

Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization:

Master in Computer Sciences

Spring semester, 2010

Open / Restricted access

Writer: Min Wang

…………………………………………

(Writer’s signature)

Faculty supervisor: Professor Kjersti Engan; Associate professor Tom Ryen

External supervisor(s):

Title of thesis:

Detection and analysis of rock cracks in meteor crater

Credits (ECTS): 30

Key words:

Ritland crater; Rock crack; image process;

Linear regression.

Pages: …………………

+enclosure: …………

 Stavanger, ………………..

Date/year

 I

Acknowledgements

I would like to express my gratitude to my supervisor Kjersti Engan and Tom Ryen
for their support and guidance on my master thesis. They have walked me through
every stages of this thesis.

I feel grateful to all the teachers in the Department of Electrical and Computer
Engineering in the University of Stavanger. I have learnt a lot from them during these
two years.

At last I should extend my appreciation to my family and friends for their love and
support.

Min Wang

June 10, 2010

Stavanger

 II

Abstract

In 2000, a geologist Fridtjof Riis discovered a meteor crater in Ritland, Hjelmelan
municipality in Rogland. This crater was formed by meteorite impact. The crater has
areas with a lot of cracks in the rocks, and geologists think these cracks are very
valuable information for them. By making photos with an ordinary camera, they want
to get binary pictures where the cracks are shown as white lines on a black
background. They can measure and quantify the length and direction of the cracks on
the binary image.

The objective of this project is to extract cracks from the digital photos. In this project,
statistical technique – linear regression, and image processing techniques like spatial
filtering, morphological operations have been used.

Binary images with white lines showing cracks on black background are generated as
result of this project. Geologists can use this result to analysis the cracks.

 III

Index of Contents

Acknowledgements .. I

Abstract.. II

Index of Contents ...III

Index of figures..V

Chapter 1. Introduction...1

1.1 Background ..1

1.2 Purpose and importance ...1

1.3 Related research...2

1.4 Preproject ...3

1.5 Thesis outline ..6

Chapter 2. Background theory ...8

2.1 Basic relationship between pixels..8

2.2 Linear spatial filtering ...9

2.3 Morphological processing ...10

2.3.1 Sets theory ...10

2.3.2 Basic morphological operation.. 11

2.4 Linear regression ..13

2.4.1 Least squares estimators of the regression parameters13

Chapter 3. The proposed algorithm for detection cracks.15

3.1 Cutting short branches ..15

3.1.1 Crossing lines ..16

3.2 Reconnecting cracks ...20

3.2.1 Reconnection by dilation operation ..22

3.2.2 Reconnection by linear regression ..24

Chapter 4. Implementation ...27

4.1 Matlab..27

4.2 Graphical user interface ..27

4.3 Generate binary image...29

4.4 Find “big noise” ..31

4.5 Show cracks as white lines on black background..33

4.5.1 Cut short branch ..34

4.5.2 Remove rubbles’ boundaries...35

4.5.3 Cut curve line..35

4.5.4 Connect lines by linear regression ..37

4.5.5 Post process ...41

 IV

Chapter 5. Results and conclusion ...43

5.1 Some results ..43

5.2 Conclusion ...44

Chapter 6. Further research ...46

6.1 Estimators of the regression parameters..46

6.2 Error analysis..46

6.3 Crack properties analysis ..47

6.4 Color factor ...47

Bibliography ...48

Appendix ...50

Appendix A – Matlab function ..50

Appendix B – Some results ..55

 V

Index of figures

Figure1.1 Map overview of the Ritland crater...1

Figure1.2 Rock cracks caused by meteorite fall ..2

Figure1.3 Result from previous work, skeleton of cracks.4

Figure1.4 Workflow of previous work ..5

Figure1.5 Grayscale image ..6

Figure1.6 Histogram of figure 1.5 ...6

Figure2.1 An example for connected component ..9

Figure2.2 Overview of spatial filtering..9

Figure3.1 Whole processes in this project ...15

Figure3.2 A part of main crack in the example image...16

Figure3.3 Lines should be separated..16

Figure3.4 Filtering masks ..17

Figure3.5 Opposite Position...18

Figure3.6 Filtering mask..19

Figure3.7 After removing short branches ..20

Figure3.8 Zooming in the image after cutting ...20

Figure3.9 Two parallel lines and unparallel lines ..21

Figure3.10 Four kinds of structure elements ...22

Figure3.11 Result from morphology process to reconnecting.............................23

Figure3.12 the result from connecting lines by linear regression26
Figure4.1 Graphical user interfaces ...28

Figure4.2 Workflow of this project ...29

Figure4.3 Flow chart of OK1_Callback...30

Figure4.4 Flow chart of OK2_Callback...32

Figure4.5 Flow chart of Result_Callback ..34

Figure4.6 Flow chat of algorithm 3.2 – removing short lines............................346

Figure4.7 Flow chat of algorithm 3.4 – reconnect lines by linear regression......41

Figure5.1 Cracks shown as white lines..43

Figure5.2 Compression the result with input image ..44

Figure6.1 Scatter diagram with regression lines..46

 1

Chapter 1. Introduction

1.1 Background

In 2000, the geologist Fridtjof Riis discovered a meteor crater (See figure 1.1) in the
community of Hjelmeland, county of Rogaland (West Norway). The crater is about
2.5 km in diameter, about 350 m deep and was formed probably between 500 and 600
million years ago [1]. It was later buried by sediments, of which it has been partly
recovered.

Figure1. 1 Map overview of the Ritland crater [2]

 (The yellow line indicates approximately outline of the crater)

Fridtjof Riis started a three years’ Ritland project, which is supported by the
Norwegian Research Council, for analyzing the crater in 1. July 2009. Until now, the
geologists have proved that the crater is formed by meteor cretaceous impact, and
they have collected many rock samples [3]. Thousands of meteorites have hit the earth
during the 4.5 billion years. So far, only 176 of these have been identified as impact
crater. There are in-depth studies in the next steps by the geologists for the Ritland
crater, like reconstruction when the crater was formed. Studying the cracks in the rock
formations is of great importance for the geologists, and in the current project. They
want to get the information of the cracks automatically with aids of computer science.

1.2 Purpose and importance

 2

The crater has areas with a lot of cracks in the rocks (See figure 1.2). The geologists
believe that the rock cracks are very important and valuable for the following research.
They want to measure and quantify directions and lengths of the cracks, and get
valuable data for their analysis. Some of the cracks were formed by enormous
pressure, which occurs only when meteor cretaceous impact, meanwhile some of
them are formed in the following long period, because of the earth’s moving. So the
cracks’ information is very useful for the reconstruction. For this purpose, by making
photos with an ordinary camera, they wish to remove the grass and other things
recovering on the rocks and to get binary pictures where the cracks are shown as
white lines on a black background.

Figure1. 2 Rock cracks caused by meteorite fall

The focus of this project is to use image-processing techniques like edge detection,
filtering, morphology, etc., in order to find cracks in the pictures of rocks. (See figure
1.2). The plants and rubble covering on the rocks are defined as “noise” in this case.
The object of this project is to remove these noises and generate binary images
showing the cracks as white lines on a black background. And then, the cracks’
lengths and directions are automatically measured and quantified. In this project,
Matlab image processing toolbox will be used.

1.3 Related research

Line detection is a classical subject in image processing field with many applications,
such as vessel detection in medical image, and road detection in remote images [6].

