
Mobile Control System

for Location Based Alarm Activation

Jan Magne Tjensvold

June 16, 2008

Abstract

This report describes the design and implementation of a system that can
automatically control various services based on the location of one or more
mobile devices. These services can also be controlled manually through a
user interface on the mobile devices. A burglar alarm service that can au-
tomatically be activated and deactivated is used as a case study for this
system. The implementation is entirely Java based, using the Android op-
erating system to run the mobile device software. Challenges related to
accurately locating the mobile devices and communicating between the mo-
bile devices and a home server is examined. A set of policies for activation
and deactivation of the alarm system and other services is also defined. The
report also looks at examples of other services like automated temperature,
lighting control and adaptive fire sensors that can be integrated into the
same system.

Acknowledgments

I wish to thank Hein Meling for his detailed and insightful comments on the
report and his helpful ideas on the design and implementation of the soft-
ware. Also many thanks to Thanh Danh Nguyen for his useful information
regarding fire alarm systems.

2

Contents

1 Introduction 5
1.1 Related work . 8
1.2 Report organization . 8

2 Background 9
2.1 Mobile application platforms 9

2.1.1 Android . 9
2.1.2 Java ME . 10
2.1.3 iPhone . 11
2.1.4 Windows Mobile . 12
2.1.5 Other platforms . 13
2.1.6 Summary . 13

2.2 Localization . 14
2.2.1 GPS . 15
2.2.2 WiFi . 15
2.2.3 Bluetooth . 16
2.2.4 Cell-ID . 16
2.2.5 Summary . 17

3 Design 19
3.1 Overview . 20
3.2 Architecture . 21
3.3 Communication . 23
3.4 Security considerations . 25
3.5 The control server . 26

3.5.1 Policies for activation and deactivation 27
3.6 The burglar alarm server . 28
3.7 The Android mobile client . 29

3.7.1 Avoiding the ping-pong effect 30
3.7.2 GPS . 30
3.7.3 WiFi . 33
3.7.4 Power saving . 33
3.7.5 Location manager . 34

3

4 Testing and simulation 37
4.1 WiFi coverage area . 37

5 Conclusion 42
5.1 Future work . 42

Bibliography 44

4

Chapter 1

Introduction

Networked computer systems have become prevalent in most aspects of mod-
ern society, and we have become dependent on such computer systems to
perform many critical tasks, such as health monitoring and alarm notifica-
tion. Wireless and ad-hoc communications technologies enable the elimina-
tion of physical cables between residential home network entities, such as
computers, set-top-boxes (STB), sensors and control units, and are typically
less costly to install than their wired counterparts due to cabling. These
technologies have opened up a whole range of new applications in the util-
ity segment for residential homes, such as automatic meter reading, remote
control of heating, and security and safety systems. However, interacting
with such systems is still somewhat cumbersome and inflexible.

This report presents a mobile control system (MCS) that can control
various services based on the location of one or more mobile devices. A
service for activation and deactivation of a residential burglar alarm system
is used to demonstrate the feasibility of this system.

The report looks at the design and implementation of a system that can
detect when a user enters and exits a specific area. Based on the location
of the user the system can automatically control a set of services running on
a home server. By carrying a mobile device the user can also interact with
these services through a user interface. The home server software will also
be able to track the presence of multiple mobile devices.

Figure 1.1 shows the main components of the MCS described in this
report. The main challenges are how the home area is defined, how the
mobile device is able to recognize this area and what should happen when
an individual mobile device enters or leaves the area. The goal of the system
is to automatically control a burglar alarm system in the house where the
home server is located. Localization/positioning, flow of event notifications
and the home server logic has been the main focus. Implementation of
the low-level sensor communication and electrical wiring needed to interface
with an actual burglar alarm system is not considered in this report. Instead

5

the alarm system and associated sensors are simulated.

Home area

Home server

Alarm off

Figure 1.1: Main components in the Mobile Control System

The alarm system scenario helps to demonstrate the functionality of the
system, but in principle the MCS is not restricted to only controlling alarm
systems. With a bit of work it is able to control any number of different
systems as long as the enter/exit area events can be translated to useful
actions for the specific system. In terms of the alarm system, the enter/exit
events are mapped to alarm deactivation/activation.

The system will try to find a way to deactivate the alarm if a user enters
the home area while the alarm is activated. This might involve asking the
user to enter a PIN code before the actual deactivation takes place. In the
opposite direction the system will try to find a way to activate the alarm
when the last user exits the home area. In this case the system can decide
to automatically activate the alarm or ask the user first.

The term “home area” is meant to describe an area that covers a specific
point of interest, like a house, apartment or some other kind of building.
Unless explicitly stated otherwise, the rest of this report uses the term in
this general sense. In practice a home area can consist of multiple smaller
overlapping and/or adjacent areas. An example would be the home area of
a large building with multiple wireless networks installed. In this case the
home area could be defined as the combined coverage area of all the wireless
networks. Only when a user was not connected to any of the networks would
the system consider him to be outside the home area.

One important assumption for this system is that the location of the
mobile device should reflect the location of the user whenever he enters or

6

exits the area specified by the system. If the user forgets to bring his mobile
phone with him when he leaves the house, the alarm will not be automat-
ically activated. For this reason the system is designed as a supplement
to the regular wall mounted keypad used by home security systems. This
allows the alarm to be activated and deactivated by conventional means if
the user forgets or loses his mobile phone.

By connecting the MCS to a central heating system the enter/exit events
could be mapped to automatically adjust the temperature up/down to re-
duce energy consumption when nobody is home. This can also be applied
to central lighting control systems so that the lights in a house can be com-
pletely turned off when the house is empty. When everyone has left the
house, advanced systems that monitor the electrical equipment in a house
could automatically turn off equipment that poses a fire hazard. Intelligent
fire alarm systems could also be implemented. The sensitivity of the optical
fire detectors can be automatically increased when the house is empty. De-
pending on the capabilities of the detector this would allow the fire alarm
system to determine if someone left their lit candles unattended. In this
case all the users would be notified (instead of triggering a full fire alarm)
and the fire alarm system could turn the sensitivity back to normal to check
that no real fire has started.

Software has been implemented on both the home server (MCS Control
Server) and for the mobile device (MCS Droid) to enable them to coordinate
their efforts. Depending on the capabilities of the mobile device Bluetooth,
WiFi or GPS can be used to detect when the user enters or exits the home
area. For Bluetooth and WiFi the home area is defined by the coverage area
of the network they provide. For GPS the home area can be defined in any
number of ways, but for the sake of simplicity the implementation of MCS
only uses a circular geographical area.

The communication between the mobile device and the home server can
take place across any available Internet access services, such as GPRS or
even WiFi, as long as the technology is supported by the mobile device.
Figure 1.2 shows the home server located behind a firewall and how it is
able to communicate with the mobile device through the infrastructure of a
GSM or a WiFi network.

FirewallHome Server
Base Station

Mobile DeviceThe Internet

Figure 1.2: Physical connection between the home server and mobile device

7

1.1 Related work

There exists a number of location/proximity-based systems that can auto-
mate simple tasks such as locking/unlocking your computer and launching
various applications by using a Bluetooth enabled computer and mobile
phone. Examples of such systems includes floAt’s Mobile Agent (Windows
based for Sony Ericsson handsets) [5], metaquark Home Zone (Mac OS X)
[8] and BlueProximity (Linux) [1].

In the home automation area there are several systems that allows users
to control just about every piece of electronics, including security and surveil-
lance systems. However, most of these systems are not location-based and
due to the number of different devices they can control they often have
relatively complex control interfaces. NorAlarm has developed a mobile ap-
plication that enables users to control an alarm system through a Java ME
user interface [43]. This application allows an alarm system to be manually
controlled, but it does not include automatic activation and deactivation
based on the location of the user.

1.2 Report organization

This report is organized into several chapters. Chapter 2 examines some of
the mobile application platforms currently available and different techniques
to determine the whereabouts of the mobile devices. Chapter 3 discusses
different aspects of the design and implementation. Chapter 4 describes
some test and simulation results and Chapter 5 concludes this report.

8

Chapter 2

Background

2.1 Mobile application platforms

Platforms for developing applications for mobile devices (mobile phones,
smart phones, PDAs, etc.) exist in many different shapes and sizes. Some
of them are entire integrated operating systems while others provide only a
minimal set of APIs to create interactive multimedia applications. This sec-
tion gives a background description of the some of the popular alternatives
available on the market.

2.1.1 Android

Android [27] is the Open Handset Alliance’s (OHA) mobile operating sys-
tem. It is based on the Linux kernel and the application platform is very
similar to Java SE. Android uses Apache Harmony’s [22] class library where
only a few of the original Java SE packages have been removed. This mainly
includes the Java SE Swing and AWT GUI packages. These have been re-
placed by GUI packages that are more suited for the reduced screen sizes
used by mobile devices.

Android uses a special Java virtual machine (JVM) called Dalvik which
is optimized for running in multiple instances so that each process can have
its own JVM. Instead of Java class files the Dalvik JVM executes files in
the Dalvik Executable format (dex files). dex files are in reality Java class
files that have been preprocessed to reduce the amount of memory they use.

