
Event Processing Applied to

Streams of TV Channel Zaps and

Sensor Middleware with Virtualization

Pål Evensen

April 4, 2013

2

Abstract

The last decade has seen an exponential increase in mobile computing devices,

as well as an increasing adoption of sensor technology in process industry,

homes and public spaces. The increasing amount of information made avail-

able by such devices has led to a class of pervasive systems that require little or

no user input. Smart home systems is an example of such pervasive systems. A

main obstacle for application developers dealing with sensor-based systems is

heterogeneity of devices and protocols. A common obstacle for end-users is the

manual configuration of networked devices.

Our first research contribution is a middleware that overcomes these obsta-

cles: The SENSEWRAP middleware addresses the problem of heterogeneity in

a smart home setting through the virtualization of hardware and services. Fur-

thermore, it provides automatic network configuration and service discovery.

The usefulness of pervasive systems usually correlates with their ability to

perform their functions in the background, without user involvement. Instead,

these systems base their actions on available information relevant to their appli-

cation, e.g., they are information-driven.

For information-driven systems, like smart-home systems and other perva-

sive systems to be able to decide on the correct action at the right time, it is vital

that the correct information is made available to them in a timely manner. A

primary asset of publish/subscribe interactions is the immediate distribution of

new information available to interested parties, and as such, it is a well-suited

model for building highly scalable and flexible systems that are able to cope

with a dynamic environment.

Complex event processing is a fairly new paradigm that refers to the pro-

3

4

cessing and correlation of events as they occur. There exists several specialized

programming languages for performing complex event processing. A main goal

of such languages is to enable the programmer to express patterns of events in a

simpler and more straightforward manner than what is possible with a general-

purpose programming language.

A main contribution of this thesis is an exploration of the tradeoffs involved

in using a specialized, declarative event processing language versus using a

general-purpose, imperative programming language for event processing appli-

cations. Our results indicate that going the specialized language route does in-

deed simplify development of event processing applications, but that this comes

at the expense of performance.

Furthermore, we present the EVENTCASTER platform for building event-

based systems, on which we have built two novel event processing applications:

The viewer statistics and ADSCORER applications are research contributions in

their own right. The viewer statistics application demonstrates how event pro-

cessing techniques can be applied to broadcast television, in order to provide

more accurate viewer statistics than what is currently available, in near-real

time. With the ADSCORER application, advertisers and broadcasters are pro-

vided with a detailed evaluation of each individual advertisement, previously

only available to advertisements distributed on the web.

Acknowledgements

First and foremost, I would like to thank my advisor, Associate Professor Hein

Meling at the University of Stavanger, who co-authored of all the publications

included in this thesis. His high standards and work ethic has been an inspiration

throughout this whole process. I am grateful for his valuable guidance, and for

the considerable time and effort he has spent on helping me – not only during

the PhD programme, but also after his obligations towards me as a PhD student

had expired.

A large part of the work presented in this thesis was completed after I re-

turned to my job at Altibox, after the three-year period of the PhD programme

at the university was over. In addition to Hein, I owe the completion of my work

to a handful of people at Altibox who made it possible for me to finish what I

started out to do. Without the encouragement, involvement and generosity from

my managers at Altibox, I would not have been able to see this project to its

completion.

In particular, I would like to express my sincere gratitude towards Dagfinn

Wåge, Ronny Lorentzen and Omar Langset, who believed in the project, and

helped me steer it in a direction that was beneficial for both the company and

my research.

I would also like to thank my good colleague Per Fjeld, whom I collaborated

with on the commercial side of the viewer statistics project at Altibox. His con-

siderable experience and knowledge of the media industry has been a valuable

asset in much of the work presented here.

Thanks to Professor Roman Vitenberg, Associate Professor Alberto Mon-

tresor and Professor Reggie Davidraju for being in my dissertation committee.

6

Finally, I would like to thank my parents and my brother Øyvind for their

relentless support, and my friends for giving me some much needed diversion

from work. Special thanks goes to my good friend Sveinung Hevrøy for the

countless dinners he has served me during these years.

Published Parts of this Thesis

[1] Pål Evensen and Hein Meling. Adscorer: an event-based system for near

real-time impact analysis of television advertisements (industry article). In

Proceedings of the 6th ACM International Conference on Distributed Event-

Based Systems, DEBS ’12, pages 85–94, New York, NY, USA, 2012. ACM.

[2] Pål Evensen and Hein Meling. A paradigm comparison for collecting tv

channel statistics from high-volume channel zap events. In Proceedings of

the 5th ACM International Conference on Distributed Event-Based Systems,

DEBS ’11, pages 317–326, New York, NY, USA, 2011. ACM.

[3] Pål Evensen and Hein Meling. Sensewrap: A service oriented middleware

with sensor virtualization and self-configuration. In ISSNIP 2009: Fifth

International Conference on Intelligent Sensors, Sensor Networks and In-

formation Processing, pages 261–266, Piscataway, N.J., December 2009.

IEEE.

[4] Pål Evensen and Hein Meling. Sensor virtualization with self-configuration

and flexible interactions. In Casemans ’09: Proceedings of the 3rd ACM

International Workshop on Context-Awareness for Self-Managing Systems,

pages 31–38, New York, NY, USA, 2009. ACM.

8

Contents

Acronyms . 12

1 Introduction 17

1.1 Project Context . 22

1.2 Research Challenges . 23

1.3 Summary of Contributions . 25

1.4 Impact . 26

1.5 Outline of Thesis . 27

2 Middleware: Abstractions and Paradigms 29

2.1 The Motivation Behind Middleware 30

2.2 The Client/Server Model . 31

2.3 Interaction Models . 32

2.3.1 Request/Reply . 32

2.3.2 Message Queueing . 32

2.3.3 Publish/Subscribe . 34

2.4 Middleware Models . 37

2.4.1 Remote Procedure Calls 38

2.4.2 Message-Oriented Middleware 44

2.5 Event-Based Systems . 49

2.5.1 Event-Driven Architectures 50

2.5.2 Event Producers . 52

2.5.3 Event Consumers . 53

2.5.4 The Event Processing Network 55

9

10 CONTENTS

2.5.5 Processing Models . 55

2.5.6 Applications For Event Processing 59

2.6 The Sensor Network Application Domain 61

2.6.1 Service Discovery . 63

2.7 Summary . 69

3 SenseWrap: Sensor Middleware 71

3.1 Background and Assumptions 73

3.2 Architecture Overview . 73

3.3 Implementation Details . 75

3.3.1 Interfaces, Classes and Abstractions 75

3.3.2 Adding New Sensor Types 80

3.3.3 Adding New Communication Protocols 80

3.3.4 SENSEWRAP Middleware Protocol 80

3.4 Proof of Concept . 81

3.5 Performance . 83

3.5.1 Results . 83

3.5.2 Evaluation . 86

3.6 Related Work . 87

3.7 Conclusions and Future Work 89

4 EventCaster: Event Processing Platform 91

4.1 Architectural Overview . 91

4.1.1 Package Organization 93

4.2 Implementation . 95

4.2.1 Underlying Technologies 98

4.3 Configuration . 101

4.4 Deployment . 106

4.4.1 Network Setup . 107

4.5 Summary . 107

5 Television Viewership Ratings 109

5.1 The Current State of Media Measurement 110

CONTENTS 11

5.2 The Altibox IPTV Deployment Scenario 112

5.3 Related Work . 113

5.3.1 Methods For Measuring Advertisement Response 116

5.4 The Future of Media Measurement 118

5.5 Summary . 119

6 An Event Processing Paradigm Comparison 121

6.1 Introduction . 122

6.2 Architecture . 124

6.2.1 Deployment Used During Experiments 124

6.2.2 Current Deployment 127

6.3 Viewer Statistics . 128

6.3.1 Java Implementation 129

6.3.2 EPL Implementation 129

6.4 Annoyance Detection . 135

6.4.1 Java Implementation 135

6.4.2 EPL Implementation 135

6.5 Evaluation . 137

6.5.1 Brief Data Analysis . 137

6.5.2 Performance Evaluation 141

6.5.3 Software Complexity 147

6.6 Conclusions . 152

7 AdScorer: Impact Analysis of TV Ads 153

7.1 Introduction . 154

7.2 System Architecture . 155

7.3 Scoring Criteria . 158

7.4 Deployment . 160

7.4.1 Enhanced ZAPREPORTER 161

7.5 Implementation . 162

7.5.1 Component Interactions 162

7.5.2 ADSCORER EPL Code 165

7.6 Evaluation . 169

12 CONTENTS

7.6.1 Environment and Experiment Setup 169

7.6.2 Viewer Statistics During Commercial Breaks 170

7.6.3 Advertisement Scoring Capacity 178

7.7 Conclusions . 179

8 Conclusions 181
8.1 Summary . 181

8.2 Future Work . 183

A Comparing Two M-Shape Implementations 201

Acronyms

AMQP Advanced Message Queuing Protocol. 48, 49

API Application Programming Interface. 42, 43, 45, 47–49, 74, 76, 85, 102,
103, 111, 119

