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Chapter 1

Introduction

1.1 Background

Industrial robots used to spray-paint vehicles use air to place the paint onto
the object. The paint is let out at the end of the robot arm, while a stream of
air is used to lead the paint towards its desired location. The air supplied to
the system comes from a control unit1 consisting of a high pressure chamber
separated from a pipe system by a valve. The valves position as a function
of time is preset according to the users desires. Adjustments are then made
according to measurements taken of the volume flow through the system. We
will regard the ACU as a system consisting of two separate subsystems. The
two subsystems are the pipe system supplying the air to the robots tool and
the measuring arrangement used to obtain readings of the flow.

We will in this thesis analyze a design where the pipe system is supplied by
a valve letting a circular laminar jet into it. The model given here is first
and foremost intended to be used to describe the pipe system, but to some
lesser degree it also applies to the measuring arrangement. Modeling the
inlet as a circular laminar jet is to be considered a suggestion of how to fill
the system with fluid. There might be different arrangements that could be
used just as well. The reasons for me to chose this particular configuration is
that it is mathematically convenient and that it can be assumed to minimizes
the effects created as the fluid let in meets the inner walls of the pipe. The
straight part of the pipe beyond the valve serves to stabilize the flow before

1The control unit in question is referred to as a ACU, which is short for air control
unit.
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2 CHAPTER 1. INTRODUCTION

any measurement of it is obtained.

The measurements are done by utilizing a venturi. A venturi consists of two
cylindrical pipes with a contracting part in between, which makes up the
pipe system. The measurements are obtained by letting some air leak from
the pipe system through much narrower pipes on either side of the contract-
ing part of the pipe system to reach a pressure gauge at the end. These
narrow pipes makes up the measuring arrangement. The gauge operates by
registering the pressure associated with the volume flow through the narrow
pipe. The difference between the pressure readings on either side are then
used to obtain a measurement of the volume flow through the pipe system.
The general description of the system is illustrated in figure 1.12

Figure 1.1: General draft of the system under consideration. The streamlines

here predict what we intuitively would expect to happen to a jet that is let into

the pipe system shown.

1.2 The aim of this thesis

In order to analyze the behavior of the fluid moving through this system we
will divide the pipe into three separate sections. Each section will be an-
alyzed in an individual chapter, considering stationary, incompressible flow
only. To take into account that the fluid moving through the real system
is not stationary, an additional chapter will consider the fluctuation in the

2The figure does not show the measuring arrangement as it is not considered a part of
the pipe system, but a separate part of the system as a whole.
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pressure at the inlet. There will also be separate chapters discussing the
effects of compressibility and the effects of a changing pressure gradient in
the system.

The first section concerns how the fluid behaves as it emerges from a very
small orifice into a large pool of quiescent fluid. The stream will here be
treated as a laminar jet, described in cylindrical coordinates. Then as the
boundary of the jet reaches the inner walls of the pipe, the second section
will aim to describe a turbulent stream contained within a straight, cylindri-
cal pipe. We will include a chapter qualitatively discussing the effects of a
changing pressure gradient as the pipe contracts, in order to give a complete
description of the pipe system. Then there will be a chapter considering the
effects of compressibility. We shall here use dimensional analysis to argue
the dominance of the viscous effects over the effects of compressibility. The
fluctuation will be analyzed using a known solution for how a harmonically
oscillating pressure disturbance propagates through a flow in a pipe. This
solution will be elaborated and expanded to include pressure disturbances in
the form of a step and an impulse distribution as well.

This thesis will combine elements from both applied physics and electro engi-
neering in an attempt to describe a model of the pipe system and to analyze
the valve and the method used for measuring the stream. We will therefore
not present a pure mathematical model, but also include some qualitative
considerations and notation used in electro engineering. It is my intention to
make somewhat complicated mathematical considerations available and easy
to apply to practical engineering.
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Chapter 2

Cylindrical Laminar Jet

2.1 Background

The mathematical description of a narrow jet of high speed fluid emerging
from a small orifice, i.e a laminar jet1, is derived by using the same as-
sumptions as for a laminar boundary layer. The important facts under this
consideration is that the pressure across the jet can not vary to a large extent,
and thus, must be approximately the same as the pressure in the surround-
ing fluid, and that the viscous forces in the direction of motion will be much
smaller than those in the radial direction.

Disregarding gravity, as the jet is presumed to move horizontally, and flow
in the azimuthal direction; the Navier-Stokes equation for a jet in Cartesian
coordinates is reduced to

u
∂u

∂x
+ v

∂u

∂y
=

1

ρ

∂p0
∂z

+ ν
∂2u

∂y2
. (2.1)

This equation in conjunction with the continuum equation

∂u

∂x
+
∂v

∂y
= 0, (2.2)

describes the motion of a two-dimensional high speed jet in Cartesian coor-
dinates. Here u and v represents the velocities and x, y and z the spacial

1The material in this subsection is found in [2] Pijush K. Kundu, Ira M. Cohen and
David R. Dowling ’Fluid Mechanics’, unless otherwise stated

5



6 CHAPTER 2. CYLINDRICAL LAMINAR JET

coordinates. The density of the fluid is written ρ and the dynamical vis-
cosity is written ν. The solution to this problem is well know and valid for
a stationary, incompressible, two-dimensional, laminar, high speed jet, de-
scribed in Cartesian coordinates that emerges from a narrow slit into a pool
of quiescent fluid.

2.2 Exact Solution

We will now proceed by considering a laminar jet of momentum flux J that
emerges from a small circular orifice into a large pool of stationary viscous
fluid at z = 0, as shown in the figure 2.1.

Figure 2.1: A simple sketch of a jet emerging from a small orifice into a large

pool of quiescent fluid. The thick lines starting at the orifice serves to illustrate

how we might perceive the edge of the jet.

In cylindrical coordinates (2.1) and (2.2) is written respectively2

w
∂w

∂Z
+ UR

∂w

∂R
= −1

ρ

∂p0
∂Z

+
ν

R

∂

∂R

(
R
∂w

∂R

)
(2.3)

and
1

R

∂(RUR)

∂R
+
∂w

∂Z
= 0, (2.4)

where Z is the axial coordinate, w is the axial velocity, R is the radial coor-
dinate and UR is the radial velocity.

2See exercise 9.27 in [2] Pijush K. Kundu, Ira M. Cohen and David R. Dowling ’Fluid
Mechanics’



2.2. EXACT SOLUTION 7

Utilizing the continuum equation we seek a similarity solution3 for the stream
function Ψ(η). We note that as we utilize the continuum equation we are
assuming that there is no fluid entering or leaving the system. This is of
course unphysical as we here are considering a jet suppling fluid to large
quiescent pool, but we do this in an attempt to simplify the model. The
error resulting from this simplification will be analyzed in more detail at the
end of this chapter.

