u

University of
Stavanger

Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization: Spring semester, 2011

Information Technology/ Computer Science Open

Writer: Vegard Foldoy Thorsen | e
(Writer’s signature)

Faculty supervisor: Tom Ryen

Title of thesis: Meteorite Impact Crater Crack Extraction using Artificial Ants

Credits (ECTS): 30

Key words:

Pages: 57
Crack Extraction + enclosure: CD/DVD
Edge Detection
Ant Colony Optimization (ACO) Stavanger, 15.06.2011
Direction Control Date/year
Mathematical Morphology

Front page for master thesis
Faculty of Science and Technology
Decision made by the Dean October 30™ 2009

Summary

This Master’s thesis deals with extracting crack information from images of rocks taken from a meteorite
impact crater. By the use of artificial ants, and mathematical morphology, it becomes possible to detect
the edges in the images, or more specifically, the cracks outlines.

Ant Colony Optimization (ACO) is a method inspired by nature and the social behavior of some ant
species. ACO impersonates real ants and their foraging behavior where a chemical substance,
pheromone, is deposited on the ground in order to mark a favorable path between the colony and a food
source. This pheromone trail ensures that other members of the colony follows this exact same path.
When working with image edge detection it is possible to make use of this phenomenon. By exploiting a
similar mechanism and letting artificial ants traverse the images, they can detect the edges in the images
by mimicking the colony behavior of real ants. Furthermore is the original ACO method enriched by a
new direction control feature making the ants more adept at detecting edges belonging to a crack.
Experiments show the effectiveness of directed artificial ants in detecting edges in a digital image.

Mathematical Morphology (MM) is a technique that builds on mathematical set theory and the studies
of sets. The basic idea in mathematical morphology is to probe an image with a pre-defined shape, a
structuring element, drawing conclusions on how this shape fits or misses the shapes in the image. A
logical operation is performed between this structuring element and the underlying image, resulting in
different effects depending on the morphological operator being used. When working with image edge
detection it is possible to utilize this technique. By adjusting the structuring element to the features in
the images, the edges in the images can be detected using various morphological operators.
Experimental results demonstrates the usefulness of mathematical morphology in detecting edges in a
digital image.

Based on the obtained edge information, a novel approach utilizing statistics and shape properties are
developed in order to fill the gap between two corresponding edges. That way, the actual cracks
becomes highlighted. Experimental results demonstrates the practicability of the proposed approach in
extracting crack information from a digital image.

Preface

There are several ways of selecting a Master’s thesis project. The faculties provides their own projects
which they want students to undertake, or one can consult companies and investigate whether there are
possibilities for writing your thesis in cooperation with them. This thesis is an individual assignment,
given by the Faculty of Science and Technology at the University in Stavanger, that completes my studies
as a computer scientist. The work started out as a preliminary project [1] in computer science the fall of
2010.

Working with the assignment was a rewarding personal experience. The amount of research involved
was a true challenge that has without a doubt given me much valuable knowledge and insight into
conducting self-studies. Also, having a supervisor to relate to over a longer period of time, as well as
keeping up with deadlines, provides experience one truly cannot get through traditional teaching.

I am personally really enthusiastic about the end results, and I am confident that what is achieved here
has value. I hope that time will be given to test the actual implementation. The algorithm works very
well considering the focus of the project. Besides, there is great potential for further development which
is put to an end only by the thesis natural time frame.

I would like to thank my faculty supervisor, associate professor Tom Ryen, at the University in
Stavanger. He has been of great help and undoubtedly a valuable resource to have during the
assignment.

I would also like to thank geologist Fridtjof Riis for taking the time to meet with me and for providing

constructive feedback regarding the results. His knowledge on the subject has truly been beneficial as
far as the end results are concerned.

Stavanger June 15, 2011

Vegard Foldgy Thorsen

Contents
Summary

Preface

Contents

List of Algorithms
List of Figures
List of Tables

1 Introduction
1.1 Background e
1.2 Problem Description e e
1.3 ProjectGoal e e
1.4 ReportOutline e

2 Ant Colony Optimization (ACO)
2.1 ACOinImage Edge Detectiono...
2.1.1 Initialization Phase
2.1.2 ConstructionPhase
2.1.3 DecisionPhase

3 Morphological Image Processing
3.1 Morphological Operators e
3.2 Morphological Image Processing in Image Edge Detection

4 Crack Extraction
4.1 Edge Thresholding using Statistics and Percentiles
4.2 Noise Filtering using Connected Components Eccentricity Property
4.3 Crack Filling by Comparing Gray Scale Values

5 Experimental Results
5.1 Experimental Ant Edge Detection Results
5.2 Experimental Morphological Edge Detection Results
5.3 Experimental Crack ExtractionResults
5.4 Experimental Test Results,

6 Conclusion

7 Future Work
Appendix A
Appendix B
Appendix C
References

Attachments

13
13
15

16
17
18
18

20
21
25
27
31

32

32

33

34

50

57

57

List of Algorithms

1 The proposed ACO-based approach to image edge detection. 8
2 The proposed novel crack extraction approach. 17
3 The complete crack extraction process. v v v v v v v b e e e 19
List of Figures
1 Image from the Ritland meteorite impactcrater. 6
2 A graph representation of a & X w two-dimensional image. 7
3 The clique at pixel (i,j). o e e e e 9
4 The angle ¢; ; given the ants current pixel (i, j) and its starting pixel (iszar, jstare). - - - . 10
5 Adjacent pixels using various neighborhoods. 11
6 Forced ant movement termination.o 12
7 Erosion and dilation [2]. 14
8 Opening and closing [2]. e 15
9 Crack exXtraction. it i e e e 16
10 Axes and orientation of the ellipse [3]. 18
11 Crackfilling. e 19
12 Direction controlled ants vs. undirected ants. L. 22
13 Direction control and total number of rounds. 23
14 Total number of movement steps and total number ofants. 24
15 Erosion and dilation residue edge detection. 26
16 Morphological gradient edge detection. 26
17 Reduced noise morphological gradient edge detector. 27
18 Ant edge detection vs. morphological edge detection. 28
19 Ant edge and gray scale thresholding using percentiles. 29
20 Noise filtering by eccentricity. L. 30
21 Total number of crack filling iterations. L. 31
22 Extracting only the most significant cracks. 32
23 Training@ images. v e 33
24 Testimage: 8358. e e e 34
25 Testimage: 8367. e e e e 35
26 Testimage: 8371. e e 36
27 Testimage: 8377. e e 37
28 Testimage: 8378. L e 38
29 Testimage: 8379. e e e e 39
30 Testimage: 8380. e e 40
31 Testimage: 8383. L. e e 41
32 Testimage: 8384. e 42
33 Testimage: 8385. L. e 43
34 Testimage: 8387. e e e 44
35 Testimage: 8388. e e e 45
36 Testimage: 8393. L. e 46
37 Testimage: 8394. e 47
38 Testimage: 8398. e 48
39 Testimage: 8399. L. e e e 49
List of Tables
1 The eight polar angles 0,,. e 9
2 Four flat structuring elements (SE). 16

1 Introduction

The introduction concerns the project background, the problem description as well as the project goal.

1.1 Background

Recently (2000), a meteorite impact crater was discovered in Ritland, Norway. The meteorite made its
impact with earth’s surface roughly 500 million years ago, resulting in an approximately 400 m deep and
2.5 km wide impact crater. Today, there are areas with a lot of cracks in the crater rocks (Figure 1a).
Geologists are interested in analyzing these cracks with respect to their length, width and orientation.

N 2 il - PRI

(a) Original crack image. (b) Extracted crack image.

Figure 1: Image from the Ritland meteorite impact crater.

1.2 Problem Description

This project is about extracting crack information from images of the impact crater rocks (Figure 1b).
Investigate whether artificial ants, as well as mathematical morphology, are capable of detecting the
edges in the images, hence, providing a complete and clear edge trace of the cracks outline. Then, based
on the highlighted edges, the crack itself should become identifiable by filling the gap between two
corresponding edges.

1.3 Project Goal

The goal of this project is to generate (binary) images showing the cracks in the crater rocks. Based on
these images, the cracks’ length, width and orientation can be automatically measured and quantified.
Considering the fact that these cracks mostly is long and narrow openings, special attention is given to the
more linear trends in the image. Obviously, a result image free of noise and false cracks is unattainable.
After all, not all edges in the images belongs to a true crack. Ultimately, extracting as much real cracks as
possible, both big and small, is desired in order to better determine the trends in the images. Therefore,
noise and false cracks is to be expected.

1.4 Report Outline

The outline of the report is as follows. Section 2 deals with artificial ants and ant colony optimization in
image edge detection. It gives a brief introduction to both concepts, as well as providing a new ACO-
based approach to image edge detection. Section 3 concerns the use of mathematical morphology in
image edge detection. Basic morphological operators are explained and combined into morphological
edge detectors. Section 4 introduces a novel approach that describes how the detected edge information
can be used to extract crack information. Experimental results are presented in Section 5. Then, Section
6 concludes the report with Section 7 discussing future work on the subject.

2 Ant Colony Optimization (ACO)

Ants communicate with each other using pheromones. They leave pheromone trails on the ground in
order to mark a path between their colony and a food source for other members in the colony to fol-
low. The more ants following the same path, the higher its pheromone concentration becomes. Over
time pheromone trails evaporate. The longer it takes for an ant to walk back and forth, the more time
the pheromone has to evaporate. Hence, pheromone density remains higher at shorter and more favor-
able paths where pheromone is deposited at a much higher rate. This behavior helps ants successfully
establish, and follow, the better paths. ACO [4] is inspired by this foraging behavior.

There exists several ant colony optimization algorithms [4], whereas the original algorithm, known
as Ant System (AS), originates from the early nineties. Since then, a number of other algorithms, among
the more successful variants MAX-MIN Ant System (MMAS) and Ant Colony System (ACS), were
introduced. Several ACO-based approaches have been proposed to the edge detection problem [5, 6].

In this project, a new ACO-based approach is applied to image edge detection. The approach makes
use of improvements introduced in ACS, with the addition of a new direction control feature. The reason
for introducing direction control is to make the ants better suited for detecting edges belonging to long
and narrow openings, hence, edges belonging to cracks.

2.1 ACO in Image Edge Detection

Image edge detection deals with extracting edges in an image by identifying pixels where the intensity
variation is high. There are many well-known edge detection algorithms [7]. Prewitt, Sobel and Canny,
to mention a few. Although originating from the early days of computer vision, some are still considered
state-of-the-art edge detectors.

Ant Colony Optimization introduces a different approach to image edge detection. In ACO, artificial
ants «walk on» the image depositing pheromone where the intensity variation is high. A & X w two-
dimensional image can be represented as a two-dimensional graph with the image pixels as its nodes
(Figure 2). A pixel is connected to all adjacent pixels in an 8-connectivity neighborhood (Figure 5b on

page 11).