ARP Address Resolution Protocol. 65

CEL Cayuga Event Language. 154, 205, 206, 208

CEP Complex Event Processing. 55, 58, 59, 62, 97, 111, 158, 159, 185, 187

CORBA Common Object Request Broker Architecture. 43, 44

CRUD Create, Read, Update and Delete. 42

DDS Distributed Data Service. 49, 55, 187

DHCP Dynamic Host Configuration Protocol. 65

DNS Domain Name System. 65, 67, 69

DNSSD DNS Service Discovery. 65, 67–69, 82

DSLAM Digital Subscriber Line Access Multiplexer. 118

EAR Enterprise Archive. 98, 99, 103

ECA Event-Condition-Action. 57

EDA Event-Driven Architecture. 26, 29, 50–52, 55, 60, 61, 70, 71, 95, 96

EPA Event Processing Agent. 51, 71, 95–97, 99, 100, 107

EPG Electronic Program Guide. 116, 133

EPL Event Processing Language. 58, 59, 97–100, 104–108, 112, 127, 128,
132–134, 136–141, 143, 149, 150, 152–156, 159, 169–173, 205, 206

13

14 Acronyms

EPN Event Processing Network. 51, 52, 71, 96, 100

ESP Event Stream Processing. 59

FIFO First In First Out. 33

FTP File Transfer Protocol. 46

GPRS General Packet Radio Service. 75, 93

HDMI High-Definition Multimedia Interface. 119, 123, 160, 165, 166, 169

HTML HyperText Markup Language. 18, 19, 33

HTTP HyperText Transfer Protocol. 32, 33, 42, 43, 68, 69, 74, 83

IAR Initial Audience Retained. 120, 121, 163

IEEE Institute of Electrical and Electronics Engineers. 73, 85

IETF Internet Engineering Taskforce. 49, 64, 67, 69

IGMP Internet Group Management Protocol. 118

IP Internet Protocol. 63–65, 68, 69, 74, 116, 129, 156, 187

IPTV Internet Protocol Television. 113, 115, 116, 118, 119, 129

J2EE Java 2 Enterprise Edition. 96, 102, 110

J2ME Java 2 Micro Edition. 68, 84

JMS Java Messaging Service. 32, 37, 47–50, 56, 102, 103, 111, 187

JMX Java Management Extensions. 106

JVM Java Virtual Machine. 68, 88, 151

MOM Message-Oriented Middleware. 29, 33, 38, 45–48, 50, 51, 70, 99, 102,
103, 187

NFS Network File System. 43

OSGi Open Services Gateway initiative. 91

P2P Peer-to-Peer. 49, 92

PVR Personal Video Recorder. 116, 128

QoS Quality of Service. 48–50, 119, 187

Acronyms 15

REST Representational State Transfer. 42, 43

RF Radio Frequency. 63, 74

RFC Request For Comments. 64

RMI Remote Method Invocation. 43, 44, 68, 83

RPC Remote Procedure Call. 29, 38–46, 70

SOAP Simple Object Access Protocol. 43, 44, 68, 69, 83, 92, 119

SPOT Small Programmable Object Technology. 77, 82, 84–87, 92

SQL Structured Query Language. 25, 37, 91, 97, 104, 205

SSDP Simple Service Discovery Protocol. 69

STB Set-Top-Box. 26, 54, 62, 104, 113, 115–119, 121–123, 126–133, 136,
137, 141, 144, 149, 156, 158, 159, 161, 165–167, 169, 170, 173, 175,
180, 184, 187

STOMP Simple Text Oriented Messaging Protocol. 48, 49, 103, 111

TCP Transport Control Protocol. 63, 64, 67, 68, 74, 77, 80, 83, 85, 86, 98, 111

UDP User Datagram Protocol. 63, 68, 74, 77, 83, 98, 129, 145, 149, 150

UPnP Universal Plug and Play. 68, 69

URI Uniform Resource Identifier. 42

URL Uniform Resource Locator. 107

USB Universal Serial Bus. 75, 85

VoD Video-on-Demand. 116, 128

VoIP Voice-over-IP. 116

WSDL Web Service Definition Language. 44

XML eXtensible Markup Language. 37, 49, 68, 69, 96

XMPP Extensible Messaging and Presence Protocol. 49, 50

16 Acronyms

Chapter 1

Introduction

Networked devices with computing capabilities can no longer be assumed to

be stationary. The trend towards information-driven systems, coupled with an

exponential increase in mobile communicating devices has led to a new class of

distributed applications with ever-increasing demands for timeliness, scalability

and dynamism. Coping with these demands is unattainable using the traditional

request/reply interaction model of the client/server paradigm. This new class

of applications include ubiquitous and mobile computing systems such as smart

home systems and context-dependent car navigation systems. In the business

world, automated stock trading, automated inventory management and real-time

business intelligence applications are additional examples of this new breed of

applications.

A key requirement for many systems like these is that they should be more

or less autonomous, meaning that they should demand little or no human in-

tervention. A smart home system exemplifies this, as the value it brings to its

inhabitants to a great extent depends on its ability to remain “invisible” to the

end users. A prerequisite for creating an autonomic environment is for the sys-

tem to have knowledge of the context and activity of other resources within the

infrastructure [120, Ch. 1.3].

In order for systems to operate independently of user interaction, they must

be able to make the correct decisions at the right time by themselves. Because

these systems primarily base their actions on information, they are said to be

17

18 CHAPTER 1. INTRODUCTION

information-driven [114, Ch. 1.1], as opposed to driven by user interaction or

time. Thus, for information-driven systems to be effective, accurate informa-

tion must be readily available in a timely manner. Depending on the context,

information is often worthless to the class of applications discussed here if not

delivered immediately, like in the case of automated trading, where a delay of

as little as a fraction of a second may amount to a missed opportunity.

As a contrast to information-driven systems, consider a batch system, pro-

cessing batches of information overnight: Here, time is the initiator of action,

not the information itself, thus it is time-driven.

Historically, middleware has been centered around a request/reply interac-

tion model, and was designed in a world where networked computing devices

were stationary, and for the most part had predictable behaviour. This model is

an excellent and time-proven match for user-request handling and time-driven

batch systems. Yet many attempts have been, and are still being made to amend

this model to fit scenarios that it was not designed for. Even though it is possi-

ble to hammer a nail with a crowbar, using a tool for something that it was not

designed to do is rarely a good solution.

A concrete example of the hammer/crowbar analogy is the display of data

feeds on web pages, using polling techniques. Currently, one can observe this

by visiting any of the major Norwegian news sites, such as dagbladet.no,

which updates their news feed by having the clients reload the entire front page

at fixed intervals instead of sending updates to the clients when news stories are

published.

The web was originally a collection of static HTML pages, connected with

hyperlinks, and in this context, the request/reply interaction model makes per-

fect sense: A client establish a connection to a server, requests a document, and

receives it in response from a server, whereupon the connection is closed. How-

ever, when applied to continuously updated streams of content, the request/reply

interaction pattern requires the client to repeatedly poll the server for new infor-

mation, resulting in unnecessary setups and teardowns of connections.

Due to their massive user base, web standards move slowly, and technolo-

gies for enabling push to the browser, such as WebSockets [88] (included in

19

the upcoming HTML5 [84] specification) are not yet part of any official web

standard. It is currently only supported in a few select browsers, leaving web

developers with little choice of interaction models for pages with dynamic con-

tent. Workarounds such as Comet [104] and Ajax [33] use long-polling [87]

techniques to reduce the number of unnecessary requests, but these only serve

as temporary band aids, even introducing some new problems themselves [88],

to a problem whose root cause is use of the wrong interaction model.