Ψ = c1Rg(η), where η = (R/Z). (2.5)

The axial and radial velocity are found from the stream function as

w(η) ≡
(

1

R

)
∂Ψ

∂R
= (c1/Z)

(
(1/η)g(η) + g′(η)

)
(2.6)

and

UR(η) ≡ −
( 1

R

)∂Ψ

∂Z
= (c1/Z)ηg′(η). (2.7)

We now define
f(η) ≡

(
(1/η)g(η) + g′(η)

)
, (2.8)

which gives us

ηf(η) =
∂

∂η

(
ηg(η)

)
⇒ g(η) =

1

η

∫ η

ηf(η)dη (2.9)

and

g′(η) = −
( 1

η2

)∫ η

ηf(η)dη + f(η). (2.10)

Substitution of (2.9) and (2.10) into (2.6) and (2.7) enables us to express
both the axial and radial velocities as a function of f(η) respectively as

w(η) =
(c1
Z

)
f(η) (2.11)

and

UR(η) =
(c1
Z

)(
ηf(η)−

(1

η

) ∫ η

ηf(η)dη
)
. (2.12)

It is clear from dimensional analysis that since η is a dimensionless variable,
c1 must have the dimension L2/T in order for (2.11) and (2.12) to have

3We here refer to [1] D. J. Tritton ’Physical Fluid Dynamics’
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dimension L/T . Thus, we expect that c1 must be the kinematic viscosity of
the fluid. As such, we will further on use c1 = ν, which enables us to rewrite
(2.11) and (2.12) respectively as

w(η) =
( ν
Z

)
f(η) (2.13)

and

UR(η) =
( ν
Z

)(
ηf(η)−

(1

η

) ∫ η

ηf(η)dη
)
. (2.14)

The terms in (2.3) is found as

∂w

∂z
= −

( ν
z2

) ∂
∂η

(
ηf(η)

)
,

∂w

∂R
=
( ν
z2

)
f ′(η)

and
∂

∂R

(
R
∂w

∂R

)
=
( ν
z2

) ∂
∂η

(
ηf ′(η)

)
.

As the fluid surrounding the jet is said to be quiescent we disregard the
pressure gradient

∂p0
∂z
≈ 0.

Substituted into (2.3) the Navier-Stoke equation for a cylindrical jet reduces
to

f ′(η) + ηf ′′(η) + ηf(η)2 + f ′(η)

∫ η

ηf(η)dη = 0. (2.15)

In order to solve this, we notice that

f ′(η) + ηf ′′(η) =
∂

∂η

(
ηf ′(η)

)
and that

ηf(η)2 + f ′(η)

∫ η

ηf(η)dη =
∂

∂η
f(η)

∫ η

ηf(η)dη.

This further reduces (2.15) to

ηf ′(η) + f(η)

∫ η

ηf(η)dη = 0. (2.16)
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In order to solve eq. (2.16) we introduce

F (η) ≡
∫ η

ηf(η)dη. (2.17)

The first and second derivative of F (η) are respectively

F ′(η) = ηf(η) (2.18)

and
F ′′(η) = f(η) + ηf ′(η). (2.19)

Substitution of eq. 2.17, eq. 2.18 and eq. 2.19 into (2.16) yields

ηF ′′(η) + F ′(η)
(
F (η)− 1

)
= 0. (2.20)

Preceding to solve this we first notice that

F ′(η)
(
F (η)− 1

)
=

1

2

∂

∂η

(
F (η)− 1

)2
and that

ηF ′′(η) =
∂

∂η

(
ηF ′(η)

)
− F ′(η).

.

This produces

∂

∂η

(
ηF ′(η)

)
− F ′(η) +

1

2

∂

∂η

(
F (η)− 1

)2
= 0⇔

ηF ′(η)− F (η) +
1

2

(
F (η)− 1

)2
= K1. (2.21)

We choose the value of K1 in such a manner that F (0) = 0. The value of K1

can then be determined as follows

K1 = ηF ′(η)− F (η) +
1

2

(
F (η)− 1

)2∣∣∣∣
η=0

=
1

2
.

Now we can precede to solve (2.21) with K1 = 1/2

ηF ′(η)− F (η) +
1

2

(
F (η)− 1

)2
=

1

2
.
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This yields

2η
∂F

∂η
= F (η)

(
4− F (η)

)
.

Integrating this and utilizing that F (η)→ 0 for y → 0, we find

ln(η2) = ln

∣∣∣∣∣ F (η)

4− F (η)

∣∣∣∣∣+K2,

which yields

F (η) =
4K2η

2

K2η2 + 1
. (2.22)

By redefining g(η), found in eq. 2.5, we can chose that K2 = 1, thus we have

F (η) =
4η2

η2 + 1
. (2.23)

Differentiating this we find an expression for f(η)

f(η) =
8

(η2 + 1)2
. (2.24)

The solution found in eq. 2.24 determines the characteristics of the jet.
Further on we will derive the stream function, the radial and axial velocity
and the momentum flux of the jet from this function.

2.3 Analysis

2.3.1 The stream function

Substituting (2.24) into (2.9) and further substitution of this into (2.5) with
c1 = ν, gives us the following expression for the stream function of the jet
under consideration as we substitute R/Z for η4:

Ψ(η) = νRg(η) = ν
(R
η

)∫ η

ηf(η)dη

4We consider Ψ a function of η only for constant ν and R, and use the same consid-
eration for other functions derived from the stream function during this chapter i.e. the
functions for the axial and radial velocities and for the momentum flux.
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= −ν
(4R

η

)( 1

η2 + 1

)
= −ν 4Z

R2/Z2 + 1
= −ν 4Z3

R2 + Z2
. (2.25)

The plot of eq. (2.25), shown in figure2.25, gives some insight into the be-
havior of the motion of the jet as it emerges from the orifice at Z = 0.
Here we can follow the innermost lines and observe how the jet expands as
it moves along its axis of motion. The outer contours nevertheless deviate
from what we expect, as they give the impression that fluid is emerging from
every point along the radial axis at Z = 0. This of course is not the case
in the real system under consideration, as the fluid is entering the system
from a small orifice at the center of the pipe. The error arises from the fact
that we have not presumed the continuum equation to be valid. As such, the
solution we have arrived at in (2.24) necessarily breaks down as we approach
Z = 0. Further down the axis of motion the outer contours resemble that of
fluid being entrained onto the jet, and is what we might expect intuitively.
Figure 2.3 illustrates this expected behavior, and we note how it deviates
from figure 2.2.

Figure 2.2: Plot of the stream function for the cylindrical jet given in eq. 2.25.

It should be noted that we have disregarded the viscosity.

5We here note that there might have been made some mistake concerning the plot of
the stream function. We will later in this chapter see that the radial velocity approaches
infinity and the axial velocity approaches zero in the limit Z → 0. This is not what is
shown in figure 2.2. Even so the axial and radial velocities, which are derived from the
stream function, seems to agree with our intuition. As such, the seemingly erroneous
plot of the stream function might be the result of a technicality in the program used.
Nevertheless we see from eq. 2.25 that Ψ(η) does approach zero in the limit Z → 0,
where we would expect the stream function and radial velocity to yield the same value i.e.
infinity, as we at this location surely must have w = 0.
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Figure 2.3: Illustration of how we would expect the stream function of a cylin-

drical jet to behave. We note how the surrounding fluid is being entrained onto

the jet .

2.3.2 The radial velocity

Substituting (2.24) into (2.14) yields and expression for the radial velocity
as a function of η.

UR(η) =
( ν
Z

)(
ηf(η)−

(1

η

) ∫ η

ηf(η)dη
)

= −
( ν
Z

)4(η2 − 1)

(η2 + 1)2
(2.26)

From eq (2.26) it is seen that

UR > 0 for η < 1,

UR = 0 for η = 1,

UR < 0 for η > 1. (2.27)

The result for η < 1 is in agreement with our intuition as we expect the radial
velocity to be positive, but decreasing as we move along the radial coordinate
away from the center of the jet. Then UR = 0 is reached as η = 1⇔ Z = R.
For η > 1 we find the radial velocity to be directed towards the center of
the jet. This might seem strange, but can be explained as the velocity of the
surrounding fluid being entrained onto the jet.

The error previously discussed, that arises from the fact that we are uti-
lizing the continuum equation in a model of a jet results in a behavior of
the radial velocity in the model that deviates from what we are expecting.
This is shown in figure 2.4, which illustrates a strange behavior in the radial
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velocity as Z → 0. It might be presumed that a correction made in the
initial assumption of the stream function might mend this, but this will not
be pursued further in this thesis. It should be noted that figure 2.4 is plotted
without the scaling (ν/Z). This means that the actual behavior of the radial
velocity is to approach infinity in the limit Z → 0, which again shows that
the model is unphysical and breaks down as we approach Z = 0.

