Show map
Uncertainty level: 3
Set destination

Fig. 4.1: The Travel Application’s main menu

Show map will display the map, with the currentipos of the user (only after the first GPS
fix). If he has chosen a destination, the routi¢ wall be displayed. The map screen is shown
in figure 4.2.

From all subscreens it is possible to go back éontlain menu. Directly in the main
menu it is possible to set the uncertainty levahefapplication. There are four levels to
choose from. A higher uncertainty level means mumeertainty is tolerated between GPS
updates. This will in turn lead to longer time beém updates, and therefore extend battery
life.

The last option on the main menu is to chooseléstination. This can be chosen
multiple times while the program is running. Whae tiser enters the screen a search field is
shown. Here he can input the beginning of the dattn’s name. The application will then
list all streets beginning with those letters, #meluser can choose one of them to be the
routing target.

19

F il e f |-|

2O \

Menu
Fig. 4.2: The Map screen

PFantl | o AR [=

Choose destination
Enter streetname:

K
Kiell Arholms gate
Kringkasterveien
Kristine Bonnevies Yei

Search Menu
Fig. 4.3: The Choose Destination screen.

4.1 Packages

The Travel Application consists of 7 separate pgekawhich are responsible for different
parts of the program.

 The common classes package is for all the clabs¢site used by the other packages.

Many of them describe common objects like positiand polygons. The controller,
the top level object beneath the GUI, lies in fraskage.

20

4.2

The map package has all the classes that are aegésonstruct the map. It has
classes for roads and buildings. It also house®tfenStreetMap parser.

All the classes concerned with routing from souacdestination are in the routing
package. Both the routing graph and the routingrélgm implementation are in this
package.

Uncertainty is an important topic for the Travelphpation. That is why there is a
separate uncertainty package. Its role is to caleuhe next update time and spread
the uncertainty with time. There are two uncertasthemes, walking and driving,
and both belong in this package. The uncertaintkage is covered in chapter 7 in
this report.

Since there can be quite some time between theup®&es, it would be
unacceptable to provide the user with no positipdates in between. These position
updates are handled by the dead reckoning packagepackage contains different
classes for each reckoning scheme, for instanc@adf with no route. Which
reckoning scheme to use is chosen based on thentgituation. More details can be
found in chapter 8.

There is a separate package for device featurkanttles the connection to the
accelerometer and to the GPS.

The last package is the GUI package. It containhoads for drawing the map and the
menus.

Threads

The program is made up of the following executioreads:

The main thread. This thread starts the progradisfilays the main menu and
constructs the controller. The controller parsesntiap and sets up the GPS listener to
begin receiving GPS updates.

The GUI threads. They handle any user generatett®VvEhese include pushing
buttons to navigate menus and change the zoom [Elvese threads are automatically
generated by the Java Virtual Machine.

The repaint thread. When the map screen is showepaints the map every other
second. This thread also updates the positioneofiivice and the corresponding
uncertainty. It performs the dead reckoning

The GPS listener. This is a JVM generated thrdad.generated by the GPS
implementation every time the GPS position is neei It determines the uncertainty
type and, based on the current situation and usiogytlevel, calculates the time until
the next GPS update.

The accelerometer listener. The accelerometenkstis started by the repaint thread.
It is started when one of the dead reckoning imglaations tries to figure out which
way to turn at an intersection. It starts at mosé&onds before the intersection and
ends 5 seconds after. The collected data can thetillzed to estimate the current
position. This position determines which road thekoning scheme chooses in an
intersection.

21

5 The map

The Travel Application needs geographical dataadkwFor instance it must know where the
user is placed, in relation to the road networlgeable to support routing. This data comes
in form of a map. Which map to use, therefore bexame of the first questions that needed
an answer. There are two main categories of magsinanodern geographical information
systems (GIS), raster maps and vector maps.

5.1 Raster maps

Raster maps are images. The most common sourcesgliyr's raster maps are satellite
imagery and aerial photos. It could also be map#/dron paper and scanned in on a
computer. The raster map must have a scale (faarios 1:10000) and at least one known
position, to be able to place a position (like b gleone’s current position) on the map.
When zooming in a raster map, there are two diffiesrategies. One is to stretch the pixels
when zooming in, so that the screen shows a snkerof the total map. This changes the
scale of the map. The other strategy is to repglaeémage with another one that covers the
same area but has a closer zoom. This strategysysebetter image at the expense of taking
up more storage space. A commonly used strateggasnbination. This means that one
stretches the original image until a certain zoewel is reached, at which time the image is
replaced by a more detailed one.

& Kart - Windows Internet Explorer B EX]
@T\ W rtto: v zett noject Pt =nt [l][] [ceoz Bl
W |.%_%|?\ @itslearnng 3.3 |\‘{,'Geographmnfmmauunsysce.”}l|><art % | T Nyheter fra okonom, nesring... |_\ - dgh » b Side + Cpverktay +

lsy]

m‘ Kjep og salg. Norge rundt.

Eiendom [ISHIIREN Motor | Bat §Smatt og stort JIERM Sett inn annonse || Min Zett St s 3l (ks et dofiaiie 5 08 €T ShsspapiaEn);
[Motor J8ét | g in Zet: | : | M=

Skriv sokeord her | [Kart

| OmKart * Hielp * OmZettno * Looginn

Fig 5.1: An aerial raster map image from zett.no [3].

22

5.2 Vector maps

Vector maps consist of geometric primitives. Theg points to describe the position of
points of interests, for instance shops, and museilitey use lines, or collection of lines
(polylines), to represent line shaped geographjeate. These include roads, rivers, power
lines and railways. The last kind of geometric clgeare polygons. They are used to represent
areas. It could be an estate, a lake, a buildirgarking lot. These objects are stored in data
structures. The map is rendered using a graptuca|i. Scale and zooming are handled
easily. One can for instance choose to only rena#orways, not secondary highways, when
the current view of the map is large. The primdisadvantage of vector maps in contrast to a
raster map is that it is harder to build. A rast@p can be generated from satellite imagery,
but to make a vector map someone has to enteratie This can be done manually or auto-
generated from raster maps using image processohgigues. Another disadvantage is that
the process of rendering vector maps is more congiee one need to actually implement
the drawing methods, compared to the easinessbélfawing an image.

One advantage of vector maps are that they caaily used for applications like
routing, since the roads are objects that can besaed via the data structures. This is not
possible in a raster map. Another advantage iilthsize of a vector map, compared to a
raster map of the same area. Since the vector migmeeds to have a data about the
geographical objects that may be of interest, coetpto the raster which maps every square
meter, the vector map can be a lot smaller. A diffeadvantage of the vector map comes
into play when a new highway is built. Since evergd is its own object, the new highway
simply can be added to the existing road datatstre@nd it will appear the next time the
user renders the map. Updating the map is a loliehavith raster maps since new imagery
has to be captured.

The travel application should guide the user flascurrent location, to where he
wants to go. This requires a map that can be wwawdting. Ergo a vector map was needed.
As an added bonus vector maps takes up less stgpage, which is great since storage
comes in limited supply on mobile phones.

@ OpenStreetiap - Windows Internet Explorer e]

nnnnn

#
Help & Wiki LT P

\\\\\\\

Fig. 5.2: A screenshot of a vector map from openstetmap.org [14].

23

5.3 OpenStreetMap

In this project, OpenStreetMap (OSM) [14] was uasdhe source for geographical data.
OSM was chosen for a couple of reasons. The masorewas because it is free of charge.
The second reason was the easy data export. Youolog@ and mark what rectangle of the
map you are interested in. When you select expartget a well-formatted XML-file of all
the data that is in your selection. Of coursse dlso a vector map, which is what the Travel
Application needs. It uses the WGS 84 datum fomtla@ locations, the same datum that is
returned from most GPS receivers. This datum id uséhe W760i as well.

OpensStreetMap is like a “Geographical Wikipediais organized like a wiki, so that
anyone can change the map, anytime they like. Miate roads that exist on the map have
been entered by normal users. One way to edit #yeisto use a GPS device. A GPS
program can be used to track a user's movemergr Afat these so-called GPS Traces (in
GPX format) can be imported into OSM map editinfjvgare (like JOSM) on a computer.
Here the roads can be classified and named. dgsiple to upload the changes onto the OSM
server via the map editing application. The web mvdjpbe automatically updated after some
time (approx. 1 day). It is also possible to edd@MDwithout GPS traces. The person editing
then draw the roads directly in the map editindvgafe. Some of the data in OSM have been
contributed by governments, to update entire angidisgreat accuracy.

A screenshot of OSM is shown on the previous page.

5.3.1 OpenStreetMap ontology

The intention in the travel application is to corivi@SM data from the exported XML-file

into the Travel Application’s proprietary map ortgy. The Travel Application has its own
ontology because the OSM ontology is very compreiven Implementing the entire OSM
ontology would take too much time. The Travel Apation ontology therefore only includes
the classes that are most essential to a havigagiplication. To be able to convert the OSM
data into the Travel Application’s ontology it mportant to understand how the OSM data is
organized. There are five standard object typeshvaie found in almost every OSM data
export:

« The OSM object is found once in each export. Thikhe top level object that has all
the other objects as children. It includes some aifout the OSM version and
generator.

» Another object which is also found once per expothe Bounds. It describes the
boundaries that were used as an input when cretgngnap. Bounds use minLon,
maxLon, minLat and maxLat to do this.

» Tags are used to give information about the mapabdj This can be used by
application developers. All tags have a type amdlae. For instance if a road has a
tag of type name, and value “Grannessletta”, tlhgnam is meant to interpret
“Grannessletta” as the road’s name. One objechear many tags. The tag types are
standardized and a complete list is given on thB1@&ki [15]. Without tags there
would be no difference between a road and a river.

* A very important class in OSM is the node. The nsapuilt up by nodes. Every road,
area and river is defined by the nodes that thegisbof. A node has a unique id that
is used to reference it. It has a longitude antutde to indicate its location. The node
also carries the name of the creator and a timgstanmdicate when it was created. It
can also have some tags applied to it. For instdinicis the location of a schoaol, it

24

can have a tag that says it is an amenity of tghed. Another tag can then be used
to indicate the school’'s name.

» Ways are used to indicate that certain nodes haeenanon connection. This could
for instance be railways and roads. They havejtagdike the nodes. They include a
vector of node references. Each node referencaiosrthe id of one of the nodes in
the exported file. The sequence in which the nefierences appear, matters. For
instance if the road is one way, the sequenceatekche driving direction. It also
indicates which nodes are connected. A special @b way is the area. The nodes
in the sequence are corners on the boundary @rdee Here the sequence is
important, since there is a rule that defines tisédie of an area. The rule is: If moving
from one node to another in the correct sequehednside is always on the left.
Areas are closed, so the start node is identiclle@nd node.

= Bounds
= 0sM 5§ rminLon
. - bounds i At
[Eg version £ minLat
g generator 1 1 | Eg maxlon
g miaxlat
1
1
- node
] Node
Q Way g ID
B0 g lon
g visible -nd ref _ | g lat
Eg user s | Gguser
(55 timastamp g visible
g timestarmp

k = tag type = Tag
v = tag value

- fan
Fig. 5.3: Overview of the OSM ontology.

5.3.2 OpenStreetMap XML file format and parsing

The OSM export function returns an XML-file callethp.osm. On the next page there is a
simple example of what it might look like.

25

<?xml version="1.0" encoding="UTF-8"?>
<osm version="0.5" generator="OpenStreetMap server">
<bounds minlat="58.92893" minlon="5.68252" maxlat="58.94095748" maxlon="5.7"/>
<node id="266570823" [at="58.9339598" lon="5.6993738" user="Rolf Marthin Nilsen" visible="true"
timestamp="2008-05-23T22:43:16+01:00"/>
<node id="266571376" lat="58.9342421" lon="5.6995141" user="Rolf Marthin Nilsen" visible="true"
timestamp="2008-05-23T22:48:14+01:00"/>
<node id="266571377" |at="58.9346229" lon="5.6996605" user="Rolf Marthin Nilsen" visible="true"
timestamp="2008-05-23T22:48:15+01:00"/>
<node id="266571378" lat="58.9351869" lon="5.6998953" user="Rolf Marthin Nilsen" visible="true"
timestamp="2008-05-23T22:48:15+01:00"/>
<way id="24512596" visible="true" timestamp="2008-05-23T722:48:15+01:00" user="Rolf Marthin
Nilsen">
<nd ref="266570823"/>
<nd ref="266571376"/>
<nd ref="266571377"/>
<nd ref="266571378"/>

</way>
</osm>
Listing 5.1: A simple example of a map.osm file.