Timeliness is often the first thing that suffers when applying the client-

/server model to large-scale information-driven systems. A consequence of the

request/reply interaction model that follows the client/server paradigm is that

the consumers of information need to poll for it, instead of having information

pushed to them when it is available.

In a poll interaction, the client asks the server “do you have information for

me?” whereupon the server either returns new information, or nothing at all.

In either case, the server responds immediately, whereupon the connection is

closed, leaving the client free to go on about its business.

The potential latency of the information flow is thus affected by the polling

interval, and increases with the number of system components the information

has to traverse, each introducing a new delay. Figure 1.1 illustrates how latency

accumulates in poll-based systems where components are indirectly addressed.

In a system where the information has to traverse two servers in order to reach

the client, and given a polling interval of 30 seconds for each component along

the path, with each server caching the last read value, the potential latency is 1.5

minutes with two intermediaries between the client and the information source.

Client
Server 1

Cache

Server 2

Cache

Information flow

Information
Source

Poll
every
30 sec

Poll
every
30 sec

Poll
every
30 sec

Figure 1.1: Indirect poll

The resulting latency observable from the information consumer, in such multi-

tiered client/server systems can be expressed as
∑n

i=1 ai, where ai represents

20 CHAPTER 1. INTRODUCTION

the latency of the ith component in a chain of interdependent components. As

can be deducted from this, latency can be reduced by decreasing the polling in-

terval of information consumers. However, this wastes processing and network

resources, causing a tradeoff between latency and resource waste.

If we consider a push interaction model for the same scenario, the latency

from polling intervals is eliminated, as the servers forwards the information “im-

mediately” upon reception (Figure 1.2). In this model, the servers are part of an

event notification service, an abstraction layer on top of the underlying compo-

nents, responsible for delivering events to subscribers. Some added latency for

each component is still unavoidable due to network and processing delays, but

this is equally true for both scenarios, and comes in addition to the poll-induced

latency.

Broker 1 Broker 2Subscriber Information
Source

Event Notifcation Service

Figure 1.2: Indirect push

While the traditional models for building distributed applications are indeed

the optimal solution for a number of well understood applications, this thesis

presents some scenarios where the client/server model falls short, and discusses

why event-based interactions is the appropriate approach for these.

A fairly recent area of research, event processing originates from the re-

search communities of publish/subscribe and its predecessor; group communi-

cation, as well as the active database community. In publish/subscribe systems,

subscribers generally express their interest in events sent to a topic, or events of

a certain type, while active databases allows users to specify Event-Condition-

Action rules in the form of triggers. Common for these paradigms is that they

operate on single events in isolation, allowing only limited expressiveness [41].

Complex event processing expands upon these paradigms by introducing

context as a subscription criteria, enabling consumers to express their interest in

21

events in much greater detail. The Merrian-Webster dictionary defines context

as: “The interrelated conditions in which something exists or occurs.” In this

thesis, context refers other events that occur within the same system, or any

dynamic or static property that may be of interest to the application, such as

time, geographical location, etc. For the application of detecting credit card

fraud, for instance, event processing technologies allows for the expression of

complex patterns, involving events from multiple sources and taking causality

and context into account.

The banking industry is an example of an industry that would benefit from

the continuous processing capabilites of event-based systems. Here, transac-

tions are typically processed overnight in 24-hour batches [144], and one could

argue that the speed at which business could be conducted on a global level

would greatly benefit from an event-driven approach. The slow adoption of

event-based technologies within the banking industry can probably be attributed

to the high cost of replacing legacy systems responsible for core business func-

tions.

Sensor/actuator networks is another prime example of distributed event-

driven systems, where a reduction in manufacturing cost, size and power con-

sumption has led to an increasing adoption of wireless sensor technology in

process industry, homes and public spaces. Areas of deployment include envi-

ronmental monitoring [56, 74], military and security applications such as tar-

get tracking and intrusion detection [8], as well as automated supermarkets,

where the groceries in your cart are automatically charged to your credit card

as you leave the shop, made possible using radio-frequency identification tech-

nology [123]. In the field of healthcare, sensor technology enables medical

personnel to monitor patients from within the patient’s own homes, making the

treatment more convenient and comfortable, while at the same time freeing ca-

pacity at the hospital [130].

Some advantages of wireless sensors are cost of deployment and flexibility

in placement. However, the mobility of wireless sensors usually means that they

are battery dependent, and have limited resources, presenting application devel-

opers with some new (and some not so new) challenges that will be discussed

22 CHAPTER 1. INTRODUCTION

later in this dissertation.

The examples mentioned above are just some of the possible areas for de-

ployment of sensor technology. For the sake of narrowing down the scope and

to provide a reference point, we will focus mainly on sensor technology in the

context of smart homes. In the field of event processing, the focus is on com-

plex event processing and the detection of patterns within time-ordered event

streams. As such, related areas of research, such as streaming databases and

rule-based processing are covered briefly in Chapter 2.

The rest of this introductory chapter provides a description of the project

context, an overview of the research challenges considered in this dissertation,

followed by a summary of contributions, and finally, an outline of the thesis.

1.1 Project Context

Some of the work presented in this dissertation was developed as part of the Inte-

grated IP-based Services for smart Home environments (IS-Home) project [128],

a larger effort aimed at offering an autonomic communication middleware plat-

form to simplify development and deployment of integrated and context-aware

services in a smart home environment. The IS-Home project was a joint effort

between industry actors represented by service provider Altibox AS, medical

equipment vendor Lærdal Medical AS and telecommunications hardware ven-

dor Telsey (Italy), and academia, represented by the University of Stavanger.

Near the end of the IS-Home project, which lasted from 2007 to 2010, we

observed several application needs for which event processing technologies was

a natural solution within the Altibox organization. These applications include

real-time television viewer statistics, telephony fraud detection, and the distribu-

tion of soccer match results in real-time. As such, the focus shifted from sensor

middleware to creating an industry-ready platform that would facilitate general

event processing.

Working closely with the Norwegian service provider Altibox gave us the

opportunity to address real-world challenges. This partnership also provided us

with valuable insight concerning industry demands for robustness, scalability

1.2. RESEARCH CHALLENGES 23

and maintainability, and most interestingly; access to actual user-generated data.

However, doing research in cooperation with a commercial company has not

been without challenges, and during the project there has been some stumbling

blocks along the way: Changes in the organizational structure, the reliance on

external vendors for developing project-critical code, time consuming organi-

zational bureaucracy, the problem of getting priority for a research project in

a production-oriented environment as well as conflicting commercial and aca-

demic interests are all obstacles that have been dealt with throughout the project

period. These are obstacles that are likely to face any long-term academic re-

search project performed in cooperation with a commercial organization, and

would be wisely considered in advance by anyone planning to undertake a sim-

ilar task. Fortunately, my immediate supervisors throughout this period have all

recognized the value of the research, and allowed me the necessary wiggle room

to complete the project.

Given the industrial nature of the project, a main goal has been to create

implementations that are usable in an industrial setting. For this reason, state-

of-the-art technological platforms with some industry momentum already estab-

lished has been favored over research prototypes.

1.2 Research Challenges

Five main research challenges in the context of sensor networks and event-based

systems are addressed in this dissertation:

HETEROGENEITY: Overcoming heterogeneity in communication and appli-

cation protocols for sensor devices. A major obstacle to the adaption of sensor

technology is the sheer variety of communication and application protocols used

by sensor devices. Complicating matters more, many of these are proprietary.

A middleware that hides the difference between sensor protocols would greatly

benefit the development of, ease the adoption of, and improve the flexibility of

applications interacting with sensors.

INTERACTION STYLES: Supporting both pull and push interactions in sen-

sor middleware. Applications interacting with networks of sensors and actuators

24 CHAPTER 1. INTRODUCTION

will likely have two distinct styles of interaction: Applications controlling actu-

ators like switches and locks will typically interact with these in a request/reply

(pull) manner, while event-driven applications, reacting to the output of sensors

and state of actuators need a publish/subscribe (push) interface. The flexibility

of the middleware mentioned in the previous paragraph will be further enhanced

if the middleware support both request/reply and publish/subscribe-style inter-

actions.

