
Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization:

Master of Science in Computer Science
Spring semester, 2013

Open 

Writer: Tormod Erevik Lea
…………………………………………

(Writer’s signature)

Faculty supervisor:

Hein Meling

Thesis title:

Implementation and Experimental Evaluation of Live Replacement and Reconfiguration

Credits (ECTS): 30

Key words:

Distributed Systems
Replicated State Machines
Failure Handling

         Pages: 94
    
         Enclosure: CD

         Stavanger, 1 July 2013

Front page for master thesis
Faculty of Science and Technology

Decision made by the Dean October 30th 2009



FAILURE HANDLING

for

PAXOS STATE MACHINES

m

Implementation and Experimental Evaluation of

Live Replacement and Reconûguration

Tormod Erevik Lea

June 2013

Department of Electrical Engineering and Computer Science
Faculty of Science and Technology

University of Stavanger



Abstract

State machine replication is a common applied technique for building fault-
tolerant services. ae technique uses a collection of replicas to mask failures. All
replicas are provided the same sequence of operations (requests), resulting in that
they end up in a consistent state. A consensus protocol such as Paxos is normally
used to the order request issued by multiple clients to a Replicated State Machine
(RSM). RSMs achieve high availability by replicating state across several machines.
Such an approach enables access to state stored in system even in the presence
of failures. An RSM is prohibited from processing new requests if more than half
of its replicas fail. It is therefore important that replica failures are handled and
repaired as soon as possible for keeping the availability and fault-tolerance of the
RSM high. ais thesis presents an description and implementation of two existing
methods for immediate failure handling for Paxos-based RSMs: Live Replacement
and Reconûguration. Both failure handling methods have been implemented as
part of the Goxos framework. An experimental evaluation and comparison of the
two methods is also presented.



Acknowledgments

I would like to thank my supervisor, Associate Professor Hein Meling, for guidance
and invaluable feedback throughout my work on this thesis.

I would also like to thank Leander Jehl, who has been very helpful in explaining
the Live Replacement protocol, in addition to providing much valuable feedback
on the thesis as a whole.

Finally, I would like to thank my family for all their support during my Master’s
degree.



Contents

1 Introduction 3
1.1 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Model and Deûnitions 6
2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Metrics for Immediate Failure Handling . . . . . . . . . . . . . . . . 7

3 Background 9
3.1 State Machine Replication . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 ae Paxos Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 ae Paxos State Machine . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 ae Go Programming Language . . . . . . . . . . . . . . . . . . . . 17

4 Goxos 19
4.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Application Programming Interface . . . . . . . . . . . . . . . . . . 26

5 Failure Handling 28
5.1 Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Reconûguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Live Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Design and Implementation 35
6.1 Common Modules and Functionality . . . . . . . . . . . . . . . . . 35

6.1.1 Failure Detector . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1.2 Leader Detector . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1.3 Group Manager . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.1.4 NodeInit Package . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2 Reconûguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1



CONTENTS

6.2.1 Variant: Waiting Reconûguration . . . . . . . . . . . . . . . 40
6.2.2 Goxos Modules . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.3 Failure Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3 Live Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3.1 Goxos Modules . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3.2 Failure Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3.3 PrepareEpoch Handling . . . . . . . . . . . . . . . . . . . . 55
6.3.4 Epoch Generation . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.5 Valid Quroum Veriûcation . . . . . . . . . . . . . . . . . . . 58
6.3.6 Paxos Adjustments . . . . . . . . . . . . . . . . . . . . . . . 59

7 Experimental Evaluation 61
7.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1.1 Replicated Service . . . . . . . . . . . . . . . . . . . . . . . . 61
7.1.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.1.3 Failure Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.1.4 Experimental settings . . . . . . . . . . . . . . . . . . . . . . 63

7.2 Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.3 Disruption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.4 Live Replacement Adjusted . . . . . . . . . . . . . . . . . . . . . . . 70

8 Conclusion and Further Work 74
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A Complete Experimental Data 78

2



1
Introduction

All large web sites and web applications today usually consist of several distributed
subsystems. Such subsystems can for example be web servers, databases, applica-
tion servers and load balancers. All these systems must normally coordinate and
exchange information for keeping the web site or application functioning properly.
A web server may for example need to know what database is acting as primary
if a primary/backup model is used for replication. Many complex systems use a
separate conûguration database for providing individual subsystems with such in-
formation. ais database needs to be highly available so that the subsystems always
receive a response to any request they send. For being highly available the conûgu-
ration database need to tolerate failures. ae conûguration database must o�en also
provide consistency, meaning that the subsystems see the same data at the same
time.

A special conûguration database of the type described above is o�en imple-
mented as aReplicatedStateMachine (RSM)byusing the statemachine approach [1].
State machine replication is a common applied technique for building fault-tolerant
services. ae technique uses a collection of replicas to mask failures. All replicas are
provided the same sequence of operations (requests), resulting in that they end up
in a consistent state. A consensus protocol such as Paxos [2] is normally used to the
order request issued by multiple clients to an RSM. RSMs achieve high availability
by replicating state across several machines. Such an approach enables access to
state stored in system even in the presence of failures. An RSM is prohibited from
processing new requests if more than half of its replicas fail. It is therefore important
that replica failures are handled and repaired as soon as possible for keeping the

3



1.1. CONTRIBUTIONS AND OUTLINE

availability and fault-tolerance of an RSM high. ais thesis presents an description
and implementation of two existing methods for immediate failure handling for
Paxos-based RSMs: Live Replacement and Reconûguration.

1.1 Contributions and Outline
ais thesis contributes a proof-of-concept implementation of Live Replacement [3],
a new failure handling method for Paxos State Machines [2]. Live Replacement is a
technique stated to be speciûcally targeted at immediate failure handling. ae fail-
ure handling technique has been implemented as part of the Goxos framework [4].
Goxos is a Paxos-based RSMs framework that was created at the University of Sta-
vanger in 2012. ae thesis provides a description of both the design and imple-
mentation work done for incorporating Live Replacement as a part of the Goxos
framework. A special focus is put on implementation speciûc details not addressed
in the theoretical description of Live Replacement.

One of the main motivations for this work is to evaluate Live Replacement
against other applicable methods for immediate failure handling. An already well
known failure handling method, Reconûguration [5], is for this reason also imple-
mented as part of the work this thesis. ae implementation of Reconûguration as
part of the Goxos framework is thoroughly described in this work.

Both presented failure handlingmethods are experimentally evaluated and com-
pared through a set of experiments.ae obtained experimental results are presented
and analyzed as a part of this thesis.

ae remainder of this thesis is organized as follows:

Chapter 2 describes the assumed system model for this work. ae chapter also
deûnes a set of metrics for immediate failure handling.

Chapter 3 introduces relevant background material for this thesis. ae main
focus is on the Paxos protocol [2] and how it is used to build Replicated State
Machines [1].

Chapter 4 presents Goxos [4], a Paxos-based Replicated State Machine frame-
work, on which the implementation work for this thesis is based.

Chapter 5 provide a theoretical description of three failure handling methods:
Recovery, Reconûguration [5] and Live Replacement [3].

Chapter 6 describes the design and implementation of two failure handling
methods, Live Replacement and Reconûguration, implemented as part of the
Goxos framework.

4



1.1. CONTRIBUTIONS AND OUTLINE

Chapter 7 presents a set of experimental results from a single failure scenario,
using both Live Replacement and Reconûguration. ae chapter also provide an
evaluation of the two methods in light of the observed experimental results.

Chapter 8 concludes and presents some suggestions for further work.

5



2
Model and Deûnitions

ais chapter presents the system model assumed for this thesis, as well as a set of
metrics for immediate failure handling methods.

2.1 System Model
ae context of this thesis is a distributed system which features a set of nodes com-
municating by sending messages in a communication network. A node can either
host a replicated server process, denoted replica, or a client process.

ae system is deûned to be partially synchronous. ais means the system nor-
mally is assumed to be synchronous, but that there may be periods where the sys-
tem is asynchronous. A asynchronous system makes no timing assumptions about
process or links, while a synchronous system has a known upper bound for both
processing and message transmission delays. A partially synchronous system can
be said to capture the assumption that a system may not always be synchronous,
and that the resulting asynchronous periods has no bound on duration. Such an
assumptionmaps well to practical systems, where for example bothmalfunctioning
hardware and unexpected so�ware behavior can cause periods of asynchrony.

ae system’s communication network is assumed to be reliable. Messages can
take an arbitrarily long time to arrive, can be duplicated and can be lost, but not
corrupted. ae network may partition into several disjoint components, and com-
ponents may later be consolidated. ais assumption is made despite the usage of
the reliable Transmission Control Protocol (TCP) for all network communication

6



2.2. METRICS FOR IMMEDIATE FAILURE HANDLING

in the implementation work done for this thesis. ae consensus protocol and failure
handling methods relevant for this thesis do not require reliable communication
because they use protocol speciûc mechanisms to handle possible message loss.

ae fault model for replicas is assumed to be crash-stop [6, p. 24]. Replicas can
in this model fail by crashing and crashes are permanent. Abstractly, a process in
this model is said to be correct if it never crashes and executes an inûnite number
of steps. A process that crashes at some time during the execution is deûned as
faulty. As a result of the deûned fault model it is noted that replicas do not fail in an
arbitrarymanner.aismeans that they do not deviate in anyway from the algorithm
assigned to them (exhibit Byzantine behavior). As elaborated later in Section 2.2,
this thesis focuses on immediate failure handling and does not consider Recovery.
Due to the deûned permanent failure model, it is ûnally mentioned that for the
scenarios considered in this thesis, replicas do not write to stable storage during
operation. It is also assumed that the system has additional resources available for
starting or obtaining new replica instances.

ae replicated service is assumed to be implemented as a deterministic state
machine. aey together form a Replicated State Machine (RSM), which provides a
stateful deterministic service to clients. ae RSM is deûned to use the Paxos consen-
sus protocol [2] for ordering updates to the state machines. ae replicated service
consists of n replicas. Using Paxos, such as service need n = 2 f +1 replicas to tolerate
f failures. Paxos guarantees safety, but can not guarantee liveness due to possible pe-
riods of asynchrony. ae concept of Replicated State Machines, Consensus and the
Paxos Protocol are further described in Chapter 3. Clients act by sending requests
as messages to a cluster of replicas. Each request can be uniquely identiûed from
a monotonically increasing sequence number. It is assumed that clients can only
have one request outstanding at a time. aus client c will only issue a new request
with sequence number ic + 1 when it has received a response for request number ic .
Clients are also assumed not to send any malformed requests or exhibit any other
form of Byzantine behavior.

2.2 Metrics for Immediate Failure Handling
As motivated in Chapter 1, this thesis focus on methods for immediate failure han-
dling. A Paxos State Machine with n = 2 f + 1 replicas can tolerate up to f failures.
Any real-world system clearly do not respect this bound. Scenarios involving more
than f concurrent failures will make it impossible for an RSM to make progress
until the completion of a possibly time-costly human-operated repair procedure.
Such critical scenarios also signiûcantly reduces the system’s availability.

Durations with pending failure handling is clearly a critical and vulnerable pe-
riod for any real-world system implemented as an RSM. A system could experience

7



2.2. METRICS FOR IMMEDIATE FAILURE HANDLING

additional successive failures during this period, quickly exceeding to bound set
by f . In this context we deûne a window of vulnerability, similar to how it is de-
ûned in [7]. ais work will refer to this window as any period where a system is not
operating at its initial level of fault-tolerance.

Replica failures should be handled fast and eõciently using an appropriate fail-
ure handling method to avoid critical scenarios such as the ones mentioned above.
In addition to being fast, suchmethods should also haveminimal impact on statema-
chine progress. Reduced state machine progress is directly visible to clients through
increased request latencies during periods of failure handling.

A goal of this thesis is an experimental evaluation of two applicable methods for
such immediate failure handling. For comparing and evaluating their performance
a set of metrics are needed. ais text uses the metrics deûned in [3] as a basis. Two
main metrics are deûned below which an eõcient failure handling method should
minimize:

• Delay is deûned as the time from failure detection until a new replica is par-
ticipating in Paxos. For the experimental evaluation this metric is naturally
a time measurement. It is noted that failure detection time is not included
in this metric, since detection time is a tunable parameter. ae experimen-
tal results will identify and explicitly state what part of the failure handling
procedure is detection time.

• Disruption is deûned as the additional latency state machine requests expe-
rience during failure handling. For the experimental evaluation this metric
will be measured from clients points of view. ae experienced request latency
observed by clients will be recorded.

In addition, two other metrics are presented below, addressing potential causes for
increased Delay and Disruption. aey are not directly applicable to experimental
evaluation, but are useful for the theoretical descriptions given in Chapter 5.

• PotentialDelay is the set concurrent protocol steps required for a new replica
to start.

• Potenital Disruption is the set of protocol steps required to avoid disruption.

8



3
Background

In this chapter the relevant background material related to this thesis is presented.
ae section presents a set of fundamental concepts related to State Machine Repli-
cation, Consensus and the Paxos Protocol. Finally, an introduction to ae Go Pro-
gramming Language is given. It is noted that some of the background material
presented here uses [4] as a basis. ae source is a collaborative report, co-written
with Stephen M. Jothen as part of a preliminary project in the Fall 2012 semester.

3.1 State Machine Replication
A well known approach for constructing fault tolerant distributed services is the
State Machine Approach [1]. ais technique uses a collection of replicas to mask
failures. All replicas are provided the same sequence of operations (requests), re-
sulting in that they end up in a consistent state and provide the same sequence of
outputs (responses). A challenge for RSMs arises when there exists multiple clients.
Concurrent requests from diòerent clients may arrive in diòerent order at the repli-
cas, forcing them to make diòering transitions. ais can naturally lead to replicas
producing diòerent outputs and ending up in an inconsistent state. A consensus pro-
tocol can be used to solve this challenge, and ensure that an RSMbehaves identically
to a single remote state machine (that never crashes).

9



3.2. CONSENSUS

3.2 Consensus
Consensus in one of the most fundamental problems in distributed computing,
and the consensus abstraction underlies many systems and protocols. ae reason
for its importance is related to algorithms operating in a model that allows failure.
Algorithms that provide several processes to maintain a common state or to decide
on a future action all rely on solving a consensus problem. ae abstraction is used
by processes to reach agreement on a single value from a set of proposed candidate
values. Consensus has been shown to be impossible to solve in a fully asynchronous
system, even if only one process fails and it can only do so by crashing [8]. However,
this result does not state that consensus never can be reached. It states that no
algorithm can reach consensus in bounded time when applying the assumptions
for the deûned system model. Reformulated, it is proved that any fault-tolerant
algorithm for solving consensus has runs that never terminate. Such runs are still
very unlikely to happen.

Distributed algorithms implementing a distributed programming abstraction
(such as consensus), needs tomeet a certain set of properties that hold in all possible
executions of the algorithm. ais set of properties are usually divided into two
separate classes: safety and liveness. Summarized, it can be said that safetymeans that
the algorithm not should do anything wrong, while liveness ensures that eventually
something good happens. For consensus abstractions, the set of safety and liveness
properties are traditionally stated as [6]:

CL1 Termination: Every correct process eventually decides some value.

CS1 Validity: If a process decides v, then v was proposed by some process.

CS2 Integrity: No process decides twice.

CS3 Agreement: No two correct processes decide diòerently.

CL1 is the only property for consensus related to liveness. It states that algorithm
should eventually terminate by having every process decide some value. CS1-3
all deûne safety properties. CS3 deûnes the underlying main goal of consensus,
namely that every two correct processes actually decides on the same value.

3.3 ae Paxos Protocol
Paxos is a family of consensus protocols that can be used to achieve ordering of
requests issued to a replicated state machine. Paxos was created by Leslie Lamport
and its initial description [9] was published in 1998 a�er almost 10 years a�er its
invention. In the original paper, Lamport describes the Paxos algorithm in terms

10



3.3. THE PAXOS PROTOCOL

of the ûctional parliamentary system on the Greek island of Paxos. Many people
found this way of deûning the algorithm to be confusing, which led to Lamport
creating a simpler explanation of Paxos published three years later [2].

In [2], the Paxos algorithm is described through the concurrent interaction
between three independent types of processes, or agent roles:

• Proposers can propose values to agree on.

• Acceptors accept a value among those proposed.

• Learners learn chosen values.

A process can (and in practice normally does) assume all three agent roles. ae
original Paxos protocol (o�en referred to as single-decreePaxos) can be used to agree
and decide on a single value out of values initially proposed. Single-decree Paxos
is composed of two phases described below, and visualized in Figure 3.1. Phase 1 is
only necessary when a new leader takes over. Phase 2 can be executed to decide on
a given client request.

• Phase 1: Determine if it is safe to propose any value or obtain a value already
voted for.

a) A single proposer among a group of processes is elected to be the leader.
ae leader broadcasts a Prepare message with round number crnd.1
Each proposer maintains a set of of predetermined increasing round
numbers disjoint from other proposers. ais ensures that no two pro-
posers can use the same round number. Acceptors only cooperate with
the proposer with the highest round number.

b) When an acceptor receives a Prepare message with round number
crnd, and crnd is greater than any previous Prepare message re-
ceived, it stops cooperating with proposers using lower round numbers,
and responds with a Promise message containing the previous high-
est round number (vrnd) and the associated value (vval). ais is the
value that it voted for in its last sent Learn message (Phase 2b).

c) If the proposer receives a majority of Promise messages for round
number n, it is free either propose the safe reported value, or any value
if no acceptor reports a value.

1ae term ballot is o�en also used in the literature for referring to this number. ais text uses
round number.