To translate the contents of this file into mapecks that can be used in the Travel
Application, it needs to be parsed. Since it iXML-file it was easiest to use the XML-
parser that is included in J2ME.

The parser is called SAXParser. SAX stands forp&mPI1 for XML. It takes an
XML-file and a default handler as input. To usene must make a class that extends the
default handler. The default handler only cont@mgpty methods. The parser reads through
the XML-document sequentially from the top. Asates over tags and symbols in the
document, it calls the corresponding method indéfault handler. The methods that had to
be implemented were start- and endElement, togetilerstartDocument.

The great thing about the structure of the OSMLXiNE is that all the nodes appear
before the ways. This makes it possible to be itetteat when you stumble upon an nd ref in
the file, the corresponding node exists in youaddtucture.

Since the actual object type of the way is indiddty tags, the application has to first
make a node collection when it comes across a Wagn it adds all the referenced nodes to
this collection. And when the parser comes acrdag #hat belongs to a certain class, it
makes a new instance of that class. This instang&en all the nodes of the node collection.
When the parser comes across a </way> tag it caiit &mlthe correct data structure in the
map, according to the class. For instance roads aduled to the road collection.

5.4 The Travel Application map

26

The Travel Application gets the map.osm XML-filern the application’s JAR archive. It
could also have read it from the file system (there memory or memory card). The archive
was chosen because it is easier to have it inARefile when running the application in an
emulator. To emulate the phone’s file system thalatar requires a location on the hard
drive to act as a file system root. This has tpdieted out manually.

Another way to get the map would be to downloazhidemand from the OSM server.
This means that you would only download the magroérea when you were close to it.
Since the W760i has both a 3G and a GPRS Inteamgtection, this would be possible. The
Travel Application does not include download on denhfor a couple of reasons:

1. Download on demand is more complex than downloattiegnap in advance. Since
the core part of the project was regarding the dacgy and battery saving of the
mobile GIS, this would not add enough value toghagect, at least not enough to
defend the added implementation time.

2. Download on demand is not always better than doa¢hlo advance. If you want to
look at the map when you are outside of cell cayer#his is possible with download
in advance. However if you are downloading on daimau need an Internet
connection. Using the connection also drains bafiewer, which the Travel
Application is meant to preserve.

3. Download on demand is more expensive than dowritbadvance. This is because
with download in advance you use a PC with an h@econnection to get the map.
This is free. Download on demand on the other lggamrates traffic over the mobile
network, where you often pay per MB for the traffitiis would add an unnecessary
cost to the testing phase of the project. Thisitaeven more important if one would
want to use the Travel Application abroad. Usirgtiobile network for data traffic
could be very expensive.

27

5.4.1 The ontology of the map

Below is a model of the map ontology.

= map

-boundary |] Boundary
1
1
1 i 1
1
1] NodeCollection
1 node B
=/ Node
1@:; D - nodes - partOf!
/ «interfacer -
1 ,# position 24 Nameable Sliasa
L Position [closedPolygon

= longitude

3 Btitude

*parkinglots
= -lislands
— ~ roads
coastlin &
-/buildings
! Road
Water = Coastline = Anelay 1sland = ParkingLot = Building
= = g oneVvay = =i =
3 speedLimi
| Footway =l Highway = Motorway
| PrimaryHighway =] SecondaryHighway | TertiaryHighway =] ResidentialHighway

Fig. 5.4: The map ontology

The Nameable interface is used to indicate thainipdementing objects could have a name.
The ClosedPolygon interface is intended for thdgeats in OpenStreetMap that is listed by
their boundaries.

5.4.2 Drawing the map

To draw the map on the mobile screen, the J2ME MIWRGraphics APl was used. This is a
2D Graphics API. The greatest difference betweamdt the normal J2SE 2D Graphics API,
is its simplicity. For instance there are no predet colours in J2ME, one has to use the RGB
values. There is also no native support for rotatibthe drawing objects around a point. In
J2SE one can draw smooth segmented lines usindjrispthis option is not included in
J2ME. This could have been a useful function wheavithg the roads.

My greatest concern with the J2ME Graphics API thaslack of a method for filling
arbitrary polygons with colour. In the Travel Apgdtion map there are a lot of polygons, for
example waters, buildings and parking lots. In JB&#e is a function to fill a polygon given
its edges. Since the Travel Application storesetthges of the polygons, it would have been
easy to use this function. To work around thisessiie Travel Application implements its
own fill polygon method.

28

The fill polygon method exploits the fact that asmgple polygon can be divided into
a finite number of triangles [16]. A simple polygsna polygon that has no crossing lines
between the edges and no holes.

Mot a Simple Polygon Simple Polygon

Fig. 5.5: The difference between a simple and a nsimple polygon [4].

The method that was used to find these trianglealisd ear cutting. The theory behind ear

cutting is that a simple polygon which has the ectrtriangle (ear) removed, is still a simple
polygon. The exception to this rule is if there acemore ears to remove, in which case the
whole polygon has been cut away. It is the remo¥é#he ears that has lead to the name ear
cutting. The process is illustrated beneath.

& simple palygon. The polygon divided into
trianglas using ear cutting.

Fig. 5.6: Ear cultting.

In the Travel Application the brute force ear cuftaind in [16] was used, with only minor
modifications to make it fit. Finding the trianglesned out to be quite a processing intensive
task. For instance drawing Mosvannet using thishogttook 140 milliseconds. Since the
triangles don’t change during the execution ofghegram, the best option is to calculate
them only the first time the polygon is drawn ahdrt store them in memory for later use.
When this improvement was implemented, the timeleédor drawing Mosvannet, after the
first time, was reduced to 30 ms.

29

"3;5’ i ¥ § i e o %‘ \t‘; f%,
% e .- L
. T T
; & o]]
%,
[=
&
)
% =
% é@‘ﬁ el
W . e
- el
= .w". 3
: +f
e |
”
r :
Mosvannet
", 2 ;
- = g T - e
Sy,,?’_ o ¥ f ¥ + # " 3 ‘ i - - :I'," r'f/jr—-.

Fig. 5. 7: Mosvannet from OpenStreetMap [14]

In the J2ME Graphics APl when something new is dramhat is previously drawn on the
screen is drawn over. This makes the sequencebfbets are drawn in essential. The Travel
Application uses the following sequence (The ldgécts are drawn last):

1. Draw the background blue to indicate the ocean.

2. Fill the land off-white using the coastlines asuadg.

3. Draw the coastlines black.

4. Draw the boundaries of the Open Street Map sollece f

5. Fill any lakes and waters that might be on the milbp blue colour.

6. Fill islands off-white.

7. Draw roads in the colour specified by the roadassl

8. Fill buildings red.

9. Fill parking lots greyish blue.

10.Draw the route from the mobile phone to the desibnagreen, if there is a
destination.

11.Draw the uncertainty of the mobile device positiobue. It draws it either as a circle or
as a dotted line along the roads, depending otyfieeof uncertainty.

12.Fill the centre triangle blue. This is the triantgiat indicates the current position and
course of the mobile device.

13.Draw the texts that should be displayed. For insteastreet and lake names.

14.Draw the scale ruler black. This is used to indidae scale of the map on the screen,
compared to the real world, at the current zoorellev

30

F il Jes f |

il
L

g L

Kristine Bonhewvies Vel

izm T 1

Menu
Fig. 5.8: Screenshot of the finished map.

Drawing the roads and routes were pretty straigivdiod. The method used was to draw
simple lines between the nodes. One thing thateweabe taken into consideration for all
the drawing was the relationship between longitanie latitude. One unit of latitude is not
equally long, in meters, as one unit of longitud¢he longitude and latitude values were
directly translated into x and y coordinates, t&utt would be a distorted image. First they
need to be scaled according to the number of mp&erongitude or latitude. The meters per
latitude are fairly constant at about 111280 mefEng meters per longitude however,
changes with latitude. Using [17] the meters pagitude was found to be around 57415
meters in Stavanger. In the travel application ighjsist implemented as static variables that
need to be changed when replacing the map witffexelt latitude one. For a more dynamic
approach one could have used a table or implementeeter per longitude calculator.

One of the hardest things to get right when drgwine map is the coastlines and the
separation between sea and land. A special cadeeis there are no coastlines included in the
downloaded map section. This could mean that yeurathe middle of the ocean, or that you
are on dry land, but not close to the shore. Is thse the Travel Application draws land if
there are roads in the map. If not it draws blusaoc The coastline in OSM is defined as a
sequence of line segments with land on the le& amd water on the right. When
downloading a map of an area, you won't get thesttio@ for the entire world. You only get
the part of the coastline that is inside, or climsehe area’s bounding rectangle. The Travel
Application needs to make one or more simple patggaut of the land, to be able to draw it.
This means that one will need an algorithm to gabgsfill in the blanks”, when the
downloaded coastlines don’t provide enough inforomato make the land form a simple
polygon. This is done in two ways. If the entirewtidoaded coastlines are contained inside
the screen, the four corners of the screen aredaddée coastlines to make the land into a
polygon. If it extends beyond the screen some fayavorners are used (currently the corners
of a square with 50 km sides and a middle poirdtied at the centre of the screen).

31

rTlIl" Jeed | |-| F‘F.“" i (|-|

Madlamarksveien

U @Elﬁau VEIEn

i

. -

%r[l-lfe
Ele

pssletta

=]

Menu Menu
L

Fig. 5.9: Screenshot comparison of screen corneracfaraway corners. The blue ocean
stretches to the corner of the screen on the rigtitand screenshot. In the other one it
stretches to a corner far from the centre of the seen. The part of the coastline that was
defined in the map is marked in red.

32

6 Routing

Routing is an important function in the Travel Ajpgtion. It is not always easy to spot the
fastest route to a destination only by looking fo@ map. But by following the result
calculated by a routing algorithm, one will havetrauble choosing the correct path.

When implementing the routing function it was imanit to choose the right shortest-
path algorithm. Since there are already developeteggood ones, an existing algorithm was
chosen. This is more efficient and most likely keé&mla better solution than developing a new
shortest-path algorithm just for the Travel Applioa. To be able to pick the best algorithm,
one first has to understand the shortest-path enobl

6.1 Graphs and the shortest-path problem

A graph consists of nodes and edges that connectidties. If some of the edges can only be
traversed in one direction, we talk about a dicpaph. This is exactly what we have in the
Travel Application’s road network. The road nodestae nodes. They are linked together by
roads. They are the graph’s edges. The roads candde/ay, so we are talking about a
directed graph.

If the edges are associated with weights we haveighted graph. The weight
indicates the cost of using an edge. In the TrApglication the weight represents the time it
takes to travel between two nodes, using the nodidated by that edge.

g

Fig. 6.1: A simple weighted, directed graph.

The single pair shortest-path problem is to fiqghth, from a source node, to a
destination node, such that the sum of all the tsig the path is minimal. This is almost
exactly what is needed to be able to give drivimgddions in the Travel Application. The
difference is that there are a set of destinatimssead of just one. In the Travel Application
it is only possible to route on a street level.sTisibecause house numbers are lacking from
OSM. Since a street consists of multiple nodesetidll be more than one destination. But
through some small simplifications, one can appé/gingle pair shortest-path problem.

1. First choose the geographically closest node, ttwersource node, on the destination
street, as the destination node.

2. After one has calculated a route to the destinatmte, cut off the route at the first
node that is on the destination street.

This will give you the shortest route in most casg®blems occur if there for instance are
shortcuts from the source node, to the other ernleoflestination street. But in my tests this
has yet to occur.

On the next page one can see an illustrationeo$ktortcut problem. The circle
represents the source position. The destinatieetsis indicated in red. The X marks the

33

“node” which will be chosen as the destination, tugs small geographical distance from
the source. The fastest road to this destinati@s g the blue road. But since the
destination originally was the entire street, ituebhave been better to choose the green road.

2 Minutes

a Minutes

9 minutes

Fig. 6.2: The problem of using the closest geograjwal node as a destination.

6.1 Choice of shortest-path algorithm

A shortest-path algorithm is an algorithm that sslthe shortest-path problem in graph
theory. The following algorithms were consideredudse in the Travel Application:

» Dijkstra’s
+ Bellman-Ford
° A*

Dijkstra’s algorithm calculates the shortest paghween a source node and every other node
in a graph. It is then easy to find the shortestedo the destination street. Simply choose the
path with the lowest calculated time consumptioa twde on that street. This is however not
an optimal solution. It calculates the path talad other nodes in the entire graph, when the
Travel Application only needs the fastest pathrte of the possible destination nodes.

