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Multivariate Statistical Analysis with Experimental Data 

Juncheng Li 

Department of Electrical and Computer Engineering 

University of Stavanger 

Abstract 

Collected data from the sensors monitoring the environment in oil industry are 

various and raw, multivariate statistical analysis can turn these data into meaningful 

information. This paper would introduce some typical multivariate analysis methods, 

and investigate the data gathered in the Biota Guard exposed experiment by the 

means of some appropriate multivariate statistical analysis. Principal component 

analysis produces the principal components to represent the information of the 

multivariate in a reduced dimensional space; clustering analysis can group the 

observations of the multivariate into clusters in different ways; discriminant analysis 

can classifies new observations to existed clusters based on training data. These 

statistical analyses help us to understand the underlying information of the data from 

experiment and comparison of these analyses would distinguish the certain 

application of these methods in different situations and gives guidelines to further 

study. 
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1. Introduction 

As the environmental concern and awareness of human beings increase, more and 

more oil companies have taken into account the environmental management, which 

is the major factor in the global competition among these companies. Efficient and 

real-time environmental management requires real-time monitoring data such as 

environmental measurement data and operation data. These data are collected by 

variety of sensors: chemical, physical sensors and even biosensors which are newly 

introduced. The Biota Guard chooses some mussels as biosensors to monitor the 

marine environment. Although these biosensors are interesting and reflect the 

changes of the environment in a different way, the raw data collected from the 

biosensors is hard to understand. Meanwhile the selection of the biosensor is also 

important before the deployment, since different biosensors acts differently. More 

sensitive mussels can react to the environmental variation more quickly and more 

precisely. So the study of these mussels with multivariate analysis can compare the 

behaviors of these biosensors at the same time, tell the different reactions of them 

to the surrounding changes and pick out the sensitive mussels as the biosensors in 

practical deployments. 

Applied Multivariate Statistical Analysis (2nd_ed) (Springer, 2007 Wolfgang Härdle 

and Léopold Simar) presents various multivariate data analysis and introduces the 

reader to the wide selection of tools available for multivariate data analysis. Besides 

that, the book also applied these analyses to practical examples, however almost all 

the examples come from economical cases.  Introduction to Data Mining only 

introduces the basic idea of some multivariate statistical analyses and illustrates 

these methods with the help of abundant figures. These two books detailedly 

introduced the basic idea and the algorithm of each multivariate analysis.  This paper 

adopted the methods introduced in these books, and applied them to the practical 

data from experiment. The data we get is interesting and very special, the result of 
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the study of the data can help us to understand these biosensors-mussels and 

optimize the deployment of these sensors in future. 

In section 2 this paper provides the methods of principal component analysis, 

clustering analysis and discriminant analysis, and introduces the basic ideas and 

algorithms of these methods; in section 3 real data is studied by the means of these 

different statistical analysis methods; according to results from section 3, the 

underlying information of the data and the performances of these methods are 

discussed in section 4;  finally it gives the conclusion of the study in this paper. 

2. Background 

In the experiments of Biota Guard, there are two experiments at the same: exposed 

and controlled experiments. Each of them uses 7 mussels as the biosensors, as the 

nominal concentrations in the exposure tank varies; the heart rates of the mussels 

are collected every three seconds. Once observation records their heart beat rates 

from 7 variables, we can treat the observation as a multivariate which contains 7 

variables. The variation of the nominal concentrations in the exposure tank 

influences the behaviors of these mussels in that thank, and the mussels in the 

control tank act as contrast. 

Multivariate statistical analysis is a group of methods encompassing the 

simultaneous observation and analysis of more than one statistical variable; it helps 

us to understand the underlying information of the data in a simpler way and 

distinguish the useless data sources. The company can refine the deployment of the 

biosensors in return according to the results of the analysis. There are some typical 

methods for different aims: principal component analysis, cluster analysis, and 

discriminant analysis 
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2.1. Principal Components Analysis 

Principal component analysis (PCA) has a basic objective that reducing the dimension 

of the multivariate data matrix, and achieves this in a different way: searching for 

linear combinations with the largest variances. 

For a multivariate X, 𝐱 = (𝐱1, 𝐱2, … , 𝐱𝑝)
Τ
  where 𝐱1, … , 𝐱𝑝  are p variables. Low 

dimensional linear combinations of variables are often easier to interpret and can 

serve as an intermediate step in a more complex data analysis. However it is 

unreasonable to use one variable or the average of all the variables to represent the 

original multivariate. Simply reducing the dimension of the multivariate would lose 

the underlying information of the data matrix and fail to retrieve the nature of the 

multivariate. Here is a more flexible and logical way to reduce the dimension: give 

different weights to different variables of the multivariate and it is called as a 

standardized linear combination (SLC): 

δΤ𝑿 =∑δj𝑿j and ∑δj
2 = 1

p

j=1

p

j=1

 

Equation 2-1 

We are interesting in the SLC which maximize the variance of the projection δΤ𝑿: 

max
{δ：‖δ‖=1}

Var(δΤ𝑿) = max
*δ:‖δ‖=1+

δΤVar(𝑿) δ 

Equation 2-2 

The direction of the interesting unit vector  δ  is given by the eigenvector γ1 

corresponding to the largest eigenvalue λ1 of the covariance matrix Σ = Var(𝑿). 

The SLC which has the maximum variance is the first principal component 

(PC):  y1 = γ1
Τ𝑿. The SLC with the second largest variance is the second principal 

component: y2 = γ2
Τ𝑿, where the eigenvector 𝛾2 is corresponding to the second 

largest eigenvalue  λ2and so on. 

In order to obtain a zero mean PC variable Y, we need to get the mean of the random 
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multivariate X and the eigenvectors from the formulas: Ε(𝑿) = μ and Var(𝑿) = Σ =

ΓΛΓΤ  respectively, where Γ = (γ1, γ2, … , γp)  andΛ = d a (λ1, … λp) . 𝜆1 ≥ ⋯ ≥ 𝜆𝑝 

are eigenvalues of the covariance matrix Σ with corresponding eigenvectors 𝛾1, … , 𝛾𝑝. 