Figure 2.4: A logarithmic plot of the radial velocity for a cylindrical jet. We

note the deviating behavior close to Z = 0.

In the radial direction we expect that the model of the radial velocity will
prove the best results for η < 1, but even for values of η > 1 the model might
give somewhat accurate description of the behavior of the fluid in this part
of the pipe system. In the axial direction we will presume that the model
of the radial velocity will improve some distance Z1 downstream away from
the orifice. We assume that this value of Z1 would at least depend on the
diameter D of the orifice, and that these values should be of the same order
of magnitude.

2.3.3 The axial velocity

Substitution of (2.24) into (2.13) yields an expression for the velocity in the
direction of motion for the jet

w(η) =
( ν
Z

)
f(η) =

( ν
Z

)( 8

(η2 + 1)2

)
. (2.28)

From (2.28) it is clear that the axial velocity falls asymptotically as a fourth
power of η. This makes for a jet with a very sharp velocity profile as is
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illustrated i figure 2.5. As for the radial velocity, we expect the model for the
axial velocity to yield the most accurate results for η < 1 and some distance
Z1 downstream away from the orifice. We might presume that the model will
yield better results for the axial velocity than it will for the radial velocity.

Figure 2.5: The axial velocity of a cylindrical jet. Here plotted without the

scaling factor (ν/Z).

2.3.4 Momentum Flux

The momentum flux for a free laminar jet in cylindrical coordinates is given
by the expression

J = 2πρ

∫ R

w(R, z)2RdR. (2.29)

As we substitute (2.28) into (2.29) we can express the momentum flux of the
jet under consideration as

J =
128πρν2

Z2

∫ η η

(η2 + 1)4
dη. (2.30)

We have ∫ η η

(η2 + 1)4
dη = −

(1

6

) 1

(η2 + 1)3
+B. (2.31)

The constant B be can be found from the fact that the the momentum flux
of the jet must be constant for a free jet. Integrating (2.31) from zero to
infinity gives us B = 1/6. Form this we find the final expression for the
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momentum flux to be:

J =
128πρν2

Z2

(
1

6
− 1

6(η2 + 1)3

)
. (2.32)

Figure 2.6: The momentum flux of a cylindrical jet, here plotted without the

scaling 128πρν2/Z2.

It is seen from eq. (2.32) that the momentum flux falls as η to the sixth
power. This is shown in figure 2.6 where the momentum flux converges very
rapidly as η grows. As such, most of the momentum flux of the jet is con-
tained within η < 1. This might be seen as support of the assumption that
the model of the jet will generally prove the best results for η < 1.

We have not included any calculation of the volume flow for the laminar jet.
The reason for this is that the bulk of fluid that makes up the jet increases
as more of the surrounding fluid is entrained onto the jet as it moves along
the axis of motion. As such the momentum flux of the jet is the appropriate
estimate for the size of the jet, as it remains the same for all values of Z.

2.4 Discussion

6

6We will in this subsection frequently refer to [1] D.J. Tritton ’Fluid Dynamics’
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2.4.1 The edge of the jet

During operation the axial velocity is positive and non-zero inside the pipe
system for all values of R and Z. As such there will be a build up of a bound-
ary layer along the entire pipe. Even so the axial velocity decreases rapidly
for an increasing value of η, and as such it might be appropriate to define a
value which we can expect a build up of a significant boundary layer on the
inside of the pipe system containing the jet. We have previously argued that
the model of the jet will likely prove the best results for η < 1. From eq.
(2.26) we have that the radial velocity reaches zero as η = 1. At this value of
η it can be seen from eq. (2.28), that the axial velocity have reduced to one
fourth of its maximum. As such, we might use η = 1⇔ R = Z as a starting
point for an experimental search for an appropriate value of η for which we
can define to be the edge of the jet.

We also have that the assumption of a free laminar jet necessarily must be
rendered invalid at some point because of the interference of the walls con-
taining it. The error of this approximation will be omitted in this thesis, but
having an edge of the jet enables us at least to measure the distance between
the wall of the pipe system and what we regard as the jet. By choosing R = Z
as the edge of the jet we see that we have defined that jet will propagate in a
45 degree angle in the radial direction as it moves along the axial direction.

2.4.2 The orifice from where the jet emerges

We will now discuss the consequences of utilizing the continuum equation in
a model of a jet, and make clear the boundary conditions at the orifice from
where the jet emerges.

As we substitute η = R/Z into eq. (2.28) and eq. (2.26), we have in the
limit Z → 0 respectively

w(R,Z) = lim
Z→0

( ν
Z

)( 8

((R/Z)2 + 1)2

)
= lim

Z→0

( 8νZ3

((R2 + Z2)2

)
= 0 (2.33)

and

UR(R,Z) = lim
Z→0
−
(4ν

Z

) ((R/Z)2 − 1)

((R/Z)2 + 1)2
= lim

Z→0
−4νZ

(R2 − Z2)

(R2 + Z2)2
= 0. (2.34)
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From eq. (2.33) and eq. (2.34) we see that there is no fluid entering into
the system at Z = 0. The model therefore predicts that the jet is given
momentum by a source emerging from an infinite small opening at (Z =
0, R = 0) that is not providing any mass to the system. This is of course
unphysical, but it greatly simplifies the model. How the jet is given mass
can be seen from dividing eq. (2.34) by eq. (2.33)

UR
w

=
−
(

4ν
Z

)
(η2−1)
(η2+1)2(

ν
Z

)
8

(η2+1)2

= −1

2
(η2 − 1) =

1

2
(1− R2

Z2
). (2.35)

Eq. (2.35) shows that as we approach Z = 0 the radial velocity grows towards
infinity for all values of R. As such we find that the jet here is given its mass
from fluid being drawn from the surroundings onto the the center just beyond
Z = 0.

2.4.3 Stability

The velocity profile of a jet as a turning point i.e. a non-zero value for its
second derivative. We know from experimental data that flows of this kind
are much more prone to instabilities than flows without. Hence, we pre-
sume that the jet will most likely dissolve close to the point from where it
emerges. Nevertheless the surrounding walls of the pipe will serve to stabilize
the jet, so that we might presume a jet structure of the flow for some length
of the system. We will assume that the flow retains its characteristics as a
jet at least long enough for its edge to reach the inner walls of the pipe i.e.
η = 1⇔ R = Z.

2.4.4 The effects of fluctuations in the pressure gradi-
ent on the jet

We presume that the effects that fluctuations of the pressure gradient in the
flow will have upon both the jet and the surrounding fluid will be significant.
An increase of the velocity of the flow will lead to a higher degree of stability
in the jet, while a decrease will make it more unstable. What effects rapid
fluctuations will have on the flow near the valve will not be pursued further
in this thesis. Nevertheless we will presume that the fluctuations will cause
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a larger degree of instabilities in the jet, and that this might cause it to
undergo the inevitable transition from a structured laminar jet to a regular
turbulent flow at a faster rate than a stationary jet.

2.4.5 The transition from jet to regular turbulent flow

We presume that as the jet breaks down because of the interference with the
wall or because of instabilities within the jet itself the flow will undergo a
sudden transition from a laminar jet to a regular turbulent flow. We will
presume it to be crucial that this transition has taken place i.e. that the flow
has been stabilized enough for it to be described as a regular turbulent flow,
before it reaches any point where measurements of it are obtained. It should
be noted that it would possible prove very hard to obtain proper readings of
the flow as it undergoes the transition, and that this might also prove right
as we regard the jet as well.



