
Frontpage for master thesis

Faculty of Science and Technology

Decision made by the Dean October 30
th

 2009

Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization:

Cybernetics/Signal processing

Spring semester, 2011

Open / Restricted access

Writer: Andreas Waal

…………………………………………
(Writer’s signature)

Faculty supervisor: Tom Ryen

External supervisor(s):

Titel of thesis:

Optical Character Recognition(OCR) on Electrical Specification Plates

Credits (ECTS):

30

Key words:

 OCR, pattern recognition, feature extraction,

Image processing, segmentation,

classification, direction extraction, k-nearest-

neighbor

 Pages: 31

 + enclosure: 0

 Stavanger, ………………..

 Date/year

Abstract

In this paper we have developed an Optical Character Recognition(OCR) system
to be used on electrical speci�cation plates. The project is given by the Stavanger
based company Verico AS(Verico). Verico performs large scale of Asset Documentation,
where photo documentation is one of the main tools. Today the data collection done
from the photo documentation are performed manually, which is a monotonous and
time consuming process. Our system is developed to streamline their data collection
process, by automatically reading speci�cation data from images captured of electrical
speci�cation plates.

The system contains two main sections, a preprocessing part and a character recogni-
tion part. The preprocessing part performs several image processing operations includ-
ing background segmentation, character segmentation and several operations to prepare
the image for classi�cation. Background segmentation is performed using Otsu`s thresh-

olding method. For character segmentation we use vertical histogram analysis. We also
present a modi�ed version of vertical histogram analysis for splitting of connected char-
acters.

The character recognition consists of two main parts, feature extraction and classi-
�cation. We use direction extraction as our feature extraction method. This method
looks at direction transitions in thinned version of the character one wish to classify.
This method is originally presented as a method for recognition of handwritten char-
acters, in our work we present the accuracy we obtained using this method against
electrical speci�cation plates. Classi�cation is done using k-nearest-neighbor method.

i

Contents

Abstract i

1 Introduction 1

1.1 Project background . 1
1.2 Employer . 1
1.3 Motivation . 1
1.4 Paper outline . 1

2 Problem 2

2.1 Background to the problem . 2
2.2 Problem outline . 3

3 Optical Character Recognition (OCR) 5

3.1 History . 5
3.2 State of art . 5
3.3 Commercial available products . 6
3.4 Our problem and commercial available systems 6

4 Preprocessing 7

4.1 Background segmentation . 7
4.1.1 Segmentation methods . 8
4.1.2 Thresholding tests . 9

4.2 Character segmentation . 10
4.2.1 Vertical histogram for character segmentation 10
4.2.2 Modi�ed vertical histogram . 11

4.3 Image preparation . 13
4.3.1 White on black . 13
4.3.2 Removing frames . 13
4.3.3 Character thinning . 14

5 Character recognition 15

5.1 Feature extraction . 15
5.1.1 Direction extraction . 15

5.2 Classi�cation . 21
5.2.1 K-nearest-neighbor . 21
5.2.2 Distance measurement . 22

5.3 Training data . 22

6 Experiments and testing 23

6.1 Available data . 23
6.2 Our training data . 24
6.3 Test bench . 24
6.4 Experiment results . 25
6.5 System computation performance . 27

6.6 Discussion of test results . 27

7 Conclusion and further work 29

7.1 Conclusion . 29
7.2 Future work . 29

1 Introduction

1.1 Project background

This thesis is written in the subject �Cybernetics and Signal Processing� at the University
of Stavanger. The work performed are done spring 2011. A pilot project to the thesis was
performed autumn 2010, in a subject which was weighed 10 ECTS points.

1.2 Employer

This problem is given by Verico AS(Verico). Verico is a company based in Stavanger,
Norway, with Asset Data Management and Software Development as their primary areas
of work. Their main �eld of business are directed against Transmission System Operators
(TSO), such as Lyse and Statnett SF, where they in addition to the Asset Data Management
and Software Development also performs Asset Documentation. Much of this documentation
are done through photo documentation, which basically are documentation done though
capturing images.

1.3 Motivation

The motivation for this paper is to automate parts the photo documentation processes used
by Verico. Photo documentation are used as an important tool when documenting electrical
installations, components etc. This is done through capturing images of speci�cation plates.
The data captured from the speci�cation plates are manually inputted into the Asset Data
Management systems developed by Verico. When the amount of speci�cation plates are in
the tens of thousands this makes is a time-consuming and monotonous task.

If one could �nd a method to automate this process it would be a signi�cant automation
of the system.

1.4 Paper outline

This paper is divided in seven chapters.

1. Introduction - Introduction to the employer and the motivation for this paper.

2. Problem - Detailed description of our problem.

3. Optical Character Recognition (OCR) - Introduction to OCR, historically and on a
general basis.

4. Preprocessing - This includes background segmentation, character segmentation and
several other image processing operations needed to prepare the image for the recog-
nition stages.

5. Character recognition - Covers the character recognition processes. This includes
feature extraction and characters classi�cation.

6. Experiments and testing - Presentation of our test methods and results.

7. Conclusion and further work - Our conclusion and suggestions to further work.

1

2 Problem

2.1 Background to the problem

Verico`s clients includes many major Transmission System Operators (TSO) which possesses
large quantity of assets. These assets range from installations that are several decades old to
brand new installations. This means that one got a wide range of components, manufactures
and other variations. When working with this task Verico provided us with images of 30000
speci�cation plates divided among 3000 classes.