SERVICE DISCOVERY: Finding a scalable and convenient way of handling

service discovery in smart home sensor networks. Finding a scalable, distributed

way of keeping track of resources within sensor networks is key to a successful

middleware platform. Since embedded devices have limited resources in terms

of processing, bandwidth and power, it is essential to use a mechanism that

is lightweight and resource-efficient. Avoiding unnecessary polling and traffic

within the network conserves bandwidth and prolongs the life of sensor bat-

teries — something that becomes increasingly important as the sensor network

expands in number of nodes. An inefficient service discovery algorithm could

easily exhaust the available bandwidth for polling and control messages.

EVENT PROCESSING ARCHITECTURE: Providing a general architecture for

efficient processing of high volumes of events. The processing requirements

of events from sensor networks and other producers of data ranges from simple,

stateless queries, operating on a single value, to complex, stateful event process-

ing across multiple data streams. A common requirement for event processing

in these types of systems is that the processing be performed in near real-time.

This becomes a serious challenge if the number of input events and subscribers

are high and the amount of state to be handled are significant. Furthermore, the

complexity of the system performing the event processing can make it difficult

to maintain.

TRADEOFFS: Evaluate the tradeoffs between a declarative versus an imper-

ative programming model for event processing. A challenge in event processing

is the cognitive load of implementing and administer applications where the

amount of state to be maintained is large. Furthermore, it is often difficult to

keep the performance at an acceptable level in these types of applications. In

1.3. SUMMARY OF CONTRIBUTIONS 25

current research, a popular approach to event processing is to use SQL-derived

declarative query languages to represent continuous queries [42, 60, 7, 28, 21,

67, 147, 17], operating on streams of events. It is a challenge to understand

the performance and complexity impact of the query-based approach versus the

general-purpose language approach.

1.3 Summary of Contributions

The research contributions presented in this dissertation are twofold: in the area

of middleware for sensors, we present some novel ideas of how heterogeneity in

hardware and application protocols can be hidden from application developers

in the form of hardware and service virtualization, addressing the challenge of

HETEROGENEITY. A middleware implementation, SENSEWRAP has been devel-

oped as proof of concept. This middleware support both request/reply and pub-

lish/subscribe interactions, addressing the challenge of INTERACTION STYLES.

Furthermore, SENSEWRAP also enable sensor services to be seamlessly located

and accessed, using the standardized ZeroConf [23, 25] suite of protocols, ad-

dressing the challenge of SERVICE DISCOVERY.

The second area of contribution is related to the dissemination and process-

ing of events, such as those produced by sensors and humans interacting with

appliances, to name a few. These contributions include:

1. A paradigm comparison for stateful event processing. Through the imple-

mentation of concrete use cases, we evaluate the tradeoffs in performance

and complexity between using a specialized, declarative event processing

language and using a general-purpose imperative programming language

for performing Complex Event Processing. Our findings indicate that

there is a significant performance tradeoff in favor of the general-purpose

programming language. However, we conjecture that, given adequate per-

formance, using a specialized event processing language is still a better

solution for building more advanced Complex Event Processing applica-

tions, due to the simplicity gained by this approach. This contribution

addresses the EVENT PROCESSING ARCHITECTURE challenge.

26 CHAPTER 1. INTRODUCTION

2. An industry-proven architecture for general, stateful event processing.

Addressing TRADEOFFS, the EVENTCASTER implementation demonstrates

how Message-Oriented Middleware for the distribution of events, coupled

with a complex event processing engine can be used to make an extensi-

ble event processing system, capable of handling stateful and complex

event patterns while maintaining adequate performance for a wide variety

of use cases.

3. Novel applications for real-time television statistics and advertisement

scoring. Providing a new way of scoring televison advertisements that

is more in line with current measurement methods for online media, the

ADSCORER application not only demonstrates the capabilites and use-

fulness of the EVENTCASTER middleware — it is a contribution to the

field of media measurement in its own right. The same applies for the ap-

plication generating viewer statistics in near real-time, developed for the

paradigm comparison part of the dissertation. This last contribution adds

further support to the EVENT PROCESSING ARCHITECTURE challenge.

1.4 Impact

Currently, a single EVENTCASTER instance generates viewer statistics for over

320,000 Set-Top-Boxes (STBs) in near real-time, handling over 38 000 events

per minute during peak hours. Running on modest hardware, and deployed in

a production environment, the EVENTCASTER architecture serves as proof that

an Event-Driven Architecture (EDA) is indeed an optimal solution for services

such as this, and that the EVENTCASTER platform is fully capable of handling

the demands of an industrial deployment.

In the time after the publication of the DEBS papers [51, 52], the rate of an-

nouncements of collaborations between providers of STB data such as Rentrak

and smaller television networks have only increased [109, 108, 64]. This adds

weight to our observations of an ongoing paradigm shift in the media measure-

ment industry, and illustrates the timeliness of capitalizing on measurements

obtained from STBs to provide more accurate viewer statistics.

1.5. OUTLINE OF THESIS 27

The combination of hardware virtualization and service discovery intro-

duced in the SENSEWRAP middleware has been introduced in a number of

middleware for mobile services, such as Serval [117] and Hydra [61], after the

SENSEWRAP papers was published. Although we cannot take credit for influ-

encing the design of this middleware, it speaks to the relevance of the work

presented in Chapter 3.

1.5 Outline of Thesis

• Chapter 2 gives a general overview of middleware, service discovery pro-

tocols and event-driven architectures. These are key technologies and

paradigms that this dissertation builds upon.

• Chapter 3 addresses the challenges HETEROGENEITY, INTERACTION STYLES

and SERVICE DISCOVERY, and presents and evaluates the SENSEWRAP

middleware for sensors.

• Chapter 4 introduces the EVENTCASTER middleware, which addresses

the EVENT PROCESSING ARCHITECTURE challenge, and is the underlying

platform for the applications presented in Chapters 6 and 7.

• Chapter 5 provides some background on media measurement, establish-

ing the context for the following chapters.

• Chapter 6 addresses the TRADEOFFS challenge by evaluating the suitabil-

ity for event processing of two distinct programming paradigms through

the implementation of a real-time television statistics application.

• Chapter 7 presents an application for scoring televised advertisements in

near real-time, built on the EVENTCASTER middleware and the viewer

statistics application introduced in Chapter 6.

• Chapter 8 concludes this thesis. This chapter provides conclusions along

with a summary and directions for future work.

28 CHAPTER 1. INTRODUCTION

Chapter 2

Middleware: Abstractions,
Interactions and Paradigms

Middleware is the core issue of this thesis, and this chapter provides an overview

of concepts and technologies relevant to the research challenges presented ear-

lier. The aim is not to provide a complete taxonomy of the paradigms discussed,

but rather to provide some background on middleware in general, and to give an

overview of the most relevant technologies.

The first part of the chapter covers a brief walk-through of the purpose,

history and applications of middleware. Section 2.3 and 2.4 gives an overview

of the primary interaction models, and discusses the Remote Procedure Call

(RPC) and Message-Oriented Middleware (MOM) abstractions in detail.

Following the middleware discussion, Section 2.5 provides an introduction

to Event-Driven Systems, and covers the main processing models found in these

kinds of architectures. Since the proposed solution to the TRADEOFFS challenge

comes in the form of an EDA, some background of the different event process-

ing models, as well as an overview of current research is necessary.

Section 2.6 discusses the challenges facing developers of applications for

sensor networks and smart homes, providing some necessary background infor-

mation for the challenges HETEROGENEITY, INTERACTION STYLES and SERVICE

DISCOVERY, while at the same time relating these challenges to the concepts and

models presented in Section 2.5. Furthermore, the section contains an overview

29

30 CHAPTER 2. MIDDLEWARE: ABSTRACTIONS AND PARADIGMS

of Service Discovery Protocols, and a discussion on how these can be used in a

smart-home context. Concluding the section is a more detailed presentation of

the ZeroConf [25] protocol suite that is used in the SENSEWRAP sensor mid-

dleware implementation, presented in Chapter 3. A summary concludes the

chapter.

2.1 The Motivation Behind Middleware

With the introduction of networked computing, the need for a layer to facilitate

communication between heterogeneous systems emerged. The main attributes

of middleware is to hide differences (transparency) between systems and data

formats (abstraction) in order to provide a homogeneous view of the world to

applications. Middleware reside between distributed applications and the oper-

ating system [121] (Figure 2.1).