Bellman-Ford is an algorithm that calculates thertest path from a source node to all
the other nodes in a graph. The difference frorkdbig’s algorithm is that it supports
negative weights on the edges. The downside istthats slower than Dijkstra’s [18, 19]. It
has a time complexity of O(VE), compared to a gmoplementation of Dijkstra’s at O(E+V
log V). E is the number of edges in the graph and Me number of vertices. In the Travel
Application the weights stand for time consumed nvasing the road represented by the
edge. This cannot be negative, so there was néocdhe Bellman-Ford solution.

The A* Algorithm computes the shortest path frosiragle source, to one or many
destinations in a graph. It tries to search aldwegdest path first. The next node to be
examined is determined using a heuristic functife), f(x) is the sum of two other functions,
g(x) and h(x). The unexamined node with the lovigt is considered the node with the
highest potential and is therefore picked next) g{>a measurement of the actual shortest
distance from the source node to node x. In theelrapplication this will be a measurement
of the time used to reach x from the initial nodgx) is a best case estimate of the distance
from x to the destination. If there are multiplestileations it calculates h(x) for all the
destinations and uses the best of them. SincerthgelTApplication cares about time, h(x) is
the shortest possible time it takes to travel frota the destination. This is the straight line
distance divided by the highest speed limit (thearway speed limit of 90 km/h). The great

34

thing about using f(x), is that the algorithm wdleck the most promising direction first. If
the destination is reached in 100 seconds usingpatie the examination of other paths can
stop when their f(x) exceeds 100 seconds. Thesdgatares combined ensure that it is
possible to reach a solution for the problem védfigiently.

Since the Travel Application has all the featureseded to use A* and it is the fastest
of the considered algorithms, A* was chosen tonyglémented in the program.

6.2 Implementation of the A* algorithm

To be able to calculate the shortest path, thengugraph with nodes and edges must be
created. In the Travel Application this is creafeain all the roads in the map. It is only done
once per program execution. Each node on the ieadpresented as a route node in the
graph. To determine neighbourship the applicatakes advantage of the sequence of the
nodes in OSM. The sequence is combined with then@yeproperty of the road. This means
that if node Y follows node X in the sequence, beilhhave each other as neighbour. If the
road is one way however, only X will have Y as mdigur. If a node exists in more than one
road (this indicates an intersection in OSM) itdsero special treatment, the neighbours from
the second road is just added to the same roui nod

Here is a UML diagram representing the structurthefrouting part of the Travel
Application:

= Router

§% findShortestRoute ()

- rogdMetwork
| RouteGraph

- routenodes | Route
The .
RouteNode £ RouteNode &, getTotalTime ()
ink t
e node & Fi) - neighbours
the node it £70)
represants in % g()
the map. #h ()

Fig. 6.3: The routing package.

The route graph represents the graph. The route clads represents the nodes. When
combining the neighbour relationships, one getetlges. A path in the graph is a route in
the Travel Application. It extends the route grapite it also is a collection of route nodes.

35

The router contains the A* algorithm. To calcultdte shortest route it requires a street name
as a destination and the current position of thigpb@®ne as a source. Since the cell phone
position is not included as a node in the grapheéds to be inserted with the right neighbour.
Choosing the right neighbour is done using théuifction. The node with the lowest f-value
given the phone’s position as a source (or routergaand walking in a straight line towards
the node, is chosen as a neighbour. When onesgleuhe road, the router always assumes
movement occurs at a walking speed (6 km/h). Whnea mad, it assumes that travel happens
according to the road’s speed limit. The pseud@®dodthe A* algorithm can be found in
appendix A.1.

Implementing A* was easy since the routing grapth modes were already made. The
routing function was first implemented by findifgetshortest path to the geographically
closest node on the destination street. This id vgh@escribed on page 30. A specific routing
then took 16 ms (From the University of StavangeGtannessletta). At a later time the
routing was extended to calculate the shortest foettie entire destination street. This could
be done by making the destination a set of routeesdnstead of just one. First the set
included all the nodes in the street, but theaakt160 ms to route (Grannessletta has 40
nodes). Since longer routing time equals more p@easumption (through processing), it is
important to reduce it as much as possible. Thige tan be greatly reduced by taking
advantage of the following fact: The destinationl@avill be in an intersection. The only
exception is if one is standing so close to theidason street that the first node one uses to
reach the destination, is the destination. Thigasibn can easily be handled by adding the
destination street’s geographically closest nodéécsource, into the destination set, if it is
not already there. With this improvement the tirseded to route went down to 32 ms
(Grannessletta has 2 intersections). It was stitld the time needed for the original routing.
In the testing phase both the single destinati@hthe improved street destination routing
were tested. This was to see how much shorteratterlp would last with the improved
routing and then to determine if it was worth itjen the added accuracy.

YTl (|I Tl e (|I

Choose destination

Enter streetname: Madlamarkveien
G Z
Llllantlhaug ==l
Granneshakken < &{
@D‘
Grannesvegen . a
krigting'Bonnevies el | —
Blen; -
5
Search Menu Choose Menu

Fig. 6.4: Routing to Grannessletta in the Travel Aplication.

36

7 Uncertainty

The intention of the Travel Application is to benservative in relation to power

consumption. It tries to achieve this by extendimgintervals between each GPS update. The
drawback of this technique is that it adds somestiamty regarding the current position. For
instance if you have not received any GPS updatethé last 3 minutes, you can have
travelled quite far. If you are doing 90 km/h, yoould have travelled up to 4500 meters in
one direction. This makes handling the uncertaimiyortant, so that the application can
determine which time the next update should occur.

7.1 The GPS uncertainty

There is some uncertainty about the position ottiephone even if the application has just
received a GPS update. This is due to the inacgwBGPS. In the Travel Application the
concern has been the horizontal accuracy (longitatizude) of GPS. GPS can also
determine altitude, but this is associated witlmeatgr inaccuracy. The following factors
contribute to the GPS error [21]:

» Satellite geometry.In GPS you estimate your position based on thanlg from
your location to at least 4 satellites. If somehafse satellites are close to each other,
the area of your possible location grows largeis Thbecause of the circular
uncertainty areas around the satellites have aloongrlap. This is shown below with
the blue area indicating the possible locatiorréaeiver A. Since the satellites are not
geostationary, the error caused by satellite gegmall change with time. Also a
GPS receiver can calculate a position with sigrahfas little as 4 satellites, but the
best receivers can connect to 20 satellites. Thenman number of satellites
observed while testing the W760i was 8. Havingaxsatellites available can help
reduce the uncertainty. The error caused by datgiometry cannot be measured
directly in meters, but rather works as an ampiltieethe other error sources.

Fig. 7.1: Good versus bad satellite geometry [20The good on the left.

» Satellite orbits. Slight shifts in the satellite orbits from whatsisted in the
ephemeris. This means that the satellites areosatdd exactly where the phone
thinks they are. Regularly controlled so that tirerecaused by this is no more than 2
m.

37

* Multipath effects. The phone always assumes that the signal hadlédwe a straight
line from the satellite. However it could be thae signal instead has bounced of
something solid on the way. This means that theasigill travel further and be more
delayed than it was supposed to. This will agaad l® the phone thinking it is further
away from the satellite than it actually is. Mu#tth effects are most common in
narrow streets with tall buildings. The typicalaris a few meters.

» Atmospheric effects.When entering the atmosphere, the signals wilketrat a
slower speed. The receivers take this change aaousmt when they calculate their
position. However they do not take into considerathe changes in this speed drop.
Sometimes it might be higher due to variable efféige strong solar winds. Military
receivers can correct for this effect since theytug different frequencies. This gives
them some meters less error. The amount of wapuran the troposphere will also
affect the arrival time of the signal. The errousad by atmospheric effects could be
around 5 meters.

* Clock inaccuracies and rounding errors.Although the clocks are synchronized,
there will still remain some timing inaccuracy. alsunding of numbers will cause a
small error in the receiver. These effects combumigd an error of approx. 3 meters.

Altogether these factors sum up to a theoreticalref ca. 15 m. A good civilian receiver
today can have an uncertainty radius of about 20 m.

Before USA turned it off selective availability wdee greatest source of error in GPS.
Selective availability was intended to give the &iSadvantage in case of a war. The way it
works is that only those who know the codes getiftailed information. Among its
intentions was to prevent hostile missiles using@# guidance. Selective availability could
cause an error of up to 100 meters in civilian ingams. When GPS became popular, this
feature was turned off on May, 2. 2000.

During testing with the Sony Ericsson W760i, mdsthe results were within 30
meters of the actual position. There were howeosresoutliers. Some positions had an error
of a little bit over 100 m.

J2ME’s Location API has a couple of methods inGualifiedCoordinates class
dedicated to handling the error of a given posifi]. GetHorizontalAccuracy() returns the
horizontal (longitude, latitude) accuracy in metdérassumes the actual error follows a
normal distribution. It returns the standard deweiabf this error under the current conditions
(number of satellites, etc.) This means that apprately 68 % of the returned results (if the
same test is done many times) would lie withinreleiwith the returned radius, around the
given position. GetVerticalAccuracy() is an analeguethod for the altitude error. Of course
here the uncertainty is not a circle, but ratheinéerval.

The Travel Application takes advantage of the gettémtalAccuracy() method. The
application uses it to set the initial radius af tincertainty circle. This is done after each GPS
update. If the device doesn’t implement this metliodinstance if O is returned, the radius is
set to 100 meters just to be on the safe sidandfi® working with an unaltered version of the
J2ME emulator, 0 is returned. This can howeverianged in the emulator’s property file.
The W760i implements getHorizontalAccuracy() cotisec

7.2 Determining the uncertainty type

The Travel Application separates the spreadingp@fuincertainty into two different main
types: Walking uncertainty and driving uncertaintiie walking uncertainty is applied when
the user moves slowly. It spreads in a circle. Wienuser moves too fast to be walking, the
driving uncertainty is used. If there are any roadgle the initial GPS uncertainty circle, the

38

driving uncertainty will spread out using thosedealhe speed of the spreading will be
determined by the speed limits. The spreading algorassumes that one stays in the same
uncertainty class until the next update. This mehasif one is walking and starts to drive,
one might end up outside the uncertainty circleaftwrief period of time. This is not a major
concern since the transition will be detected atrtbxt update anyway.

The application decides which uncertainty typeusthde applied based on the speed
of the device. It calculates the distance fromlés¢ GPS update to the current, and divides
this on the elapsed time. If the straight line shisegreater than the estimated maximum
walking speed (10 km/h), the user is considerdaktdriving. Else he is classified as walking.
The Travel Application assumes that the user igurating or cycling. The Travel
Application will consider both running and cycliag driving. The uncertainty will then
spread too fast. The best way to support runnimigcgoling is to implement two new
uncertainty types. They would have to use a higheximum speed than walking. For
instance: 20 km/h for running and 60 km/h for aygliHowever the cycling uncertainty
should in any case not spread faster than the dpedWhen cycling, the uncertainty should
spread along the roads. The running uncertaintiddoawever be more like a fast walking
uncertainty. Separating cycling from driving woldle an issue, especially on roads with low
speed limits.

Using only the previous and current GPS positmedtimate the speed of the device,
could sometimes be a problem. This is especially tvhen the interval is small. For instance:
Given two returned positions, A and B, with an g between them of 2 seconds. Assume
that the device has not moved between the updales assume that the horizontal accuracy
is 30 meters. Given that A and B lies on oppositelers of the uncertainty circle, this leads
to the following situation:

True
Position

20m
Fig. 7.2: The problem of determining speed using safl update intervals.

Calculating the speed based on these two updaliegive: (2*30 m) /2 s =30 m/s = 108
km/h. The real speed is 0. This problem can be ledruy adding the calculated speed to a
weighted average of the latest speeds. Then onms#ad let this weighted average decide
which uncertainty type to use. This has not yenifally implemented in the Travel
Application. The main reason is that in testing jusing the previous GPS update has proved
sufficient. The average update interval in the & application is around 20-30 seconds.
And that is not on the highest uncertainty settidgsapply this to the problem above: 60 m /
30 s=2m/s =7.2 km/h => It would still be cldiesl as walking.