Then the variable Y is obtained:  

𝒀 = ΓΤ(𝑿 − μ) 

Equation 2-3 

The quality of the first q PCs explain variation is given by a ration: 

ψq =
∑ λj
q
j=1

∑ λj
p
j=1

=
∑ Var(𝒀j)
q
j=1

∑ Var(𝒀j)
p
j=1

 

Equation 2-4 

In practice, the data collected from the multivariate X which contains p variables 

after n observations form a data matrix 𝒳(𝑛 × 𝑝). The mean μ and the covariance 

matrix Σ of the multivariate are replaced by the average 𝑥 and empirical covariance 

matrix  𝒮  respectively. That is to say, given the spectral decomposition of  𝒮 

𝒮 =  𝒢ℒ𝒢Τ , where 𝒢 =  (ℊ1, … , ℊ𝑝)  and ℒ = d  (ℓ1, … , ℓ𝑝)  the principal 

components are given by 

𝒴 = (𝒳 − 1𝑛𝑥
Τ
)𝒢 

Equation 2-5 

And according to the Equation 2-4 the variance explained by the first q PCs is 

evaluated by 

�̂� =
ℓ1 +⋯+ ℓ𝑞

∑ ℓ𝑗
𝑝
𝑗=1

 

Equation 2-6 

However variables always are measured on heterogeneous scales. Because the 

principal component technique utilizes the spectral decomposition of covariance 

matrix but not the correlation matrix, it is sensitive to scale changes. Different scales 

would result in different PCs, but standardization of the variables can give a robust 
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description of the underlying information in the data: 

𝒳𝒮 = ℋ𝒳𝒟
−1/2 

Equation 2-7 

Where  𝒟 = d  (𝒮𝑿1𝑿1 , … , 𝒮𝑿p𝑿p) and ℋ is centering matrix: ℋ = In − n
−11n1n

Τ 

Note that x𝒮̅̅ ̅ = 0 and 𝒮𝒳𝒮 = ℛ = 𝒢ℛℒℛ𝒢ℛ
Τ 

Where  ℒℛ = d a (ℓ1
ℛ, … , ℓ1

ℛ)  and ℓ1
ℛ ≥ ⋯ ≥ ℓp

ℛ  are the eigenvalues of ℛ  with 

corresponding eigenvectors ℊ1
ℛ , ⋯ , ℊp

ℛ. This PC transformations of the matrix 𝒳𝒮  are 

called the Normalized Principal Components (NPCs),Zj is defined as 

𝒵 = 𝒳𝒮𝒢ℛ = (z1, … , zp) 

Equation 2-8 

2.2. Cluster Analysis 

When given a data set of observed individuals to a multivariate, we may want to 

know if there are some natural groups or classes of individuals. Cluster analysis 

develops tools and methods dealing with this case, group individuals that are 

“similar” according to some appropriate criterion. Once the clusters are obtained, we 

can use the previous analysis methods to study each group again and get a better 

understanding of the differences between the groups. 

2.2.1. Hierarchical Clustering 

Generally the groups or clusters should be as homogeneous as possible and the 

differences among the variance clusters should be as large as possible. The cluster 

analysis has two fundamental steps: choice of a proximity measure and choice of 

group-building algorithm. 

The “similar” between the individuals are represented by the proximity; it is 

described by a matrix when given a data matrix 𝒳(n × p) with n individuals 



7 
 

(measurements) of p variables: 

𝒟 = (
d11 ⋯ d1n
⋮ ⋱ ⋮
dn1 ⋯ dnn

) 

The matrix 𝒟 contains the measures of similarity or dissimilarity among the n 

individuals. If we choose the values dij as distance to measure the dissimilarity, the 

greater values means the less similar are the individuals; if we choose the values dij 

measure the proximity, the greater the proximity value means the more similar are 

the individuals. If the values of observations are binary, the proximity measure 

between two observations (xi, xj)  where  xi
Τ = (xi1, … , xip) ,  xj

Τ = (xj1, … , xjp) 

andxik, xjk ∈ *0,1+ is: 

dij =
a1 + δa4

a1 + δa4 + λ(a2 + a3)
 

Where 

a1 =∑I(xik = xjk = 1)

p

k=1

 

a2 =∑I(xik = 0, xjk = 1)

p

k=1

 

a3 =∑I(xik = 1, xjk = 0)

p

k=1

 

a4 =∑I(xik = xjk = 0)

p

k=1

 

As shown in Table 1 the weighting factors δ and λ are given base choice of different 

algorithms: 

Name 𝛅 𝛌 𝐝𝐢𝐣 

Jaccard 0 1 a1
a1 + a2 + a3

 

Tanimoto 1 2 a1 + a4
a1 + 2(a2 + a3) + a4

 

Simple Matching 1 1 a1 + a4
p
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Russel and Rao - - a1
p

 

Dice 0 0.5 2a1
2a1 + (a2 + a3)

 

Kulczynski - - a1
a2 + a3

 

Table 1 The common similarity coefficientsi 

If the variables xik are continuous, the distance measures can be obtained by the 

Lr − norms, r ≥ 1: 

dij = ‖xi − xj‖r
= {∑|xik − xjk|

r

p

k=1

}

1
r⁄

 

Where xik denotes the value of the k-th variable in object i. The L2 − norms is the 

common choice. 

When the proximity measure is obtained, we turn to the building the groups. There 

are two basic types of clustering methods: hierarchical algorithms and partioning 

algorithms. The hierarchical algorithms can be divided into agglomerative and 

splitting procedures.  

Given two objects or groups: P and Q, are united, the distance between the new 

group P+Q and other group R is defined: 

d(R, P + Q) = δ1d(R, P) + δ2d(R, Q) + δ3d(P, Q) + δ4|d(R, P) − d(R, Q)| 

The δj are weighting factors and vary depend on different agglomerative algorithms 

as shown in table 2, Where np = ∑ I(xi ∈ P)
n
i=1  is the number of objects in group P, 

same to the definition of nQand nR. 

