

Quadratic Sieve Integer Factorization
using Hadoop

Semere Tsehaye Ghebregiorgish

June 15, 2012

Contents

Preface . 1

1 Introduction 2
1.1 Motivation . 2
1.2 Related Work and Contribution of the Thesis 3
1.3 Organization of the Thesis . 4

2 The Basics of Integer factorization 5
2.1 introduction . 5
2.2 RSA and Integer Factorization 6
2.3 Selected Special-Purpose Algorithms 7
2.4 Selected General-Purpose Algorithms 10

3 Quadratic Sieve Algorithm 12
3.1 Introduction and the Algorithm 12
3.2 Example . 13

4 Hadoop and MapReduce 17
4.1 Motivation . 17
4.2 What is Hadoop . 18

4.2.1 MapReduce Programming Model 19
4.2.2 Hadoop Distributed File System (HDFS) 22

4.3 Data Compression . 26

5 Implementation 28
5.1 Program implementation . 28

5.1.1 Choice of Factor Base Size 29
5.2 Cluster Setup . 31

5.2.1 Hadoop Configuration 32

1

5.2.2 Data Compression configuration 33
5.3 Numbers Used . 35

6 Results and Analysis 37
6.1 Size of Generated Data . 37

6.1.1 comparison between new file size and previous one . . 38
6.2 Performance of Data collection and processing time 40

6.2.1 Performance improvement from the previous result . . 41
6.3 Effect of Cluster Size on Performance 43
6.4 Effect of Data Compression and Splitting Data into files . . . 44

6.4.1 Compressing the Input Data 45
6.4.2 Compressing the Output of Map 47

7 Discussion 48
7.1 Limitations of using Hadoop as a tool 48

8 Conclusion and Future Work 51
8.1 Conclusion . 51
8.2 Future Work . 52

2

List of Figures

3.1 Quadratic Sieve Algorithm 14

4.1 Map and Reduce Method in Nutshell. 19
4.2 Quadratic Sieve Algorithm 20
4.3 MapReduce Word Count . 21
4.4 Overview of the HDFS Architecture 23

5.1 The effect of factor base size choice 29
5.2 comparison of factor bases 31

6.1 File Size trend in GB vs digit size 38
6.2 Imrpvement of file Size in the thesis 39
6.3 Imrpvement of file Size in the thesis 42
6.4 Factoring 36-digit in different cluster setting 44
6.5 Improvement of Compression 46

7.1 The two Phases in series (Hadoop’s approach) 49
7.2 Doing the two phases of QS in parallel 49

3

List of Tables

4.1 Compression formats supported by Hadoop 26

5.1 Comparison of factor base sizes 30
5.2 Selected Parameters used in the configuration 33
5.3 Composite numbers and their corresponding factors 36

6.1 Size of File Generated for each number 38
6.2 File Size Improvements from previous works 39
6.3 Performance measurement for 11-node cluster 40
6.4 Performance improvement after optimizations 41
6.5 Performance comparison when factoring 40-digit number in

different cluster sizes . 44
6.6 Effect of Compression . 45

4

Abstract

Integer factorization problem is one of the most important parts in the world
of cryptography. The security of the widely-used public-key cryptographic
algorithm, RSA [1], and the Blum Blum Shub cryptographic pseudorandom
number generator [2] heavily depend on the presumed difficulty of factoring
a number to its prime constituents. As the size of the number to be factored
gets larger, the difficulty of the problem increases enormously. This fact has
led to the development of many different algorithms to attack bigger number
within polynomial time. However, there is no known efficient algorithm for
very large numbers, to shake up the security of real-world cryptographic
applications.

The fastest factoring algorithms to factor general numers are General
Number Field Sieve (GNFS) and Quadratic sieve (QS). While QS is regarded
as the fastest one for integers less than 110 digits, GNFS is by far the fastest
for very big numbers. As of December 2009, the biggest number factored
is 768-bit, 232-digit number taken from RSA challange [6] by using GNFS
algorithm over a period of two years. The success came after a long hard
work and complex programming development. This shows the complexity
and difficulty of the Integer factorization problem.

As the size of the number to be factored increases, the data required to
factor that number equally increases. Hadoop-MapReduce is a powerful tool
for processing for such magnitude data in a reasonable time. Because of this
advantage, the thesis investigates the possiblity of attacking the problem in
a distributed fashion using MapReduce programming paradigm on Hadoop.
A single quadratic sieve algorithm written in Java was used to test different
composite numbers. The results were carefully analyzed, then the strength
and limitations of the approach are thoroughly discussed.

Acknowledgements

I would like to thank professor Chunming Rong, my supervisor, for his
advises and for providing necessary facilities in the project room which are
very helpful to successfully finish the thesis. My deepest gratitute goes to
Son T Nguyen, Post-Doc Reasearcher at UiS, for his relentless support and
insightful comments. He was always available whenever i wanted to see him.
It was him who first allowed me to work on the topic. I would also like to
thank PHd, Tomasz Wiktor Wlodarczyk for persistently organizing meeting
every friday through out the thesis work.

Last but not least, I would like to thank my family and friends for making
my dream come true through their flowing love and encouragement.

Preface

This thesis has been submitted in partial fulfillment of the requirements
to complete the Master of Science (M.Sc.) degree at the Department of
Electrical and Computer Engineering at the University of Stavanger (UiS),
Stavanger Norway.

The work has been done at the department of Computer Science under
the supervision of Prof. Chunming Rong and Son T. Nguyen.

The initial work was published in Proceedings of the 3rd IEEE Inter-
national Conference on Cloud Computing Technology and Science (IEEE
CloudCom 2011), Nov 29 - Dec 01, 2011 [3]. And further studies were done
during computer science project autumn course. As discussed in latter sec-
tions, further code and Hadoop configuration optimizations were performed
during the writing of the thesis and the result is improved significantly. Fur-
thermore, in order to reduce the requirement of disk space, data compression
option is considered and evaluation is made.

Most of the Literature review part in the thesis is based on previous
submitted report, which was wrote by the same author of the this thesis.
Chapter 2, sections 2.1 through 2.3, explaining the basics of integer factor-
ization is based on report of Computer Science Project Course (MID 240)
sumitted to UiS. The discussion on Quadratic Sieve Algorithm (chapter 3)
and Hadoop/MapReduce (Chapter 4) with the exception of section 4.3 are
based on the report of the course, with only small modifications.

I would like the reader to be aware that whenever I say “previous works”,
it implies to [3] and the work done during computer science project. To
differentiate between the two, I will refer initial work to the former, and
project work to the latter.

June 15, 2012

Semere Tsehaye Ghebregiorgish

1

Chapter 1

Introduction

1.1 Motivation

Integer factorization is one of the ancient mathematical problems, meaning
to describe a compoiste number interms of its prime constituents. In other
words, it is the decomposition of a composite number down to smaller prime
numbers. Multiplying all these primes gives back the original composite.

The Integer factorization problem is regarded very tough one, espe-
cially if the composite is very large and is a product of two almost equal-
sized primes. we call such numbers, semiprimes. Until today, the largest
semiprime to be factored is 768-bit (232-digit), yielding result after almost
two years. They used General number Field Sieve (GNFS) algorithm to
attack the number, therefore this makes the algorithm the fastest to factor
general-purpose numbers. Note that there are numbers with special behav-
ior and they can easily be factored by exploiting their special structure.
In 2007, a 1039-bit number was factored based on the special form of the
number[4]. Otherwise, there is no any algorithm which efficiently factors a
general number within a polynomial time. Additionally, due to GNFS algo-
rithm’s extreme complexity and difficulty to understand, it has very small
audience and is confined to people who are experts in mathematical fields
such as number theory and algebra. This shows how difficult the problem
is. isn’t it?

But why do we care then about Integer factorization? The problem
resides at the heart of most widely-used crytographic algorithms, such as
RSA public-key exchange, RSA digital signature schemes, Blum Blum Shub

2

Random number Generator. These algorithms use a number which is prod-
uct of two prime numbers. The idea behind is that it is not easy to find
the two primes given the composite number. Recovering the primes within
reasonable time would annul the security of these algorithms and inturn
compromise the dependability of applications that use the algorithms. For
example, TLS/SSL encryption [26] which is used to establish secure TCP/IP
connections over WWW heavily depends on RSA algorithm. Therefore, if
large integers are factored quick, then there will no more be secure connec-
tion over the Internet, unless the mechanism is changed. Due to these fact,
it is worthwhile to do research on integer factorization to make sure the
confidentiality, authentisity and integrity of information moving accross the
Internet.

Since the Introduction of computers, many mathematical problems have
been solved by using computers as a tool. Very fast computers have been
manufactured and as a result, many mathematical problems have been
solved. However, even the fastest computer cannot factor a number be-
yond a certain size. Recently, the idea of distributed systems have become
popular. Tanenbaum defines the concept as, “ Distributed is a collection of
independent computers that appears to its users as a single coherent system
" [7]. It makes someone to use the power of all computers in the system
as if the person is dealing with one machine. Different frameworks have
been developed and Hadoop is one of them. Hadoop is a powerful tool for
data-intensive applications. Hence, the motivation is to make use of this
framework to attack very big number.