151 1% 1,3 f-----1 il v
291 2 1B 2,3 F-----1 2,
3l I 3,3 F-----1 3,w

T T T N L

' I I N I

] 1 1 N 1

1 1 1 AR 1

' I I N I

] 1 1 AR 1
I, 1 ol 2 h,3 f----- h,w

Figure 2: A graph representation of a & X w two-dimensional image.

ACO is an iterative probabilistic algorithm where ants are guided, by pheromone information, to-
wards optimal paths in a graph. At each iteration, a number of artificial ants are considered. Each ant

Algorithm 1 The proposed ACO-based approach to image edge detection.

1. Initialization Phase
Initialize a gray scale intensity value matrix, a pheromone matrix, a normalized intensity variation

matrix (the heuristics) and a set of eight polar angles.

2. Construction Phase

for construction step (round)n=1:N
Randomly position all ants.

for movementstep/=1:L
for antk=1:K

Select, and move ant to, next pixel.
Immediate local update of the pixel’s pheromone (pheromone decay).

end
end

Offline update of all visited pixels pheromone (pheromone evaporation).

end

3. Decision Phase

The solution is made based on the values in the final pheromone matrix.

incrementally builds a (complete) solution by moving from pixel to pixel in the graph. An ant can only
move to adjacent pixels with the constraint of not visiting any pixel more than once within the same
iteration. The movement of the ants is affected by local variations in pixel intensity values. Ants select
the following pixel to visit through a stochastic mechanism influenced by pheromone and heuristic infor-
mation. The heuristic information is only dependent on the specific problem. Additionally, ants deposit
a certain amount of pheromone on the traversed pixels. The actual amount deposited depends on the
quality of the pixel. Subsequent ants make use of this pheromone information as a guide steering them
towards the more promising regions in the graph. The goal is to construct a final pheromone matrix that
reflects the edge information in the image. Each element in the pheromone matrix corresponds to a pixel
in the image and indicates whether the pixel is on an edge or not.

The proposed ACO-based approach to image edge detection can be thought of as a three-phased
process as described in Algorithm 1: The first phase is an initialization phase. The second, which
is the construction phase, covers all ant movement. During this phase the pheromone information is
continuously updated as the ants «walk on» the image. In the last phase, the decision phase, the solution
is made from the values of the elements in the final pheromone matrix.

2.1.1 Initialization Phase

First, an intensity value matrix is made. Every element in the intensity value matrix has a value based on
the gray scale intensity level related to the corresponding image pixel.

Secondly, a pheromone matrix is constructed. Every element in the pheromone matrix is assigned a
small nonzero value T;,;, stating an initial pheromone level.

The heuristic information, one of the main aspects in the following construction phase, may be
calculated already in the initialization phase. This is due to the fact that the heuristic only depends on
the intensity values of the pixels in the image. In other words, the heuristic information is a (normalized)
intensity variation matrix which is fixed for every construction step:

Nij= €))

* I; ; is the intensity value of the pixel (i, j).

* V.(I;,j) reflects the intensity variation between the pixel (i, j) and a local group of surrounding
pixels ¢, called a clique (Figure 3).

* Vuax represents the maximum intensity variation in the whole image and serves as a normalization
factor.

The value of n; ; is large for pixels located in regions of the image containing sharp intensity variations.
Hence, pixels representing edges in the image.

Ii—ﬂ,j—ﬂ Ii—ﬂ,j—l Ii— Ii—ﬂ,j+1 Ii—ﬂ,j+2

2.3

T T Polar Angle = Value (in radians)
L S 1L

11 1-1Ert

I_i_,j—l I I_i_,j+1 Ij_,j+2

i,3-2

Ii+1,j—2 Ii+1,j—1 Ii+1,j Ii+1,j+1 Ii+1,j+2

6,=3 | 6:=% | 6,=12
Table 1: The eight polar angles 6,.
Ij_+2,j—2 I_i_+2,j—1 Ij_+2,j I_i_+2,j+1 Ij_+2,j+2

Figure 3: The clique at pixel (i,j).
Calculating the intensity variation at pixel (i, j) is done as follows:

+
+ @

Liv1j1—1Lic1j
liv1,j2—1lic1j12

Liojo—1Iipojo|+ | liv2j2—1Li2 2|+ lic1j—1 — i1, j41| +
Ve(lij) = |lim2,j—1 = Tiga j1 | + [lig2,j=1 = li2,jp1 | + [im1,j—2 — Lit1, js2 | +
Ligj—lipoj| + [joa = L jro| 4 [Tz — Tisr | + | Tije1 — I j1|

Large differences in intensity values between pixels located 180 degrees of each other, relative to
pixel (i, j), gives a large variation in intensity. In other words, pixels located at edges have large intensity
variations, hence, large values for V.(f; ;).

Note however, that the borders of an image (the two outermost pixels) does not satisfy a complete
clique. For instance, the pixel located at the top left corner (1, 1) does not have any west- nor north-laying
neighbor pixels. Hence, no (normalized) intensity variation is calculated on the image borders. Instead
are all border pixels initialized with a very small nonzero value. A small value is chosen for the simple
reason of making the image borders less attractive to ants.

A set of eight polar angles is defined (in radians). Each angle 6, is relative to the movement, in a
horizontal right direction, of an ant located at pixel (i, j) and its adjacent neighboring pixels. Hence,
there are only eight possible values for 8, (Table 1).

Note that the use of polar angles is not originally a part of ACO. However, by introducing polar
angles it becomes possible to implement direction control where ants favor pixels laying in their current
moving direction. Like the heuristic information, the polar angles are fixed for every construction step
and may be defined already in the initialization phase.

2.1.2 Construction Phase

Ant Movement

Ants execute a predefined number of rounds (construction steps).

In every round n each ant k is consecutively moved a fixed number of movement steps /. An ant
moves from its current pixel (i, j) to one of its, not previously visited, neighboring pixels (x,y). Which
neighbor pixel to go to is determined by a transition probability matrix:

[(257)" ()] + [r(cos(8,— 91)+ 1)

Zmea, [(#5) ()] + [(cos(8,— 91) + 1]

(n) _
Pij)xy) =

3)
. T)E,’;*l) is the pheromone information at the neighbor pixel (x,y).

* ¢ determines the influence of the pheromone information.

* 7)., is the (normalized) intensity variation at the neighbor pixel (x,y).

* [determines the influence of the intensity variation.

* r determines the influence of the direction control.

* 6, is the polar angle given the ants current pixel (i, j) and its neighbor pixel (x,y).

* ¢; ; is the angle given the ants current pixel (i, j) and its starting pixel (isiar, jsrarr) (Figure 4).

* Q; ;) represents the set of neighborhood pixels for the ant currently located at pixel (i, 7).

* The denominator represents a normalization of the transition probability p(; ;).

STARSE

-

& 1

T
108

Figure 4: The angle @; ; given the ants current pixel (i, j) and its starting pixel (isiarr, jsrart)-

10

Calculation of the angle ¢; ; is done as follows:

arctan(/’::j?;fz;ft) if j> Jstart
arctan(;:j?:z;’t) =T if j< jsarnandi <igan
Qij= arctan(;:%:r) +I1 if j< jgarrandi > isar “)
—% lf] = jstart and i <igar
% if] = Jjstarrandi > igap

The value of ¢; ; solely depends on the ants current pixel location (i, j) with respect to its starting
pixel (isiart, Jseare)- It is not (directly) affected by any of the intermediate movement steps.

Note however, that ¢ is neither a part of the original ACO, but introduced as a part of the new
direction control feature.

During ant movement, there are two issues which are considered crucial. The first is related to the
already discussed (normalized) intensity variation (1), more specifically 7, in (3). The second is about
defining the permissible range of their movement, namely Q; ;) in (3).

Ants may only move to adjacent (neighboring) pixels (Figure 5). In other words, it cannot move to a
pixel which is not directly connected with the pixel where it is currently located. Various neighborhoods
have been proposed in the literature [5, 6], whereas the one adopted in this report is the 8-connectivity
version (Figure 5b).

i 8 ik

(a) 4-connectivity neighborhood. (b) 8-connectivity neighborhood.

Figure 5: Adjacent pixels using various neighborhoods.

Ant movement is further restricted by the condition that it is not permitted to visit any pixel more
than once within the same round. This prevents ants from moving back and forth between the same set
of pixels. Hence, ants are steered towards regions in the image unknown to them, resulting in a better
coverage of the image as a whole. In order to keep track of the recently visited pixels each ant has a
(round-based) memory. For next round, the ants memory are cleared.

However, refusing ants to revisit pixels leads to possible deadlocks (Figure 6a). A deadlock occurs
when an ant, located at pixel (i, j), has visited all its neighboring pixels in the current round rendering
the ant immobile.

Ants running into deadlocks are most likely to find themselves in less interesting (edgeless) areas
of the image. Lack of pixels with sharp intensity variations guiding the ants forward can, and most
probably will, cause some of the ants to deadlock. All ants that deadlock will be refused to move any
further during the given round and forced to terminate without completing their remaining movement
steps. The actual amount of ants deadlocking is highly dependent on several aspects of ACO. Parameters
such as the total number of rounds, the total number of movement steps (per round), the total number
of ants, as well as the random factor in connection with the ants starting positions, are all affecting the
occurrence of deadlocks. Furthermore, the direction control feature has a great impact on the matter.

11

(a) Ant deadlocking at pixel (i,j). (b) Ant entering image border at pixel (7,2).

Figure 6: Forced ant movement termination.

Ants entering image borders (Figure 6b) is an issue to be addressed. Image borders suffers from
incomplete neighborhoods, which naturally affects neighborhood calculations. Therefore, ants encoun-
tering image borders are forced to end their movement even when there are unvisited pixels left in the
neighborhood. Despite all efforts done in advance by making the image borders less attractive to ants,
some will still choose a border pixel. The amount of ants entering image borders are greatly affected by
the very same parameters as in deadlocking.

Ant Pheromone Deposition

Ants deposit a certain amount of pheromone during movement. The amount of pheromone deposited on
a pixel varies depending on the actual quality of it. More pheromone is deposited on pixels representing
edges in the image, compared to the amount of pheromone deposited on edgeless pixels. Subsequent
ants then makes use of this variation in pheromone information to help them find the more promising
areas of the image. Hence, guiding them towards the edges in the image.

The construction phase contains two separate pheromone updates. One immediate local pheromone
update (pheromone decay), and one offline pheromone update (pheromone evaporation).

The local update is performed immediately after every movement step. In other words, after each ant
k has executed a single movement step / within a round n, the pheromone matrix T,S';) is updated:

l?j l7.l
* is the pheromone decay coefficient.

. Ti(,(}) is the initial pheromone matrix.
Pheromone decay is meant to diversify the search performed by subsequent ants during the same round.
By decreasing the pheromone concentration on the traversed pixels, subsequent ants are encouraged to
choose other pixels, thus exploring other paths and providing a better coverage of the image.