Chapter 3

Turbulent Flow Near a Wall

3.1 Background

In this chapter we will presume the pipe to be filled with a more or less
homogeneous turbulent flow. The high velocity of the flow required to make
the assumptions for the jet valid, results in a high Reynolds number in the
flow following the jet. As such we can not hope to find an analytic solution
to the Navier-Stokes equation for the behavior of the flow. Instead we will
rely on the analysis made by von Karman in his deduction of the behavior
of a turbulent shear flow near a wall in order to describe the stream in this
part of the system1.

3.2 The analysis made by von Karman

The boundary layer of a turbulent flow is divided into an inner laminar
and an outer turbulent zone. As the velocity of the mean flow U can only
be a function of the flow near the wall uτ , the kinematic viscosity ν and the
distance from the wall y, it is given from dimensional analysis that the profile
of turbulent two-dimensional wall flows is

U

uτ
=

1

K

[
ln

(
yuτ
ν

)
+ A

]
, (3.1)

1The material in this section here refer to [1] D.J. Tritton ’Fluid dynamics’, unless
otherwise stated
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where K is the von Karman constant and A is an arbitrary constant of in-
tegration. Experimentally the ratio U/uτ is found to be in the range 0.035
to 0.05, and is found to depend rather weakly on the Reynolds number. K
is likewise experimentally found to be approximately equal to 0.40.

The logarithmic velocity profile for the turbulent part of a boundary layer,
described in (3.1), proves the best results when 30 < yuτ/µ < 200, where
yuτ/µ scales the thickness of the turbulent boundary layer. Below this we
expect a linear velocity profile for the laminar part of the boundary layer.
Above the boundary layer the profile will depend on the flow as a whole.
From this we will presume that for any velocity high enough to produce a
turbulent flow, we will have a very thin turbulent boundary layer and an
even thinner laminar layer underneath. The profile of the flow as a whole
and the profile of the laminar sublayer will deviate from the profile described
in this section. Nevertheless we shall presume that this logarithmic profile
will be a valid approximation in these region, but that it will agree the most
with experimental results in the range given above.

3.3 Turbulent motion near a cylindrical wall

To be able to apply (3.1) to a flow through a cylindrical pipe we will make
the following assumption that y ≈ a− r2. We can do this as we already have
assumed that the thickness of the boundary layer is very small. Substitution
of this assumption into (3.1) gives the equation

U(r) =
uτ
K

[
ln

(
a− r
a

)
+ ln

(
auτ
ν

)
+ A

]
. (3.2)

In the center of the pipe we find the maximum velocity of the flow through
this part of the system to be

Um = U(0) =
uτ
K

[
ln

(
auτ
ν

)
+ A

]
. (3.3)

Using eq. 3.3 we can now rewrite eq. 3.2 as

U(r) = Um +
uτ
K

[
ln

(
1− r

a

)]
, (3.4)

2We here refer to verbal information given by Per Amund Amundsen’



3.4. THE THICKNESS OF THE BOUNDARY LAYER 21

which gives us the velocity profile of a turbulent flow through a pipe. Fur-
thermore we can use the experimental data given above to rewrite eq. 3.4
as

U(r) = Um

(
1 +

1

10

(
ln(1− b)

))
, (3.5)

where we have presumed the ratio utau/Um to be 0.04 and K to be 0.4. We
have also introduced b as the ratio between the radial coordinate r and the
maximum radius of the pipe a for the sake of convenience. From (3.5) it is
clear that the shape of the velocity profile is given by the ratio b = r/a, and
that Um merely serves to scale this profile.

3.4 The thickness of the boundary layer

As expected we find that the part of the flow where the velocity deviates to
a large degree from the mean velocity of the flow is contained only very close
to the wall. This is clear from figure 3.1, which shows the velocity profile
of a turbulent flow through a cylindrical pipe. We note the square profile of
the turbulent flow through the pipe system under consideration in contrast
to the gentle slope of the Possuille-Hagen flow. We also note that we have
plotted the logarithmic profile of the turbulent boundary layer in the entire
range of the pipes radius.

Figure 3.1: The velocity profile of a turbulent flow through a pipe for (blue line).

Plotted in contrast to the Possuille-Hagen profile (red line).
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A convenient way of measuring the thickness of the boundary layer would
be to define it to be at the value of r where the derivative of U(r) is equal
to one. Another way would be to define it to be where the velocity is less
than 99% of the mean velocity. With the first definition we find it to be
b = 0.9999498, and with the second we find it to be b = 0.9999546, both
for Um = 100 m/s. In either case we have such a thin boundary layer that
it can be neglected for any velocity of practical interest in the real system.
Hence, we can conclude that we may disregard the velocity profile given in
this chapter and only consider the mean velocity as we describe the flow in
this section of the pipe system. We note that even as we might discard the
thickness of the boundary layer we must still take into account how the non-
slip condition affects the velocity profile in the pipe. We can therefore not
utilize the maximum velocity in calculations of the volume flow, but must
instead use the mean average velocity. The reason for this can be seen from
figure 3.1, where we note how the velocity increases for a decreasing radial
coordinate outside the boundary layer as well as within. The boundary layer
also sustain the turbulence in the pipe system by transporting vorticity into
the main stream, and then there are the effects of separation and friction.

3.5 Volume flow

Even as the flow in this section of the pipe system can be pretty accurately
described by its mean velocity we note that there will exist fluctuations of
the velocity atop the mean velocity in a turbulent flow. These fluctuations
might be significant considering the very turbulent nature of the flow in the
real system.

The solution for the volume flow as we apply eq. 3.5 along the entire radius
of the pipe is given as

Q = 2π

∫ a

0

u(r)rdr = 2πUm

∫ a

0

r

(
1 +

1

10

[
ln
(

1− r

a

)])
dr

,

= 2πUm

(∫ a

0

rdr +
1

10

∫ a

0

r
[
ln
(

1− r

a

)]
dr

)
= 2πUm

(
1

2
a2 − 3

40
a2

)
= 2πa2Um(0.425) = 0.85πa2Um (3.6)
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From eq. (3.6) we see that even as the boundary layer is very thin the volume
flow is reduced to 42.5% of what the flow would have been if the maximum
velocity would have been present all over the radial axis.

3.6 Discussion

The assumption that y ≈ a − r made in the calculation of (3.4) leads to a
result that deviates some from what we expect from a physical point of view.
We would expect that the derivative of the radial velocity with respect to
the radial coordinate should be zero at the center of the pipe. But as can be
seen the derivative of (3.4) at r = 0 yields

dU(r)

dr

∣∣∣∣
r=0

=
uτ
aK
6= 0. (3.7)

This results in a small deviation from what we would expect in the velocity
profile around the center of the pipe. The error here will in most cases be
acceptable as the model yields a velocity that is accurate in the mean. As
such, we keep eq. (3.6) as an appropriate approximation of the volume flow.
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Chapter 4

Changing Pressure Gradient

To be able to give a complete description of the pipe system we will now
turn our attention to the contracting part of it and qualitatively consider the
effects the gradually decreasing diameter of the pipe system will have on the
flow described in the previous chapter. This is not to be considered a part
of the mathematical model of the system, but serves to clarify some aspects
associated with the change of conditions in a boundary layer. We do this in
an attempt to wheel this thesis in the direction of practical engineering and
further design of the system.

In the case of a stationary flow we will have a favorable pressure gradient at
the contracting part of the pipe i.e.

∂u0
∂x

> 0 ⇔ ∂p0
∂x

< 0.

First and foremost, a smaller diameter will serve to increase the velocity and
decrease the pressure and thus stabilize the flow1. As the pressure decreases
through the contracting part of the pipe the turbulent boundary layer will
become increasingly thinner. At the same time the increase of the Reynolds
number will cause the turbulence within the boundary layer to increase.
Thus, the portion of the flow producing the turbulence will become smaller
even as it produces more turbulence. This turbulence will be transported
into the main stream.