39

To calculate the speed one needs at least 2 GR®pssThis means that some kind
of start up process is needed before determiniagiticertainty type for the first time. The
simplest would be to just wait for 2 updates befmleulating the speed. The Travel
Application waits for 30 updates before determirtimg uncertainty type. During the start up
process it uses a GPS update interval of 2 secdhisgives a start up time of 1 minute
before the speed is calculated. The reason thag diels been included, is to make sure that
the user has reached a speed he will be traveltifgy some time. This helps avoid wrong
uncertainty classification. Here is a typical uasecfor the Travel Application, which
illustrates the problem:

The user is sitting in his parked car. He startsTiravel Application. After that he
enters his destination into the program. When s i#e route, he starts to drive.
If the start up process had begun determining taicgy type straight away, he would be
considered to be walking, since his speed was @rWre wait 1 minute, he will be driving.
In the meantime the Travel Application does notthgedead reckoning scheme, and just
display the uncertainty as a circle with the reldBPS error as a radius. Here the intervals are
so small that it could be useful to employ a wesghttverage to determine the speed after the
start up. The Travel Application implements a wégghaverage with exponentially
decreasing weights. This means that the newer sgedjiven more importance than the
older speeds. The following formula was used tawdate the weighted mean speed:

Rl
v = E W1
i=1

v is the weighted mean. There are m samplei the normalized weight for speed sample i.
The sum of all normalized weights is lixspeed sample iz ¥s the newest sampley xs the
oldest.

w; is given by this equation:

wi—l
Vi

W =

w is a constant between 0 and 1. It indicates lastithe weights shall decrease with age. The
lower it is, the faster the weights decrease. énTtravel Application this is set to 0.8. If there
are 30 samples in total, the 3 latest samples atdoualmost 50% of the meany 6 the

sum of all the unnormalized weights. It can be waled as follows:

m
1'1 — Zwi'—l —

i=1

1 _ urﬂl

1 —w

40

| Uncertainty
= maxlincertaintylLevel
g, calculateMextUpdate Time ()
% determinelncertainty Type ()
% updateUncertainty ()

| walkingUncertainty | DrivingUncertainty

Fig. 7.3: An overview over the most important classs in the uncertainty package.

Fig. 7.3 shows the relation between the uncertailatys and its two subclasses. The
maxUncertaintyLevel variable indicates how far timeertainty should be allowed to spread
before issuing an update request. This is used whlenlating the next update time. The
calculateNextUpdateTime and updateUncertainty ntstiave an empty implementation in
the Uncertainty class. They are overridden by thespective methods in the driving and
walking uncertainty. This makes it work like a fmistate machine with 3 states: Undecided
(start up), walking and driving.

The uncertainty type is the first thing to be deti@eed after each GPS update. As
previously mentioned this happens only after thet stp process has finished. It returns either
a walking or a driving uncertainty based on theenitrspeed of the device.

The calculateNextUpdateTime method is called a&ésh GPS update (not during
start up). It returns the number of seconds umdlrtext update. It is called after the
uncertainty type is determined.

UpdateUncertainty is called for each repaint efitiap in the GUI (every 2 seconds
when the map is shown). This is another featureish@ot used until after the start up period
is over. It increases the uncertainty accordintpéouncertainty type. This method is used to
give an indication of the current uncertainty te tiser.

7.3 Walking uncertainty

The walking uncertainty is intended for users wadkireely around the landscape. It starts
out as a circle with the GPS’ horizontal accuragy aadius. The radius of the circle then
expands with the maximum walking speed (10 km/lg. F.4 and 7.5 shows the logic of this
spreading scheme through an example.

41

location & location
A

~y Possible Possible %

GPFS position

Fig. 7.4: The initial uncertainty at time to.

Fozsible Fossible
current ~ Possible Poszible current
[ocation if [ocation . location % [oCation if
the initial & B the initial
location EFS position location
Was A was B

Initial
uncertainty
radius

|pdated
uncertainty
radius

Fig. 7.5: The updated uncertainty at time 1.

The initial uncertainty radius is s meters. The mmasm walking speed in m/s is v. The
updated uncertainty radius at timestthen:

Updated radius = s +1(+) * v

To calculate the time until next update, the TraMaplication finds out when the uncertainty
diameter will reach the maximum allowed diameteindicated by the current uncertainty
level. This means solving the following equation:

42

Seconds until next update = (%2 * (d/v)) — (s/v) ¢Tme it takes to walk the
maximum radius — the time it takes
to walk the initial radius)

The maximum walking uncertainty levels are:

Level 1: 100 m diameter
Level 2: 200 m

Level 3: 500 m

Level 4: 1000 m

The uncertainty levels have been chosen such thetteolowest level it should only take a
few seconds between each update. Level 2’'s diansetwice as large as level 1's, but due to
the fact that the GPS uncertainty instantly eata g more of the first level’'s diameter, the
time between updates are multiplied by a factapgroximately 4. More than 1000 meters of
uncertainty will make the application useless farting, so the maximum level was set
accordingly. It would be useless both becauseehtph uncertainty and the long update
intervals.

UF il e ‘W | i T TS (|-'

I 125 m I 125 m
Menu Menu

Fig. 7.6: Screenshots of the walking uncertainty icreasing with time. The uncertainty
decreases again after an update

7.4 Driving uncertainty

The driving uncertainty is far more complex thae #alking uncertainty. The walking
uncertainty only expands as a circle, while theidg uncertainty spreads along the roads.
The speed of the spreading is also not constaistdépendent on the speed limit of the roads.
The previous statements are true only in one ofltheng uncertainty modes. The driving
uncertainty separates between two different c&@ang on a road on the map and driving
on an uncharted road. The separation is basedeanittal uncertainty circle. If it does not
intersect any roads or there are no road nodeaseitise uncertainty circle, the device is
considered to be driving on an uncharted road. iElsedriving on a road that is on the map.

43

If the driving uncertainty is in uncharted roaddeat behaves almost identical to the
walking uncertainty. The uncertainty still spreadsa circle with constant speed. The initial
uncertainty is identical. The difference is theespef the spreading. The maximum known
speed limit of any road known by the applicationsgd as spreading speed. Currently it is
the speed limit on motorways (90 km/h). The reasgiiehind this is that the user is moving
at a speed which is over the maximum walking spEegb he must be driving on some kind
of road. However the map indicates no road withenuncertainty circle. This means he
drives on an unknown road. If the road is unknoimay be anything from a residential
highway, to a motorway. Since the uncertainty eigthould always include the worst case, as
long as it is a legal speed, it must take the megrinto consideration. The worst case
uncertainty scenario is the following: The usedniying. His estimated GPS position was as
wrong as it could possibly be. He is driving inteamght line directly away from the GPS
position. The road he is travelling on is an untdthmotorway. This is illustrated in Fig. 7.7.

= —

GEFS position

Fig. 7.7: The worst case uncharted road scenario.

To be prepared for this, the application must abuwase the motorway speed limit as the
spreading speed of the uncharted road uncertdihgyother difference from walking
uncertainty is that the driving uncertainty hashieiguncertainty levels than the walking
uncertainty. Because the uncertainty spreads masthrf this could make the user tolerate a
little more uncertainty.

The driving uncertainty levels are:

Level 1: 150 m diameter
Level 2: 300 m

Level 3: 800 m

Level 4: 1400 m

The modelling of the other driving uncertainty, whae user is driving on roads which exist
on the map, was among the most difficult algorithandesign in the entire application. To
illustrate how this uncertainty spreads it is legiive an example. Fig. 7.8 and 7.9 shows the
uncertainty spreading across a network of roads.

44

Road

<

Road
A @ Road
(PS5 position ¢
Fig. 7.8: The initial uncertainty at time to.
Road
B
|
Rioad [
A @ Road
C

PS5 position

Fig. 7.9: The uncertainty at time §.

The speed limit on roads A and B is 30 km/h. Theesidimit on the main road, road C, is 60
km/h. This is why the uncertainty has spread tws¢ong via road C, than road B, frogrd
t;. The red lines on fig. 7.9 indicate the uncertalmundaries. The uncertainty starts initially
as all parts of the roads that are inside the GR8rtainty circle. It then spreads out as fast as
it legally can. This means following the speed tion the roads. It should not spread against
the driving direction on a one-way street. Thiagsomplished using the routing graph as a
representation of the roads. It can only spreatkighbours in the routing graph. If it comes
to an intersection it should spread out along@tinected roads. The driving uncertainty
assumes that a user, who is driving, does nottstavalk until the next GPS update.

To determine when to update next, the spreadisgnalated second by second. The
simulation stops, and the time until next updatmustbe set accordingly, if it after a
simulation second satisfies one of the two follayvmiteria:

» If the geographical distance between any of thd raales inside, and including, the
uncertainty boundary, is bigger than the diameg¢etated in the current driving
uncertainty level.

45

» If the number of intersections inside the uncetiaboundaries, are higher than the
maximum number of intersections declared in theeturdriving uncertainty level.

The numbers of intersections in the different utaiety levels are:

Level 1: 1
Level 2: 3
Level 3: 5
Level 4: 7

Adding the number of intersections into the nexdatp equation makes it possible to demand
a higher accuracy in places with many intersectidhgs makes the Travel Application more
accurate when it is needed the most. The levelsemtemsen using much of the same logic as
the walking uncertainty. The lowest level is asuaate as it can get, issuing an update for
every intersection the uncertainty comes across.l@Vels have a steady increase in
uncertainty up to the maximum. 7 intersectionslst ahen the application’s main task is to
guide the user to make correct turns.

The algorithm for updating the uncertainty stégt<inding the route nodes inside the
initial uncertainty circle. This is done by chedjithe distance between the nodes and the
GPS position. Then the initial boundary nodes rteduk found. Calculating the intersections
between the uncertainty circle and the roads @dtllto the discovery of the initial boundary
nodes. A boundary node is a subclass of a route.ribldas an inside and an outside
neighbour. An important note here is that bounderyes are created and destroyed
dynamically. They are not the same as the permanuetds in the routing graph. When the
boundary nodes are found, the expansion startgdswiae outside neighbours. Each time an
outside neighbour is passed, new boundary nodegeaged along each possible path. They
will have the most recently passed node as anamséighbour. The created boundary nodes
will be temporary boundary nodes. A temporary baugahode is a boundary node that also
has remaining time as a variable. If it is meanifiddate the uncertainty, this time is initially
set to the time that has passed since the undgrtaas last updated. The time remaining is
reduced as new temporary boundary nodes are crdatisdmakes it possible to stop the
expansion at a given time. The update uncertaigtyrighm can be found in appendix A.2

The calculateNextUpdateTime is essentially the sdrhe only difference is that the
time remaining is set to 1 second initially. Thiakas it possible to check if the uncertainty is
too big after the first second. If it is, the applion stops simulating and returns 1 second as
the time until next update. Else the time remaingget to 1 second again and the step by
step simulation continues.

46

-

/]

125m

Fig. 7.10: The driving uncertainty expanding.

47

8 Dead reckoning

Dead reckoning is the process of finding the curpasition based on previous location
measurements and some additional information. fBaisnique was used by sailors to
determine the current location of the ship, whexytivere sailing the ocean without any
landmarks in sight. They estimated the course tiaelyheld and measured their speed using
crude devices. Combining this with the time sireartlast known certain location, they
could find their current position on a map. A maetifversion of this technique is used in the
Travel Application. It is important to give the ugke illusion of movement in between GPS
updates. Dead reckoning makes it possible to haweeeptable screen update interval,
approx. every other second, while still maintainenigng battery life by seldom checking the
GPS. In the Travel Application common intervalsvesn the GPS updates lie in the range of
10 seconds to 6 minutes, depending on uncertansgf.|

Since it is such an essential part of the Travedlisption, dead reckoning is
implemented in its own module. It is designed &site state machine. This means that the
dead reckoning will change behaviour based on enmental input. An overview of the dead
reckoning module is shown in figure 8.1:

E] DeadReckoning

Eg currentPosition

Eg currentSpeed

[Eg currentCourse

{5 rechssity ()

3 calculateNewPosition ()

E] offroadNoRouteReckoning E] offroadRouteReckoning E] RoadNoRouteReckoning =] RoadRouteReckoning

i calculateChaiceInintersection ()

Fig. 8.1: Overview of the dead reckoning package.

When the user is walking, one of the off-road a@assoes the reckoning. It chooses between
the two different off-road options based on whethremot the user has requested routing to a
destination. The off-road classes reckon the dexacinues at the same speed as it had since
the last update. The direction will follow the reutf there is no route, the direction is
estimated based on the course between the two GRS updates.

If the user is considered to be driving, all foeckoning schemes can be utilized.
When the user is driving on a road that doesn%teot the map, one of the off-road classes is
chosen. Based on routing requests, the reclasgfigod again chooses between route and no
route. It is important to know that the user cameha route to the destination without being on
the road. When calculating the route, the locatibtine device is inserted as the source route
node. The other nodes on the route will alwaysrbéhe road.

RoadNoRouteReckoning or RoadRouteReckoning is chwbken the user drives on a
road that exists on the map. These schemes rebkothe user travels along the road while
following the current speed limit. Again the existe of a route determines which one is
chosen.