In addition to the variation in the speci�cation plate classes one got the human factor,
since all images are manually captured, one will rarely �nd a perfect captured speci�cation
plate. Because of the physical limitations, such as the placement of the speci�cation plates,
it is not always possible to capture an image from a straight forward position. This means
that a large percentage of images are captured from a warped position. This is major
problem for the further process of streamlining the storage process, and as a result of this
Verico has developed a software for warping images to a straight forward position, using
templates customized to individual plate classes. An example of a warped speci�cation
plate can be seen in �gure 1.

Figure 1: Example of an electrical speci�cation plate captured from a warped position.

The templates assigned to each plate class contains information of plate size and the
location of data �elds of interest. When a template is chosen to the given speci�cation
plate, an operator selects three corners of the plate using a Graphical User Interface(GUI)
program. Using the data from the template, the image is warped and �elds of interest is
marked.

The last step of this process is our problem, �nd a method to automatically read the
content of the marked �elds and translate this into machine encoded text. This is illus-
trated in �gure 2. If one manage to solve this problem, the total process of storing the

2

data in one plate would be three mouse clicks. This would be a major e�ciency of the
process.installations

a b

c d

Figure 2: (a)The captured image, (b)warped image, (c)data �elds of interest marked, (d)
data translated to machine encoded text.

2.2 Problem outline

To be able to automatically recognize and translate the characters, we need to do two things.
The �rst is a preprocessing part, where the image is prepared for character recognition.

After this process, one would have an image containing separated characters against a white
background.

The second problem is the character recognition. This part performs the recognition
and outputs the result as computer encoded text.

In most cases the characters needed to be recognized are numbers. Thus we will only
work to recognize number and not letters in this project.

Part 1: Preprocessing - Image Processing

In the �rst part of the problem we wish to prepare our input images for the character
recognition process. This can again be divided into two sub-problems.

3

The �rst problem is background segmentation. In [6] segmentation is summarized as
�Segmentation subdivides an image into constituent regions or objects�. In our case we wish
to segment the characters from the background.

The major challenge regarding background segmentation is to �nd a method that works
uniformly, and can be applied to the wide range of di�erent plates we will be working with.
The method chosen must also be able to perform segmentation, without removing vital
information from the characters.

The second part is character segmentation. This is the process of dividing the characters
apart from each other. When this is done we want to have a region, or sub-image, containing
each of the characters.

Part 2: Character recognition

This part contains of two main sections. Feature extraction and classi�cation.
The feature extraction section is the main part of our problem. Extraction of features

are how we describe characters, and thus how we separate them. Good features are absolute
crucial in this project.

Classi�cation is the decision of which character we are dealing with. This section uses
pattern recognition to decide which class a character belongs to, based on the extracted
features.

Figure 3: The main parts of our problem.

4

3 Optical Character Recognition (OCR)

OCR is the process of translating images, documents and other physical medium into com-
puter encoded character.

3.1 History

The �rst OCR systems was patented in 1929 [12] in Germany by Tausheck and in 1933
by Handel in the U.S., but due to lack of technology this ideas remained as a dream for a
long time. When the computer age started in the 1950`s the ideas patented two centuries
earlier was revealed again. The �rst systems introduced were based on the principle of
template/mask matching. The basic of this technique was a combination of mechanical
and optical components. Light was passed through a mechanical mask and captured by a
photo-detector and then scanned mechanically. When a match occurred the light failed to
reach the detector and the system recognized a match. Even though the methods existed,
the technology su�ered strong limitations due to lack in technology.

One of the �rst �elds that applied OCR on a lager scale was postal services, as early as
1965 the United States Postal Service started using OCR machines to sort mail. Later the
technology has been applied to many other �elds such as reading of tax forms, bank checks
and various application forms.

As a result of computer technology becoming common property and its computing power
increasing, desktop OCR systems has been introduced[11]. This is applications used by end
users for converting various documents of daily use into coded form. Examples of this is
scanned documents, letters etc.

3.2 State of art

A study [7] from 2009 conclude that typewritten text is still not 100% accurate even where
clear imaging is available. Further on, they conclude that even though most commercial
system claims an accuracy of 99% and better, these recognition rates are based on documents
of perfect quality and are often much lower in applied settings. Tests showed an accuracy
of 71% to 98.02% using commercially available systems.

Since 100% accuracy not yet has been managed, many commercial available system use
di�erent post processing algorithms to increase accuracy. An example of post processing
are spell checking system who controls all recognized words against a dictionary and uses
this information to increase accuracy.

Other areas like recognition of hand printing, cursive handwriting and printed text in
other scripts(such as East Asian languages) are still subject of active research[2].

One of the �eld where OCR systems are applied in a larger scale is Automatic Number
Plate Recognition(ANPR) systems [4]. This is a mass surveillance method that uses OCR
technology on license plates on vehicles. This is applied in many di�erent setting such
as police enforcement, average speed cameras, tra�c control systems and electronic toll
collection.

As a result of technology and computation power growing, and becoming more available
to the public, OCR systems are transferred to new platforms. One of the latest platforms
for OCR are Smart-phones, and in 2010 Quest Visual launched the application Word Lens

5

for the Apple iPhone[10]. This application scans a text using the iPhones video mode,
recognizes it and translates it to a chosen language. This application uses the video mode
to capture multiply images of the same characters, and uses this to increase accuracy.

3.3 Commercial available products

It is a numerous of available commercial OCR software, from simple and free software that
is able to recognize simple documents in good quality, to more sophisticated products that
manage advanced page layouts.

In our research of the problem, we have found that in the later years it has been developed
two di�erent main areas for OCR software.

The �rst is directed against document digitization for the home user. The main purpose
of these products are to digitize documents. These systems often use intelligent learning
combined with spell checking algorithms for further improving of accuracy. Tests from
2008 [14] points out ABBYY FineReader and OmniPage 16 as the leading softwares for
document digitization.