Name 𝛅𝟏 𝛅𝟐 𝛅𝟑 𝛅𝟒 

Single linkage 1/2 1/2 0 -1/2 

Complete linkage 1/2 1/2 0 1/2 

Average linkage 

(unweighted) 

1/2 1/2 0 0 

Average linkage nP
nP + nQ

 
nP

nP + nQ
 0 0 
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(weighted) 

Centroid nP
nP + nQ

 
nQ

nP + nQ
 −

nPnQ

(nP + nQ)
2 0 

Median 1/2 1/2 -1/4 0 

Ward nR + nP
nR + nP + nQ

 
nR + nQ

nR + nP + nQ
 −

nR
nR + nP + nQ

 0 

Table 2 Computations of group distancesii. 

In practice the Single and Complete linkages are frequently adopted, and a modified 

agglomerative algorithm has the following steps: 

1. Construct the finest partition. 

2. Compute the distance matrix: 𝒟 

3. Find the smallest (Single linkage)/ largest (Complete linkage) value (between 

objects m and n) in 𝒟. 

4. If m and n are not in the same cluster, combine the clusters m and n belonging to 

together, and delete the smallest value. 

Back to step 3 until all clusters are agglomerated into 𝒳 or the value in step 3 

exceeds the preset level 

In practice a linear search in the original distance matrix replace the computing new 

distance matrix in every step. 

2.2.2. K-Means Clustering 

K-means is a prototype-based clustering technique which defines a prototype in 

terms of a centroid; a centroid is usually the mean of group of points. The basic K-

means algorithm is that: 

The k in the term K-means is a user specified parameter which indicates the number 

of clusters desired. Firstly k initial centroids are chosen, each point is then assigned 

to the closest centroid. The group of points assigned to the same centroid forms a 

cluster, then the centroid of this cluster is updated based on the points in the cluster, 

and repeat this assignment and updating until those centroids remain the same. This 
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basic K-means algorithm is described as followingiii: 

1. Select K points as initial centroids. 

2. Repeat 

3.  From K clusters by assigning each point to its closest centroid. 

4.  Recomputed the centroid of each cluster. 

5. Until centroids do not change. 

For data in Euclidean space, the proximity measure is Euclidean distance, and the 

objective function is to minimize sum of the squared L2 distance of an object to its 

cluster centroid which is the mean of the cluster. 

The initial centroids are very important; choosing initial centroids randomly may 

produce poor performance. Here are effective approaches: cluster the sample of 

points using a hierarchical technique, then k clusters are extracted from the 

hierarchical clustering and the centroids of those clusters are used as the initial 

centroidsiv.  

Another approach is to choose the first point at random or the centroid of all points; 

select the point that is farthest from any of the initial centroids already selected as 

the successive initial centroid. 

During the clustering, we can update centroids incrementally after each assignment 

of a point to a cluster. This guarantees that empty clusters are not produced since all 

cluster start with a single point, and if a cluster ever has only one point, then that 

point will always be reassigned to the same cluster.v 

 

2.3. Discriminant Analysis 

When known a priori about the clusters, the Discriminant analysis can be used to 

classify one or several observations into these known groups. Denote these groups or 

populations Πj, j = 1,2,⋯ , J  and the set of methods and tools in Discriminant 

analysis is used to distinguish these populations and allocate an observation x to one 
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of these groups. We also define a set of regions Rj that if x ∈ Rj it is identified as a 

member of population Πj. 

Denote the densities of each population  Πj  by  fj(x) . The maximum likelihood 

Discriminant rule (ML rule) is given by allocating x to  Πj  maximizing the 

likelihood Lj(x) = fj(x) = maxi fi(x). So the region Rj is defined as: 

Rj = {x: Lj(x) > 𝐿i(x) for  = 1,… , J,  ≠ j} 

Theoremvi Suppose Πj = Np(μi, Σ). 

The ML rule allocates x to Πj, where j ∈ *1, … , J+ is the value minimizing the square 

Mahalanobis distance between x and μi: 

δ2(x, μi) = (x − μi)
ΤΣ−1(x − μi),  = 1,… , J 

In the case of J=2, 

x ∈ R1⟺ αΤ(x − μ) ≥ 0 

Where α = Σ−1(μ1 − μ2) and μ =
1

2
(μ1 + μ2). 

In practice, if the data come from multivariate normal distribution Np(μj, Σ). And 

there are nj observations in each group, the μj is estimated by x̅j , Σ is estimated by 

𝒮jwhere j∈ *1,… , J+. Then common covariance may be estimated by: 

𝒮u =∑nj (
𝒮j

n − J
)

J

j=1

 

Where n = ∑ nj
J
j=1 . According to the theorem, allocate a new observation x to the 

population Πj which minimizes: 

(x − x̅i)
Τ𝒮u

−1(x − x̅i) for  ∈ *1, … , J+ 

Fisher’s linear discrimination function is another method in Discriminant analysis. 

Given a linear combination of observations 𝒴 = 𝒳a, then the total sum of squares of 

y, ∑ (yi − y̅)
2n

i=1  is equal to 𝒴Τℋ𝒴 = aΤ𝒳Τℋ𝒳a = aΤ𝒯a. Where ℋ = ℐ − n−11n1n
Τ 

is the centering matrix and 𝒯 = 𝒳Τℋ𝒳. 

The Fisher’s idea is to find the linear combination aΤx which maximizes the ration of 

the between-group-sum of squares to the within-group-sum of squares. 
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Where the within-group-sum of squares is: 

∑𝒴j
Τℋj𝒴j =∑aΤ𝒳j

Τℋj𝒳ja

J

j=1

= aΤ𝒲a

J

j=1

 

And the between-group-sum of squares is: 

∑nj(y̅j − y̅)
2
=∑nj{a

Τ(x̅j − x̅)}
2
= aΤℬa

J

j=1

J

j=1

 

Finally the projection vector maximizes the ratio: 
aΤℬa

aΤ𝒲a
 is the eigenvector of 𝒲−1ℬ 

that corresponding to the largest eigenvalue. 