The calculateNewPosition method is the most impont@ethod in the dead reckoning
package. It has the current time as input. Baseti@ourrent time it updates the current
position, speed and course. This method has anyamptementation in the DeadReckoning
class. All the subclasses have their own versiah dhe implementation of this method is in
essence the difference between them.

48

The RoadNoRouteReckoning class has a method deand exist in the other
subclasses. CalculateChoicelnintersection is usetidose between multiple possible paths
in intersections. A road is chosen by analyzingdatlected from the phone’s accelerometer.

Reclassify is the bulk of the DeadReckoning cléss.called by the GUI's run
method. However it is only called after the startplase is finished, because the guessing is
not needed until the GPS update intervals stareasing. Reclassify is only invoked in the
first run loop after each GPS update. The methtadk is to choose which reckoning class to
use until the next update. The input it needs is:

* The current uncertainty type. Is the user driving or walking? Is he on an untdvar
road, or is it possible to take advantage of th@iegtion’s knowledge of the road
network?

» The current route. If there is a shortest route calculated, thereason to believe that
the user could be following this route.

» The previous route.This is used to see whether the user is closeéretmtended
target now, than at the previous GPS update tifmat] it is an indication that he is
ignoring the routing information. Another use fhetprevious route is to determine if
the routing target has changed. This most likelpmsethat the user has changed the
destination manually. He may then be more likelfotow the newly calculated
route.

The algorithm for the reclassify method is listachppendix A.3

8.1 The OffroadNoRouteReckoning implementation

The OffroadNoRouteReckoning class has the simples$sing scheme. It is constructed for a
situation where there is no route or roads to Yellth calculates the current speed based on
the distance and time between the two latest GE&tap. Just after the start up phase it uses
the weighted average speed instead. The classisgsathe last two updates to estimate the
course of travel. It maintains constant speed aogse until the next update. The following
eguations must be solved to find the current pasiti

Current longitude = previous longitude + ((timecgrprevious update * current speed *
cos(current course))/ meter per longitude)

Current latitude = previous latitude + ((time siqrevious update * current speed *
sin(current course))/ meter per latitude)

49

YTl [YTl e [|

NE

Em 125 m
Menu Menu

Fig. 8.2: Screenshots of the OffroadNoRouteRleckorrjp Notice how it travels in a |
straight line along the arrow’s direction.

8.2 The OffroadRouteReckoning implementation

OffroadRouteReckoning is intended for situation®mehthe user is considered to be

following a route, but is not influenced by any kmospeed limits. This could be because he
is walking or because he is driving on an unchambed. It uses the current route and speed to
determine the updated position. Its estimate isdbas holding a constant speed along the
calculated route. The speed is still determinedhgatwo latest GPS updates. Since the
position traverses along the route, the positicstatg algorithm can borrow heavily from the
road spreading of the driving uncertainty. It isuadly somewhat simpler, since there is only
one possible road to take at each intersectiorevi fieature in the reckoning solution is the
TempPosition. It has the same role as the temptw@updary node in the driving uncertainty,
without the inside neighbour. The algorithm isddsin appendix A.4.

50

™F il i [|-| F il e |—I

N

Ewr 4 TT;—J

Menu Menu
L

Fig. 8.3: Screenshots of the OffroadRouteRec_koninq.he arrow turns around the
corner in the route.

.|

8.3 The RoadRouteReckoning implementation

The road route reckoning scheme is only used wihemniger is driving on a road. It follows
the current route. This makes the position updgiarighm very similar to the
OffroadRouteReckoning. The big difference is tihat ¢urrent speed is dynamic. It is
determined by the different speed limits alongrthde. This will give a good estimate on the
current position during normal traffic. If the deiveither drives too fast or too slow, it could
be a bit deceiving. When there is a traffic jane titaffic will a lot of the time move so slow
that it will be classified as walking. The Travgb@lication will then use the
OffroadRouteReckoning and the speed will be detegthas low.

The RoadRouteReckoning has a snap to road fedtueeOffroadRouteReckoning
use the last GPS position as a starting positibe. RoadRouteReckoning instead finds the
point on the road that is closest to the GPS pmwsifl his is then used as the initial position.

51

UF il e i | ol e (|

T

f/’
L o : RYIeS Vel
ristine Bonneyies Vel e
. N
f !
Em) Em /\
Menu Menu

Fig. 8.4: Screenshots of the RoadRouteReckdning. tie how the starting position is not
in the middle of the uncertainty due to the snap te@oad feature.

8.4 The RoadNoRouteReckoning implementation

RoadNoRouteReckoning has the most complex impleastientof the calculateNewPosition
method. It is meant for situations where the uselriving on the road, but either has no route
or shows no signs of following the route he haslgeen. It has a couple of similarities with
RoadRouteReckoning. The same snap to road featurglemented in both classes.
RoadNoRouteReckoning also use the speed limit®wcuhrent road section to determine the
movement rate. The big difference appears in h@y Handle intersections and how they
decide the initial course.

The initial course is easy to decide when the isstlowing a route. It is the angle
from the position where the user is snapped tadhd, to the next road node on the route.
The problem for RoadNoRouteReckoning is that tlesists no valid route. The issue is then
to choose which road node should be considereddakienode. RoadNoRouteReckoning’s
solution to the problem is drawn in figure 8.5

Previous GPS position
L]
O > O
Node A Estimated initial position w,4= 5
and course

New GPS position

Fig. 8.5: Determining the initial course without aroute.

To choose between node A and B, the Travel Apptinatalculates the course from A to B
and from B to A. The closest angle, to the couetgben the GPS positions, is chosen as
initial course. It is sort of like an angular srtapoad function. In figure 8.5 Node B has been
chosen as the next node.

52

The RoadRouteReckoning implementation does nat raéce when it arrives an
intersection. It only follows the calculated routée RoadNoRouteReckoning has to make a
choice. Should it make a left, right or maybe eaenrturn? If it is a major intersection, there
could also be further possibilities. The first wvensof the algorithm used speed limits to
decide which road to take in an intersection.\tasls continued moving along the road with
the highest speed limit. The reckoning algorithsodept note of the last node it had visited,
to avoid u-turns. This is a very crude solutiorntypical car journey starts out at a residential
highway, continues to a secondary highway, follag a primary highway or motorway,
then goes back on a secondary highway, just tauprat a residential highway. This means
that the algorithm will work well for the first paof the trip. The second half however, will
have many wrong choices.

8.5 Intersection road choosing using the accelerometer

The W760i phone has an accelerometer. In the ingoreersion of the
RoadNoRouteReckoning the data collected from tleelatometer is used to decide which
road to choose in intersections. The acceleronme¢asures acceleration in 3 dimensions. The
X-axis goes from left to right across the scredre Y-axis runs from the bottom to the top of
the screen. The Z-axis is directed out from theestr The direction of the axes is shown in

fig. 8.6.

W) Ericsson

Fig. 8.6: The W760i accelerometer axes.

The acceleration is measured in G or gravitationgs. If an axis returns the value 1000, this
means that it is being exposed to a positive aca@de of 9.81 m/s”2, or 1 G. When the
phone is not moving, the vertical axis will alwaygasure an upwards acceleration of 1 G.
This is because it measures force and a certaie femeeded to keep the accelerometer in
place. If the phone is free falling towards thetearithout any wind drag, the accelerometer

53

would show zero vertical acceleration. This hagsitjve side effect. It makes it very easy to
find the vertical axis. It is just to look for tlais that measure closestto £+ 1 G.

The accelerometer only measures accelerationTidwel Application needs to
transform the measured acceleration into changesition. The angle from the intersection
to the new position can then be estimated. The wotidangle from the intersection, closest
to the estimated angle, is chosen by the applicalibe current position will then continue
down this road.

For each time the calculateNewPosition methodlied, the time until next
intersection is calculated. This is not 100% adeyras both the current position and the
remaining time until the next intersection is estied based on the current road’s speed limit.
If the time is below 5 seconds, the acceleromedéa dollector is started. It collects data until
5 seconds after passing the intersection. The exxorkter in the W760i has an update
frequency of 20 Hz. This means that after 10 sesdinel data collector will have
approximately 200 data readings, per axis, fromatteelerometer. The collector transforms
the acceleration data into m/s”2 using the follgMormula:

Acc [m/s”2] = (input Acc[1000G] / 1000)*G

The application uses the J2ME Mobile Sensor ARe#al the accelerometer. It registers itself
as a data listener with the accelerometer’s sexmurection. The collector implements the
DataListener interface and receives the data,r@8giper second, through the dataReceived-
method.

When the current position of the reckoning clasehes the intersection, it waits there
until the data collector is finished. After the leator is finished, and a road has been chosen,
the current position is moved t seconds down thad with the current speed set to the speed
limit. t =the number of seconds the current posihas been standing still at the intersection.
The process is described in fig 8.7:

3. At the
intersection
waiting for
the data
’ ' ’ collector to
finish
1. Driving Z. Closer than
norrnally 5 seconds 4.5 seconds
towards the from the after the
intersection .) - .
in intersection. & intersection,
The data the data
Collectar is v Collector
started. returns. Based
3. The on the data,
current this position is
li:'s':'S't":'” estimated.
instantly
moved 5
seconds
along the
Ccorrect
road.

Fig. 8.7: The RoadNoRouteReckoning intersection puess.

54

When the data has been collected, the problemvistb@stimate the current position based
on the previous position and the data from thelaooeeter? To be able to calculate the new
position one must first make some assumptions.um assume the initial speed and
course. In the Travel Application the initial spegdet to the speed limit of the road before
the intersection. The initial course is assumelgetthe course the user was estimated to have
at the start of the data collection. The Travel iggion assumes that one of the axes is
approximately vertical. The more askew the phonthesworse the guessing will be. The
fourth assumption is that the traffic flows stedldough the intersection. If the user must stop
in a traffic jam, he will use too much time reaahthe intersection and the data collecting

will be over before he has had a chance to mak&uthe The final assumption is that the user
brakes before the intersection and acceleratesaités. With these assumptions one can
start to find the role of each axis. There aredhpessible roles:

* The vertical axis. This axis is largely ignored in the calculatiortloé new position.

Its most important function is that if it is negegtj the other axes will be flipped.
Flipped means that an acceleration that would nibyrbe regarded as a left, is
considered to be a right. The same applies to aaten and deceleration in the speed
direction.

* The tangential axis or the speed axis his determines the tangential acceleration of
the device. If it has a positive accelerations itdonsidered an increase in speed.

» The centripetal axis or the angle axisThis is connected to the angular acceleration.
A positive acceleration means a left hand turis ot directly connected however.
The formula for determining the angular acceleragiven the centripetal acceleration
is:

&ngular= (Rentripetal™ Btangentia)/ (Vtangentia%)
Figure 8.8 shows the acceleration axes of thepbelhe in a turn.

Turn
trajectory

Tangential
acceleration

< |l y
centripetal
acceleration »
z
“ertical

acceleration
Fig. 8.8: The different acceleration axes during &ft hand turn.

One must first find the vertical axie find which of the accelerometer axes is tangéntia
centripetal or vertical. Since none of the othexsawill be close to 9.81 m/s”2, this is quite
easy to distinguish. The highest acceleration nreddoy the other axes during testing were
about 3 m/s"2.

55

Now there are two axes left. To find the tangérti@s, the sum of the acceleration’s
absolute value, before and after the intersecisocalculated. The axis with the highest sum
is chosen to be the tangential axis. The acceberakata that is recorded during the interval
[calculated intersection time — 2 seconds, caledlattersection time + 2 seconds] is
overlooked. This is because in this period the osght be turning around the corner and the
centripetal acceleration will most likely be largkean the tangential. The tangential axis is
considered to be flipped if the sum of acceleratlata, not the absolute value, before the
intersection is higher than after. This is becaa®leration before the intersection and
braking afterwards is unnatural.

With only one axis to choose from, the last axs to be the centripetal axis. The
Travel Application must know if the axis is flippebhis helps to avoid the situation where a
left hand turn would be interpreted as a right hane, just because the phone was held
upside down. The following process is used to deite if the centripetal axis is flipped:

An analysis of which axes are vertical and tangédigtermines the initial flipped status. This
is because of the way the phone axes are defined.

» Z-vertical, Y-tangential: X-axis flipped.

» Y-vertical, Z-tangential: X-axis not flipped.

» X-vertical, Z-tangential: Y-axis flipped.

» Z-vertical, X-tangential: Y-axis not flipped.

» Y-vertical, X-tangential: Z-axis flipped.

» X-vertical, Y-tangential: Z-axis not flipped.

» If the vertical axis is flipped, the flipped staissnverted.

» If the centripetal axis is flipped, the flippedtsiis inverted again.