The second area of OCR software is customized systems used in industrial settings. An
example this is a system used to recognize license plates in road toll systems[4].

3.4 Our problem and commercial available systems

Most of the commercial available programs are intended for recognition of characters in
documents. Many of these programs can show excellent accuracy in recognition rate, but
got strict requirements to the input source.

These programs are designed to work in a uniform setting and to be applied to any given
situation without the need, or the possibility, of large scale training and customization to
the given settings. ABBYY FineReader and OmniPage 16 both got the possibility to train
against new characters[13, 1], but both of them limit training to a few characters at once,
and not to a larger set of training data.

Contrary to document recognition we will only be working with smaller blocks of charac-
ters, and not an entire document. This gives us the possibility to perform image processing
operations in a more signi�cant manner then when dealing with an entire document. We
will also be able to train our system against the same type of data that we are going to
recognize.

6

4 Preprocessing

This chapter describes the preprocessing of character images for the later stages. The goal
of this is process is to localize the individual characters that are to be classi�ed in the later
stages, from a raw image. This are done through background and character segmentation.
In addition to this, we perform several process to prepare the image even more.

4.1 Background segmentation

The �rst step of the preprocessing is background segmentation. This is the process of
removing the background from the image, with the goal of creating an image only containing
the characters we wish to recognize. We also want the result after this stage to be a binary
image. The process of transferring an image from grayscale to binary image are done using
thresholding[6].

The basic equation for thresholding can be seen in equation 1.

g(m,n) =

{
1 if

0 else

f(m,n) > t
(1)

In equation 1 , f is our input image, g is the binary image after thresholding,m and n
being pixel coordinates. In the equation, t is our threshold value. The threshold value is in
the range t ε[0, 1], which gives us the intensity range we wish to distribute to black or white.

t =
Intensity value

Intensity range
(2)

The threshold value are calculated using equation 2. In a grayscale image the intensity
range would be 256, and the intensity value would be the given pixels value. All pixels
with a value above the threshold value are set to 1, representing white, while the rest of the
pixels are assigned the value 0, representing black.

The process of thresholding is actually a segmentation process since by modifying the
thresholding value can remove unwanted parts of an image. This can be done manually by
analyzing the image or using algorithms that automatically sets threshold value. Examples
on segmentation using di�erent thresholding values can be seen in �gure 4.

Figure 4: Examples on thresholding for background segmentation.

7

4.1.1 Segmentation methods

The formula presented in Equation 1 is the foundation for segmentation through threshold-
ing, but as mentioned earlier, this formula alone requires the thresholding level to be set
manually. Since we are going to process a large scale of data we wish to create a system
that do not require any input from user, except during the warping process.

Litterateur [6] got several methods for automatically setting of thresholding values, we
will look at some of the most applied methods.

Basic Global Thresholding[6] is a simple, but e�ective thresholding method. This method
is performed using Algorithm 1.

Algorithm 1 Basic Global Thresholding algorithm.

1. Select an initial estimate for the global threshold, T.

2. Segment the image using T. This gives us two groups of pixels, G1 which consists of
pixel with intensity values above the threshold and G2 with pixels below the threshold.

3. Compute the m1and m2, which the is average value of regions G1 and G2.

4. Compute a new threshold with the following equation

T =
1

2
(m1 +m2)

5. Repeat step 2 through 4 until the di�erence between T and the previous T is smaller
than prede�ned value, ∆T

6. Segment the image using the �nal T value.

Optimum Global Thresholding Using Otsu`s Method[9, 6] is a method much similar to
Basic Global Thresholding, but instead of just calculating average values it chooses the
threshold to minimize the intraclass variance of the black and white pixels. This method
is implemented in the Image Processing Toolbox in Matlab under the function graytresh().
For more documentation see [9, 6].

Improved Global Thresholding using Edges[6] is another thresholding method we will
look at. This method is based on the Basic Global Thresholding method, but it uses edge
detection for improving the variations in the histogram.

8

Algorithm 2 Improved Global Thresholding using Edges

1. Compute an edge image from f(x, y), using an edge detector such as Sobel[6], Prewitt
etc.

2. Specify a threshold value, T , from f(x, y) using Basic Global Thresholding, Otsu`s
method or other thresholding methods

3. Threshold the edge image from step 1 using the threshold value from step 2. This
creates a marker image g(x, y).

4. Compute a histogram using only the pixels in f(x, y) that correspond to the locations
of the 1-valued pixels in g(x, y).

5. Use the histogram from step 4 to segment f(x, y) globally.

4.1.2 Thresholding tests

The methods discussed above are general segmentation methods and we do not know how
they will work against our problem. For testing we ran initial tests against 20 di�erent spec-
i�cation �eld, from four di�erent plates. The purpose of this test was to see if thresholding
was suited for our problem, and to see if any of the methods are better than the rest. Two
of the test images and the threshold value chosen by the method, can be seen in �gure 5
and 6.

Figure 5: Test of segmentation methods.

9

Figure 6: Test of segmentation methods

After examination of the test result, we concluded that images segmented using Otsu`s
method were the best, with overall very good results. The method managed to deliver good
segmentation while persevering the shape and information of the characters in a very good
manner. Basic global thresholding gave in most cases similar results to Otsu`s method, but
removed more information from the character. Improved Global Thresholding using Edges
gave variable results, in some cases it delivered very good result, but in many cases the
method either removed to much or to little of the character.

Our conclusion is that Otsu`s method gives the best background segmentation of the
threshold methods we have tested, and will be the applied method in our work.