Data Representation Layer: HTML, XML, JSON, SOAP, etc

Application Protocol Layer: HTTP, JMS, STOMP, IIOP, etc

Transport Protocol Layer: TCP, UDP, etc

CORBA,
Java RMI, etc

M
iddlew

are

{

OS: Linux

App

OS: Win

App

OS: Android

App

OS: AS400

App

OS: IOS

App

OS Layer

Figure 2.1: Middleware

In early distributed computing systems, application developers typically had

to relate to connections at a very concrete level for handling communication

between systems, involving the design of low-level protocols that all involved

systems had to follow. However, the design of custom, low-level protocols is

error-prone [35], and does not make for reusable software components.

Ideally, application developers should only have to worry about problems

2.2. THE CLIENT/SERVER MODEL 31

within the application domain, where they can add the most value. By provid-

ing higher-level interfaces between systems, middleware makes life easier for

developers, masking much of the complexity of networks and protocols [14].

One can say that middleware grease the proverbial wheels between the compo-

nents of distributed applications.

2.2 The Client/Server Model

The client/server-model is the most commonly found design in distributed ap-

plications, and is a time-proven architecture where its status as the foundation

of the web speak to its successfulness. In client/server interactions, the server

offers a set of services that clients make use of. The server listens for requests

from clients, and returns a response to each request.

The guiding principle behind the client/server model is a separation of con-

cerns, typically handing over the responsibility for presenting the user interface

to the client, while assigning the application logic to the server. Ideally, this

frees up resources at the server, making the application more scalable. Further-

more, the separation of functionality should make it easier to make changes to

the application, as there will be no need for upgrading the clients when mak-

ing optimizations to the application logic, provided there are no changes to the

interface [54].

Even though the client/server model usually implies a request/reply inter-

action model (discussed in the following section), it is not always necessarily

so; it may also refer to any distributed software architecture with clearly sepa-

rated client and server-components, where the “heavy lifting“ is assigned to the

server component. Case in point, Java Messaging Service (JMS) (discussed in

Section 2.4.2) is referred to as a client/server-oriented middleware, even though

its interaction model is message-based. This is because the specification assigns

the responsibility of disseminating messages to a central server component.

32 CHAPTER 2. MIDDLEWARE: ABSTRACTIONS AND PARADIGMS

2.3 Interaction Models

In this section, we cover the basic interaction models of middleware in the con-

text of distributing information from different sources.

One distinction is whether the information is pulled by the consumer from

the producer, or pushed by the producer to the consumer. In other words, in a

push-style interaction, the interaction is initiated by the producer of information,

while in a pull-style interaction, the consumer initiates the interaction with a

request for information.

Another distinction is whether the interaction is synchronous or asynchronous.

In a synchronous pull-style interaction, the consumer blocks until it has received

a response from the producer. In an asynchronous pull-style interaction, the ini-

tiator is free to perform other tasks while the producer generates a response.

The following subsections discusses the nature of three commonly found

interaction models in middleware, as well as their application areas.

2.3.1 Request/Reply

One of the oldest and most widespread pattern of interaction between networked

computers, request/reply (Figure 2.2) is normally found in client/server-oriented

middleware, where the client issues a request, and the server responds with a

reply.

Request/reply is a pull-style interaction that is most commonly used in a

synchronous style, although asynchronous implementations also exist. Hyper-

Text Transfer Protocol (HTTP) is a prime example of a middleware protocol

that is based on the request/reply interaction pattern. A typical example of a

request/reply interaction is when a client, in the form of a web browser, issues a

HTTP GET command to a web server, and receives a HTTP response message

with HTML content.

2.3.2 Message Queueing

The message queuing model [48] introduces a message queue between infor-

mation producers and consumers, where producers append messages to the end

2.3. INTERACTION MODELS 33

Client Server

Request

Reply

Figure 2.2: The request/reply interaction model

of a FIFO queue, which is pulled from the queue by a consumer, when avail-

able (Figure 2.3). The queue may have several producers and consumers, but

each message is only consumed once, by a single consumer. A guarantee of

delivery in the form of message persistence is integral to this design. When a

message has been delivered, the consumer acknowledges that it has received the

message, and it is subsequently removed from the queue, not to be delivered to

another consumer. This also provides an easy way of setting up effective load

balancing, as it enables several consumers to collaborate on the processing of a

single queue.

On the consumer-side, both push- and pull-style interactions may be real-

ized with this model, as the consumers may choose to pull messages from the

message queue at any time, on demand, or have them delivered immediately,

subscription-style. In cases where there are many subscribers to a single mes-

sage queue, the MOM usually allows for a number of strategies for distributing

the messages among the subscribers, such as round-robin or random distribu-

tion.

An ordering system is an application where this model would be applicable:

only-once delivery prevents orders from being double processed, while persis-

tence ensures that no orders are dropped.

Producer Consumer
Message Queue

Figure 2.3: The message queueing interaction model

34 CHAPTER 2. MIDDLEWARE: ABSTRACTIONS AND PARADIGMS

2.3.3 Publish/Subscribe

In publish/subscribe middleware [48, 121, 30], subscribers express their interest

in specific types of events through subscriptions to an event notification service,

that is responsible for matching incoming events to the subscriptions that has

been registered.

Publish/subscribe is an asynchronous push-style interaction model, where

publishers anonymously send messages to an unknown number of subscribers,

without knowing anything about the subscribers or target applications. This

effectively decouples the publishers and subscribers from each other, and is re-

ferred to in the literature as The Principle of Decoupling [119]

Four actions make up the interface to a publish/subscribe middleware: pub-

lish, notify, subscribe and unsubscribe. The event notification service notifies

subscribers of events that matches their subscription, and occurs between the

subscribe and unsubscribe action. If a subscriber is not available at the same

time an event of interest is published, it will be held by the event notification

service, and forwarded as soon as the subscriber is available. Furthermore, if a

publisher does not have an active network connection available at the time of an

event occurence, it will hold on to the event, and publish it as soon as a working

connection is established, decoupling the time dimension between the systems.

Each message may be delivered multiple times, as every subscriber receives

the message. There may be several subscribers, but each subscriber only re-

ceives each message once. Messages published prior to a subscription is not

considered, as subscribers are only able to express their interest in future events.

Publisher Subscriber

Publisher Subscriber

Subscriber

Subscriber

Event

Service
Notification

publish

notify

subscribe/unsubscribe

Figure 2.4: The publish/subscribe interaction model

2.3. INTERACTION MODELS 35

Its decoupling of the time, space, and synchronization dimensions [48] makes

publish/subscribe an ideal model for applications where broadcasting of data is

involved, such as news or stock ticker services. These are cases where producers

and consumers may be dispersedly located (space) and have limited connectiv-

ity (may not be connected at all times, and not necessarily at the same time).

Broadcasting-type services may also have a very high number of clients. Not

having to block while receiving or sending messages (synchronization decou-

pling), is essential for the scalability of such services.

Figure 2.4 illustrates the components in a publish/subscribe system. The

borders around the event notification service is dashed to illustrate that it is

not necessarily a single entity with firm boundaries, but may be distributed,

depending on the implementation.

A downside to the publish/subscribe model, the way it has been imple-

mented traditionally, is the reliance on a central entity doing the matching of

content or topics against subscriptions. Not only is this a single point of failure,

but it is also likely to become the bottleneck in scenarios involving very large

numbers of publishers and subscribers.

Different approaches to this problem includes arranging the message bro-

kers in clusters, adding distribution to this otherwise centralized component.

This is the approach used in Johka [16, Ch. 5]. Another approach is to add an

overlay network of logical message brokers on top of the underlying, physical

network [11, 124, 10, 121]. Figure 2.5 shows an overlay network with a star

topology implemented on top of a physical network with a ring topology.

S2

S1

S4

S3

N4N3

N2 N1 N5

Logical
overlay
network

Physical
network

P1

Figure 2.5: Overlay network

36 CHAPTER 2. MIDDLEWARE: ABSTRACTIONS AND PARADIGMS

Subscription Models

Publish/subscribe systems offers different ways for subscribers to express their

interest. This section covers the most basic subscription models.

Topic-based subscriptions is a static subscription model, where events are

grouped into topics that can be subscribed to. For instance, a topic name for po-

litical news from the region of Europe could be news.europe.politics.

Topics are closely related to the concept of groups from the research area of

group communication, and most early implementations of the publish/subscribe

paradigm were based on the topic subscription model [47, 34].