1.2 Related Work and Contribution of the Thesis

There are a number of papers related to the quadratic sieve algorithm with
its variants, but not something in relation to Hadoop. The first paper we
find is in [8] written by Javier Tordable. The author gives basic implementa-
tion of quadratic sieve in Hadoop and Maple and compares the results. His
main goal is to show that the conecpt of MapReduce can solve the Integer
factorization. The paper does not make detailed study concerning perfor-
mance. This paper is the starting point for the thesis, so it can be considered
more as work-in-parallel, instead of related work.

The paper [9], tries to show that the Hadoop implementation of Integer

3

factorization is much easier and scalable use a large number of commodity
computers. The analysis are nicely presented, but the goal was just to
compare that distribution is better than non-distribution, not the concept
related to cracking big number. Numbers which have digit sizes less than
14 were mostly used during the test.

The papers [10], [11], [12], and [13] explains on fast implementation of
Quadratic Sieve algorithm in Memory. They also talk about running the
algorithm on multiple processors.

In this thesis thorough study have been made on dealing the integer
factorization problem in Hadoop/MapReduce. It presents what are the
strengths and weakneses of the approach. Tests were done from different
angles and it spots the limiting factors in the approach. Therefore, it can
serve as a reference to someone on how to deal the problem in Hadoop.

1.3 Organization of the Thesis

The thesis is organized in the following way
Chapter 2 presents the underlying concepts of Integer factorization that

are helpful in understanding the Quadratic Sieve Algorithm. In this chapter,
different factoring algorithms are discussed.

Chapter 3 discusses the Quadratic Sieve algorithm. In the chapter an
example is given to make the ready easly master the algorithm.

Chapter 4 describes the Hadoop framework and the MapReduce pro-
gramming model. It explains what are the basic constituents of Hadoop,
how MapReduce works and others.

Chapter 5. presents the implementation part of the thesis. It discusses
the hardware and software setup of the implementation.

Chapter 6 discusses the results obtained from results. The explanation
is given from different point of view.

Chapter 7 gives the important discussions over all the tests made. It
presents the strengths and limitations of the approach.

Chapter 8 concludes the thesis and also incites what can be done in the
future.

4

Chapter 2

The Basics of Integer
factorization

2.1 introduction

Integer factorization, also called prime factorization, is the process of finding
prime numbers of a number; in which when multiplied together they yield
the original number. It simply means decomposing a composite number
down to its prime number constituents. At the moment, it is extremely
difficult to find the primes of a very large number. Particularly, factoring
semiprimes1 are considered the hardest ones to factor. The fact that there
is no efficient integer factorization algorithm for large numbers until today
shows the complexity of the problem. So far, the largest semiprime known
to be successfully factored is a 232-digit (768-bit) number [5]. The process
took about 2 years to finish by employing the fastest known algorithm called
General Number Field Sieve. In this report the focus will be on Quadratic
Sieve algorithm.

The Integer factorization problem lies at the heart of cryptography such
as RSA. The strength of one cryptographic algorithm depends on how
quickly the required prime numbers can be found. Finding the factors of
a number within reasonable time would make the security of many cur-
rent cryptographic algorithms highly compromised, and in turn applications
that employ these algorithms. For example, e-commerce systems highly rely
on cryptographic algorithms to ensure confidentiality, authenticity, and in-

1A semiprime is a natural number that is the product of two prime numbers

5

tegrity of information going through the Internet. Breaking the algorithms
means endangering the financial transactions taking place on the Internet
in every single minute.

Integer factorization algorithms can be broadly classified into two groups;
special-purpose and general purpose algorithms. While special-purpose algo-
rithms are designed for numbers that fulfill specific behavior requirements,
general-purpose are designed to work with any number. Because of the
additional behavioral requirements, the running time of special-propose al-
gorithms depend on particular behavior of the number to be factored in
addition to its size. For example, if a composite number is a product of two
prime numbers, and these prime numbers are close to each other, then it
might be efficiently factored by one of the special-purpose algorithms called
Fermat method. On the other hand, the running time of general-purpose
algorithms solely depend on the size of the number and such algorithms are
the types used to factor RSA numbers [6].

Among the general-purpose algorithms, the General Number field Sieve
(GNFS) and the Quadratic Sieve (QS) algorithms are the fastest modern
algorithms in practice. While the former is the most efficient one for numbers
larger than 100 digits, the latter is best for numbers smaller than 100 digits.

In this chapter, I will discuss some of the factoring algorithms which are
the basis for quadratic sieve algorithm. However, before proceeding, I would
like to talk about the importance of prime numbers in RSA in relation to
the problem

2.2 RSA and Integer Factorization

RSA [22](section 9.2) is one of the most popular public key cryptographic
algorithms used in electronic commerce. Message exchange between two
parties using RSA involves three steps: key generation, encryption on sender
side and decryption on receiver side.

Suppose Alice wants to send an encrypted message to Bob. Then the
process goes like this:

1. Key Generation: both Alice and Bob generate a public/private key
pair by

• Selecting two distinct large prime numbers at random: p and q.

6

The numbers are of similar bit-length

• Compute n = pq where n is used as the modulus for the public
and private keys

• Compute φ(n) = (p− 1)(q − 1)

• Randomly select an integer e, such that 1 < e < φ(n) and
gcd(e, φ(n)) = 1 2

• Solve the equation d.e = 1modφ(n) =⇒ d = e-1modeφ(n)

• Finally publish their encryption key < e, n > and keep secret
decryption key < d, n >. Now, letâĂŹs assume the public key
of Bob, the message receiver, be < e, n > and the private key of
Bob be < d, n >. In this case, < e, n > is accessible to anyone
(e.g. Alice) who wants to send encrypted messages to Bob while
d is kept secretly by Bob.

2. Encryption: To encrypt a message M for Bob, Alice has to compute
C = M e(mod(n)) where 0 ≤ m < n. and then send C to Bob. Note
that the message M has to be converted to an integer using some
reversible technique

3. Decryption: Bob then can decrypt C and recover the original mes-
sageM by computingM = Cd(modn). No one except Bob can decrypt
C since d is only known to Bob.

The strength of RSA lies in choosing large enough public key. Because of
factoring large numbers is a hard problem, full decryption is thought to be
infeasible. In practice, the typical RSA keys are 1024 - 2048 bits long, and
so far the largest number factored is 768 bits long. However, 1024 bit long
could be factored in the near future and make the current length unsecure.

2.3 Selected Special-Purpose Algorithms

i. Trial Divison

Trial division is the easiest factorization algorithm to understand and
yet is the fastest method for small composites. As its name indicates

2gcd refers to algorithm to find greatest common divisor for two numbers

7

it divides the number to be factored with possible factors to see if the
reminder is zero.

The algorithm tries to factor an integerN , by checking if the number can
be divided by an integer greater than 1 and less than

√
N . To perform

the trial division algorithm, one simply checks whether s divides N for
s = 2, ... ,

⌊√
N
⌋
. When such a divisor s is found, then t = N/s is also

a factor, and a factorization has been found for N.

In fact, each divisor s found by trial division is prime. Therefore, com-
posites can be skipped and only primes can be checked.

Let’s try to illustrate the trial division algorithm using an example.
Suppose, we want to factor an integer N = 18525

Solution:
√
N ≈ 136.11 then

⌊√
N
⌋

= 136.

This implies that we can make trial division from s = 2, 3, 4, ..., 136.
Again, since each divisor is prime, we ignore all composites in the range.
Therefore, we make trial division on the 32 prime numbers distributed
from 2 to 136.

Below is given each steps how trial division is performed

• 18525 is not divisible by 2

• 18525 is divisible by 3; so replace it with 18525/3 = 6175 and print
3

• 6175 is not divisible by 3;

• 6175 is divisible by 5; replace with 6175/5 = 1235 and print 5

• 1235 is divisible by 5; replace with 1235/5 = 247 and print 5 again

• 247 is not divisible by 5

• 247 is not divisible by 7

• 247 is not divisible by 11

• 247 is divisible by 13; replace with 247/13 = 19 and print 13

• 19 is not divisible by 13

• 19 is not divisible by 17

• 19 is divisible by 19; replace 19/19 = 1 and print 19

8

This way we have learned that 18525 is 3 times 5 times 5 times 13 times
19.

You can imagine how cumbersome it can be for very big composite num-
ber.

ii. Fermat’s Factorization Method

Fermat’s factorization method [23] is another special method algorithm
that tries to factor a composite number N, through representing it as a
difference of two squares. In other words, it tries to resolve N = a2− b2

where a and b are integers. From algebra, it is well known that a2 − b2

can be expressed as (a − b)(a + b). Hence, if N = (a − b)(a + b) then
a− b and a+ b are the factors of N .
For example, if we take N = 8051 and if we try to factor it using trial di-
vision, it would be a waste of time by making divisions that don’t take us
to the right result again and again. However, through Fermat’s method,
let’s take first take

⌈√
8051

⌉
= 90. We then can write 8051 = 902 − b2,

and after solving the equation, we find that b = 49. Luckily, 49 is a
perfect square of 7. This means 8051 = 902− 72 = (90− 7)(90 + 7). We
finally find the factors to be 83 and 97. This is definitely faster than the
simple trial division. But, the biggest challenge is that it is not always
easy to find difference of two squares. For example, taking N = 1649
wouldn’t let us easily find squares of number.