3. Multivariate analysis with real data sets 

Section 2 introduces some typical multivariate statistical analysis, in this section 

these methods are applied to result of the real experiments of the company Biota 

Guard.  In the exposed experiment, 7 mussels are placed in the exposure tank and 

the tank is deposited in a manipulative environment. The nominal concentrations of 

the water where these mussels live varies every three days, meanwhile the heart 

rates of each mussel are recorded as the monitoring data. Other 7 mussels in control 

tank acts as a contrast and their heart rates also are measured in the control 

experiment. 

Section 3.1 describes the data sets measured in the exposed experiment. Data set is 

represented by principal components in section 3.2. Section 3.4 tries to group the 

observations from different phases in experiment. Base in the clustering results in 

section 3.4, section 3.5 classifies data to the known clusters.  

3.1. Description of data sets 

As the Figure 3-1 shows, water in exposure tank is sampler every three days. The 

nominal concentration in the water starts from 0 mg/l, then rises slowly to 0.0125 
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mg/l, 0.06 mg/l, 0.125mg/l, 0.25mg/l, and finally reaches the peak 0.5mg/l. The 

nominal concentration in the last four days falls to 0 mg/l. According to the nominal 

concentrations of the water samples, the experiment involves seven phases with 

different concentrations. 

 

Figure 3-1 Nominal concentration in exposure tank 

Besides the water is sampled, the raw heart beat signals of each mussel in the 

experiments are collected and then calculated as the heart rates of mussels. Every 

three seconds the heart rates of seven mussels in the same experiment are recorded; 

these seven variables form a multivariate and once record is an observation of the 

multivariate. These two experiments last 22 days, all the observations during these 

days are stored in documents. Dealing with all the observations in one experiment as 

a data matrix is unreasonable and it is hard to investigate the huge data matrix. 

Considering that the living environment of these mussels in the exposure tank varies 

during the exposed experiment and goes through seven phases according to the 

nominal concentration in water samples. It is obviously that the heart rates of these 

mussels change due to the variation of the living condition, and then we can group 

these observations into different data matrix. Partitioning these observations from 

0

0.1

0.2

0.3

0.4

0.5

0.6

Water sample 

Nominal
concentrations
mg/l
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the same environmental condition into a group is possible, and these observations in 

the same group form to a data matrix. Finally we get seven data matrices. 

3.2. Comparison of data sets 

This paper starts with some descriptive techniques, trying to give a short outline of 

the data sets.  7 variables represent the heart rates of each mussel, and comparing 

these variables with each other can tell the difference of these mussels. Figure 3-2 

shows the distributions of each mussel in the exposed experiment when the nominal 

concentration is 0 mg/l. We can find the physiological properties of these mussels: 

 Mussel 4, and 6 have higher heart rate medians than the others which are 

8.662 and 8.58 separately; 

 Mussel 2, 5, and 7 have lower heart rate medians than others which are 

6.385, 6.3 and 6.118 separately; 

 Mussel 5 and 6 is more spread out mussel than the others; 

 Mussel 1 and 3 has the most outliers among them. 
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Figure 3-2 The heart rates of 7 mussels in exposed experiment phase 1 

When the nominal concentration rises to 0.0125 mg/l, situation changes and is 

shown in Figure 3-3: 

 Almost all the mussels become more spread out, especially the mussel 3; 

 The mussel 1, 3 and 5 rise their heart rate medians, and the medians of the 

others descend; 

 Mussel 1 and 4 get more outliers, but mussel 3 has no outlier since it is 

extremely spread out. 

m
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Figure 3-3 The heart rates of 7 mussels in exposed experiment phase 2 

As the living environment goes worse, Figure 3-4 shows these mussels act in a 

different way: 

 The heart rate median of mussel 1 goes up to 12.614; it is particularly higher 

than the value in the previous phase. Although there is no outlier in the data 

set, it is highly spread out; 

 Mussel 3, 4 and 6 get more outliers, while mussel 7 gets less outlier; 

 The heart rate medians of each mussels change as their own trends: these 

mussels which raise the medians in previous phase have higher median and 

these mussel which descend their medians in previous phase have lower 

medians. 
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Figure 3-4 The heart rates of 7 mussels in exposed experiment phase 3 

Figure 3-5 represents the situation when the nominal concentration gets to 0.125 

mg/l; the data set has the following properties: 

 The heart rate medians of the mussel 1 and 5 continue to get higher, and the 

heart rate medians of the mussel 3 and 4 continue to get down; 

 The mussel 2, 6 and 7 act abnormally since the medians stop declining and 

rise slightly; 

 The mussel 3 and 4 get less outliers and the mussel 5 and 7 get more outliers. 
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Figure 3-5 The heart rates of 7 mussels in exposed experiment phase 4 

When the nominal concentration gets to 0.25 mg/l, the data set has the following 

properties and that is shown in Figure 3-6: 

 The heart rate medians of the mussel 1 and 5 continue to get higher, and the 

heart rate medians of the mussel 3 and 4 continue to get down; 

 The heart rate median of the mussel 2 declines slightly, it seems that the its 

behavior tend to be stable; 

 The mussels 6 and 7 have higher medians, this fellow their trend in the 

previous phase. 
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Figure 3-6 The heart rates of 7 mussels in exposed experiment phase 5 

Then the nominal concentration gets to the peak 0.5 mg/l, Figure 3-7shows the 

distribution of the data set in phase 6: 

 The heart rate medians of the mussel 1 and 5 continue to get higher, 

especially the median of mussel 5 rises from 6.294 to 7.895; 

 Except the mussel 4, all the medians of the other mussels get higher. The 

median of mussel 4 always decline as the environment gets worse; 
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Figure 3-7 The heart rates of 7 mussels in exposed experiment phase 6 

Finally, the circumstance returns to normal and the nominal concentration in the water is 

0 mg/l. we can find that in Figure 3-8: 

 Except the mussel 3, all other mussels get lower heart rate median; 

 The mussel 3 reacts intensively, its heart rate median rise from 6.829 to 15.721 

and the data is more spread out; 

 As the living environment stops getting worse and finally returns to normal, these 

mussels get more outliers and that maybe a reaction to the change of nominal 

concentration. 
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Figure 3-8 The heart rates of 7 mussels in exposed experiment phase 7 

3.3. Principal component analysis 

Now turn to multivariate methods. By the means of the multivariate statistical 

analysis we can study the variables at the same time. These variables are treated as a 

measurement to the system we are studying. In this paper, the marine environment 

is the system under investigation and the 7 mussels are the special means which 

reflect the variation of the system. Each observation of the multivariate represents 

the current state of the system. However if we try to use these variables to describe 

the system, we may find it is hard to plot these observations since the system is 

measured in a 7-dimensional space. PCA helps us to find a lower dimensional way to 

descript the system.  