11



3.3. THE PAXOS PROTOCOL

• Phase 2: Attempt to get a safe value accepted.

a) If the response from the majority of acceptors contained a bounded
value, the proposer broadcasts an Accept message containing crnd
and the value (cval) associated with the maximum round number of
the received Promise messages. If the response from the acceptors
le� the Proposer unconstrained to chose any value, it may wait until it
receives a client request and use this value for the Accept message.

b) If an acceptor receives an Accept message with a round number
(crnd) greater or equal to the one it has already seen (vrnd), it broad-
casts a Learn message to the learners containing the associated round
and value.

c) When learners receive Learn messages from a majority of acceptors
for this round number, the command is said to be decided and can be
executed. A majority is referred to as a quorum, and is the set of at least
half of the processes or ⌊n/2⌋ + 1, in a crash-fault tolerant system.

12



(Cl ient) c1

(Paxos l eader) n2

n1

n0

⟨Request, val⟩

⟨Prepare, crnd⟩ ⟨Promise, vrnd , vval⟩

⟨Promise, vrnd , vval⟩

⟨Accept, crnd , cval⟩ ⟨Learn, rnd , vval⟩

⟨Learn, rnd , vval⟩

⟨Learn, rnd , vval⟩

⟨Response, val⟩

Triggered by leader change

Figure 3.1: Single-decree Paxos

13



3.4. THE PAXOS STATE MACHINE

3.4 ae Paxos State Machine
Single-decree Paxos is, as discussed above, used to agree on a single value. An RSM
typically needs to order a continuous stream of incoming client requests. To create a
Paxos StateMachine, the Paxos protocol is expanded to a variant calledmulti-decree
Paxos. ais extension starts one instance of the basic single-decree variant for each
request received. During operation the protocol assigns the decided values from
these instances to an ordered sequential range of slots according to a consensus
instance number.

Multi-decree Paxos can be optimized by letting the leader execute phase 1 for
an arbitrary number of consensus instances [2, p. 9]. As a result, during periods
of synchrony, this variation reduces the number of communication steps needed,
from four to two per consensus instance. When this optimization is used, round
numbers span horizontally over all concurrent instances.2

Multi-decree Paxos performance can in certain scenarios also beneût fromother
optimizations, among them a technique called pipelining. Pipelining allows the
protocol to execute a certain number of Paxos instances concurrently. ais can be
done as long as execution of decided commands are done in correct order. ae
number of allowed concurrent instances is limited by the pipelining parameter,
traditionally denoted as α. Applying pipelining can improve utilization of resources
but requires careful environment-speciûc tuning of the pipelining parameter.

Another method for achieving additional throughput for Paxos systems is a
technique called batching. Batching combines multiple received commands into
a single Paxos instance. As a consequence, batching beneûts from spreading the
ûxed per-instance cost over several request. It is o�en stated to be an optimization
that can provide largest gain in terms of performance, but need to consider the
trade-oò related to increased client latencies when waiting for a batch to ûll up or
for the batching interval to timeout. A thorough investigation of both batching and
pipelining can be found in [10].

ae combination of multi-decree Paxos and pipelining introduces changes for
how safe values forproposal shouldbe obtained (Phase 1).Whenusing α > 1, a leader
may fail before ûnishing broadcasting accepts for several slots. As a consequence
there may be several undecided requests (globally limited by α). For handling this
a proposer that considers itself to be the Paxos leader (using an external leader
detection mechanism), issues a ⟨Prepare⟩ using a round number higher than
any previously seen. ae message also contains a slot identiûer, i, denoting the
highest slot in its continuous range of decided instances. Acceptors responds to
this message with a ⟨Promise⟩ containing the values for each slot higher than

2Round numbers are sometimes in combination with multi-decree Paxos referred to as views. A
system is said to transition to a new view on leader change.

14



3.4. THE PAXOS STATE MACHINE

i in which it has accepted a value. ae proposer can then safely propose values
for slots greater than i. ais can be optimized further if the acceptor and learner
are co-located. ae ⟨Promise⟩ can then contain either a decided value or the
highest value accepted for each slot greater than i. ais avoids already decided slots
to become re-decided.

Figure 3.2 visualize the utilization of multi-decree Paxos. ae scenario in ques-
tion uses α = 3 and assume that Phase 1 of the protocol has already been executed.
In the ûgure four diòerent clients each send a request to the Paxos leader. ae Paxos
leader starts a new Paxos instance for the three ûrst requests it receives. aese in-
stancesmay be decided concurrently, butmust be executed in order.ae next request
received from c4 can, due to the restriction set by the pipelining parameter, not be
proposed by the leader right away. When the Paxos protocol decides on the ûrst
request sent by c1, it issues it a response to the client. It is a�erwards able to pro-
pose the request from c4, since there are now only two concurrent instances being
decided. ais can be viewed as a sliding window of requests.

15



Cl ients c1

c2

c3

c4

(Paxos l eader) n2

n1

n0

⟨Request,A⟩

⟨Request, B⟩

⟨Request,C⟩

⟨Request,D⟩

0 1 2

( a ) ( b ) ( c ) (d )

⟨Response, exec(A)⟩

3

⟨Response, exec(B)⟩

⟨Response, exec(C)⟩

⟨Response, exec(D)⟩

Paxos instance
( x ) Instance value

May be decided concurrently

Figure 3.2: Multi-decree Paxos (α = 3)

16



3.5. THE GO PROGRAMMING LANGUAGE

3.5 ae Go Programming Language
aeGoxos RSM framework, which will be later introduced in Chapter 4, forms the
foundation for the implemented failure handling techniques discussed in this thesis.
ae framework is implemented in the Go programming language [11], and its devel-
oped extensions makes heavy use of Go’s concurrency model. ais model is based
on Communicating Sequential Processes (CSP) [12] developed by C. A. R. Hoare
in 1978. Horare introduced the concept of using channels for interprocess commu-
nication and synchronization. ae CSP related language constructs are not found
in most mainstream programming languages. For this reason a short introduction
to Go and its particularities is given here.

Go was initially designed and developed by Google in 2007 and was later re-
leased as an open-source project in 2009. Go is o�en referred to as a system pro-
gramming language. It achieves good performance as a result of being a statically
typed and compiled language. As opposed to related languages such as C and C++,
Go also features a garbage collector and is memory safe.

Todays ubiquitous presence of multiple cores (and even multiple processors) in
both traditional computers and mobile devices requires developers to implement
concurrent programs in order to harness more of the computing power available.
Traditionally, writing concurrent programs using mechanisms such as threading
and locking has o�en proved to be both diõcult and error-prone. Complexmemory
management and data races are o�en cited problems in this context.

Go’s CSP approach to concurrency attempts to make implementing concur-
rent programs easier for the developer. ae language authors advocates passing
ownership of shared data over channels, and o�en refers to the mantra “Do not
communicate by sharing memory; instead, share memory by communicating” [13].

Go provides two main high-level facilities for concurrent programming: gorou-
tines and channels. A goroutine is deûned as “a function executing concurrently
with other goroutines in the same address space” [13]. Goroutines are spawned
by preûxing a function or method call with the go statement. A channels is a “a
mechanism for two concurrently executing functions to synchronize execution and
communicate by passing a value of a speciûed element type” [14]. Go uses arrow no-
tation to either specify a send statement (chan<-) or a receive operation (<-chan)
on a channel. Channels can be unbuòered or buòered with a certain capacity to
allow asynchronous communication. ae select statement is o�en used in con-
junction with channels. It can be compared to a traditional switch statement, but
instead operates on channels where it chooses which of a set of possible communi-
cations will proceed.

ae initial work on Goxos found Go’s concurrency model to be an excellent
match that allowed us to sidestep much of the complexity of threading and locking
that are widespread in other languages [4]. Also, using Go enabled an implemen-

17



3.5. THE GO PROGRAMMING LANGUAGE

tation of Paxos very similar to how the algorithm is described in the original pa-
pers [2, 9]. ae use of goroutines and channels for implementing the independent
and concurrent Paxos agents proved to work very well.

18



4
Goxos

ae implementation work done as a part of this thesis builds on Goxos [4], a Paxos-
based RSM framework. ae framework has been further extended from its initial
form to include the failure handling capabilities discussed and analyzed in this
thesis. Since the discussions presented in this work will refer to diòerent parts of
the Goxos framework extensively, an architectural overview of the framework is
given together with a short description of the relevant submodules.

4.1 History
aework onGoxos was initiated by theDistributed SystemsGroup at the University
of Stavanger in the autumn of 2012. ae main motivation was to create a platform
for implementing and testing various research subjects such as

• Paxos variations

• Failure handling for Paxos

• Fault tolerant publish/subscribe

aemain foundation of Goxos was implemented by two master students taking the
course Project in Computer Science. ais development also served as preparatory
work for our upcomingMaster’s theses. Developing anmodular and extensible RSM
framework from scratch is an extensive undertaking [15]. Hence, combined with

19



4.2. OVERVIEW

the limited time available for such an initial project, Goxos was in a rudimentary
shape when the work for this thesis started. Although the main objective of this
thesis were to implement the relevant failure handlingmethods, a great deal of work
has also gone into adjusting, extending andmaintaining the core Goxos framework.
ais work was necessary in order to fulûll the goals set for this thesis. To give an
idea of the eòort involved, some of the main tasks are given below. Architectural
references mentioned will be explained in Section 4.3.

• Client integration:ae initial Goxos framework did not contain any form of
client handling. As a consequence, both a client handler and separate client
library were developed.

• Service integration: No integration against the replicated service were avail-
ablewhen thework for this thesis began.ae interface for connecting a replica
to the replicated service were deûned and implemented in the initial work
phase.

• Applications: ae Goxos project were not bundled with any applications
acting as replicated services. A few example applications were implemented
to enable proper testing during development.

In addition to the points mentioned above, a development project of Goxos’ size
obviously continuously need refactoring, bug ûxes and adjustments. Such tasks has
also required a great deal of eòort.

4.2 Overview
ae Goxos RSM framework provides a consensus service to applications. Applica-
tions can use the framework to implement a consistent stateful service. ae corre-
sponding client library can be used for letting clients issue requests to the service.
ae framework can be conûgured to use diòerent Paxos implementations avail-
able in Goxos, including MultiPaxos, FastPaxos and AggregatedPaxos [16]. Fault-
tolerance is achieved by replication andmaintained throughutilization of the failure
handling methods implemented for this thesis.

Consistent with the model stated in Section 2.1, a system using Goxos runs on a
set of nodes communicating with each other using message passing. A node will in
a typical deployment be an independent single machine communicating over the
network.

20



4.3. ARCHITECTURE

4.3 Architecture
ae Goxos project in its current form consists of three main components (and
source code repositories):

• goxos: ae main framework for building Paxos-based RSM.

• goxosc: A client library for implementing application clients used for issuing
requests to a Goxos cluster.

• goxosapps: A collection of utilities and example applications utilizing the
Goxos framework. ae component contains a simple replicated key-value
store, kvs, that is used in the experiments described in Chapter 7.

ae discussion here will mainly focus on the Goxos framework, since it forms
the basis for the implementation work for done for this thesis. ae mentioning of
Goxos throughout this thesis will refer to the main RSM framework unless other-
wise stated.

ae Goxos framework consists of a group of Go packages, each representing a
separate part of the framework’s functionally. Each package again contains one or
more components that will be referred to as modules. A module in the context of
Goxos can be described as an actor handling a speciûc responsibility. Each module
runs in a separate goroutine, using an event loop to react to messages from other
parts of the system. ae event loops are constructed using Go’s select keyword
and channels for inter-module message passing.

Listing 4.1 shows a simple and representative example of such an event loop.
ae example is taken from the Learner module in the MultiPaxos package. ae
arrow notation shows operation on channels, and for this example more precisely
the usage of the receive operator on a set of channels. ae messages received by
the module is passed on to the appropriate handling method. For example is every
⟨Learn⟩ message received from the learnChan passed on to the HandleLearn
method. ae CSP-related usage of select and channels obviates the need for any
locking, since the module is not accessed concurrently and handles one message at
a time.

21



4.3. ARCHITECTURE

Service Client N

Goxos Client Library

Replicated Service

Goxos Replica X

Replicated Service

Goxos Replica Y

Figure 4.1: Overview of layers for a replicated service using Goxos

Listing 4.1 : Event loop from MultiPaxos Learner

1 go func () {
2 for {
3 select {
4 case learn := <-l. learnChan :
5 l. HandleLearn ( learn )
6 case creq := <-l. creqChan :
7 l. HandleCatchUpReq (creq)
8 case cresp := <-l. crespChan :
9 l. HandleCatchUpResp ( cresp )

10 case trustId := <-l. trust :
11 l. leader = trustId
12 case <-l.stop:
13 return
14 }
15 }
16 }()

One of the original goals when designing the Goxos framework was to achieve a
highly modular architecture. ae main motivation behind this was to enable future
extensions to easily and seamlessly to be integrated. Taking this approach has shown
itself to be useful throughout the work on this thesis. Two students working on
separate Master’s theses have been been able to work on the same code base while
developing several extension to the framework.

In addition to having a modular design internally, Goxos is also separated from
the replicated service.ais is in contrast to otherPaxos-based implementations such
as Zookeeper [17] and Doozer [18], but similar to the approach taken in JPaxos [19].
Such a design introduces no application speciûc logic in the Goxos framework.
Applications using Goxos imports a single package that exposes a simple API for
starting and stopping the replicated service. A high-level overview of this design is
shown in Figure 4.1.

Since the rest of this thesis will refer to many of Goxos’ internal modules, a short
description of the relevant ones will be given below. aemodules are listed by name

22



4.3. ARCHITECTURE

together with their associated package. Figure 4.2 serves as a companion to these
descriptions, with a partial set of module interactions shown.

Server (Server)
ae Server module is a fundamental part of the Goxos framework. It can be
viewed as the central connection hub for the diòerent Goxos modules. ae
module creates, initializes, starts and stops the other submodules. In addition,
it routes client request to the correct Paxos module based on mode of opera-
tion. ae Server module is the only part of the Goxos framework that interfaces
against the replicated service. ae Server module invokes the local replicated
service to execute decided requests. It also queries the local replicated service
for application state during failure handling.

Demuxer (Network)
ae Demuxer module handles the incoming network traõc from the other
nodes in a Goxos cluster. It decodes incoming messages and routes them to
the appropriate submodule. Submodules can subscribe to messages based on
message type.

Sender (Network)
ae Sender module is responsible for sending messages to the other nodes as
requested by other submodules. It maintains a map of connections shared with
the Demuxer.

Heartbeat Emitter (Liveness)
ae Heartbeat Emitter module broadcast heartbeats at a regular, speciûed in-
terval. It does not send heartbeats if the running node has recently broadcast
another type of message, as every message received is used as an implicit heart-
beat.

Failure Detector (Liveness)
ae Failure detector module is responsible for providing (possibly inaccurate)
information to other submodules about which nodes are believed to have failed.
ae choice of failure detector is described greater detail in Section 6.1.1.

Leader Detector (Liveness)
ae Leader Detector module provides submodules with information about the
replica currently assigned the role of coordinator for both the Paxos algorithm
and replacement handling (proposer and replacement leader). ae leader detec-
tor algorithm is discussed in further detail in Section 6.1.2.

Proposer, Acceptor and Learner (MultiPaxos)
aese three modules follow the multi-decree Paxos protocol as described in

23



4.3. ARCHITECTURE

Section 3.4. In addition, the Learnermodule is also responsible for initiating and
handling a catch-upmechanism. Catch-up is activated if the Learner realize that
it hasmissed decisions for previous slots.ae Learnermodule is also responsible
for responding to catch-up requests from other nodes.

Group Manager (Grp)
aeGroupManagermodule encapsulates and centralizes information about the
other replicas in a running system. ais involves providing the other modules
with information such as node identiûers, network addresses and ranks. Some
additional details about the Group Manager is provided in Section 6.1.3.

Client Handler (Client)
aeClient Handlermodule handles all communication with clients. It is respon-
sible for accepting and validating client requests, forwarding them to the Server
module and sending responses to clients.

Replacement Handler (Lr)
ae Replacement Handler extends the Goxos framework to include the Live
Replacement failure handing method [3]. ae module is responsible for initi-
ating replacements, as well as handling all the messages belonging to the Live
Replacement protocol. ae module is discussed in detail in Section 6.3.

Reconûguration Handler (Reconûg)
ae Reconûguration handler allows the Goxos framework to change the set of
replicas used to execute the consensus protocol at runtime. ae module and its
reconûguration algorithm is discussed in detail in Section 6.2.

Initialization Listener (NodeInit)
ae Initialization Listener is a module used by nodes started in standby mode.
During failure handling, nodes are started in this mode to await joining a run-
ning Goxos cluster. ae listener runs an initialization protocol that lets a node
obtain application state and the relevant conûguration settings from a peer. ae
module is discussed in further detail in Section 6.1.4.

24



Server

Replicated Service

LearnerAcceptorProposer

Failure Detector Leader Detector

Heartbeat Emitter

Group Manager

Client Handler

Init. Listener Replacement Handler Reconûg. Handler

Demuxer Sender

Network

Figure 4.2: Overview of Goxos submodules

25



4.4. APPLICATION PROGRAMMING INTERFACE

4.4 Application Programming Interface
Chapter 6 describes the design and implementation of two failure handlingmethods
for the Goxos framework. ais description refers to parts of the Goxos Application
Programming Interface (API), available to applications implementing a replicated
service. For this reason, a short introduction to the API is given here.