 3

Applying line detection can reduce the amount data to be processed and can filter out
information that may be regarded as less relevant, meanwhile preserving the
important structural properties of an image. Some traditional way to detect lines, such
as Canny algorithm, is based on abrupt changes in intensity.

Hough transform (a special case of the Radon transform) has been widely used to
detect straight lines. The basis of this method is: a fixed point (xi, yi) in the xy-plane

on a straight line is a single line in the parameter space (kb-plane). This
method is always used to determine the location and orientation of straight lines in
image. [7,8]

Wavelet transform can also be used in edge detection. Lines in image are
mathematically defined as local singularities. Wavelet analysis is a local analysis; it is
suitable for time-frequency analysis, which is essential for singularity detection. [9, 10]

Recently, grid cell analysis (GCA) has been used for inspection of the cracks on
asphalt surface image and pavement image. In this way, a pavement image was divide
into gird cell of 8 × 8 pixels and each grid cell was classified as a crack or non-crack
cell using the gray-scale information of the border pixels. [11 - 13]

It is hard to obtain the ideal lines and edges from real life images. In different case,
we have to choose a different suitable way to deal with that. All the lines/ cracks
detection methods, as we mentioned above, are for some specific applications, but not
suitable for our project. In this project, we find different ways. All the approaches are
based on analysis the different features between lines and other information in the
image.

1.4 Preproject

There is a project started from September 2009 as a preproject to this thesis. We want
to generate a binary image with white lines showing cracks on a black background. So
in the preproject, we focus on how to remove useless information and get the
skeletons of the cracks. The skeleton of the cracks has been obtained successfully last
year. (See figure 1.3). This is the input for this thesis.

 4

Figure1. 3 Result from previous work, skeleton of cracks.

The whole process in the pre-project is: (See figure 1.4)

-

Input
Image

Convert RGB image into
gray-scale image (1)

Pre-process (3) Thresholding (2)

Thresholding (2) Find “big noise” (4)

Obtain skeleton (5)

Output
Image

 5

Figure1. 4 Workflow of previous work

(1) Convert the color image to a grayscale image. We want to get a binary image
as result, and color factor is very complex. So it is ignored at first.

(2) Convert grayscale image (see figure 1.5) into binary image. The simplest
method to extract cracks from original image is thresholding. In this way, we
have to choose a probable threshold value by analysis the intensity histogram
(see figure 1.6) of the input grayscale image. In the grayscale image (figure
1.4), we can find that the intensity values of the pixels, which are represented
cracks, must be very low. (In 8 bits intensity image there are 256 intensity
levels. 0 is usually associated with completely black and 255with perfect
white). The intensity levels of the pixels, which represent the rocks must be
higher. There is a minimal value in the histogram at intensity value T (T is 41
in figure 1.6, and T is different for every images). Choosing value T as
threshold value, we can extract the cracks in the image.

(3) Apply morphological grayscale opening operation as a preprocessing step.
After thresholding, some very slight cracks will disappear, and there is much
noise in the binary image. So we have to apply preprocessing before
thresholding to keep more cracks’ detail and denoise of the objects. For this
purpose, we found that opening of the morphological gray-scale image is the
best method.

(4) Find “big noise”. The plants, which cover parts of the rocks, and the rubbles
are unwelcomed information. And most of this kind of information are larger
than the information we want (cracks), so we call them “big noise”, which
should be removed. Observing the “big noise”, we can find that the cracks are
thinner and longer objects, and there are less pixels used to represented them.
So we define the objects as “big noise” if

Where, and are properties of objects in

the image. is the length (in pixels) of the major axis of the

ellipse, and is the length (in pixels) of the minor axis of the

ellipse.
(5) Eliminate the “big noise” from the preprocessed image and obtain the skeleton

of cracks. The geologists want to measure and quantify the length and
direction of the cracks, and the width of the cracks can be ignored. So we

 6

represent the cracks by one pixel width. This can be implemented by
morphological operation called skeletonization.

Figure1. 5 Grayscale image

Figure1. 6 Histogram of figure 1.5

1.5 Thesis outline

This report focus on designing some algorithms to represent the rock cracks by
straight vectors. The input of this project is the image with skeleton of the cracks,
which is the output of previous work. In that image, one crack is represented by
several disconnected lines, and many braches on the crack lines. We want the output
of this project to be an image with straight white lines representing cracks on black

 7

background. In the report, algorithm design and implementation will be discussed in
detail. The project is implemented in Matlab. The following chapters constitute the
report:

Chapter1 gives a background of the Ritland crater project, and presents the purpose
and importance of this project. Then, we also look at the earlier research about how to
get the skeleton of the cracks.

Chapter 2 gives an introduction to the background theory of this project, involving
image processing and statistics. This basal knowledge has been used in the algorithm
design.

Chapter 3 presents the details of algorithm design for cutting the short branches and
representing cracks by straight vector. This chapter explains why and how some
methods are used for in these algorithms.

Chapter 4 gives a brief introduction of our tool—Matlab, and describes how to
implement the project by Matlab in detail, including user interface and algorithm
implementation.

Chapter 5 & Chapter 6 summarize the major contributions and conclusions of our
work. We give some results from our work and point out the direction for further
study.

 8

Chapter 2. Background theory

Digital image processing refers to processing digital images by computer to extract
information from an image. In this chapter, the background theories on the image
process themes that will be used in later chapters are described.

2.1 Basic relationship between pixels [16, 17]

For a given pixel at coordinate , it has four horizontal and vertical neighbors

whose coordinates are given by

This set of pixels is called 4-neighborhood of , which can be denoted as

Meanwhile, it has four diagonal neighbors of , whose coordinates are given by

The diagonal neighbors are denoted by .

The 8-neighborhood of , denoted as , is the both 4-neighbors and diagonal

neighbors.

In the binary image, we define two kinds of adjacency:

4-adjacency: Two pixels and with value 1 are 4-adjacency, if is in the set

.

8-adjacency: Two pixels and with value 1 are 8-adjacency, if is in the set

.

If S is a subset in the image,

4-connected component: The subset S is defined as 4-connected component, if each
pixel has 4-adjacency pixel in S.

8-connected component: The subset S is defined as 8-connected component, if each
pixel has 8-adjacency pixel in S.

For example, there is a binary image as shown in figure 2.1. Each square denotes a
pixel, and values in squares with dots are logical 1. There are three 4-connected
components in the image. And there is only one 8-connected component.

 9

Figure2. 1 An example for connected component

2.2 Linear spatial filtering

Spatial filtering creates a new pixel with coordinates equal to the coordinates of the
center of the neighborhood, and whose value is the result of the filtering operation.
There are two kinds of filtering operation: correlation or convolution. In these two
operations, the value of output pixel is computed as a weighted sum of neighboring
pixels. Correlation is the process of moving a filter mask over the image and
computing the sum of products at each location. The mechanics of convolution are the
same, except that the filter is rotated 180o firstly.

The output of the filtering operation of a filter mask with an image is

 (See figure 2.2).