4.2 Character segmentation

Character segmentation is the process of dividing an image containing characters into sub-
images containing characters or words, depending on the OCR system. This process can
be done for both gray-scale and binary images[3], with several di�erent methods for both
image types. A system with bad segmentation may create problems for the next stages of
the OCR system. A good example of this is the letters �cl� and �d�. If the system segments
�cl� as one character instead of two this may be classi�ed as a �d� later in the system.

Literature [3] concludes that we got three �pure� strategies for character segmentation.
These are dissection, recognition-based and holistic segmentation strategies. We will work
with dissection methods in our problem.

When performing dissection segmentation we decompose an image into a sequence of
sub-images using general features. OCR problems vary a lot in complexity, so do the
complexity in segmentation strategies.

4.2.1 Vertical histogram for character segmentation

A widely used method when working with spaced or partially spaced characters is vertical
histogram[3]. This method performs a count of white pixels in each column of the picture and
gives a histogram from this. This histogram may be used directly for segmentation, which
will work great when working with spaced characters. When dealing with spaced characters
the vertical histograms will read zero between characters and give us the location where

10

one character ends. Using this information we can precisely segment characters. It is still
possible to use vertical histograms for segmentation in cases with connected characters, but
we need a method that is modi�ed accordingly to this. An example of a vertical histogram
may be seen in �gure 7. In our project we will only work with white on black images.

Figure 7: Example of vertical histogram

When working with electrical speci�cation plates, we will be working with both con-
nected and spaced characters. The rate of connected and spaced occurs is unknown, but we
know that it is a majority of spaced characters. When vertical histogram segmentation is
applied in cases with connected characters, we will get a multiple of characters detected as
one.

To solve this we need a way to identify cases where multiple characters have been
detected as a single character, and a method for separating them. One way to �nd out if
a detected character actually contains more that one character is by looking at the height
against width ratio of the character. This gives an opportunity to use standard vertical
histogram segmentation in most cases, and when encountered connected characters apply
other methods for this.

Even though characters is connected it is possible to see where one character ends and
the next one starts using a vertical histogram. After testing several methods, we managed
to �nd a method for separating the characters.

4.2.2 Modi�ed vertical histogram

After regular splitting using vertical histogram, we inspect the width against height ratio
for each of the segmented characters. If a ratio out of the ordinary occurs, one perform a
modi�ed vertical histogram algorithm. In our test we found the ratio that gave the best
result to be 1.09. The connection of two characters are usually represented by the lowest
values in a vertical histogram. At this position we perform a splitting of characters. An
example of this can be seen in �gure 8c.

By removing all pixel values corresponding to histogram values below a given percentage,

11

in our test we start at 5%, one provokes a splitting of characters. This percentage starts at
a low value and are stepwise increased. After each removal, ratios of sub-images are checked
and the process is continued until all ratio values are below the acceptable value. Example
of the process can be seen in �gure 8. A summary of this process can be seen in algorithm
3.

a b

c d

Figure 8: (a) Connected characters (b) Characters after splitting (c) Vertical Histogram
before splitting (d) Vertical histogram after splitting

12

Algorithm 3 Character splitting using modi�ed histogram

1 . Perform v e r t i c a l histogram segmentat ion
2 . f o r (a l l s p l i t t e d cha ra c t e r s)

3a . Ca l cu la te he ig th : width = r a t i o
4 . While (r a t i o < pre s e t_ra t i o = 1 . 09)

4a . S p l i t us ing modi f i ed histogram with precentage = 5%
4b . Ve r t i c a l histogram segmentat ion
4c . Ca l cu la te new he ig th : width = r a t i o
4d . precentage = precentage + 1%

3b . Store sub−image

4.3 Image preparation

To realize the segmentation with a satisfying result we need several operations that are not
directly segmentation related.

4.3.1 White on black

The characters we wish to recognize can be both white and black after background segmen-
tation. Due to the nature of binary images in Matlab, white being represented with the
value �1�, one wish to have white characters on black background. This makes it convenient
to work with since one easy can �nd ratios of character representation in rows, lines or image
parts by summing all pixel values. To ensure that characters is represented by white, we
got an algorithm that looks at the ratio of white pixels against the total number of pixels.
This is performed after the thresholding process on the entire �eld of data. If this ratio is
higher than a preset value the image is inverted, in our tests the best result was obtained
with a value of 0.64.

4.3.2 Removing frames

Since the data �elds of interest are selected from templates made to �t a speci�c plate class
and not cut to �t each individual plate, it may happen that we get a frame surrounding our
data. To prevent this an algorithm detecting and removing frames is developed.

The algorithm scans rows in a given percentage of the top and bottom section of the
image and calculate the ratio of white pixels against the total number of pixel in the given
row. If this ratio exceeds a given value, in our case we use 0.7, the value of the entire row
is set to black. An example of this function may be seen in �gure 9.

13

Figure 9: Example of frame removal algorithm

4.3.3 Character thinning

Thinning of a character is the process of removing pixels so that an object without holes
shrinks to a minimally connected stroke[9], one pixel wide. Example of a thinned character
can be seen in �gure 10.

After thinning the character image will contain a frame of blank pixels, as shown in �gure
10, resulting from the removed pixels. The size of this frame contains some information
about the character because di�erent characters and fonts will give di�erent size of frame.
Because of this we will, in chapter 6.4, run experiments on test sets with the frame intact,
with top and bottom frame removed and entire frame removed, in order to �nd what gives
the best results.

Figure 10: Example of thinned character

14

5 Character recognition

In this section we perform the character recognition, which includes the feature extraction
and classi�cation sections.