Goxos provides a simple API to applications implementing a replicated service.
ae API is exposed through the top-level package named Goxos. An application
can create two diòerent types of Goxos replicas, either a GoxosReplica or a
GoxosStandbyReplica. ae constructor function and method signatures
available for the two types of replicas are the following:

• GoxosReplica:

– func NewGoxosReplica(id uint, appId,
configFilePath string, ah app.Handler) *GoxosReplica
ais function returns a pointer to a new GoxosReplica. ae func-
tion takes two identiûers as arguments, the replica’s PaxosId and a global
identiûer for the replicated service. ae conûguration ûle to be used is
speciûed by a ûle path. ae last argument supplies a handler the Server
module use for executing decided requests and requesting application
state. ae handler is speciûed through an interface and is described in
more detail later in this section.

– func (g *GoxosReplica) Init() error
ais method initializes the replica and returns an error if the procedure
fails. ae initialization consists of two main steps. ae framework ûrst
parses and veriûes the supplied conûguration. If the conûguration is
valid the replica creates an instance of the Server module, as described
in Section 4.3.

– func (g *GoxosReplica) Start() error
aismethod starts the replica and returns anderror if it fails to do so.ae
Goxos start procedure involves calling the appropriate start methods of
the Server module. ae Server module starts the needed submodules
based on the supplied conûguration.

– func (g *GoxosReplica) Stop() error
Calling this method attempts to shutdown the replica gracefully, return-
ing an error if any problem is encountered.

26



4.4. APPLICATION PROGRAMMING INTERFACE

• GoxosStandbyReplica:

– func NewGoxosStandbyReplica(standbyType string,
ah app.Handler, appId, standbyIp string)
(gs *GoxosStandby)
ais function returns a pointer to a new GoxosStandbyReplica.
ae constructor function diòers from the one of a normal replica in a few
aspects. It should be noted that no conûguration or PaxosId is supplied,
since a standby replica obtains this information from the already run-
ning cluster during initialization. ae standbyType argument speciûes
the standbymode, allowing eitherReconûguration or Live Replacement.
Finally, the standbyIp provides the IP address of the Initialization Lis-
tener.

– func (gs *GoxosStandyReplica) Standby() error
Calling the Standby() method causes the replica to start its Initializa-
tion Listener and enter a standby mode. If the replica is initialized, the
framework starts the Servermodule using the settings and state received
during the initialization phase.

– func (gs *GoxosStandbyReplica) Stop() error
ais method is the same as for a regular GoxosReplica.

Both constructor functions described above takes an argument,ah, of interface type
app.Handler. ais interface deûnition is shown in Listing 4.2. Each application
needs to implement its own appropriate version of this interface. In its current
form, the Goxos framework use the supplied implementation of this interface for
executing ordered request. In addition, the framework can set and request state from
the replicated service using the interface implementation. ae interface deûnition
may be expanded in the future for handling other necessary interactions between
the Goxos framework and the replicated service.

Listing 4.2 : Application Handler Interface

1 type Handler interface {
2 Execute (req [] byte ) (resp [] byte )
3 GetState ( slotMarker uint ) (sm uint , state [] byte )
4 SetState ( state [] byte ) error
5 }

27



5
Failure Handling

ais chapter provides an overview of two traditional failure handling methods for
Paxos State Machines, namely Recovery and Reconûguration. In addition, a new
method called Live Replacement is introduced. ais thesis, as stated in Section 2.1,
do not consider or implement recovery, but the method is brie�y described here for
completeness with regards to failure handling.

5.1 Recovery
In a fail-recovery [6, p. 63] model, processes are allowed to crash, but also recover
again and participate in the running system. Recovery as a failure handling method
has a wide range of applications, ranging from simple program restarts to more
complex transactional database recovery schemes [20]. aemodel normally entails
that a recovered process restart on the same machine as its previous incarnation of
the process and that the new incarnation of the process have access to the state of its
predecessor (obtained from stable storage). aus this method of recovery fails if the
local disk failed, or some other hardware failure preventing the physical machine
from restarting the process.

When using Recovery, processes must be able to avoid amnesia, i.e. they should
not forget what they did prior to crashing. For a replicated service implemented as
a Paxos State Machine this involves writing to stable storage during the protocol,
as well as making application state snapshots persistent at regular intervals. ais is
done to ensure safety across crashes. A recovering replica at startup reads this state

28



5.2. RECONFIGURATION

as a part of an initial recovery procedure. A recovered replica may also need to be
updated by other replicas of commands decided during its outage.

As opposed to Live Replacement and Reconûguration, Recovery is able to han-
dle catastrophic failure scenarios, i.e. whenmore than f replicas fail.ais is assumes
that fewer than f + 1 replicas do not experience disk corruption and that other pos-
sible hardware faults may be repaired.

At what steps the Paxos protocol should write to disk to ensure safety is dis-
cussed in [21] along with experiments that present the performance impact of disk
writes. An approach to eõciently obtaining application state snapshots is described
in [15, p. 8]. [19] discusses the diòerent approaches for deciding when to snapshot,
in addition to reviewing who should be responsible for initiating it (replica vs. repli-
cated service).

5.2 Reconûguration
Reconûguration [5] is a method for changing the set of processes executing a dis-
tributed system. Abstractly, for an RSM, this means replacing the current set of repli-
cas (old conûguration) with a new set of replicas (new conûguration). In addition,
to be useful for purposes such as hardware updates and load balancing, Reconûgu-
ration can also be used to exclude and replace failed replicas. ae decision to do so
can either be initiated by an human administrator or by an appropriate algorithm
such as a failure detector.

ae classical idea for Reconûguration (presented in [2]) is to let the replicated
service state include the conûguration. ae systemmigrates when the old conûgura-
tion decides on a new sets of replicas and an initial state. ae migration is initiated
by issuing a special reconûguration command to the state machine. ae command
includes the new conûguration. aat is, the set of replicas to switch to (the new
conûguration) when the command is learned. Learning this command requires
running Phase 2 of multi-decree Paxos, resulting in a Delay of two communication
steps. Four communication steps are required if the leader if faulty.

ae pipelining parameter described in Section 3.4 introduces more complexity
for Reconûguration when α > 1. If α = 1, determining the state of the new con-
ûguration is simple. When learning the reconûguration command for slot i, it is
known that no other Paxos instance can be running concurrently and all previous
requests have been chosen. As a consequence, the Paxos starting state for the new
conûguration should be obtained from slot i − 1. Conversely, if α > 1, there may be
several consensus instances running concurrently. For handling the remaining α−1
instances a�er the reconûguration command, two main approaches as described
in [3] will be presented here.

Waiting ais approach changes to the new conûguration onlywhen all possibly

29



5.3. LIVE REPLACEMENT

decided request have been learned. If the reconûguration commandwas decided
as slot i, the new conûguration takes eòect from slot number i + α. ais adds
α− 1 to Potential Delay. Another variation instructs the Paxos leader to propose
null requests1 for the remaining α−1 instances. Such action can reduce Potential
Delay, but increases Disruption since the application requests has to wait for
the null request to be decided.

Stopping ais approach stops the old conûguration directly a�er deciding on
the reconûguration command. If the command is decided as slot i, decided
requests for slots higher than i are discarded. By discarding requests greater
than i, Potential Delay is reduced since fewer events requests are required before
the new replica can start. However, discarding these request leads to Disruption
of at least two communication steps for each request discarded.

Lamport et al. also presents several approaches to Reconûguration in [5]. A thor-
ough description of an implementation of a waiting Reconûguration protocol can
be found in [22].

5.3 Live Replacement
Live Replacement is a new proposed method for handling failures in a Paxos State
Machine. It is, as explained in Chapter 1, one of two failure handling methods imple-
mented and evaluated as a part of this thesis. Live Replacement can, as Reconûgura-
tion, be used to replace a replica that is believed to have failed with a new replica on
another machine. As explained in Section 5.2, Reconûguration relies on a special
state machine command for changing the set of replicas used. Live Replacement
does not rely on such a command, and it is argued to be independent from state
machine progress. As a consequence, a replacement is postulated to have minimal
impact on Disruption. ae argued independence of Paxos and Live Replacement is
formalized using a proposed notion of independent subprotocols.

Live Replacement is introduced and presented by Jehl et al. in “Live Replace-
ment: Fast and Eõcient FailureHandling for Paxos StateMachines” [3].ais section
attempts, using this source, to provide a concise description of the protocol. ae
reader is referred to the original paper for proof of that Live Replacement do not
violate safety of the Paxos State Machine. A discussion of the protocol’s liveness
properties can also be found here, in addition to the deûnition and discussion of
independent subprotocols. ae protocol description given below is speciûed for
single-decree Paxos. Section 6.3 describes the implementation of Live Replacement

1Also known as a no-op command.

30



5.3. LIVE REPLACEMENT

in the context of multi-decree Paxos. Before presenting a speciûc replacement ex-
ample, an overview of protocol actors and messages are given, in addition to other
necessary deûnitions.

ae following actors participate in Live Replacement:

Replacement Leader ae replica that initiates replacements. ae Replacement
Leader may also be the leader of the Paxos algorithm, but it is not necessary.

Replacer Replica ae new replica replacing an old replica.

Replaced Replica An old replica being replaced.

As stated in Section 2.1, the replicated service considered here consists of n
replicas. When applying the Live Replacement method, each replica t is assumed
to have an 2-tuple identiûer, idt = (it , et), where it ∈ {0, . . . , n − 1} and et ∈ N. ae
ûrst element it is referred to as the PaxosId, while the second element is referred
to as the epoch. Each replica maintains a vector of epochs, containing the highest
known epoch for each PaxosId. ae Live Replacement Protocol utilizes a message
type containing Paxos state. ais is more precisely the state of the Acceptor agent
in Paxos. For denoting the Acceptor state (rnd , vrnd , vval) of replica t, Φt will be
used. It is assumed in this description that a replacement leader knows about spare
replicas which can be used to replace faulty ones. Section 6.1.4 later provides details
about how this is done in practice.

ae theoretical description of the Live Replacement protocol uses twomessages
for performing a replacement.

• ⟨PrepareEpoch, s, (is , es)⟩: ais message is used by a replacement leader
to instruct the other replicas to replace the current replica with PaxosId is.
ais replica should be replaced with the new replica s. ae message also con-
tains the id of the new replica, (is , es).

• ⟨EpochPromise, Φt , epoch[]t , idt)⟩: If replica t receives a
⟨PrepareEpoch⟩ instructing it to replace a replica with a new one, it
sends an ⟨EpochPromise⟩ to the new replica containing its acceptor state,
epoch vector and id.

To explain the protocol, an example scenario involving a single replacement will
be presented. ae scenario is also illustrated in Figure 6.4. ae system in question
consist of three replicas, n2,0, n1,0 and n0,0. Replica n2,0 is assumed to be the Paxos
Leader, and replica n0,0 is assumed to be the Replacement Leader. At some point in
time, replica n1,0 fails. ae Replacement Leader is made aware of this event through
either a failure detection mechanism or by some form of human intervention. ae

31



5.3. LIVE REPLACEMENT

Replacement Leader knows of a replica s that can be used to replace the failed
replica.

ae Replacement Leader needs to calculate an identiûer for s before sending the
PrepareEpoch message to the other replicas. For this example, the Replacement
Leader calculates the new epoch to be 1, creating the identiûer n1,1. ae Replacement
leader ûnally sends the resulting ⟨PrepareEpoch, s, (1, 1)⟩ to all replicas, which
in this case is n2,0 and itself.

When receiving a PrepareEpoch, the replicas ûrst check that the attached
epoch is higher than what it has previously seen for the corresponding PaxosId.
In this scenario n2,0 approves the PrepareEpoch since 1 > 0. As a result, it
generates and sends an EpochPromise to the new replica s (n1,1). ae Epoch-
Promise contains its identiûer (n2,0), epoch vector ([0, 0, 0]) and acceptor state
(Φn2,0). It ûnally updates the epoch to 1 for PaxosId 1, resulting in the epoch vector
[0, 1, 0]. ae same procedure is also performed at replica n0,0. A replica is said to
have installed a replacer when it has sent the EpochPromise and stored the new
epoch.

ae replacer replica n1,1 is waiting to receive EpochPromises from a major-
ity of the replicas. When so happens, it extracts a consistent acceptor state from a
quorum ofmessages. For this scenario using single-decree Paxos, this means setting
the appropriate rnd, vrnd and vval for the replica’s acceptor. ae replica adopts the
highest rnd seen in the set of EpochPromises, and sets (vrnd , vval) accord-
ing to the highest seen vrnd. ae replica a�erwards joins the rest of the replicas
in running the Paxos Protocol. A replacer replica is said to be activated if it has
determined an acceptor state from a quorum of EpochPromise messages and
started participating in Paxos.

ais description nowaddresses somedetails andnecessary adjustments to Paxos.
As stated in the example scenario above, a Replacement Leader needs to calculate
a new epoch for the replacer replica. For ensuring the uniqueness of a replacement,
the epoch should be generated based on the Replacement Leader’s identiûer. ais
is similar to how proposers in the Paxos algorithm employ their own set of unique
round numbers.

As stated in Section 2.1, this work assumes a partially synchronous system. It
is during asynchronous periods impossible to resolve whether a process has failed
or only operating slowly. Live Replacement can for this reason not assume that
an old replica has really failed. To handle this fact, the Paxos protocol must be
adjusted to ensure that a replaced replica can not be a part of any quorum. Paxos
uses two types of messages evaluated in context of quorums, namely Promise
and Learn messages. Live Replacement requires a replica to add its epoch vector
to every Promise and Learn message. ae protocol uses them to ensure that
all quorums are valid. ae notion of a Valid Quorum is deûned in [3].

32



5.3. LIVE REPLACEMENT

(Paxos l eader) n2,0

n1,0

(Replacement l eader) n0,0

m

[0, 0, 0]

[0, 0, 0]

⟨PrepareEpoch,m, (1, 1)⟩

⟨EpochPromise, Φ, [0, 0, 0], (2, 0)⟩

⟨EpochPromise, Φ, [0, 0, 0], (0, 0)⟩

[0, 1, 0]

[0, 1, 0]

[0, 1, 0]

[x , y, z]: Epoch vector
Φ: Paxos state

Figure 5.1: ae Live Replacement Protocol

33



5.3. LIVE REPLACEMENT

Deûnition. A quorum of messages Q = {⟨Msg, epocht , (it , et)⟩, . . . } is valid if for
any pair of messages in Q with senders t and t′, it ≠ it′ and epocht′[it] ≤ et hold.

In addition to quorums of Promise and Learn messages, Live Replacement
also require that quorums of EpochPromises are valid. ais is done to exclude
an old replica from the replacement protocol. In addition to valid quorums, old
leaders are excluded by having replicas ignore Prepare messages with an old
epoch. ais means they ignore a Prepare from replica t with et < epoch[it].

As deûned in Section 2.1, this work assumes unreliable communication. For
this reason, PrepareEpoch messages may be be lost and not received by all
replicas. A replacer replica solves this by resending the PrepareEpoch if it does
not receive enough EpochPromises to determine a vaild quorum. A replacer
replica can use a timeout mechanism for deciding if it should resend the Prepa-
reEpoch.

Finally, it is mentioned that a system may (due to periods of asynchrony) have
several replicas that each considers themselves as the Replacement Leader. If they
all try to initiate individual replacements, it may be diõcult to obtain vaild quorums
of EpochPromises. A non-activated replacer replica for this reason responds to
a PrepareEpoch by forwarding the set of all EpochPromises it has received.
ae replacer replica associated with the PrepareEpoch can then attempt to use
these messages for ûnding a valid quorum. [3] provides a description of such a
scenario.

34



6
Design and Implementation

ais chapter describes the design and implementation of two failure handling meth-
ods, Live Replacement and Reconûguration, developed as extensions to the Goxos
framework. ae chapter is divided into there sections. Section 6.1 gives an intro-
duction and overview of Goxos modules and functioallity that is common for both
failure handling implementations. Section 6.2 describes the implementation of the
Reconûgurationmethod, while Section 6.3 presents the design and implementation
of the Live Replacement extension.

6.1 Common Modules and Functionality
ais section presents twomodules and one package common for both implemented
failure handlingmethods. aey are presented here since they are o�en referred to in
Section 6.2 and 6.3. ae description ûrst focuses on the failure and leader detector
modules from the Liveness package. ae section ends with a presentation of the
NodeInit package.

6.1.1 Failure Detector
Since this thesis concerns failure handling,Goxos’ failure detector (FD) is naturally a
central component. As stated in Section 4.3, the FD is responsible forproviding other
submodules with information about which replicas are believed to have failed. ais

35



6.1. COMMON MODULES AND FUNCTIONALITY

information may not necessarily be accurate, due to the assumption of a partially
synchronous system.

aeGoxos FD is loosely based on the “Increasing timeout” algorithm presented
in [6, p. 55]. ais algorithm implements an eventually perfect failure detector (◇P),
capturing the assumptions of a partially synchronous system. Using this algorithm
every replica broadcasts heartbeats at a regular interval to signal that they are alive.
ae FD uses these heartbeats and a repeated timeout procedure to determine the
current state of the cluster.aeGoxos implementation delegates, as described in Sec-
tion 4.3 the responsibility of broadcasting heartbeats to a separate hearbeat emitter
module.

ae FD provides two indication events, ⟨Suspect⟩ and ⟨Restore⟩. Several
Goxos modules needs to informed of these events, such as for example the Leader
Detector, Live Replacement Handler and Reconûguration Handler. For dissemi-
nating its information to several modules, the FD implements a simple publish-
subscribe scheme, allowing modules to register with the FD for receiving indica-
tion events. When doing so, a Goxos module is provided with a separate channel
on which it can listen for updates.