Figure2. 2 Overview of spatial filtering

Convolution:

Correlation:

Input Output

 ⦁ ⦁ ⦁ ⦁ ⦁

 ⦁ ⦁

 ⦁ ⦁ ⦁ ⦁

 ⦁ ⦁ ⦁

 ⦁ ⦁ ⦁ ⦁

 ⦁ ⦁ ⦁ ⦁

 10

2.3 Morphological processing [16 - 18]

Morphology usually denotes a branch of biology that deals with the form, structure
and configuration of animals and plants. Mathematical morphology is set theory-
based methods of image analysis and plays an important role in many digital image
processing algorithms and applications. In image processing field, mathematical
morphology can be used as a tool for extracting image components that are useful in
the representation and description of object shape, such as skeletons and boundaries.

Binary (logical) image has only two values for each pixel. Our project interprets the
logical value) as black and 1 as white.

2.3.1 Sets theory

Objects in an image are defined as sets. So we introduce some basic operation firstly.
In binary image, the sets are elements of the 2-D integer space Z 2.

A is a set composed of ordered pairs, if is an element of the set A. That is

denoted:

If a is not a element of set A, this can be denoted:

Null set or empty set is denoted as:

If every element in set A is also an element in set B, we say set A is a subset of set B,
denoted as:

The union of two sets A and B is:

The output pixel of union in binary image is white if either of the corresponding input
pixels is white.

The intersection of two sets A and B is:

 11

The output pixel of intersection in binary image is white if both of the corresponding
input pixels are white.

If every element in set A is not an element in set B, we say these two sets are disjoint
or mutually exclusive, denoted as:

The complement of a set A is a set of elements that are not in A:

The difference of two sets A and B is:

Let B denote a set in a 2-D integer space Z2 (binary image). The reflection of a set B

is given by

If there is a point with coordinate (x, y) in the object B in a binary image, will be

replaced by (-x, -y) in (Rotating 180o around the origin).

The translation of B by the distance is:

2.3.2 Basic morphological operation

There is an important term in morphology—structuring element (SE): small sets or
sub images used to probe an image under study for properties of interest. A
structuring element is a matrix consisting of only 0’s and 1’s that can be any arbitrary
shape and size. There is an origin for each structuring element. For different
applications, SE should be designed in different shapes and size.

There are two kinds of basic morphological operation: erosion and dilation.

A and B are sets in Z2, the erosion image A by structuring element B is defined as:

 ⊖ or

This operation can used to shin and shrink objects in binary image.

 12

Dilation operation can be used to make objects thick in binary image, defined as:

 or

The dilation operation is always used to bridge gaps in image processing.

Now, we give an example for erosion and dilation operation. There is a logical image
A as shown as figure 2.3(a). Each square denotes a pixel, and values in squares with
dots are logical 1. Figure 2.3(b) shows a structuring element B. The origin is marked
as red dot. The result of erosion of A by B is shown in figure 2.3(c). The figure 2.3(d)
is the result of dilation A by B.

Figure 2.3 Examples for erosion and dilation

The other two kinds of operation is opening and closing.

The opening operation is erosion firstly and then dilation of the result:

 ⦁

 ⦁ ⦁

⦁ ⦁ ⦁ ⦁

 ⦁ ⦁ ⦁ ⦁ ⦁

 ⦁

 ⦁

 ⦁ ⦁

 ⦁ ⦁ ⦁

 ⦁

 ⦁ ⦁

⦁ ⦁ ⦁ ⦁

⦁ ⦁ ⦁ ⦁ ⦁ ⦁

 ⦁ ⦁ ⦁ ⦁ ⦁ ⦁

 ⦁ ⦁

⦁

⦁ ⦁

(a)

(b)

(c) (d)

 13

 ⊖

The closing of image A by structuring element B is defined as:

 ⊖

2.4 Linear regression [19 - 21]

Linear regression is a concept in statistics. In many applications, we want to find the
relationship between a single independent variable and dependent variables . The
independent variable is also called response variable. The analysis of the relationship
between and requires a statistical model, which is called regression model. If the
relationship is linear, and there is only one independent variable, the regression model
is called simple regression model, which can be written as:

Where is the random error. The mean random error is 0.

The responses corresponding to the dependent variable values , can

be observed, and the parameters and can be estimated in the simple regression

model.

2.4.1 Least squares estimators of the regression parameters

Find A and B are the estimator of and , respectively. The sum of squares of error

 is denoted SSE, defined as:

In this method, we want to minimize the SSE to estimate the parameters. Firstly, we
compute the differential with respect to A and B. Then, setting the partial derivative
equals to zero. At last, we can get:

Where, and are the mean value of response and dependent variables,
respectively.

 14

, and . When we estimate the parameters, we can draw the

straight line as the estimated regression line.

 15

Chapter 3. The proposed algorithm for detection cracks.

In this chapter, we will present the algorithms we designed for this project. We get the
skeleton of cracks on a binary image now, and we want to represent the cracks by
straight white lines. This can be finished in several steps: (See figure 3.1)

Figure3. 1 Whole processes in this project

In previous work, we extract the cracks from the rocks’ pictures meanwhile the
boundaries of “big noise” are kept. The geologist wants the rock boundaries of grasses,
but not the rubbles’ boundaries. So we have to remove the rubbles’ boundaries, and
the method is similar with removing “big noise”. We will give the implementations
of “removing rubbles’ boundaries” and “post process” in chapter 4. In this chapter, we
present why and how to design algorithms to cut the short branches, to decide which
lines that probably belongs to the same cracks, and to connect those lines, which
hopefully represents the same cracks.

3.1 Cutting short branches

From prior work, we have got the skeleton of the rock cracks. Zooming in the prior
result (See figure 1.3), we can find that there are lots of small branches on the crack
lines (as shown as figure 3.2). The branches will impact the measurement of the
cracks, so we want to cut the short branches from the main cracks and remove them.

Definition 3.1 “Object”: In this project, an object refers to an 8-connected component
in the image.

Input Output
Cut short
branches

Remove rubbles’
boundaries

Reconnect
lines

Post
processes

 16

Figure3.2 a part of main crack in the example image

From figure 3.2, we define two kinds of objects that should be cut. The first one is
crossing line, which is formed by short branches connected to the rock crack line, as
shown as figure 3.3 (a) and (b). Another kind is curve line, which will impact the
measurement of cracks’ direction as shown as figure 3.3 (c).

 (a) (b) (c)
Figure3. 3 Lines should be separated.

3.1.1 Crossing lines

In figure 3.2, we can see that the branches, which are the information we don’t want,
are consisted of just a few pixels, but they connect to the main cracks. The short
branches and a main crack form one object in this picture. So we can remove the short
branches from the main crack in two steps.

(1) Separating short braches from main cracks.
(2) Removing the too short lines from the image.

 17

To implement the first step, we should separate all the lines, if the line is curve line or
crossing with other lines.

If the short branch connects to the main cracks, they are always in the way as shown
as figure 3.3 (a) and (b). If red pixels are removed, the branch is separated from the
main cracks. And we can find that the red pixels have several features:

(1) They have more than three neighbors.

(2) They have both diagonal neighbors and 4-adjacency neighbors.

Now, we use spatial correlation process to test the neighborhood for each pixel.

Firstly, define three kinds of mask as shown as follow:

 (a) (b) (c)
Figure3. 4 Filtering masks

We denote the characteristic response of a mask for correlation as . The correlation
process as I discussed before. So if using the first filter mask in figure 3.4, R is the
number of neighbors. When we use the second filter mask, and R is not equal with 0,
that means there is 4-adjacency neighbor exist. When the filter mask as shown as
figure 3.4 (c), and R is not 0, that means there is diagonal neighbor exist.