5.1 Feature extraction

To recognize a character we need a method to describe the character. This is done by
extracting features from the character we wish to recognize[11]. Due to the di�erence in
complexity in OCR problems, it is also a wide range in feature complexities. An OCR system
constructed for recognition of machine-printed characters of a known font requires a much
less complex feature extraction method than a system made for recognition of handwritten
characters.

5.1.1 Direction extraction

This method was �rst presented in litterateur by Blumstein et.al.[2], and was presented as a
method for recognition of segmented handwritten characters. Blumstein et.al.[2] managed
to achieve a recognition accuracy of 70% on lowercase handwritten characters and 80% on
uppercase handwritten characters.

Since we in our problem will be working with characters deformed as a result of warping,
background segmentation and other process, we found that characters in many cases would
be more similar to handwritten characters than machine typed, and as a result of this we
decided on a method originally designed for handwritten characters.

The basis for this method is a thinned version of the character, which is divided into
zones. Each of the zones are then divided into segments according to a set of rules. Finally
each of the segments is labeled with directions. The process of direction extraction need the
following steps to be implemented.

a. Finding intersections
b. Line localization and line segmentation
c. Direction labeling
d. Finding main directions
e. Zoning
f. Feature vector extraction

a. Finding intersections

Intersections are point where two or more lines meets. This can be identi�ed by a pixel
with three or more neighbor pixels, neighborhood pixels are de�ned as the four or eight
surrounding pixels to a pixel[6].

15

Figure 11: Example of intersections in a thinned character, intersections marked with red
circles

b. Line localization and line segmentation

After localization of intersections, we wish to divide the thinned character into smaller line
segments. One line segment is de�ned as a line in between two intersection points. In cases
with characters not containing intersections, such as a zero, we only get one line segment.

These line segments are localized by �rst removing the intersection points from the
characters such that the line segments are physically separated. When this is done the line
segments are localized by �nding all connected regions. The intersections are added to the
image later in the process.

Figure 12: Example of the line segments in a character

c. Direction labeling

The thinned character are now divided into line segments. At this step the line segments
are labeled according to direction. This is done by looking at the direction transition from
one pixel to the next one. We operate with four directions, and two special cases labeled as

16

shown in Algorithm 4. The values chosen to label direction, starting point and intersections
are just for identi�cation and do not serve any other purpose than to be a known value.

Algorithm 4 Labeling values

2: Vertical transition
3: Right diagonal transition
4: Horizontal transition
5: Left diagonal transition
8: Starting points
10: Intersections

The process of labeling transitions is done by �rst locating the starting point of a line
segment. A starting point is a pixel with only one neighbor pixel. When locating the starting
point, the algorithm search the image from the lower left corner. This is an important detail.
In cases where characters do not have any starting points, such as a zero, the �rst pixel
encountered when searching from lower left corner are considered to be the starting point.

After the starting point are localized, the algorithm follows the line and labels the tran-
sition from one pixel to the next one. This is done by creating an 8-connected neighborhood
to each pixel. The 8-connected neighborhood of a pixel is the 8 pixels surrounding this
pixel[6]. Except from the previous pixel, each pixel will only have one neighbor. This is
the next pixel of the line segment, and the direction of this pixel gives us the direction of
the transition. Figure 13 shows the 8-connected neighborhood to a pixel and the direction
labels described in Algorithm 4.

Figure 13: Labeling using the 8-connected neighborhood

Example of a labeled line segments can be seen in �gure 14, the line segments shown
are the line segments marked white in �gure 12.

17

. .

. 3 4 4 4 4 4

. . . . 3 4 5 4

. . . 3 4 4 5 4

. . 3 5 . . .

. 2 5 . .

. 2 5 .

. 3 5

2 . 2

5 . 2

. 2 3 .

. 2 3 .

. 5 2 . .

. . 5 3 . . .

. . . 8 2 . . .

. 3

Figure 14: Example of a line segment with labeled transitions.

d. Find main directions

After labeling the direction transitions, we wish to �nd the main directions of the line
segment. This is done by dividing the line segment into smaller segments and then �nd
the direction with the most occurrences within the smaller segment. The direction with the
most occurrences are set as direction for all pixels in the found segment.

By following the line segment from the starting point to the end, we can examine the
pixels and decide when to divide into smaller segments using the method shown in Algorithm
5.

Algorithm 5 Method for dividing into smaller line segments.

New line segments if :
1. Current direction is 3 AND next direction is 5
2. Current direction is 5 AND next direction is 3
3. Direction of current line segment has been changed in more than three types of direction
4. The length of current direction type is larger than three pixels

In our system the starting point got the value 8. When dividing into smaller line
segments the starting point are set to the value of the next pixel.

Using the �rst seven pixels in �gure 14 we will show how this algorithm works.

First seven pixels after changing value of starting point = [5 5 5 2 2 5 2]

1. Current pixel = 5, current line segment = [5]

2. Current pixel = 5, current line segment = [5 5]

3. Current pixel = 5, current line segment = [5 5 5]

18

4. Current pixel = 2, current line segment = [5 5 5 2]

5. Current pixel = 2, current line segment = [5 5 5 2 2]

6. Current pixel = 5, current line segment = [5 5 5 2 2 5] -> Current direction type is
larger than three pixels, create new segment.

In �gure 15 one can see the result from applying this algorithm on the segment shown in
�gure 14.

. .

. 4 4 4 4 4 4

. . . . 3 4 4 4

. . . 3 3 3 4 4

. . 3 5 . . .

. 3 5 . .

. 3 5 .

. 3 5

3 . 2

5 . 2

. 5 2 .

. 5 2 .

. 5 2 . .

. . 5 2 . . .