It is ûnally noted that the FD indication event ⟨Restore⟩ serves little purpose
for the current Goxos implementation. Since the system model assumes only crash
failures, such an indication would signal a network partition or a possibly slow
replica. As discussed later in this chapter, the Goxos failure handling modules react
instantly to ⟨Suspect⟩ indications. ais in accordance with the goal of immediate
failure handling. ae ⟨Restore⟩ event may be used in future adjustments of the
framework. In some situations it may be useful to provide replicas with a grace
period before considering them faulty, possibly avoiding a costly failure handling
operation if a ⟨Restore⟩ is received. A ⟨Restore⟩ can also possibly be used by
the failure handling modules to abort a costly replacement procedure before it has
reached a point where it is not possible or desirable to do so.

6.1.2 Leader Detector
As mentioned in the description of the Paxos State Machine in Section 3.4, a single
replica should be elected as the proposer for the Paxos Protocol. ais replica is
responsible for proposing incoming requests from clients to acceptors. ae replicas
can use a leader election primitive to agree on such a common coordinator. Ω
is an eventual leader detection abstraction that can be implemented to serve this
purpose. ae abstraction ensures the uniqueness of the leader only eventually, again
capturing the assumptions of a partially synchronous system. Ω has been shown to
be the weakest leader detector1 for solving consensus [23]. Ω can easily be derived

1Ω is referred to as a failure detector in literature, but this text will refer to it as a leader detector.

36



6.1. COMMON MODULES AND FUNCTIONALITY

from a ◇P failure detector by choosing the leader as the non-suspected process
with the highest rank or identiûer. ae Goxos leader detector (LD) is modeled
a�er the “Monarchical Eventual Leader Detection” algorithm from [6, p. 57], which
implements Ω in this fashion using◇P .

For a Goxos cluster of n replicas, each replica t has a PaxosId it, where it ∈
{0, . . . , n − 1}. ae Goxos LD elects the non-suspected replica with the highest Pax-
osId to be the Paxos Leader. ais is signaled through the LDs only indication event,
⟨Trust, it⟩, which indicates that the replica with PaxosId it is trusted as the Paxos
Leader. As for the FD described in Section 6.1.1, the LD also employs exactly the
same publish-subscribe pattern for disseminating this information to interested
modules. ae LD publishes ⟨Trust, it⟩ messages on each of its subscriber chan-
nels.

Section 5.3 introduced the notion of a separate Replacement Leader for the Live
Replacement failure handlingmethod. ae Replacement Leader could for Goxos be
deûned to be the Paxos Leader, but it is naturally beneûcial to delegate this respon-
sibility to another replica to avoid Disruption. For this reason, the Goxos LD was
extended when implementing the Live Replacement method. ae LD was adjusted
to provide an additional indication event, ⟨Trust’, idt⟩, denoting the replica that
should be considered as the Replacement Leader.ae criteria for choosing the Paxos
leader when using Live Replacement was also adjusted to take each replica’s epoch
intro consideration.

For a Goxos cluster of n replicas employing the Live Replacement method, each
replica t has a composite identiûer idt = (it , et), equal to the one presented in
Section 5.3. When employing Live Replacement, the following criteria is used by
the Goxos LD for electing the two diòerent leader types:

• Paxos Leader:ae non-suspected replica with the lowest epoch and the high-
est PaxosId.

• Replacement Leader:ae non-suspected replica with the lowest epoch and
the lowest PaxosId.

A�er some number of replacements, a single replica may end up having the low-
est epoch. If this is the case, the replica will take on both leader roles. As stated
in Section 5.3 this is not optimal, since the Paxos Leader should be relieved from
coordinating any replacement procedure. In the future, a special reconûguration
command may be implemented to enable checkpointing and reseting the replicas
identiûers, avoiding such scenarios.

37



6.1. COMMON MODULES AND FUNCTIONALITY

6.1.3 Group Manager
ae Group Manager serves as a central repository for Goxos modules, providing
information about the replicas of the current cluster. ae main source of informa-
tion is a replica map that encapsulates the identiûer, rank and network addresses of
the replicas. ae replica map is during normal operation only accessed using read
requests.

During normal operation, the replica map is only accessed with read operations.
ae map is only updated during periods of failure handling (a rare event). Nor-
mally this would still require that operations on the map be protected with a lock.
However, since the majority of operations on the node map are read operations, we
wish to avoid such locking. ais is achieved by letting modules request to change to
node map, thus the Group Manager must ensure synchronized access to the map
during this operation. ae Group Manager does so by notifying all relevant mod-
ules that the map is going to be updated. ae Goxos modules that needs consistent
membership informationmust subscribe to hold notiûcations from the GroupMan-
ager. A module is provided with a channel to listen on for such notiûcations. Upon
receiving such a hold request, a module acknowledges the request to the Group
Manager, and ûnally block its event loop. A module continues normal operation
when it receives a corresponding release signal from the Group Manager. ais syn-
chronization technique relies extensively on use of channels and is not discussed in
further detail here.

6.1.4 NodeInit Package
ae NodeInit package consists of three main components described in detail in
this section:

• Replica Provider Interface.

• Initialization Listener Module.

• Initialization Listener Client Library.

Both the failure handling methods considered in this thesis must be able to ob-
tain new replicas that can be used to replace old ones.ais functionality is forGoxos
deûned as a separate external subsystem, denoted as a Replica Provider. A Replica
Provider can be integrated against Goxos by implementing the interface shown in
Listing 6.1. ae interface contains only one method, GetReplica, that returns a
value of type grp.Node, containing the necessary information about the new replica.
ae appId argument lets the Replica Provider know what kind of replicated service
that should be started. ae failureHandlingType argument speciûes what kind

38



6.1. COMMON MODULES AND FUNCTIONALITY

of startup procedure the new replica should use. It is set according to the systems
failure handling type.

Listing 6.1 : Replica Provider Interface

1 type ReplicaProvider interface {
2 GetReplica (appId , failureHandlingType string ) (grp.Node , error )
3 }

To decouple the Replica Provider subsystem from the actual Goxos framework
was done for several reasons. Deûning this functionality through an interface natu-
rally allow diòerent implementations to be used. To obtain and start a replica is also
a procedure that can be tightly connect to the infrastructure the system is running
on. Systems may have varying amounts of resources available, and may use speciûc
policies for how to delegate and provide hardware and computing resources. A sys-
tem may for example take CPU load and other metrics into account when deciding
on where to place a new replica. ae approach taken attempts to be �exible with re-
spect to what kind of Replica Provider is used.ae approach also enables integration
against already existing infrastructure systems providing similar services.

aedevelopmentofGoxos ismotivatedby the goal of creating a research and test-
ing platform. A very relevant issue in this context would be to integrate the Replica
Provider functionality together with the execution of experiments. An experiment
platform involves among other thing distributing binaries, injecting failures and col-
lecting log ûles. All of these tasks can in some form be related to a Replica Provider,
since every action needs global knowledge about what replicas are running in the
system. ae execution of the experiments done for this thesis was not tightly inte-
grated against a Replica Provider. Planned futurework forGoxos include developing
an experiment platform. Such a platform would likely include a integrated Replica
Provider of some form. ae Replica Provider used for the experiments considered
here were developed as a collaborative side-project. ae implementation will not
be presented in detail here, but summarized it mainly uses the Secure Shell (SSH)
network protocol for deploying and starting replicas at new machines. Future work
include adding functionality such as automatic node discovery.

A replica obtained using a Replica Provider is started in a standby mode. ais is
handled by the replicated service using the Goxos API described in Section 4.4. ae
replica is in standby mode only running its Initialization Listener module, waiting
to be contacted by another replica.

ae purpose of the Initialization Listener is to provide a new replica with an
identiûer, conûguration and starting state for the replicated service.aeprocedure is
common for both failure handling implementations discussed later in this chapter.
Initialization is performed before the replica begins its startup procedure. ais
startup procedure diòers based on the speciûc failure handling protocol applied.

39



6.2. RECONFIGURATION

ae four step initialization protocol is presented below. ae description assume
that replica t has obtained information about the new replica s through its Replica
Provider. Replica t uses the Initialization Listener client library for starting and
executing the described protocol.

1. ⟨InitRequest, idt⟩: ae ûrst message sent from replica t to s is a request
with the purpose of determining if the new replica is ready for initialization.

2. ⟨InitResponse, ack, state⟩: ae new replica replies with an boolean ack,
indicating if it is ready to be initialized. If ack is false, the state value indi-
cates the current state of the remote Initialization Listener. ae state value is
currently only being used for logging and debugging purposes, but may be
utilized in the future.

3. ⟨TransferRequest, ids , con f ig , Θ, asid⟩: ae main transfer is started
if t receives a positive acknowledgment from s. ae transfermessage contains
the identiûer for s, conûguration, application state (Θ) and application state
slot identifer (asid). ais slot identiûer denotes what consensus instance the
application state is connected to.

4. ⟨TransferResponse, success, errorDetail⟩: Replica s ûnally responds
to t with a message denoting if the transfer and initialization was successful.
ae is indicated through the boolean success value. ae errorDetail value
is used to provide detailed error information if the initialization failed.

ae Goxos framework at replica s starts the Server module if the protocol above
executes correctly. ae startup procedure for the Server module is based on what
failure handling method that is applied for the system.

6.2 Reconûguration
ais section presents the design and implementation of the Reconûguration failure
handling method for the Goxos framework. First a description of the implemented
Reconûguration variant is given. ae section continues by presenting the set of
Goxos modules relevant for Reconûguration and concludes by describing parts of
the implementation using a single failure scenario.

6.2.1 Variant: Waiting Reconûguration
ae reconûguration variant implemented is based on the waiting approach de-
scribed in Section 5.2.aeGoxos implementation ofmulti-decree Paxos uses pipelin-
ing (see Section 3.4), and lets the α parameter be speciûed as a conûguration option.

40



6.2. RECONFIGURATION

As described in Section 5.2, the reconûguration implementation needs to handle the
remaining α − 1 instances a�er the decided reconûguration command. ae Goxos
framework proposes client requests for these remaining instances. An overview of
the reconûguration protocol used is shown in Figure 6.2. ae ûgure contains two
implementation speciûc messages, ⟨FirstSlot⟩ and ⟨Join⟩, that are explained
in more detail throughout this section.

aemotivation for implementing Reconûguration forGoxos were to implement
a classical variant of method as described in the literature. ae goal was to create
a baseline implementation that could be used for testing and comparison against
Live Replacement. aere exist more comprehensive implementations of Reconûg-
uration (for example [22]), that to a larger extent addresses corner cases and other
subtle details. Our implementation of Reconûguration follows the waiting variant
described in [2].

6.2.2 Goxos Modules
aemain Goxos component initiating and handling a reconûguration is the Recon-
ûguration Handler module introduced in Section 4.3. ais section provides a more
detailed description of the Goxos modules relevant to Reconûguration. ae overall
description focus on the responsibility and behavior of each module. ae presen-
tation is divided into two parts. ae ûrst part presents the Goxos modules from
the point of view of the already running replicas, including the Paxos leader that
initiates a reconûguration. ae second part presents the modules in the context of a
new replica that joins a running cluster as part of a new conûguration. An overview
of the Goxos modules relevant for Reconûguration is show in Figure 6.1. ae ûgure
serves as a companion to the presentation given below.

For an already running replica, the module overview is as follows:

Failure Detector
ae FD is responsible for informing the Reconûguration Handler about any
suspected replicas.

Leader Detector
Described in the context of Reconûguration, the LD is responsible for informing
the Reconûguration Handler about the current Paxos leader. ae Reconûgura-
tionHandler described belowwill only react to failure indications if the running
replica is considered to be the Paxos leader.

Proposer and Learner
Since a reconûguration command needs to be proposed and learned, both the
Proposer and Learner modules from the MultiPaxos package are involved
in performing a reconûguration procedure.

41



6.2. RECONFIGURATION

Reconûguration Handler
ae Reconûguration Handler is the main component for the reconûguration
implementation. ae module initiates a reconûguration procedure based on
input from the FD. It is also responsible for initializing a new replica.aemodule
creates the reconûguration command that speciûes the new conûguration and
forwards it to the Proposer through the Server module.

Server
ae Server module is mainly responsible for ensuring correct behavior of a
replica from a reconûguration command is learned and until the new conûgura-
tion takes eòect.ais involves keeping track ofwhen the replica should switch to
the new conûguration. ae Server module can do this since it executes decided
requests received from the Learner module. In addition, the module routes
client requests to the Proposer, enabling it to control that requests are proposed
correctly for the α−1 instances a�er the reconûguration command. aemodule
also obtain application state from the replicated service when the Reconûgura-
tion Handler requests it.

Sender and Demuxer
aese twomodules from the Network package is naturally involved for send-
ing the receiving messages related to the reconûguration procedure since a re-
conûguration command needs to be both proposed and learned.

Group Manager
aeGroupManager is used by the Servermodule to update the nodemap when
changing to a new conûguration.

In addition to the modules above, the Reconûguration Handler uses the provided
client library in the NodeInit package (described in Section 6.1.4) for contacting
a new replica’s Initialization Listener.

For a new replica started as part of a reconûguration procedure, the module
overview is as follows:

Initialization Listener
ais module is used by the new replica to obtain its initialization data, as de-
scribed in Section 6.1.4. When using Reconûguration, the new replica receives
its conûguration and application state from the Paxos leader.

Demuxer
ae Demuxer is in the initial replica pre-start phase responsible for forwarding
received ⟨FirstSlot⟩ and ⟨Join⟩ messages to the Reconûguration Handler.

42



6.2. RECONFIGURATION

Reconûguration Handler
For a new replica waiting to join a new conûguration, the Reconûguration Han-
dler is responsible of forwarding any received ⟨FirstSlot⟩ or ⟨Join⟩message
to the Server module.

Server
ae Server module is started a�er the Initialization Listener successfully has
obtained and set the state of the replicated service. ae Server is responsible for
starting the other relevant Goxos modules. Starting the modules is triggered
by receiving ⟨FirstSlot⟩ and ⟨Join⟩ messages from the Reconûguration
Handler.

43



Replicated Service

Group Manager Server Init. Listener

Proposer Reconûg. Handler Learner

Sender DemuxerFailure DetectorLeader Detector

GetState() and Execute()

RequestState() and ⟨ReconfigCmd⟩

UpdateNodeMap()

⟨Accept⟩ ⟨Learn⟩

⟨ReconfigCmd⟩⟨ReconfigCmd⟩

SetState()

⟨Suspect⟩

⟨Trust⟩

⟨Trust⟩

Start()

⟨FirstSlot⟩ and ⟨Join⟩

Figure 6.1: Goxos modules relevant for Reconûguration

44



(Paxos l eader) n2

n1

n0

n∗1

⟨Suspect, 1⟩

⟨Initialization, 1, Θ, asid⟩ ⟨InitOk⟩

⟨Accept, sid , rnd , Ψ⟩

⟨Learn, sid , rnd , Ψ⟩

⟨FirstSlot, sid⟩

⟨FirstSlot, sid⟩

Decision of α − 1 remaining slots

⟨Join⟩

⟨Join⟩

Listening Initialized Activated

Θ: Application state
Ψ: Reconûguration command
α: Maximum number of concurrent Paxos instances
sid: Slot identiûer

Figure 6.2: Reconûguration due to failure of a single node

45



6.2. RECONFIGURATION

6.2.3 Failure Scenario
Here follows a presentation of how a reconûguration is performed using the current
implementation. ae single failure scenario shown in Figure 6.2 serves as the basis
for this description. ae system considered here consist of three replicas, n0, n1 and
n2. ae new replica joining as part of the new conûguration will before it has been
assigned a PaxosId be referred to as replica m. Replica n2 is assumed to be acting
as the Paxos leader, and Phase 1 of multi-decree Paxos is assumed to be completed.
ae system is deûned to be synchronous for the whole duration of this scenario.

ae description below refers to a set of implementation speciûc variables and
deûnitions which will be explained ûrst. A new replica joining a result of a reconûg-
uration transition through four deûned states. aese state deûnitions will be used
in the scenario below, and also when describing experimental results in Chapter 7.
ae four states are:

• Listening: ae new replica has started and is listening for initialization data.

• Initialized: ae new replica has obtained its identiûer, conûguration and
replicated service state.

• Prepared: ae new replica has received the necessary information to be able
to initalize and start its Paxos modules.

• Activated: ae new replica has joined the Goxos cluster as part of the new
conûguration and is participating in the Paxos protocol.

ae set of implementation speciûc variables referred to below are all of type
paxos.SlotId. aey denote a speciûc slot of the mulit-decree Paxos protocol.

• adu: Variable maintained by the Servermodule, denoting the highest decided
slot it has executed (all decided up to).

• nextSlot: Variable belonging to the Proposer, used to keep track of which
slot it should tie its next proposal to.

• nextExpectedDecided: Variable maintained by the Learner, denoting the
next expected slot to be decided. ae Learner starts a catch-up mechanism if
it learns a decision for a slot higher than this value.

ae failure scenario considered here is as follows:

1. At some point in time, replica n1 fails by crashing.

2. ae Reconûguration Handler at n2 is informed about this event by the FD
through a ⟨Suspect, n1⟩ message.

46



6.2. RECONFIGURATION

3. ae Reconûguration Handler reacts to this indication event by trying to ini-
tialize a new replica. First the module request a new replica from the system’s
Replica Provider. ae Reconûguration Handler is provided with replica m
as a response. Replica m is listening, and started in reconûguration standby
mode, as explained in Section 6.1.4.