The Android platform is currently in beta and is lacking official docu-
mentation on some of the APIs. This includes the WiFi and Bluetooth APIs
which are present in the Android class library, but not fully completed. An-
droid is a relatively new platform and currently no mobile devices running
Android exist. It is mainly aimed at medium and high-end mobile devices
featuring GPS and hardware 3D graphics acceleration. The first real An-
droid based phones are expected to be released in the last half of 2008
simultaneously with Android version 1.0.

9

Figure 2.1: Screenshot of the Android Emulator

The Android SDK is available for Windows, Linux and Mac OS X, free
of charge. Developers can use popular Java development tools like Eclipse
and Ant. Existing Java SE based code can also be ported to Android with
relative ease, as long as it does not interface with any of the packages that
have been removed. The SDK also includes an emulator as shown in Fig-
ure 2.1 to allow most aspects of an application to be tested before the real
devices are released. The premise of the Android platform is to be a fully
open and free mobile platform. Much of the Android platform has already
been released under an open source license. It is expected that Google, the
main OHA developer behind Android, will release the remaining parts as
open source in time for the release of version 1.0 or soon thereafter.

2.1.2 Java ME

Java Platform, Micro Edition (Java ME) [36] is, according to Sun Microsys-
tems, “the Most Ubiquitous Application Platform for Mobile Devices”. It is
arguably one of the most widely available mobile application platforms and

10

as many as 8 out of 10 phones ship with Java ME [40]. Java ME, similar
to its big brothers Java SE and EE, does not impose any elaborate certifi-
cation, approval or other costly programs upon developers so that they can
develop and release their work.

Java ME consists of a set of configurations and profiles. Of all the classes
and packages in the Java SE API, only the java.io, java.lang and java.util
packages remain in the standard Java ME environment. The only remaining
parts of the collections API is the Hashtable, Stack and Vector classes. The
latest version of Java ME does not even guarantee support for floating point
numbers, but this is expected to be corrected in the next version. Mobile
application extends the MIDlet class which takes care of the application
lifecycle. There are also basic frameworks for making network connections
and saving data to persistent storage.

Java ME runs on several different mobile operating systems from a wide
variety of handset manufacturers. Each manufacturer usually provides a
Java ME SDK with their own version of the Java ME emulator provided by
Sun Microsystems. Because the number of APIs available in the standard-
ized profiles and configurations are relatively limited, manufacturers usually
provide a set of extension APIs. Java ME also specifies a set of optional
packages for things like Bluetooth communication, location-based services
and 3D graphics. The main challenge developing for this platform is that
many of the APIs often are optional and some are vendor-specific. This
often breaks the Java concept of “write once, run anywhere” as one has
to account for unavailable APIs and different APIs that accomplish similar
tasks. Sometimes the implementation of Java ME might differ from vendor
to vendor making it even more difficult to write applications that will run
on all target devices.

Java ME SDKs are available for both the Windows and Linux platforms.
However, there are no officially supported SDKs that allows developers to
work on the Mac OS X platform. Sun is currently working on a mobile
operating system called JavaFX Mobile [38] which will be able to run Java
ME as well as Java SE applications. It will mainly be aimed at high-end
mobile devices and the hope is that the Java SE support will prevent some
of the trouble inherited by Java ME.

2.1.3 iPhone

The iPhone [14] is a high-end mobile phone developed by Apple. It was
first introduced in the middle of 2007 and it runs the iPhone OS which is
developed specifically for the iPhone hardware. Version 3.1 and later of
Xcode, which is Apple’s suite for developing software for Mac OS X, is also
used to develop software for the iPhone. Xcode can be downloaded free of
charge and is currently available for Mac OS X v10.5 (Leopard) only. iPhone
software is mainly developed using the Objective-C language which is also

11

commonly used by Mac OS X developers.
To develop software for the iPhone platform is free, as long as you have

a computer running the correct version of Mac OS X. The iPhone SDK
includes an emulator which enables one to develop software without the
need to own an actual iPhone. However, in order to run your software
on a real iPhone device or to release it requires membership in the iPhone
Developer Program. Currently you must be at least 18 years old and resident
of the USA to be able to apply for this program. The program is currently
in beta and Apple is only accepting a limited number of developers into
the program. The iPhone Developer Program comes in a standard and an
enterprise version, both of which costs money.

To be accepted into the developer program one must first accept Apple’s
Registered iPhone Developer Agreement [15]. This agreement could poten-
tially conflict with many free software licenses like the GPL [56, 26] which
could make it difficult to write free software for the iPhone, unless one is
able to acquire special permission from Apple. Before an application can
be publicly released it must first be approved by Apple. Upon successful
approval, Apple cryptographically signs the application so that it can run
on any iPhone. The only legally sanctioned arena for distribution of iPhone
applications is the Apple iTunes Store.

Many of the technical restrictions imposed by Apple can be circumvented
on individual phones by a process aptly called jailbreaking. However, this
may very well void the warranty on your iPhone and in the worst case cause
the phone to stop functioning.

On the technical side, the iPhone platform provides access to many APIs
which are similar to those in Android, including APIs for Location-based
services and OpenGL for Embedded Systems (OpenGL ES). The Bluetooth
API for the iPhone is not documented and the Bluetooth capabilities of the
device is less than fully featured.

2.1.4 Windows Mobile

Windows Mobile is based on Windows CE and is Microsoft’s proprietary
mobile operating system. Visual Studio is the main development tool used to
develop applications for the Windows Mobile platform. The .NET Compact
Framework allows developers to write applications using a subset of the
full .NET Framework used for desktop development. It is also possible to
write unmanaged code in C or C++ for the platform. The Windows Mobile
SDK contains an emulator like most of the other popular mobile application
platforms. There is no location provider independent location API, but
serial COM port programming against a GPS is possible. Windows Mobile
also has an API for extracting Cell-ID information and a WiFi API that
provides signal strength and other useful information.

12

2.1.5 Other platforms

In addition to the platforms for mobile application development described
above there exists a large section of less popular alternatives. Symbian OS
[48] is Nokia’s primary mobile operating system. Symbian’s main develop-
ment languages is C++, but many Symbian devices can also be programmed
in additional languages such as Python, Perl, Visual Basic and Java ME.
C++ development for the Symbian platform has been widely regarded as
difficult because of the many complicated low-level techniques needed to
make applications function.

Motorola’s Linux based mobile operating system is called MOTOMAGX
[41]. The ACCESS Linux Platform (ALP) [18] is a fully fledged Linux based
operating system that can run Java ME, Garnet OS (formerly Palm OS) and
native Linux applications. There is also a game-oriented platform called
Mophun [16] that is available on some Symbian based handsets. Adobe
Flash Lite [49] is a light weight version of Flash that allows developers to
make multimedia applications. There also exists bridges for Flash Light
that allows it to access much of the same functionality as Java ME [20]. Re-
search In Motion’s (RIM) BlackBerry platform was previously programmed
in C, but has moved to a Java ME based system with BlackBerry specific
extensions. Trolltech has an application platform called Qtopia [52] which
is based on Qt.

2.1.6 Summary

Figure 2.1 shows a comparison of the five most popular mobile application
platforms. Android is the application platform that was chosen for the im-
plementation of the mobile client software. The combination of Android’s
free and open source initiative, the Java SE like set of APIs, availability of
location-based service APIs and Android’s event-based architecture made
Android the number one choice. When the real mobile devices arrive An-
droid will hopefully deliver on its promise to be a fully open and free mobile
platform.

Generic Cost of Code Available
Language Location API Development Signing Hardware

Android Java Yes Free None None
Java ME Java Optional1 Free Optional Very High
iPhone Objective-C No Min. $99 Required Medium
WinMob. .NET2 No Free3 Optional Medium
1 JSR 179: Location API for J2ME [39].
2 Supports managed (C# and Visual Basic) and unmanaged (C++) .NET.
3 Programs can be written with the basic SDK and compiler using a simple editor,

but Visual Studio itself is not free.

Table 2.1: Comparison of different mobile application platforms

13

2.2 Localization

Localization or positioning is the process of determining the whereabouts
of a specific entity. In our case we wish to determine the location of one or
more mobile devices. A key component in location-aware systems, such as
the MCS, are services that can provide information about where the user
is located. Services that harness this information are commonly known as
location-based services (LBS) [47].

Different kinds of localization techniques can be applied depending on
the hardware present in a mobile device. The ideal technology would pro-
vide unlimited accuracy for every conceivable location on the entire planet.
However, no such silver bullet technology currently exist, nor is it likely to
be available in the foreseeable future.

As always some trade offs exist between the different techniques avail-
able. For mobile devices the important characteristics are:

• Energy efficiency for long battery life [54],

• accuracy of the location information,

• performance in different environments and

• availability on the market.

Power saving strategies such as periodically turning on/off the location
provider services can increase the energy efficiency and battery life. To
provide the most energy efficient and best possible accuracy the mobile soft-
ware will be able to make use of any of the techniques described below.

An example of how a location provider can be selected in Android and
Java ME is by specifying a set of criteria1. This allows an application to
find the best possible location provider instead of relying on the existence
of one specific location provider. The method that finds the best location
provider evaluates the following criteria:

• Desired maximum power consumption (low, medium or high),

• accuracy (in meters),

• support for altitude measurement,

• support for bearing information,

• support for speed information and

• if the location provider cost money to use.