Since subscribers may only subscribe to predefined topics, and the pub-

lisher must decide the topic before sending an event, the model offers limited

expressiveness [30, 11]. However, more recent implementations [2, 75] have

extended the model with concepts such as hierarchical topics and convenience

operators such as wildcards. Using the previous example, a subscriber to the

topic news.europe.> would receive any news event sent to any subtopic of

news.europe, while a subscription to news.*.economy would match all

economy news.

More expressibility is offered with content-based subscriptions, which en-

ables subscribers to filter the events sent to a topic based on content. By evaluat-

ing message properties, expressed with SQL-like syntax, regular expressions or

with eXtensible Markup Language (XML), the subscriber can express interest

in events that match a specified set of conditions.

To exemplify the SQL-like syntax for content filtering, a filter like price

< 20 AND name = ’IBM’ applied to a topic subscription for stock quote

events would only forward events where the stock being exchanged is named

’IBM’ and the price is below 20.

Most current topic-based publish/subscribe specifications, such as JMS [69],

allows for filtering based on properties. As such, events are usually represented

as maps of primitive types rather than objects. Relying on indexed structures

like key-value pairs facilitates very efficient implementations, but comes at the

cost of type safety, as misspelled property names may only be detected at run-

time [47].

2.4. MIDDLEWARE MODELS 37

Another approach to content-based filtering is to represent events as binary

objects, which ensures type safety, but requires deserialization at the inspection

stage. For this reason, this approach does not scale well [47].

A more recent model, type-based subscriptions, introduced by Eugster [47],

alleviates many of the shortcomings mentioned in the previous paragraph. The

event communication model is based on objects, and does not include any no-

tion of topic hierarchies, instead, the type of the event object is the primary

event discriminator. Because there is no need to encapsulate event objects into

predefined schemas, transformation and deserialization along the chain of distri-

bution is no longer necessary. Furthermore, the object based data model, means

that evaluation of content can be provided through publicly accessible methods

on the event objects, ensuring type safety. To exemplify, with the type-based

model, the previous SQL-like example of content filtering, can be expressed in

the following manner:

e.getPrice() < 20 && e.getName().equals(’IBM’)

In this example, e represents an arbitrary event object, where getPrice()

and getName() are typechecked methods.

2.4 Middleware Models

RPC and MOM are arguably two of the most widespread models of middle-

ware [97], and builds upon the basic interaction patterns described in the previ-

ous section. A majority of distributed applications use one or both of these as

the underlying model for communication.

This section provides a broad overview of the characteristics of RPC and

MOM, discusses strengths and weaknesses, and includes a short presentation

of commonly found implementations for each respective paradigm. The rela-

tionship between the middleware models and the basic interaction models is

illustrated in Table 2.1.

38 CHAPTER 2. MIDDLEWARE: ABSTRACTIONS AND PARADIGMS

RPC MOM
Interaction Request/Reply Message Queuing Publish/Subscribe
Style Pull Push/Pull Push

Table 2.1: Relationship between middleware models and interaction models

2.4.1 Remote Procedure Calls

Aiming to hide much of the network complexity of distributed applications,

RPC was introduced in the early 1980s [145], providing application developers

with a higher-level abstraction for communication. Procedures could then be

invoked remotely from systems running different operating systems, appearing

to the programmer as if they were locally stored procedures.

Most incarnations of RPC use the synchronous request/reply interaction

model (Figure 2.6), although asynchronous callback has been introduced in

some variants. With asynchronous callback, the caller does not block after the

invocation, but instead specifies a callback object that will be notified when a re-

sult is ready, leaving it available for other tasks while the call is being processed.

In cases where no return value is needed, asynchrony can also be achieved by

simply having the server acknowledge that the call will be processed, immedi-

ately after it has received the call (Figure 2.7), instead of waiting for the opera-

tion to be carried out before replying [140].

Figure 2.6: Synchronous interaction with RPC. The figure is adapted from [96,
Ch. 3.1].

2.4. MIDDLEWARE MODELS 39

Figure 2.7: Asynchronous interaction with RPC.

The RPC model comes with some serious limitations in terms of scalability and

flexibility [48, 114] that stems from its tightly coupled nature. In the context

of information systems modeling, coupling refers to the relationship between

components. When software components are interdependent, they are said to be

tightly coupled.

With the RPC model, the caller has to know the address of the remote in-

terface, and it has to have what is referred to as a client stub, which is a local

interface that serializes the method call and its parameters into a message be-

fore sending it across the network. On the server side, a server stub receives the

call, deserializes it, and sends it to the native server-side procedure. In order for

this to work, both the client and server stub has to be in sync, which means that

one cannot make changes to one part of the system without potentially affect-

ing functionality located elsewhere. Communication is done in a point-to-point

manner, where distributed parts of the system are interacting directly with each

other. As far as the application is concerned, all procedure calls are made on

local objects, and thus, the distribution layer of the application is transparent to

the programmer.

Because of this distribution transparency, it is very easy for application de-

velopers to use, and hence, very popular [48] [140, Ch. 2.2.3]. However, in

order to provide this transparency, it requires both the caller (client) and execut-

ing part (server) to be present on the network at the same time, with the client

being blocked until the server returns with the result value (unless a separate

40 CHAPTER 2. MIDDLEWARE: ABSTRACTIONS AND PARADIGMS

thread is assigned to this task).

A real-life analogy to the RPC model is when you, as a customer calls a

support line and is put on hold if there is a queue, forcing you to hold the line

until it is your turn. As such, it is not suitable for long-running procedures,

because it ties up the caller for a corresponding amount of time. Conversely,

asynchronous RPC is analogous to the customer service lines that lets you press

a key, and have them call you back when it’s your turn. Instead of holding the

line, the customer is free to do other tasks in the mean time. Asynchronous RPC

helps alleviate the problem of tying up the caller, but still requires the caller to

know the location of the addressee, and therefore is still tightly coupled.

The performance of the RPC abstraction can be acceptable in a LAN where

network bandwidth is cheap and node locations predictable, but quickly breaks

down in a WAN environment, where communication links and computing nodes

can be volatile [121, 12]. Because it ignores the possibility of partial failures

caused by either failures in the network, or in remote systems, RPC introduces

the need to handle exceptions that would never occur in locally stored proce-

dures [145]. As such, it could be argued that the abstraction of RPC in many in-

stances introduces more complexity than it hides, especially in large and widely

distributed systems.

RPC implies a one-to-one communication model, where systems are con-

nected directly to each other. In addition to affecting scalability, a big drawback

of the one-to-one communication model is the structural rigidness that comes

with it, making it very hard to implement changes to one part of the network

without potentially affecting other parts at the same time – a factor that be-

comes increasingly unpredictable as distribution grows. This is often referred to

as coupling in the literature [82, 57], and is the term that will be used to describe

the degree of interdependency between system components for the rest of this

thesis. As illustrated in Figure 2.8, a single request from a client to a server may

depend on an array of sub-invocations against other subsystems, where even

the temporary unavailability of a single subsystem could potentially cripple the

whole system, due to interdependency issues [35]. This is often referred to as

multi-tiered systems.

2.4. MIDDLEWARE MODELS 41

Client Server

Invocation

Server

Server

Server

Figure 2.8: Multi-tiered method invocation

Representational State Transfer

A challenge in distributed systems is when multiple servers has to share a com-

mon application state. A common reason for designing systems in such a way

is to reduce the number of method calls and limit the amount of information

needed to be transmitted over the network. However, this may lead to conflict-

ing states and complex systems that are hard to debug, where the complexity

grows along with the distribution of the system.

Based on the principles of the modern Web and defined by Roy T. Field-

ing [54], the Representational State Transfer (REST) architectural style aims to

solve these problems by eliminating server-side state alltogether. REST belongs

in the RPC family of models, but puts a number of restrictions on the system

design, with the intention of improving uniformity of interfaces as well as scal-

ability.

RESTful interactions are stateless by definition, and constrains distributed

applications to be designed in such a way that each request contains all the

information needed for the server to understand the request, regardless of any

requests that may have preceded it. This way, every interaction is independent

from other interactions. The downside of this is that the entire context of each

method call must be included every time, resulting in increased network traffic.

To illustrate this, consider a RESTful Application Programming Interface

(API) for a shopping cart at a webstore: The state of the transaction will be

stored locally at the user end, in order to keep the server stateless. In other

42 CHAPTER 2. MIDDLEWARE: ABSTRACTIONS AND PARADIGMS

words, the user have to send the complete state of the transaction to the webstore

API, including items and quantity for every step of the purchase process.