The offline pheromone update is performed at the end of each round. In other words, after all K ants
have finished all L movement steps within the same round n, the pheromone matrix is updated again:

Tij

(n—1) K r e e e
(n-1) _ {(1 —p)T; P, if pixel (i, j)isvisited ©)

L)

N otherwise

* p is the evaporation rate.

12

The pheromone information (each element in the pheromone matrix) is changed if, and only if, a pixel is
visited by an ant. For all pixels left unvisited, the pheromone level remains the same.

Note that the pheromone evaporation update does not exactly follow the original ACS approach [4].
Some aspects of ant colony system do not suit the nature of image edge detection. In ACS, only the pixels
belonging to a best-so-far tour is updated. Having a best-so-far tour makes sense when each ant produces
a complete solution to the problem, which indeed was the case when ACO was introduced to solve the
traveling salesman problem. In an ACO-based edge detection approach, however, an individual ant does
not produce a complete solution to the problem. Each ant produces only a partial solution, hence, it’s the
ant collective that make up the complete solution. Therefore, it makes no sense to introduce a best-so-far
tour in image edge detection.

2.1.3 Decision Phase

The solution is based on the values in the final pheromone matrix. The literature applies a threshold
technique, also known as the Otsu threshold technique [8], to reduce the resulting gray scale image to a
binary image with only two possible values for each pixel. This is done to be able to classify each pixel
as either an edge or a non-edge. Though, when it comes to analyzing the work carried out by the ant
collective in image edge detection, a result showing various degrees in intensity values (gradient) is just
as good as a black and white declaration. Hence, in ant image edge detection, the solution is a direct
result of the values in the final pheromone matrix.

3 Morphological Image Processing

Morphological image processing [9, 10, 11] is developed from Mathematical Morphology (MM) and
mathematical set theory. The technique is often used to detect object boundaries (edges), skeletons and
convex hulls in images. Likewise, it is frequently used as a pre- and post- processing technique for
thinning and pruning of edges.

Morphological image processing operates by the use of structuring elements and morphological op-
erators. A structure element is a binary image of any size that contains any combination of 1’s and 0’s.
The process involves passing this structure element over the pixels in the image whilst performing a
logical operation between them. The outcome of this operation is dependent on the size and content of
the structuring element as well as the morphological operation being used. While originally intended for
binary images, morphology has been extended to gray scale images as well.

3.1 Morphological Operators

Generally speaking, most morphological operators are based on simple shrinking and expanding opera-
tions. The two most common morphological operators is erosion and dilation (Figure 7). Erosion makes
objects smaller (shrinking) whilst dilation makes objects larger (expanding). Composite operations such
as opening and closing (Figure 8) is obtained by combining these two basic operations. In the following:

* A denotes the binary image.
* B denotes the structuring element.
* i, j denotes the current pixel location.

* B; ; denotes the structuring element with its origin located at pixel i,j.

Erosion

In binary erosion (Figure 7a), where every image pixel only has two possible values, every pixel located
inside an object that has at least one neighbor outside of the object is eliminated. In other words, every

13

(a) Erosion.
(b) Dilation.

Figure 7: Erosion and dilation [2].

object pixel that is touching a background pixel is itself changed into a background pixel. Therefore,
erosion makes objects smaller by one pixel all around. In fact, if repeatedly applied, erosion will shrink
any object out of existence. It will also disconnect, break an object into multiple objects, at any point
less than three pixels thick. Erosion is useful for removing objects from an image that are too small to
be of interest. Binary erosion is defined by:

AeB={i,j|B;;CA})

Gray scale erosion is analogous to its binary counterpart. In gray scale erosion, where image pixels
can have more than two possible values, the minimal value of the current pixel and its neighbor pixels is
used. The value of the current pixel is set to this minimum value. The amount of neighbors considered
depends on the size of the applied structuring element. Therefore, gray scale erosion has the effect
of darkening small and bright areas. Moreover might very small areas, only a few pixels wide, be
completely eliminated.

Dilation

In binary dilation (Figure 7b), every pixel located outside an object that has at least one neighbor inside
of the object is incorporated into the object. In other words, every background pixel that is touching an
object pixel is itself changed into an object pixel. Therefore, dilation makes objects larger by one pixel
all around. Applying dilation repeatedly will merge all the objects in an image into one. Likewise, all
objects separated by less than three pixels at any point, will be merged at that point. Dilation is useful
for filling holes in objects. Binary dilation is defined by:

A@BI{i,j|Bi7ij7é®} 3

Gray scale dilation is analogous to binary dilation. In gray scale dilation, the value of a pixel is set
to the maximal value between itself and its neighbors. Therefore, gray scale dilation has the effect of
brightening small and dark areas in a gray scale image. Furthermore, very small and dark holes might
get completely eliminated.

Opening

Just as with dilation and erosion are opening and closing dual operations.

Opening (Figure 8a) is simply an erosion followed by a dilation. Hence, it eliminates small and thin
objects as well as it breaks larger objects at thin points. Additionally, and because the resulting set is
dilated using the same structure element, opening also has the effect of smoothing the (inner) boundaries
of larger objects, without significantly changing their area. Opening is defined by:

AoB=(AGB)®B ©)

14

B 2l

B B

] |]] | . |

A ACB = (A© B)®B A AeB = (A ® B)oB

(a) Opening. (b) Closing.

Figure 8: Opening and closing [2].

Closing

Closing (Figure 8b) is obtained by simply swapping the order of erosion and dilation. Hence, it fills small
and thin holes in objects as well as it connects nearby objects. Closing also has the additional effect of
smoothing the (outer) boundaries of objects, without significantly changing their area, since the resulting
set is being eroded using the same structure element. Closing is defined as follows:

AeB=(A®B)SB (10)
Both gray scale opening and gray scale closing is defined like in binary morphology, (9) and (10)
respectively.
3.2 Morphological Image Processing in Image Edge Detection

When applying morphological image processing to image edge detection [10], various compositions of
morphological operators make up different morphological edge detectors. The results obtained by the
use of morphological edge detectors is highly dependent on both the configuration of the operators in the
edge detector itself, as well as the configuration of the structuring element. More precisely, a successful
morphological edge detection is based on both the design and structure of the edge detector, as well as
the size, shape and orientation of the structuring element. The following algorithms are all commonly
used when applying morphological image processing to image edge detection:

Erosion Residue Edge Detector

The edge of an image can be identified as the difference between the image itself and its eroded set. This
is known as the erosion residue edge detector, which is defined as:

A—(ASB) (11

Dilation Residue Edge Detector

Similarly, the edge of an image can be identified as the difference between its dilated set and the image
itself. This is also known as the dilation residue edge detector:

(A®B)—A (12)

Morphological Gradient Edge Detector

Morphological gradient edge detector highlights sharp gray level transitions by taking the difference
between the dilated set and the eroded set of an image:

(A®B)— (ASB) (13)

15

Reduced Noise Morphological Gradient Edge Detector

The reduced noise morphological gradient edge detector is a much more complex algorithm, proposed
in [10], and defined as:

(MeB)®B— (MeB) (14)

M= (AeB)oB (15)

Structure Elements

In order to get clear image edges the selection of an appropriate structuring element is of utmost impor-
tance. The structure elements used in practice is generally much smaller than the image itself, and often
a 3 x 3 matrix. Consequently, the structure elements used in this approach is all 3 x 3 matrices (Table 2).

0[0]0 0]0]1 0]11]0 1100

1111 01110 01110 0(1]0

0/0]0 110]0 01110 0101
(a) 0 deg SE. (b) 45 deg SE. (c) 90 deg SE. (d) 135 deg SE.

Table 2: Four flat structuring elements (SE).

Selecting an appropriate structure element comes down to studying the features in the image. Con-
sidering the fact that edges are fairly thin and relatively straight lines, simple line-based structuring
elements seems most appropriate. Hence, flat linear structure elements that is symmetric with respect
to the neighborhood center is created. In total, and for orientation purposes, four different structuring
elements have been made. Each structuring element, measured in a counterclockwise direction from the
horizontal axis, covers 0, 45, 90 and 135 degrees, respectively. This is done as an attempt to cover the
main directions in the images.

4 Crack Extraction

So far the focus has been on detecting the edges in the images. That way the cracks outlines can be
highlighted (Figure 9a). However, by studying only an edge trace, it is not easy to determine which side
of the edge that actually represents a crack. Ultimately the crack itself should be identified and not just
its outline. More specifically, the gap between two corresponding edges (containing the actual crack)
should be filled (Figure 9b).

(a) Highlighted crack outlines. (b) Filled cracks.

Figure 9: Crack extraction.

16

Algorithm 2 The proposed novel crack extraction approach.

1. Thresholding

Reduce the (gray scale) edge information to (binary) crack information.

2. Noise Filtering

Remove circle-like components.

3. Crack Filling

for iterationn=1:N

for crack pixelm=1:M
if n==1
Expand the crack outline by one pixel into the crack.

else
Color new neighbor crack pixels.

end
end

end

Edge detection is a fundamental tool in image processing, particularly in the area of feature detection,
which aim at identifying points in an image at which the image brightness changes sharply or, more
formally, has discontinuities. Unlike in image edge detection there is no well-known techniques or
methods for extracting cracks in an image. Therefore, a novel approach based on the obtained edge
information is developed in order to identify the actual cracks rather than just highlighting their edges.

The proposed novel crack extraction approach is described in Algorithm 2.

4.1 Edge Thresholding using Statistics and Percentiles

The first step towards extracting cracks is to reduce the gray scale edge information to binary crack
information using thresholding. That way, with only two possible values for each pixel, every pixel is
classified as either a crack or a non-crack.

During the thresholding process, individual pixels in the edge image are marked as crack pixels if
their value is larger than some threshold value, and as background (non-crack) pixels otherwise. Finally,
a binary crack image is created by coloring each pixel either black or white, depending on whether it is
marked as a crack pixel or a background pixel. Needless to say, this threshold value plays an important
role when it comes to marking the appropriate pixels. Therefore, and in order to get a threshold value
that best represents the underlying edge image, statistics and percentiles are applied.

In statistics, a percentile provides an indication of how the data values, sorted from smallest to largest,
are spread. Approximately p percent of the data values fall below the pth percentile, and roughly 100 — p
percent of the data values are above the pth percentile. In other words, by arranging all the pixel values
in the edge image from smallest to largest, it becomes possible to mark all pixels having a value above
the specified percentile as a crack. All remaining pixels is simply converted to background pixels. As a
result, every pixel in the edge image is reduced to either a crack or a non-crack pixel. Note however, that
the percentiles in this work are specified using percentages.

17

4.2 Noise Filtering using Connected Components Eccentricity Property

A threshold process will generate a certain amount of noise, hence, unwanted information. Typically
this noise represents itself as randomly occurring pixels which has abnormal intensity levels compared to
their neighboring pixels. In detail, a (black) crack pixel may appear in the middle of a (white) non-crack
area. Obviously, this is not a desired effect. Therefore, a method for removing noise is implemented.