The following sections looks at some of the most common technologies avail-
able and assess their strengths and weaknesses.

1The design of the Android and Java ME location APIs are very similar and they use
almost the same criteria to select location providers.

14

2.2.1 GPS

Global Positioning System (GPS) [45] is a satellite based, medium earth
orbit (MEO), navigation technology. It is used by both civilians and in
military operation. GPS relies on a constellation of at least 24 satellites to
provide location, speed and direction information to its users. It works by
using a technique called trilateration combined with atomic clocks in the
satellites in order to accurately determine the correct location.

As of 2006 only 11.1% of mobile phones have an integrated GPS receiver
[33] which makes this a relatively low availability technology for our target
devices. The accuracy of GPS is relatively high compared to most other
techniques, but it requires line of sight to satellites which severely limits its
use indoors. In big cities with lots of high buildings and narrow streets GPS
will often have very low accuracy because the number of satellites it can see
is limited.

Because GPS provides high accuracy geographical coordinates the MCS
home area can in principle be defined as any irregularly shaped area. For
the sake of simplicity a circular area is often used as that greatly simplifies
the algorithm required to find out if a user is inside or outside the area.

A disadvantage of GPS is the delay it takes from the time when the
GPS is enabled until it can deliver the first location information (positional
fix). Warm start (GPS has been off a few hours) usually gives a positional
fix within 10 – 20 seconds, while a cold start (some of the satellite data
is outdated) can cause the positional fix to take up to several minutes.
The power consumption of high-end GPS devices has been found to be
surprisingly low. Ultra-low power GPS chips targeted at mobile devices,
like the GloNav GNR1040 RFIC and Broadcom BCM4750, can use as little
as 15 mW.

2.2.2 WiFi

WiFi (also known as WLAN) is a low tier, terrestrial, network technology for
data communication. The WiFi standards operates on the 2.4 GHz and 5.8
GHz industrial, scientific and medical (ISM) frequency bands. It is specified
by the IEEE 802.11 standard [29] and it comes in many different variations
like IEEE 802.11a/b/g/n. The application of WiFi has been most visible in
the consumer market where most portable computers support at least one
of the variations.

The coverage area of a local WiFi network can be used to determine if
a mobile device is inside or outside the home area. The mobile device will
store the network identifier (access point MAC address) so that it later can
recognize the WiFi network when it enters its coverage area. There are some
services that can map wireless network identifiers to geographical locations
such as Skyhook Wireless [10] and WiGLE [11], but their coverage varies

15

widely depending on where in the world you are located. A disadvantage
of using a WiFi network is that it never produces a perfectly circular deter-
ministic coverage area. Due to environmental conditions like physical ob-
structions and radio interference the coverage area may even vary over time.
The indoor range of WiFi is around 20 – 50 meters (70 meters for 802.11n)
depending on the environment and which standard is used. The power con-
sumption of WiFi chips, like the 54 Mbps capable Broadcom BCM4326 and
BCM4328, is less than 300 mW. This puts the power consumption of WiFi
about 20 times that of a GPS in mobile devices.

2.2.3 Bluetooth

Bluetooth is a low tier, ad hoc, terrestrial, wireless standard for short range
communication. The IEEE 802.15.1 standard [30] forms the basis for the
Bluetooth wireless communication technology. It is designed for small and
low cost devices with low power consumption. The technology operates
with three different classes of devices: Class 1, class 2 and class 3 where the
range with a clear line of sight is about 100 meters, 10 meters and 1 meter
respectively. Wireless LAN operates in the same 2.4 GHz frequency band
as Bluetooth, but the two technologies use two different signaling methods
which should prevent interference.

Similar to WiFi in many ways, the most common Bluetooth devices are
class 2 and have only a range of about 10 meters. A distinct advantage of
Bluetooth over WiFi is that it has a power consumption in the same range
as a GPS receiver. Its short range allows for confined location areas that
can be used to detect when the user approaches the main entrance or the
garage door.

2.2.4 Cell-ID

Base stations in cellular phone networks, known as base transceiver stations
(BTS), like GSM and UMTS emit unique IDs which can be used to deter-
mine the location in a similar manner as WiFi. This means that Cell-ID is
available in just about every mobile phone in existence. Although Cell-ID
by itself is not a good enough location technique for most LBS [51] combined
with other techniques it can still be very useful. The ubiquitous nature of
Cell-ID has resulted in a large amount research into techniques to improve
its accuracy [17, 32, 35, 46, 53, 55].

The accuracy of Cell-ID is highly dependent on the cell size, which causes
the accuracy to vary from a few hundreds meters to several kilometers. Areas
with a high population density requires a high density of BTSs (smaller cells)
to serve a larger amount of customers. This results in the highest accuracy
for urban areas and gradually reduced accuracy for suburban and rural areas.

16

To uniquely identify a cell its Global Cell Identity (GCI) contains infor-
mation about the country, mobile network operator and the location area
where the cell is located. Currently no known network operators provide
publicly available directory services that can resolve Cell-ID information
into geographical coordinates. However, efforts like CellDB [2], CellSpot-
ting [3], CellTrack [4], GSMLoc [6], OpenCellID [13] and Intel’s Place Lab
[19] provides access to databases that are able to map some Cell-IDs to the
approximate latitude and longitude of the associated BTSs. Google Maps
with My Location (GMML) [28] builds on a similar approach by collect-
ing Cell-ID information from users to improve accuracy. Navizon [9] has
also assembled a database with WiFi and Cell-ID information. However,
GMML currently does not provide a public API so that others can access
their data, and Navizon only provides Cell-ID positioning (not WiFi) with
their free SDK for non-commercial use.

As a last resort the Cell-ID information can be sent to Yahoo!’s [57]
ZoneTag Cell Location API which maps it to an address. This address can
then be fed into the Yahoo!’s Geocoding API which resolves the address to a
latitude and longitude. These APIs will do their best to find the location of
the base station, but often the resulting coordinates are way off course. In a
worst case scenario ZoneTag is only able to find the country where the cell
is located and Geocoding will provide coordinates pointing to somewhere in
the middle of the country.

An advantage over WiFi location lookup services is that the quality of the
data in Cell-ID directories remain relatively constant over longer periods of
time. The rate of new WiFi networks appearing and old ones disappearing is
much higher than that of BTSs because of the large difference in cost between
the two. This causes the quality of the collected data in WiFi location
directories to degrade much more quickly over time, unless extraordinary
measures are taken to actively update and maintain the data.

2.2.5 Summary

Table 2.2 shows a comparison of the four location provider techniques. Very
high accuracy is not a necessity for the application considered in this report.
WiFi and GPS are suitable location providers, but Cell-ID and Bluetooth
can be used as a supplement. The growth rate of GPS enabled mobile
phones is expected to increase as LBS becomes an integral part of the mobile
experience. Together with other techniques this will enable ubiquitous access
to high quality location information.

17

P
ow

er
R

an
ge

A
va

ila
bl

e
A

P
I

C
on

su
m

pt
io

n
In

do
or

O
ut

do
or

A
cc

ur
ac

y
H

ar
dw

ar
e

Su
pp

or
t1

G
P

S
L

ow
N

/A
N

/A
V

er
y

hi
gh

11
.1

%
M

ed
iu

m
W

iF
i

H
ig

h
L

ow
M

ed
iu

m
M

ed
iu

m
70

%
2

L
ow

B
lu

et
oo

th
L

ow
V

er
y

lo
w

L
ow

M
ed

iu
m

90
%

2
M

ed
iu

m
C

el
l-

ID
V

er
y

lo
w

H
ig

h
V

er
y

hi
gh

V
er

y
lo

w
10

0%
M

ed
iu

m
1

B
a
se

d
o
n

p
la

tf
o
rm

s
su

p
p

o
rt

ed
a
n
d

co
n
si

st
en

cy
o
f

A
P

Is
a
cr

o
ss

d
iff

er
en

t
h
a
rd

w
a
re

2
G

u
es

st
im

a
te T

ab
le

2.
2:

C
om

pa
ri

so
n

of
di

ffe
re

nt
lo

ca
ti

on
pr

ov
id

er
te

ch
ni

qu
es

18

Chapter 3

Design

The MCS has been implemented in Java and the source code is released
under the open source Apache License, Version 2.0 [24]. See the project web
page at http://projects.ux.uis.no/projects/show/mcs for instructions on
how to access the source code.

Figure 3.1 shows the main use cases for the mobile client user. These
are the actions that a user could reasonably expect to be able to perform
from the mobile device client software. The main focus of this report is the
policy configuration, home area configuration and the enter/exit home area
use cases.

User

Enter home area

Exit home area

Configure policies

Register mobile device

Manually activate service

Manually deactivate service

Check service status

Configure home area

Figure 3.1: Use case diagram for the mobile client user

19

http://projects.ux.uis.no/projects/show/mcs

3.1 Overview

We begin by giving an overview of the components that together make up
the mobile control system (MCS). The MCS consists of the software on the
home server and on the individual mobile devices. The most important part
of the software is the two main applications:

Control server is the main control application that runs on the home
server. It manages the set of associated mobile devices and the avail-
able services.