If the pixel has more than three neighbors, and has both 4-adjacency and diagonal
neighbors, assigning the value “0” to it. In this way, the red pixel can be moved away
and all crossing lines can be separated from each other. Then we define the number of
pixel of each object as “area”. If the “area” is too small, assigning the value “0” to all
the pixels in this object. So the small braches has been moved away.

For the object as figure 3.3(b), it is reasonable to remove the yellow pixel, but we
remove the two red pixels. Because it is easy to implement and we can also get the
result as we expect, if removing the two red pixels.

Definition 3.1: “Area”: The number of pixels in the object.

1 1 1

1 1 1

1 1 1

0 1 0

1 0 1

0 1 0

1 0 1

0 0 0

1 0 1

 18

3.1.2 Curve

Definition 3.3: “Opposite Position”: A pixel (as shown as the blue pixel in figure

3.5) at coordinate has two neighbors whose coordinates are given by

 or

or or

We call the two neighbors are at opposite position.

Figure3.5 Opposite Position

The geologists want to measure the length and direction of rock cracks. So we have to
make each line straight. If there is a line as shown in figure 3.3(c), it is hard to
measure the direction. One alternative is to cut it and make it become two straight
lines, that means removing the red pixel in figure 3.3(c). We can find that the
difference between “MajorAxisLength” and “MinorAxisLength” is smaller in the
object as shown in figure 3.3(c) than the difference in the straight-line shaped object.
In this kind of object, the red pixel has two neighbors, but they are not at the
opposition position. Using this information, we can find the red pixel, and assign the

Algorithm 3.1 Removing short lines

(1) Define masks, , and

(2) Calculate , and as the response of mask , and for

correlation respectively.

(3) If, and , assign value “0” to that pixel.

(4) Label all the objects in the image and calculate the area for each object in

the image.

(5) If (is a threshold value for the area we defined before), assign

“0” to all the pixels in this object to move it away.

 19

value “0” to the red pixels to cut this kind of line to make the curve becoming two
straight lines.

We can also use the spatial filtering to find whether a pixel has two neighbors at
opposite position. Define four masks as shown as below

 (a) (b) (c) (d)

Figure3.6 Filtering mask

Firstly, we can use the filtering mask figure 3.4(c). If the response equals 3, there are
two neighbors. Then using the masks in figure 3.6, if all the four responses are
different from zero, it means there are no neighbors in the opposite position.

After removing short branches and cutting curved lines, the result (has been zoomed
in) is as shown as figure 3.7

0 1 0

0 0 0

0 1 0

0 0 0

1 0 1

0 0 0

1 0 0

0 0 0

0 0 1

0 0 1

0 0 0

1 0 0

Algorithm 3.2 Cutting curved lines

(1) Label the image; calculate area and convex area for all the objects.

(2) Define masks: , , ,

, .

(3) Calculate and as the response of mask and

for correlation respectively.

(4) If (is a threshold value we defined before).

(5) At the same time, if , , , , and , assign

value “0” to that pixel.

 20

Figure3.7 After removing short branches

3.2 Reconnecting cracks

After removing short branches and cutting curved lines, we can find that there are lots
of short, straight lines on the image (see figure 3.8). Actually, these lines represent
one crack. So we have to reconnect these lines.

Figure3.8 Zooming in the image after cutting

 21

Before reconnecting, we have to group the lines, which represent the same cracks. For
two lines and , with centre points and , their orientations are

and , respectively. Orientation is an angle in degrees ranging from -90o to 900.

There are three conditions can be used to group the lines.

(1) Orientation.

 (is a threshold value we defined before)

If the lines represent one cracks, their orientation must be very close.

(2) Distance

 (is a threshold value as we defined before)

If the lines represent one crack, their position must be very close. That means
the distance between them is a very small value.

(3) Unparallel condition

 and (is a threshold value we defined before)

Where, , .

If both of the two lines’ orientation and position are very close, they may be parallel
lines. We have to make sure that they are not parallel. is the orientation of the line,
which connects the centre points of lines and . If the two lines represent one
crack, the difference between and their orientation must be very small. (See figure
3.9)

 (a) (b)

Figure3.9 Two parallel lines and unparallel lines

 22

Now, after grouping the lines, we have to reconnect them together. There are two
ways can be used. The first one is morphological dilation operation with specifically
structure element. Another way is using linear regression to draw a new straight line
to represent the crack.

3.2.1 Reconnection by dilation operation

The lines, which represent one crack, are very close to each other (See figure 3.8). So
we can use morphology dilation operation (See section 2.3) to reconnect them. Firstly
we define four kinds of structure elements (SE) to be used in four different situations
(see figure 3.10). (Gray squares denotes pixels with logical value 1, and blank square
denotes pixels with logical value 0)

 (a) (b) (c) (d)

Figure3.10 Four kinds of structure elements

If the orientation of the line in the range (-300, 300), we can use the first structure
element in the figure 3.10. If the orientation in the range (-600, -300), we can use the
SE as shown as figure 3.10(b). If the orientation in the range (-900, -600) and

(600, 900), the structure element as shown as figure 3.10(c) should be used. And we
can use the SE as shown as figure 3.10 (d), if the orientations in the range (300, 600).

 23

Applying dilation operation on the lines with different orientation by different
structure elements, we can reconnect the cracks. After morphology operation, the
result from figure 3.8 is as shown as below (figure 3.11).

Figure3.11 Result from morphology process to reconnecting

Algorithm 3.3 Reconnection by morphological dilation

(1) Label the image; calculate orientation and center point for all the objects.

(2) Defined four structuring elements, as shown in figure 3.10.

(3) Group the objects which should be reconnected together by the conditions

we discussed before.

(4) If , apply the dilation operation on the group of objects by

SE as figure 3.10(a).

If , apply the dilation on the group of objects operation by SE as

figure 3.10(b).

If or , apply the dilation operation on the group of

objects by SE as figure 3.10(c)

If , apply the dilation operation on the group of objects by SE as

figure 3.10(d).

(5) Obtain the skeleton the image at last.

 24

From figure 3.8 and figure 3.11, we can find that if the distance of two lines is long,
the cracks cannot be connected, so we have another way to connect them –linear
regression.

3.2.2 Reconnection by linear regression

Pixel is a term to denote the elements of a digital image. Each pixel has its own
address, and the address of a pixel corresponds to its coordinates. In this case, the
horizontal coordinate of pixels on the lines, which should be connected, can be
considered as dependent variable , and the vertical coordinate can be consider as
observed response . We want to generate a new straight line to represent the cracks.
The straight line is a simple linear regression model:

Where, a and b are parameters can be estimated using least squares as we discussed in
section 2.4

Then we can draw an estimated regression line to represent the crack.

In this project, we connect the lines using linear regression by the algorithm 3.4:

 25

In this way to reconnect the lines, there are two problems. First, the estimated line
may be outside the image border, and there is or . This

situation is not allowed. So we have to limit before assigning 1 to the

pixel with coordinate .

And in digital image, the real continuous sense has been converted into digital form
(discrete). The line is represented by discrete pixels in the digital image. If

, the estimated regression line will be represented as several

single points in the image . So in this situation, we have to make a small

change. For each vertical coordinate from to , when the horizontal

coordinate , assigning value “1” to the pixel, with coordinate .

Algorithm 3.4 Reconnection by linear regression

(1) Label the image; there are objects in the image. Group the lines that

should the connected together.