With all the axes correctly flipped and readysitime to start calculating the current position.
This is done in steps. Each accelerometer datangeédone step. The angular and tangential
acceleration is handled separately. The acceleraioonsidered to be constant between each
step. This means that the standard physical fosrfolamotion with constant acceleration can
be applied. The angular speed is set to 0 initiallge algorithm used to calculate the position
after the intersection is listed in appendix A.5.

After the application has calculated the posititwe, angle from the intersection, to all
its neighbour nodes, is estimated. Since the TrApplication uses the neighbours from the
routing graph, it is impossible to choose to dagainst a one-way street. The angle from the
intersection to the calculated position is caliled he neighbour that has angle from the
intersection closest iois chosen. The current position is then moved rabegly down that
neighbour’s road.

There are of course many sources of error wherguhkis method. One could be stuck
in a traffic jam, turn to change position in thadway before the intersection or take the
corner without braking. Due to lack of a vehiclgest it with, there were not done many tests
to see if the method guessed correctly. The oregsatbre done seemed to be working ok,
although it did not guess right every time. Wheguéssed wrong, it was mainly because the
axes were wrongly picked. This was in turn becadheeorners could be taken almost at full
speed. When taking the corner at full speed, tisenet a lot of tangential acceleration before
and after the intersection. This causes high pritibhabf choosing the centripetal axis as the
tangential axis.

Using the accelerometer has one clear advantageusivegy GPS every time one has
passed an intersection. It does not need a GP&l sggwork. It can be used in underground
road systems and in narrow city streets with pa@S@onditions. Another possible advantage
is the power consumption. In the test chapterithexamined more closely.

56

Please note that it is not possible to only usextteelerometer for dead reckoning.
This is because of all the assumptions that habe tmade to find the correct axes. For
instance to find the tangential axis, the deadarrig algorithm assumes that the user is
braking before an intersection. If he is not neamdersection this becomes impossible.
Another problem arises with the fact that the aa@eheter does not register rotation around
its own axes. So even if we have made all the mgeimptions at the beginning, if the user
flips his phone all the assumptions will be wroAfso when using the acceleration to
determine the current position, the uncertaintyobees squared because the values have to be
integrated twice. This is not good in the long romt it would probably work well enough for
the short time between updates.

™F il Jous [|-I "F il s |

Vs
¥
M= M=
Menu Menu
™F il e [|-'
125 M
Menu

Fig. 8.9: Screenshots of RoadNoRouteReckoning at artersection.

57

9 Tests

The main reason behind the methods implementdtkiitavel Application is to extend
battery life. To see if the theories worked in féal a series of battery life tests were
performed. Some of them were done on the Traveliggmon. Others were run on specially
written programs, to test specific hypotheses.

9.1 Test setup

A two months old Sony Ericsson W760i phone was usedl the tests. They were all
performed in the following manner:

* The phone’s battery was completely discharged.

* The battery was charged for exactly 3 minutes.

» The phone was turned on. The phone vibrates straftgrwards. The time was
measured from this event.

» If an application was tested, it was started as s@opossible.

* The phone was not moved during the tests.

* The time was measured until the phone turned it$elf

» All tests were repeated 10 times.

Since being connected to a 3G network drains therydaster than a regular GSM network,
this feature was disabled. This could otherwiseeHazeen a factor, since not all the test
locations had 3G coverage. If any special evertsroed, for instance the reception of an
SMS, the result was discarded. The phone hasld fligde where the GSM network is
turned off. This could have prevented these distinicbs. However it was not applicable to
these tests. This was due to the fact that thetfhigode turns off all external communications.
It means that the GPS module won’t work, makinghpossible to perform most of the tests.

9.2 Box plots

Box plots are graphs that give a good indicationesftral tendency and variation in data sets.
They do not require the data to follow any knowstrabution. This is great for the battery life
tests, since the distribution of the results are baidentify. For instance the standby time
had a tendency to only turn itself off at the difiet hour marks. If it had passed 7 hours, it
almost always lasted until 8 hours had passed.Wassbecause each hour the low battery
message was displayed. Since this took a lot agr(¢ghe phone lit up, vibrated and made a
sound), the low battery message was almost alwags pushed the phone over the shut
down edge. This was analogue to what was expeuenith the GPS tests. Here the shut
downs mostly occurred right after a GPS update.

Box plots are also great for spotting outliers agtive data samples, detecting
skewness and comparing results.

An example of a box plot can be seen in figure Btk box plots in this chapter were
constructed using MATLAB. The features includecihox plot may vary, but here is what
MATLAB includes [22]:

« The top of the box is the #5ercentile or § quartile.
« The bottom end of the box is the"?Bercentile or T quartile.

58

* The red line in the middle is the median

* The lines extending from the top and bottom oftibe are called whiskers. The
maximum length of the whiskers is 1.5 times theatise from the Sito the &
guartile. However they never extend beyond the rexseme samples.

* Any samples outside the whiskers are considerdemiaind marked with a red +.

* A 95% confidence interval for the median is givertiie notches inside the box.
Steep notches indicate an accurate median measureme

9.3 Testing the standby time

The first tests measured the standby time. The@h@s turned on and left untouched until it
switched itself off. The most important featurelut test was to establish if 3 minutes of
battery charging were enough. The test resultsiglayed in figure 9.1.

R

|

|
450 | 7
[
|

400 | _

Fa0 -

Minutes

300 -

250 - =

200 |- | -

Standby
Fig. 9.1: Box plot of the standby time

The high degree of variance is due to the facttti@tests were performed at several
locations. The best results were in areas with gend network signal strength. This is
because the phone turns up the transmit poweeasarith poor coverage. Most of the
standby tests were done early, but a couple of there performed at the end of the testing
phase. The later tests showed similar resultse@é#hnlier ones. This gives an indication that
the testing had not caused any significant battexgr.

The data set’'s mean value was 332 minutes or ©88hWith such a long standby
time, it is clear that 3 minutes of charging shdmédenough to get valid results.

59

9.4 Testing the Travel Application

9.4.1 Measuring the effect of altering the uncertainty level

5 different tests were performed to measure tHereifice in battery life when changing the
uncertainty level. 4 of them were performed usimgdtandard Travel Application, but at
different uncertainty levels. The last one was @anied with a slightly modified version. The
modification was that the start up phase never@ndermally the start up phase ends after
30 GPS updates. This means that there was no reckiowolved in the modified version. It
received GPS updates every other second. In al a$pects, screen update intervals, etc., it
was identical to the other version. All tests weegformed on the University of Stavanger
with routing to the nearby road Grannesvegen. €kalts are shown in figure 9.2.

TOE T T T T T 3
—_

I

I
B0 | -
50 -
40| -

a0 b —T— L .

Minutes

==
1

Mo reckoning 100 m 200 m S00 m 1000 m
Maximum uncertainty diameter

Fig. 9.2: Battery life at different uncertainty levels.

_ +|ﬂ4

The means are shown in table 9.1. They are shawgatlith the increase, in percent, from
the battery life measured when not using dead re@ngo The increase from the previous
uncertainty level is also shown.

60

Maximum uncertainty

Mean battery life

Increase from no

Increase from

[minutes] reckoning previous level
No reckoning 8:22 0% N/A
100 m 9:47 16.8 % 16.8 %
200 m 14:01 67.5 % 43.3 %
500 m 27:01 223.0 % 92.8 %
1000 m 47:48 471.3 % 76.9%

Table 9.1: Comparison of the mean battery life fodifferent uncertainty levels.

The results show a clear increase in battery liemmore uncertainty is tolerated. This
becomes even clearer when the start up phase aveginit took at least 90 seconds, from the
phone was turned on, until it got the first GPSatpdlIt then received 30 updates with 2
seconds intervals. This period of 2 minutes and&nds is identical for all the tests. It is
only after this period the application starts ticakate update intervals, and use dead

reckoning. In the following table the start up perhas been omitted:

Maximum uncertainty | Mean battery life Increase from no | Increase from
[minutes] reckoning previous level

No reckoning 5:52 0 % N/A

100 m 7:17 24.0 % 24.0 %

200 m 11:31 96.2 % 58.2 %

500 m 24:31 318.0 % 113.0 %

1000 m 45:18 672.2 % 84.8 %

Table 9.2: Comparison of the mean battery life fodifferent uncertainty levels. The start
up phase has been removed.

The difference from no reckoning to the other tegisld have been bigger if the tests had all
been done in perfect GPS conditions. Some were wbea the weather was poor, which
made receiving a GPS signal harder. Others hadgadellite geometry, which resulted in
greater initial uncertainty and therefore shorfadate intervals. When testing with 2000 m
uncertainty the phone displayed an extra, low bati&arning. This caused it to turn itself off
after about an hour. Had this warning not beenlaysal, the 1000 m uncertainty level would
have had a longer mean battery life.

Applications with different requirements shoule wulfferent uncertainty levels. For
instance when a user is on a hiking trip, chargfimegbattery can be difficult. This means that,
to preserve battery power, a hiking applicationudthaise a high uncertainty level, for
example 500 meters. Especially since an approxipagéion might be considered more than
enough in large alpine areas. Since power outtetseadily available, having up to date
position information is more important than pressgwattery life in an urban routing
application. In that case a more appropriate uac#yt level lies somewhere below 200
meters.

9.4.2 Comparing the two different routing implementations

Two different routing implementations were develbpar the Travel Application. The first
one made a simplification by just routing to thegmphically closest node on the destination
street. This gives the shortest route in most casesever, as explained in the routing
chapter, there are some exceptions. That was whthanrouting implementation was
designed. It calculated the shortest route to dnlyeopossible destination nodes on the street.

61

This implementation always calculates the corrbottest route. But it comes at a price. It
requires more processing power, which in turn mehwoster battery life. The two versions
were compared, to see if the difference would bgel@nough to make a significant impact in
real life.

The tests in section 9.4.1 were performed withrthting implementation that always
returns the correct route. To be able to companeliss one more test application was
developed. It was identical to the Travel Applioatibut it used the other routing
implementation. This was then tested with all ttteeo parameters identical to the previous
tests. The test still had Grannesvegen as thengphdBstination, a road with 10 nodes and an
intersection at each end. The maximum uncertairty set to 1000 m. This was because the
higher the uncertainty level, the more effect srouting algorithm. Longer update
intervals means the routing algorithm is run marees per GPS update. The routing is done
every other second at all uncertainty levels. Téramarison between the routing
implementations is shown in figure 9.3.

—_—

!
BS |
' +
|

B0 | i
55 | i
50 | -
45 | -
40 | -
35 | -

30+ -
| |
Alwvays correct routing Mostly correct routing

Routing implementation
Fig. 9.3: Comparison between the two routing implemntations.

Minutes

As the figure shows, the mostly correct routingegivio significant advantage in battery life
over the always correct routing. The battery Ifactually lower, but this is probably just a
coincidence. The mostly correct routing’s mediamssde the 95 % confidence interval for

the always correct routing’s median. Because ohtbk uncertainty, more tests are needed to
get a statistically significant result. The meares4y:48 for always correct and 41:53 for
mostly correct. The mostly correct routing coulddbeaten the always correct, had the
destination street been further away from the sguwrcif the destination street had included
more intersections. It would probably still be vetgse, since the GPS updates stands for the
bulk of the power consumption. Since the differeimcleattery life is so small, it is definitely
worth using the always correct routing.

62

9.5 GPS listener versus get location

The J2ME Location API supports two ways of getiimgation updates. If one sets up a
listener, it will receive updates at a specifiegbrét is also possible to get new location
updates on a per request basis. The Travel Apitates the listener method. This method
was chosen because it is more reliable, since Bfe i@plementation knows it shall deliver a
GPS location at a certain time in the future. THRS&an then begin getting an update in
advance. This makes it easier for the GPS to dalipdates on time. If the GPS is called on a
per request basis, it has no knowledge of the stqureor to the actual method call. There are
two problems with using a listener for the Travelpfcation.

* The next update time has to be calculated aftedP& @date. This means anything
from a quick calculation for the walking uncertginio an extensive simulation when
the uncertainty spreads along the roads. This doeilskipped if get location was used
instead of a listener. The update uncertainty neetiould then check if the current
uncertainty was higher than the current maximunetamnty level. If so, it would
issue a GPS update request. Since these requestkessome time to process, the
maximum uncertainty levels would need to be lowexecbrdingly.

* The biggest problem is the fact that one gets &l@ozall when setting the update
interval. The implementation returns a GPS updatantly after the interval has been
set. It then waits the specified time before rahgra new update. This causes half of
the GPS requests to be unnecessary. The seconkk aailbs just ignored in the
Travel Application. It could have been used togethiéh the first to decrease the
uncertainty. Since the second call happens ingtafter the first, the combined
uncertainty would be:

First callN Last call.