. . . 5 2 . . .

. 2

Figure 15: Example of segment after we have found the main directions.

e. Zoning

In our system the characters is divided into nine zones, as can be seen in �gure 16. This
gives more information about the �ne details of the characters. The zoning process is done
after all of the line segments are labeled and normalized. In cases where the zoning division
do not add up, the rightmost column and the bottom rows are padded with empty lines.

Figure 16: Example of a zoned character

19

f. Feature vector extraction

For each of the nine zones of the character we create a vector with the following values.

1. Horizontal line marker

2. The length of horizontal lines

3. Right diagonal lines marker

4. The length of right diagonal lines

5. Vertical lines marker

6. The length of vertical lines

7. Left diagonal lines marker

8. The length of left diagonal lines

9. Intersection marker

The marker values(1,3,5,7,9) got a basic value of 1, and are subtracted by 0.2 if the direction
occurs in the current zone. The intersection marker(9) got a default value of 0, but in cases
where intersections are detected it are set to 1-(0.2 * number of intersections).

The line lengths(2,4,6,8) is calculated as in Equation 3. This formula is very important
for the system since it scales the feature vector against the image size, and thus making the
system invariant to image size.

length =
number of pixels in particular direction

(window heigth) ∗ 2
(3)

Having nine zones, these calculations give us a total of nine vectors with nine elements
in each, that are sorted in a matrix of the size 9 x 9. In �gure 17 three of the zones from
�gure 16 with normalized values and corresponding feature vectors are shown.

20

Figure 17: Example of vector extraction

5.2 Classi�cation

The goal of this stage is to classify, and assign a machine encoded character to the unknown
character we wish to recognize. Throughout the years many di�erent methods for pattern
recognition and classi�cation have been tested for character recognition. In a study by Mo-
hiuddin and Mao [11] they conclude that the methods k-nearest-neighbor and feed-forward
neural networks are the most applied and most successful methods, with neither of them
being a clear winner. This is based on tests done in a di�erent setting than ours, so we
cannot conclude that the same is the case for us. But, since k-nearest-neighbor is the one
easiest implemented, we choose to use k-nearest-neighbor and see if it could be applied
successfully in our application.

5.2.1 K-nearest-neighbor

This is a simple, but very e�cient method. K-nearest-neighbor is an instance-based learning
algorithm[5], which compares a new problem, in our case an unknown character, against
instances. The algorithm needs stored training data to be able to classify. This means that
the result of each classi�cation relies totally on the training data.

This basic principle of this method is to compare the unknown class against all training
data. This is usually done by a measurement of distance, and then look at the k -nearest
occurrences to the unknown class. With k being the variable that decides the number of
neighbors to include. After measuring distances between the unknown class, in our case
the unknown character, and the training data, one classi�es by analyzing the k-nearest
occurrence to the unknown class.

21

In our problem we classify the unknown class to the class with the most occurrence. In
cases with equal occurrences from two or more di�erent classes, we choose the class which
got the occurrence with the shortest distance.

5.2.2 Distance measurement

In our work we use the Euclidean distance[5] as our distance measurement. The basic
formula for Euclidean distance between two vectors can be seen in Equation 4, where d is
the distance between the features, q and p being the vectors we wish to calculate distance
between.

d =

√√√√ M∑
i

(qi − pi)2 (4)

We want to calculate the distance between the unknown characters feature matrix and each
of the training feature matrices available. This is performed using Equation 5, where d is
distance between the features, aij is the unknown character feature matrices and bij is the
training data feature matrix we wish to calculate distance against.

d =

√√√√ M∑
i

N∑
j

(aij − bij)2 (5)

5.3 Training data

The purpose of training data is to have a set data to compare an unknown class against,
either by comparing directly as with instance-based algorithms or by training the system in
advanced. In either cases the training data are what makes the system able to recognize and
classify an unknown class, there are exceptions such as systems recognizing using decision
rules and decision trees[8], but in the majority of systems either k-nearest-neighbor or a
neural network, training data are needed to train the system. An example of training data
in a character recognition system would be characters of the font or type one expect the
system to work with.

22

6 Experiments and testing

A major challenge when designing an OCR system is to design and perform proper testing.
The main goal of testing is to �nd out how the system would perform in a real setting. For
us this is a crucial process because the result from testing would decide if our system can
be put into real use or not.

6.1 Available data

For testing Verico has provided a large database of speci�cation plates, containing images
of over 30000 speci�cation plates from around 3000 di�erent component types. The size of
the di�erent classes variates greatly with the smallest classes containing only a few images
to the largest containing hundred of images. Even though we got as many as 3000 di�erent
components, lots of speci�cation plates are very similar.

Choose data classes

In the massive database available from Verico, we selected four speci�c plate classes for
testing our OCR. The reason we chose these four classes, is because they are speci�cation
plate types used by some of the largest manufactures and together they represent the largest
classes of speci�cation plates.

Examples from these four classes can be seen in �gure 18.

Figure 18: Speci�cation plates from the four classes used in the test bench.

In a real setting our system is the second step in a process where step one warps the
image and marks the �elds of interest. Since we in this stage primarily wanted to test the

23

OCR accuracy of our system, we performed the warping and �eld of interest marking in
advance.

6.2 Our training data

When training our system we needed to �nd a standardized method of inputting training
data to the system. As a result of our choice of classi�er the system required a-priori
information about the true value of all the training data. We found that one way to realize
this was to feed the system with images containing training characters together with the
true value of the character. By doing this the system could extract features from the
training data and store them in a register categorized using the a-priori information collected
together with the training data. Since we already had method for splitting characters one
could include multiple characters in one single image, instead of having one image for each
character the system was to be trained against.