(2) For each group of lines, generate a new image with the same size as the

original image. In each new image , for , and

, there is only one group of lines (white lines on black background).

(3) For each group of lines, if (the pixel is white), assign to an

array , and assign to an array .

(4) Suppose that there is linear relationship between and , .

Using least squares estimator to calculate the parameters and .

(5) For each group of lines, generating a new image , for and

. In this image , all pixels’ value is 0. It is an image with all

pixels black.

(6) Find maximal and minimal value in the array : and . For each

horizontal coordinate from to , assign value 1 to the pixel, whose

coordinate is , when .

(7) Add up all . . will be the result as we

expected.

 26

So the steps (6) and (7) should be changed as:

Using linear regression to generate a new line to represent the group of lines as shown
in figure 3.8, the result is as shown in figure 3.12.

Figure3.12 The result from connecting lines by linear regression

(6) Find maximal and minimal value in the array , and , respectively. In the

image , if , for each horizontal coordinate from

 to , calculating . Then if and ,

assigning value “1” to the pixel, whose coordinate is

(7) If , for each vertical coordinate from to ,

calculating . Then if and , assigning value “1” to

the pixel, whose coordinate is .

(8) Add up all . . will be the result as we expected.

 27

Chapter 4. Implementation

4.1 Matlab

Matlab stands for matrix laboratory. It is originally developed to provide easy access
to matrix software. Now, MATLAB is a high-performance language for technical
computing in education and industry. It integrates computation, visualization, and
programming in an easy-to-use environment where problems and solutions are
expressed in familiar mathematical notation. [24]

There are many toolboxes included in Matlab. Toolboxes can extend the capability of
the Matlab environment to solve particular classes of problems. The image processing
toolbox supports a lot of image processing operation.

GUIDE is the MATLAB graphical user interface development environment,
providing a set of tools for developing graphical user interfaces (GUIs). These tools
greatly simplify the process of designing and building GUIs [24].

Our project is implemented in Matlab and by using image processing toolbox.

4.2 Graphical user interface

In this project, we develop a graphical user interface (GUI) to make the interaction
between people and program user friendly.

With the help of the GUIDE Layout Editor, we can design a GUI by clicking and
dragging GUI components – such as push button, text field – into the layout area. It is
also very easy to modify the components in GUIDE Layout Editor. The GUI layout is
stored as a FIG-file in Matlab.

An M-file will be generated automatically after saving the GUI layout. The M-file
contains code to initialize the GUI and a framework for GUI callbacks. A callback is a
function that we write and associate with a specific GUI component. We can add code
to callbacks to control the operation, when users interact with GUI, in the M-file.
When an event occurs for a component, the component callback will be invoked,
which is triggered by that event.

The GUI, designed for this project is as shown in figure 4.1

 28

Figure4.1 Graphical user interfaces

There are six callbacks in this GUI: three for editable text box – filename, area and
shape; the other three for push button – OK1, OK2 and result.

In the first editable text box, the user should enter the filename and the standard file
extension, which is used for specifying the file’s format, of the input image. And if
the input image is not in a directory on the Matlab path, or in the current directory, the
user has to specify the full pathname.

When the user push the first “OK” button, the binary image without preprocessing
will be displayed.

As we discussed before, the “big noise” is distinguished from cracks by the size and
shape. (See section 1.4) We should choose two different threshold values to define the
“big noise”. And for different images, we should choose different threshold values.
Thus, the user is asked to enter the threshold values through observing the binary
image, which is generated at the last step. When you push the second “OK” button, a
binary image with “big noise” in it will be shown. If the result is not satisfying,
different threshold values can be tried.

 29

Then by pushing the “Show Cracks” button you get two images. So there is a binary
image with rock cracks showing as white lines on black background. Another is the
input color image with red lines super imposed to represent the cracks.

The whole process can be presented as figure 4.2.

The rest of this chapter will present the implementation details for each GUI push
button component.

Figure4.2 Workflow of this project

4.3 Generate binary image

In this part, we obtain the image’s filename as a string value from edit text, and read
the image to handle variable. We generate two binary images I and I1: I is an image
without preprocessing; I1 is a preprocessed image. This part is implemented by
function OK1_Callback. The workflow of this function is: (also see figure 4.2)

Put in filename

Generate binary image
(OK1_Callback) (4.3)

Find “Big noise”
(OK2_Callback) (4.4)

Put in threshold
value for “area” and

“shape”

Show cracks as white lines on
black background

(Result_Callback) (4.5)

 30

Figure4.3 Flow chart of OK1_Callback

(1) Get the content of edit text box – “filename” as string value.
(2) Read the image from the file specified by the string “filename” to handle

objects I and I1 (Input image is color image, so I and I1 are M-by-N-by-3
arrays). This step is implemented by Matlab command “imread”.

(3) Convert I and I1 into grayscale image, so I and I1 becomes an M-by-N array.
This can be implemented by Matlab command “rgb2gray”.

(4) Create a flat disk-shaped structuring element se with radius 11 by Matlab
command “strel”.

(5) Perform morphological opening on the grayscale image I1 with the structuring
element se. Return the result to I1. The command “imopen” can implement this
operation.

(6) Return the intensity histogram of image I to h by command “imhist”.

Start

Get filename (1)

Read image from file (2)

Convert color image into
grayscale image (3)

Apply grayscale opening
operation (4,5)

Convert grayscale image
into binary image by
thresholding with
threshold value t. (6 - 8)

End

 31

(7) Compute a probable threshold value t by a function “minhist”. The function
“minhist” is made to find the intensity value t when the histogram has its
minima.

(8) Using threshold value t and command “im2bw”, convert grayscale I and I1 to
binary image by thresholding. Return the result to I and I1 respectively.

(9) Save the handles objects as GUI data.

There are three output of this callback: I, I1, and I2. I, the binary image without
preprocessing, is the input for the OK2_Callback. I1, the preprocessed binary image,
is one of the inputs for the Result_Callback, I2, the input color image without any
processing, is the other input for the function Result_Callback.

4.4 Find “big noise”

The plants, covering parts the rocks, and rubbles are defined as “big noise” in this
project as we discussed in section 1.4. We find the “big noise” in the callback OK2.
Input of this callback is the image I, one of the output of OK1_Callbak. The process
in the function OK2 is: (see figure 4.4)

(1) Get the user typed area threshold value a and shape threshold value s used to

defined the “big noise”.

(2) Covert a and s from string data to double data by the Matlab command

“double”

(3) Label the all connected components in the input image I as objects. There are

N objects in the image I. This can be implemented by the command “bwlabel”.

 32

Figure4.4 Flow chart of OK2_Callback

(4) Measure properties of every objects in the image I by the command

“regionprops”

Yes

Yes

No

No

Start

Get the parameters a, s typed by users and
convert them to “double” type. (1,2)

Label the objects in the image I, assign the
number of objects to N. (3)

n <=N

Find properties of each object. (4)

Object n. Area > a and

Assign value “0” to all pixels in
object n. Generate a new image I2. (5)

Image of “big noise” I=I-I2 (6)

Perform opening operation on image I (7,8)

End

n=n+1

 33

(5) For each objects, if the and ,

assign value “0” to all the pixels in this object. In this way, generate a new

image I2.

(6) The “big noise” .

(7) Create a flat square-shaped structuring element se with radius 11 by Matlab

command “strel”.