⌈√
1649

⌉
= 41. If we

express it, as N = a2− b2 , then we get 412−1641 = 32. However, 32 is
not a perfect square. Therefore, we keep on incrementing a by 1, until
we get a perfect square. The steps are shown below:

412 − 1649 = 32
422 − 1649 = 115
432 − 1649 = 200
442 − 1649 = 287
. . . .
. . . .
572 − 1649 = 1600.

9

When a = 57 we find b which is a perfect square. We can then easily
find the factors to be (57 − 40) = 17 and (57 + 40) = 97. This is not
better than trial division, for it takes a lot of time.

A small improvement has been made to speed up the method by taking
mod relationship with N . The approach is trying to find an integer
a such as a2modN = b2, where b is another integer number. This is
equivalent to (a− b)(a+ b)modN = 0 and thus, N = gcd(a+ b,N)(N =
gcd(a + b,N)). This factorization is trivial if a...............b mod N. In
that case, the method tries different numbers until it gets a non-trivial
pair of factors of N.

In the example above, if we take a = 41 and a = 43 and if we multiply
their respective bâĂŹs, we get perfect square.

(41x43)2 ≡ 32x200 ≡ 802(mod(n))
(114)2 ≡ 802(mod(n))

2.4 Selected General-Purpose Algorithms

i. Dixon’s Factorization Method
Dixon’s method [24] is an improvement to the Fermat’s method through
allowing a much weaker condition. The algorithm introduces the con-
cept of factor base, which is going to be the corner stone in quadratic
sieve algorightm. Factor base is a set of small prime numbers which are
usually used algorithms that involve sieving. In Fermat’s method, for
any randomly chosen x, we were checking the computation x2mod(N) to
be a perfect square. However this task of finding congruence of squares
is almost impractical for large numbers, as there are

√
N squares less

than N. For very big numbers, trying every possible
√
N squares would

be a wastage of resource. Dixon’s method reduces this number by In-
troducing a weaker condition as explained below.

The first steps to factor a composite number N is to first chose a bound
B, and a factor base P , which is a set of prime numbers less than or
equal to B. Then randomly pick a positive integer z such that z2mod(N)
is B-smooth. A positive integer is called B-smooth if none of its prime

10

factors is greater than B . mathematically it can be writen as

z2 ≡
∏

pi∈P

pi
qi mod N (2.1)

Then after collecting relations a little bit more than the size of the factor
base, check a combination on the right hand side that their multiplica-
tion is a square. Remeber, In order for a number to be a square, the
exponents of the primes on the right hand side must be even. You can
use Gaussian elimination to determine this step. Finally the calcula-
tion produces a congruence of the form a2 ≡ b2 mod N and the Fermat
theorem can then be applied. For detailed explanation and example,
please refer [3]

11

Chapter 3

Quadratic Sieve Algorithm

3.1 Introduction and the Algorithm

Quadratic sieve algorithm is an Integer factorization algorithm developed
by Carl Pomence as an improvement to Dixon’s factorization method[25].
As of today, it is the second fastest algorithm after General number field
sieve and still is regarded as the fastest for numbers less than 100 digits.
Since its inception, it is developed into various forms, and we see today
implementations of the different variants available. It is a general purpose
algorithm where its running time is soleley dependent on the sizes of the
input numbers.

The quadratic sieve algorithm has two phases: the data collection and
data processing phase. During the data collection phase, all necessary in-
formation that may lead to factorization of a number is gathered. These
information are pairs of integers x and Q(x) that meet the condition x2 ≡
y2 mod N . During data processin phase, the data is placed in matrix
then the algorithm attempts to find the factors by search for congruence
of squares.

As in Dixon’s factorization method, the basic idea is, in order to factor
a number N , find two numbers x and y such that x2 ≡ y2 mod N and
x 6≡ ±y mod N . This can be implied as (x − y)(x + y) ≡ 0(modN), and
can be simply computed (x− y;N) using the Euclidean Algorithm to check
if this divisor is nontrivial. At least, there is half chance that the factor is
nontrivial.

During the first data collection pahse, the algorithm attempts to find

12

pairs of integers x and Q(x) that satisfy the condition x2 ≡ y2 mod N . It
chooses a set of primes called factor base, and tries to find x such that the
remainder of Q(x) = x2mod N factorizes completely over the factor base.
Then x values are said to be smooth over the factor base. The steps of the
Quadratic sieve are described briefly in 3.1. One technique used by QS to
speed-up finding the above relations is to take x as close as the square root
of n. This secures that Q(x) is smaller and as a result have greater chance
to being smooth.

Q(x) = (
⌈√

N
⌉

+ x)2 −N (x issmall integer) (3.1)

Q(x) ≈ 2x
⌈√

N
⌉

(3.2)

Simply increasing the size of the factor base can also increase the chance
of smoothness.

next step is to compute Q(x1), Q(x2), ..., Q(xk). Deciding the values for
xi will be shown in the example. Then from the set of values of Q(x), pick
a subset such that Q(xi1))Q(xi2)...Q(xir) is a square, y2. Finally, if the
following condition holds, we have the factors.

Q(xi1))Q(xi2)...Q(xir) ≡ (xi1xi2...xir)2(mod N)

3.2 Example

Explaining mathematical concepts through examples is easy to understand.
In this section I will try to simplify for someone to understand the algorithm
by giving an example.

Let’s say we want to factor a number N = 87463 2. The ceiling of the
square root of N is 296. Let me divide the task according to the two phases
of QS

2number is taken from
http://www.math.colostate.edu/ hulpke/lectures/m400c/quadsievex.pdf

13

Figure 3.1: 1 (taken from [[?]

• Data Collection
We find the factor base through considering the values

(
N
p

)
where

p = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37)

Definition: Quadratic Residue an integer q is called a quadratic
residue modulo n if it is congruent to a perfect square modulo n; i.e.,
if there exists an integer x such that:
x2 ≡ q(modn)
Otherwise, q is called a quadratic nonresidue modulo n.

Definition: The Legendre symbol: Let a be an integer and p > 2 a
prime. Then the Legendre symbol

(
a
p

)
is defined as

(
a
p

)
=


0, if p|a
1, if a is quadratic residue mod p
−1, if a is non-residue mod p

14

After computation, the factor base will be 2,3,13,17,19,29.

Then Construct the sieve by usinng Equation 3.1 for 0 ≤ x < 100.

V = [Q(0)Q(1)Q(3)Q(4)...Q(99)]

Then the next step is to solve x2 ≡ n mod p. For all the primes in the
factor bases, we will have the following results
P = { 2 3 13 17 19 29 }
x = { 1..... 1,2 5,87,10...... 5,14......12,17}

We now start sieving, using a sieving interval of length 2 ∗ 30 around⌈√
N
⌉

= 295.

• Data Processing
For the values of x for which x2âĹŠN splits completely,the exponent
vector modulo 2 is:

Then Solve the matrix in a transposed way : Av = 0 and not vA = 0:

modulo 2. One solution is v = (1,1,1,0,1,0). These rows are selected,
because if we add them they give us an even number, which is a square
modulo.

We thus take the 1st, 2nd, 3rd and the 4th x-value and get

x = 265 ∗ 278 ∗ 296 ∗ 307 = 6694540240 ≡ 34757(modN)

15

y =
√

(2652 −N) ∗ (2782 −N) ∗ (2962 −N) ∗ (3072 −N)

= 2 ∗ 34 ∗ 122 ∗ 17 ∗ 29 = 13497354 ≡ 28052(modN)

finally, by using gcd we get : gcd{x− y,N} = 149andgcd{x+ y,N} =
587

16

Chapter 4

Hadoop and MapReduce

4.1 Motivation

In the current world where digital equipments are massively used, the amount
of data is growing at a fast pace. This tide of data is coming from different
parties ranging from big business companies to a single person. Even, if
we only consider the amount of videos uploaded to YouTube, it is easy to
understand how the digital world is exploding. It is estimated that about 15
petabytes of data is generated every day [14]. According to IDC, the size of
the “digital universe” was around 281 exabytes in 2007, and was forecasted
to reach 1,800 exabytes by 2011, which is almost a 6 fold growth within a
period of 4 years [15]. An Exabyte is 1018 bytes, or equivalently one billion
gigabytes.

This crazy growth-rate makes data management cumbersome. We are
capturing almost every data we want, but the challenge is where to store
it and how to extract useful information in real-time. The main problem
with storage is the rate at which disk drives are accessed. During the last
two decades, disk capacity growth has outperformed to the access speeds.
As Tom White explains, during the 1900s, 1.34 GB of disk capacity with
4.4 MB/s transfer speed was typical and it would only need five minutes
to read all the data in the disk [16](pp. 3)1. And at this time, a terabyte
hard disk with a transfer speed around 100MB/s has become a commodity.
While drive capacity increased tremendously by about 1000 times, access-
speed could not catch up. Because of this, it requires more than two and a

1The specifications are for Seagate ST-41600n hard disks

17

half hours to read all data resided in the terabyte disk.
One way to solve this problem is using the distributed system, which is

to read from multiple disks in parallel. Considering the current rate we have,
employing 100 drives would enable us to read the terabyte disk in less than
2 minutes. However, there are a number of issues, such as fault-tolerance
and distribution that needs to be addressed with this kind of set-up. Here
comes Hadoop into picture, and is explained in the next section.