The high velocity of the flow under normal operating procedures makes it
unlikely that the boundary layer will separate under stationary conditions.

1We will in this chapter refer to [1] D. J. Tritton ’Physical Fluid Dynamics’
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Even so, we suspect that it will be more likely that the boundary layer will
separate at the points where the pipe system starts to and ceases to contract.
We will expect that the increase of the instability in the boundary layer at
these locations will rely on the smoothness of the transition. If these transi-
tions are not sufficiently smooth there might be areas contained close to the
transitions where we might have an adverse pressure gradient, which in turn
might cause a separation.

The effects caused by fluctuations will contribute to the conditions for sepa-
ration of the boundary layer in the pipe system. As the velocity of the flow
decreases an adverse pressure gradient is produced in the entire flow. If the
decrease of the flow rate lasts long enough for the boundary layer to separate,
there would be a significant increase in the transport of turbulence from the
boundary layer into the main flow. As a consequence of this increased tur-
bulence the mean velocity in the axial direction will slow down, as energy is
needed to maintain the higher degree of random motion of the fluid particles.



Chapter 5

Compressibility

The valve that separates the high pressure chamber and the pipe system is
able to take on any range of openings, from complete shutdown, to letting
in air moving at sonic speed. We will presumed that the conditions for su-
personic velocities are not present in the system1. Therefore the maximal
velocity of the stream i.e. the local speed of sound, is reached before the
valve has fully opened. Depending on the design of the valve the stream
might nevertheless reach supersonic velocities as it is let into the pipe sys-
tem, but we will then presume that the stream will return to sonic conditions
through the means of oblique shock waves short after. Typically the velocity
of air through the system will range from 40 to 90m/s at the widest part
and from 150 to 300m/s at the narrowest part of the pipe system. From this
we have that the flow will reach velocities in the pipe system for which the
effect of compressibility will range from noticeable to very significant.

Compressibility becomes a significant effect as the fluid in question reaches
velocities of about 30% of the local speed of sound. For velocities below this
the results reached by assuming incompressibility deviates from experimental
results by less than 20%. The assumption of incompressibility will therefore
result in an noticeable error in the real system under consideration, as the
fluid used here is air of velocities approaching the local speed of sound. Even
so it will be made clear that the time constant of the effects caused by the
compressibility of the fluid is much smaller than the time constant of the ef-
fects caused by the viscous forces. As such we can reasonably argue a model
of the system based on the viscous effects only. There will be effects caused

1We will in this chapter refer to [2] Pijush K. Kundu, Ira M. Cohen and David R.
Dowling ’Fluid Mechanics’
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by compressibility, such as the shock waves created if the flow should pass
the local speed of sound and the chocking of fluids moving at sonic velocities,
that are not affected by this difference of the time constants, but they will
not be pursued further in this thesis.

Using dimensional analysis on the effects caused by compressibility in the
pipe system under consideration, we have that the length scale is the dis-
tance from the valve to the inlet of the pressure gauge and the velocity scale
is the speed of sound. If the medium is air, with a local speed of sound
c ≈ 300m/s and a length from the inlet to the point of measuring l ≈ 10cm,
we have that the time constant for the compressible effects is of the order
l/c ≈ 3 ∗ 10−4sek. We shall see in chapter 6 that the time scale for the
viscous effects are of the order a2/ν. Using ν ≈ 1.5 ∗ 10−5m2/s for air under
conditions associated with normal operating procedures, and a ≈ 1cm being
a typical radius for a pipe, the time scale of the viscous effects becomes of the
order a2/ν ≈ 6sek. We see that the time scale for the viscous effects will be
about 104 times larger than what the time scale for the compressible effects
are in this case. We presume that the effects of compressibility can be con-
sidered linear with regard to the viscous effects. Hence, as we are concerned
with the time it takes for the volume flow to adjusts to changes in the pres-
sure of the flow it seems appropriate to neglect the effects of compressibility
as we regard how the volume flow adjusts to changes of the pressure in the
flow.



Chapter 6

Oscillating Flow

6.1 Background

The problems discussed so far apply to stationary flows only. As the real
system under consideration operates with a unsteady flow we will now give
some consideration of how to mend this. Provided by Per Amund Amundsen
is a solution for how a harmonically oscillating pressure affects the volume
flow through a pipe system. This chapter will elaborate and expand that
solution to include other types of pressure changes in the flow. This expansion
will not be applied to the solution for the laminar jet as it is beyond the scope
of this thesis, but it will serve to give a model for how the stream behaves as
it is considered to fill an entire straight pipe. As such the solution does not
apply to the converging part of the pipe system. We note that the solutions
discussed here apply to an laminar flow in a straight pipe, and that the
fluid through the real system is both turbulent and contracting. Even so,
the solution given in this chapter will give a general overview of the process
that illustrates the mechanism of some of the determining variables. These
variables would among others be the time constant and the amplification of
the process in the pipe system under consideration.

The solutions here will also serve to give a method of improved measure-
ments of the flow as well as describing it. If the measurements of the flow
are done by attaching a separate pipe to the pipe system, as is the case we
are considering here, then this model will apply to that pipe as well. Even
so we note that this model is developed in order to describe oscillating fluid
moving through pipes with a diameter a of some magnitude, and that some
caution might be called for as it is applied to a very narrow pipe.
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6.2 Mathematical considerations

6.2.1 Transformation of the velocity profile

The Navier-Stokes equation in cylindrical coordinates for a time-varying,
incompressible, laminar flow in a straight pipe, with no flow in the azimuthal
direction and with the gravitational forces disregarded is reduced to

ρ
∂u

∂t
= −∂p

∂z
+ µ

(
∂2u

∂r2
+

1

r

∂u

∂r

)
, (6.1)

with the pressure in the pipe system given by1

p(r, z, t) = p(z, t) = −∆p(t)

l
z + p0(t). (6.2)

Eq. (6.1) can be solved by the use of Fourier analysis. In order to do so we
will transform every term in eq. (6.1) into the frequency domain and then
transform the entire equation back to the time domain.

We will here respectively use the following definition for the Fourier and the
inverse Fourier transform2.

X(ω) =

∫ ∞
−∞

x(t)e−iωt

x(t) =
1

2π

∫ ∞
−∞

X(ω)eiωt. (6.3)

From the definition given in (6.3) we have that eq. (6.1) equals

1

2π

∫ ∞
−∞

[
− ρ∂ũ

∂t
− ∂p̃

∂z
+ µ

(
∂2ũ

∂r2
+

1

r

∂ũ

∂r

)]
eiωtdω = 0, (6.4)

1With reference to ’Per Amund Amundsens, unpublished note concerning oscillating
flows’

2We here refer to [3] B. P. Lathi ’Linear Systems and Signals’.
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where ũ(r, w) and p̃(w) are the Fourier transform of u(r, t) and p(t) respec-
tively.

The following theorem states that for any function F (x, y)3∫ ∞
−∞

F (x, y)eiωtdω = 0 ∀ ω then F (x, y) = 0. (6.5)

Now, with reference to theorem (6.5) we see that eq. (6.4) is solved as long
as

−ρ∂ũ
∂t
− ∂p̃

∂z
+ µ

(
∂2ũ

∂r2
+

1

r

∂ũ

∂r

)
= 0. (6.6)

Having transformed eq. (6.1) with regard to t only we find the terms in (6.6)
to yield

∂ũ(ω, r)

∂t
= iωũ(r, ω)

and
∂p̃(ω)

∂z
= −∆̃p(ω)

µl
,

while the last two terms remain unchanged with respect to there derivatives.
Substitution of the transformed terms into eq. (6.6) enables us to rewrite it
as

∂2ũ

∂r2
+

1

r

∂ũ

∂r
− iωρ

µ
ũ+

˜∆p(ω)

µl
= 0. (6.7)

Subject to the boundary conditions u(a) = 0 and u(0) being finite. The
solution of eq. (6.7) is given by

ũ(r, ω) =
−i∆̃p(ω)

ρωl

(
1−

J0
(
r
√
−iω
ν

)
J0
(
a
√
−iω
ν

)
)
, (6.8)

where J0 is a Bessel function of order zero.