4. ae Reconûguration Handler at n2 prepares the initialization of replica m
by collecting the necessary data. ais includes creating a new replica map
that includes the new replica m. Additionally, the current system conûgura-
tion is generated. Finally, the Replacement Handler request application state
and a corresponding slot marker from the Server module. ae Server mod-
ule forwards this request to the replicated service. ae service replies to the
Reconûguration Handler directly, using a separate channel.

5. ae Reconûguration Handler starts, when it has obtained all the necessary in-
formation as explained above, the four-step initialization protocol described
in Section 6.1.4. ais protocol is show in Figure 6.2 as a single exchange of
⟨Initialization, Θ, asid⟩ and ⟨InitOk⟩, where Θ denotes application
state and asid the identiûer for the consensus slot connected with the appli-
cation state.

6. If the initialization procedure for the new replica m was successful, m starts
its network modules to be able to receive the messages exchanged as part of
the reconûguration protocol. ae new replica is now also aware of its PaxosId,
n∗1 , and the system conûguration, making it initialized. Before taking further
action, the replica waits to receive a ⟨FirstSlot⟩ message, indicating the
ûrst Paxos slot in the new conûguration.

7. At the Paxos leader, n2, the Reconûguration Handler creates the reconûgura-
tion command, here denoted as Ψ. ae command includes the new replica
map created in step 4. A�er creation the command is sent to the Server mod-
ule.

8. ae reconûguration command is at replica n2 forwarded from the Server
module to the Proposer module. As a result, the Proposer broadcasts an
⟨Accept, sid , rnd , Ψ⟩ to all replicas. ae message contains a slot identiûer,
sid, which is used in multi-decree Paxos to denote the consensus instance.

9. ae next phase of the reconûguration procedure begins when the reconûg-
uration command is decided by a quorum of the replicas. ae Server mod-
ule at replica n2 and n0 enters a special transition period upon receiving a
decided reconûguration command, waiting for the new conûguration to be-
come activated. ae replicas (with the exception of the Paxos leader) only

47



6.2. RECONFIGURATION

allow execution of decided requests during this period. A�er executing the
reconûguration command replica n2 and n0 is able to calculate the ûrst slot
of the new conûguration. ae ûrst slot of the new conûguration will be (af-
ter incrementing the local adu) adu + alpha. Both replicas now initiate
a TCP connection to the new replica and send ûrst slot identiûer using a
⟨FirstSlot⟩ message. A�erwards, both n2 and n0 waits for the decision of
α − 1 client requests that may be in the pipeline. As the Paxos leader, replica
n2 also needs to propose enough client requests to ûll the gap of the α − 1
instances needed before the new conûguration can take eòect. ae Server
therefore listens for incoming client requests from the Client Handler mod-
ule.ae Servermodule allows, in accordancewith thewaiting reconûguration
variant described in Section 5.2, α−1 requests to be forwarded to the Proposer,
before waiting for enough decided slots, making it able to switch to the new
conûguration.

10. Replica n∗1 is now able to initialize its Paxos modules when it receives a
⟨FirstSlot⟩message from one of the other replicas. ae replica’s adu is set
to the slot marker that was bundled with the application state received during
the initialization phase. ae Proposers nextSlot variable is set to the value
contained in the ⟨FirstSlot⟩ message. ae Learner is initialized with its
nextExpectedDecided variable set to adu + 1. ais is important for ensur-
ing that the catch-up mechanism is triggered a�er joining the other replicas
in executing the Paxos protocol. A�er initialization the Paxos modules are
also started, resulting in that n1 now is prepared.

11. A�er executing slot with identiûer firstslot − 1, the Server Module in-
stalls the new conûguration. ae Server instruct the other modules to pause
their operation while replacing the Group Manager’s replica map, using the
functionality described in Section 6.1.3. A�er the new replica map is installed,
each replica attempt to connect to n∗1 . Each replica sends n∗1 a ⟨Join⟩message
when they establish a connection. ae replicas a�erwards resume normal op-
eration. Both ⟨FirstSlot⟩ and ⟨Join⟩messages are sent by every replica to
n∗1 . If a single replica is delegated this responsibility, it may fail before sending
any of the two messages. To address this, every replica sends these messages.
A new replica only uses the ûrst ones received.

12. ae ûrst ⟨Join⟩ received by replica n1 is used as an indication for that the new
conûguration has started. ae replica can now start its remaining modules,
including the Heartbeat Emitter, Client Handler, FD and LD. Replica n∗1 is
now activated.

ae ⟨Join⟩ message used in the implementation described above may be claimed
to be unnecessary. One could argue that a new replica could intercept either a

48



6.3. LIVE REPLACEMENT

⟨Heartbeat⟩ or any Paxos message sent to it, and use that as signal for when
to join the running cluster. ais is true from a theoretical point of view, but doing
this intercept with the current version of Goxos would complicated implementation
extensively. ae implementation may be changed to use this approach in the future,
but the changes needed for the network modules were not prioritized work for this
thesis.

6.3 Live Replacement
ais section presents the design and implementation of the Live Replacement failure
handling method. ae Goxos modules relevant for Live Replacement is presented
ûrst in context of a single failure scenario. aen a detailed description of some
technical details related to the implementation is provided.

6.3.1 Goxos Modules
ae main component initiating and executing a replacement is the Replacement
Handler introduced in Section 4.3. ais section provides an module overview, simi-
lar to presentation given for the Reconûguration implementation. ae description
is divided into two parts, one from the perspective of the non-failed replicas and one
from the view of a replacer replica. Figure 6.3 provides an overview of the Goxos
modules relevant for Live Replacement.

For a normal replica and the replica acting as the Replacement Leader, the fol-
lowing modules are involved in Live Replacement:

Failure Detector
ae FD is responsible for informing the Replacement Handler about any sus-
pected replicas.

Leader Detector
ae LD is responsible for informing the Replacement Handler about the cur-
rent Replacement Leader. ae Replacement Handler will only react to failure
indications if the running replica is considered to be the Replacement Leader.

Replacement Handler
ae Replacement Handler is responsible for initiating and executing replace-
ments based on indications from the FD. Executing a replacement includes
obtaining and initializing a new replacer replica, followed by broadcasting a
⟨PrepareEpoch⟩ message to the other replicas. Upon receiving a
⟨PrepareEpoch⟩message the Replacement handler installs the replacer and
responds with an ⟨EpochPromise⟩.

49



6.3. LIVE REPLACEMENT

Acceptor
ae Acceptor module is accessed by the Replacement Handler when a replica
generates a ⟨EpochPromise⟩ in response to a ⟨PrepareEpoch⟩message.
ae Acceptor is queried for its Paxos State by the Replacement handler. ais
state is attached in the ⟨EpochPromise⟩ sent to the new replacer replica.

Server
ae Server module is responsible for forwarding state transfer requests from
the Replacement Handler to the Replicated Service.

Group Manager
ae Group Manager is accessed by the Replacement Handler when installing a
new replica. ae Group Manager also encapsulates each replicas epoch vector.

In addition to themodules above, the ReplacementHandler uses the provided client
library in the NodeInit package to contact Initialization Listener of a replacer
replica.

For a replacer replica, the module overview is as follows:

Initialization Listener
ae Initialization Listener serves the same purpose as for a replica starting as
part of a reconûguration, see Section 6.2.2.

Replcament Handler
At a replacer replica the Replacement Handler receives ⟨EpochPromise⟩
messages, and attempts to extract a consistent Paxos State from the received
set of ⟨EpochPromise⟩ messages. If the Replacement Handler obtains a
consistent Paxos state, it instructs the Acceptor module to adopt this state and
sends an activation signal to the Server module.

Server
ae Server is responsible for initializing and starting the appropriate modules
both before and a�er activation of a replacer replica.

50



Replicated Service

Init. Listener Server Acceptor

Demuxer Replacement Handler Sender

Failure Detector Group Manager Leader Detector

GetState()

RequestState()

Start()

RequestState() and SetState()

UpdateNodeMap()

⟨PrepareEpoch⟩
and

⟨EpochPromise⟩

⟨PrepareEpoch⟩
and

⟨EpochPromise⟩

⟨Suspect⟩ ⟨Trust⟩

SetState()

Figure 6.3: Goxos modules relevant for Live Replacement

51



6.3. LIVE REPLACEMENT

6.3.2 Failure Scenario
As for the Reconûguration, the Live Replacement implementation is also described
through an example failure scenario. ae single failure scenario in Figure 6.4 serves
as the basis for this description. ae cluster consist of three replicas, n2,0, n1,0 and
n0,0. ae replacer replica joining the cluster as part of a replacement is referred to
a m before it is assigned its identiûer. Replica n2,0 is assumed to by acting as the
Paxos Leader and n0,0 as the Replacement Leader. ae system is assumed to be
synchronous for the whole duration of this scenario.

A new replica joining as a result of a replacement procedure will transition
through three deûned states. aese state deûnitions is used in the scenario below,
and also when describing experimental results in Chapter 7. ae three states are:

• Listening: ae new replica is started and listening for initialization data.

• Initialized: ae new replica has obtained its identiûer, conûguration and
replicated service state.

• Activated: ais deûnition follows from the theoretical description (see [3]
and Section 5.3). An activated replacer replica has determined a Paxos State
from a valid quorum of
⟨EpochPromise⟩ messages, and has started participating in the Paxos
protocol.

ae failure scenario considered here is as follows:

1. At some point in time, replica n1,0 fails by crashing.

2. ae Replacement Handler at n0,0 is informed about this event by the FD
through a
⟨Suspect, n1,0⟩ message.

3. ae Reconûguration Handler reacts to this indication event by initializing
a new replica. Firstly, the module request a new replica from the system’s
replica provider. ae Replacement Handler is provided with replica m as a
response. Replicam is listening, and started in replacement standby mode, as
explained in Section 6.1.4.

4. ae Replacement Handler at n0,0 prepares the initialization of m by generat-
ing its identiûer. As explained in Section 5.3, this involves reusing the PaxosId
for the failed replica and computing a new epoch. For this scenario the epoch
is 1, resulting in the identiûer n1,1. How this epoch is computed is explained
in Section 6.3.4 below. ae Replacement leader ûnally executes the initializa-
tion of replica m using the same procedure as described in step 4 and 5 in
Section 6.2.3.

52



6.3. LIVE REPLACEMENT

5. If the initialization procedure for replacer replica m is successful, m starts its
network modules, Heartbeat Emitter and Replacement Handler module. In
its current state the new replica is aware of its identiûer, n1,1, and the system
conûguration, making it initialized. Before taking further action, the replica
waits to receive a valid quorum of ⟨EpochPromise⟩s.

6. Following a successful initialization of n1,1, the Replacement Handler at n0,0

broadcasts a ⟨PrepareEpoch, n1,1,m, asid⟩. ae necessary network ad-
dresses are denoted by m and asid denotes the slot identiûer associated with
the application state initialized at n1,1

7. Upon receiving the ⟨PrepareEpoch⟩, n2,0 and n0,0 checks if the epoch is
larger than it has previously seen for PaxosId 1. Both replicas accept to handle
the ⟨PrepareEpoch⟩ since 1 > 0. As a result, both replicas initiate a TCP
connection to n1,1. Replicas n2,0 andn0,0 nowgenerates an ⟨EpochPromise⟩
message according to the Live Replacement protocol, containing their iden-
tiûer, epoch vector and acceptor state. Generating the ⟨EpochPromise⟩
involves several implementation speciûc details, and is therefore described
in detail in Section 6.3.3. ae ⟨EpochPromise⟩ is here assumed to be gen-
erated, causing each replica to send the ⟨EpochPromise⟩ message to n1,1.
Finally, both n2,0 and n0,0 request the Group Manager to replace replica n1,0

with n1,1. ais also causes the Group Manager to update a replica’s epoch vec-
tor accordingly. Both n2,0 and n0,0 is now said to have installed the replacer.

8. ae replacer replica iswaiting to obtain a validquorumof ⟨EpochPromise⟩
messages. Upon receiving such a message, the replica stores it and check if
it potentially can verify a valid quorum, meaning it has stored at least a quo-
rum of messages. If this is the case, the Replacement Handler tries to verify a
valid quorum. ae procedure for verifying a valid quorum is described in Sec-
tion 6.3.5. If the replacer is able to verify a valid quorum, the replica proceeds
to extract a consistent acceptor state.ae replica starts by generating an empty
acceptor slot map. For every slot seen in the set of valid ⟨EpochPromise⟩
messages, the replica adopt the (vrnd , vval) with the highest rnd, and store
them in the slot map. ae Replacement Handler then instructs the Acceptor
to adopt this slot map. ae Replacement Handler ûnally signals the Server
module to activate the replica by starting the remaining modules. aese are
the Paxos modules, LD, FD and Client Handler. ae replacer replica is now
activated.

In the following sections the complications involved in implementing steps 7, 4 and
valid quorum veriûcation will be discussed in detail.

53



(Paxos l eader) n2,0

n1,0

(Replacement l eader) n0,0

n1,1 (m)

⟨Suspect, (1, 0)⟩

⟨Initialization, (1, 1), Θ, asid⟩ ⟨InitOk⟩

⟨PrepareEpoch, (1, 1),m, asid⟩

⟨EpochPromise, Φ, [0, 0, 0], (2, 0)⟩

⟨EpochPromise, Φ, [0, 0, 0], (0, 0)⟩

Listening Initialized Activated

[x , y, z]: Epoch vector
Θ: Application state
Φ: Paxos state
asid: Application state slot identiûer
m: Replacer information

Figure 6.4: Replacement of a single failed node

54



6.3. LIVE REPLACEMENT

6.3.3 PrepareEpoch Handling
ae section provides a detailed description of step 7 in the failure scenario above.
ais step includes generating and sending an ⟨EpochPromise⟩, causing a replica
to install a replacer. ais more detailed description of this step is provided due to
the extra synchronization needed between the Replacement Handler and Acceptor
module. Additionally, describing the related implementation serves as a concise
example of how using channels can achieve this synchronization instead of using
traditional locking of shared state.

In step 7, a replica handles the ⟨PrepareEpoch⟩ if the epoch is larger than
what it has previously seen for the given PaxosId. ae replica generates and sends
an ⟨EpochPromise⟩ to the replacer replica if this is the case. It ûnally install the
replacer by updating its replica map and epoch vector. ae ⟨EpochPromise⟩
is sent before the epoch vector is updated to enable valid quorums that may in-
clude a replacer replica. Generating and sending the ⟨EpochPromise⟩ should
be executed as an atomic operation, i.e. it should either successfully complete or
have no eòect. ae operation should also be ensured isolated from concurrent run-
ning Goxos modules (goroutines). ais requires the Acceptor module to hold its
operation until it is notiûed that the replacer is installed. ae reason for this is that
the ⟨EpochPromise⟩ should only contain Acceptor state corresponding to the
replica’s current epoch vector. ais is ensured by instructing the Acceptor temporar-
ily stop participating in the Paxos protocol until the replacemnt is executed. ae
Group Manager should also hold the other relevant modules during this procedure,
since installing a replacer involves updating both the node map and epoch vector.
How this atomic step is implemented is explained below.

First the Replacement Handler requests the Group Manager to pause the op-
eration of relevant Goxos modules using the procedure described in Section 6.1.3.
Continuing, the Replacement Handler need to query the Acceptor module for the
Paxos state, using the GetState method shown in Listing 6.2. ae Acceptor in the
Goxos framework is deûned through the interface shown in Listing 6.2, and the
relevant GetState method take two arguments. ae afterSlot argument of type
SlotId indicate that the caller only wants state for slots a�er this slot identiûer. ae
release argument is a receive only channel with a boolean data type. aeAcceptor
must block on a read operation on this channel a�er returning the requested state
to the Replacement Handler. ae channel is used by the Replacement Handler to
signal that the Acceptor can continue operation.

55



6.3. LIVE REPLACEMENT

Listing 6.2 : Acceptor interface

1 type Acceptor interface {
2 PaxosActor
3 HandlePrepare ( PrepareMsg ) error
4 HandleAccept ( AcceptMsg ) error
5 GetState ( afterSlot SlotId , release <-chan bool) * AcceptorSlotMap
6 SetState ( slotmap * AcceptorSlotMap )
7 }

Listing 6.3 shows how the Replacement Handler calls the GetState method
of its associated acceptor module. As described above, the ⟨PrepareEpoch⟩

contains an asid value, denoting the corresponding Paxos slot identiûer for the
replacer’s initialized application state. ae Replacement Handler uses this value
(pe.SlotMarker) as the afterSlot argument. ae module also creates a un-
buòered channel, accRelease, that it uses to signal that the acceptor can continue.
As shown in Listing 6.3, the Replacement Handler calls the built-in function close
on the release channel directly a�er creating it. ais is done using a defer state-
ment. A defer statement “invokes a function whose execution is deferred to the
moment the surrounding function returns” [14]. ais means the accRelease chan-
nel will be closed when the handlePrepareEpoch method returns, regardless of if
installing the replacer succeed or not. ae Acceptor module blocking on a receive
operation on this channel will be releasedwhen the handlePrepareEpoch method
returns. ais is because closing a channel will cause a receive operation to return
the zero value for the channel’s type without blocking. It should be noted that no
actual boolean value is sent over the channel. ae channel’s boolean type is merely
chosen for it is a small sized data type.

A�er receiving the acceptorSlotMap the Replacement Handler is able to gen-
erate its ⟨EpochPromise⟩. A�er sending the ⟨EpochPromise⟩ the Replace-
ment Handler tells the Group Manger to update its replica map and epoch vector.
ae Acceptor is ûnally released when the handlePrepareEpoch method returns,
due to using the defer statement for closing the signaling channel as explained
above. ae Goxos modules earlier instructed by the Group Manager to hold opera-
tion are also released using a similar mechanism.