Droid is the mobile application that runs on Android based mobile devices.
It monitors the location of the mobile device and notifies the control
server when the user changes location. It also displays notifications
and requests from the control server and allows users to manually
control some of the services.

In addition to the two main applications a couple of auxiliary applications
were implemented to test the system:

Alarm server is an application that emulates a burglar alarm system on
the home server. It enables users to activate, deactivate and query the
status of the alarm system.

WiFi simulation server gathers information about the WiFi connection
of the device it is running on. Droids can then connect to this server
and use the received data to emulate the presence of an actual WiFi
API. This is necessary because the WiFi API in Android is unavailable
at the present time.

Finally the implementation contains a set of utility modules:

Core is a shared set of utility and base classes for both mobile and home
server applications.

JMS common contains utility classes specifically created for JMS commu-
nication.

WiFi simulation common contains a class that specifies the protocol
used by the WiFi simulator.

Apache Maven 2 [23] is used as a tool to manage the external project depen-
dencies and the build process. Figure 3.2 shows the dependencies between
the Maven modules that the implementation is divided into. These modules
correspond to the seven parts of the system described above.

20

mcs­alarm­servermcs­jms­commonmcs­control­server

mcs­wifi­sim­server

mcs­core

mcs­droid mcs­wifi­sim­common

Figure 3.2: Software module dependencies

3.2 Architecture

To build a system with the complexity of the MCS an architecture first
had to be established. The system architecture is based around the use of
Java Message Service (JMS) [37] which is a Message Oriented Middleware
(MOM) API. Using JMS enables loosely coupled, reliable and asynchronous
distributed communication between the application components in an event-
based manner [42]. This helps to eliminate unnecessary polling activities
and results in a system that quickly and efficiently is able to respond to new
events. JMS provides messaging primitives for various patterns of commu-
nication including point-to-point (JMS queue) and publish-subscribe (JMS
topic). Figure 3.3 shows how the JMS message bus acts as the central point
of communication to integrate the different systems. Using a message bus
enables the components to work together and allows components to easily
be added and removed.

The system design is based on well known patterns used in the design of
MOM based systems and other enterprise integration platforms [31]. A JMS
message broker is needed to provide a platform for the deployment of JMS
based solutions. Apache ActiveMQ [21] is an open source implementation
of JMS that runs on the home server and provides the infrastructure of
the messaging system. The ActiveMQ message broker handles storage and
reliable delivery of all the messages through either of the JMS messaging
primitives.

Figure 3.4 shows an overview of the mobile device software, the control
server and the burglar alarm server. The mobile devices keeps track of the
various services, locations and location providers available to them. They
also provide various GUIs to allow user interaction with the rest of the
MCS. The control server is able to keep track of multiple mobile devices
using different services and potentially being located in different locations.

21

Message Bus

Burglar Alarm

Server

Temperature

Server

Control Server System XYZMobile

Devices

Lighting

Server

Figure 3.3: System integration using a message bus

Mobile Device

Location

Areas

Location

Providers
Services

Notification

GUI

Control

GUI

Registration

GUI

Apache ActiveMQ

JMS

Topics

JMS

Queues

JMS

Messages

Control Server

Mobile

Devices

Location

Areas
Services

Burglar Alarm Server

Sensor

Nodes

Control

Service

Figure 3.4: System architecture overview

22

A collection of multiple locations usually result in what is known as the
home area. The alarm server simulates an interface to an actual burglar
alarm system and the underlying alarm sensors. It has a control service
which accepts commands to activate and deactivate the system, as well as
querying the current status. The mobile devices, control server and the
alarm server are tied together by JMS message queues and topics provided
by Apache ActiveMQ.

All communication and notification events in the system eventually ends
up passing through ActiveMQ. That might sound like a guaranteed way to
induce scalability and reliability (single point of failure) problems. However,
multiple JMS message brokers on different servers can be configured to pro-
vide fault tolerance, high availability and load balancing, if needed. Such a
change would require configuration changes , but few, if any, code changes
would be needed. Regardless, communicating using JMS on a local system
(like the control server and alarm system) is by design very performance ef-
ficient. Given some decent server hardware there are few reasons to expect
performance problems unless the number of services and associated mobile
devices becomes very high.

3.3 Communication

The communication between the different components in the system makes
use of the JMS message primitives provided by the ActiveMQ message bro-
ker. On the mobile device the Overlynx background service maintains a
constant communication link with the JMS message broker located on the
home server. The IP address or host name of the home server is assumed
to be stored on the mobile device so that a connection can be established.
Standard Java JMS client libraries refused to work out of the box on An-
droid because they required an unavailable package. To solve the problem
the Extensible Messaging and Presence Protocol (XMPP) [25, 12] supported
by ActiveMQ was used as a replacement. Using the Smack API [44], which
provides an implementation of the XMPP standard, allowed connections to
multiple JMS topics and queues on the home server to be established.

To be able to establish a connection to the home server the mobile de-
vice requires some sort of network to relay its communications. GSM and
UMTS network operators provide their users with data services so that mo-
bile phones can access the Internet. The cost of such services are usually
based on the amount of data transferred, but some network operators also
offer unlimited data plans for a fixed price. The event-based nature of the
MCS means that it will only transmit data when significant events take
place. This should help reduce the costs incurred by mobile data services.
Android will also be able to take advantage of WiFi network connections, if
one is available, to further reduce costs.

23

C
o

n
tr

o
l

S
e

rv
e

r
JM

S
 m

e
ss

a
g

e
 b

ro
ke

r
M

o
b

il
e

 D
e

vi
ce

 B
M

o
b

il
e

 D
e

vi
ce

 A

[T
-L

U
]

M
D

A
:

e
xi

te
d

 h
o

m
e

 a
re

a

[T
-L

U
]

M
D

B
:

e
xi

te
d

 h
o

m
e

 a
re

a

M
D

A
:

e
x

it
e

d
 h

o
m

e
 a

re
a

C
S

:
S

u
b

sc
ri

b
e

 t
o

 l
o

ca
ti

o
n

u
p

d
a

te
 t

o
p

ic
 [

T
-L

U
]

M
D

A
:

C
re

a
te

 m
e

ss
a

g
e

 q
u

e
u

e
 [

Q
-B

]

M
D

A
:

C
re

a
te

 m
e

ss
a

g
e

 q
u

e
u

e
 [

Q
-A

]

M
D

B
:

e
x

it
e

d
 h

o
m

e
 a

re
a

[Q
-B

]
C

S
:

A
la

rm
 o

ff
.

D
o

 y
o

u
w

a
n

t
to

 a
c

ti
v

a
te

 i
t?

[T
Q

-C
S

]
M

D
B

:
Y

e
s,

 p
le

a
se

.

M
D

B
:

Y
e

s,
 p

le
a

se
.

[Q
-A

S
]

C
S

:
A

ct
iv

a
te

 a
la

rm
 s

ys
te

m

C
re

a
te

 c
o

m
m

a
n

d
 q

u
e

u
e

 [
Q

-A
S

]

A
la

rm
 S

e
rv

e
r

C
S

:
A

c
ti

v
a

te
 a

la
rm

 s
y

s
te

m

[T
Q

-C
S

]
A

S
:

A
la

rm
 s

ys
te

m
 a

ct
iv

a
te

d

A
S

:
A

la
rm

 s
y

s
te

m
 a

c
ti

v
a

te
d

[T
Q

-B
]

C
S

:
A

la
rm

 s
y

s
te

m
 a

c
ti

v
a

te
d

C
S

:
A

la
rm

 o
ff

.
D

o
 y

o
u

w
a

n
t

to
 a

c
ti

v
a

te
 i

t?

C
S

:
A

la
rm

 s
y

s
te

m
 a

c
ti

v
a

te
d

Figure 3.5: Example sequence of communication

24

Figure 3.5 shows an example of a sequence of communication between
two mobile devices (MDA, MDB), a JMS message broker, control server
(CS) and alarm server (AS). JMS queues and topics are enclosed in square
brackets where the prefix T means a topic, Q is a queue and TQ is a tem-
porary queue (used in request-reply sequences). Both mobile devices start
by creating individual message queues that can be used to send messages
back to the mobile device in question. When the location update service on
the mobile device detects that it has left the home area it will send an “area
exited” event notification to the JMS location update topic. The control
server, subscribing to this topic, makes note of which mobile devices are
inside and outside the home area at any given time. The notification from
MDB, being the last to exit the home area, causes the control server to send
a request back to MDB asking if he wants to activate the alarm system.
MDB replies with a yes answer to a temporary queue (TQ-CS) the control
server is listening to. The control server then issues an activation command
to the alarm server which results in the activation of the alarm system.

3.4 Security considerations

Although security has not been the main concern during the design and im-
plementation of the MCS, it is important to develop an understanding of the
ramifications of this system. An important concern is that someone might
steal your mobile device and use it to disable the alarm in your house. As a
result of this the use of the auth(entification) policy for alarm deactivation
has been recommended. It would also be a good idea to strictly enforce
this by preventing users from switching to a less secure policy. Alternatively
a warning and confirmation dialog could be displayed if someone tries to
switch to a policy that might result in reduced security.