4.2 What is Hadoop

Hadoop [6] is an open-source programming framework for large-scale data
processing across clusters of computers using a simple programming model.
Being developed mainly by Yahoo, it is now an Apache project. It is mostly
inspired by Google’s MapReduce and GFS (Google File System). Currently,
Hadoop is immensely used by big companies like Yahoo, Facebook, Mi-
crosoft, and Amazon.

One important characteristic of Hadoop is the automatic handling of
data replication and node failure. Hadoop tries to partition data and com-
putation across the nodes, and executes application computations in parallel
close to their data. The feature to make data processing locally is known as
data locality, and is the reason for Hadoops’ outstanding performance with
very big data, by preserving network bandwidth.

As it is concisely pointed in [18] (Section 1.2), Hadoop has the following
key distinctions. It is

• Accesible: it runs either on large clusters of machines or cloud com-
puting services such as in Amazon

• Robust: it graciously handles node failures due to network or other
problems

• Scalable: it only requires adding more nodes (usually cheap commod-
ity machines) to handle larger data

• Simple: it doesnâĂŹt complicate writing programs, rather it allows
to write simple and efficient code

Handling the complex nature of distribution is provided by Hadoop;
therefore the programmer does not have to worry about making his program

18

Figure 4.1: Map and Reduce Method in Nutshell.

distributed and can only focus on the data processing. Hadoop relies on the
Hadoop file system, called HDFS, and the MapReduce programming model
to abstract the problem from disk reads and writes, transforming it into a
computation over sets of keys and values.

To summarize, Hadoop provides a reliable storage and analysis system
through HDFS and MapReduce, respectively. I will talk on the two features
in the next sub-sections.

4.2.1 MapReduce Programming Model

MapReduce is a programming model introduced by Google in 2004 to pro-
cess and to generate large data sets [19].It abstracts the large-scale dis-
tributed data processing to one platform and two user-defined functions,
Map and Reduce. Users implement the interfaces of the two functions.
The Map function is responsible for processing sub-data sets and produce
intermediate results, and the Reduce function is responsible for reduction of
the intermediate results and generates the final results of the processing.

Applications written in this functional style are automatically paral-
lelized and executed on the Hadoop cluster. The details of partitioning
the input data, scheduling the execution across a set of machines, handling
failures, and managing communication between nodes is taken care by the
system. This encourages programmers without any prior experience with
parallel and distributes systems to easily interact with the large distributed
system.

A MapReduce program usually takes a set of key/value pairs as input.

19

Figure 4.2: Quadratic Sieve Algorithm
3 (source: http://sundar5.wordpress.com/2010/03/19/hadoop-basic/)

It then splits the input data-set into independent fixed-sized chunks called
input splits. These pieces are processed by the map tasks in a completely
parallel manner. After completing its task, the map function outputs an-
other intermediate key/value pairs, which is going to be an output to the
reduce function. It is good to note that this result is written to a local file-
not the HDFS file system, because it will not be necessary to hold it after
it is processed by the output function. This intermediate values associated
with the same intermediate key are grouped together by the system and are
fed into the user-defined Reduce function. The reduce function then merges
the values and finally outputs possibly a smaller set of key/value pairs.
The map and reduce functions are concisely given in Fig. 4.1.

The execution flow of the MapReduce model is given in Fig. 4.2. The
“Record” boxes indicate to the data split which are inputs to the Map
function. The output of the Map function is an input to the Reducers.
However, it is important to note that the additional shuffle/sort step is
required to correctly associate the key/value pairs with the responsible nodes
running. For every call to the Reduce function, zero or more output value
can be produced.

Let me try to elaborate the operation of the MapReduce using a word

20

Figure 4.3: MapReduce Word Count

count example. Let’s assume that we have two files, each containing the texts
“computer science students” and “many students study computer”.
After counting the words in each file, we expect the output to look like:
(computer 2, science 1, students 2, many 1, study 1).

Based on the Fig. 4.3, I will try to show how the Map and Reduce steps
are executed.

The map function instances are created on the different nodes in the
cluster. Each instance receives a different input file. The map function
outputs (word, 1) paris, in which word is the key and 1 is the value. For our
example, the output of the map function may look like as shown below:

(computer 1)

(science 1)

(students 1)

(many 1)

(students 1)

(study 1)

(computer 1)

All this word/ones pairs are then an input to the reducer function. Each
reducer is responsible for processing the list of values associated with each
word. The function sums up all ones with the same word into a final count.
The final out put looks like

(computer 2)

(science 1)

21

(students 2)

(many 1)

(study 1)

4.2.2 Hadoop Distributed File System (HDFS)

Hadoop Distributed File system (HDFS) [20] is a filesystem used in Hadoop.
As it is well defined in [16], “HDFS is a filesystem designed for storing
very large files with streaming data access patterns, running on clusters of
commodity hardware”. Its design enables it to store big data of thousands
of gigabytes and stream them with in feasible time. The other advantage of
HDFS is that it is economical for it can simply be implemented in commodity
computers.

It looks like the UNIX file system and is inspired by the Google file
system (GFS). It stores file system metadata and application data sepa-
rately. It has two types of node operating in a master-worker pattern: the
namenode (the master) and a number of datanodes (workers). Metadata is
stored in the namenode and the application data is stored in workers called
datanodes.

Figure 4.4 shows the basic architecture of the HDFS. The main con-
stituents are shortly explained below.

i. NameNode
The NameNode is responsible for managing the filesystem namespace
tree and maps the location of all blocks to the DataNodes. However,
this block location is not stored persistently, since it is constructed from
DataNodes when the system starts.

When an HDFS client wants to read a file located in the system, it
first contacts the NameNode for the locations of data blocks comprising
the file and then reads block contents from the DataNode closes to the
client. Similarly, when the client wants to write data, it first queries
the NameNode to nominate a suite of three DataNodes to host block
replicas. The client then writes data to the DataNodes in a pipeline
fashion. The replication number three is the default; it can be changed
to any numbers.

22

Figure 4.4: Overview of the HDFS Architecture 5(source:
http://sundar5.wordpress.com/2010/03/19/hadoop-basic/)

23

The activities done by Namenode are memeory and I/O intensive. Be-
cause of this, it is not good practice to store any user data and perform
computations in the NameNode in order to lower the workload on the
server.

Without the NameNode, the filesystem is of no use. If the it crashes,
there is no way to reconstruct the block information from DataNodes.

ii. DataNode
DataNodes are the real workers; they store data and, when told to
do, retrieve blocks. Additionally, they have to periodically send report
containing information on which blocks they are storing back to the
NameNode.

DataNodes send heartbeats to the NameNode to confirm that they are
still functioning and block replicas they host are available. Heartbeat
interval is 3 seconds by default and if the NameNode doesn’t receive
a heartbeat from a DataNode within 19 minutes, then it is considered
dead [21]. The NameNode also considers the replicas hosted by that
specific DataNode to be available and consequently schedules creation
of new replicas of those blocks on other DataNodes.

In HDFS datanodes, data is replicated on multiple datanodes for relia-
bility, instead of using protection mechanism such as RAID.

iii. Secondary NameNode (SNN)
The Secondary NameNode is an assistant to NameNode for monitoring
the state of the cluster’s file system. Its main task is to take snap-
shots of the HDFS metadata from the NameNode memeory structures.
By doing this it helps in preventing file system corruption and reduc-
ing loss of data. Unlike NameNode, the SNN dosn’t record real-time
information about any changes to the HDFS. It only takes snapshots
from the NameNode according to some specified time interfal in the
configuration.

The SNN doesn’t overtake the management of the system, if the Na-
meNode fails. The NameNode is a single point of failure in the Haduoop
cluster. However, the images saved in SNN can help to a failed NameN-

24

ode when it is restarted. The NameNode can refer to SNN to create an
up-to-date structure.

iv. HDFS client
HDFS client is a code library that provides an interface to user applica-
tions to access the HDFS filesystem. Like other conventional filesystems,
it supports read, write, and delete operations. Always when reading and
writing, the HDFS client first contacts the Namenode. An HDFS client
creates a new file by giving its path to the Namenode. For each block of
the file, the Namenode returns a list of Datanodes to host its replicas.
The client then pipelines data to the chosen Datanodes, which eventu-
ally confirm the creation of the block replicas to the Namenode

Apart from the above storage daemons we discussed, there are two com-
puting daemons worth discussing: JobTracker and TaskTracker. Like the
storage daemons, they follow a master/slave architecture. The JobTracker
daemon acts as a master node that provides a link between users applica-
tion and Hadoop. It prepares the execution plan, assigns tasks to nodes, and
then monitors the tasks. If a task fails, the JobTracker automatically restart
the task possibly on a different node. TaskTrackers accepts execution plan
for tasks from JobTracker and manage those tasks on each slave node. The
TaskTracker continuously communiates with JobTracker to declare that it is
alive. There can only be one JobTracker for every Hadoop Cluster and one
TaskTracker per slave node. However, each TaskTracker can start multiple
JVMs to handle a number of map or reduce tasks in parallel.

HDFS does not work so well with

• Low-latency data access: Remember, HDFS is optimized for delivering
a high throughput of data, and this may be at the expense of latency.

• Lots of small files: Since the name node holds filesystem metadata in
memory, the limit to the number of files in a filesystem is governed by
the amount of memory on the namenode

• Multiple writers, arbitrary file modifications: Files in HDFS may be
written to a single writer. Writes are always made at the end of file.