Listing 6.3 : Requesting state from the Acceptor module

1 func (rh * ReplacementHandler ) handlePrepareEpoch (pe PrepareEpoch ) {
2 // ...
3
4 accRelease := make ( chan bool)
5 defer close ( acceptorRelease )
6 acceptorSlotMap := rh. acceptor . GetState (pe. SlotMarker , accRelease )
7
8 // ...
9 }

56



6.3. LIVE REPLACEMENT

6.3.4 Epoch Generation
Step 4 of the failure scenario described in Section 6.3.2 involves calculating an
epoch for the replacer replica. It is important that a generated epoch is unique, since
during periods of asynchrony there may be multiple replacement leaders issuing
replacements for the same PaxosId. Although unlikely, it may happen that an old
and new replica initiates replacements. For these reasons, a replacement leader t
should generate a replacer epoch based on both it and et .ae theoretical description
of Live Replacement [3] mentions the uniqueness requirement, but give no speciûc
instructions on how to compute epochs. A description of how this is done for the
Goxos implementation is therefore given below.

ae Goxos Live Replacement implementation uses a pairing function to gen-
erate unique epochs. A paring function [24] is an operation to uniquely encode
two natural numbers into a single natural number. ae implementation employs
the Cantor paring function, which is a bijective function, π ∶ N ×N → N, deûned
as [25]:

π(k1, k2) ∶=
1
2
(k1 + k2)(k1 + k2 + 1) + k2 (6.1)

ae implementation uses this function twice to generate an epoch, mapping
from three natural numbers to a single natural number. For a replica t, the ûrst two
numbers are it and et , from the composite identiûer idt used when employing Live
Replacement. ae third number is a local counter, nt, incremented as necessary.
ais procedure is essentially applying a generalized deûnition of Equation 6.1 above,
called the Cantor tuple function, π(n) ∶ Nn → N. It is deûned as [25]:

π(n)(k1, . . . , kn−1, kn) ∶= π(π(n−1)(k1, . . . , kn−1), kn) (6.2)

aus, the procedure to generate an epoch at the Replacement Leader t, for re-
placer replica s replacing replica r, can be deûned as:

es = f (idt , er) = min {e ∈ π3(it , et , nt)∣e > er} (6.3)

How this function is implemented is shown in Listing 6.4. ae Replacement
Handler at initialization obtain an epoch generator function by calling the
getEpochGenerator function. ae function takes the composite identiûer of the
replica as an argument. ae function returns a new epoch generator function which
takes an epoch as argument and returns an epoch. ais returned function is a clo-
sure2, capturing two variables. aese variables are the local counter, n, and a epoch

2A closure is a function or reference to a function together with a referencing environment. ae
closure captures, if it refers to them, any constants or variables present in the same scope where it is
created [26].

57



6.3. LIVE REPLACEMENT

generation base constant, baseForNode. ae baseForNode is only calculated once
using the Cantor paring function. ae returned generator function takes a replaced
replica’s epoch, oldEpoch as an argument. ae generator function then applies
the Cantor paring function with n and baseForNode as arguments. ais is done,
incrementing n as necessary, until the result is higher than the oldEpoch argument.

Listing 6.4 : Epoch Generation

1 package lr
2
3 import " goxos /grp"
4
5 func getEpochGenerator (id grp.Id) func (grp. Epoch ) grp. Epoch {
6 var n uint64 = 0
7 baseForNode := cantorPairing ( uint64 (id. PaxosId ), uint64 (id. Epoch ))
8 return func ( oldEpoch grp. Epoch ) grp. Epoch {
9 var replacerEpoch uint64

10 for replacerEpoch <= uint64 ( oldEpoch ) {
11 replacerEpoch = cantorPairing ( baseForNode , n)
12 n++
13 }
14
15 return grp. Epoch ( replacerEpoch )
16 }
17 }
18
19 func cantorPairing (k1 , k2 uint64 ) uint64 {
20 return (k1+k2 )*( k1+k2 +1)/2 + k2
21 }

6.3.5 Valid Quroum Veriûcation
In step 8 of the failure scenario described in Section 6.3.2, a replacer replica attempts
to verify a valid quorum from its set of ⟨EpochPromise⟩ messages. How this
veriûcation is implemented is described here. A replacer replica uses the procedure
shown in Algorithm 1 and follows a brute-force approach. Summarized, if the quo-
rum size for the system is q, the algorithm iterates through every possible q-sized
combination from a set of n messages. A combination of messages that form a
valid quorum is returned immediately. ae algorithm return an empty set of mes-
sages if no valid quorum is found. ae procedure has a worst-case running time of
O((

n
q)q

2).
aere clearly exist optimization possibilities for the procedure discussed here.

For instance, some duplicate computation is performed when checking pairs of
messages for con�ict. A better approach couldbe to implement a variant using depth-
ûrst search with backtracking to reduce comparisons. However, spending time on
such optimization has not been a priority during this work, since the algorithm
is only employed during periods of asynchrony, when non-faulty replicas could
get replaced without being aware of it. Additionally, the size of the input to the

58



6.3. LIVE REPLACEMENT

algorithm, n and q, can for a typical system deployment be assumed to be relatively
small.

6.3.6 Paxos Adjustments
As mentioned in Section 5.3, also ⟨Promise⟩ and ⟨Learn⟩ messages need to
be valid when using Live Replacement. ae cost of running Algorithm 1 is high,
and thus it is undesirable to use it for verifying every received ⟨Learn⟩ message.
aerefore the implementation uses two levels of valid quorum veriûcation, simple
and extended. Simple valid quorum veriûcation requires that a replica checks every
received message’s epoch vector against its own, and only when seeing a diòering
epoch vector switches to extended valid quorum veriûcation. ae extend veriûca-
tion is the one shown in Algorithm 1. ae Learner module performs the simple
veriûcation for every ⟨Learn⟩message received, and only if it sees diòering epoch
vectors will the Learner module invoke the extended veriûcation algorithm. ae ex-
tended veriûcation is only enabled for the speciûc slot the ⟨Learn⟩message is tied
to. ae Learner marks slots that need extended veriûcation so that only those are
veriûed using the extended procedure. ae Proposer module need to verify a valid
quorum during phase 1 of the multi-decree Paxos protocol. Switching to extended
veriûcation for this module is therefore tied to phase 1 itself, and not a speciûc slot.
Finally in Section 8.2 it is discussed how a future implementation may avoid the
simple valid quorum veriûcation altogether.

59



6.3. LIVE REPLACEMENT

Algorithm 1 Verifying a valid quroum
1: Input:
2: M { Set of n messages of equal type, either ⟨Promise⟩, ⟨Learn⟩ or

⟨EpochPromise⟩ }
3: q { Quorum size }

4: Output:
5: vq { Boolean indicating if a valid quorum is found }
6: C { A q-sized set of messages from M forming a valid quorum }

7: Deûnition:
8: Messages msg j with (i j, e j, epoch j[]) and msgk with (ik , ek , epochk[]) are in
con�ict if

9: (i j = ik) ∨ (epoch j[ik] > ek) ∨ (epochk[i j] > e j)

10: Algorithm:
11: for all combinations, ci , of size q, i ∈ {1, (n

q)}, from M do
12: for all msg j ∈ ci , j ∈ {1, q} do
13: for all msgk ∈ ci , k ∈ {i + 1, q} do
14: if msg j and msgk are in con�ict then
15: break abort combination ci
16: end if
17: end for
18: end for
19: vq ← true
20: C ← ci
21: return vq,C
22: end for
23: vq ← f al se
24: C ←⊥
25: return vq,C

60



7
Experimental Evaluation

ais chapter presents the results from a set of experiments for a single replica fail-
ure scenario. ae scenario is tested using Live Replacement and Reconûguration,
together with a varying number of replicas and diòerent sizes of replicated service
state. ae experimental results are used to evaluate Live Replacement and Recon-
ûguration with respect to the two failure handling metrics deûned in Section 2.2,
Delay and Disruption.

7.1 Experimental setup

7.1.1 Replicated Service
A simple key-value store, KVS, is used as the replicated service for all performed ex-
periments.ae application was developed for testing the Goxos framework together
with a stateful service. ae KVS application is a replicated hash map. ae service
replicates a map with string as the data type for both key and value. Clients can
issue requests to a KVS cluster using a corresponding client application, KVSC.
ae operations available to clients are exactly the same as the ones available for a
native Go map. aese operations are read, write and delete.

61



7.1. EXPERIMENTAL SETUP

CPU Intel Xeon CPU E5606 @ 2.13GHz
Memory 16GB
Operating system CentOS 6

Table 7.1: Speciûcation for replica and client machines

7.1.2 Hardware
ae experiments performed uses a set of identical physical machines. Both replicas
and clients run on the same type ofmachine.ae speciûcations for themachine type
is presented in Table 7.1. ae machines are connected through a switched Gigabit
Ethernet local area network (LAN). A KVS replica is providedwith a single individ-
ual machine. Every replica is instructed to use all available cores. ais is four cores
for the machines used here. Replicas connect to each other via TCP connections.
A client machine host ûve individual clients. All clients connect to replicas using
TCP connections. All machines synchronize their clocks using the Network Time
Protocol (NTP) [27]. NTP can usually achieve 1 millisecond accuracy in LANs [28].

7.1.3 Failure Scenario
ae scenario for the experiments performed involve failure of a single replica. ae
failing replica is initially part of KVS cluster which is serving a set of clients. ae
replica failure is handled by the application using the failure handling method spe-
ciûc to each experiment.ae failing replica do not undertake any special role during
an experiment run. aismeans the replica is not acting as the Paxos or Replacement
leader at any time during an experiment.

ae failure scenario is tested using a total of three and ûve replicas. ae replicas
are in this description denoted as n0 to n2 when using three replicas, and n0 to
n4 when using ûve replicas. ae Paxos leader is deûned to be n2 when using three
replicas, and n4 when using ûve replicas. ae Replacement leader is deûned to be n0

when using both 3 and 5 replicas. All replicas acting as either the Paxos or Replace-
ment leader is assumed to be stable for the whole duration of every experiment.

A crash failure is injected at replica n1 20 seconds a�er starting every experiment.
Every experiment ends a�er 60 seconds. Every client is able to ûnish sending their
assigned number of requests before an experiment ends.

ae combination of Live Replacement or Reconûguration, three or ûve repli-
cas and 1 MB or 10 MB service state, results in eight diòerent experiments. Each
individual experiment is performed 24 times. Every experiment is used to evaluate
both Delay and Disruption for the speciûc combination of settings and employed
failure handling method.

62



7.2. DELAY

7.1.4 Experimental settings
Every client participating in an experiment only issuewrite requests to the replicated
service. ae payload for a request is 32 bytes, which includes 16 bytes for the key
and 16 bytes for the value. All write requests contains a randomly chosen key from
a known set of keys already present at the service. ais is done to avoid changing
the replicated service state during an experiment run. ae corresponding request
value is randomly generated at the client. Each client sends 2500 requests to the
KVS cluster during a single experiment run. With a total of 50 clients and 24 runs,
this results in 3 million client requests per experiment. As deûned in Section 2.1,
each client waits for a response to a sent request before issuing a new one. Clients
issue requests at full throttle, meaning they do not wait any period of time before
sending a new request a�er receiving a response for the previous sent.

Both replicas and clients log events using an in-memory event logger. Replicas
log a speciûc set of events needed formeasuring the Delay andDisruption observed
during the experiments. Clients log the time when sending a request and when
receiving a response. aese times are used to calculate the request latency. ae
logger �ushes the events to stable storage at the end of each experiment run.

ae Failure Detector use for every experiment a timeout value of 1000 millisec-
onds. ais is fairly high value, and it would in a typical LAN deployment usually
be set more aggressively to achieve a lower detection time. ae timeout value used
for these experiments were deliberately set high. More client requests will be cate-
gorized as belonging to the period with a reduced number of replicas by increasing
the duration until failure handling is triggered by the FD. ae impact on latency for
client requests can more accurately be evaluated with a higher amount of requests
belonging to this period.

ae Go garbage collector is turned oò for the whole duration of all experiments.
ais is done for avoiding any disruption at the replicas during operation. Initial test
experiments showed large regular spikes for client request latencies during runs
where the garbage collector was enabled. ais made it diõcult to properly identify
the higher request latencies observed during failure handling.

ae multi-decree Paxos pipelining parameter is set to 3 for all performed exper-
iments. ae properties for all experiments as described above are summarized in
Table 7.2.

7.2 Delay
ais section will evaluate the experimental results with regard to Delay. Delay was
deûned in Section 2.2 as the time from failure detection until a new replica is partici-
pating in Paxos. ais period consist of three individual successive failure handling

63



7.2. DELAY

Replicated Service: Key-Vaule Store (KVS)
Request type: Write (Key, Value)
Request payload: 32 Bytes (Key: 16 bytes, Value: 16 bytes)
Application state: 1MB or 10MB
Pipelining parameter (α): 3
Failure handling method: Live Replacement or Reconûguration
Number of replicas: 3 or 5
Number of clients: 50
Number of clients per machine: 5
Number of requests sent per client: 2500
Failure detector timeout: 1000 milliseconds
Number of runs per experiment: 24

Table 7.2: Overview of experiment properties

durations:

1. Until suspected: ae duration from a failed replica has crashed until it is
suspected and failure handling is initiated.

2. Initalization:ae duration from a new replica is started until it is initialized
with an application state.

3. Activation:ae duration from the new replica is initialized until it is partici-
pating in the Paxos protocol.

All of the three durations listed above were measured for every experiment. In ad-
dition, the duration spent by a new replica performing catch-up was measured.
Duration one and two above was observed to be equal regardless of whether Live
Replacement or Reconûguration was used as failure handling method. ae is ex-
pected since bothmethods rely on the sameGoxosmodules to perform their actions
during theses periods. Only the activation duration is for this reason considered
here for comparing the twomethods. For the experiments performed the activation
duration is deûned for each failure handling method as follows:

• Live Replacement:ae duration from the Replacement leader has ûnished
initializing the replacer replica until the replacer replica has veriûed a valid
quorum of ⟨EpochPromise⟩ messages.

• Reconûguration:aeduration from the Paxos leaderhas ûnished initializing
the new replica until the new replica receives its ûrst ⟨Join⟩ message.

64



7.2. DELAY

ae complete experimental data and statistics for all performed experiments can
be found in Appendix A.

Section 2.2 deûned the window of vulnerability (WoV) to be any period of time
where a system is not operating at its initial level of fault-tolerance. ais is for the
scenario considered here the time interval from failure of the single replica until
the new replica is activated. ae activation durations measured for the experiments
performed here will also be presented as a percentage of the WoV.

ae measured activation durations for all experiments are shown in Table 7.3. It
can be seen that the mean activation duration for Reconûguration is stable at 5.75
to 6.77 ms for every experiment. A diòerence in the size of the cluster or replicated
service state do not aòect the activation duration for Reconûguration to any great
extent. ae activation duration for Reconûguration is a very small part of the total
WoV. Increasing the replicated service state causes the WoV duration to increase
since it takes a longer time to initialize a new replica. Since the activation duration
remains constant for Reconûguration, the activation duration becomes a smaller
part of the WoV as the replicated service state increases.

ae observations done for Reconûguration stand in contrast to those done for
Live Replacement. ae mean activation durations for Live Replacement is as seen
in Table 7.3 much higher for every combination of experiment variables. ae activa-
tion duration for Live Replacement is approximately 30 times larger compared to
Reconûguration for the experiment using 5 replicas and 10 MB replicated service
state. ae activation duration for Live Replacement can also be seen to be related to
the replicated service state size. A larger state size can be seen to result in a longer
activation duration. A larger set of performed experiments would be needed to
determine the exact relationship between these two factors.

ae consistently large diòerence in activation durations between the two failure
handlingmethodswere naturally something that had to be investigatedmore closely.
ae main reason for the generally high Live Replacement activation durations were
believed to be related to the generation of ⟨EpochPromise⟩ messages at each
replica. As explained in Section 6.3.4, a replica queries the Acceptor module for
state when generating an ⟨EpochPromise⟩. A replacer replica is initialized with
application state corresponding to a certain slot. A replica request all acceptor state
above this slot when generating an ⟨EpochPromise⟩. ae amount of acceptor
state embedded in the ⟨EpochPromise⟩ can become quite large if the initializa-
tion procedure takes a long time due to transferring a large amount of application
state. ais claim is best substantiated by presenting an example. A new replica is ini-
tialized with application state corresponding to slot x. Transferring the application
state to the new replica take y seconds. During this duration the service is able to
concurrently decided on client requests. ae replicated service is under heavy load,
and for this reason the Paxos protocol is during these y seconds able to decided on
1000 client requests, making the highest decided slot at each replica x + 1000. Af-

65



7.3. DISRUPTION

ter y seconds the Replacement leader broadcast a ⟨PrepareEpoch⟩ instructing
the other replicas to generate an ⟨EpochPromise⟩ for the new replacer replica
containing all acceptor state above slot x. Each replica as a result query their ac-
ceptor module for all acceptor state over slot x. ae resulting ⟨EpochPromise⟩
contains acceptor state for at least 1000 slots. Both copying this state internally at
each replica and transferring it to the new replica can take a considerable amount of
time. ais time is also naturally dependent on the actual size of the client requests.