Another danger is that people may get so used to the alarm system
being automatically activated that they take it for granted. One day a
user will forget his mobile device at home and the alarm will not activate
automatically. A solution to this problem might be to install more sensors
at the entrances to monitor where users are without the need for mobile
devices. This approach will pose an entirely new set of challenges.

It is practically impossible to always reliably identify users without em-
bedding a chip under their skin. If motivated, a user can easily lie to the
system about his location by leaving his mobile device behind, turning it
off or handing it over to someone else. Hopefully the benefits the system
brings to the users, will motivate them so that they do not deliberately try
to subvert it.

The most common criticism against location-based services is related
to privacy issues. The act of disclosing your own locations causes great
concern for many users. In the MCS location information is disclosed to the

25

home server and potentially other users of the system. The precision of the
location information in this system is relatively coarse which reduces the
potential for abuse. The current implementation of the MCS does not apply
any encryption on the transmitted data, which is likely to cause problems
in real world applications. It does include rudimentary authentication, but
this mechanism does not ensure the safety of the location information nor
any other information transmitted across the network.

A potential attack vector1 on location-based services is location spoof-
ing. Applications using WiFi location information can easily be tricked into
believing they are somewhere other than their physical location. By imper-
sonating one or more existing WiFi access points, a mobile device relying
on this information will think that it is somewhere else entirely. The iPhone
and other devices based on the Skyhook Wireless [10] WiFi database has
been shown to be vulnerable to this technique [50]. One way to prevent this
is to use location information from additional sources.

Using the iwlist Linux command to scan for APs revealed that it is pos-
sible to uniquely identify each AP by its MAC address. If the AP does not
broadcast its ESSID it should still be possible to identify the home area AP
by its MAC address. Other unique features, such as the frequency/channel
that the AP operate on, what bit rates it supports and the security mecha-
nisms it supports, could possibly also be used to establish that the correct
AP has been found.

If an attacker somehow managed to replicate the AP by spoofing the
MAC address, ESSID and the other unique features of the original home
area AP other measures would be needed to ensure that the mobile device
software does not confuse this duplicate AP as the actual home area AP. One
solution is to require that the mobile device first successfully authenticates
with the AP. Duplicating the authentication details of an AP is probably a
much more difficult process.

3.5 The control server

The control server stores information about the available services, associ-
ated mobile devices and location areas. It also keeps track of which mobile
devices are inside and outside of each area and dispatches event notifications
depending on the location of the mobile devices, the state of the available
services and the current policies for each service. The home area can in
some cases consist of multiple locations. An example of a location is the
area covered by a single WiFi access point. The combined area covered by
multiple WiFi access points makes it possible to define a single home area
for large buildings as well.

1An attack vector is a path or means by which a malicious person can gain access to
a computer or network server in order to deliver a payload or malicious outcome.

26

3.5.1 Policies for activation and deactivation

A few approaches to how services should be activated and deactivated when
a location change is detected, has been developed. The user can choose
between several different policies concerning activation/deactivation of the
alarm system. Upon entry into the home area, the mobile device could do
one of the following:

1. Automatically deactivate the alarm system without user intervention,

2. request user to acknowledge deactivation, or

3. request user to acknowledge deactivation with a PIN code.

Policy for activation is more or less reverse, except that the system will have
to consider multiple mobile devices associated with the home area:

1. Automatically activate the alarm system without user intervention
when the last mobile leaves the home area,

2. request the last user that left, to acknowledge activation (used by the
example in Figure 3.5), or

3. request the last user that left, to acknowledge activation with a PIN
code.

If the mobile device is stolen, deactivation policy 1 and 2 would allow a
malicious person to disable the alarm system and enter the house without the
need to know the PIN code. For this reason deactivation policy 3 should be
the default choice for the burglar alarm service. Types of services that do not
require a high level of security could take advantage of the two first policies
to make the system less cumbersome to use. Examples of services that are
suitable for either of the policies includes energy conservation services that
automatically adjust the temperature in the house and turn off electrical
appliances that the user has forgotten to power off, including lighting.

The advantage of these policies is that they give users flexibility and
control over how the state of the service is changed. The above policies can
easily be generalized so that they can be applied to other kinds of services.
Figure 3.6 shows an example GUI in Android using the generalized set of
policies presented below:

auto – change the state of the service without user intervention

ask – ask user to accept or reject the state change

auth – require that the user authenticate before any changes takes place

27

Figure 3.6: Example of a generalized policy configuration screen

3.6 The burglar alarm server

The burglar alarm server publishes event notifications to a JMS topic that
zero or more subscribers can listen to. It publishes the alarm state change
notifications like activated, deactivated and triggered as shown in Figure 3.7.
To make it possible to activate and deactivate the alarm by a mobile device
the service also listens to a JMS queue for control commands. This allows a
mobile device to activate/deactivate and query the status of the alarm using
the request-reply messaging pattern. The the burglar alarm server supports
two modes of simulation:

Quiet causes the alarm server to only respond to activation/deactivation
and status queries received through its JMS command queue.

Noisy will change the alarm state at random intervals to simulate that
someone else is remotely controlling is. This is an extension of the
quiet mode so it also accepts commands received by JMS.

28

Deactivated ActivatedTriggered

Figure 3.7: State machine of the simulated burglar alarm system

3.7 The Android mobile client

The Android mobile client, also known as the droid, is the software that runs
on the mobile devices. Its goal is to provide the users with the interface they
need to manage services and the logic needed to detect when users enter and
exit the home area. This software has only been tested in an emulator as
no real mobile phones running Android has been released to the market yet.
The mobile client software is divided into two separate programs:

Overlynx is a background service that is automatically started when the
mobile device is powered on. It maintains a connection to the remote
JMS server and handles any messages and event notifications it re-
ceives. It also monitors the location of the mobile device and notifies
the control server when the user changes location.

MCS Control is the application that allows users to directly interact with
services on the home server. Policy changes and other settings are also
managed through the user interface of this application.

Due to the beta state of the Android SDK some of the APIs, like those for
Bluetooth and WiFi, have not yet been finalized. This problem has been
partially solved by writing a custom WiFi API that emulates the behavior
of a real WiFi adapter. The location provider API is available along with
an emulated GPS location provider. The Cell-ID API is also available, but
the information it provides is hard coded in the emulator.

For any number of reasons it might sometimes be impossible to acquire
accurate information. Other times the mobile device might be unable to
communicate with the home server or it might even be turned off completely.
The system keeps track of how long ago it last communicated with each
device. If it does not hear from a device in a while it will assume that the
user has either turned it off on purpose or that it has run out of battery or
that its broken. Regardless of the reason the system will change the device
status to unknown and deregister it so that it does not interfere with the
usage of the system. If it hears from the device again it will automatically
register it after it has learned about its current location.

29

3.7.1 Avoiding the ping-pong effect

A location can easily be defined as a perfectly circular area, and by using
GPS it is possible to find out if you are inside or outside this area. The
system itself is based on discrete states such as inside and outside, but the
real world is full of different colors and shades. If the user is standing exactly
at the boundary of the home area, the location provider might determine
that the user is inside the area one second and outside the next. If the
location provider is able to provide location information in sufficiently small
intervals the system might see the user bouncing in and out of the area faster
than it can handle. To prevent this so called ping-pong effect a threshold
value is used in order to create a buffer zone as shown in Figure 3.8. The
location provider update interval will also have to be set to a sufficiently
high value. If the connection to the WiFi access point (AP) is lost the user
is determined to be outside the area. To be considered inside the area again
the signal strength to the associated AP must increase until it is above a
specified threshold value.

By using a circular area it is easy to adapt the concept to GPS as well.
If the user is more than a certain distance dmax away from the center of
the circle the system will consider the user to be outside the area. At this
point the user will only be able to enter the area if he reduces his distance
to the center until it is less than λ · dmax where λ ∈ [0, 1]. In the current
implementation the threshold coefficient is fixed at λ = 0.9. This creates a
buffer zone using 10% of the total radius. The system could potentially allow
the user to manually adjust λ if he is not satisfied with the default value. The
function in Algorithm 1 is called every time a location update notification
is received from the GPS location provider. The current coordinate (x0, y0)
provided by the GPS is passed as a parameter to the function. It will return
true only if the location of the user has changed from inside the area to the
outside, or the reverse.

3.7.2 GPS

The Android emulator allows a file with pre-recorded track points to be
installed so that it can emulate a real GPS and make applications believe
that it is actually moving. Using this technique, a track was recorded with
a real GPS and uploaded to the emulator. To be able to find out if a user
is inside or outside the home area one must first find a suitable method to
define this area When a GPS is used the home area is defined as a circle
with radius r and center coordinate (xc, yc). Following the recommendation
of the previous section the implementation also makes use of a threshold
value to avoid the ping-pong effect.