In order to investigate the principal components when the marine environment 

varies, two data sets in the two continuous phases are selected to estimate the PCs. 
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At first, the data sets from the phases where the nominal concentration in the water 

is 0 mg/l and 0.0125mg/l are selected. All these 7 variables measure the heart rates 

of mussels in the same unit, it is naturally that implement the PC analysis with these 

two data sets. Recall that in section 2.1 the vector of eigenvalues of the covariance 

matrix of these two data sets is 

ℓ =  (59.8875, 31.3092, 3.6435, 2.9817, 0.9838, 0.7168, 0.4776)Τ 

And first three corresponding ℊ𝑖 are given by the columns of the matrix 

𝒢 =  

(

 
 
 

0.0774 0.9946 0.0580
−0.0219
0.9949
−0.0245
−0.0192
−0.508
−0.131

−0.0334 0.1060
−0.0795 0.0313
−0.0206 0.0372
0.0423 −0.5399
−0.0335 0.8304
−0.0053 0.0456)

 
 
 

 

 

The first column  

ℊ1 = (0.0774, −0.0219, 0.9949,−0.0245, −0.0192,−0.508,−0.131) 

Is the first eigenvector and gives the weights used in the linear combination of the 

original data in the first PC. The first PC is dominated by the third variable that is the 

third mussel. 

The second column 

ℊ2 = (0.9946,−0.0334, −0.0795,−0.0206, 0.0423, −0.0335,−0.0053) 

tells that the second PC is dominated by the first variable. 

The third column  

ℊ3 = (0.0580, 0.1060, 0.0313, 0.0372,−0.5399, 0.8304, 0.0456) 

shows that the third PC is described by the difference between the sixth variable and 

the fifth variable. With the PCs these observations are plotted in a new coordinate 

system. Figure 3-9 shows the observations onto the first three principal components 

and the variability explained by each principal component. In these plots the 

observations from the phase 1 are marked by the sign ‘+’ and the rest form the phase 

2 are marked by the sign ‘o’. The first three principal components explained 
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94.8402% variability of these two original data sets. 

 

Figure 3-9 Principal components of the data sets in phase 1&2 

As the experiment gets to phase 3, two data sets from phase 2 and 3 are merged to 

perform the principal component analysis. The vector of eigenvalues of the 

covariance matrix of these two data sets is 

ℓ =  (48.9388, 41.7382, 4.5559, 2.1742, 1.9387, 0.4062, 0.2481)Τ 

And first three corresponding ℊ𝑖 are given by the columns of the matrix 

𝒢 =  

(

 
 
 

0.9353 0.3530 0.0082
−0.0137
−0.3530
0.0086
0.0144
−0.0095
0.0043

0.0028 −0.0067
0.9342 0.0482
−0.0473 0.9969
−0.0054 0.0548
−0.0179 0.0192
−0.0071 0.0168)

 
 
 

 

And we can find that during the experiment shifting from phase 2 to phase 3 the first 

three PCs are dominated by the first variable, third variable and fourth variable 

separately. These three PCs explained 95.2329% variability of these two original data 

sets. Figure 3-10 shows the observations are plotted in the new system. 
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Figure 3-10 Principal components of the data sets in phase 2&3 

The same analysis is applied to the data sets from phase 3 and 4. The vector of 

eigenvalues of the covariance matrix of these two data sets is 

ℓ =  (70.0470, 14.9497, 8.2788, 3.4448, 2.3006, 0.5259, 0.4533)Τ 

 And first three corresponding ℊ𝑖 are given by the columns of the matrix 

𝒢 =  

(

 
 
 

0.9947 −0.1008 0.0113
0.0046
0.1012
−0.0053
−0.0126
0.0145
−0.0032

0.0228 −0.0107
0.9896 −0.0877
0.0782 0.9675
−0.0508 −0.2360
−0.0224 −0.0110
−0.0276 −0.0112)

 
 
 

 

It shows the similar result of the previous analysis: the first three PCs are dominated 

by the first variable, third variable and fourth variable separately and 93.2755% 

variability is explained. Figure 3-11 shows the result of the principal component 

analysis. 
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Figure 3-11 Principal components of the data sets in phase 3&4 

Go on with the principal component analysis, the vector of eigenvalues of the 

covariance matrix of these two data sets from the phase 4 and 5 is 

ℓ =  (76.9533, 11.9110, 4.7217, 2.4202, 1.9662, 1.1743, 0.8534)Τ 

And first three corresponding ℊ𝑖 are given by the columns of the matrix 

𝒢 =  

(

 
 
 

0.9999 −0.0107 −0.0069
−0.0046
0.0100
−0.0010
−0.0071
0.0079
0.0002

0.0192 −0.0342
0.9942 −0.0909
0.0455 0.0383
−0.0198 0.0165
0.0912 0.9928
0.0178 −0.0568 )

 
 
 

 

There is a difference in the result: the third principal component is dominated by the 

sixth variable. 93.5859% variability is explained and is shown in the Figure 3-12.  
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Figure 3-12 Principal components of the data sets in phase 4&5 

When the environment goes to the worst condition, the vector of eigenvalues of the 

covariance matrix of these two data sets from these consequent phases is 

ℓ =  (60.1945, 22.5148, 6.5491, 5.6506, 2.1723, 1.7149, 1.2038)Τ 

And first three corresponding ℊ𝑖 are given by the columns of the matrix 

𝒢 =  

(

 
 
 