This left us with two alternatives for inputting training data. The �rst option was to feed
the system with character region collected direct from the speci�cation plates. The second
option was to manually collect characters from the speci�cation plates and sort them into
a predetermined order. This meant more work editing, but since the order of characters
already was known we did not have to provide the system with a-prior information about
the characters.

We went with option two since this gave us better control over how many training data
one included from each class. Since one training set would include all the numbers the
system would work against, one would get exactly the same amount of training data to each
class. Using this method, each training set would be an image containing the number zero
to ten, which would be split ted using the methods discussed earlier.

Figure 19: Examples of training sets.

Due to the limited available characters in each speci�cation plates we found it to be
natural to create one training set for each speci�cation plate we trained the system against.
When training the system this way, using real data, it gave us the possibility to train the
system against many di�erent light conditions and other outer interference.

6.3 Test bench

The testing phase was not only to measure the accuracy of the system, but also as a tool to
test the system during development, in order to get the best performance. To do this, we
created a test bench, which made it possible to test the system against the same problem,
using the same test and training data. This way we could see how small changes in our
system would a�ect the accuracy of the system.

24

The test data used in the test bench was collected from the four classes described above,
and contained 923 characters.

For training we used in total 64 training sets collected from the four speci�cation plates.
These training sets were collected from same classes, but di�erent speci�cation plates than
the test data. In addition to this, we included 24 training sets of common fonts available,
including Arial, Calibri and etc. These training data were created using an text editor and
had a perfect quality, opposite to the training data collected from the speci�cation plates.
This gives us in total 88 training sets.

6.4 Experiment results

Using the test setup described above, we performed multiple tests in order obtain the best
accuracy.

The �rst issue we wanted to test was how the frame obtained during the thinning process
a�ects the results. This is covered in detail in section 4.3.3, the three di�erent cases we wish
to test is:

1. No frame removed

2. Top and bottom of frame removed

3. Entire frame removed

For each of the cases we created training data and run tests using the setup described for
the test bench. For each case we ran in total of 15 test, where we adjusted the k, of the
k-nearest-neighbor classi�er, value from 1-15(this is covered in section 5.2.1). Since the
setup are identical from case to case the result can be compared directly.

k No frame removed Top/bottom side removed Entire frame removed

1 96.64 96.64 97.51

2 96.64 96.64 97.51

3 96.86 96.86 97.40

4 96.86 96.86 97.40

5 96.86 96.86 98.05

6 96.64 96.64 97.94

7 96.94 96.64 97.29

8 96.97 96.64 97.40

9 96.64 96.97 97.18

10 96.86 96.86 97.18

11 96.86 96.86 97.07

12 96.97 96.97 96.97

13 96.97 96.97 96.64

14 96.97 96.97 96.64

15 96.32 96.32 96.64

Table 1: Test results for the cases �no frame removed�,�top and bottom removed� and �entire
frame removed�, for k = 1-15

25

The best result accuracy during tests was 98.05 %. This was obtained when removing
the entire frames were and with a k value of 5.

Best results obtained when not removing or partially removing frame was 96.97 %. The
tests show that the results from these two methods are almost identically. Further on tests
show that results obtained when removing the entire frame gave the overall best result.

Character 1 2 3 4 5

Successful classi�cations 69 88 91 83 90

Misclassi�cation 0 1 3 3 1

Percentage success (%) 100 98.88 96.87 96.51 98.90

Character 6 7 8 9 0 Total

Successful classi�cations 81 61 29 19 294 905

Misclassi�cation 5 0 1 1 3 18

Percentage success (%) 94.19 100 96.67 95.00 98.99 Average: 97.59%

Table 2: Detailed recognition stats for case with �entire frame removed� with kn = 5

When examining the results from the test with the highest accuracy one can see that
the distribution between the di�erent number represented in the test data variates greatly.
The character �9� is represented fewest times, while character �0� is represented with the
far most occurrences. This makes the overall result weighted more by �0� then the other
classes. Since our test data are collected from real speci�cation plates, the distribution of
the characters one wish to recognize in a real setting would be weighted in a similar manner.
This makes the overall accuracy presented still valid as what to expect, even though accuracy
for individual characters being lower. The detailed statistics can be seen in Table 2.

Figure 20: Character with true value �6� that was misclassi�ed by the system.

In �gure 20 one can see an example of one of the characters that was misclassi�ed by the
system. The true value of the characters is �6 �, but the system classi�ed it as a �8�, with
the 5-nearest-neighbors being [8 8 8 8 8]. The reason for the misclassi�cation in this case,
we believe is the thinning process. The thinning version of the character shows similarity
to a �8�.

26

Figure 21: Character with true value �5� that was misclassi�ed by the system.

In �gure 21 one can see another example of a misclassi�ed character. The true value of
the characters is �5�, but the system classi�es it as a �6� with the 5-nearest-neighbor being [5
6 6 6 6]. The k-nearest-neighborhood shows that the training data with the nearest distance
was a �5�, which was the true value, but the four next distances was to the character �6�
and thus the misclassi�cation.

6.5 System computation performance

All test bench runs were performed in Matlab R2007b on a Intel Core I3, 2.13 GHz processor.
The average time for one run of the test bench, 923 characters, was 124 seconds. This equals
0.1343 seconds for each character. A typical speci�cation plate would contain from 20-40
characters, which makes the recognition of one speci�cation plate ranging from 2.5 to 5
seconds. This is using our test bench, which was created without any kind of performance
optimization.