First, all connected components in the binary image is found using an 8-connectivity neighborhood.
This means that the binary image is processed, pixel by pixel, grouping all adjacent crack pixels into
one component. For this reason, all cracks that are connected to other cracks, in an 8-connectivity
neighborhood, will constitute one single composite component. Each connected component is then
measured according to its eccentricity property.

Figure 10: Axes and orientation of the ellipse [3].

The eccentricity is the ratio of the distance between the foci of an ellipse (comprising the pixels in
the component) and its major axis length (Figure 10). The value is between O and 1. An ellipse whose
eccentricity is 0 is actually a circle, while an ellipse whose eccentricity is 1 is a line segment. By taking
advantage of this fact, and by simply comparing a connected components eccentricity value against a
specified value between 0 and 1, it becomes possible to remove complete circle-like components. More
precisely, all connected components that has an eccentricity ratio less than the pre-defined value is filtered
away. This seems appropriate considering the fact that the focus is biased towards linear trends (line
segments) in the images.

4.3 Crack Filling by Comparing Gray Scale Values

Last step of the crack extraction process consists of simple comparisons between gray scale values.
Every crack pixel has a corresponding gray scale value found in the underlying gray scale image. Up
to this point all crack pixels are a direct result of edge detection. Hence, all crack pixels are in fact
binary edge pixels where only one side of a pixel is considered valid as far as being a part of the actual
crack. Therefore, filling the appropriate gap between two corresponding binary edge pixels (Figure 11)
is a twofold iterative approach where the first iteration differs from the rest. Furthermore, the marking
of new crack pixels is done separately. For that reason, during a new iteration, only pixels marked in the
previous iteration is considered. That way the amount of pixels to process becomes smaller for every
additional iteration.

The first iteration can be though of as “moving one pixel away from the edge and thus into the crack”.
During the first iteration, a crack (binary edge) pixel compares its neighbors gray scale values against
each other in a total of four ways. The gray scale value of its left neighbor is compared to the gray scale
value of its right neighbor. The neighbor that has the smallest value are marked as a new crack pixel if,
and only if, its value is also smaller than the current pixels gray scale value. The same reasoning applies
to the other opposite neighbors. As a result, all binary edges are expanded by one pixel into the crack
(Figure 11b).

The remaining iterations is somewhat different. Like in edge thresholding, percentiles is here used
in order to find a sufficiently small value, based on the values in the gray scale image, to use as the
definition of a crack pixel. More specifically, in order to be marked as a crack pixel, the gray scale value
of a pixel needs to be lower than this percentile value. That way, it becomes feasible to simply pick every

18

EDGE
jeeolaicy

EDGE

(b) After 1st crack filling iteration.

EDGE
IDaE

(c) After nth crack filling iteration.

Figure 11: Crack filling.

neighbor with a gray scale value smaller than the pre-defined crack value. Considering that every crack
pixel is now in fact located inside an actual crack, this proves to be useful. Moreover, such an approach
is appropriate considering that small gray scale values often is an indication of a crack pixel.

The complete crack extraction process is summarized in Algorithm 3.

Algorithm 3 The complete crack extraction process.

1. Preprocessing

Read the original crater image, resize it to the appropriate image size, convert to gray scale and
apply a Gaussian blur filter.

2. Ant Edge Detection (Algorithm 1)

3. Crack Extraction (Algorithm 2)

19

S Experimental Results

Experiments are carried out in order to evaluate the performance of the proposed approaches using a
selection of images from the Ritland meteorite impact crater. The three images 8372, 8382 and 8397
(Appendix A) are used as the training data set, and for the sole purpose of deciding appropriate parameter
values. Then, experiments are carried out on a set of sixteen test images (Appendix B) independent of
the training data.

The original image resolution of 3008 x 2000 pixels is fairly high to process within a reasonable
amount of time. Naturally, the bigger an image is the more computational costly and time consuming
it becomes to process it. Though using a higher resolution than the typical 128 x 128 and 256 x 256
used in the literature is desired. The image size adopted in this report, 752 x 500, contains a fairly high
detail level as well as it maintains the original images aspect ratio. All images processed are converted
to gray scale images. In other words, the value of each pixel contains only intensity information varying
from black at the weakest to white at the strongest. A Gaussian blur [12] (smoothing) low-pass filter is
also used to reduce image noise. The following loss of information is not considered an issue since the
project concerns the extraction of dark cracks in gray crater rocks.

All parameters are assigned values that have been found to produce good results. When deciding an
appropriate parameter value (5.1 and 5.3), all other parameters are fixed. That way only the parameter
being discussed is affecting the result. Parameter values not discussed are adopted from the literature.

ACO Parameters Crack Extraction Parameters
Tiniy amount of initialized pheromone N total number of iterations
* (0.00000001 * 25
N total number of construction steps (rounds) A edge percentile
5 * 85%
L total number of ant movement steps (per round) Y gray scale percentile
* 250 * 7.5%
K total number of ants € eccentricity property

« |VI, XT;| = [V/752x500| =613 * 0.25
r influence of direction control

* 0.1
a influence of pheromone information

1.0
B influence of intensity variation

* 1.0

p pheromone evaporation

* 0.1

v pheromone decoy

* 0.05

20

The proposed approaches is implemented using the Matlab programming language and tested remotely
on a server cluster with 64-bit Linux operating system, 16 CPU’s running at 3334MHz and a total of
~ 74GB memory. The computational times varies between the different methods. Morphological edge
detection is close to real-time detection and takes roughly a second to complete. Ant edge detection
however takes about seven minutes, using the appropriate parameter values, in order to finish. The novel
crack extraction approach completes in less than a minute.

The complete Matlab source code, consisting of a total of four m-files, is listed in Appendix C.

5.1 Experimental Ant Edge Detection Results

Experimental results demonstrates the effectiveness of artificial ants in detecting edges in a digital image.

In ant edge detection the white lines follows the paths where the ants have been walking. The
stronger and more intense this white color is, the larger the number of ants walking that path successfully
depositing pheromone on its trail. Hence, white lines is an indication of edges in the image. Darker
regions means little to no pheromone. However, it does not necessarily mean that no ants have never
explored that part of the image during the construction process. It simply means that too few ants have
been continuously walking there, hence, little to no pheromone is frequently being deposited. Then, all
pheromone deposited have evaporated over time.

Comparing Direction Controlled Ants to Undirected Ants

Direction control lets ants favor pixels laying in their current moving direction. In other words, if an ant
is walking north it continues to favor north-laying pixels over other pixels. That way ants are discouraged
from making sharp u-turns and the probability of moving in circles is reduced. In a general edge detection
scenario, where every edge is of equal importance, such a feature would perhaps not serve its purpose.
However, when focusing on the more linear edges, letting ants follow more or less straight paths makes
the whole difference, as illustrated in Figure 12. Here, all parameter values are identical. The only
difference is that ants, in Figure 12b, are in addition direction controlled.

As seen in Figure 12c, undirected ants generate a lot of round and almost circle-like patterns. This
is the result of ants moving around in edgeless regions of the image. Lacking pixels with sharp intensity
variations to guide the ants forward, may cause them to move in circles until there is no more unvisited
pixels left in the adjacent neighborhood. Hence, a deadlock occurs. Since direction controlled ants
are discouraged from such circular movement, the probability of an ant having visited all its neighbors
naturally becomes very small. Hence, the probability that an ant deadlocks becomes very small. This is
demonstrated in Figure 12b, where these circles are gone.

However, the number of ants entering image borders, border ants, are increased since ants are moving
in straight lines. Naturally, when walking more or less straight paths, the distance a single ant covers
becomes larger. The amount of visited pixels remains the same, but a direction controlled ant will end up
at a far more remote location as compared to an undirected ant. The probability that it enters an image
border is therefore increased considering the high amount of movement steps. By taking a closer look
at the pixels located close by the image borders, in Figure 12b, this is easy to see. It looks like a white
frame around the image. This is related to the fact that a lot of ants are indeed depositing pheromone
around the image borders. This is not the case with undirected ants, as seen in Figure 12c.

In other words, direction control affects both the number of ants that deadlock as well as the number
of border ants. Although having a slightly negative effect with respect to the number of border ants, the
reduced occurrences of deadlocks makes it worthwhile.

Influence of Direction Control

When it comes to the influence of the direction control, the difference between too little and too much
is crucial. Too little direction control means, in practice, the same thing as undirected ants. While the

21

(a) Original crater image.

(b) Direction controlled ants.

(c) Undirected ants.

Figure 12: Direction controlled ants vs. undirected ants.

22

(a) r=0.025. (d) N=3.
(b) r=0.1. (e) N=5.
(c) r=0.175.) N=10.

Figure 13: Direction control and total number of rounds.

latter basically means that ants will only move straight forward, completely ignoring the other important
transition factors such as pheromone and intensity variation. This is demonstrated in Figure 13a - 13c.

Looking at Figure 13a, it becomes clear that with r = 0.025, too little direction control is applied.
Results generated by such ants suffers much of the same consequences as when using undirected ants:
Small round circles. However, too much direction control seems to be reached already when r = 0.175,
and leads to perhaps even worse results, as illustrated in Figure 13c. There may not be any unwanted
circles anymore, and although the focus is biased towards straight lines it is important to not loose all
other edges. After all, not every edge is a completely straight line. Therefore, ants must be able to turn
when the pheromone information or intensity variation indicates so. A value of around 0.1 seems to be
suitable for r. Figure 13b shows this.

Total Number of Rounds

The difference in the total number of executed construction steps (rounds) is not that crucial. It does not
take the ants many iterations to be able to produce a satisfying edge result. The difference between three,
five and ten rounds is illustrated in Figure 13d - Figure 13f.

23

(a) L= 100. (d) K = 100.

(b) L=250. (e) K=0613.

(c) L=500. (f) K =1000.

Figure 14: Total number of movement steps and total number of ants.

Generally it seems like N = 5, Figure 13e, is sufficient for detecting the edges in the image. Even
three rounds, Figure 13d, produces a fairly good result. However, if N = 3, it is possible that some of
the edges may become a little too weak. Hence, the risk of missing out on valuable edge information is
perhaps a little too high. Though, using as much as ten rounds, Figure 13f, gives only somewhat better
highlighted edges as compared to five. Additionally, it does seem to generate a little too much false
edges. Therefore, five rounds seems most appropriate.

Total Number of Movement Steps

Too few movement steps generally leads to worse results, in the sense of generating inadequate edge
traces. This is closely related to the fact that most edges are rather long, considering the current image
size, and therefore consists of a relatively high amount of pixels. For this reason, ants need to walk a
decent amount of steps. This is demonstrated in Figure 14a - Figure 14c.

An inadequate edge trace is shown in Figure 14a. It is fairly easy to see that L = 100 is not really
sufficient for an image size of 752 x 500. Several edges do not seem to be fully detected by the ants, and
some valuable edge information does not show at all. A more suitable amount is shown in Figure 14b,

24

when L = 250. Even as much as L = 500 generates adequate results, as illustrated in Figure 14c. One
could in fact argue that the latter does seem to contain more valuable edge information. After all, higher
values implies that each ant is capable of detecting even more edges each round. On the other hand, it
does generate more noise and more false edges as well, considering that ants do need to walk somewhere
when moving from one edge to another. Although the difference between the two is noticeable, it is not
truly the most decisive factor in the end. Hence, L = 250 seems sufficient.