The inverse Fourier transform of (6.8) yield the velocity profile in the time
domain

u(r, t) =
1

2π

∫ ∞
−∞

ũ(r, ω)eiωtdω. (6.9)

3We here refer to [4] George Arfken ’Mathematical Methods for Physicists’
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It would be convenient to consider the poles contributed by the transform
of the function for the pressure separate from the rest of the function in eq.
(6.8). As such we define

f(ω) =
1

ω

(
1−

J0
(
r
√
−iω
ν

)
J0
(
a
√
−iω
ν

)
)
eiωt. (6.10)

We will now use eq. 6.10 to rewrite eq. 6.9

u(r, t) =
−i

2πρl

∫ ∞
−∞

∆̃p(ω)f(ω)dω. (6.11)

Eq. (6.11) is a complex function with poles. As such we will solve it by the
use of the theorem of residues4.

u(r, t) = 2πi
∑
k

Res

[
−i

2πρl
∆̃p(ω)f(ω), ω0

]
=

1

ρl

∑
k

Res

[
∆̃p(ω)f(ω), ω0

]
,

(6.12)
where ω0 are the poles of the functions in question.

The velocity profile can be determined from the sum of the residues con-
tributed by the poles of the function f(ω) and ∆̃p(ω).

u(r, t) =
1

ρl

(∑
k

Res
[ ˜∆p(ω)f(ω), ωk

]
+
∑
m

Res
[ ˜∆p(ω)f(ω), ωm

])
, (6.13)

where ωk and ωm are the frequencies that yield poles in the function f(ω)

and the transform of the pressure function ˜∆p(ω) respectively.

6.2.2 Closing the contour

We will now proceed to close the contour around the residue in eq. 6.13.
The important point then is to ensure that the part of the circle-integral not
along the real axis in eq. (6.9) does not contribute to the final value. As we
are considering a real system we will only include positive values of the time
t. From eq. (6.9) we see that the factor that might approach infinity for an

4We here refer to George Arfken ’Mathematical Methods for Physicists’
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increasing value of t is eiωt, with ω = x + yi, we have eixte−yt, the absolute
value of which is |e−yt|. It is imperative that |e−yt| → 0 on the part of the
circle-integral not along the real axis, from this it is seen that the contour
must be taken around the upper half plane. The contour will be encircled in
a counterclockwise direction as the integral is taken from −∞ to ∞ along the
real axis. To ensure that the integral remains finite we shall therefore only
include the poles contributed by the Bessel function and the transform of
the pressure functions in the upper half plane. Figure 6.1 serves to illustrate
this.

Figure 6.1: The contour enclosing the poles in question. The dots placed sym-

metrically along the imaginary axis illustrates the first few poles of the Bessel

function in eq. 6.8. The lone dot on the positive imaginary axis near the origin, is

situated at the location of the pole of the transform of the step function and serves

as an example of how poles contributed by the transform of pressure functions are

included in the contour.

6.2.3 Transform of pressure functions and distributions

We now turn our attention to the transforms of the pressure distributions
and functions5 in question from the time domain into the frequency domain
and locate there poles. We will in this thesis only consider an impulse and a
step distribution and a harmonic function6.

5Further on we will refer to both the functions and distributions of the pressure in
general we will simply call them functions.

6We will in this subsection refer to [3] B. P. Lathi ’Linear Systems and Signals’, unless
otherwise stated
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Even though an impulse and a step distribution are not functions in the
classical sense, we have that they can still be transformed into and out of
the frequency domain according to Fourier theorem as they here act upon
another function. As such they can still be subject to Fourier transform all
though they do not satisfy the Dirchlet conditions by themselves7.

Transform of a harmonic function

We will here represent a harmonic function for the pressure in the time
domain ∆p cos(ω0t) as the real part of a complex exponential ∆p<

[
eiω0t

]
.8

The transform into the frequency domain is then given as

∆p(t) = ∆peiω0t ⇔ ∆p̃(ω) = ∆p

∫ ∞
−∞

eiω0te−iωtdt

= ∆p

∫ ∞
−∞

ei(ω−ω0)tdt = ∆pδ(ω − ω0) =
∆p

π
lim
ε→0

ε

(ω − ω0)2 + ε2
9. (6.14)

Here we have poles located in both ω = ω0 − iε and ω = ω0 + iε. Since the
contour excludes the lower half plane we will only have contributions from
ω = ω0 + iε.

Transform of the impulse distribution

For an impulse distribution in the time domain ∆pδ(t) we have from the
sampling theorem that the transform into the frequency domain is given as

∆p(t) = ∆pδ(t)⇔

∆p̃(ω) =

∫ ∞
−∞

∆pδ(t)e−iωtdt = ∆p. (6.15)

It is clear from eq (6.15) that the transform of an impulse function does
not contribute any poles in eq (6.13). It can be noted that to represent an
impulse distribution in the time domain an equal amount of every possible
frequency is needed in the frequency domain.

7We here refer to [5] Eugen Butkov ’Mathematical Physics’
8Note that we further on will skip the notation < for the real part for the sake of

convenience. As such we must simply keep in mind that we are always considering real
systems and signals during all of this thesis.

9We here refer to [7] Frank W. Olver, Danile W. Lozier, Ronald F. Boisvert and Charles
W. Clark ’Nist handbook of mathematical functions’
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Transform of the step distribution

A step distribution in the time domain ∆pθ(t) is represented in the frequency
domain as

∆p(t) = ∆pθ(t)⇔

∆p̃(ω) = ∆p

∫ ∞
0

e−iωtdt =
∆p

−iω
e−iωt

∣∣∣∣∞
0

=
∆p

iω
. (6.16)

In the form of a step distribution we have that the transform of the pressure
yields a pole situated at ω = iε, where ε is an arbitrary small number. It
might not be entirely clear from eq. 6.48 that the pole should be situated
here, but as we consider the inverse transform it is clear that it must be this
way. This pole contributes to eq. (6.13)10.

6.2.4 The poles of the function f(ω)

We will now consider the poles from function f(ω) described in eq. 6.10 that
contributes to the residue described of eq. 6.13 . The Bessel function in the
enumerator in eq. 6.10 clearly contributes an infinite number of poles. In
addition to this we must also consider whether there is a pole at ω = 0. To
see that this is not the case we shall use the Taylor expansion of the Bessel
function around ω = 0 considering the two first terms only,

J0(zi) = J0(zi) + J ′0(zi)(z − zi) + J ′′0 (zi)(z − zi)2 + . . .⇒

J0
(
r

√
−iω
ν

)
≈ 1−

(
r
√
−iω
ν

)2
4

= 1 +
ir2ω
ν

4
. (6.17)

Having done the same expansion for the enumerator as for the numerator,
we substitution eq. (6.17) into eq. (6.10) and find

f(0) = lim
ω→0

1

ω

(
1−

J0
(
r
√
−iω
ν

)
J0
(
a
√
−iω
ν

)
)
eiωt ≈ lim

w→0

1

ω

(
1−
(

1 + 1
4
ir2ω
ν

1 + 1
4
ia2ω
ν

))
eiωt (6.18)

10In the following it shall always be assumed that iω is shorthand for ω − iε



36 CHAPTER 6. OSCILLATING FLOW

As −1 < ω < 1 we can develop a series expansion of the enumerator through
the relation

1

1 + x
= 1− x+ x2 − x3 + x4 − . . . . (6.19)

Approximating eq. 6.18 by its two first terms, we have

f(0) ≈ lim
ω→0

1

ω

(
1−

(
1 +

1

4

ir2ω

ν

)(
1− 1

4

ia2ω

ν

))
eiωt

= lim
ω→0

1

ω

(
1

4

ir2ω

ν
− 1

4

ia2ω

ν
+

1

16

a2r2ω2

ν2

)
eiωt (6.20)

As we here are considering only very small values of ω, we will no discard
the second order term for w, in eq. 6.20. As such we have that

f(0) ≈ 1

ω

(
i(a2 − r2) ω

4ν

)
=
i(a2 − r2)

4ν
(6.21)

From (6.21) we see that not only do a zero in the last factor cancel the pole
in the first factor for very low frequencies, but we also regain the Poiseuille-
Hagen velocity profile for the flow. This is in accordance with our expecta-
tions from a physical point of view. It is now clear that the poles contributing
to the residues of eq (6.13) comes only from the Bessel function and from the
transform of the pressure functions.