RESTful APIs use HTTP for all interactions, and are thus limited to the

GET, PUT, POST and DELETE methods of the protocol, ensuring uniformity of

interfaces. While the RPC paradigm promotes the implementation of custom

methods like deleteAccount(), getCustomer(), etc., the advocates of

the REST paradigm argues that this diversity of methods is unnecessary, and

that all applications can be served using the four basic functions of persistent

storage; Create, Read, Update and Delete (CRUD). In this style of API, the

basic functionality of the method is described in the identifier, e.g. the URI of

the method.

Furthermore, the REST paradigm follows the client/server principle of sep-

aration of concerns, claiming to improve portability of client code as well as

scalability, as servers need not be concerned with user interfaces or client state.

Standards and Implementations

This section covers some of the most well known specifications of the RPC

model. These include Open Network Computing (ONC) RPC [141], developed

by Sun and used for the well-known Network File System (NFS) distributed file

system, Common Object Request Broker Architecture (CORBA) [146], Java

Remote Method Invocation (RMI) [66] [140], .NET Remoting [93] and Web

Services [135], which are predominantly implemented in RPC-style.

Some of these implementations have a lower degree of coupling than others;

The Web Services concept that was introduced around the millennium, and has

proven successful in the inustry because of its platform and language indepen-

dene through the use of text-based data formats exchanged over HTTP [53] [66,

Ch. 2.2.1] for representation of method calls. A large contributor to the success

of Web Services, over, say, Java RMI is its use of port 80, which is normally left

open in firewall configurations, thus enabling deployments to bypass the most

common network-level security obstacle.

The traditional way of exposing Web Services is through a Simple Object

Access Protocol (SOAP) [135] API, although RESTful Web Services eschewing

2.4. MIDDLEWARE MODELS 43

the SOAP layer in favour of a simpler HTTP-based api has become popular in

recent years.

All implementations referenced here, except .NET Remoting, are platform

independent, although one may get .NET Remoting to work on Linux platforms,

through the Mono framework [102]. However, this is not officially supported by

the vendor (Microsoft), and there is uncertainty associated with using complex

data types, such as hash tables, as these may have a different representation on

other platforms.

The Java language is platform independent, which means that Java RMI can

work on any platform that has a Java Runtime Environment (JRE) installed.

Java RMI and .NET Remoting are not language independent, which comes with

the obvious downside that objects written in different languages cannot com-

municate with each other. The advantage is that these are generally easier to

work with, as the programmer does not need to account for typechecking, can

use a richer set of data types, and can rely on language-specific functions, such

as automatic distributed garbage collection [66, Ch. 23].

Using language-independent implementations of RPC limits supported func-

tionality and data types to those included in all programming languages sup-

ported. Another advantage with language-tied RPC implementations, is the abil-

ity to send any serializable object across the network without having to define it

in an interface first. With language independent implementations like CORBA

or SOAP, one has to define the object, using Interface Description Language

(IDL) in the case of CORBA and Web Service Definition Language (WSDL)

Schema in the case of SOAP.

An extension of Java RMI; Java RMI over IIOP [127] [66, Ch. 23] enables

clients written in other languages to communicate with distributed Java objects.

IIOP is an acronym for Internet Inter-ORB Protocol and is the wire protocol part

of the CORBA specification. Its interoperability with other languages means

that the data types and functionalities are limited in the same way as with SOAP,

meaning that data types are limited to a selection of generic types, supported by

most languages.

A part of the Java Enterprise Edition platform, the current version of Enterprise

44 CHAPTER 2. MIDDLEWARE: ABSTRACTIONS AND PARADIGMS

Java Beans (EJB 3.1) uses Java RMI-IIOP for communication, and provides

an array of additional functionality, such as transaction handling, support for

message driven interactions and thread management. It will not be discussed in

detail here, where the focus is on remote procedure calls.

An argument for using platform and language independent middleware im-

plementations such as SOAP and CORBA is to avoid vendor lock-in. When

choosing technologies such as Java RMI or .NET Remoting, it ties oneself to

a particular programming language for all future interactions with the system

(and in the case of .NET Remoting, to a particular operating system as well).

2.4.2 Message-Oriented Middleware

A common solution to the issues associated with synchronous interactions and

the RPC paradigm is to loosen the coupling between communicating systems:

By introducing a mediator between nodes in the form of a message queue ab-

straction (Figure 2.3), we are able to decouple both the time and space dimen-

sions, given that the message queue is persistent, and at the same time remove

the interdependency of systems. The message queue may be implemented in a

centralized or distributed manner. Either way, the abstraction presented to the

clients are a single message queue.

Middleware that provides the programmer with an API for messaging is

called Message-Oriented Middleware. Compared to the RPC model, where the

distribution is invisible to the application programmer, MOM adds a layer of

complexity by exposing parts of the distribution. The operation of MOM is

analogous to the postal service taking responsibility for the delivery of messages

to the correct recipients.

Communication in MOM is usually asynchronous, which prevents the whole

system from being bogged down by the single slowest entity, since message con-

sumers does not have to wait for producers to process a request before continu-

ing and vice versa. The flexibility of MOM facilitates support for messages that

may take anywhere from seconds to hours to process. The two interaction mod-

els typically provided by MOM is message queuing and publish/subscribe [35].

As mentioned in Section 2.3, message queuing is a one-to-one, loosely

2.4. MIDDLEWARE MODELS 45

coupled interaction model, where a message is placed on a queue by a single

producer, and pulled from the queue by a single consumer. Publish/subscribe,

on the other hand, is a many-to-many interaction model, where events are dis-

tributed by an event notification service that matches events of interest to sub-

scriptions. Thus, events may be delivered to more than one subscriber.

As long as message passing is not integrated into most established, modern

high-level programming languages such as Java, C# and .NET, MOM is a ne-

cessity in order to solve certain types of tasks. Thus, the developer has to rely on

external APIs for message passing, which has the drawback of the compiler not

being able to statically type-check messages [121]. Some of the more recently

developed programming languages, like Scala [115] and Go [106], includes

message passing as one of the core features of the language itself, essentially

integrating the middleware layer into the language.

Synchronous interactions with MOM

Although MOM is inherently asynchronous in design, synchronous interactions

can be achieved by including a property that defines the address of the message

queue where a reply to the message sent by the client will be found. The mes-

sage producer may then block until it finds a reply on the specified address. In

order to keep relationships between request and reply messages, the requester

may specify a temporary reply-queue for each request. However, this is bad for

performance, as the message broker would have to create a new queue for every

request. A common way of avoiding this is to use an additional property, con-

taining an identifier in order to correlate reply messages to their original request,

using a single queue. These techniques involves maintaining maps of message

identifiers linked with messages at the requester side.

From the steps described above, it is evident that achieving synchronous in-

teractions using MOM is cumbersome. Developers seeking to add synchronous

interactions to their applications will likely be better served utilizing a commu-

nication model that was designed with synchronous interactions in mind, such

as RPC.

46 CHAPTER 2. MIDDLEWARE: ABSTRACTIONS AND PARADIGMS

Common Functionality

A message queue in its simplest form could be an FTP server where one or

more systems upload messages in the form of text files, while other systems

monitor specific folders, and downloads new files as they appear. This is not

MOM per se, as it lacks essential functionality typically expected from a MOM

implementation such as delivery guarantees, transactional integrity and so forth.

However, it is still a common method for many businesses to integrate their

heterogeneous systems in place of a fully fledged MOM. Below follows a list

of some of the additional services to messaging that are commonly found in

MOM [35].

• Guarantee of message delivery. Depending on configuration, messages

can be stored on persistent media such as disk until they are delivered to

all the subscribers, or until their Time To Live (TTL) expires, ensuring

that information is not lost in case of a server crash or network failure.

• Prioritizing of messages, affecting messages in transit. In other words,

it affects the ordering of when queued messages are delivered to the con-

sumer. In the case of events demanding immediate processing, such as

alarms, prioritization will ensure that those messages are delivered to the

consumer before less important events, such as logging notifications.

• Transformation. Methods for transforming messages from one format

to another, or altering their attributes.

• Message filtering capabilities is a defining characteristic of MOM, and is

implemented in the ways already discussed in Section 2.3.3.