Total Number of Ants

The number of ants is essential. After all, ants are the ones responsible for detecting the edges in the
images. Using too few of them simply leads to a poor edge trace because they will not be able to fully
cover the whole image. Hence, the total number of ants needs to be big enough to ensure that the edges
in the images is being detected. Though overdoing it would suggest that a lot of ants will be walking
around and depositing pheromone in edgeless areas of the image. Which in turn results in false edges.
Since they all start at random locations there is no way to prevent this from happening. Therefore, the
total number of ants also needs to be small enough in order to limit the amount of false edge information.
This is demonstrated in Figure 14d - Figure 14f.

As illustrated in Figure 14d, K = 100 leads to a poor edge trace. There is a lot of edges not being
successfully detected by the ants. Then, Figure 14f illustrates the opposite. K = 1000 contains so much
edge information that it is almost impossible to distinguish one edge from another. Besides, that many
ants are detecting a lot of false edges. The formula used in the studied literature [5, 6], when applying
artificial ants to image edge detection, proves to hold. In other words, K = L\/752 X SOOJ = 613 seems
to be a good number, as shown in Figure 14e.

5.2 [Experimental Morphological Edge Detection Results

Experimental results demonstrates the usefulness of mathematical morphology and mathematical set
theory in detecting edges in a digital image.

In morphological edge detection, just as with ant edge detection, white lines is an indication of edges
in the images. Likewise is a dark pixel an indication of a non edge pixel.

However, as opposed to ant edge detection, there are no parameter values to adjust in morphological
edge detection. The results obtained depends on the composition of the morphological edge detector
as well as the construction of the structuring element. In the case of erosion residue edge detection,
dilation residue edge detection and morphological gradient edge detection, the results are all obtained
by performing multiple erosions and dilations of the image, using each of the four structuring elements
in succession. That way, each of these detectors generate only a single composite result (per image),
utilizing all four structuring elements. For the case of reduced noise morphological gradient edge de-
tection however, the case is a little different. The detector itself is much more complex and contains
composite morphological operators. For this reason, and considering the fact that both opening and clos-
ing dilates and erodes its resulting set using the same initial structure element, the process of applying
several structuring elements in succession becomes cumbersome. Hence, reduced noise morphological
edge detection is performed once per structuring element, generating a total of four results (per image).

Erosion and Dilation Residue Edge Detection

Both erosion residue edge detection and dilation residue edge detection gives unsatisfactory results, as
illustrated in Figure 15. Using one or the other does not seem to matter that much as they both suffer the
same major weakness: Noise. At the same time it is fairly easy to distinguish between the two detectors.

In erosion residue edge detection, Figure 15a, it seems almost like the image edges are shifted (one
pixel) outwards. Considering the fact that gray scale erosion is supposed to darken an image, it seems
only appropriate that darker objects (cracks) are indeed expanded a little. Hence, transposing their edges

25

(a) Erosion residue edge detection. (b) Dilation residue edge detection.

Figure 15: Erosion and dilation residue edge detection.

further out. The opposite effect is shown in Figure 15b, where dilation residue edge detection shifts the
edges (one pixel) inwards, closing the gaps and thus brightening the image.

The big issue however, which neither of the two detectors are able to cope with, is noise. In fact, all
the noise makes most of the edge traces confusing and hard to follow.

Morphological Gradient Edge Detection

Morphological gradient edge detection is illus-
trated in Figure 16. A morphological gradient
edge detector highlights sharp gray level transi-
tions. As easily seen, that does not produce a for-
tunate result when it comes to producing clear im-
age edges. As a matter of fact, this is the worst
edge trace so far.

The total amount of noise is about the same
as with the residue detectors, but the visual pre-
sentation has become all blurry and obscure. It is
possible to follow some of the major edge trends
in the image when knowing exactly where to look. Figure 16: Morphological gradient edge detection.
However, without any pre-knowledge of the input
image and its edges, analyzing a result like this becomes problematic at best. It is quite obvious that a
morphological gradient edge detector does not suit the nature of this problem very well.

Reduced Noise Morphological Gradient Edge Detector

Reduced noise morphological gradient edge detector is demonstrated in Figure 17. Results using four
3 x 3 structuring elements (Table 2) is shown in Figure 17a - 17d.

As compared to the (noisy) morphological gradient edge detector, these results does contain consid-
erable less noise. Furthermore, the results are neither blurry nor unclear. Besides, none of the edges
seems to be transposed in any direction as is the case with the residue detectors. There is one big dis-
advantage though, that makes these results less valuable, and that is the quality of the detected edges.
Depending on the orientation of the applied structuring element several edges are not detected at all.
Then, the majority of the edges that are detected have a rather fragmented and incomplete edge trace. It
looks a little like an incomplete ant edge detection result with additional noise. Even though the amount
of noise is less compared to the other morphological edge detection results, it is still considered a decisive
amount. After all, it does make it more troublesome to follow the edge trends in the image.

26

(a) Reduced noise morphological gradient edge de- (c) Reduced noise morphological gradient edge de-
tection using a 0 deg structuring element. tection using a 90 deg structuring element.

(b) Reduced noise morphological gradient edge de- (d) Reduced noise morphological gradient edge de-
tection using a 45 deg structuring element. tection using a 135 deg structuring element.

Figure 17: Reduced noise morphological gradient edge detector.

Comparing Ant Edge Detection to Morphological Edge Detection

By comparing ant edge detection to morphological edge detection, Figure 18, it becomes quite clear that
(directed) artificial ants outperforms mathematical morphology in detecting the edges in the images.

Morphological edge detection, Figure 18c, have the advantage of being close to “real time” edge
detection. In other words, it takes the detectors roughly a second to process an image. Ant edge detection
takes about seven minutes, hence, morphological edge detection is in fact several hundreds times faster.
Additionally, none of the morphological edge detectors generates a false edge frame along the image
border, like ants do. Though, all the noise generated by morphological edge detectors is not desired.
Besides, artificial ants generates clearer and more complete edge traces, as well as a considerable less
amount of noise, as seen in Figure 18b. Since computational times is not considered an issue, this is a
much more valuable result.

5.3 Experimental Crack Extraction Results

Experimental results demonstrates the practicability of the proposed novel approach in extracting crack
information from a digital image.

In crack extraction, as opposed to the two edge detection methods where white pixels indicates
edges, black pixels is an indication of cracks in the image. In other words, a white pixel now represents
a background (non-crack) pixel. Typically, an object (crack) pixel is given a value of “1” (white), while
a background (non-crack) pixel is given a value of “0” (black). However, to better distinguish between
the results obtained in edge detection and crack extraction, a black pixel indicates a crack pixel.

Note that crack extraction is based on the edge information detected by artificial ants. Direction
controlled ants clearly outperformed mathematical morphology in detecting edges in the images. Hence,
no morphological edge detection results are used to extract cracks. For this reason, the quality of the
extracted crack information is highly dependent on the work done by the ant collective.

27

(a) Original crater image.

(b) Ant edge detection.

(c) Morphological edge detection.

Figure 18: Ant edge detection vs. morphological edge detection.

28

() y = 20%.

Figure 19: Ant edge and gray scale thresholding using percentiles.

Thresholding using Percentiles

When reducing the gray scale ant edge image to a binary crack image, it is important to keep in mind
the project goal. Generally speaking, it is considered more valuable to generate a result showing “a little
too much” information, rather than thresholding it all away. More specifically, a result clearly showing
cracks and linear trends in the image, at the expense of some noise, is better than a result showing only
the biggest and most significant cracks. Therefore, thresholding with appropriate percentiles becomes
the most decisive factor when extracting valuable crack information. In fact, the higher the value of
the given percentiles, the less cracks will be extracted. Then, thresholding by too low percentiles leads
to considerably more noise and unwanted information. Figure 19 demonstrates this. Figure 19a - 19¢
illustrates the effect of different edge percentiles used when reducing the gray scale edge information
to binary crack information. Figure 19d - 19f illustrates the effect of different gray scale percentiles
used when finding a sufficiently small value, based on the values in the gray scale image, to use as the
definition of a crack pixel.

Judging by Figure 19c, a 95% edge percentile seems too strict. That way, only edge pixels having a
value among the top five percent of the total edge data is considered a valid crack pixel. This leads to the

29

bigger and more significant cracks becoming extracted pretty well. However, there is clearly a lot of the
minor crack trends in the image that have been thresholded away simply because their initial edge value is
not high enough to survive the thresholding process. More specifically, the ants have not been depositing
enough pheromone on these edge pixels during edge detection. This is unfortunate considering the fact
that such crack trends is considered valuable information. Though, by decreasing the edge percentile to
75%, as illustrated in Figure 19a, a lot more, and in fact too much, information is being extracted. This
is the result of being to lenient towards the ants by using a threshold value so low that even pixels not
really representing edges in the images, but rather is being traversed as the ants are searching for more
promising pixels, survives the thresholding process. More specifically, it requires just a small amount
of pheromone in order to be marked as a crack pixel. This is clearly not optimal. Using a 85% edge
percentile seems more appropriate, as shown in Figure 19b. There is still a sufficient amount of noise
and false cracks present due to ants walking these paths during edge detection. However, several minor
cracks are extracted and it is relatively easy to follow trends in the image.

The same reasoning applies to gray scale per-
centiles, but with the opposite effect. As shown in Fig-
ure 19d, requiring a crack pixel to have a gray scale
value among the lowest 1% of the total gray scale data
is too strict. This is easily seen as several parts of the
big center crack is not being filled. In fact, lots of
true crack pixels are not being marked as crack pixels.
Then, ¥ = 20% results in more cracks than appropriate,
as shown in Figure 19f. As illustrated in Figure 19e,
Y= "7.5% seems to be a good value.

Noise Filtering by Eccentricity

The noise filter is responsible for removing randomly
occurring pixels, as a result of thresholding the ant edge
image to a binary crack image. Regions of noise of-
ten have a very small eccentricity ratio (circular com-
ponents), which can be removed by the filter. Also,
the edge frame generated by border ants should be re-
moved. Figure 20 demonstrates the difference between
no noise filter (Figure 20a), a suitable noise filter (Fig-
ure 20b), and too much noise filtering (Figure 20c).

By not using a noise filter it becomes quite easy to
see the amount of noise generated during the thresh-
olding process. The result suffers from lots of smaller
pixel groups (one, two, three connected pixels) occur-
ring seemingly randomly over the entire image. These
are rarely a part of an actual crack. Hence, they are
considered as noise and should consequently be re-
moved. Though, overdoing the noise filter leads to fil-
tering away more than just noise. As seen by compar-
ing the two filters, entire cracks are actually missing
in the latter case. This is obviously bad and indicates
that removing all connected components having an ec-
centricity ratio below 0.75 is not appropriate. A noise
filter capable of removing small pixel groups, and at
the same time preserving the crack trends in the image,
seems to suit a value of 0.25.