This is shown in fig. 9.4. It could however notumed successfully to extend the
update interval. This is because setting the upd#teval again would result in just
another instant call. The impact of this extra oallbattery life would be greater than
the benefit of a somewhat longer update interval.

Carnbined
uncertainty

Lncertainty of Lncertainty of
the first call the second call

Fig. 9.4: The effect of a double call on initial uoertainty.

Timing is a big problem when using requests instdaallistener. The problem increases with
higher uncertainty levels. If the device has lbst signal to some of the satellites it used for
the previous request, it needs to find replacemadimis could take more than 1 minute. The
requests have no guarantee for when they will nedocation. Ergo we would often see an
uncertainty higher than the maximum uncertaintgléunless we use a large buffer, which is
not desirable, since it would cause shorter upiddgevals). For instance consider a location

63

request being issued when the uncertainty exceg@dsefers. Sometimes the uncertainty
diameter when the update request is finished wbalil40 meters, but if the request is
processed faster it might be 70 meters.

Two test applications were made to examine thecetif the listener’s double call on
battery life. One was a listener which had a 3@sdapdate interval. Every time it received
an update that was not a double call, it wouldtsetistener’s update interval to 30 seconds
again. This provoked the double call. When the sda@all was received it did nothing. This
behaviour was performed repeatedly until the pr®battery was empty. The other test
application requested a GPS update through thédocAPI’'s get-method. The application’s
main thread then slept for 30 seconds before igsamother request. This process was
repeated until the phone turned itself off. In fig9.5 the test results are compared.

_

BO |
[
I

a0 - -

Minutes

%

30

ol g |

10 - -

1 1
GPZ liztener (dauble call) GP= get location
Update method

Fig. 9.5: GPS listener versus GPS get location.

Due to the extreme variance of GPS get locatias,difficult to conclude which is the best
update method. GPS get had results ranging from6@ iminutes. GPS listener ranged from
10 to 30 minutes. The mean of the listener is 1&132the getter is 30:55. The median of the
GPS listener is within the 95% confidence intefaGPS get.

By breaking down the test results based on GP&lsagmdition, the results gets more
interesting. GPS get had poor conditions 5 timé® results then ranged from 6-10 minutes.
The rest of the time the conditions were good &ed¢sults ranged from 47-61 minutes. The
GPS listener had poor conditions 6 times, withegponding results from 10-18 minutes.
Under good conditions 4 tests were made, with tesulthe range of 21-30 minutes. The
listener seems to outperform the getter during poaditions. However during good
condition the getter has a longer battery life. Treatures may explain this behaviour.

64

» During perfect conditions it is no problem to g&sBS signal. The double call effect
gives the GPS listener a clear disadvantage oeeagdtter. This is illustrated in the
highest test results for the two tests. The geti®t’ minutes is twice as long as the
listener’s 30.

» During poor signal conditions the GPS must strugglend satellites. More of this
struggle has to be repeated by the getter. Thisdause it does not know when the
next request will be issued. This gives the listereedge in poor conditions.

Poor conditions can be measured in an applicai@two variables. The time it takes to get
the first GPS fix and the uncertainty radius relatethe GPS position. Further testing is
needed to find the condition threshold where th& B&tener uses the same amount of power
as the getter. If this threshold is found, it canraplemented into applications. When the
conditions are worse than the threshold, the lestenuld be used. When the threshold is
passed, the update method could be dynamicallglsedt

9.6 Power consumption of accelerometer and GPS

The accelerometer is used in the Travel Applicatidetermine which way the user has
chosen at an intersection. This could also hava pedormed by issuing an extra GPS
update every time the user had passed an intaysectvo different test applications were
made to inspect if using the accelerometer couddltén a longer battery life. The first
application was constantly listening to the acamtester at a rate of 20 Hz. It did nothing
when it received data. The other application wes® listener with 10 seconds between each
update. This application had an empty locationUpdiatethod. 10 seconds was chosen since
that is approximately how long the accelerometersiesd at each intersection. This test tries to
determine which method leads to the longest balifierywhen faced with constant, back to
back, intersections. In figure 9.4 the resultschsplayed.

65

220 S —

200 -

180

160 -

140 | -

120 -

Minutes

100 -

60 -

40| -

]]
Accelerometer 20 Hz GPS Listener 10 second intervals

Test type
Fig. 9.4: Battery life while using the accelerometecompared to GPS.

The mean battery life was 138:29 for the acceletentest and 24:55 while using GPS. The
box plot shows that the accelerometer data weneedkeThe data set is very bottom heavy,
but has some long lasting results.

The accelerometer lasts about 5.6 times longerttt@®PS listener. This indicates
that it can be better, from an energy saving petspe to use the accelerometer in
intersections. However this depends on how lomguntil the next scheduled GPS update. If
a GPS update is scheduled one second after thieanti®n, it is better to request the update
at once, and not having to use the acceleromeltés.ig illustrated in figure 9.5.

66

Leqend:
o EPS Update
O ACCelerometer

IIsing accelerometer.

Intersection right after a
» 0 ” # GPS update
U_sing GFS. Intersection
w Y atime right after a GPS update
units lost Ilzing accelerometer.
Intersection right before a
" O X A GPS update
—] 1 tirne unit Lzing GPS. Intersectian
e 5 % |ost right before a GP5
update
I I N I N I NN I N N AN N N B
1T 1T T 17 17T 1T 17T 17T 1T 17T 1T 17T T TT1
01 2345 678 9101112131415

Tirne
Fig. 9.5: The advantage of using an accelerometena it’s relation to the time until the
next scheduled GPS update.

The figure use a getter scheme (no double caligefeiving GPS updates. The result would
however be similar for a listener. The explanatbthe figure is that the battery initially has
enough power left for a little bit more than two &Bpdates and an accelerometer
intersection reading. This means it will turn ifs&f when the third GPS update is requested.
The figure shows that the longer the time betwéeniritersection and the next GPS update,
the more useful it is to utilize the acceleromekéore research is needed to find exactly the
time until next intersection where using the acwatester is equivalent, from an energy
perspective, to using the GPS receiver. This cthdd be implemented into the Travel
Application as a threshold, to dynamically chodsemost energy conserving solution.

9.7 Testing acommercial navigation application

The Sony Ericsson W760i comes with a preinstaldgation application called Wayfinder
Navigator. As a standard it uses 3D maps whenrguiihese are downloaded, on demand,
from the Internet. When choosing the routing destom, the address search is also performed
online. Wayfinder Navigator gives step by step ealadections, in multiple languages. When
the routing function is used, the phone’s backgdoight never turns itself off. During testing

it seemed to have GPS update intervals of apprderigna seconds. All these factors add up

to the conclusion that energy conservation wasailytnot on the agenda when Wayfinder
Navigator was developed.

67

Fa

=
@ -'.. B
Fig. 9.6: Screenshot of Wayfinder _Navigator[23]

The Wayfinder Navigator tests were performed inclydhe same manner as the Travel
Application tests. There was however one smalkediffice. The routing was performed to
Grannesveien. This turned out to be a differend tban the one used in the Travel
Application, Grannesvegen. But this probably hagkfiect on the result, since they were
quite close and approximately the same length.rguhe testing of the Travel Application,
different destinations were tried without impacttba results. Grannesveien and
Grannesvegen are marked in figure 9.7.

1]
el EL ar
o= I}f

K
.-'?-"-'Q-':f | fiey % .-\E}
g

pProfeg, -
50r Clav Hanssens vei

Moyerybpen

[1000 ft

Room I EY

Fig. 9.7: Grannésvegen and Grannesveien in Googledgds [24].

In some of the tests with Wayfinder Navigator, dpplication did not manage to calculate a
route before the phone turned itself off. Figui®@ @mpares the test results to the results of
the Travel Application.

68

30 | -

23 -

20

L]
5}
=
=
Z 15t =
10 - ! | -
I
Eigg;;;;;iz I
I
5 - _— —]
_
]]]]
Wigrefincder Marvigator TA: Mo reckoning T&: 200 m uncertainty TA: S00 m uncertainty

Test
Fig. 9.8: Wayfinder Navigator compared with the Travel Application.

Wayfinder Navigator had an average battery if8:4#4 minutes during the tests. Even with
no reckoning, the Travel Application had approxiehg®.6 times longer average battery life.
By extending the uncertainty level to 500 metdrs,liattery lasted 8.4 times longer. This
shows that designing an application for low powarsumption can lead to a substantial gain
in battery life.

There is a possibility in Wayfinder Navigator tovehload a section of the world map
in advance. This feature was not tested, but wprdtably have lead to a slight increase in
the application’s average battery life.

69

10 Conclusion

The introduction of uncertainty and dead reckonmg mobile GIS makes it possible to have
longer GPS update intervals. When accepting a 50@¢artainty diameter, the test phone’s
battery lasted approximately 3 times longer thattwo reckoning. Although the result may
vary between phones, the increase is so largedsistdone with other phones probably
would lead to the same conclusion. This showsttil@GPS update intervals are a critical
factor to a mobile GIS application’s power consuimptDevelopers should take this into
account during the design of programs for mobilé&S@€teivers. The need for accurate
information ought to be weighed against the nequtéserve battery power.

A crucial element in a mobile GIS, that determihew long the update intervals can
be, is the choice of dead reckoning scheme. A delkloped reckoning algorithm can make
longer update intervals transparent to the useartalso make the application less dependent
on a constant GPS signal. As the study shows, fus®@wement indicators with lower power
consumption than the GPS module, like an accelelemnean be successfully implemented as
a part of such a scheme. The data the applicatisratailable must be considered when
planning a reckoning algorithm. How to cleverly tisat information to determine the user’'s
current position is the key to successful deadaeirlg. When developing mobile GIS
applications with low power consumption, a lot &b& should be put into this part of the
program. Dead reckoning has much room for improveraed can prolong battery life while
conserving the user experience.

10.1 Further work

The following topics are suggestions for furthese@ch on uncertainty, GPS and dead
reckoning algorithms. Also mentioned are some im@neents that could be implemented in
the Travel Application.

® Accelerometer versus GPS in intersectionshis is regarding the Travel
Application’s dead reckoning scheme. Choosing wiaad to follow after an
intersection is always done by the accelerometér@rRoadNoRoute reckoning
algorithm. However if the intersection comes vdnse to the next scheduled GPS
update, advancing the GPS update would use lessrpd¥ere is a threshold between
using the accelerometer and advancing the GPSeipta¢ easiest way to find an
estimate of this threshold is to simulate the s$ibmausing a discrete event simulator.
Knowing the relationship between the cost of a @P&ate and the cost of using the
accelerometer, one or more simulation models cbeldonstructed. For instance a
Petri Net graph could be used to describe theseels.o@nce the models have been
established, running the simulations to find theildarium point is straightforward.

* Effect of GPS signal condition on different updatenethods: There are two
different update methods for a J2ME GPS applicagetter and listener. In terms of
power consumption, getter is the best when sigmadiitions are good, while the
listener outperforms the getter in bad conditiohthe condition threshold between
getter and listener was found, this could be usatyhamically switch update method
in GPS applications. The threshold can be desciibeerms of GPS uncertainty or
time required to get an update. Further testingeeded to find this value.

® Update now button in the Travel Application: In the higher uncertainty levels the
time between GPS updates can be in the order aftegnTherefore a neat feature

70

would be to have an update now button. This conldrfstance be useful when the
user approaches an unfamiliar intersection. Itld/te easy to implement in the
Travel Application.

Making the Travel Application scalable: To make the Travel Application

compatible with larger maps it is essential to iayerthe scalability of the map
drawing algorithms. With the current implementatibwould take many seconds to
draw a map of a country like Norway. This is of isginot acceptable. What needs to
be done is to add map layers so that the leveétaildgyoes down when the user zooms
out. A normal mobile phone has limited memory. Thiskes it important to avoid
having the entire map loaded into memory at ang tiBrgo memory aware map
handling algorithms are needed. The drawing ottestlines also needs to be
perfected for the Travel Application to work wedrflarger maps.

Perfecting the dead reckoningThere are many things that can be done to petect t
dead reckoning scheme in the Travel Applicationewdriving, the current
implementation always assumes the driver follovesgbpeed limit. Instead it could
have analyzed the driving behaviour of the userdauided if he was a slow or fast
driver. For instance if he over time holds a spefetO km/h below the current speed
limit, the dead reckoning would move the currergipon at a slower rate than usual.
This will lead to a more accurate estimate. Thafuee could also help during rush
hours. If a driver suddenly drives very slow congghto his normal driving pattern,
the dead reckoning could go into rush hour mode. dthrent position would then
move very slowly, at least until the next intergatct

71

Bibliography

1. http://www.rand.org/pubs/monograph_reports/MR6148d&R appb.pdf Pace S.,
Frost G. P., et. Al- The Global Positioning System — Rand Publisiiiag5—
Retrieved on 2009-05-05.