(8) Perform morphological opening on the image I with the structuring element se.

Return the result to I. The command “imopen” can implement this operation.

(9) Save I as GUI data.

In this way, we obtain the image with only “big noise” on it as another input for the
callback result.

4.5 Show cracks as white lines on black background.

When the user presses the last button “Show cracks”, he/she can get the result of this
project. This is implemented by the function Result_Callback.

There are two input images for this function: the one is I1 – preprocessed binary
image; another is I – the “big noise” image. The process in this function is as shown
as figure 4.5

(1) Subtract the “big noise” I1 from preprocessed image I. We can get the image I
without “big noise”, but the boundaries of “big noise” are kept on the image.

(2) Get the skeleton the cracks by the Matlab command “bwmorph”.
(3) Cut the short branches away from the rocks cracks as we discussed in section

3.1.1. The Matlab function “cut_shortbrach” listed in appendix A can be used
to implement this.

(4) Remove the boundaries of rubbles way from this image. It is implemented by
the function “remove” listed in appendix A.

(5) Cut the curved lines as we presented in section 3.1.2. The Matlab function
“cut_curveline” listed in appendix A can be used to implement this.

(6) Reconnect the lines, which represent one crack, by linear regression. We use
the function “linearegression” to implement this. And the theory of this
function as we discussed in section 3.2.2.

(7) Perform some post process by the function “post” on the image. The function
“post” is listed in appendix A.

 34

Figure4.5 Flow chart of Result_Callback

There are several functions, which are used in this call back, are developed by us. We
have presented the method before. Now, we give the implementation detail of this
function.

4.5.1 Cut short branch

In this part, we use algorithm 3.1 – removing short lines to separate the crossing lines
and remove short lines. The flow chart of this algorithm is shown as figure 4.5.

In this function, we deal with the image as a two-dimensional matrix. Firstly, after
filtering operation, check the value of each element in the matrix and assign value “0”
to the “crossing point”. Finally, the very small objects are remove. The Matlab

Start

Remove “big noise”:
I=I1-1 (1)

Get the skeleton of cracks (2)

Cut short branches (3)

Cut curved lines (5)

Reconnect the lines
represent one crack (6)

Post process (7)

End

Remove the boundaries of rubbles (4)

 35

commands, “size”, “imfilter”, “bwlabel”, “regionprops” are used in thisis listed in
appendix A program, and the function.

4.5.2 Remove rubbles’ boundaries

When we remove the “big noise”, the boundaries of them are kept, because the
geologists want some of them. But the boundaries of small rubbles, which are not
welcomed, should be removed. The rubble is a kind of “big noise”. Their boundary
shape is typically approximately like a circle – not long and thin, and “area” is not
large. Thus, we can distinguish the rubbles’ boundaries from cracks by “shape”:

For each object, if

Remove this object. We implement this in Matlab as the program – moving “big
noise”, but not so many conditions. (See figure 4.3).

4.5.3 Cut curve line

The algorithm 3.2 describes how to cut curved lines. In this algorithm, the key point is
to find the corner pixel, and assign value “0” to that pixel. The method to implement
the algorithm 3.2 is very familiar with the implementation of algorithm 3.1, whose
program flow chart is shown in figure 4.6. The differences are:

 36

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Figure 4.5 Flow
chat of algorithm
3.2 – removing
short lines.

Define three filtering mask

€

h1,

€

h2 and

€

h3
Perform filtering operation on image

€

f .
Computer the result

€

g1,

€

g2 and

€

g3 with
mask

€

h1,

€

h2 and

€

h3

Computer the size of image

€

f ,

€

I × J

€

j <= J

€

g1(i, j) ≠ 0∧g2(i, j) ≠ 0

€

∧g3(i, j) > 3

Label the objects in the image g, assign the
number of objects to N
Find properties of each object

n <=N

€

object n.Area < 20

Assign value “0” to all pixels in object n.

Assign value “0” to

€

g(m,n)

End

Start

j=j+1

i=i+1
j=0

n=n+1

€

i <= I

 37

(1) Define different filtering masks, which have been discussed in section 3.1.2.
The filtering masks used to find the corner pixel on curved line was presented
in algorithm 3.2.

(2) In this algorithm, we do not need to remove any of the objects. The corner
points are found, and we assign value “0” to that point, after that program is
ended.

4.5.4 Connect lines by linear regression

We implement the algorithm 3.4 by Matlab. This algorithm is used to connect the
lines, which represent a same crack. The implementation of this algorithm is
presented by flow chart in Figure 4.7 (Figure 4.7 is too large to be presented in one
page)

(1) For the input binary image , label all the objects in the image and find the

properties of each object by Matlab command “bwlabel” and “regionprops”
respectively. There are N objects in the input image.

(2) is an matrix. Generate a matrix with size , and all the

pixels’ values are “0” in matrix .

(3) For each object in the image , find other objects, which should be connected

with it, as the conditions we defined in section 3.2. Assign value “N+1” to all
pixels in these objects in the image .

(4) At that time, the pixels in the image can be consider as single points, which

present a linear relationship.
(5) Store the row and column number of pixels, whose values are not 0 in array

and , respectively.

(6) Consider as observation predictor variables, and as observation response.

Estimate the parameters and by linear regression. This can be done by

Matlab command “regress”.
(7) Generate another matrix with size , and let all the pixels’ values in

matrix be 0.

(8) If , when the value of row number is at the

range , calculate , if the value of is in the

range , make .

(9) Else, when the when the value of row number is at the range ,

calculate , if the value of is in the range ,

make .

 38

In this way, we draw a straight line on the image . This straight line

represents the object n, and other lines, which should be connected with n.

(10) Make . For each object we get a new line, and add them together at

last.

 39

Yes

No

Yes

No

Yes

No

Start

Label the objects in the image f, assign the
number of objects to N
Find properties of each object

Compute the size of f :
Generate a new image g with all value is “0”

n <=N

Let = center point of object n

m <=N

 Let = center point of object m

Assign value “N+1” to all pixels in object m in image g1.

m=m+1

n=n+1

Part 1 of
figure 4.7

 40

Yes

Yes

Yes

No

Yes

Yes

Yes

No

No

No

No

i <=I

j <=J

Suppose the relationship between x and y
is linear. Using linear regression model
to estimate the parameter b1 and b2.

Generate a image g2 with all pixels’ value are “0”

i=i+1

j=j+1

i=i+1

Part 2 of
figure 4.7

 41

Figure4.6 Flow chat of algorithm 3.4 – reconnect lines by linear regression

4.5.5 Post process

At last, we perform some post processing. Firstly we perform the algorithm 3.1 cut
short braches and algorithm 3.4 reconnect lines by linear regression again, but we
choose different threshold values for this two algorithm. Then:

(1) Remove some really small objects. The cracks on the image are long object, if

the object is really small, that means it is not a crack as we expected.

Yes

Yes

No

No

j=j+1

End

Part 3 of
figure 4.7

 42

(2) Make the lines bold (i.e. more than one pixel width) and make white lines

become red ones. The wider red lines are plotted on the top of the color

images for further analysis.

Removing small objects is very easy to implement:

(1) Label all the objects in the image, and find their properties.

(2) For each object, if the “area” is smaller than 70 pixels, assign value “0” to all

the pixels in this object.