Figure 20: Noise filtering by eccentricity.

30

(b) N =25.

Figure 21: Total number of crack filling iterations.

Total Number of Crack Filling Iterations

The number of iterations affects the extent of the crack filling process, as demonstrated in Figure 21.
After the first iteration all crack outlines are extended by one pixel into the crack itself. Hence, every
crack now has a more or less two pixel wide outline. For this reason, cracks only a few pixels wide
becomes completely filled after only a few iterations (Figure 21a). Then, with every new iteration, the
gaps continues to fill by one pixel all around their perimeter. That way, even the widest cracks becomes
completely filled after a sufficient amount of iterations. To make sure every crack is eventually filled,
even the widest cracks, as much as 25 iterations is used (Figure 21b). This might be considered a little
extreme. Though, considering the fact that each iteration completes within seconds, as well as every
additional iteration taking less time than the previous, it is not considered a real issue.

5.4 Experimental Test Results

Experimental test results (Appendix B) demonstrates the usefulness of the proposed approach in extract-
ing cracks from images taken from the Ritland meteorite impact crater. Experiments are carried out on a
total of sixteen test images, independent of the previous training images, using the appropriate parameter
values. The reason for not using a larger selection of test images is the similarity in the original images.
The sixteen images selected are those that best represents the diversity among the available images.

The goal of this project is to generate (binary) images showing the cracks in the crater rocks. Al-
though some of the test results obtained are better than others, all results are showing a satisfactory
amount of extracted crack information.

The results are influenced by feedback from a geologist. Therefore, as much cracks as possible, both
big and small, is attempted extracted in order to better determine the various crack trends in the images.
Hence, noise and false cracks is also to be expected. Besides, crack extraction is based on ant edge
detection. Hence, the quality of the extracted cracks is dependent on the work carried out by a direction
controlled ant collective. In fact, a majority of the false cracks are a (direct) result of ant edge detection,
where ants deposit pheromone along false crack outlines as they search for true edges in the images.

It is fairly easy to see that in images where the crack outlines are originally vague (Figure 38 on
page 48), the ants have some trouble with detecting edges properly, hence, generating a satisfying edge
trace to use in the crack filling process. The reason for this is that vague crack outlines suffers from
small intensity variations, meaning that edge pixels have a gray scale intensity value almost as small as
its surrounding non-edge pixels. This naturally makes the edges less attractive to ants. In images with
initially clear outlines howeyver, it is easy to determine the various crack trends generated in the result
images (Figure 28 on page 38).

Ants naturally have trouble with distinguishing between edges belonging to a crack and edges belong-
ing to a moss patch, as they are both identified by pixels where the intensity variation is high. Therefore,
ants are only able to treat a moss patch as a crack, hence, detect its edges. Besides, both cracks and

31

(a) Original image. (b) Significant cracks extracted.

Figure 22: Extracting only the most significant cracks.

moss patches are identified by dark pixels, which affects the crack filling process. In other words, moss
patches will be marked and colored as cracks in the resulting images (Figure 33 on page 43).

In order to generate a result showing only the most significant cracks, increasing the applied edge
percentile is useful. This leads to the amount of false crack information becoming considerably less.
Though, doing so naturally results in the loss of valuable minor crack trends as well. This is demonstrated
in Figure 22, where (only) the edge percentile is increased from 85% to 97.5%.

6 Conclusion

A new direction controlled ant colony optimization method, building on improvements introduced in the
ant colony system algorithm, have been implemented and tested in image edge detection. Experiments
show the superiority of the new method, as compared to mathematical morphology, in detecting edges
in images of rocks taken from a meteorite impact crater. Furthermore, a novel approach for extracting
cracks from the images, by making use of the edge information obtained by the new direction controlled
ants, have been developed and tested. Experiments show the success of the algorithm in extracting
valuable crack information from the impact crater images. The obtained end results is meant to assist
geologists when studying crack trends in images of crater rocks. The results are highly dependent on the
actual nature of the images and is therefore likely to vary in other applications.

7 Future Work

As a continuation of work on the subject, it is possible to further examine how the quality of the extracted
information is affected by different parameter value combinations. It could be interesting to assign
ants different sensitivity levels against pheromone, making some ants more sensitive whilst others less.
Besides, fine tuning the new direction control feature by looking at the ants latest steps, in stead of
their starting position, may be profitable. There is also reason to believe that if the smaller and least
significant cracks could be darkened, by improved pre-processing, it would be beneficial. Then, using
a more sophisticated method for choosing the threshold values, as well as applying a more appropriate
noise filter, will have a positive effect on the end results. Furthermore, the proposed approach would be
enriched by a rose diagram feature that shows crack orientation. That way, the cracks’ direction can be
automatically measured and quantified. It is also likely profitable to gain even better understanding of
the inner nature of meteorite impact craters. Hence, getting more insight and knowledge as to what a
geologist actually looks for when analyzing a meteorite impact crater. Besides, providing geologists the
possibility to manually remove and add cracks (an interactive program) from the images being processed
is thought to be a most valuable addition.

32

Appendix A

Training Images

(c) Training image: 8397.

Figure 23: Training images.

33

Appendix B

Test Image: 8358

(a) 8358 original.

(b) 8358 ant edge detection.

.. & z k2 L - . y
-. 1 € ; . X A : = E - - [p “
P 5 e ST A O Y Bt AT P W

(c) 8358 crack extraction.

Figure 24: Test image: 8358.

Appendix B

Test Image: 8367

(c) 8367 crack extraction.

Figure 25: Test image: 8367.

35

Appendix B

Test Image: 8371

(a) 8371 original.

(b) 8371 ant edge detection.

(c) 8371 crack extraction.

Figure 26: Test image: 8371.

36

Appendix B

Test Image: 8377

(a) 8377 original.

(b) 8377 ant edge detection.

(c) 8377 crack extraction.

Figure 27: Test image: 8377.

37

Appendix B

Test Image: 8378

(a) 8378 original.

(b) 8378 ant edge detection.

(c) 8378 crack extraction.

Figure 28: Test image: 8378.

38

Appendix B

Test Image: 8379

(a) 8379 original.

(b) 8379 ant edge detection.

(c) 8379 crack extraction.

Figure 29: Test image: 8379.

39

Appendix B

Test Image: 8380

(a) 8380 original.

(b) 8380 ant edge detection.

(c) 8380 crack extraction.

Figure 30: Test image: 8380.

40

Appendix B

Test Image: 8383

(a) 8383 original.

(b) 8383 ant edge detection.

(c) 8383 crack extraction.

Figure 31: Test image: 8383.

41

Appendix B

Test Image: 8384

(b) 8384 ant edge detection.

(c) 8384 crack extraction.

Figure 32: Test image: 8384.

42

Appendix B

Test Image: 8385

ki o

(a) 8385 original.

(b) 8385 ant edge detection.

(c) 8385 crack extraction.

Figure 33: Test image: 8385.

43

Appendix B

Test Image: 8387

(a) 8387 original.

(b) 8387 ant edge detection.

ap - Y e = 'v"n'.‘ halfi g “ _ 1
ey 0N AT AR S - -\L
r AT ey - P an

13 = . iy

'ﬂ&._ & v\ﬁx{"-f_ l‘d ‘\I

t-\\ﬂ\ ‘
IO

(c) 8387 crack extraction.

Figure 34: Test image: 8387.

44

Appendix B

Test Image: 8388

(c) 8388 crack extraction.

Figure 35: Test image: 8388.

45

Appendix B

Test Image: 8393

(b) 8393 ant edge detection.

B T

=
%
£
L

3
{

i

-~

Figure 36: Test image: 8393.

46

Appendix B

Test Image: 8394

(b) 8394 ant edge detection.

(c) 8394 crack extraction.

Figure 37: Test image: 8394.

47

Appendix B

Test Image: 8398

(b) 8398 ant edge detection.

(c) 8398 crack extraction.

Figure 38: Test image: 8398.

48

Appendix B

Test Image: 8399

(b) 8399 ant edge detection.

:] r b i
- AT
Tl 4

o g ML

L

(c) 8399 crack extraction.

Figure 39: Test image: 8399.

49

Appendix C

Matlab Source Code

Image Reading, Image Processing and Image Writing (IRIPIW.m)

VL Loldledeldlededldlededldlededdledededlededleledlededledlededledledledledlededledlededledlededledledledledledledledledledledledlededledleddledledledledledledledledleledledledledledledledled

% %
% Image Reading, Image Processing and Image Writing (IRIPIW .m) %
% %
SISTTISTTIITIITIITIITIISTIISTTISTTISTTITTITTITTIITIITIITIITIITIISTIISTTISTTISTTISTT I fo
clear;

close all;

% Image Reading Variables

directory = 'workspace/"'; % Current Working Directory
files = dir([directory '=x.jpg'l); % All (jpg) Image Files in workspace
I = cell(numel(files), 1); % Cell Array of Images

% Image Processing Variables
gauss = fspecial('gaussian',[5 5]); % Gaussian Blur Filter

% Image Reading, Image Processing and Image Writing
for idx = l:numel(I); % Images

Sl e edldledldededededdldldededededdleddededededledledddedlededledledldldledledledededledleddledleded el
% Image Reading and Pre—Processing %o
Rl edledldldedededededldldededededdleddededededledledldededbededledledldldbedledledledledledldedbedledededledleddedlededl el

% Read the Original Image: 3008x2000 Pixels
I{idx} = double(imread(files(idx).name))./255;

% Resize the Image: 752x500 Pixels (Aspect Ratio Maintained (NaN))
I{idx} = imresize(I{idx}, [500 NaN]);
imwrite(I{idx}, [strrep(files(idx).name, '.jpg', '') ''ORIG.jpg']l, 'jpg');

% Convert the Image to Gray Scale
I{idx} = rgb2gray(I{idx});

% Apply Gaussian Blur (Reduce Image Noise)
I{idx} = imfilter(I{idx},gauss);
imwrite(I{idx}, [strrep(files(idx).name, '.jpg', '') ''GRAY.jpg']l, 'jpg'):

Rl el edldldldededededdldldedededededleddededededledledldedledbedledledledldldbedledledledledledlededbedlededledledleddedleded el
% Image Processing %
Rlleleledeledlededledlededledledledledlededledlededledlededledlededledlededledlededledlededledledededledledededledededledldledledldledledldlededldledledldledledle ledledledledledle

% Ant Edge Detection

N = [5]; % Number of Rounds

L = [250]; % Number of Movement Steps

K = [613]; % Number of Ants

R = [0.1]; % Influence of Direction Control
for n = l:numel(N);

for 1 = 1:numel(L);
for k = 1:numel(K);
for r = 1l:numel(R);
% Direction Controlled Ant Colony Optimization (DCACO)
[T] = DCACO(I{idx}, N(n), L(1), K(k), R(x));
imwrite(T, [strrep (files(idx).name, '.jpg', '') '_EDGE(' num2str(N(n)) '«
—'" num2str(L(1)) '—' num2str(K(k)) '—' num2str(R(r)) ').jpg']l, 'jpg '«
)3
end % for r
end % for k
end % for 1
end % for n