0.9998 0.0102 0.0034
−0.0164
−0.0095
−0.0061
−0.0036
−0.0085
0.0044

0.0947 0.2063
0.9357 −0.3300
−0.0471 −0.0492
0.1159 0.3009
0.1105 0.6025
0.2959 0.6266 )

 
 
 

 

The situation for the first two principal components is the same, but the third 

principal component is described by the difference between the third variable and 

the sum of the last three variables. 89.2584% variability is explained by the three PCs 

and it is shown in the Figure 3-13. 
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Figure 3-13 Principal components of the data sets in phase 5&6 

Finally the experiment ends with nominal concentration is 0 mg/l once again. The 

vector of eigenvalues of the covariance matrix of these two data sets is 

ℓ =  (73.7749, 14.3179, 5.8716, 3.3349, 1.2345, 0.9955, 0.4707)Τ 

And first three corresponding ℊ𝑖 are given by the columns of the matrix 

𝒢 =  

(

 
 
 

−0.0076 0.9957 0.0411
−0.0382
0.9952
−0.0295
−0.0642
−0.0303
−0.0466

0.0187 0.1254
0.0134 0.0370
0.0266 0.0743
0.0508 −0.0219
−0.0463 0.9873
0.0509 0.0222 )

 
 
 

 

This result is that the first three principal components are dominated by the third 

variable, first variable and the sixth variable separately and 93.9645% variability is 

explained. Figure 3-14 shows the details of the result. 
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Figure 3-14 Principal components of the data sets in phase 6&7 

3.4. Cluster analysis 

By now, the writer achieved to find the principal components for these variables 

during the exposed experiment. Consider that the variables represent the 

environment and we are interesting in how well the variables reflect the variation of 

the marine circumstance, the next point in this paper is to investigate whether the 

observations from different phases in the experiment can form into clusters naturally 

based on the changing environmental conditions. 

At first, the writer tries to group these data sets with the hierarchical clustering. Since 

the hierarchical clustering group data by creating a cluster tree or dendrogram, it has an 

advantage that the data can be grouped over a variety of scales since the multilevel 

hierarchy is specified by users. Although this advantage is attractive and gives flexible 

solutions to the problem, hierarchical takes time and memory space to compute the 
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similarity/dissimilarity between the observations and the proximity between these new 

objects. When the writer study two datasets together and attempt to employ the 

hierarchical method to cluster the datasets, it is disappointing that the lack of computer 

memory becomes the barrier for the further investigation.  

In the experiment, each dataset in an experimental phase contains over 20,000 

observations. When more than one datasets in different phases are selected to study, 

them emerge to a larger dataset which totally contains over 40,000 observations. In the 

first step of the hierarchical clustering analysis, the distance or similarity between these 

observations are calculated and stored in a vector. For a data matrix 𝒳(𝑛 × 𝑝)  with 𝑛 

measurements or objects of 𝑝  variables, the proximity or similarity among objects is 

described by a matrix 𝒟(𝑛 × 𝑛). The matrix 𝒟 is a symmetric matrix and these diagonal 

components are equal 0, so in practice the reduced distance information can be stored in 

a vector and it contains 
(𝑛−1)×𝑛

2
 components. However more than 40,000 observations are 

selected in once analysis, and then over 8 × 108 components are created in a vector. In 

most personal computers, the operation system cannot support such a large data. In the 

trial hierarchical clustering analysis, the MATLAB function terminates unexpectedly and 

throws an exception ‘out of memory’. This requirement of enough memory for 

computation forces the writer to give up investigating these data sets with the 

hierarchical clustering analysis.  

Then this paper turns to k-means clustering. Although unlike hierarchical clustering, 

k-means clustering creates only a single level of clusters, it operates on actual 

observations rather than the larger set of dissimilarity measures. This avoids the 

failure of ‘out of memory’ during the investigation. By now the k-means clustering 

analysis is suitable for the scale of these large data sets, and then the problem is that 

if there is distinct difference between these observations collected from experiment 

phases and this method can group these observations into clusters which consistent 

with their original phases. 

As the nominal concentration of the water varies continuously and impacts the 
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behaviors of these mussels, their physiological characteristic may also change. Unlike 

a physical or chemical sensor, the heat rate of a mussel cannot accurately reflect the 

tiny variation of the environment. That is physiological characteristic of the mussels 

change slowly during the exposed experiment and there is no obvious distinction 

between the observations in two continuous phases. 

At first I consider the data sets from phase 1 and 5, there may be sufficient difference 

between the observations form the original phases. There are 20,880 observations in 

phase1 and 25,920 observations in phase5. In MATLAB k-means function provides 

several users-define parameters to specify how to cluster the objects. Generally the 

desired number of clusters and the distance measure of objects are defined for the 

analysis. Since data sets come from two phases, it is reasonable to set the desired 

number of clusters is two.  And specify the ‘city block’ distance measure for test. 

 

Figure 3-15Silhouette for 2 clusters measured by city block 

The silhouette plot displays a measure of how close each point in one cluster is to 

points in the neighboring clusters. This measure ranges from +1, indicating points 
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that are very distant from neighboring clusters, through 0, indicating points that are 

not distinctly in one cluster or another, to -1, indicating points that are probably 

assigned to the wrong cluster.vii In the Figure 3-15, most points in each cluster have a 

value less than 0.6, indicating that the clusters are not well separated to each other. 

Especially the first cluster contains many points with low silhouette values and a few 

points with negative values, indicating that those two clusters are not well separated. 

‘Correlation’ distance measure treats the observations as sequences of values and 

the clusters minus the sample correlation between points. Figure 3-16 shows the 

result of clustering by the ‘correlation’ measure. 