An extra experiment were performed to test the hypothesis described above.
ae results from this experiment is presented in Section 7.4.

ae increased activation durations observed for Live Replacement also has a
direct impact on the time spent doing catch-up for a new replica. Catch-up is in this
context the procedure performed by a new replica for obtaining any slots decided
concurrently by the other replicas during its initialization and activation. More
decided slotsmay need to be transferedwhen the activation duration increase. It can
be seen from the data in Appendix A that the experiments using Live Replacement
generally has a higher catch-up duration compared to Reconûguration.

7.3 Disruption
ais discussion will now evaluate the experimental results with respect to Disrup-
tion. Disruption was deûned in Section 2.2 as the additional latency state machine
requests experience during failure handling. Disruption are for the experiments per-
formed here measured from the clients point of view. ais is done by measuring
the round trip time for every client request sent. Round trip time (RTT) denotes
the duration from a client sends a request to when it receives a response for the
request. Every measured client request RTT were categorized into one of the failure
handling periods explained in Section 7.2 or categorized as belonging to the period
with no failure handling performed. ae complete experimental data for measured
client request latencies can be found in Appendix A.

An example of two typical client runs will be presented before discussing the
general observations. Figure 7.1 show the RTTs for a single client. ae data is taken
from a randomly chosen run from the experiment using Live Replacement, three
replicas and 1 MB application state. ae set of events related to failure handling at
the replicas is also marked in the ûgure. A spike in the request latency can be seen
directly a�er the failed replica is suspected. ais is due to the Replacement leader
initializing the new replica. ae Replacement leader is while initializing the new
replica also participating in Paxos.ae quorum size is twowhen using three replicas,
and the Paxos and Replacement leader are the only two operational replicas a�er
the failure. Both replicas must participate to form a quorum. Additional latency is
experienced since the Replacement leader execute the Paxos protocol slower due

66



7.3. DISRUPTION

3 replicas, 1 MB replicated service state
Live Replacement Reconûguration

Activation duration mean 70.1 ms 5.75 ms
Activation duration SD 11.5 ms 2.66
Mean activation duration as % of WoV 5.39% 0.45%

3 replicas, 10 MB replicated service state
Live Replacement Reconûguration

Activation duration mean 160 ms 5.85 ms
Activation duration SD 17.0 ms 2.77 ms
Mean activation duration as % of WoV 4.41 % 0.17 %

5 replicas, 1 MB replicated service state
Live Replacement Reconûguration

Activation duration mean 56.2 ms 6.62 ms
Activation duration SD 24.3 ms 2.65 ms
Mean activation duration as % of WoV 4.28% 0.51%

5 replicas, 10 MB replicated service state
Live Replacement Reconûguration

Activation duration mean 206 ms 6.77 ms
Activation duration SD 72.0 ms 3.10 ms
Mean activation duration as % of WoV 5.51 % 0.19%

Table 7.3: Activation duration overview

67



7.3. DISRUPTION

10 11 12 13 14

10
20

30
40

50

Request RTTs for single client with event overlay

Time (seconds)

R
eq

ue
st

 R
T

T
 (

m
ill

is
ec

on
ds

)
Events

Failure
Suspected
Initalized
Activated
Catch−up done

Figure 7.1: Request RTTs for a single client with event overlay, Live Replacement, 3
replicas, 1 MB replicated service state

to the concurrent initialization of the new replica.
Two large spikes can be seen during the catch-up period for the new replica. A

new replica queries the Paxos leader during catch-up. ais naturally disrupts the
Paxos leader from making proposals and can result in increased latencies for every
request sent from any client during this period. ae Goxos implementation should
in the future consider adjusting what replica that is contacted during catch-up for
avoiding disruption of the Paxos leader. A randomized replica selection scheme
could for example be applied.

Figure 7.2 show the RTTs for the requests sent by a single client for the same
experiment settings as described above, but here using Reconûguration. ae ac-
tivation duration is hard to identify in the ûgure due to the small time interval.
Only one latency spike is observed for the catch-up interval. ais may be due to the
reduced duration of catch-up observed when using Reconûguration. Both ûgures
described above show an increase in latency for a small duration a�er the replica
has failed. ais spike is observed regardless of failure handling method. ae infor-
mation logged during the experiments were not suõcient for accurately identifying
the reason for these spikes.

ae measured mean client request RTT during activation is presented in Ta-
ble 7.4. As for the activation durations, Reconûguration also here has relatively

68



7.3. DISRUPTION

10 11 12 13 14

10
20

30
40

50
60

Request RTTs for single client with event overlay

Time (seconds)

R
eq

ue
st

 R
T

T
 (

m
ill

is
ec

on
ds

)
Events

Failure
Suspected
Initalized
Activated
Catch−up done

Figure 7.2: Request RTTs for a single client with event overlay, Reconûguration, 3
replicas, 1 MB replicated service state

stable values regardless of cluster and replicated service state size. Live Replacement
has a lower mean RTT value for the experiment using three replicas and 1 MB state.
ae method has for the other experiments a much higher RTT value than Recon-
ûguration. Live Replacement has in addition a generally higher standard deviation.
ae experiment using ûve replicas and 10MB state has with Live Replacement a very
high standard deviation. It can be seen from Table A.8 that median request RTT for
this experiment is 11 ms. ais value could serve as a better indication of expected
RTT since the mean is aòected by outliers. ae presences of these outliers still in-
dicate more unpredictable RTTs during activation when using Live Replacement
compared to Reconûguration.

ae increased Disruption measured for Live Replacement during the activation
interval is again believed to be related to the ⟨EpochPromise⟩ generation at
each replica. Creating and sending this message can as argued in Section 7.2 take a
considerable amount of time due the replicated service state size and a high work-
load for clients. ae ⟨EpochPromise⟩ is generated and sent by every replica.
ae Acceptor module is blocked at each replica when creating this message. As a
result the entire cluster is disrupted for the time period needed to generate and send
the ⟨EpochPromise⟩. ais will naturally be visible to clients through increased
request RTTs. As stated in Section 7.2, an extra experiment was performed to try to

69



7.4. LIVE REPLACEMENT ADJUSTED

3 replicas, 1 MB replicated service state
Live Replacement Reconûguration

Client request RTT mean during activation 11.07 ms 11.86 ms
Client request RTT SD during activation 2.40 ms 1.48 ms

3 replicas, 10 MB replicated service state
Live Replacement Reconûguration

Client request RTT mean during activation 75.04 ms 12.77 ms
Client request RTT SD during activation 23.83 ms 6.25 ms

5 replicas, 1 MB replicated service state
Live Replacement Reconûguration

Client request RTT mean during activation 23.18 ms 12.51 ms
Client request RTT SD during activation 43.98 ms 2.11 ms

5 replicas, 10 MB replicated service state
Live Replacement Reconûguration

Client request RTT mean during activation 75.04 ms 14.01 ms
Client request RTT SD during activation 105.5 ms 9.08 ms

Table 7.4: Overview of client request RTT during activation

verify this assumption.
It is ûnally noted that the implementation of Live Replacement add a small per-

formance overhead to every request decided at the replicated service. aere are two
reasons for this. ae ⟨Learn⟩ messages sent over the network are larger in size be-
cause they contain a replica’s epoch vector. Secondly, a simple valid quorum check
is performed for every ⟨Learn⟩ used as part of a quorum. ais performance over-
head increase with the number of replicas used. ais mean that the measured client
request RTTs for Live Replacement and Reconûguration are not directly compara-
ble. However, the experiments performed here has shown the performance impact
on Live Replacement to be very small. From the data presented in Appendix A, the
diòerence can be seen to be in the range of 0.2 to 0.5 ms, depending on the number
of replicas.

7.4 Live Replacement Adjusted
ais section present an additional experiment performed to test the Live Replace-
ment implementation with an adjustment to the ⟨EpochPromise⟩ generation.

70



7.4. LIVE REPLACEMENT ADJUSTED

aemotivation for the experiment was to verify if the current ⟨EpochPromise⟩
generation method were the main reason for the high Delay and Disruption ob-
served for Live Replacement in the experiments discussed in Section 7.2 and Sec-
tion 7.3.

ae ⟨EpochPromise⟩ generation were adjusted on one single point. ae
initial implementation queries the Acceptor module for all its state above the slot
that correspond to the application state at the new initialized replica. ae adjusted
implementation instruct each replica to only query the Acceptor module for any
state above the highest slot it has executed. ais mean only acceptor state for any
concurrently running instances is sent with the ⟨EpochPromise⟩. ais state is
limited by the pipelining paramenter (α). ae adjustment to Live Replacement do
not violate sa�ey of the Paxos State Machine, but may change the conditions for
when liveness is guaranteed. ae original implementation can guarantee liveness
as long as no more than f acceptors fail before a replacement is complete. ae
liveness guarantees for the adjusted version of Live Replacement has not been clearly
identiûed. ae precise theoretical implications of the discussed protocol adjustment
should be investigated in more detail.

ae adjusted implementation was tested using ûve replicas and 10 MB applica-
tion state. ae experimental results are presented in Table 7.5. ae table contains
both mean activation duration and client request RTT measurements. Data from
the corresponding experiments using Reconûguration and the original Live Re-
placement implementation is also included for comparison. It can be seen that the
adjusted Live Replacement implementation has a mean activation duration of 15.1
ms. ais is much lower than the 206 ms observed as the mean for the original
implementation. ae standard deviation is also much lower for the adjusted imple-
mentation. ae relative standard deviation is approximately 35.0% for the original
implementation and 11.4% for the adjusted. ae mean activation duration for the
adjusted Live Replacement implementation is also for this experiment higher than
the mean duration observed for Reconûguration. Figure 7.3 shows the calculated
density estimates for the activation durations discussed here. Kernel density esti-
mation is a non-parametric way to estimate the probability density function of a
random variable [29]. ae estimates were obtained using a Gaussian kernel. ae
estimates re�ect the points made in the discussion above. Reconûguration has a
lower expected activation duration than Live Replacement. ae larger variation in
Reconûguration measurements is also re�ected in the estimate.

ae mean client request RTT for the adjusted version of Live Replacement is
also much lower than for the original implementation. ae mean RTT value can be
seen to have dropped from 75.04 to 14.31 ms. ae mean RTT value for the adjusted
Live Replacement version is basically the same as the value observed for Reconûgu-
ration. ae diòerence of 0.3 ms is approximately the diòerence that can be expected
when taking into account the discussed overhead of Live Replacement. A density

71



7.4. LIVE REPLACEMENT ADJUSTED

5 replicas, 10 MB replicated service state
Live Replacement Live Replacement* Reconûguration

Activation duration mean 206 ms 15.1 ms 6.77 ms
Activation duration SD 72.0 ms 1.72 ms 3.10 ms
Act. dur. mean as % of WoV 5.51% 0.30% 0.19%
Client request RTT mean 75.04 ms 14.31 ms 14.01 ms
Client request RTT SD 105.5 ms 11.61 ms 9.08 ms

Table 7.5: Comparison of Live Replacement,Live Replacement* andReconûguration

estimate for the client request RTT during activation can be seen in Figure 7.4. ae
estimates were obtained using a Gaussian kernel. It can be seen that estimates for
both methods are aòected by outliers in the range from 40 to 65 ms.

ae observations from the additional experiment clearly identify the impor-
tance of how ⟨EpochPromise⟩messages are generated at each replica. It is clear
that the approach taken in the initial implementation is not a viable option when
comparing Live Replacement to Reconûguration. ae results show a high amount
of both Delay and Disruption for Live Replacement when using this approach. ae
adjusted version of Live Replacement is observed to perform much better. ae ver-
sion is competitive against Reconûgurationwith respect toDisruption.ae adjusted
Live Replacement version is observed to have slightly higher Delay compared to
Reconûguration. All experiments were performed with α = 3. ais parameter is
important for the waiting variant of Reconûguration implemented for this thesis.
Further experiments should be performed to investigate the eòect of adjusting the
pipelining parameter.

Reconûguration performedwell for all experiments. ae Reconûguration imple-
mentation mainly use the existing Paxos modules and messages when performing
failure handling. ae Paxos modules have been extensively tested since they are
a part of the core Goxos framework. ais fact may contribute to the observed ro-
bustness of Reconûguration. ae Live Replacement implementation use a separate
module for handling and sending ⟨PrepareEpoch⟩ and ⟨EpochPromise⟩
messages. Using a separate module may lead to increased Delay since both the Re-
placement handler andPaxosmodules operate concurrently during failure handling.
ae prototype implementation of Live Replacement is also based on a newly pre-
sented theoretical description. It may be unrealistic to expect that a ûrst attempt on
implementing a new protocol would result in optimal performance. Such an initial
implementation need more testing and adjustments before performing optimally.

72



7.4. LIVE REPLACEMENT ADJUSTED

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Density estimates for activation duration, 5 replicas, 10 MB state

Time (ms)

D
en

si
ty

Live Replacement (adjusted) Reconfiguration

Figure 7.3: Density estimates for activation duration for Live Replacement (adjusted)
and Reconûguration

10 20 30 40 50 60

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Density estimates for client request RTT during activation, 5 replicas, 10 MB state

Time (ms)

D
en

si
ty

Live Replacement (adjusted) Reconfiguration

Figure 7.4: Density estimates for client request RTT Live Replacement (adjusted)
and Reconûguration during activation

73



8
Conclusion and Further Work

8.1 Conclusion
ais thesis presents an implementation andexperimental evaluation of twomethods
for failure handling in Paxos State Machines: Live Replacement [3] and Reconûgu-
ration [5]. ae two methods can be applied to replicated state machines (RSMs) [1]
based on the Paxos protocol [2]. ae two failure handling methods considered for
this thesis is evaluated in the context of immediate failure handling. Such failure
handling methods should enable an RSM to restore its initial fault tolerance as
soon as possible. ae methods should in addition to being fast also have a minimal
impact on the performance of an RSM. ais mean they should degrade the state
machine throughput as little as possible during failure handling. Immediate failure
handling is a central component for enabling replicated services to maintain high
availability [3, 7].

ae work on this thesis started with the design and implementation of Live
Replacement.ae failure handlingmethodwere developed as a part of theGoxos [4]
framework. Live Replacement is a new method for immediate failure handling. It
diòers from more classical failure handling methods since the method operates
independent of state machine progress. Live Replacement was at the beginning of
this work available as theoretical description. ae design and implementation work
therefore had to address several design and implementation details not addressed
in the original description.

Another goal for this thesis was to evaluate Live Replacement against a set of

74



8.2. FURTHER WORK

metrics deûned for immediate failure handling and against other methods relevant
for immediate failure handling. For this reason a was Reconûguration [5], a tradi-
tional and well known mechanism for failure handling, implemented as part of the
Goxos framework.

ae experimental evaluation performed as part of this thesis show that the initial
implementation of Live Replacement need further testing and adjustments before
performing up to par with Reconûguration for a basic failure scenario. Further
experiments should be conducted to evaluate the protocol for more complex failure
scenarios. ae evaluation also shed light on a subtle but important implementation
detail for Live Replacement that greatly aòected the performance of the method.
It was identiûed that choices made when implementing certain protocol steps of
the Live Replacement method can have a very large impact on both Delay and
Disruption.

8.2 Further Work
ais is thesis is concluded with a discussion concerning possible optimizations and
further work.

Further Experiments ae evaluation conducted as a part of this thesis use
a basic single failure scenario for the experiments performed. More complex
failure scenarios should be tested in experiments for evaluating the presented
implementation further. ae experiments performed for this thesis does also
not include scenarios involving network partitions. ais is due to the increased
complexity of simulating network partitions versus simpler crash failures. A rele-
vant scenario related to Live Replacement would be tomeasure the performance
impact of when nodes unaware of that they have been replaced. Such scenarios
could arise due to network partitions, and could trigger the other replicas to
enable strict valid quorum veriûcation for several slots. Such behavior could
impair throughput and increase Disruption until a replaced node is aware of its
replacement and terminates.

ae current implementation of Live Replacement does at the time being not
allow concurrent replacements. It would naturally be interesting to allow such
behavior, and in relation perform experiments involving failures in rapid succes-
sion. Such scenarios should in at least in theory prove particularly advantageous
for Live Replacement compared against Reconûguration. ais is assuming that
the Reconûguration algorithm reacts instantly to the ûrst failure experienced,
and does not wait for a certain number of failures before proposing the recon-
ûguration command.

75



8.2. FURTHER WORK

Another interesting experiment could involve running a set of replicas using au-
tonomous failure handling, andmeasure the duration until the RSMexperiences
a critical scenario where it is unable repair itself and make progress. Failures
would have to be injected at each replica with certain independent probability.

Improved Failure Information All failure handling in the Goxos framework
is initiated by the implemented failure detector. ae failure detector used in
this thesis is as described in Section 6.1.1 implemented as an eventually perfect
failure detector. ae failure detector encapsulates the timing assumptions of
a partially synchronous system. When using the failure detector to trigger all
failure handling, the provided information is naturally wanted be as accurate
as possible. ae failure detector considered here can by deûnition provide false
suspicions during periods of asynchrony in the system. Reacting to such false
suspicions may cause a costly failure handling operation to start, even if the
system for example only experienced a short transient network partition.

A new abstraction called failure informer is presented in [30]. ais abstraction
could to a certain extent help avoid such unnecessary failure handling. ae
abstraction and its corresponding implementation allows applications to take
application-speciûc recovery actions. It reports a small number of conditions
that each represent a class of problems that aòect the applications. aese con-
ditions are also reported with diòerent levels of accuracy, ranging from certain
occurrence and certain permanence to certain occurrence and uncertain per-
manence. Uncertain reports are also helpful to systems, as they can consider
the cost-beneût trade-oòs of waiting versus initiating failure handling for both
reported problems of uncertain permanence or occurrence.

ae presented failure reporting service implementing this abstraction is re-
stricted to a single administrative domain. ais is not an unreasonable assump-
tion is in the context of this thesis, where at least the RSM cluster can be viewed
as running in a single data center or enterprise network. Another interesting
feature of the failure reporting service is the ability to also provide warnings
about possible eminent failures. Examples of such failures could be CPU over-
load at a replica or a saturation of a network link. Access to such information
could be for very beneûcial for Live Replacement (and Reconûguration), as it
enables preemptive action with the goal of reducing the window of vulnerability
for keeping the fault-tolerance level of the system high.