% Morphological Edge Detection

[ERED DRED MGED RNMGED1 RNMGED2 RNMGED3 RNMGED4] = MIP(I{idx});

imwrite (ERED, [strrep (files(idx).name, '.jpg', '') '_MIP(ERED).jpg'], 'jpg');
imwrite (DRED, [strrep (files(idx).name, '.jpg', '') '_MIP(DRED).jpg'], 'jpg');

50

imwrite (MGED, [strrep (files(idx).name, '.jpg', '') '_MIP(MGED).jpg']l, 'jpg'):;

imwrite (RNMGED1,[strrep (files(idx).name, '.jpg', '') '_MIP(RNMGEDI).jpg '], 'jpg');
imwrite (RNMGED2,[strrep (files(idx).name, '.jpg', '') '_MIP(RNMGED2).jpg '], 'jpg'):
imwrite (RNMGED3,[strrep (files(idx).name, '.jpg', '') '_MIP(RNMGED3).jpg '], 'jpg');
imwrite (RNMGED4,[strrep (files(idx).name, '.jpg', '') '_MIP(RNMGED4).jpg '], 'jpg');

% Crack Extraction

N = [25]; % Number of Iterations

EP = [85]; % Edge Percentile (> % Edge)
GP = [7.5]; % Gray Percentile (< % Gray)
E = [0.25]; % Eccentricity

for n = l:numel(N);

for ep = l:numel(EP);
for gp = l:numel(GP);
for e = l:numel(E);
% Crack Closing (CC)
[C] = CC(I{idx}, T, N(n), EP(ep), GP(gp). E(e)):
imwrite(C, [strrep(files(idx).name, '.jpg', '') '_CRACK(' num2str(N(n)) ¢

'—' num2str(EP(ep)) '—' num2str(GP(gp)) '—' num2str(E(e)) ').jpg'l, ¢
‘jpg');
end % for r
end % for k
end % for 1

end % for n

end % end for idx

% end IRIPIW .m

Direction Controlled Ant Colony Optimization (DCACO.m)

RLLAUUAAAAddldledldledldledledledledledledledledledledledledledledldledledldledledldddldledledldlddldledlddldldledldldldldldledledldldledledledldledledledledledledledledledledld
% %
% Direction Controlled Ant Colony Optimization (DCACO.m) %
% %

S Leileleleledlededlededlededlededlededledledededlededledledledledlediedlededlediedledledldledledledlededledlededleddededledledledledledledl e el el ledle el ledle el ledledledl e dle e

function [T] = DCACO(I, N, L, K, r)

% T = Output Final Pheromone Matrix

% 1 = Input Image

% N = Input Total Number of Rounds

% L = Input Total Number of Movement Steps

% K = Input Total Number of Ants

% tr = Input Influence of Direction Control

VLl delededledledlededlededledledlededle el el el dledledledledledleledledledlededleedlededlededlededleedleedleledle ledle el el el el e e Lok
% DCACO (1. Initialization Phase) %
VLTl el el el el e dledledledledlele el el el el el e el
% MISC

[rows cols] = size(I); % Matrix Dimensions

% Pheromone: T

T_init = 0.00000001; % Initial Pheromone
T(l:rows,l:cols) = T_init; % Pheromone Matrix
TO = T; % Initial Pheromone Matrix

% Local Intensity Variation Matrix (The Clique): Vc
for i = l:rows;
for j = l:cols;
% Local Intensity Variation at The Two Outermost Pixels
if ((i<3) Il (j<3) Il (i>(rows—2)) Il (j>(cols—2)))
Ve(i,j) = T_init;
% Local Intensity Variation at The Clique
else
Ve(i,j) = abs(I(i—-2,j)—-I(i+2,j)) + abs(I(i-1,j)-I(i+l,j))
+ abs(I(i ,j—2)-I(i ,j+2)) + abs(I(i ,j—1)-I(i ,j+1))
+ abs(I(i—2,j—2)-I(i+2,j+2)) + abs(I(i+2,j—2)-I(i-2,j+2))
+ abs(I(i—1,j—1)-I(i+1,j+1)) + abs(I(i+l,j—1)-I(i—-1,j+1))

51

+ abs(I(i—2,j—1)-I(i+2,j+1)) + abs(I(i+2,j—1)-I(i—2,j+1))
+ abs(I(i—1,j—2)-I(i+1,j+2)) + abs(I(i+1,j—2)-I(i—1,j+2));

% Clique Check: Clique Sum Equals Zero (0)

if (Ve(i,j) == 0)

Ve(i,j) = T_init;
end % if
end % if else
end % for
end % for

% Maximum Intensity Variation: Vmax
Vmax = max(Vc(:));

% Normalized Intensity Variation Matrix (The Heuristic Information): H
H(l:rows,l:cols) = Vc(:,:)./Vmax;

% Polar Matrix (Direction Control): pol
pol = [(5=pi)/4 (3xpi)/2 (7xpi)/4;
pi 0 0 ;

(3xpi)/4 pi/2 pi/4 1;

Lottt el dledlledledldledledldlededledleedledlededledlee bbbl el ledlee el dledledbedledlodle el el dledle e dledleededlle el el
% DCACO (2. Construction Phase) %
W Lotlitetledlle el dledlledleddledledldlededdlededledleedledleedledleledledleedledlee el e ledlebeledledbedledledbedledledledledledledledledledledledledledlele el el el s

fprintf('Ants at work...\n');

% MISC
rand('state

1

, sum(clock)); % Random Seed Uses Time (Clock)

% ACO Spesific Parameters

9N = 5; % Number of Rounds

gL = 250; % Number of Movement Steps
IK = floor (sqrt(rows=cols)); % Number of Ants

a=1.0; % Influence of Pheromone
b= 1.0; % Influence of Heuristics
evop = 0.1; % Evaporation (pr. Round)
w = 0.05; % Decay (pr. Ant)

% Direction Control Spesific Parameters
Jr = 0.1; % Influence of Direction Control

% Ant Tracking
antDeadlock = zeros ([K N]); % Ant Deadlocks
antOnBorder = zeros ([K N]); % Ant on Image Borders

% Ant Movement
tCon=tic ;
for n = 1:N; % Rounds
fprintf('\n');
display (['ROUND: ' num2str(n)]);
% Ants Random (Round) Start Positions (No Ants Start on Image Borders)
for k¥ = 1:K;
antTour{k,n}(1,1:2) = [round(2+(rows—3).xrand(1,1)), round(2+(cols—3).xrand(1,1))];
end % for k
% Ants (Round) Deadlock and Border Counter
deadlockCounter = 0;
borderCounter = 0;
for 1 = 1:L; % Movement Steps
for k = 1:K; % Ants
% Ant Check: Deadlocked or Image Bordered (No Movement!)
if ((antDeadlock(k,n)==1) || (antOnBorder(k,n)==1))
continue;
end % if "Ant Check"
% Current Ant Position: (i,j)
i = antTour{k,n}(1,1);
j = antTour{k,n}(1,2);
% Neighborhood Pheromone Information: nT
nT(1:3,1:3) = T(i—1:i+1, j—1:j+1);
nT(2,2) = 0; % Nullify (Exclude) Current Pixel
%display (nT) ;
% Neighborhood Intensity Variation Information: nH
nH(1:3,1:3) = H(i—1:i+1, j—1:j+1);

52

nH(2,2) = 0; % Nullify (Exclude) Current Pixel
%display (nH) ;
% (Traditional ACO) Transition Probabilities: p
p(1:3,1:3) = ((nT."a).*(nH.”b))./(sum(dot((nT.*a) ,(nH."b))));
Podisplay (p);
% No Direction Control (First Movement Step!)
if (1 ==1)
% Ant Current Position Equals Ant Start Position
% Direction Control
else
% Directions: North—East, East, South—East
if (j > antTour{k,n}(1,2))
g = atan ((i—antTour{k,n}(1,1))/(j—antTour{k,n}(1,2)));
% Directions: North—West, West, South—West
elseif (j < antTour{k,n}(l,2))
% Directions: West, South—West
if (i >= antTour{k,n}(1,1))
g = atan ((i—antTour{k,n}(1,1))/(j—antTour{k,n}(1,2))) + pi;
% Direction: North—West
else
g = atan ((i—antTour{k,n}(1,1))/(j—antTour{k,n}(1,2))) — pi;
end % if else
% Directions: North, South
else
% Direction: North
if (i < antTour{k,n}(1,1))

g = —(pi/2);
% Direction: South
else

g = pi/2;

end % if else
end % if elseif else
%display (g);
% Neighborhood Direction Control: nQ
nQ = r.=(cos(pol—g)+1);
InQ = (cos(pol—g)+1)."r;
nQ(2,2) = 0; % Nullify (Exclude) Current Pixel
%display (nQ) ;
% (DCACO) Transition Probabilities: p
p = (p+nQ) ./ (sum(p(:)+nQ(:)));
%edisplay (p);
end % if else "Direction Control"
% Local Destination Index: (Ix,ly) (May Be More Than One!)
[1x 1y] = find (p==max(p(:)));
% Destination: (Xx,y)
x = i—2+1x(1,1);
y = j-2+1y(1.1);
% Destination Check: Visited Pixels
while ((any(ismember (antTour{k,n}(:,1:2) ,[x y], 'rows'))==1) && (max(p(:))~=0))
p(1x,1ly) = 0; % Nullify (Exclude) Visited Pixel
Jedisplay (p);
[1x 1y] = find (p==max(p(:))):
% New Destination: (x,y)
x = i—2+1x(1,1);
y = j-2+1y(1.1);
end % while "Destination Check"
% Ant Deadlock Check: Prevent Further Ant (Round) Movement
if (max(p(:)) == 0)
display (['Ant ' num2str(k) ' DEADLOCKED at pixel [' num2str(i) ',' num2str(j<«
) '] after ' num2str(1—1) ' steps in round ' num2str(n)]);
antDeadlock(k,n) = 1;
deadlockCounter = deadlockCounter + 1;
continue;
end % if "Ant Deadlock Check"
% Ant Border Check: Prevent Further Ant (Round) Movement
if ((x==1) |l (x==rows) |l (y==1) |l (y==cols))

display (["Ant ' num2str(k) ' IMBORDERED at pixel [' num2str(x) ',' num2str(y<«>
) ']l after ' num2str(l) ' steps in round ' num2str(n)]);

antOnBorder(k,n) = 1;

borderCounter = borderCounter + 1;

end % if "Ant Border Check"
% Ant (Round) Movement: To Destination (x,y)
antTour{k,n}(1+1,1) = x;