2. http://www.colorado.edu/geography/gcraft/notes/gps/ f.html- Dana P. H—

Global Positioning System overview — Retrieved 602 05-05.

3. http://electronics.howstuffworks.com/gadgets/trayes.htm- Brain M., Harris T.—
How stuff works article about GPS receivers — Reed on 2009-05-05.

4. http://www.how-gps-works.com/glossaryHow GPS works. Retrieved on 2009-05-
05.

5. http://java.sun.com/javame/index.jsf he official home page of J2ME from SUN
Microsystems — Retrieved on 2009-05-06.

6. http://to.swang.googlepages.com/ICC2008LBSforMdtsimplifiedR2.pdf S.
Wang, J. Min, B. K. Miocation based Services for Mobiles: Technologies a
Standardslnternational Conference on Communication (ICC)&@kijing, China
Retrieved on 2009-02-10.

7. http://store.apple.com/no/browse/home/shop _iphanaly/iphone- Apple iPhone 3G
product page. Retrieved on 2009-02-10.

8. http://www.maxhorvath.com/documents/programming_ifgnone_using_l/eclipse-
iphone-cdt.pdf P. J. CabreraProgramming for iPhone in windows or linux
Retrieved on 2009-02-10.

9. www.prisguide.na- A Norwegian site for comparing prices among \slbps.
Retrieved on 2009-02-10.

10. http://www.forum.nokia.com/devices/N9@Nokia N96 device details on forum Nokia.
Retrieved on 2009-02-10.

11.http://www.sonyericsson.com/cws/products/mobile@sdaverview/w760i?cc=no&lc
=no- Sony Ericsson W760i Product page. Retrievedd19-02-10.

12.http://developer.sonyericsson.com/docs/DOC-1734dny Ericsson developer wiki
about on-device debugging. Retrieved on 2009-02-10.

13.http://www.zett.no/kart.html?Ip=rt Aerial raster map. zett.no. Retrieved on 2009-03
31.

14. http://www.openstreetmap.orgOpen Street Map a free editable vector map.
Retrieved on 2009-03-31.

15. http://wiki.openstreetmap.org/wiki/Tagd.ist of OSM tags. Retrieved on 2009-04-01.

16.http://cgm.cs.mcqill.ca/~godfried/teaching/cg-podgt97/lan//cutting_ears.htmllan
Garton.About simple polygon ear cutting. Retrieved on 204914

17.http://www.chemical-ecology.net/java/lat-long.htdohn A. ByersSurface distance
calculator

18. http://www.itl.nist.gov/div897/sqg/dads/HTML/dijkstalgo.html - National Institute
of Standards and Technolagyime complexity of Dijkstra’s algorithm. Retriey®n
2009-04-29.

19. http://www.itl.nist.gov/div897/sqg/dads/HTML/bellmiord.html- National Institute
of Standards and Technolagyime complexity of the Bellmann-Ford algorithm.
Retrieved on 2009-04-29.

20.http://www.kowoma.de/en/gps/errors.htdr. Anja Kéhne und Dr. Michael Wé3ner
Sources of errors in GPS. Retrieved on 2009-04-21.

21.http://jcp.org/aboutJava/communityprocess/final/f&/index.htmt J2ME JSR-179
Location API. Retrieved on 2009-04-22.

72

22.http://www.mathworks.com/access/helpdesk/help/toxlstats/index.html?/access/hel
pdesk/help/toolbox/stats/boxplot.htmThe MATLAB manual’s article about box
plots. — MathWorks — Retrieved on 2009-05-08.

23.http://www.wayfinder.com/?id=8618 Product page for Wayfinder Navigator -
Wayfinder UK — Retrieved on 2009-05-18.

24.http://maps.google.com/Google Maps — Retrieved on 2009-05-18.

25.http://en.wikipedia.org/wiki/A*- Wikipedia article about the A* search algorithwith
pseudo code. Retrieved on 2009-04-20.

73

Appendix
Appendix A Algorithms

Appendix A.1 The A* Algorithm

function A*(start, goal)
cl osedset := the enpty set % The set of nodes already eval uated.
openset := set containing the initial node % The set of tentative
nodes to be eval uated.
g_score[start]
h _score[start]
f score[start]
to goal through vy.
whi | e openset is not enpty
X := the node in openset having the | owest f_score[] val ue
if x = goal
return reconstruct_path(cane_from goal)
remove x from openset
add x to cl osedset
foreach y in nei ghbor_nodes(x)
if y in closedset

0 % Di stance fromstart along optinmal path.
heuristic_estimte_of distance(start, goal)
h score[start] % Estinmated total distance fromstart

conti nue
tentative_g_score := g_score[x] + dist_between(x,y)
tentative is better := false

if y not in openset
add y to openset
h_score[y] := heuristic_estimte_of _distance(y, goal)
tentative is _better := true

el seif tentative_g score < g_score[y]
tentative is better := true

if tentative is_better = true
cane_frony] := x
g_score[y] := tentative_g_score
f score[y] := g _score[y] + h_score[y]

return failure

function reconstruct_path(came_from current _node)
if came_fronicurrent_node] is set
p = reconstruct_path(cane_from canme_fronicurrent _node])
return (p + current_node)
el se
return the enpty path

Listing A.1: Pseudo code for the A* algorithm. [25]

74

Appendix A.2 The update driving uncertainty algorithm

updateUncertainty(currentTime){
Fill the empty hash table exploredNodes with the currentinsideNodes
/[The currentinsideNodes will initially be the nodes inside the uncertainty circle
Fill the vector temporaryBoundaryNodes with the currentBoundaryNodes.
/[The currentBoundaryNodes are stored between updates and are initially calculated when the next
/lupdate time is estimated
Set the time remaining in those BoundaryNodes = currentTime — previousTime;
Make an empty vector nextBoundaryNodes, which represents the boundaryNodes at time =
currentTime
While (there are more temporaryBoundaryNodes){
Remove the first temporaryBoundaryNode
Calculate the distance to its outside neighbour
If(it can not cover the distance in its the remaining time given the road’s speed limit){
Make a new BoundaryNode at the place where the temporaryBoundaryNode ended up when the
time expired
Add this BoundaryNode to the nextBoundaryNodes
}
Else{
Put the outside neighbour in the explored nodes
Set tmpTimeRemaining = the time remaining when reaching the outside neighbour
Set avoidNeighbour = temporaryBoundaryNode.insideNeighbour
While(outside neighbour has more neighbours){
If(the neighbour = avoidNeighbour){
Continue
}
Else{
Make a new TemporaryBoundaryNode tmpBN.
Set its inside neighbour = outside neighbour
Set its position = outside neighbour’s position
Set its outside neighbour = the neighbour
Set its time remaining = tmpTimeRemaining
Add tmpBN to the temporaryBoundaryNodes
}
}
}
}

Fix the boundaryNodes inside references in the case where the inside neighbour is another
boundaryNode.

Set the currentBoundaryNodes = nextBoundaryNodes

Add the exploredNodes to the currentinsideNodes

Set the previousTime = currentTime

}
Listing A.2: The update driving uncertainty algorithm.

75

Appendix A.3 The reclassify algorithm

DeadReckoning reclassify(currentRoute, newest GPS location, current uncertainty){
If the accelerometer is collecting data, shut it down.
If(the uncertainty is a DrivingUncertainty){
If(the user is driving on an uncharted road){
If(there is no currentRoute){//currentRoute = null
Return a new OffroadNoRouteReckoning object
}else if(there is no previous route){
Return a new OffroadRouteReckoning object
}else if(currentRoute has a different target than the previous route){
Return a new OffroadRouteReckoning object
}else if(currentRoute is closer to the target than the previous route){
Return a new OffroadRouteReckoning object
telse{
[/lthe user has the same target, but is farther away from it than last time,
/lergo he must not be following the route
Return a new OffroadNoRouteReckoning object

}else{//driving on a road
If(there is no currentRoute){//currentRoute = null
Return a new RoadNoRouteReckoning object
}else if(there is no previous route){
Return a new RoadRouteReckoning object
}else if(currentRoute has a different target than the previous route){
Return a new RoadRouteReckoning object
}else if(currentRoute is closer to the target than the previous route){
Return a new RoadRouteReckoning object
telse{
/lthe user has the same target, but is farther away from it than last time,
/lergo he must not be following the route
Return a new RoadNoRouteReckoning object
}
}
}

If(the uncertainty is a walking uncertainty){//This is treated essentially the same way as driving on an
/luncharted road
If(there is no currentRoute){//currentRoute = null
Return a new OffroadNoRouteReckoning object
}else if(there is no previous route){
Return a new OffroadRouteReckoning object
}else if(currentRoute has a different target than the previous route){
Return a new OffroadRouteReckoning object
}else if(currentRoute is closer to the target than the previous route){
Return a new OffroadRouteReckoning object
telsef{
/lthe user has the same target, but is farther away from it than last time,
/lergo he must not be following the route
Return a new OffroadNoRouteReckoning object

}

/[The algorithm continues on the next page

76

/if the method hasn’t returned yet, the uncertainty is neither of the above. This means we are
/Istill in the start up phase

/[The dead reckoner then needs to update its previous route (this is done in the constructor for the
/lfor the subclasses. It should return itself, since it is a no guessing implementation.

Set previous route = currentRoute

Return this

}
Listing A.3: The reclassify algorithm.

77

Appendix A.4 The calculate new position algorithm

calculateNewPosition(currentTime){
Make a new TempPosition object , tmpPos, with the current position and time remaining =
currentTime — previous time.
/[The nextNode is initially set to the first node in the route (not where the user is at the start)
/[The current speed is constant and calculated initially as the speed held between the two latest
/lupdates
While(tmpPos != null and nextNode != null){//When it reach the target it will stop moving
/[Use a while loop since it can pass by multiple nodes between updates.
Calculate the distance from tmpPos to nextNode.
Calculate the distance covered in the tmpPos time remaining, given the current speed.
If(distance > distanceCovered){
Move tmPos distanceCovered meters towards the nextNode.
Set currentPosition = tmpPos.position.
Set currentCourse = the course from tmpPos to nextNode.
Set tmpPos = null
lelse{/IThe user passed the nextNode within the timeRemaining
Calculate a new timeRemaining, which takes the previous time remaining and subtracts the time
Used to reach the nextNode
Set tmpPos = a new tmpPos with position = nextNode and timeRemaing = the new timeRemaining
If(nextNode is not the routing target){
Set nextNode = the node after the nextNode in the route.
}else{/lthe user has arrived at the routing target
Set currentPosition = nextNode.position
Set nextNode = null;

}
}
}

}
Listing A.4: The OffroadRouteReckoning’s calculatenew position algorithm.

78

Appendix A.5 The calculate position after an intersection algorithm

calculateTheNewPosition(){//Assume the data has been collected and the axes has been found
Set currentPosition = start position before the intersection accelerometer data collecting
Set currentSpeed = starting speed, the speed limit before the intersection
Set currentAngle = the estimated angle at the starting time.
Set currentAngleSpeed = 0;
Loop(over all collected data){
currCentAcc = 0;
If(centripetalAxis is flipped){
currCentAcc = -collected centripetal acceleration
Yelse{
currCentAcc = collected centripetal acceleration
}
currTangAcc = 0;
If(tangential axis is flipped){
currTangAcc = - collected tangential acceleration
telse{
currTangAcc = collected tangential acceleration
}
currAngularAcc = (currTangAcc*currCentAcc)/(currSpeed * currSpeed)
t = the time between this and the next data was collected.
currentAngle = currentAngle + currentAngleSpeed * t + ¥ * currAngularAcc * t *t
currLon = (currentPosition.longitude * METERPERLON + currentSpeed *t *
cos(currentAngle) +
Y% * currTangAcc *t * t * cos (currentAngle))/METERPERLON
currLat = (currentPosition.latitude * METERPERLAT + currentSpeed * t *
sin(currentAngle) +
% * currTangAcc * t * t * sin (currentAngle))/METERPERLAT
currentPosition = a new Position object with longitude = currLon and latitude = currLat
currentSpeed = currSpeed + currTangAcc * t
currentAngleSpeed = currentAngleSpeed + currAngularAcc * t
}
}

Listing A.5: The RoadNoRouteReckoning’s calculate ew position after an intersection
algorithm.

79