 

Figure 3-16Silhouette for 2 clusters measured by correlation 

There are more than half of points in each cluster have a value greater than 0.6 and no 

negative value, it shows that clustering these data by the ‘correlation’ measure is better 

than ‘cityblock’ measure. If consider each observation as a vector in the multidimensional 

space, 'cosine' measure minus the cosine of the angle between points. 
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Figure 3-17Silhouette for 2 clusters measured by cosine 

 The clustering by the ‘cosine’ measure shown in Figure 3-17 seems similar to the result 

of clustering by the ‘correlation’ measure, but which one provides a better solution? The 

quantitative way to measure the solution is to check the average silhouette values for the 

two cases. The mean of the silhouette value of the ‘correlation’ measure solution is 

0.5847 and that of the silhouette value of the ‘cosine’ measure solution is 0.6360, that is 

to say clustering the data by the ‘cosine’ measure than by ‘correlation’ measure. Don't 

jump to conclusions; it is hastily to say clustering by ‘cosine’ measure is the best solution 

since Squared Euclidean distance is a possible measure for the distance between 

observations. Figure 3-18 plots the silhouette for each cluster after clustering analysis by 

‘sqEuclidean’ measure. 
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Figure 3-18 Silhouette for 2 clusters measured by sqEuclidean 

 The mean of the values of all the points in two clusters is 0.6497; it is greater than the 

means of these previous solutions. After the comparison of mean values of different 

solutions, clustering by ‘sqEuclidean’ is the most suitable way for the data sets in the 

exposed experiment. Does the number of clusters affect the quality of clustering? 

Increase the number of clusters to see if k-means clustering can find a better grouping of 

the data. The result of the clustering the data sets into 3 groups by the ‘sqEuclidean’ 

measure is shown in Figure 3-19, almost all the values of points in cluster3 is less than 

0.6 and some points in cluster 1 and 3 have a negative values. The mean value of points 

in 3 clusters is 0.4744; this is fairly less than that of above clustering. 
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Figure 3-19 Silhouette for 3 clusters measured by sqEuclidean 

By now, we can find that for two data sets from two different experimental phases 

measuring the squared Euclidean distance between the observations and partition 

them into 2 clusters is the best choice to clustering the data. 

In the exposed experiment, the heart rates of these seven mussels are treated as a 

multivariate, during the clustering analysis the computation of the distance between 

these observations from the multivariate costs time since these observations locate 

in 7-dimensinal space. Considering section 3.3 gives a method to represents the 

multivariable in a reduced dimensional space, it may save time to calculate the 

distances of the observations in a reduced dimensional space. Continue the 

investigation with the data sets from phase 1 and 5; we work out the principal 

components of the data at the first step. The first three eigenvectors of the 

covariance matrix of the data are given in 𝒢. 
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𝒢 =  

(

 
 
 

0.9059 0.4059 0.1040
−0.0715
−0.3553
−0.1206
0.1694
−0.0648
0.0214

0.0553 0.1183
0.8825 −0.2620
0.1232 0.3299
−0.1852 −0.5324
0.0625 0.6973
0.0025 −0.1673 )

 
 
 

 

Now the original data set can be represented in a three dimensional space using the 

first three principal components, the locations of the observations from two distinct 

phases are plotted in a three dimensional space in Figure 3-20 where observations 

from phase 1 in red and others from phase 2 in blue. 

 

Figure 3-20Observations from phase 1 and 5 

 

Figure 3-21 Observations clustered by the original data sets 

After k-means clustering the original datasets into 2 groups, the observations in 
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group 1 are presented by PCAs in blue and the other points in brown shown in Figure 

3-21 from group 2. Compare these two figures, we can find that the groups 

generated by the k-means largely match the original case where observations come 

from different phases. Only a bank of observations belong to phase 5 are allocated to 

a wrong group and are separated from the other observations from phase 5. 

Clustering the observations according to their reduced information would save time, 

and the result is shown in Figure 3-22. 

 

Figure 3-22 Observations clustered by the PCAs 

 Base on the reduced information of the original data, the observations are grouped 

into two clusters in the same way as clustering with the original data sets according 

the comparison of Figure 3-21 and Figure 3-22. 

3.5. Discriminant Analysis 

The data collected from the exposed experiment can be treated as training data to 

estimate the parameters of discriminant functions of the predictor variables. Base on 

the estimated parameters, Discriminant functions determine boundaries in predictor 

space between various classes and classify a new data to one of the various classes. 

Go on the investigation with data sets from phase 1 and 5, in section 3.4 k-means 
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clustering analysis group the data from these two data sets into two clusters 1 and 2. 

Now these two data sets can be treated as training data and the grouping of them is 

known. Given a new data, it can be classified to one of these two groups. Consider 

other data sets from the rest phases in the experiment, as the nominal concentration 

continuously varies the data sets in the phase which is close to phase 1 should be 

classified to cluster 1, similarly the data sets in the phase which is close to the phase 

5 should be classified to cluster 2. 

MATLAB function ‘classify’ classifies each row of the data in sample into one of the 

groups in training. Consider the data set from phase 2, the nominal concentration is 

0.0125 mg/l, it close to the nominal concentration in phase 1 and is far from the 

concentration 0.25 mg/l in phase 5. The behaviors of these mussels in phase 2 should 

not have great variation compare to that in phase 1 since the nominal concentration 

just slightly rises. That is the observations of the multivariate in phase 2 should be 

similar to that collected in phase 2 and have distinct difference to that collected in 

phase 5 because of the massive changes in environment. Using the ‘classify’ function to 

classify the observations in phase 2, and we except that all or most of these observations 

are classify to the natural cluster of phase 1. 

 At first, two data sets from phase 1 and 5 are selected to be training data and 

observations of them are clustered into their natural groups. The type of discriminant 

function can be specified in the ‘classify’. 

 Linear: this type of discriminant function fits a multivariate normal density to 

each group, with a combined estimate of covariance, 22479 of 25920 

observations are classified to the cluster of phase 1. 

 Diaglinear: this type of discriminant function also fits a multivariate normal 

density to each group, but with a diagonal estimate of covariance, 22366 

observations are classified to the cluster of phase 1. 
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 Quadratic: this function fits multivariate normal densities with covariance 

estimates stratified by group, 23528 observations are classified into the desired 

cluster. 

 Diagquadratic: it function fits multivariate normal densities with diagonal 

covariance estimates stratified by group, 23462 observations are classified into 

the desired cluster. 

 Mahalanobis: it uses Mahalanobis distances with stratified covariance estimates, 

23396 observations are classified into the desired cluster. 