In order for the system to be of any use to a specific household it must
be possible for users to specify a home area that suits their needs. Figure 3.9

30

Inside

Buffer

Outside

Figure 3.8: Circular location area with a buffer zone

Algorithm 1 Evaluate a GPS location update.
1: class GPSLocation
2: λ← 0.9
3: inside← false
4: GPSLocation(latitude, longitude, rmax)
5: xc ← latitude
6: yc ← longitude
7: dmax ← rmax

8: function gpsLocationUpdate(x0, y0)
9: d← distance between (xc, yc) and (x0, y0)

10: if inside and d > dmax then
11: inside← false {User left area}
12: return true {Indicate that inside has changed}
13: else if not inside and d < λ · dmax then
14: inside← true {User entered area}
15: return true {Indicate that inside has changed}
16: return false {State remains unchanged}

31

(a) Before center is set (b) After setting the center

Figure 3.9: Specifying a GPS location

shows the interface that is used to create a GPS location. The first step is
to move to the location where you want the center of the circle to be and
then click the “Set center” button shown in Figure 3.9a. This will assign
the latitude and longitude of the current GPS position to (xc, yc). The
application will then continually update the distance between the current
location and (xc, yc) and show the result as in Figure 3.9b. If “Use maximum
radius” is selected (default) when the “Save location” button is clicked, r
will be set to the maximum distance measured from the center. Otherwise,
the “Use current radius” option has been selected and r is set to the current
distance.

A disadvantage of this approach is that you will most likely fail if you
want to specify the center of the circular area in the middle of your house.
Because regular GPS devices are unable to provide reliable location infor-
mation inside a house your only alternative would be to climb up on the
roof. An alternative approach would be to tell the user to walk around the
perimeter of where they want the home area to be. The application would
store all the coordinates along this trip and use a smallest enclosing circle
algorithm [34] to fit a circle around the coordinates.

To actually collect the GPS location information the mobile client first

32

has to register with Android’s location provider API. The Overlynx back-
ground service starts by querying for an appropriate location provider. When
one is found it tells Android that it wants to receive updates for this provider
on a regular basis. Each time a location update is received it calls the gp-
sLocationUpdate() function presented in Algorithm 1 where dmax = r. The
current location (x0, y0) is passed as argument to the function. When this
method returns true it checks the value of the inside variable and reports
the new location back to the home server.

3.7.3 WiFi

The location detection algorithm for WiFi areas uses the exponential mov-
ing average formula in Equation 3.1 to smooth out large variations in the
reported signal strength.

dt = α · st + (1− α) · dt−1 (3.1)

Where dt is the average signal strength at time t, st is the reported sig-
nal strength and α ∈ [0, 1] is the weighting factor. Algorithm 2 shows the
location update method used for WiFi areas. It contains a self-adapting al-
gorithm that automatically determines the maximum and minimum signal
strength values. The test results in Section 4.1 shows why a simple thresh-
old based algorithm would not work and why a more advanced algorithm
is needed. When it looses contact with the AP it assumes that the user
has reached the edge of the coverage area. This algorithm will have some
problems if there are blind spots in the coverage area of the wireless network
inside the area the user intended to be part of the home area. Any place and
any time the mobile device loses the connection to the AP it will assume
that the user has left the home area. This will also falsely trigger a location
exit event if the AP is physically turned off or otherwise disabled.

A solution to this problem is to use a timeout mechanism to delay the
location exit event until one can be relatively certain that the user has
indeed left the area. In most cases this will solve the problem where the
user temporarily loses contact with the AP while he is still inside the area.
A simple solution for permanent blind spots is to install another AP that is
able to cover this area and consider the user inside if he has contact to either
of the APs. Special sensors at each entrance to the home area could also
be installed to detect when people enter or exit. It is recommended that an
uninterruptible power supply (UPS) is installed to prevent short-lived power
outages from shutting down both the AP and the home server.

3.7.4 Power saving

To support as many different mobile phones as possible the use of WiFi has
been an important part of the implementation. Also Cell-ID information of

33

all the cells that overlap with the WiFi coverage area could be registered by
the system. If the mobile device is outside all of the registered cells it can
safely disable WiFi to save power as shown by Algorithm 3. Whenever the
device enters one of the registered cells it can automatically re-enable the
WiFi. The same logic can also be used in conjunction with Bluetooth and
GPS to preserve battery life. Using Cell-ID is practically free in terms of
power consumption, as it is part of the existing cellular network protocols.

3.7.5 Location manager

To make use of the GPS and WiFi location classes and update functions
we use an event-driven approach encouraged by the Android platform. In
Algorithm 4 we begin by registering with Android’s GPS location and WiFi
information providers. By doing this we tell Android to get back to us when
either the GPS location or WiFi information is updated.

The GPS event handler checks every registered location and calls the
location update function to see if the user changed location. The WiFi
event handler has an additional check to ensure that only the WiFi location
that belongs to the AP identifier by p is checked. If the location of the user
has changed it will dispatch an event notification to the home server, or
more specifically the JMS location update topic.

At this level in the system there is no logic that says that the user entered
or left the home area because the home area concept does not exist. As far
as the mobile client is aware it only keeps track of different GPS and WiFi
locations areas. The part that checks if a user is inside or outside the home
area is located on the server. The server code has been made deliberately
simple, so it only checks if the user is in at least one of the defined locations.
If not then the user is outside the home area. Other more complicated
scenarios are possible. For example one location could be assigned to a
garage area which is not part of the home area. This location may overlap
geographically with some part of the home area, but the location itself would
in this case not be part of the set of locations that define the home area. A
garage door opener service could then check if the user is in the garage area
and open the door accordingly.

34

Algorithm 2 Evaluate a WiFi location update.
1: class WiFiLocation
2: dt, st−1, sbest, sworst ← ∅
3: λ← 0.9
4: α← 0.3
5: inside← false
6: WiFiLocation(networkid)
7: ap← networkid
8: function wifiLocationUpdate(st)
9: if st = 0 and inside then

10: if st−1 < sworst then
11: sworst ← st−1 {Reduce worst value}
12: dt ← sworst {Reset average to the worst case}
13: inside← false {User left area}
14: return true {Indicate that inside has changed}
15: else if st 6= 0 then
16: if dt = ∅ then
17: dt, sbest, sworst ← st

18: dt ← α · st + (1− α) · dt {Smooth out variations}
19: if st > sbest then
20: sbest ← st {Increase best value}
21: st−1 ← st {Update last value}
22: if not inside and dt > λ · (sworst − sbest) + sbest then
23: inside← true {User entered area}
24: return true {Indicate that inside has changed}
25: return false {State has not changed}

Algorithm 3 Power saving with Cell-ID.
1: H ← set of cells covering the home area
2: inside← false
3: upon updated set of cells C currently in range do
4: if inside and H ∩ C = ∅ then
5: Disable WiFi, GPS and Bluetooth if no other applications are

using them.
6: inside← false
7: else if not inside and H ∩ C 6= ∅ then
8: Enable WiFi, GPS and/or Bluetooth if needed for localization.
9: inside← true

35

Algorithm 4 Mobile client location provider event handlers.
1: Lgps ← set of all GPS locations
2: Lwifi ← hash table of all WiFi locations
3: Initialization:
4: Register with Android’s GPS location provider
5: Register with Android’s WiFi connection information provider
6: upon GPS location updated to (x0, y0) do
7: foreach GPS location a in Lgps do
8: if a.gpsLocationUpdate(x0, y0) then
9: if a.inside then

10: notify home server that user entered GPS location a
11: else
12: notify home server that user exited GPS location a
13: upon WiFi signal strength for AP p updated to s0 do
14: a← Lwifi.get(p)
15: if a 6= ∅ and a.wifiLocationUpdate(s0) then
16: if a.inside then
17: notify home server that user entered WiFi location a
18: else
19: notify home server that user exited WiFi location a

36

Chapter 4

Testing and simulation

To test the software developed in this project some real world data has been
collected. This has been done using Kismet [7], an IEEE 802.11 wireless
sniffer application that can collect signal strength information of WiFi access
points (AP). Using the GPS and the WiFi network car,d Kismet was able
to record packets sent from the local AP and tag them with the current
geographical location. These data were pre-processed and the distance from
the AP to each received packet was calculated. The following hardware has
been used during these tests:

• GlobalSat Data Logger GPS DG-100 60 samples/minute

• Linksys WRT54GL Access Point

• Dell laptop with Intel PRO/Wireless 2200BG WiFi card

4.1 WiFi coverage area

Section 3.7.4 of the report discuss how the coverage area of WiFi can be
used to define a location. In this part of the report we investigate the WiFi
coverage area in more detail. Figures 4.2, 4.3, 4.4 and 4.5 shows how the
signal strength vary depending on the distance to the AP. Higher signal level
means better reception. As expected the graphs show that the signal level
increases the closer to the AP you get. Overall the signal level appears to
vary somewhere between -20 and -85 dBm.

The first three graphs are measurements taken from the same area. In
Figure 4.2 the AP is located in the basement while in Figure 4.3 it is moved
up one floor. To collect the signal data the same route was taken to ensure
that any variations induced by environmental factors were similar in both
measurements. The route went around the house a couple of times and up
and down an adjacent street to get readings from multiple directions. From
the graphs it appears that the wooden walls gives a relatively good coverage

37

area outside the house. The difference in signal level is relatively significant
where having the AP on the first floor also gives a much better range. The
range between 59 and 72 meters on the first floor AP is blank because of a
building that is blocking the path. Looking at the large variations in signal
level even at the same distances confirms that the coverage area of WiFi
networks are far from a uniform circle. Using the gpsmap tool provided by
Kismet, the coverage area was estimated as shown in Figure 4.1. The bright
dots and paths inside the coverage area are locations where packets were
received.