The poles contributed by the Bessel function in eq. (6.8) are

J0,k = (a

√
−iωk
ν

)⇔ ωk = iν
(J0,k
a

)2
, (6.22)

where J0,k refers to the real-valued zeros of a Bessel function of the order
zero. As J0(z) = J0(−z), we find that the poles contributed by the Bessel
function in eq. 6.8 are situated along the entire imaginary axis.

6.3 Calculation of responses

Having considered the general approach towards solving the problem of os-
cillating flow, and as we have found the poles contributing to the residues,
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we will proceed to determine the velocity profiles that occur as a result of the
different pressure disturbances exiting the pipe system through the means of
viscous effects. From the velocity profiles we find the volume flow through
integration. This enables us to express the response of the system as we
regard the pressure at the inlet as the input signal and the corresponding
volume flow through the pipe system as the output.

Q(t) = 2π

∫ a

0

ru(r, t)dr = πa2ū(t), (6.23)

where Q(t) denotes the corresponding volume flow and ū(t) denotes the mean
velocity through the pipe.

6.3.1 Impulse response

Velocity profile response

The transform of an impulse distribution does not contribute any poles, and
as such the only poles contributed to the residue in this case comes from the
zeros of the Bessel function. They are of the first order, and as such they
can be calculated as follows

u(r, t) =
1

ρl

∑
k

Res
[
f(ω)∆p, ωk

]
=

1

ρl

∑
k

lim
ω→ωk

∆pf(ω)(ω − ωk), (6.24)

where ωk = iν(j0,k/a)2.

We will now rewrite the function f(ω), found in eq. 6.10, as a fraction where
only the factor contributing poles are written in the enumerator

f(ω) =
h(ω)

g(ω)
=

1
ω

(
J0
(
a
√
−iω
ν

)
− J0

(
r
√
−iω
ν

))
eiωt

J0
(
a
√
−iω
ν

) . (6.25)

Utilizing this we now write eq. 6.24 as

u(r, t) =
1

ρl

∑
k

lim
ω→ωk

∆ph(ω)
g(ω)

(ω−ωk)

=
∆p

ρl

∑
k

h(ω)

g′(ω)

∣∣∣∣∣
ω=ωk

(6.26)
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=
∑
k

∆p

ρl

((J0(a√−iω
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))
eiωt

−ωJ1
(
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√
−iω
ν

)√−ia2
4νω
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ω=

iνj2
0,k
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=
2∆p

ρl

∑
k

1

jo,k

(
J0
(
r
a
jo,k
)

J1
(
jo,k
) )e−ν( j0,ka )2t = G(r, t). (6.27)

Realizing the importance of eq. 6.27, as it represents the impulse response
of the system, we will define it as G(r, t). We note that the unit of G(r, t) is
[m/s2] as it is required to be integrated over dt along with an other function.
This corresponds to G(r, t) being a Greens function 11, which is a solution to

L{G(r, t− t′)} = δ(t− t′), (6.28)

where

L{} =
∂2

∂r2
+

1

r

∂

∂r
+
ρ

µ

∂

∂t
. (6.29)

We then have that the velocity profile resulting from any pressure disturbance
can be found from

L{u(r, t)} = ∆p(t) (6.30)

With a solution that can be written as:

u(r, t) = u0(r, t) +

∫ −∞
∞

G(r, t− t′)∆p(t′)dt′, (6.31)

which is a solution of the inhomogeneous problem with the stated boundary
conditions.

Volume flow response

We will now integrate of the velocity profile of the flow resulting from a
disturbance of the pressure at the inlet in form of an impulse. From this
we find the impulse response of the system. We note that the response is
given with regard to how the volume flow inside the pipe system changes in
response to changes of the pressure gradient.

Q(t) = 2π

∫ a

0

rG(r, t)dr

11We here refer to [4] George Arfken ’Mathematical Methods for Physicists’
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=
4π∆p

ρl

∑
k

1

jo,k
e−

j0,k
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2
νt
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0
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(
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(
r
a
jo,k
)
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(
jo,k
) )dr.

=
4π∆pa2

ρl

∑
k

1

j2o,k
e−

j0,k
a

2
νt. (6.32)

We see that the first term of eq. 6.32 will dominate as it has the largest
coefficient and the largest time constant. As such we will here use

∑
k j0,k ≈

2.5.

Q(t) ≈ ∆p(t)
2a2

ρl
e−

6ν
a2
t. (6.33)

In the Laplace domain this transforms to12

Hp(s) =
Q(s)

∆p(s)
≈ 2a2

ρl

1

s+ ν 6
a2

=
a4/3µl

(a2/6ν)s+ 1
, (6.34)

where Hp(s) denotes the volume impulse response of the system in response
to pressure changes at the inlet. The amplification of the system is a4/3µl
and the time constant is a2/6ν. We see that they both increase with an in-
creasing diameter of the pipe, and that they both decrease with an increase
of viscosity.

From the above we have that the model would predict that we could achieve
an arbitrary fast response by decreasing the diameter of the pipe. Here we
note that we have not considered the capillary effects. These effects are
normally small, but come into play when we are considering fluid moving
through very narrow passages. Qualitatively we predict that the capillary
and viscous effects can be considered linear, and that the time constant of
the capillary effects will increase rapidly as the radius of the pipe becomes
very small. Hence, we will reach a point where a decreasing diameter of the
pipe will result in a increasing time constant of the system.

Figure 6.2 shows the impulse response of the pipe system. We have chosen
the values ∆p = 1 [Pa], a = 1 [cm], l = 10 [cm] and used the characteristics
of air.13 The response is given in time as the corresponding volume flow
following a unit size change of the pressure in form of an impulse. We note

12We here refer to [3] B. P. Lathi ’Linear Systems and Signals’
13These values will be used further on as both the frequency- and step response are

illustrated.
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Figure 6.2: Impulse response of the pipe system

how the timescale is of order of seconds.

The viscous forces resulting from a pressure difference in the system acts
instantaneously along the entire pipe system, and there is no time delay.
This is in contrast to the effects caused by compressibility. Here we must re-
member that the viscous effects are continuous along the length of the fluid
in a laminar flow and as such does do not depend on time. What we are
concerned with here is for how long it takes for the corresponding volume
flow to adjust to the new conditions, and not for how long it takes for the
pressure to propagate.