Apply the analysis to the data sets from phase 4, sine it is a neighboring phase to 

phase 5, the observations in phase 4 are supposed to classified into the natural 

cluster of phase 5. ‘Linear’ discrimination function classifies 24165 of 25920 

observations from phase 4 into the cluster of phase 5; ‘Diaglinear’ function correctly 

classifies 24170 observations; 23523 observations in phase 4 are grouped into cluster 

2 by ‘Quadratic’ function; 23498 observations are identified by ‘Diagquadratic’ 

function; finally the default ‘Mahalanobis’ function classifies 23705 out of 25920 

observations. 

Compare the results of the discriminant analysis with data sets 2 and 4, it seems that 

‘Mahalanobis’ discriminant function gives a balanced performance to these two data 

sets. Other discriminant functions also produce acceptable results. Continue the 

analysis in section 3.4, the clustering of the data sets from phase 1 and 5 is created 

by the k-means clustering analysis. Using the clustering result instead of the natural 

grouping and the data sets from phase 1 and 5 still are the training data. 

22571 of 25920 observations in phase 2 are classified into the cluster that belongs to 

data from phase 1 and 15013 out of 25920 observations in phase 4 are classified to 

the cluster  that belongs to the data from phase 5. The result of discriminant analysis 

to data set from phase 4 is unsatisfactory, since more than third of observations are 

classified to the cluster that belongs to data from phase 1 by mistake. Recall to the 
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Figure 3-20 and Figure 3-21, we can find that part of the observations from phase 5 

are assigned to the cluster which belongs to the data from phase 1. In the result of 

the k-means clustering analysis, all the observations from phase 1 and part of 

observations from phase 5 are grouped into a new cluster and the rest of the 

observations from phase 5 forms to another cluster. This imperfect training data and 

its clustering lead to poor performance of the discriminant analysis. 

4. Discussion and Conclusion 

The data we collected are from the real-time monitoring sensors. The set of sensors 

is composed of biosensors, physical sensors and chemical sensors. The 

measurements of the physical environment consist of the current speed of the 

seawater, the direction of the seawater, the conductivity of the seawater, and the 

pressure in the seawater of the sensors station. These 5 monitoring data are 

obtained simultaneously. Chemical sensors monitor the turbidity of the seawater, 

content of oxygen in seawater and the content of chlorophyll in seawater which 

indicates if the food for the mussels is available. In general, these sensors form a 

measurement of the sea environment. However these three types of sensors 

measure the different aspects of the environment but performance differently. 

Physical sensors give accurate measurements but cannot reflect the condition of 

pollution directly; although the chemical sensors give the accurate measurements of 

the pollution in the sea but it takes time to get the result of the sensors. The heart 

rates of these mussels can be collected immediately, and the results of the statistical 

analysis of the data can be produced quickly and be used to reflect situation of the 

environment. 

At first phase, the values of the heart rate of almost all the mussel are centralized, 

and some extremely lower and higher values of their heat rates are treated as 

outliers for each mussel. As the nominal concentration rise, especially the values of 
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the heart rates of the mussel 1 and 3 vary widely, so the observed data from their 

heart rates spread out in a wide range. Compare to mussel 1 and 3, other mussels 

seems not sensitive to the environmental deterioration, the values of their heart 

rates rate  bit more diffused than before, but more outliers occur. This phenomenon 

apparently occurred in the mussel 5. The results of the principal component analysis 

can also represent the variation of the characteristics of their heat rates. Take 

account of the overall PCs for the experiment, the first and second principal 

components are always represented by the values of heart rates of the mussel 1 and 

3 respectively. This is because that the heat rates of these two mussels have the 

largest variance during the experiment. As the condition of the environment in the 

experiment changes, more outliers of the heart rates of mussel 4 and 5 occur. This 

lead to the increment of the variance of these mussels’ heart rates, so the third 

principal components is represented by the value of the heart rate of mussel 5 or 4 

or the combination of them. 

In the section 3.4 data sets from two phases are chose to test the clustering analysis. 

Two kinds of clustering analysis are considered, and the hierarchical clustering 

analysis is found to be inappropriate for large data set. However the k-means 

clustering analysis did not performance well, it grouped part of the data from phase 

5 to the cluster of phase 1 by mistake. The poor performance is related to the 

algorithm and the feature of the data sets. As the figures show in section 3.2, the 

values of the first two PCs-mussels 1 and 3 spread out in a large range, and most 

parts of ranges are overlapped that is most observed values of them in these two 

phases are approximate. The algorithm of the analysis is to minimize the sum of the 

distances of the observations to the two centroids of two clusters; two approximate 

values from two different mussels may by group into one cluster by mistake. From 

this point, we can find that the selection of the mussels is very important. Look into 

the mussel 1 and 3, they seem very active during the experiment, but they act in an 

irregular way. The large variance of data observed from the mussel 1 and 3 helps these 
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two mussels to be principal component, but it did not reflect the variation of the 

environmental condition exactly. In the further study or practical deployment of these 

biosensors, the optimal choice is that the median value of the mussel varies as the 

environmental change; and the range of the observed values should not be significantly 

large because this would reduce the impact of the overlapping of data. Finally several 

this kind of mussels form to a multivariate will perform better. 

Discriminant analysis is very useful to classify a new observed data. However its excellent 

results are based on good training data set. Poor or wrong clustering causes to group a 

new data into an undesired cluster. If we choose optimal mussels as multivariate, the 

data we collected in the experiment can be easily group by clustering analysis and the 

results can be used as training data directly for discriminant function.     

 

5. Further Comments 

The multivariate analysis consists of many methods for different purposes, and the 

data is numerous as time goes. Choosing sample data and analyzing them manually 

would lose some information and waste time. As in the paper, all the analyses are 

implemented in the MATLAB, how these functions cannot be applied to real-time 

monitoring. Since the PI system provides the collection, storage and access of the 

data, it facilitates we retrieve the data. More over PI system also provides an add-in 

tool ACE (Advanced Computing Engine) for computation, the computation is 

managed by the PI system and the result can be written back to the system. In the 

further work, we can turn to PI system, write some computations in VB, and deploy 

the computation to the data. 
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