In Figure 4.4 the AP is moved outside the house so that it has a direct line
of sight at all times. The variations are much lower and it is not until about
120 meters that you are at risk of losing the connection. Being that the AP
is in line of sight at all times one might have expected even less variations.
However, various other WiFi networks and environmental conditions cause
a significant drop in the signal level at about 20 meters.

The data for Figure 4.5 has been recorded in a rural area partly inside a
forest. It exhibits a much more linear degradation in the signal level which
could very well be attributed to the lack of other WiFi networks or any
other interfering electrical equipment for that matter. The gap at the left
of Figures 4.2 and Figure 4.5 is a result of not being able to sample data
that close to the center. On each graph there is a sharp drop in the signal
strength at around 15 meter. If one was to set a threshold value at some
specific signal level it might be at -65 dBm, -55 dBm, -45 dBm and -40 dBm
for Figures 4.2, 4.3, 4.4 and 4.5, respectively.

Figure 4.1: Estimated WiFi coverage area in suburban area with AP placed
in basement

38

-85

-80

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

 0 5 10 15 20 25 30 35 40 45 50

S
ig

na
l l

ev
el

 (
dB

m
)

Distance from AP (m)

Figure 4.2: WiFi signal plot in suburban area with AP placed in basement

-85

-80

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

S
ig

na
l l

ev
el

 (
dB

m
)

Distance from AP (m)

Figure 4.3: WiFi signal plot in suburban area with AP placed on first floor

39

-85

-80

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

 0 20 40 60 80 100 120 140 160 180 200 220

S
ig

na
l l

ev
el

 (
dB

m
)

Distance from AP (m)

Figure 4.4: WiFi signal plot in suburban area with AP in line of sight

-85

-80

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

 0 5 10 15 20 25 30 35 40

S
ig

na
l l

ev
el

 (
dB

m
)

Distance from AP (m)

Figure 4.5: WiFi signal plot in rural area

40

The measurement results above showed that setting a simple threshold value
can be a difficult and error prone task. Because the signal level varies so
much and because it most often does not degrade linearly another approach
must be taken. As described in Algorithm 2 an self-adaptive approach was
chosen. To test this algorithm in practice the WiFi simulator server was
used to collect signal strength values during a trip. The WiFi location
update algorithm was then applied to this collection and the result is shown
is Figure 4.6 The thin line is the signal strength and you can see the vertical
lines where it loses connection with the AP and the signal level is reset to 0.
The thick lines along the top and bottom represents the inside/outside status
of the algorithm. It starts inside the home area and all the way up until it
first loses connection to the AP. After that it takes a more careful approach
and is stuck outside until the signal strength increases to a sufficiently high
level.

The results look promising and the algorithm appeared to handle the
multiple AP disconnections and varying signal strength without any major
problems. This shows that the algorithm is able to adapt to situations where
many fixes threshold values would easily break.

-80

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

 0

 0 200 400 600 800 1000 1200 1400

S
ig

na
l l

ev
el

 (
dB

m
)

Time (s)

Figure 4.6: WiFi location update algorithm test

41

Chapter 5

Conclusion

This report has proposed a system that allows users to easily activate and
deactivate a burglar alarm system using their mobile phone or other mobile
device. Based on the location of the mobile devices, users will automati-
cally receive notifications in the relevant situations allowing them to easily
activate or deactivate the alarm system. The report has also looked at the
possibility to integrate additional services into the system using a set of poli-
cies to determine how and when to activate and deactivate them. A number
of challenges is involved in the design and implementation of a scalable and
extensible distributed system as shown by this report. This includes algo-
rithms that form a basis for location areas and algorithms that can help to
reduce the power consumption in mobile devices.

5.1 Future work

Although great effort has been made to solve as many of the issues related
to this system as possible, some remain unsolved. Most prominently is the
issue related to unreachable devices. If a mobile device is turned off, runs out
of battery or otherwise unable to establish a connection to the home server
it cannot relay its position information. As far as the system is concerned
the device and its user will remain at its current location until a certain
period has passed. When the system has not heard from a device in a while
it will remove it from the system so that it does not interfere with its regular
operation. Even so this can result in some awkward situations. Consider a
scenario where a mobile device of a user has run out of battery while he was
outside the house. Soon after, this user enters his home together with his
wife, but her mobile device is working fine. If his wife leaves and the alarm
service is using the auto policy, the alarm will automatically be activated
while he is still inside the house.

More work in securing the transmitted data is also needed. Currently all
messages are transmitted across the Internet without any form of encryption.

42

To address the privacy concerns many users might have about sharing their
location it is important to secure the data. This will also protect the MCS
from several other types of attacks.

Another important step forward would be to get the mobile client soft-
ware running on an actual mobile device. Mobile handsets running Android
are scheduled for release in Q4 of 2008. Many indicators points to HTC as
the first mobile handset manufacturer that will release a handset running
Android. Version 1.0 of the Android SDK will also be released at the same
time so parts of the current implementation of MCS is expected to break,
as many APIs might change.

43

Bibliography

[1] BlueProximity. URL http://blueproximity.sourceforge.net/.

[2] CellDB. URL http://celldb.org/.

[3] CellSpotting, A Global Location Based Information Service. URL http:

//www.cellspotting.com/webpages/cellspotting.html.

[4] CellTrack. URL http://www.afischer-online.de/sos/celltrack/.

[5] floAt’s Mobile Agent. URL http://fma.sourceforge.net/.

[6] GSMLoc: GSM cells, mapping CellID to GPS coordinates. URL http:

//gsmloc.org/.

[7] Kismet. URL http://www.kismetwireless.net/.

[8] metaquark Home Zone. URL http://metaquark.de/homezone/.

[9] Navizon - Virtual GPS for mobile devices and laptop computers. URL
http://www.navizon.com/.

[10] Skyhook Wireless. URL http://skyhookwireless.com/.

[11] WiGLE - Wireless Geographic Logging Engine - Plotting WiFi on
Maps. URL http://www.wigle.net/.

[12] XMPP Standards Foundation. URL http://www.xmpp.org/.

[13] 8Motions. OpenCellID. URL http://www.opencellid.org/.

[14] Apple. iPhone Dev Center. URL http://developer.apple.com/iphone/.

[15] Apple. Registered iPhone Developer Agreement. URL
http://developer.apple.com/iphone/terms/registered_iphone_

developer.pdf.

[16] Blaze. Mophun. URL http://www.mophun.com/.

44

http://blueproximity.sourceforge.net/
http://celldb.org/
http://www.cellspotting.com/webpages/cellspotting.html
http://www.cellspotting.com/webpages/cellspotting.html
http://www.afischer-online.de/sos/celltrack/
http://fma.sourceforge.net/
http://gsmloc.org/
http://gsmloc.org/
http://www.kismetwireless.net/
http://metaquark.de/homezone/
http://www.navizon.com/
http://skyhookwireless.com/
http://www.wigle.net/
http://www.xmpp.org/
http://www.opencellid.org/
http://developer.apple.com/iphone/
http://developer.apple.com/iphone/terms/registered_iphone_developer.pdf
http://developer.apple.com/iphone/terms/registered_iphone_developer.pdf
http://www.mophun.com/

[17] Jakub Marek Borkowski. Applicable and accurate positioning tech-
niques enable location-based services in cellular networks. Ph.D.
thesis, Tampere University of Technology, Finland, April 2008.
URL http://www.cs.tut.fi/tlt/RNG/publications/docs/location/

PhDThesis_JBorkowski.pdf.

[18] ACCESS Corporation. ACCESS Linux Platform (ALP). URL http:

//alp.access-company.com/.

[19] Intel Corporation. Place Lab. URL http://www.placelab.org/.

[20] Christine Dorffi. Comparing Mobile Platforms: Java ME and Adobe
Flash Lite : Mobility Tech Tips. URL http://blogs.sun.com/mobility_

techtips/entry/comparing_mobile_platforms_java_me.

[21] Apache Software Foundation. Apache ActiveMQ. URL http://

activemq.apache.org/.

[22] Apache Software Foundation. Apache Harmony - Open Source Java
SE. URL http://harmony.apache.org/.

[23] Apache Software Foundation. Maven. URL http://maven.apache.org/.

[24] Apache Software Foundation. Apache License, Version 2.0, 2004. URL
http://www.apache.org/licenses/LICENSE-2.0.

[25] Jabber Software Foundation. RFC 3920 - Extensible Messaging and
Presence Protocol (XMPP): Core, October 2004. URL http://www.

ietf.org/rfc/rfc3920.txt.

[26] Joshua Gay. iPhone restricts users, GPLv3 frees them - Free Software
Foundation, June 2007. URL http://www.fsf.org/iphone-gplv3.

[27] Google. Android. URL http://code.google.com/android/.

[28] Google. Google Maps with My Location (Beta). URL http://www.

google.com/gmm/mylocation.html.