53

antTour{k,n}(1+1,2) = y;
% Immediate Local Pheromone Update: Pheromone Decay
T(x,y) = (1—w).*T(x,y) + w.*TO(x,y);
end % for K Ants
end % for L Movement Steps
for k = 1:K; % Ants
for 1 = 2:size(antTour{k,n},1);
% Offline Pheromone Update: Pheromone Evaporation
T(antTour{k,n}(1,1), antTour{k,n}(1,2)) = (l—evop).*T(antTour{k,n}(1l,1), antTour«+

{k,n}(1,2))
+ evop.xH(antTour{k,n}(1l,1), antTour<+
{k.n}(1,2));
end % for 1
end % for k
fprintf('\n');
display (['DEADLOCKS: ' num2str(deadlockCounter) ' (' num2str(((deadlockCounter/K)=*100)) <«
%) 1)

display (['IMBORDERS: ' num2str(borderCounter) ' (' num2str(((borderCounter/K)=*100)) '%)'<«
1)3
toc (tCon);
end % for N Rounds

fprintf('\n... Ants done!\n');

end
% end DCACO.m

Morphological Image Processing (MIP.m)

% %
% Morphological Image Processing (MIP.m) %
% %
S Ll dedlededlededlededlededlededledededledlededlededle el e e el el edkededlededkeedleedldedlededledledle el el ledleledle Lol ledle Lol el el el

function [ERED DRED MGED RNMGED1 RNMGED2 RNMGED3 RNMGED4] = MIP(I)

% Structuring Elements
% 000 001 010
% 111 010 010
% 000 100 010 0
SE = [strel('line', 3, 0)
strel('line ', 3, 45)

3

3

S

(=)
oS = O
—_ O

strel('line ', , 90)
, 135) 15

'

strel('line ',

% Erosion Residue Edge Detector (ERED)
ERED = I — imerode(I,SE);

% Dilation Residue Edge Detector (DRED)
DRED = imdilate(I,SE) — I;

% Morphological Gradient Edge Detector (MGED)
MGED = imdilate(I,SE) — imerode(I,SE);

% Reduced Noise Morphological Gradient Edge Detection #1 (RNMGEDI)
M = imopen(imclose(I,SE(1)),SE(1));

RNMGED1 = imdilate(imclose(M,SE(1)),SE(1)) — imclose(M,SE(1));

% Reduced Noise Morphological Gradient Edge Detection #2 (RNMGED2)
M = imopen(imclose(I,SE(2)).,SE(2));

RNMGED2 = imdilate(imclose(M,SE(2)),SE(2)) — imclose(M,SE(2));

% Reduced Noise Morphological Gradient Edge Detection #3 (RNMGED3)
M = imopen(imclose(I,SE(3)),SE(3));

RNMGED3 = imdilate(imclose(M,SE(3)),SE(3)) — imclose(M,SE(3));

% Reduced Noise Morphological Gradient Edge Detection #4 (RNMGED4)
M = imopen(imclose(I,SE(4)),.SE(4));

RNMGED4 = imdilate(imclose(M,SE(4)),SE(4)) — imclose(M,SE(4));

end % MIP.m

54

Crack Closing (CC.m)

RLLetlglelededladledledledledededtedledledledededledledledlededledlededledledediedlededledledlediedledledledledleiedledledledlodledledlededledledledtedlededledledledledledlededledledledbedlededledledtedtedl

% %
% Crack Closing (CC.m) %
% %

S Leldldledledledledldledledledledledledledledledledledledledledledledleddledledledledledledledledledldledledleddedlededlededledledlededle

function [B] = CC(G, A, N, EP, GP, E)

% B = Output Crack Information

% G = Input Gray Scale Image

% A = Input Ant Edge Image

% N = Input Number of Iterations

% EP = Input Edge Percentile (%)

% GP = Input Gray Percentile (%)

% E = Input Shape Measurement: Eccentricity

% MISC
[rows cols] = size(G); % Image <

Dimensions

% Statistics (percentile)

crack = prctile(sort(G(:)), GP); % Crack (< Gray) <
Threshold

edge = prctile(sort(A(:)), EP); % Edge (> Ant) <
Threshold

% Binary Image
B = im2bw(A,edge); % Original (¢«
Binary) Ant Image

% Figure(s)

set (0, 'DefaultFigurePosition ', get(0, ' 'ScreenSize '));

figure (1); imshow(G, 'InitialMagnification','fit', 'Border"', 'tight"');
pause (2);

figure (2); imshow(A, 'InitialMagnification ', 'fit', 'Border"', 'tight');
pause (2);

figure (3); imshow(~B, 'InitialMagnification ', 'fit', 'Border"', 'tight');
pause (2);

% Remove Ant Frame

B(3,:) = 0; % Clear Row: 3

B(rows—2,:) = 0; % Clear Row: Row<+
-2

B(:,3) = 0; % Clear Col: 3

B(:,cols—2) 0; % Clear Col: Col¢«
-2

% Noise Filtering

cc = bwconncomp(B,8); % Connected <«
Components (8—Connectivity)

stat = regionprops(cc, 'Eccentricity ');

for i = l:cc.NumObjects;

if (stat(i).('Eccentricity ') < E)
B(cc.PixelldxList{i}) = O;
end % if
end % for

figure (4); imshow(~B, 'InitialMagnification ', 'fit', 'Border"', 'tight"');
pause (2);

b = B; % Processed («
Binary) Ant Image
% Crack Highlighting and Closing
for n = 1:N; % Iterations
% Binary Edge (1) Pixels
[i j] = find(b==1);
b(:) = 0;
for x = l:numel(i);
% Not Image Border Pixel
if (i(x)~=1 && j(x)~=1 && i(x)~=rows && j(x)~=cols)

55

% Crack Highlighting
if (n==1)
% Horisontal Crack Highlighting (HCH): [—]
Hf((G(i(x),j(x)—1) < G(i(x),j(x)+1)) && (G(i(x),.j(x)—-1) < G(i(x),j(x))))
B(i(x),j(x)—-1) = 1;
b(i(x),j(x)—-1) = 1;
elseif ((G(i(x),j(x)+1) < G(i(x),j(x)—1)) && (G(i(x),j(x)+1) < G(i(x),j(x)))«
)
B(i(x),j(x)+1)
b(i(x).j(x)+1)
else
% Crack Horisontally Highlighted
end % if HCH
% Vertical Crack Highlighting (VCH): [|]
H(G(E(x)—1,j(x)) < G(A(x)+1,j(x))) && (G(i(x)—1,j(x)) < G(i(x).j(x))))
B(i(x)-1,j(x)) = 1;
b(i(x)—-1.,j(x)) = 1;
elseif ((G(i(x)+1,j(x)) < G(i(x)—1,j(x))) & (G(i(x)+1,j(x)) < G(i(x),j(x)))«
)
B(i(x)+1,j(x))
b(i(x)+1,5(x))
else
% Crack Vertically Highlighted
end % if VCH
% Diagonal Crack Highlighting #1 (DCH1): [\]
Hf((G(i(x)—Lj(x)—D) < G(i(x)+1,j(x)+1)) & (G(i(x)—1,j(x)—1) < G(i(x),j(x))«
)
B(i(x)—-1.j(x)—1) = 1;
b(i(x)—1j(x)-1) = 1
elseif ((G(i(x)+1,j(x)+1) < G(i(x)—1,j(x)—1)) && (G(i(x)+1,j(x)+1) < G(i(x) .+
3)
B(i(x)+1,j(x)+1)
b(i(x)+1,j(x)+1)
else
% Crack Diagonally \ Highlighted
end % if DCHI
% Diagonal Crack Highlighting #2 (DCH2); [/]
H(G(E(x)+1,j(x) =1 < G(i(x)—1,j(x)+1)) & (G(i(x)+1,j(x)—1) < G(i(x),j(x))«
)
B(i(x)+1,j(x)—1) 1;
b(i(x)+1,j(x)—-1) 1;
elseif ((G(i(x)—1,j(x)+1) < G(i(x)+1,j(x)—1)) && (G(i(x)—1,j(x)+1) < G(i(x) .+
3@)
B(i(x)—1,j(x)+1)
b(i(x)—-1,j(x)+1)
else
% Crack Diagonally / Highlighted
end % if DCH2
% Crack Closing
else % (n > 1)
[1i 1j] = find(G(i(x)—1:i(x)+1,j(x)—1:j(x)+1) < crack);
for 1x = l:numel(1li);
B(i(x)—2+1i(1lx),j(x)—2+1j(1x))
b(i(x)—2+1i(1x),j(x)—2+1j(1lx))
end % for Ix
end % if "Crack Highlighting" else "Crack Closing"
end % if "Not Image Border Pixel"
end % for x

1;
1;

1;
1;

1;
1;

1;
1;

1;
1;

imshow(~B, 'InitialMagnification ', 'fit"', 'Border', 'tight"');
pause (0.25);

end % for n
B = ~B;

end % CC.m

56

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

V. F. Thorsen, “Meteorite Impact Crater Crack Extraction and Image Edge Detection using Ant
Colony Optimization,” December 2010.

P. Peterlin, “Morphological Operations: An Overview.” Website. http://www.inf.u-szeged.
hu/ssip/1996/morpho/morphology.html.

T. M. Inc., “Measure properties of image regions.” Website. http://www.mathworks.com/help/
toolbox/images/ref/regionprops.html.

M. Dorigo, M. Birattari, and T. Stiitzle, “Ant Colony Optimization — Artificial Ants as a Compu-
tational Intelligence Technique,” IEEE Computational Intelligence Magazine, vol. 1, pp. 28-39,
November 2006.

J. Tian, W. Yu, and S. Xie, “An ant colony optimization algorithm for image edge detection,” in
2008 IEEE World Congress on Evolutionary Computation, pp. 751-756, IEEE, June 2008.

A. V. Baterina and C. Oppus, “Image Edge Detection Using Ant Colony Optimization,” Interna-
tional Journal Of Circuits, Systems And Signal Processing, vol. 4, 2010.

D. Ziou and S. Tabbone, “Edge Detection Techniques - An Overview,’ International Journal of
Pattern Recognition and Image Analysis, vol. 8, pp. 537-559, 1998.

N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,” Systems, Man and Cyber-
netics, IEEE Transactions on, vol. 9, no. 1, pp. 62-66, 1979.

K. R. Castleman, Digital Image Processing. Prentice-Hall, 1996.

[10] Z. Yu-qian, G. Wei-hua, C. Zhen-cheng, T. Jing-tian, and L. Ling-yun, “Medical Images Edge
Detection Based on Mathematical Morphology,” September 2005.

[11] T. Niemueller, “Automatic Detection and Segmentation of Cracks in Underground Pipeline Im-
ages,” 2006.

[12] M. Nixon and A. S. Aguado, Feature Extraction & Image Processing, Second Edition. Academic
Press, 2 ed., January 2008.

Attachments

Content found on the attached CD/DVD:

Report in .pdf format.
Matlab source code (m-files).
Ritland meteorite impact crater images.

Experimental results.

57

	frontpage
	Faculty of Science and Technology

	report