25

There is no support for multiple writers, or for modifications at arbi-
trary offsets in the file

4.3 Data Compression

Basically, Compression means encoding data/information using fewer bits
than the original representation, thereby reducing disk space. Every com-
pressed data must be decompressed during reading; therefore we might have
some performance penalty. We have always to trade-off between perfor-
mance and space. Compression usually enables the computation load to
shift between the processor and IO. A thorough study is made in [30] on
how and when to use compression.

Compressing a data can give us various benefits. A list of three advan-
tages of compression is given in [29], and are listed below

• It significantly reduces the number of bytes written to/read from HDFS

• It improves efficiency of disk space and network bandwidth

• It reduces the size of data needed to be read when issuing read

Hadoop supports different compression algorithms, such as Gzip, Lzo and
others. Some of them are optimized in terms of space while others are
interms of time. Table 4.1 summarizes the different compression formats
supported by Hadoop.6

Compression
Format

Tool Algorithm file name
exten-
sion

Multiple
files

Splittable

DEFLATE N/A DEFLATE .deflate NO NO
gzip gzip DEFLATE .gz NO NO
bzip2 bzip2 bzip2 .bz2 NO YES
LZO lzop LZO .lzo NO NO

Table 4.1: Compression formats supported by Hadoop

The gzip compression format is the same as DEFLATE, except it adds
extra headers and a footer. Out of the 4 formats, gzip tries to equally
balance the trade off between space and time. In the case of bzip2, space is
given more focus, as a result it is slower. However, its decompression speed

6table taken from [16] page 78

26

is faster than its compression, but not yet as good as the other formats.
On the other hand, LZO’s focus is more on speed rather than space. It
compresses less effectively, but works faster. Additionally, the LZO libraries
are GPL-licensed and you may need to get them from external source and
integrate with your system.

Hadoop provides compression option for outputs of both map and reduce.
Compression can be done via a configuration file or programmatically. Ad-
ditionally, there are two compression types: BLOCK and RECORD. Group
of keys and values are compressed together in BLOCK compression, while
each value is compressed individually in Record comrpession.

27

Chapter 5

Implementation

5.1 Program implementation

All the experiments in these thesis are done by using a Quadratic Sieve
MapReduce implementation written in Java. The program was originally
written by Javier Tordable on the work in [8] and I used it under the per-
mission of the Apache license. I made further modifications to the program
to get better results. Before explaining some of the improvements, let me
describe the basic structure of the program.

The program have to first collect data that may lead to factorization of
a number and then perform the MapReduce task to finally get the factors.
I divided the two parts into separate programs and worked on each of them.
For the first part, I modified the program to be able to generate data in
parallel across all the nodes. All the data is stored in separate files in HDFS
[20]. The number of files can be specified as a parameter when running the
program to collect data. During data collection, the factor base is generated
first, then is serialized and passed to the nodes as counter. After that, the
program generates the full sieve interval and makes it ready for MapReduce
Processing.

The second part of the program performs the map and reduce tasks and
finally tries to yield the two factors. The master node first splits the input
data into basic blocks and distributes them to the slave nodes. All this task
is handled by Hadoop’s MapReduce framework. This part has two main
functions: the mapping and reducing. During mapping, the slave nodes do
the sieve. "Each one of them receives an interval to sieve, and they return

28

a subset of the elements in that input which are smooth over the factor
base. All output elements of all mappers share the same key." These smooth
numbers then passed to the reducers and the reducers attempt to find a
subset of them whose produce is a square by solving the system module
2 by using direct bit manipulation. If suitable subset is found, then the
reducer tries to factor the original number. If that doesn’t factor, another
subset is tried, as long as we have many subsets to chose from.

5.1.1 Choice of Factor Base Size

The factor base size is one of the critical factors in the speed of the factor-
ization process. Choosing huge set of factor bases and choosing less have
significant effect in the performance of the process. Small factor base size
implies that only few numbers of Quadratic relations, say f(x), must be
found. However, these relations happens rare and consequently very time
consuming to find. On the other hand, Larger factor base size means, easy
way of finding f(x). However, more number of these relations are required.

We find in [27], an illustration of execution times of 40 digit number
under different factor base sizes. The result is shown in figure 1. It can
easily be noticed that choosing too small size or too large yields to slow
execution time.

Figure 5.1: The effect of factor base size choice

29

As it can be easly seen from the figure, choosing a factor base more or
less than 1500 would not make the factoring speed better. The choice of
optimal factor base size becomes more critical in the approach used in the
thesis than any other methods. The reason is that in our approach, data
must be prepared first and then processed, unlike other systems where both
tasks go in parallel. Therefore, if the factor base is poorly choosen, we might
prepare redundant data or unsufficient data.

Choosing the optimal factor base size is not an easy task, because choos-
ing fixed size would not suit to all numbers. After doing some research, I
found some recommendation in one project menioned in [28], for numbers
bigger than 25 digits. The formula they gave is

factorbasesize = 2.93x2 − 164.4x+ 2455 (5.1)

For numbers less than 22-digit, I used the old factor-bases sizes, as the
new one is greater than them. for numbers between 22 and 26 digits, I fixed
the size to the minimum 140, after some experimentation. And last, for
numbers greater than 26, I employed the formula recommended above.Table
5.1 and Figure 5.2 show comparison of factor base sizes between the new
size used during thesis and from previous results we had.

Digit size New Previously used
20 108 108
22 140 140
24 140 196
26 140 108
28 158 316
30 170 429
32 204 516
34 262 665
36 343 880
38 448 1081
40 577 1323

Table 5.1: Comparison of factor base sizes

30

Figure 5.2: comparison of factor bases

The effect of the choice will be displayed, in the Results and Analysis
chapter.

5.2 Cluster Setup

All implementations and experiments were done on Hadoop cluster contain-
ing 11 nodes. Each node has a specification of AMD Phenom II six-core
3.2GHz processor, 16 GB of ECC DDR-2 RAM, 1 TB secondary hard-disk.
Each machines have network card with specification of HP ProCurve 2650
at the network bandwidth of 100 BaseTx-FD. In addition to that the cluster
contains two racks with three datanodes in each rack. The racks are con-
nected through a 1Gbps Realtek Semiconductor Co., Ltd. RTL8111/8168B
PCI Express Gigabit Ethernet link and a Gigabit Ethernet switch is used
to interconnect all the nodes. All nodes are loaded with Linux CenOs (Linux
version 2.6.18-274.12.1.el5.centos.plus (mockbuild@builder10.centos.org) (gcc
version 4.1.2 20080704 (Red Hat 4.1.2-51))) Operating system. All the ex-
periments were conducted by using hadoop-0.20.203.0 release. Compactly,
the cluster is formed with:

• 11 nodes

31

• 11 nodes each with 6 cores, totaled to 66 cores

• 11 nodes each with 16 GB memory, totaled to 176 GB.

Out of these 11-nodes, one was configured to serve as NameNode, and the
rest were used as DataNodes. The Namenode is responsible for coordinating
the tasks and the datanodes are the ones that actually perform the work.

5.2.1 Hadoop Configuration

All the above mentioned nodes have to be properly configured with Hadoop
for the tests to be conducted. As it will be explained under the Results and
Analysis section, Hadoop’s configuration values have an important role to
play. In the work done in [3], the default values of Hadoop configuration
were mostly used. However, during Computer Science Project test, the
parameters were more optimized and better result were registered. Further
optimizations have been done during the thesis work.

In Hadoop, in order to override parameters with new values, you must
make changes in one of three files under the configuration folder. These
files are core-site.xml, mapred-site.xml and hdfs-site.xml. Some selected
parameters which I think are worth mentioning are summarized in Table
5.2.

32

Table 5.2: Selected Parameters used in the configuration
File Parameters Value Description

C
or
e-
si
te
.x
m
l io.file.buffer.size 131072 (= 128M) Size of read/write buffer used

in Sequence Files in Bytes Default: 4096
bytes (4K)

fs.inmemory.size.mb 200 Larger amount of memory allocated for the
in-memory file-system used to merge map-
outputs at the reduces

io.sort.factor 100 More streams merged at once while sorting
files

io.sort.mb 200 Higher memory-limit while sorting data
io.compression.codecs list of

codecs
Different compression codecs were speci-
fied (explained below)

M
ap

re
d-
si
te
.x
m
l mapred.map.tasks 100 The default number of map tasks per job.

Typically set to a prime several times
greater than number of available hosts

mapred.tasktracker.map.tasks.maximum 5 maximum number of map spawned on a
task tracker. one node has 6 cores- so I
used, one less

mapred.reduce.tasks 10 This is number of reduce tasks per job. I
chose 10, so that all 10 slave nodes do the
reduce task

mapred.tasktracker.reduce.tasks.maximum 5 maximum number of reduce spawned on a
task tracker. Each node has 6 cores- so I
used, one less

mapred.child.java.opts Xmx1024m Java opts for the task tracker child pro-
cesses. default is 200, so I gave larger heap-
size for child jvms of maps/reduces

mapred.child.ulimit 4194304 it is in bytes. should be 2âĂŞ3x
higher than the heap size specified in
mapred.child.java.opts

hd
fs
-s
ite

.x
m
l dfs.block.size 134217728 HDFS block size of 128MB for large file-

systems. Default is 64M. "The larger this
value, the fewer individual blocks will be
stored on the DataNodes, and the larger
the input splits will be".

dfs.replicaton 3 I left this to default value, because there
was no effect when changed.