[29] IEEE 802.11 Working Group. IEEE 802.11-2007: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Speci-
fications, June 2007. URL http://standards.ieee.org/getieee802/

download/802.11-2007.pdf.

[30] IEEE 802.15 Working Group. IEEE 802.15.1-2005: Wireless Medium
Access Control (MAC) and Physical Layer (PHY) Specifications for
Wireless Personal Area Networks (WPANs), June 2005. URL http:

//standards.ieee.org/getieee802/download/802.15.1-2005.pdf.

45

http://www.cs.tut.fi/tlt/RNG/publications/docs/location/PhDThesis_JBorkowski.pdf
http://www.cs.tut.fi/tlt/RNG/publications/docs/location/PhDThesis_JBorkowski.pdf
http://alp.access-company.com/
http://alp.access-company.com/
http://www.placelab.org/
http://blogs.sun.com/mobility_techtips/entry/comparing_mobile_platforms_java_me
http://blogs.sun.com/mobility_techtips/entry/comparing_mobile_platforms_java_me
http://activemq.apache.org/
http://activemq.apache.org/
http://harmony.apache.org/
http://maven.apache.org/
http://www.apache.org/licenses/LICENSE-2.0
http://www.ietf.org/rfc/rfc3920.txt
http://www.ietf.org/rfc/rfc3920.txt
http://www.fsf.org/iphone-gplv3
http://code.google.com/android/
http://www.google.com/gmm/mylocation.html
http://www.google.com/gmm/mylocation.html
http://standards.ieee.org/getieee802/download/802.11-2007.pdf
http://standards.ieee.org/getieee802/download/802.11-2007.pdf
http://standards.ieee.org/getieee802/download/802.15.1-2005.pdf
http://standards.ieee.org/getieee802/download/802.15.1-2005.pdf

[31] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: De-
signing, Building, and Deploying Messaging Solutions. Addison-Wesley
Professional, October 2003. ISBN 0321200683.

[32] Harald Kunczier and Hermann Anegg. Enhanced cell ID based termi-
nal location for urban area location based applications. In Consumer
Communications and Networking Conference, 2004. CCNC 2004. First
IEEE, pages 595–599. 2004.

[33] Elena Malykhina. InformationWeek: GPS-Enabled Mo-
bile Phones To Quadruple By 2011, November 2007. URL
http://www.informationweek.com/news/mobility/showArticle.jhtml?

articleID=202801218.

[34] Nimrod Megiddo. Linear-Time Algorithms for Linear Programming in
R3 and Related Problems. SIAM Journal on Computing, 12:759–776,
November 1983. URL http://link.aip.org/link/?SMJ/12/759/1.

[35] Elin Melby and Tore Arthur Worren. Location Based Services in Cel-
lular Networks. ITS Norway Directory & Handbook 2005-2006, pages
36–38, October 2005.

[36] Sun Microsystems. The Java ME Platform. URL http://java.sun.

com/javame/.

[37] Sun Microsystems. Java Message Service (JMS). URL http://java.

sun.com/products/jms/.

[38] Sun Microsystems. JavaFX Mobile. URL http://www.sun.com/

software/javafx/mobile/.

[39] Sun Microsystems. JSR 914: Java(TM) Message Service (JMS) API.
URL http://www.jcp.org/en/jsr/detail?id=914.

[40] Richard Monson-Haefel. Why Microsoft Loves Google’s Android. URL
http://java.sys-con.com/read/467328.htm.

[41] Motorola. MOTOMAGX. URL http://www.motorola.com/content.

jsp?globalObjectId=8411.

[42] Gero Muhl, Ludger Fiege, and Peter Pietzuch. Distributed Event-Based
Systems. Springer, Berlin, 1st edition, July 2006. ISBN 3540326510.

[43] Terje Moi Nilsen. Sales and Product Manager. NorAlarm. Personal
communication.

[44] Ignite Realtime. Smack API. URL http://www.igniterealtime.org/

projects/smack/.

46

http://www.informationweek.com/news/mobility/showArticle.jhtml?articleID=202801218
http://www.informationweek.com/news/mobility/showArticle.jhtml?articleID=202801218
http://link.aip.org/link/?SMJ/12/759/1
http://java.sun.com/javame/
http://java.sun.com/javame/
http://java.sun.com/products/jms/
http://java.sun.com/products/jms/
http://www.sun.com/software/javafx/mobile/
http://www.sun.com/software/javafx/mobile/
http://www.jcp.org/en/jsr/detail?id=914
http://java.sys-con.com/read/467328.htm
http://www.motorola.com/content.jsp?globalObjectId=8411
http://www.motorola.com/content.jsp?globalObjectId=8411
http://www.igniterealtime.org/projects/smack/
http://www.igniterealtime.org/projects/smack/

[45] James M. Hasik Michael Russell Rip. The Precision Revolution: GPS
and the Future of Aerial Warfare. Naval Institute Press, 2002. ISBN
1557509735.

[46] C. Sammarco, F. H. P. Fitzek, G. P. Perrucci, A. Iera, and A. Mollinaro.
Localization Information Retrieval Exploiting Cooperation Among Mo-
bile Devices. In Communications Workshops, 2008. ICC Workshops
’08. IEEE International Conference on, pages 149–153. 2008. URL
http://cooploc.es.aau.dk/download/cooploc.pdf.

[47] Stefan Steiniger, Moritz Neun, and Alistair Edwardes. Lecture
Notes on LBS, Lesson 1: Foundations of Location Based Services,
2006. URL http://www.geo.unizh.ch/publications/cartouche/lbs_

lecturenotes_steinigeretal2006.pdf.

[48] Symbian. Symbian OS. URL http://www.symbian.com/developer/.

[49] Adobe Systems. Adobe Flash Lite. URL http://www.adobe.com/

products/flashlite/.

[50] Nils Ole Tippenhauer, Kasper Bonne Rasmussen, Christina Pp-
per, and Srdjan Capkun. Location Spoofing Attacks on the
iPhone and iPod, April 2008. URL http://www.syssec.ch/press/

location-spoofing-attacks-on-the-iphone-and-ipod.

[51] Emiliano Trevisani and Andrea Vitaletti. Cell-ID location technique,
limits and benefits: an experimental study. In Mobile Computing Sys-
tems and Applications, 2004. WMCSA 2004. Sixth IEEE Workshop on,
pages 51–60. 2004. ISBN 1550-6193.

[52] Trolltech. Qtopia. URL http://trolltech.com/products/qtopia.

[53] Alex Varshavsky, Eyal de Lara, Jeffrey Hightower, Anthony LaMarca,
and Veljo Otsason. GSM Indoor Localization. Pervasive and Mobile
Computing, 3:698–720, December 2007. ISSN 1574-1192.

[54] Andrew Y. Wang and Charles G. Sodini. On the Energy Efficiency
of Wireless Transceivers. In Communications, 2006. ICC ’06. IEEE
International Conference on, volume 8, pages 3783–3788. 2006.

[55] Torbjorn Wigren. Adaptive Enhanced Cell-ID Fingerprinting Localiza-
tion by Clustering of Precise Position Measurements. Vehicular Tech-
nology, IEEE Transactions on, 56:3199–3209, 2007. ISSN 0018-9545.

[56] Nathan Willis. Linux.com :: The iPhone SDK and free software: not a
match, April 2008. URL http://www.linux.com/feature/131752.

[57] Yahoo! Yahoo! Developer Network Home. URL http://developer.

yahoo.com/.

47

http://cooploc.es.aau.dk/download/cooploc.pdf
http://www.geo.unizh.ch/publications/cartouche/lbs_lecturenotes_steinigeretal2006.pdf
http://www.geo.unizh.ch/publications/cartouche/lbs_lecturenotes_steinigeretal2006.pdf
http://www.symbian.com/developer/
http://www.adobe.com/products/flashlite/
http://www.adobe.com/products/flashlite/
http://www.syssec.ch/press/location-spoofing-attacks-on-the-iphone-and-ipod
http://www.syssec.ch/press/location-spoofing-attacks-on-the-iphone-and-ipod
http://trolltech.com/products/qtopia
http://www.linux.com/feature/131752
http://developer.yahoo.com/
http://developer.yahoo.com/

	1 Introduction
	1.1 Related work
	1.2 Report organization

	2 Background
	2.1 Mobile application platforms
	2.1.1 Android
	2.1.2 Java ME
	2.1.3 iPhone
	2.1.4 Windows Mobile
	2.1.5 Other platforms
	2.1.6 Summary

	2.2 Localization
	2.2.1 GPS
	2.2.2 WiFi
	2.2.3 Bluetooth
	2.2.4 Cell-ID
	2.2.5 Summary

	3 Design
	3.1 Overview
	3.2 Architecture
	3.3 Communication
	3.4 Security considerations
	3.5 The control server
	3.5.1 Policies for activation and deactivation

	3.6 The burglar alarm server
	3.7 The Android mobile client
	3.7.1 Avoiding the ping-pong effect
	3.7.2 GPS
	3.7.3 WiFi
	3.7.4 Power saving
	3.7.5 Location manager

	4 Testing and simulation
	4.1 WiFi coverage area

	5 Conclusion
	5.1 Future work

	Bibliography