The implementation of the second step of post process is:

(1) Perform morphological dilation on the input binary image by the disk-shaped

structuring element with radius 5.

(2) Convert the processed image with cracks in “uint8” type.

(3) In the uint8 type image, if the pixel’s value is not “0”, assign value “255” to

this pixel.

(4) Generate two matrixes with same size as the input binary image by the

command “zeros”. All the pixels’ values are “0”.

(5) Concatenate these three matrixes together by the Matlab command “cat”. In

this way, we get a color image with cracks showing as red lines on black

background.

(6) Add this color image to the input color rock photo.

(7) Display the result.

 43

Chapter 5. Results and conclusion

5.1 Some results

Now, we deal with the image as shown as figure 1.2, which is one of the digital
photos taken by the geologist.

We enter its file name “Ritland1.jpg”, and threshold value for definition the “big
noise”: “area” is 500, “ ” is 3.5.

The result is as shown as figure 5.1.

Figure5.1 Cracks shown as white lines

Comparing the result with the original input color photo: (See figure 5.2). The red
lines represent the result lines. From these two images, we can find that the result with
lines showing the rock cracks approximately, but not perfectly. The processes of this
kind of image need to be improved in future.

We use black ellipse to mark two regions in figure 5.2. In the region 1, we can find
that there are many overlapped lines. In section 3.2, we have discussed that if two
lines are parallel lines, they would not be reconnected. But from region 1 in figure
5.2, the two parallel lines should be reconnected, if the distance between them is
really small. In region 2, we can find that there are some slight cracks disappeared.
That is not so good; our processing needed to be improved in future.

 44

Matlab is a very powerful tool for academic purpose, but its efficient is very low. It
takes some time to run the program and get the result.

The geologist took many photos for the Ritland crater, we deal with them in the same
way, and the results will be given in the appendix B.

Figure5.2 Compression the result with input image

5.2 Conclusion

This project is dealing with the pictures photographed by geologist from Ritland
meteor crater. We extract the rock cracks from the crater and show them as white
lines on a binary image with black background. The project is implemented in Matlab.
Statistical technology – linear regression and image filtering processing – spatial and
morphological filtering are used in this project.

All the processes in the project are considered in two stages: what kind of information
should be processed, and how to process them. The analysis of the different features
of information is very important in this project. Through this analysis, we can classify
different information:

• Analyze the neighborhood features of each pixel to decide how to separate

short branches from cracks.

 45

• Analyse the properties of each object in the image to find which ones should

be removed.

• Analyse the properties of each object to find which ones should be connected

together.

When finding out the information, which needs to be processed, we can give
mathematical presentation of the features, and deal with the information.

 46

Chapter 6. Further research

Although our work solves some problems, more problems follow. In this chapter, we
give some topics for further study.

6.1 Estimators of the regression parameters

In this project, we draw a straight line to represent a rock crack, so there

are two parameters need to be estimated. We calculate these two parameters by
Matlab command “regress”. This function calculates the parameters by least square
estimators.

In this method, we minimize the SSE to estimate the parameters. SSE is the sum of
the squared differences between the estimated responses and actual response values.
(See figure 6.1)

Figure6.1 Scatter diagram with regression lines

From figure 6.1, we can find that the least squares procedure produces a line that
minimizes the sum of squares of vertical deviations from the points to the line. But in
our project, we hope the line to represent crack, so the points are pixels on lines, and
the error can be consider as the distance between the points and estimated line. If we
can minimize the sum of squares of distance from the point to the line, the result
will be better. We can develop another function to calculate the regression line in
further study.

6.2 Error analysis

 47

From the result, we can find that the lines, we used to represent cracks are not perfect,

and one crack represented by several lines. We can design some algorithm to measure

the differences between real cracks and lines, which generated by us. Then we can

find a line, which represent the crack best.

6.3 Crack properties analysis

After generating binary images showing the cracks as white lines on the black
background, we hope that the cracks’ lengths and directions can be measured and
quantified automatically. This is a part of further works.

6.4 Color factor

From the result, we can find that, not all the rubbles’ boundaries have been removed.
We have to improve our algorithm. The color factor has been ignored at first, but
maybe this factor can be used to analysis, and improve our algorithm.

 48

Bibliography

[1] The Research Council of Norway. “Norsk meteorittkrater under lupen” (in

Norwegian). Retrieved 8 June 2009.ument.

[2] http://folk.uio.no/sveinkro/

[3] http://www.geo.uio.no/ritland/

[4] Fridtjof Riis, Henning Dypvik, Svein Olav Krøgli (August 2008). “The Ritland

crater – An early Cambrian impact structure in West Norway” The 33rd International

Geological congress, Oslo 2008.

[5] http://en.wikipedia.org/wiki/Ritland_crater

[6] Qin Li, Lei Zhang, Jane You, and David Zhang, “Dark Line Detection with Line

Width Extraction”, Image processing, 2008. The 15th IEEE International Conference,

pp. 621 -624, Oct.2008.

[7] Nitin Aggarwal, and William Clem Karl, “Line Detection in Images Through

Regularized Hough Transform”, IEEE Trans. Image Process., vol.15, No. 3, pp 582 -

591, Mar. 2006.

[8] Richard O. Duda, and Peter E. Hart, “Use of the Hough transformation to detect

lines and curves in pictures”, Comm. ACM,. vol. 15, pp. 11 – 15,Jan. 1972.

[9] J. C. Goswami, and A. K. Chan, Fundamentals of wavelets: theory, algorithms,

and applications, John Wiley & Sons, Inc., 1999.

[10] Jun Li, A wavelet approach to edge detection, Aug. 2003.

[11] Yaxiong Huang, and Bugao Xu, “Automatic inspection of pavement cracking

distress”, Journal of Electron. Image., vol 15, 013017, 2006.

[12] Siwaporn Sorncharean, and Suebskul Phiphobmongkol, “Crack detection on

asphalt surface image using enhanced grid cell analysis”, 4th IEEE International

Symposium on Electronic Design, Test & Application., pp. 49 – 54, Mar. 2008.

[13] Peggy Subirats, Jean Dumoulin, Vincent Legeay, and Dominique Barba,

“Automation of pavement surface crack detection using the continuous wavelet

transform”, ”, Image processing, 2006. IEEE International Conference, pp. 3037 –

3040, Feb. 2006.

 49

[14] http://en.wikipedia.org/wiki/Edge_detection

[15] http://en.wikipedia.org/wiki/Image_processing

[16] R. C. Gonzales, and R. E. Woods, Digital Image Processing, Third Edition.

Pearson Education, Inc., 2008.

 [17] Ivar Austovoll, Computer vision, Machine vision, Lecture notes for MIK 170

image processing. Department of Electrical and Computer Engineering, UiS. 2009.

[18] Frank Y. Shih, Image Processing and Mathematical Morphology, Fundamentals

and Applications. Taylor & Francis Group, LLC. 2009.

[19] Sheldon M. Ross, Introduction to Probability and Statistics for Engineers and

Scientists, Third Edition. Elsevier Inc., 2004

[20] Murray R. Spiegel, John J. Schiller, and R. Alu Srinivasan, Probability and

Statistics, Third Edition. The McGraw-Hill Companies Inc., 2009.

[21] Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and Keying Ye,

Probability & Statistics for Engineers & Scientists, Eighth Edition. Pearson Education,

Inc., 2007.