5.2.2 Data Compression configuration

During data collection phase of the implementation, a large amount of data
is generated. Hence, I configured hadoop to get the benefits of compression
by reducing space requirements and speeding up data transfer across the net-
work. While the gzip comes with the Hadoop Apache distributions, the LZO
does not. The LZO libraries are GPL-licensed, as a result, I had to install
and configure the libraries on top of Hadoop. To enable compression on the
output of mapper’s, the mapred-compress.map.output parameter should be

33

set to true. The configuration done in mapred-site.xml file is shown below:

<property>
<name>mapred.compress.map.output</name>
<value>true</value>
<description></description>
</property>

For the LZO compression to work, the LZO libraries must be properly
installed. After installation, there are two properties that should be defined.
First, all the available codecs must be listed in the core-site.xml file, as shown
below:

<property>

<name>io.compression.codecs</name>

<value>org.apache.hadoop.io.compress.GzipCodec,

org.apache.hadoop.io.compress.DefaultCodec,

org.apache.hadoop.io.compress.BZip2Codec,

com.hadoop.compression.lzo.LzoCodec,

com.hadoop.compression.lzo.LzopCodec</value>

</property>

Then in the mapred-site.xml in addition to enabling the compression
property, the compression codec which is going to use in compressing the
output should be specified as shown below:

<property>

<name>mapreduce.map.output.compress.codec</name>

<value>com.hadoop.compression.lzo.LzoCodec</value>

</property>

The above configuration will tell Hadoop, to compress all outputs of map

34

by using the LzoCodec.

5.3 Numbers Used

All the numbers used during the test are product of two prime numbers
with nearly-equal sizes interms of digit size. These kind of numbers are the
hardest ones to factor. In addition to that, in order for me to be able to
compare with our previous results, I used the same numbers ranging from
20 to 40 digits. But, all numbers above 40-digit are newly generated. These
numbers are given in Table 5.3. When I make analysis, I will refer to these
numbers by their digit-size. For example, if I say 20 digit number, then I
am implying to the number 50031469295581191569 from Table 5.3.

In each of the tests, I was measuring the time needed to prepare the file
and the data processing. Adding these two compononts would give the total
time required to factor a number. The running time and the required disk
space to store temorary files increase with respect to the size of the input
numbers. The tests conducted and their analysis are given in the following
section.

35

Table 5.3: Composite numbers and their corresponding factors

Digit
size

Bit
size

Composite number Factor number 1 Factor number 2

20
.

66 50031469295581191569 5911885873 8462861153

22
.

72 3093234287444441437763 54761954833 56485096211

24
.

80 862453752119754745160851 792406500433 1088398128547

26
.

86 49011889928728242228979543 6422306627983 7631508859321

28
.

92 3518600851308845646375884429 60323532586829 58328826254401

30
.

98 668113306130414322957880778059 792306979677701 843250562303759

32
.

104 390201833376923301253645614219
37

5920597772026877 6590581701403781

34
.

112 412727380077458258900889759704
5849

64730046451170773 63761329197994613

36
.

120 814953198814747109042639381041
932671

974179817226728669 836553154154574859

38
.

126 462908914616745066191886641026
75408291

903112327487175534
1

512570696388061995
1

40
.

132 373849839441549550481109502570
6246229629

590703202116915245
99

632889474954217569
71

42
.

140 885696632089484883110677058539
286807328389

112869449775685760
1379

78470891268602683
5191

44
.

145 394517436507424258373136022391
40165404434849

783491171679664912
7831

503537819911422167
0279

46
.

152 447516865164461462790259750099
7543594279149181

628116227214288085
69063

712474611823373004
68987

48
.

160 879220724720998982398721996043
809035486062674831

988159202798848607
621321

889756146813900259
964311

50
.

166 534689466767631979414552494717
21044636943883361749

597443659034381445
0125977

894962158660825099
1047837

36

Chapter 6

Results and Analysis

6.1 Size of Generated Data

In order to factor a number, a data based on the factor base information
have to be placed in HDFS. This data varries in size according to the number
of digits forming the number to be factored. Table 6.1 shows the total size of
the data for each numbers in giga byte and mega byte and Figure 6.1 shows
the file trend as the number of digits increase. From these two figures, it
can easily be noticed that the size grows-up exponentially. For example, if
we carefully look into numbers above 30 digit, we see that for every increase
of 2 digits, the size of the data doubles. The reason for this sharp rise is
the factor base size we generate using equation (5.1). In the program, the
full sieve interval size is determined using the factor base size to the power
of three. Changing the power to less than three, was not good enough to
factor for most of the numbers. At least, the factor base size is much more
reduced than the previous, so taking to the power of three was fair. So,
having such setup makes the the groth exponential.

This increase brings a serious concern to the disk capacity required to
factor bigger digit. With this trend, for instance to factor 60 digit number,
about 8 TB disk space will be required for the necessary sieve interval to be
prepared.

37

Digit size Bit size File size (GB) File size (MB)
20 66 0.04 37
22 72 0.08 86
24 80 0.09 92
26 86 0.09 97
28 92 0.14 147
30 98 0.19 193
32 104 0.34 351
34 112 0.76 781
36 120 1.8 1, 855
38 126 4.2 4, 295
40 132 9.5 9, 628
42 138 20 20, 480
44 144 39 39, 936
46 150 74 75, 780
48 156 134 137, 232
50 164 229 234, 496

Table 6.1: Size of File Generated for each number

Figure 6.1: File Size trend in GB vs digit size

6.1.1 comparison between new file size and previous one

In this section, I present comparison between the file sizes, produced in the
previous works and data used in the thesis. In both cases, it was possible
to factor the respective numbers, this shows we were generating redundant
data and as a result were doing extra computation.

From Table 6.2 and Figure 6.2, it can easily be noticed the difference,
especially as the number of digits grow. For instance, were were generating a
data which is 12 times greater that what we have now. Even at this time, for
some numbers the data generated might be redundant. The problem with

38

this approach is that, data must be prepared first, then stored in HDFS, and
finally start processing. However, in other methods such as using MPIs, the
data processing is done in parallel with the data collection. In such cases,
you don’t have to worry about how much data you have to prepare, because
the program stops when enough relations are collected.

As it will be discussed, in the next section, the size of the data will
defninely impact the speed of the factorization.

Digit
size

Bit size New generated
data size (GB)

Previously gen-
erated data size
(GB)

20 66 0.04 0.04
24 80 0.09 0.25
28 92 0.14 1.17
30 98 0.19 2.25
32 104 0.34 5.21
34 112 0.76 12.84
36 120 1.8 31.3
40 132 9.5 115.8

Table 6.2: File Size Improvements from previous works

Figure 6.2: Imrpvement of file Size in the thesis

39

6.2 Performance of Data collection and processing
time

In this section, I present the time taken to collect data and to process it.
Table 6.3 gives the time taken to factorize different numbers under 11-node
cluster. Out of these 11 machines, one is assigned the role of a NameNode in
order to control all the process accross the rest 10 nodes. During the data-
collection phase, each node out of the 10 slaves was assigned a part from the
total sieve interval to prepare the necessary data. The whole sieve interval
is equally divided into 10, and each node prepares the data and saves into
the HDFS as a separate file. As a result, I had to see 10 different files in
the HDFS with almost equal size. Data collection phase is computational
intensive where the CPU is intensively used. In order not to overload one
node, the program is slightly modified all other nodes to take their share in
the computation. In this test, all 10 prepared data in parallel, so the time
improved by about 10 times than when it is done in one machine.

Digit
size

Bit
size

Data collec-
tion time
(min)

MapReduce
time (min)

Total time
taken (min)

20 66 0.05 0.65 0.70
22 72 0.05 0.66 0.71
24 80 0.05 0.66 0.71
26 86 0.05 0.66 0.71
28 92 0.05 0.81 0.86
30 98 0.05 0.85 0.90
32 104 0.09 0.89 0.98
34 112 0.19 1.09 1.28
36 120 0.42 1.25 1.67
38 126 1.05 1.82 2.87
40 132 2.25 2.60 4.85
42 138 4.42 4.91 9.33
44 144 8.5 9.41 17.91
46 150 17 19 36
48 156 31 41 72
50 164 50 90 140

Table 6.3: Performance measurement for 11-node cluster

In Table 6.3 the MapReduce column is time taken from running the
second part of the program to do processing to getting the final result.
Then the summation of the two parts is given under the last column. The
time gap between data collection and data processing is ignored. This gap

40

can be the time spent to check the HDFS for the proper placement of files,
and may be, removing unnecessary extra files in the HDFS. As it can also
be noticed in Figure 6.3, the MapReduce time increases exponentially, just
as the file size and data collection time do.

6.2.1 Performance improvement from the previous result

During the initial work, mostly the default hadoop configuration parame-
ters were used and data was only generated in one machine, then on the
computer science project, the program was slightly modified to distribute
data collection and some of the used Hadoop configuration parameters were
optimized. In this thesis, it is easily possible to distribute the data collection
task as per the users wish and the hadoop configuration parameters were
further optimized. Additionally, the data processing phase is optimized, for
instance, the way the factor base size is determined. As can be seen in Table
6.4, the MapReduce time is improved enormously from the initial one.