Application State Transfer Application state transfer is for the two faliure han-
dling techniques relevant for this thesis clearly the of the operation with the
highest impact on Delay if the state is large. A interesting approach to the state
transfer challenge could be to use additional replicas as hot standbys. Such repli-
cas would operate in an special standby mode. aey would only be listening for

76



8.2. FURTHER WORK

messages containing decided requests from replicas participating in the RSM
cluster. Using Live Replacement, such a hot standby could be switched into op-
eration very quickly. ais would involve practically no state transfer, reducing
Delay to aminimum.ais approach comes at the cost of constantly sendingmes-
sages with decided requests to hot-spares, as well as the computing resources
needed for having such standbys operational.

Implementation Details In its current form, Live Replacement and its corre-
sponding adjusted version of multi-decree Paxos, performs a simple valid quo-
rum check for each received Promise and Learn message. ais procedure,
as mentioned in Section 7.3, results in a small performance penalty for the Paxos
protocol. It should be possible to adjust the implementation so that this check
is only performed in periods where replacements are in progress. ae needed
logic for keeping track of the related events are not yet implemented.

Another possible implementation optimization is related to how a replica ob-
tain an application state snapshot in conjunction with initiating failure handling.
ae request from the replica to the service layer is in the current implementation
a blocking method call. ais request can be costly in relation to state machine
progress if the service state is large and needs to be properly serialized. ais
is because a replica is prevented from executing decided request during this
operation. Special precautions need to be taken if a replica should be able to
continue executing decided request while obtaining a snapshot. ae technique
mentioned in [15] uses a shadow data structure to track updates while the under-
lying application state is serialized. Such an improvement would be especially
relevant for the Reconûguration technique because the replica acting as Paxos
leaderwould to a certain degree be able to handle decided requests while concur-
rently requesting for an application state snapshot. As a consequenceDisruption
could be reduced.

77



A
Complete Experimental Data

ais appendix contains the complete experimental data obtained from the nine
experiments presented in Chapter 7. ae data is presented using two tables for
each experiment, one for failure handling durations and one for client request RTT
statistics. ae tables are grouped as corresponding Live Replacement and Reconûg-
uration pairs, with the exception of Experiment 9.

78



Failure handling durations Mean SD SE Min Max Median
Until suspected 1032 16.95 3.459 1004 1064 1027
Initialization 198.2 4.053 0.827 193 206 197
Activation 70.12 11.46 2.340 17 78 72.5
Catch-up 206.6 16.14 3.293 153 235 205.5
WoV 1302 20.19 4.121 1250 1341 1300
WoV & catch-up 1509 30.87 6.302 1404 1555 1511

Table A.1: Failure handling durations: Exp. 1 - Live Replacement, 3 replicas and 1 MB state. Unit ms.

Failure handling durations Mean SD SE Min Max Median
Until suspected 1059 23.82 4.863 1012 1111 1053
Initialization 198.9 3.888 0.793 192 210 198.5
Activation 5.75 2.66 0.54 2 11 6
Catch-up 159.8 6.257 1.277 149 173 159
WoV 1277 24.21 4.941 1217 1313 1260
WoV & catch-up 1425 26.59 5.427 1370 1483 1424

Table A.2: Failure handling durations: Exp. 2 - Reconûguration, 3 replicas and 1 MB state. Unit ms.

79



Client request RTT Mean SD SE Min Max Median % of total number of requests
Outside WoV & catch-up 10.34 1.52 0.0009 1 36 10 95.14
Before initialization 11.44 9.17 0.0285 1 163 10 3.44
During initialization 12.15 6.40 0.0471 4 55 11 0.62
During activation 11.07 2.40 0.0281 7 21 11 0.24
During catch-up 14.26 14.31 0.1103 6 13 11 0.56

Table A.3: Client request RTT: Exp. 1 - Live Replacement, 3 replicas and 1 MB state. Unit ms.

Client request RTT Mean SD SE Min Max Median % of total number of requests
Outside WoV & catch-up 9.995 1.899 0.0011 1 37 10 95.42
Before initialization 11.58 9.521 0.0292 3 163 10 3.53
During initialization 10.10 2.593 0.0191 4 50 10 0.61
During activation 11.86 1.481 0.0573 8 18 12 0.02
During catch-up 14.91 13.54 0.1227 4 76 11 0.41

Table A.4: Client request RTT: Exp. 2 - Reconûguration, 3 replicas and 1 MB state. Unit ms.

80



Failure handling durations Mean SD SE Min Max Median
Until suspected 1556 23.57 4.811 1522 1604 1549
Initialization 1913 6.022 1.229 1904 1927 1912
Activation 160 17.0 3.47 113 173 167
Catch-up 1344 25.52 5.209 1280 1380 1347
WoV 3629 26.57 5.424 3592 3687 3622
WoV & catch-up 4974 46.50 9.491 4875 5067 4970

Table A.5: Failure handling durations: Exp. 3 - Live Replacement, 3 replicas and 10 MB state. Unit ms.

Failure handling durations Mean SD SE Min Max Median
Until suspected 1580 24.98 4.806 1538 1636 1578
Initialization 1911 4.414 0.849 1903 1922 1911
Activation 5.852 2.769 0.533 2 13 5
Catch-up 1292 23.53 4.526 1259 1336 1294
WoV 3499 25.84 4.974 3454 3563 3496
WoV & catch-up 4792 40.54 7.802 4712 4880 4798

Table A.6: Failure handling durations: Exp. 4 - Reconûguration, 3 replicas and 10 MB state. Unit ms.

81



Client request RTT Mean SD SE Min Max Median % of total number of requests
Outside WoV & catch-up 10.07 1.907 0.0009 1 45 10 88.14
Before initialization 13.36 25.87 0.0285 3 964 10 4.51
During initialization 12.78 28.43 0.0471 3 390 10 5.51
During activation 18.75 23.83 0.0281 1 121 10 0.31
During catch-up 34.63 147.5 0.1103 1 1062 11 1.53

Table A.7: Client request RTT: Exp. 3 - Live Replacement, 3 replicas and 10 MB state. Unit ms.

Client request RTT Mean SD SE Min Max Median % of total number of requests
Outside WoV & catch-up 10.25 1.602 0.0009 1 370 10 89.10
Before initialization 16.18 36.24 0.0921 3 378 11 4.58
During initialization 10.79 9.084 0.0210 5 374 10 5.53
During activation 12.77 6.247 0.2270 8 50 12 0.02
During catch-up 69.61 231.6 1.445 6 1425 11 0.76

Table A.8: Client request RTT: Exp. 4 - Reconûguration, 3 replicas and 10 MB state. Unit ms.

82



Failure handling durations Mean SD SE Min Max Median
Until suspected 1055 38.84 7.767 1002 1123 1052
Initialization 200.3 4.279 0.853 192.0 211.0 199.0
Activation 56.24 24.26 4.851 22.00 122.0 70.00
Catch-up 227.4 66.86 13.37 166.0 395.0 198.0
WoV 1313 44.31 8.862 1251 1393 1303
WoV & catch-up 1541 73.62 14.72 1447 1731 1541

Table A.9: Failure handling durations: Exp. 5 - Live Replacement, 5 replicas and 1 MB state. Unit ms.

Failure handling durations Mean SD SE Min Max Median
Until suspected 1087 37.34 7.323 1022 1196 1080
Initialization 202.4 4.089 0.802 195 209 202
Activation 6.615 2.654 0.521 3 12 5.5
Catch-up 158 9.506 1.864 143 178 157
WoV 1297 37.72 7.398 1234 1406 1292
WoV & catch-up 1456 38.19 7.490 1393 1560 1450

Table A.10: Failure handling durations: Exp. 6 - Reconûguration, 5 replicas and 1 MB state. Unit ms.

83



Client request RTT Mean SD SE Min Max Median % of total number of requests
Outside WoV & catch-up 10.67 4.023 0.0023 1 736 10 95.55
Before initialization 12.11 17.47 0.0548 6 661 10 3.24
During initialization 11.35 5.474 0.0376 7 226 10 0.68
During activation 23.18 43.98 0.6471 8 239 12 0.15
During catch-up 20.65 26.75 0.2472 7 158 11 0.37

Table A.11: Client request RTT: Exp. 5 - Live Replacement, 5 replicas and 1 MB state. Unit ms.

Client request RTT Mean SD SE Min Max Median % of total number of requests
Outside WoV & catch-up 10.35 2.434 0.0013 1 122 10 95.39
Before initialization 11.54 8.441 0.0246 3 145 10 3.63
During initialization 10.67 3.689 0.0265 2 54 10 0.60
During activation 12.51 2.106 0.0746 4 18 12 0.02
During catch-up 16.01 14.94 0.1366 1 98 11 0.37

Table A.12: Client request RTT: Exp. 6 - Reconûguration, 5 replicas and 1 MB state. Unit ms.

84



Failure handling durations Mean SD SE Min Max Median
Until suspected 1599 74.03 13.52 1528 1793 1572
Initialization 1918 16.68 3.045 1910 1959 1923
Activation 205.8 72.04 13.15 150 361 168
Catch-up 1572 92.17 16.83 1327 1727 1575
WoV 3737 96.38 17.57 3623 3900 3715
WoV & catch-up 5310 162.6 29.69 4958 5590 5314

Table A.13: Failure handling durations: Exp. 7 - Live Replacement, 5 replicas and 10 MB state. Unit ms.

Failure handling durations Mean SD SE Min Max Median
Until suspected 1598 23.61 4.462 1570 1671 1592
Initialization 1919 6.475 1.227 1910 1935 1918
Activation 6.768 3.096 0.585 2 12 8
Catch-up 1270 24.99 4.723 1213 1324 1267
WoV 3525 26.17 4.946 3484 3597 3520
WoV & catch-up 4796 33.97 6.420 4744 4860 4786

Table A.14: Failure handling durations: Exp. 8 - Reconûguration, 5 replicas and 10 MB state. Unit ms.

85



Client request RTT Mean SD SE Min Max Median % of total number of requests
Outside WoV & catch-up 10.62 3.619 0.0020 1 157 10 88.09
Before initialization 14.47 27.91 0.0698 3 878 10 4.26
During initialization 11.50 11.81 0.0241 5 414 10 6.41
During activation 75.04 105.5 1.467 8 343 11 0.14
During catch-up 56.96 225.6 1.108 6 1368 11 1.11

Table A.15: Client request RTT: Exp. 7 - Live Replacement, 5 replicas and 10 MB state. Unit ms.

Client request RTT Mean SD SE Min Max Median % of total number of requests
Outside WoV & catch-up 10.17 2.455 0.0013 1 120 10 89.25
Before initialization 15.42 33.77 0.0836 2 389 10 4.67
During initialization 11.07 12.45 0.0287 3 390 10 5.38
During activation 14.01 9.081 0.3097 6 50 12 0.03
During catch-up 73.37 219.8 1.423 4 1056 11 0.68

Table A.16: Client request RTT: Exp. 8 - Reconûguration, 5 replicas and 10 MB state. Unit ms.

86



Failure handling durations Mean SD SE Min Max Median
Until suspected 1585 57.10 12.46 1472 1702 1582
Initialization 1924 16.93 3.695 1910 1959 1924
Activation 15.05 1.717 0.3746 12 18 15
Catch-up 1549 99.02 21.61 1437 1858 1523
WoV 3532 61.59 13.44 3437 3676 3521
WoV & catch-up 5082 95.02 20.73 4978 5296 5043

Table A.17: Failure handling durations: Exp. 9 - Live Replacement variation, 5 replicas and 10 MB state. Unit ms.

Client request RTT Mean SD SE Min Max Median % of total number of requests
Outside WoV & catch-up 10.59 2.997 0.0019 1 146 10 89.69
Before initialization 14.21 25.91 0.0771 6 980 10 4.30
During initialization 11.40 7.910 0.0192 5 179 10 6.47
During activation 14.31 11.61 0.3061 8 64 11 0.05
During catch-up 128.4 339.1 2.998 8 1623 13 0.49

Table A.18: Client request RTT: Exp. 9 - Live Replacement variation, 5 replicas and 10 MB state. Unit ms.

87



Bibliography

[1] Fred B. Schneider. Implementing fault-tolerant services using the state ma-
chine approach: a tutorial. ACM Comput. Surv., 22(4):299–319, December
1990.

[2] Leslie Lamport. Paxos Made Simple. SIGACT News, 32(4):51–58, December
2001.

[3] Leander Jehl and Hein Meling. Live replacement: Fast and Eõcient Failure
Handling for Paxos State Machines. Submitted for publication May 2013.

[4] Stephen Michael Jothen and Tormod Erevik Lea. Goxos: A Paxos Implemen-
tation in the Go Programming Language, 2013.

[5] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Reconûguring a state ma-
chine. SIGACT News, 41(1):63–73, March 2010.

[6] Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. Introduction to
Reliable and Secure Distributed Programming. Springer, 2nd edition. edition,
2 2011.

[7] James W. Anderson, Hein Meling, Alexander Rasmussen, Amin Vahdat, and
Keith Marzullo. Local recovery for high availability in strongly consistent
cloud services. Submitted for publication, 2013.

[8] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility
of distributed consensus with one faulty process. In Proceedings of the 2nd
ACM SIGACT-SIGMOD symposium on Principles of database systems, PODS
’83, pages 1–7, New York, NY, USA, 1983. ACM.

[9] Leslie Lamport. aepart-time parliament. ACMTrans. Comput. Syst., 16(2):133–
169, May 1998.

[10] Nuno Santos and André Schiper. Tuning paxos for high-throughput with
batching and pipelining. In Proceedings of the 13th international conference

88



BIBLIOGRAPHY

on Distributed Computing and Networking, ICDCN’12, pages 153–167, Berlin,
Heidelberg, 2012. Springer-Verlag.

[11] ae Go Project. ae Go Programming Language. http://www.golang.org,
2013. [Online; accessed 01-May-2013].

[12] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666–677, August 1978.

[13] ae Go Authors. Eòective Go. http://golang.org/doc/effective_go.
html, 2013. [Online; accessed 26-May-2013].

[14] ae Go Authors. ae Go Programming Language Speciûcation. http://
golang.org/ref/spec, 2013. [Online; accessed 26-May-2013].

[15] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live:
an engineering perspective. In Proceedings of the twenty-sixth annual ACM
symposium on Principles of distributed computing, PODC ’07, pages 398–407,
New York, NY, USA, 2007. ACM.

[16] Stephen M. Jothen. Acropolis: Aggregated Client Request Ordering by Paxos.
Master’s thesis, University of Stavanger, 2013.

[17] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
Zookeeper: wait-free coordination for internet-scale systems. InProceedings of
the 2010 USENIX conference on USENIX annual technical conference, USENIX-
ATC’10, pages 11–11, Berkeley, CA, USA, 2010. USENIX Association.

[18] Keith Rarick. Introducing Doozer. http://doozer-sdec2011.heroku.
com/, 2011. [Online; accessed 01-Des-2012].

[19] Jan Kończak, Nuno Santos, Tomasz Zurkowski, Paweł T. Wojciechowski, and
André Schiper. JPaxos: State machine replication based on the Paxos protocol.
Technical Report EPFL-REPORT-167765, Faculté Informatique et Communi-
cations, EPFL, July 2011. 38pp.

[20] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency
control and recovery in database systems. Addison-Wesley LongmanPublishing
Co., Inc., Boston, MA, USA, 1987.

[21] J. Kirsch and Y. Amir. Paxos for System Builders. Technical Report CNDS-
2008-2, Johns Hopkins University, March 2008. 35pp.

89



BIBLIOGRAPHY

[22] Jacob R. Lorch, Atul Adya, William J. Bolosky, Ronnie Chaiken, John R.
Douceur, and Jon Howell. ae smart way to migrate replicated stateful ser-
vices. In Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on
Computer Systems 2006, EuroSys ’06, pages 103–115, New York, NY, USA, 2006.
ACM.

[23] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. ae weakest
failure detector for solving consensus. J. ACM, 43(4):685–722, July 1996.

[24] Steven Pigeon. Pairing Function - From MathWorld–A Wolfram Web Re-
source, created by Eric W. Weisstein. http://mathworld.wolfram.com/
PairingFunction.html, 2013. [Online; accessed 09-May-2013].

[25] Wikipedia. Pairing function —Wikipedia, the free encyclopedia, 2013. [On-
line; accessed 09-May-2013].

[26] Mark Summerûeld. Programming in Go: Creating Applications for the 21st
Century (Developer’s Library). Addison-Wesley Professional, 1 edition, 5 2012.

[27] David L. Mills. Internet time synchronization: the network time protocol.
IEEE Transactions on Communications, 39:1482–1493, 1991.

[28] Wikipedia. Network time protocol —Wikipedia, the free encyclopedia, 2013.
[Online; accessed 10-June-2013].

[29] Wikipedia. Kernel density estimation — Wikipedia, the free encyclopedia,
2013. [Online; accessed 10-June-2013].

[30] Joshua B. Leners, Trinabh Gupta, Marcos K. Aguilera, and Michael Walûsh.
Improving availability in distributed systems with failure informers. In NSDI,
2013.

90