6.6 Discussion of test results

When starting the test phase we were unsure about what one could expect using this
method. We knew that the Direction extraction had been used to obtain 80% accuracy on
handwritten characters and we expected that we could expect higher accuracy since our
problem was less complex than an OCR on handwritten characters. The �nal result was
98.04% which we look at as a good result. In [7] the author tested many of the leading
OCR software available, against historical newspapers, and concludes that a OCR accuracy
of 98-99% was to be considered as a good result. This is however a setting with larger
quantity of characters than we will work with.

One important factor to note is that we got a very wide range of di�erent speci�cation
plate classes. The complexity in these classes also vary a lot. For us this means that for some
classes we might be able to obtain close to perfect recognition rate while we in other cases
might manage lower recognition rate. In �gure 22 one can see an examples of a speci�cation
plate with good quality and speci�cation plate with bad quality.

27

Figure 22: Examples of speci�cation plates with good and bad quality.

In our test bench we used the same training data to classify test data from multiple
di�erent classes. In a future application it might be possible to create individual training
data to individual classes.

28

7 Conclusion and further work

7.1 Conclusion

In this paper we have created an Optical Character Recognition(OCR) system to be applied
on electrical speci�cation plates. This project proposal was given by Verico AS as a step in
streamlining their process of data collection using photo documentation.

The system is customized to a given setting and is to be implemented together with a
system that warps the source images and selects the data �elds of interest. Four major steps
perform all processes regarding the OCR system. The �rst two steps are based in image
processing; background segmentation and characters segmentation. The background seg-
mentation was performed using Otsu`s method for thresholding, which delivered overall good
results. Character segmentation was performed using modi�cation of vertical histograms.
This method gave good results in those cases where splitting was needed.

The core of this paper, and in our system, is the feature extraction process. We used a
feature extraction method called direction extraction, this method was originally presented
as a method for recognizing handwritten characters, and the best result found in literature
using this method was 80%, so when we started our work it was uncertain what we could
expect from this method.

After testing we archived an accuracy of 98.04%, which is a good result based on our
expectation for the method chosen, but we cannot conclude that the accuracy is good enough
to be used in a real setting.

Classi�cation was performed using k-nearest-neighbor method. By using this method
we found that a k value of 5, gave the best results. The processing time used to classify one
single characters was 0.1343 second in our setting, which we �nd acceptable.

7.2 Future work

• Field detection - At this moment the system is depending on templates to know where
the data �elds of interest are. If we manged to �nd a method of auto-detecting the
�elds of interest this would be a major improvement of the system.

• Neural Network - As described the system uses k-nearest-neighbor to classify the
characters. We do not know if the recognition accuracy could be increased using
Neural Network, but it would be interesting to test. This would at least decrease the
processing time during classi�cation, but would increase the training time.

• Recognition classes - In this paper our system recognizes numbers. In the further
work we could train the system against letters, special symbols and other characters
we might need to recognize. Since the framework of the system exists, one should be
able to train the system against new characters without major problems.

• A-priori information - The way we have designed the system we do not use a-priori
information. By including this one might be able to obtain a much higher recognition
rate than we have managed in this paper. One type of a-priori information would
be to weight the result according to what number to expects. An example might be

29

when reading a component voltage, if one know the lowest and highest voltage this
component can work with, we can exclude all numbers beyond this range.

30

References

[1] ABBYY. Abbyy �ne reader user guide, training user patterns.
http://�nereader.helpmax.net/en/advanced-features/recognition-with-
training/training-user-patterns/.

[2] M. Blumenstein, B. Verma, and H. Basli. Blumstein 2003, a novel feature extraction
technique for the recognition of segmented handwritten characters. Document Analysis
and Recognition, 2003. Proceedings. Seventh International Conference on, pages 137�
141 vol.1, 2003.

[3] R. G. Casey and E. Lecolinet. A survey of methods and strategies in character segmen-
tation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 18(7):690�
706, 1996.

[4] Mike Constant. An introduction to anpr. CCTV Today, http://www.cctv-
information.co.uk/i/An_Introduction_to_ANPR.

[5] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classi�cation (2nd
Edition). Wiley-Interscience, 2 edition, November 2001.

[6] Rafael C. Gonzalez, Richard E. Woods, and Steven L. Eddins. Digital Image Processing
Using MATLAB, 2nd ed. Gatesmark Publishing, 2nd edition.

[7] Rose Holley. How good can it get? analysing and improving ocr accuracy in large scale
historic newspaper digitisation programs. D-Lib Magazine, 15 Number 3/4, 2009.

[8] G. S. Lehal and Chandan Singh. Feature extraction and classi�cation for ocr of gur-
mukhi script. Vivek, 12:Pages: 2�12, 1999.

[9] MATLAB. Documentation, version 7.10.0 (R2007a). The MathWorks Inc., Natick,
Massachusetts, 2007.

[10] Mark Milian. Cnn tech - new iphone app translates foreign-language
signs. http://articles.cnn.com/2010-12-20/tech/word.lens.iphone.app_1_iphone-app-
android-foreign-language.

[11] K. M. Mohiuddin and Jianchang Mao. Wiley encyclopedia of electrical and electronics
engineering - optical character recognition, 1999.

[12] C.Y.; Yamamoto K.; Ricoh Co. Ltd. Yokohama Mori, S.; Suen. Historical review of ocr
research and development. Proceedings of the IEEE, 80 Issue:7:1029 � 1058, 1992.

[13] Communications Nuance. Omnipage user guide - training.
http://www.nuance.com/imaging/resources/userGuides/OPUserguide/chapter5/ch5
_7.asp.

[14] PCMAG.com. The best ocr solutions, test 08/2008.
http://www.pcmag.com/article2/0,2817,2327834,00.asp.

31