In Table 6.4, the third and fouth columns compare the time taken to
collect data when it is distributed across the 10 nodes or only performed by
one machine. Additionally the file used during the previous works was the
same for all numbers, but smaller during the thesis. The last three columns
show time recorded during the initial work, computer science project course,
and this thesis respectively.

During all these tests, the data replication option was left to the default
value, which is 3, because changing it didnt bring any performance issue.
The reason for this might be due to the fact that all nodes are connected
to the same switch, and this reduces the probability of data loss because of
network failure.

Digit
size

Bit
size

Init. Data
coll. time
(min) in 10
nodes

Data
coll. in
1 node
(min)

Initial
MR
(mins)

MR-time
in cs
project
(mins)

Latest
MR-time
(mins)

20 66 0.05 0.10 2.12 0.70 0.65
24 72 0.05 0.57 2.62 0.71 0.66
28 80 0.05 2.62 3.18 0.86 0.81
32 86 0.09 10.58 9.55 0.98 0.89
36 92 0.42 64.15 55.03 1.67 1.25
40 98 2.25 236.30 234.88 4.85 2.60

Table 6.4: Performance improvement after optimizations

41

The improvement is tremendous as the digit size increases. If the num-
bers are very small, then the map reduce time is almost the same. With
all the optimizations done, the time required to prepare sieve intervals and
to process the matrix , for instance, for 40 digit number have improved by
around 90 times.

Figure 6.3: Imrpvement of file Size in the thesis

42

From Figure 6.3, still the MapReduce time increases exponentially in all
cases, eventhough after all the optimization it goes at a steady pace. This
indicates that the resource requirement, interms of disk space and processing
times will be a big constraint to factor bigger numbers.

Another observation from Table 6.4 is that the ratio of the MapReduce
time to file size dcreases sharply. This can show us that hadoop performs
better as the size of the data to be processed is bigger.

6.3 Effect of Cluster Size on Performance

In this section, I try to show the effect of having different number of workers
(slave nodes) on the performance of Hadoop-MapReduce. I left one separate
namenode in each test cases, that means the cluster size is one plus number
of nodes in Table 6.5 under the “No. of Slaves” column. In the table, the
time required to do the data processing for 40 digit number is measured
when the cluster has 1, 2, 4, 6, 8, and 10 slave nodes. From the result, it can
be noticed that as the cluster size increase, the cluster gets more procesing
power, hence the time is going down. This is due to the workload being
shared by the additional nodes. Figure 6.4 shows how the trend is as the
cluster size increase.

This can be considered as the biggest advantage of this approach from
others interms of simplicity and scalability. To improve performance, you
simply need to only add more nodes. You don’t need to modify any part
of the code. and It can also scale to any number of nodes you may have.
All the distribution system headaches, such as coordination, is handled by
Hadoop.

However, one thing I would like to mention is that all the tests are done
on machines which are connected to one Gigabit switch. Threrefore, it will
not be wise to ignore the network delay that might happen when the nodes
are connected to many switches. The data will need to be distributed across
a scattered network and the nodes will continuously need to send message
that they are alive to the master.

43

No of Slaves MapReduce Time
(mins)

Factorization of 40-digit number
1-node 16.76
2-node 9.11
4-node 4.95
6-node 3.58
8-node 3.05
10-node 2.72

Table 6.5: Performance comparison when factoring 40-digit number in dif-
ferent cluster sizes

Figure 6.4: Factoring 36-digit in different cluster setting

6.4 Effect of Data Compression and Splitting Data
into files

As the data size grows fast, the disk requirement is a big concern. The
concern is both on the input data and output of map as, the Mapper function
may produce very big temporary output. I made the test 40 digit number,
by dividing the data into a number of files. In the approach, there should be
around 9.5 GB data placed in HDFS in total. I put this data into 1, 5, 10,
20, 40, 80, and 100 files, and tested each cases. In Table 6.6, the columns

44

which say size of each file, refers to size of a single file, not to the total. For
example, size of each uncompressed file when the data is divided amont 10
files is 0.93GB. This means, the total data size placed in HDFS is 10 times
0.93 GB, which is 9.3GB. Such multiplication should give us the same value,
whether we slice the data into small parts.

From the table, if we compare the size of each uncompressed file against
the compressed ones, then we see different sizes. Gzip algorithm performs
better than LZO interms of disk space gain. While Gzip reduces the size by
about 70%, LZO shrinks by 50%. In the next two subsections, I will try to
briefly discuss the performance on compressing both the input and the map
output.

No. of
Files

Size of
each file
(Uncomp)

MR-time
(Mins)

size of
each LZO
file (GB)

MR-time
LZO
(mins)

Size of
each Gzip
file (GB)

MR-time
Gzip file
(GB)

1 9.5 2.75 4.3 34.95 2.9 34.99
5 1.9 2.75 0.87 7.77 0.56 7.75
10 0.93 2.75 0.43 4.45 0.28 4.43
20 0.47 2.75 0.22 2.75 0.14 2.77
40 0.23 2.75 0.11 2.11 0.07 2.19
80 0.12 2.75 0.06 2.51 0.04 4.56
100 0.09 2.75 0.04 2.54 0.03 2.67

Table 6.6: Effect of Compression

6.4.1 Compressing the Input Data

The third column in Table 6.6 showing the MapReduce time for the uncom-
pressed ones have the same value for all kinds of slices. For uncompressed
data, Hadoop simply divides into small fixed block sizes and assigns them
to the workers (mappers). Therefore, whether the input is one file or file,
there wouldn’t be huge difference. How ever, for compressed data, each
compressed entity is assigned to one mapper, so it lacks the benefits of dis-
tribution. That is the reason, why as the data is divided in to smaller files,
the performance improves simultaneously.

One thing I noticed during the tests is that, compressing either in Gzip
or in LZO, the result of time needed to do processing is the same. But, the
Gzip saves more disk space, there fore, Gzip seems the better option in our
case. However, as it is also explained in the literature review in Chapter 4,
LZO has a lot of benefits.

45

Figure 6.5: Improvement of Compression

Figure 6.5 compares the MapReduce time for compressed and uncom-
pressed data in different files. The blue color shows the MapReduce time for
uncompressed data. The fact that it is straight line indicates that the time
is relatively stable whether it is sliced into few or many files. However, for
compressed data, the time improves as the data is sliced into more files. it
reaches its best time when it is sliced into 40 files. The main reason for this
might be due to the buffer and block size I used in the configuration. I used
128MB for block size and buffer size, and this means each time, a 128 MB
slice of data is processed at a time. As the slicing continues towards 40, the
file size nears to the buffer size, as a result it becomes fast to decompress and
process. But for the less number of files, it takes a lot of time to decompress
the file before start processing.

If we keep on dividing the data into, say 100 files, the size of each file is
less than the configured Hadoop’s buffer size. This means, the decompres-
sion is of course much faster, but the decompression function is called many
times. There fore, map-reduce time is not the best, eventhough it is better
than the uncompressed one.

46

6.4.2 Compressing the Output of Map

I configured hadoop to compress the outptut of map to Gzip compression
codec first, then to LZO compression coded. As LZO is GPL licensed I
had to make additional steps in order to make LZO work. After enabling
compression on the output of map, there was not any improvement gain
registered. In all cases, the result was the same as the time taken when it
is not compressed, which is 2.75 minutes on average. This can be due to
the fact that the cluster’s disk space is more than enough fore the data. I
tested the compression with data as big as 230 GB for 50-digit and there
was no any performance penalty or gain. Each node in the cluster, has 1
TB secondary disk, that means collectively it is 10 TB.

47

Chapter 7

Discussion

As mentioned in the previoius chapter, the performance of the system to
factor a number was affected by different factors. The factor base size is
very important factor, because the file size depends on it. The factor base
schema used in this thesis, is not of course the optimal one. For some
numbers, redundant data was being prepared, and while the same size is
not enough to factor other numbers. Finding a right balance in the hadoop
configuration parameters is also an important factor.

In this approach, the trend how the data size increases is a big concern,
as it grows exponentially. Eventhough, with the option of data compression
reduces the size significantly, it doesn’t change the trend.

Compared to the initial result we had, the result have improved enor-
mously. However, compared with other approaches such as MPI options,
using Hadoop as a tool has serious limitations. Let me discuss the limita-
tions of the approach in the next section.

7.1 Limitations of using Hadoop as a tool

There are fastest implementations of the quadratic sieve algorithm using
different approach. For example, the parallel quadratic implementation from
[28], factors a 40 digit number in less than 10 minutes using a computer with
2 GB RAM and 2.4 dual core processor. There are two main reasons that I
would like to mention why the Hadoop approach is slower than that.

1. In the Hadoop approach, the data collection and data processing
phases of the quadratic sieve are done in series. It is a must to first

48

gather required information before starting processing. On the other
hand, in the other approaches, they do these two phases in parallel.
These implementations, they gather relations that may lead to factor-
ization of a number and at the same time process these relations. If
a set of relations that give the factors are found, the process is ter-
minated and the result is displayed. Figures 7.1 and 7.2 shows the
difference of the two approaches.

Figure 7.1: The two Phases in series (Hadoop’s approach)

Figure 7.2: Doing the two phases of QS in parallel

2. In Hadoop, data is stored in HDFS, which is an abstraction of disk.
However, in the case of MPI implementations, data is read from mem-
ory. Reading data from disk punishes the performance of the system
a lot.