[22] Patrick Marchand, and O. Thomas Holland, Graphics and GUI with MATLAB,

Third Edition. CRC Press LLC., 2003

[23] R. C. Gonzales, R. E. Woods, and S. L. Eddins, Digital Image Processing Using

Matlab. Prentice Hall, 2003.

[24] Learning MATLAB® 7, Release 14, The MathWork, Inc., 2005.

[25] Image Processing Toolbox™ 6 User’s Guide, The MathWork, Inc., 2009.

[26] http://en.wikipedia.org/wiki/Mathematical_morphology

[27] http://en.wikipedia.org/wiki/Linear_regression

 50

Appendix

Appendix A – Matlab function

A.1 Minhist

function a=minhist(h)
% Find the intensity value when histogram has minimal.
N=size(h);
a=[];
i=1;
for n=5:N-5
 if h(n)< h(n-1) && h(n)<h(n+1) && h(n)<h(n-2) &&
h(n)<h(n+2) && h(n)<h(n-3) && h(n)<h(n+3) && h(n)<h(n-4)
&& h(n)<h(n+4) && h(n)<h(n-5) && h(n)<h(n+5) && n<100
 a(i)=n;
 i=i+1;
 end
end
return;

A.2 Cut_shortbranches

function g=cut_shortbranch(f)
%CUT_SHORTBRANCH Cut crossing line and remove small
object in binary image.
% g=cut_shortbranch(f) returns a binary image with same
size as f,
% crossing lines have been cut and small objects have
been removed.
g=f;
h1=[0 1 0; 1 0 1; 0 1 0];
h2=[1 0 1; 0 0 0; 1 0 1];
h3=[1 1 1; 1 1 1; 1 1 1];
I1=imfilter(f, h1);
I2=imfilter(f, h2);
I8=uint8(f);
I3=imfilter(I8, h3);
[I,J]=size(f);
%Romove crossing point
for i=1:I
 for j=1:J
 if I1(i,j)~= 0 && I2(i,j)~=0 && I3(i,j)>3
 g(i,j)=0;
 end
 end
end
[g,N]=bwlabel(g);
M=regionprops(g, 'all');
%Remove small objects
for n=1:N
 if M(n,1).Area < 20

 51

 for i=1:I
 for j=1:J
 if g(i,j)==n
 g(i,j)=0;
 end
 end
 end
 end
end
return;

A.3 Remove

function g=remove(f)
%ROMOVE Reomve rubbles' boundary
% g=remove(f) returns a binary image without boundary
of approximate
% circle shape object. Input and output are binary
image.
[g,N]=bwlabel(f);
M=regionprops(g, 'all');
[I,J]=size(g);
for n=1:N
 if M(n,1).MajorAxisLength/M(n,1).MinorAxisLength < 7
 for i=1:I
 for j=1:J
 if g(i,j)==n
 g(i,j)=0;
 end
 end
 end
 end
end
return;

A.4 Cut_curveline

function g=cut_curveline(f)
%CUT_CURVELINE Cut curved lines in a binary image
% g=cut_curveline(f) returns a binary image without
curved lines.
g=f;
h3=[1 1 1; 1 0 1; 1 1 1];
h4=[0 1 0; 0 0 0; 0 1 0];
h5=[0 0 0; 1 0 1; 0 0 0];
h6=[1 0 0; 0 0 0; 0 0 1];
h7=[0 0 1; 0 0 0; 1 0 0];
I8=double(f);
I3=imfilter(I8, h3);
I4=imfilter(I8, h4);
I5=imfilter(I8, h5);

 52

I6=imfilter(I8, h6);
I7=imfilter(I8, h7);
[I,J]=size(f);
[g,N]=bwlabel(g);
M=regionprops(g, 'all');
 for n=1:N
 if M(n,1).MajorAxisLength/M(n,1).MinorAxisLength <
10
 for i=1:I
 for j=1:J
 if g(i,j)==n && I3(i,j)==2 && I4(i,j)~=
2 && I5(i,j)~=2 && I6(i,j)~=2 && I7(i,j)~=2
 g(i,j)=0;
 end
 end
 end
 end
 end

A.5 Linearegress

function g=linearegress(f)
%LINEAREGRESS Reconnect the lines which belong to the
same crack
[f,N]=bwlabel(f);
M=regionprops(f, 'all');
[I,J]=size(f);
g=zeros(I,J);
for n=1:N
 g1=f;
 x1=M(n,1).Centroid(1,1);
 y1=M(n,1).Centroid(1,2);
%Group the lines which belong to a same crack.
 for m=1:N
 x2=M(m,1).Centroid(1,1);
 y2=M(m,1).Centroid(1,2);
 k=-(y1-y2)/(x1-x2);
 k=atand(k);
 d=(y1-y2).^2+(x1-x2).^2;
 d=d.^0.5;
 od=abs(M(n,1).Orientation-M(m,1).Orientation);
 if od<20 && abs(M(n,1).Orientation-k)<10 &&
abs(M(m,1).Orientation-k)<10 && d<200 && n~=m
 for i=1:I
 for j=1:J
 if g1(i,j)==m
 g1(i,j)=N+1;
 end
 end
 end
 end
 end

 53

%Using least squares learn regression model to estimate
two paremters
 s=1;
 x=[];
 y=[];
 for i=1:I
 for j=1:J
 if g1(i,j)~=n && g1(i,j)~=N+1
 g1(i,j)=0;
 end
 if g1(i,j)~=0
 x(1,s)=i;
 y(1,s)=j;
 s=s+1;
 end
 end
 end
%Generate a new line ro represent the crack
 x=x';
 y=y';
 b=regress(y, [ones(size(x)) x]);
 b1=b(1);
 b2=b(2);
 g2=zeros(I,J);
 a=min(x);
 c=max(x);
 e=min(y);
 h=max(y);
 if (c-a)>=(h-e)
 for i=a:c
 j=ceil(b1+b2*i);
 if j>=e && j<=h
 g2(i,j)=1;
 end
 end
 else
 for j=e:h
 i=ceil((j-b1)/b2);
 if i>=a && i<=c
 g2(i,j)=1;
 end
 end
 end
%Add uo all reconnected lines.
 g=g+g2;
end

A.6 Post

function g=post(f)
%POST Remove really small objects.
[g,N]=bwlabel(f);

 54

M=regionprops(g, 'all');
[I,J]=size(g);
for n=1:N
 if M(n,1).Area < 70
 for i=1:I
 for j=1:J
 if g(i,j)==n
 g(i,j)=0;
 end
 end
 end
 end
end
return;

A.7 Post3

function g=post3(f1,f4)
%POST3 Make the white lines into red and plot the red
lines on top of
%original color image
[I,J]=size(f1);
for i=1:I
 for j=1:J
 if f1(i,j)~=0
 f1(i,j)=255;
 end
 end
end
f1=uint8(f1);
f2=zeros(I,J);
f3=zeros(I,J);
f2=uint8(f2);
f3=uint8(f3);
f1=cat(3,f1,f2,f3);
g=f1+f4;
return;

 55

Appendix B – Some results

B.1

Filename: Ritland2.jpg

Area: 500

Shape: 5

 56

B.2

Filename: DSC_8367.jpg

Area: 200

Shape: 7

 57

B.3

Filename: DSC_8376.jpg

Area: 100

Shape: 3.5

 58

 59

B.4

Filename: DSC_8378.jpg

Area: 1000

Shape: 4.5