It would be of much practical interest to model a transfer function for the
system connecting the pressure at the inlet to the pressure measured at any
point in the pipe system. We here suspect that this transfer function will
have an amplification equal to one and a time constant as for the transfer
function found in eq.6.34. What is amplified in this thesis is that even as a
change in pressure reacts simultaneously in the entire system, the correspond-
ing volume flow takes some time to adjust to the new pressure conditions.
It is therefore clear that using an ordinary pressure gauge to measure a fluc-
tuating flow, the gauge will measure the pressure of the volume flow that
adjusts according to the time constant of the viscous effects. Hence, we will
not acquire the correct pressure reading until the volume flow has had time
to adjust to the new pressure conditions.
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6.3.2 Frequency response

Velocity profile response

For an harmonic function of a single frequency, for which the transform yields
a pole in ωm = ω0 + iε in the upper half plane, we have that

u(r, t) =
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(∑
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∆pε

(ω − ω0)2 + ε2
, ωk
]
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[
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])
. (6.35)

We realize that this is calculated as
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As the first factor of eq. (6.36) clearly approaches zero in the limit ε→ 0, it
is sufficient to only consider the last factor as we continue.
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which yields the solution14

u(r, t) =
−i∆p
2πρlω0
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(
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√
−iω0

ν

)
J0
(
a
√
−iω0

ν

)
)
eiω0t. (6.38)

14This result is in accordance to the solution given by Per Amund Amundsen in his
unpublished note concerning ’Oscillating flow in a pipe’
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Volume flow response

The frequency volume response of the system becomes

Q(t) = 2π

∫ a

0

r
−i∆p
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Eq. 6.39 represents the frequency response of a pipe filled with fluid as we
consider the viscous effects only. As we further define

Q(t) = Q0e
iw0t and ∆p(t) = ∆p0e

iw0t, (6.40)

we can express the frequency response as a transfer function relating the
pressure and the volume flow in the pipe system15
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The real part of eq. 6.41 can be found from the relation Jn(
√
−iz) =

(−1)n(bern(z)− ibein(z)), where bern(z) and bein(z) are Kelvin functions16.
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. (6.42)

We now have that given an input in the form of a harmonically oscillating
pressure function the resulting velocity profile in the pipe is

cos(ωt+ φ)⇒ H(ω) cos(ωt+ φ). (6.43)

15We here refer to [3] B. P. Lathi ’Linear Systems and Signals’
16We here refer to [7] Frank W. Olver, Danile W. Lozier, Ronald F. Boisvert and Charles

W. Clark ’Nist handbook of mathematical functions’
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It is now clear that we have means to regard the viscous effects of a fluid
inside a pipe as a lowpass filter. Figure 6.3 illustrates this by showing the
frequency response. We note that figure 6.3 refer to the amplitude response
and that there is no face response given the instantaneous reaction in the
entire flow caused by the viscous effects. We see that the break frequency
is at around ω = 1 [Hz]. This corresponds to the time scale of the impulse
response being of the order of seconds. For frequencies over ω ≈ 10 we have
more or less complete dampening. This means that the pipe system will
not have any significant response in volume flow for changes in the pressure
occurring over a period of less than the order of tenth of seconds.

Figure 6.3: Frequency response of a straight pipe filled with fluid.

6.3.3 Step response

Velocity profile response

As we now consider a step distribution lasting for an infinite time. We have
a pole in ωm = iε. By choosing ε to be arbitrary small we can utilize the
argumentation made in section 6.2.4, concerning the behavior of f(ω) at very
low frequencies. We will therefore here use ωm ≈ 0 as we write

u(r, t) =
1

ρl

(∑
k
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[
f(ω)
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iω
, ωk

]
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. (6.44)



44 CHAPTER 6. OSCILLATING FLOW

We substitute eq. 6.27 and eq. 6.21 into eq. 6.44 and as such we have
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which yields
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We now have the transient and everlasting term of the flow resulting from a
pressure change in the from of a step described separately in eq. 6.46. We
see that as the time t increases the flow approach the Possuille-Hagen profile
for the flow as expected.

From a mathematical point of view it is worth noticing that as the flow must
be zero at t = 0, the two terms making up eq. 6.46 must yield the same
value at that instant. Hence, we have by chance found the sum of the Bessel
functions zeros when presented as in eq. 6.46. We have that
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. (6.47)

Volume flow response

The step response of the system can be found as
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with
∑

k j0,k = 2.5 we have in the Laplace domain
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)
. (6.49)

Figure 6.4: Step response of the pipe system.

We see from figure 6.4 that the step response here corresponds with the
impulse and frequency response. As we previously have calculated both the
impulse and frequency response of the system it might seem excessive to have
calculated the step response in addition. We have done this in an attempt
to wheel this thesis in the direction of the field of control systems, where the
step response is a more common representation of the systems characteristics
than the impulse response. Another reason for including the step response is
that we during the calculation have stumbled upon a way of finding the sum
of the zeros of the Bessel functions. It is unfortunate that there will not be
room to pursue this discovery further. If some one where to pick up the trace
left behind here it would be interesting to see whether it is possible to find
other expressions for the zeros of the Bessel function, or similar functions,
by exiting the system to other functions.
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Chapter 7

Conclusion

From the above chapters the system can now be described as a circular
jet entering a quiescent fluid which after a transition zone can be modeled
as a non-viscous flow described by its mean velocity. This we presume re-
mains valid in the contracting part of the pipe system as well as for the two
pipes. The above results also demonstrate how the velocity profile and the
corresponding volume flow of a stream changes according to changes of the
pressure in the pipe system. From this we find the means to express the pipe
system as a transfer function. These results also apply to the narrow shaft
which the air passes through as some of it leaks out of the pipe system to
reach the pressuregauge.

We see that the pressuregauge is not measuring the actual pressure in the
pipe system, but the pressure of the corresponding volume flow adjusting
to the pressure change in the pipe system. We find that this change occurs
over a period of seconds, and that it depends on the maximal radius of the
pipe and the viscosity of the fluid. We find that the effects caused by viscos-
ity dominates over the effects caused by compressibility, and as we presume
other effects to be even less significant we argue a model of the pipe system
based on the viscous effects only.

The entire system, containing both the pipe system and the measuring ar-
rangement, should be regarded as two separate transfer functions in connec-
tion. They will both be governed by the same viscous forces, but will have a
different diameter of the pipe and hence a different time constant. We have
that the time constant of the viscous effects increase with the maximal radius
of the pipe in the second order, as such the time constant of the pipe system

47



48 CHAPTER 7. CONCLUSION

will dominate the time constant of the measuring arrangement. Hence, we
might discard the time constant associated with the measuring arrangement.

From the frequency response of the system it can be seen that the system
acts as a lowpass filter. The viscous forces within the fluid dampens out high
frequency changes of the inlet pressure. The physical explanation for this is
that the fluid particles takes some time to react to new pressure conditions
because of the viscous forces between them. Hence, rapid fluctuations will
in an increasing manner be dampened out.

The model of the stationary turbulent flow is mainly an argument for not
considering the thickness of the boundary layers under steady conditions.
We are reminded that this might not be valid for a fluctuating flow, and
that there might be reason for special concern during starting and closing
procedures.

It is important to remember that the discussions made in this thesis does
not directly apply to the real system under consideration. We have not con-
sidered in detail the sonic conditions and effects on the boundary layer that
might appear at the inlet of the system. The solution for the jet and the time-
dependent solution applies to a laminar flow and we have not considered how
to extend these solutions in the case of turbulence and roughness in the pipe
that exceeds the hight of the laminar boundary layer. Neither can we be
certain to what degree the effects caused by compressibility and turbulence
can be regarded as linear with respect to the viscous effects. There are un-
doubtedly other concerns regarding the model that could have been examined
in more detail and we are reminded that this model is to be considered crude.

This thesis has clarified a mathematical model that can be used in the design
of an automatic control system that has the ability to regulate the volume
flow through the pipe system similar to the one we have discussed here. It
should be notes that all the solutions we have arrived at in this thesis is based
on pure mathematical and physical assumptions, and that there has been no
simulation or testing involved. It could therefore have valuable contributions
from computer simulation, such as FEM, and from visualization of the actual
phenomena, by for example the means of electrolysis and a transparent pipe.
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