49

The approach, however, beats other approaches over its simplicity. In
other conventional approaches, the task of managing the resources, such as
memory or processor, falls on the hand of the programer. To the contrary,
Hadoop handles the difficult tasks of distribution and fault-tolerance for the
user.

50

Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this thesis, the possibility of factoring big integer number through ex-
ploiting the strenghts of hadoop was studied.

The approach is relatively simple to implement compared to other con-
ventional implementations. One of the biggest features of Hadoop/MapReduce
is its tolerance to fault. Therefore, it alleviates the pressure of managing and
coordinating Hadoop’s nodes. Secondly, the approach can easily be scalled
to even thousands nodes, without worrying to make change in the design or
code.

However, there are serious limitations that make it not the best option
for the problem. Primarily hadoop is designed for data-intensive applica-
tions, but integer factorization is mainly computation-intensive though it
has small data-intensive part. And the data gathered during the process
grows exponentially as the digit size growth. This affects badly to the re-
quirement of disk space and processing huge data would also take more time.
The other limitation factor is data is written and read from disk, which is
much slower than doing stuff in memory. The way data is also read and
written are another problem. Data has first to be prepared, it is after that
the processing starts.

Due to the above limitations, It seems changing to any variants of the
quadratic algoritms would not bring any breakthrough. But, It may improve
the current result to some degree.

51

8.2 Future Work

Working on a way to avoid the above limitations should be the primary goal
in the future. At this time, the implementation of pure hadoop doesn’t ex-
actly fit to the problem. Message Passing Interface (MPI) implementations
are widely accepted for high-performance computing purposes. If hadoop
can adapt the benefits of MPI in the future, then a speed up in data in-
tensive computing applications such as Integer factorization problem can be
registered.

At this time, it is not clear what is the optimal value of the data to be
prepared. For some of the numbers, it is optimal, for others it is not enough
and for some numbers redundant data is computed and stored. Hence,
looking into an option to define what is enough is interesting.

Algorithmic wise, implementing the other variants of Quadratic sieve
algorithm, and may be General Number Field Sieve (GNFS) algorithms can
also make a difference. Looking into that is, I think, wise move.

52

Bibliography

[1] R.L. Rivest. A. Shamir, and L. Adleman, “A method for obtaining dig-
ital signatures and Piublic-key Cryptosystems”, Commun. ACM, vol.
21, no. 2, pp. 120âĂŞ126, Feb. 1978. 1

[2] Junod, Pascal. "Cryptographic Secure Pseudo-Random Bits Genera-
tion: The Blum-Blum-Shub Generator", Mar 26, 2012. 1

[3] Son Nguyen, Semere Tsehaye Ghebregiorgish, Nour Alabasi, Chun-
ming Rong. Integer factorization using Hadoop, submitted to the IEEE
CloudCom 3rd International Conference, August 2011. 1, 11, 32

[4] K. Aoki, J. Franke, T. Kleinjung, A.K. Lenstra, D.A. Osvik, A kilobit
special number field sieve factorization, Proceedings Asiacrypt 2007,
Springer-Verlag, LNCS 4833 (2007) 1 -12 2

[5] Thorsten Kleinjung et. al. Factorization of a 768-bit RSA Modulus,
http://eprint.iacr.org/2010/006.pdf. Retrieved Aug 15, 2011. 5

[6] RSA Numbers, http://en.wikipedia.org/wiki/RSA_numbers, formerly
on http://www.rsa.com/rsalabs/node.asp?id=2093 1, 6

[7] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems:
Principles and Paradigms. Prentice Hall, second edition, 2007. 3

[8] Javier Tordable.J. Tordable, “MapReduce for In-
teger Factorization,” arXiv:1001.0421, Jan. 2010.,
http://www.javiertordable.com/files/MapreduceForIntegerFactorization.pdf.
Retrieved Apr 19, 2012. 3, 28

[9] Steven Arzt, “Distributed Number Factorization Using Hadoop”,
http://www.student.informatik.tu-darmstadt.de/s_arzt/Research/CloudFactorizationHadoop.pdf.Retrieved
Apr 15, 2012 3

53

[10] H. Te Riele, W. Lioen, and D. Winter, âĂĲFactoring with the quadratic
sieve on large vector computers,âĂİ Journal of Computational and Ap-
plied Mathematics, vol. 27, no. 1âĂŞ2, pp. 267âĂŞ278, 1989. 4

[11] J. A. Davis and D. B. Holdridge, âĂĲFactorization using the Quadratic
Sieve algorithm,âĂİ pp. 103âĂŞ116, 1984. 4

[12] N.-F. Tzeng, âĂĲReliable butterfly distributed-memory multipro-
cessors,âĂİ Computers IEEE Transactions on, vol. 43, no. 9, pp.
1004âĂŞ1013, 1994. 4

[13] Cosnard and J. Philippe, âĂĲThe Quadratic Sieve Factoring Algo-
rithm on Distributed Memory Multiprocessors,âĂİ Proceedings of the
Fifth Distributed Memory Computing Conference 1990, pp. 254âĂŞ262,
1990. 4

[14] XZ Backup, LLC, Data and storage growth trends âĂŞ and how
they affect online backup, (http://www.xzbackup.com/blog/company-
news/data-and-storage-growth-trends-and-how-they-affect-online-
backup/), Retrieved Sep 22, 2011. 17

[15] Grantz et al., âĂĲThe Diverse and Exploding Digital UniverseâĂİ,
March 2008 (http://www.emc.com/collateral/analyst-reports/diverse-
exploding-digital-universe.pdf), retrieved Sep 22,2011 17

[16] Tom White, âĂĲHadoop: The definitive GuideâĂİ, Second Edition
June 2009, 17, 22, 26

[17] Hadoop Project. http://hadoop.apache.org/

[18] C. Lam, “Hadoop in Action", 1st ed. Manning Publications, 2010 18

[19] Jeffrey Dean, Sanjay Ghemawat. MapReduce: Simplified Data Process-
ing on Large Clusters, in Proceedings of the 6th Symposium on Oper-
ating Systems Design and Implementation (OSDI’04), Dec 2004. 19

[20] Hadoop Distributed Filesystem: http://hadoop.apache.org/hdfs/ 22,
28

[21] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert
Chansler, âĂĲThe Hadoop Distributed File SystemâĂİ,

54

http://storageconference.org/2010/Papers/MSST/Shvachko.pdf,
retrieved Sep 24,211 24

[22] William Stallings, âĂĲCryptography and Netowrk Security Principles
and PracticeâĂİ, 5th Edition 6

[23] Richard Crandall, Carl Pomerance. Prime Numbers: A Computational
Perspective, 2nd Edition, Springer, 2005. 9

[24] John D. Dixon. Asymptotically Fast Factorization of Integers, in Math-
ematics of Computation, Vol.36, No.153, Jan 1981. 10

[25] Carl Ponence, Analysis and Comparison of Some Integer Factoring Al-
gorithms, in Computational Methods in Number Theory, Part I, H.W.
Lenstra, Jr. And R.Tiejdeman, eds., Math, Centre Tract 154, Amster-
dam, 1982, pp 89-139. 12

[26] T. D. <tim@dierks.org>, âĂĲThe Transport Layer Se-
curity (TLS) Protocol Version 1.2.âĂİ [Online]. Available:
http://tools.ietf.org/html/rfc5246. [Accessed: 07-Jan-2012]. 3

[27] Olof Osbrink and Joel Brynielsson, Factoring Large Integers
Using Parallel Quadratic Sieve, ftp://ftp.nada.kth.se/Theory/Joel-
Brynielsson/qs.pdf retrieved 29/03/2012 29

[28] Parallel Implementation of the Quadratic Sieve,
http://www.bytopia.dk/qs/, retrieved on 25 Mar, 2012 30, 48

[29] Hadoop Wiki, http://wiki.apache.org/hadoop/UsingLzoCompression,
retrieved on Apr 23, 2012 26

[30] Y. Chen, A. Ganapathi, and R. H. Katz, “To compress or not to com-
press - compute vs. IO tradeoffs for mapreduce energy efficiency,” in
Proceedings of the first ACM SIGCOMM workshop on Green network-
ing, New York, NY, USA, 2010, pp. 23 - 28. 26

55

	Preface
	Introduction
	Motivation
	Related Work and Contribution of the Thesis
	Organization of the Thesis

	The Basics of Integer factorization
	introduction
	RSA and Integer Factorization
	Selected Special-Purpose Algorithms
	Selected General-Purpose Algorithms

	Quadratic Sieve Algorithm
	Introduction and the Algorithm
	Example

	Hadoop and MapReduce
	Motivation
	What is Hadoop
	MapReduce Programming Model
	Hadoop Distributed File System (HDFS)

	Data Compression

	Implementation
	Program implementation
	Choice of Factor Base Size

	Cluster Setup
	Hadoop Configuration
	Data Compression configuration

	Numbers Used

	Results and Analysis
	Size of Generated Data
	comparison between new file size and previous one

	Performance of Data collection and processing time
	Performance improvement from the previous result

	Effect of Cluster Size on Performance
	Effect of Data Compression and Splitting Data into files
	Compressing the Input Data
	Compressing the Output of Map

	Discussion
	Limitations of using Hadoop as a tool

	Conclusion and Future Work
	Conclusion
	Future Work