• Clustering functionality to provide redundancy and load balancing. With

message servers arranged in clusters, load balancing can be achieved by

spreading the load of distributing, filtering and transforming messages

among the cluster. Such arrangements also comes with the advantage that

in the event of server crash, the messaging service will still be operational,

as the rest of the servers in the cluster will pick up the slack left by the

crashed host.

2.4. MIDDLEWARE MODELS 47

Standards and Implementations

This section covers some of the most commonly found MOM implementations

and specifications.

JMS is a specification that defines a messaging API for Java [69] [114, Ch.

9.1.3] [35, Ch. 1.5]. In order for a system to be JMS compliant, it has to imple-

ment a set of interfaces that provide a defined set of functions and interact in a

specified way. A goal of the specification is to provide the programmer with just

enough tools and concepts to build sophisticated messaging applications. The

subscription model of JMS is topic-based, although most current implemen-

tations, such as HornetQ [75] and ActiveMQ [2] also suppport content-based

filtering.

JMS is a client/server-oriented specification, where components are divided

into clients and providers (representing the server part). Some JMS implemen-

tations use a cluster of servers in order to provide load balancing and fault-

tolerance. The provider is responsible for handling the messages, and clients

can choose any JMS compliant provider. Clients can be both producers and

consumers of messages. Furthermore, the specification requires two communi-

cation modes; message queuing and publish/subscribe. Queues are stored at the

server, and direct communication between sender and receiver is not supported.

Most JMS implementations include a native interface in addition to the JMS

interface, in order to provide functionality that lies outside of the JMS specifi-

cation. A benefit of sticking to the JMS interface of a MOM is that there are

several implementations to choose from, and from these, an IT department can

replace one with another relatively easily, should the need for this arise. In-

stances where implementation development and maintenance has ceased is an

example of such a situation.

A challenge with JMS and other MOM implementations in certain industrial

settings, where a failure in the distribution of messages may prove disastrous,

such as aerospace and defense systems, is the lack of support for Quality of

Service (QoS) and fault tolerance [30]. A consequence of JMS’ lack of non-

functional requirements is that although JMS specifies QoS policies for message

delivery guarantees, no such guarantees for message latency exist. Furthermore,

48 CHAPTER 2. MIDDLEWARE: ABSTRACTIONS AND PARADIGMS

fault-tolerance in JMS is left to the provider to implement, as it is not part of

the specification. Lastly, JMS’ lack of type-safety, means that errors caused by

discrepancies of data types is harder to detect than in a type-safe system. Since

JMS does not provide a wire-level protocol specification for the messages, and

only provides a Java API, interoperability is limited to the Java world.

Advanced Message Queuing Protocol (AMQP) [126] and Simple Text
Oriented Messaging Protocol (STOMP) [101] specify much of the same func-

tionality as JMS, but includes the wire protocol as well, ensuring interoperabil-

ity across platforms. As indicated by their names, STOMP is a relatively simple

text-based protocol, while AMQP provides more functionality, and supports bi-

nary object representations as well.

Standardized by the Object Management Group (OMG), Distributed Data
Service (DDS) [78] is a newer specification than JMS, designed to cater for de-

manding real-time applications, where dependability and timeliness of event no-

tifications are paramount. It offers a fully distributed implementation of the pub-

lish/subscribe model, and is based on a Peer-to-Peer (P2P) networking model in

order to cope with highly dynamic (unreliable) networks. Furthermore, it of-

fers type-safety and uses a type-based subscription model, where QoS is part

of the data type and thus, part of the subscription. While JMS is an API spec-

ification only, DDS also specifies the wire-protocol, as well as a number of

non-functional requirements ensuring QoS and reliability.

A key abstraction of DDS is a Global Data Space (GDS), where data objects

are available to publishers and subscribers, and a topic is a data type that can

be legally written to the GDS. Because a primary goal of DDS is to ensure

reliability and timeliness of event delivery, the DDS specification requires the

GDS implementation to be fully distributed, in order to prevent a single point of

failure or a single bottleneck. In order for a publisher to publish events in DDS,

it associates a DataWriter object with a data type and a topic name, and use this

to write to the GDS. A subscriber uses a DataReader object associated in the

same way, in order to read values from a topic [31].

Originally developed for instant messaging, and endorsed by the Internet

Engineering Taskforce (IETF), Extensible Messaging and Presence Protocol

2.5. EVENT-BASED SYSTEMS 49

(XMPP) (previously known as Jabber) [129] is a decentralized client/server-

oriented messaging protocol for streaming XML in near real-time. In this case,

decentralized means that the dissemination and filtering of messages can be dis-

tributed among servers, and that clients may communicate indirectly through

multiple server hops. Its main interaction model is point-to-point messaging,

but it also offers a general publish/subscribe interface, available as an exten-

sion [129, Ch. 3]. Because message content are limited to XML, it is not

possible to transmit optimized binary content, which could prove a concern in

scenarios requiring very high throughput. Furthermore, the focus of the pro-

tocol is one-to-one messaging, and publish/subscribe is not supported natively,

but through an extension. Like with JMS, QoS is not part of the XMPP specifi-

cation.

2.5 Event-Based Systems

Event-based systems represent a fundamental shift from the traditional ways of

building distributed applications by inherently decoupling the components. This

allows for more flexible and extensible architectures, as components can be re-

moved and added without consequence for the rest of the system. Furthermore,

the distributed nature of event-based systems allows for excellent scalability.

However, all of this comes at a cost: Whereas poll-based systems must trade

the timeliness of data for resource expenditure, the tradeoff in event-based sys-

tems is between increased complexity and reduced control over the interactions

on the one hand, and improved flexibility and scalability on the other [114, Ch.

2.2.5].

This section provides an overview of the components that make up event-

based systems, and how these interact. We also discuss how these relate to

previously introduced concepts. While Section 2.3 and Section 2.4 explained

and compared different publishing models, this section focuses on the event

processing part, and compares the various event processing models.

50 CHAPTER 2. MIDDLEWARE: ABSTRACTIONS AND PARADIGMS

2.5.1 Event-Driven Architectures

While MOM provides a distribution layer for events in distributed applications,

an Event-Driven Architecture (EDA) is a software architecture that introduces

state in the handling of events. In this thesis, we define an event as “a significant

change of state” [22]. According to Chandy and Schulte, an EDA adheres to the

following five principles [22, Ch. 3]:

• Events are reported in real-time, as they happen

• Notifications are pushed by the event producer, not pulled by the con-
sumer

• Consumers respond to events immediately

• Notifications are communicated one way (“fire and forget”)

• Notifications are free from commands

A focus of event-based systems is to provide the quickest possible response to

events of interest. Because notifications are only communicated in one direc-

tion, and are free from commands, producers and consumers in this kind of

architecture have minimal coupling to each other. All a producer needs to know

is where to send notifications, while all a consumer needs to know is where to

listen.

An important distinction to be made between EDA and MOM is the level

of abstraction and scope: One can look at MOM as the plumbing that enables

events to propagate through an event-driven architecture, while the system it-

self also needs to know how to identify and handle these events in order to

be called event-driven. The event processing part of the architecture can be

separated from the publishing part, which can be anything from generating an

email or sending an SMS, to sending a message to a queue, which brings us

to the following point: When discussing event-based systems, the interaction

model is often confused with the underlying implementation for distributing

notifications. Even though a publish/subscribe service is an obvious candidate

for implementing event-driven interactions, it is not the only available choice.

2.5. EVENT-BASED SYSTEMS 51

Notifications in event-driven interactions may be transported using any underly-

ing communication implementation, provided that there is a publish/subscribe

interface on top, facing the producers and consumers of events [114, Ch. 2.2.6].

Figure 2.9 illustrates the elements of an EDA: Event producers and con-

sumers that communicate over an Event Processing Network (EPN), made of

Event Processing Agents (EPAs). An EPA is a software component that per-

forms one or more of the following three functions: filtering, matching and

derivation [119, Ch. 6.2].

Event Processing
Network

Event
Processing
Agents

Event ConsumersEvent Producers

Figure 2.9: Event-Driven Architecture (adapted from [34])

Producers and consumers, sometimes referred to as sources and sinks [34, 22],

represent the start and end of an event-driven interaction, starting when a pro-

ducer emits an event to an event processing network, and ending when the event

is received, and potentially acted upon by one or more consumers.

The event producer is the entity that introduces events from the outside

world into the EPN [119, Ch. 2.2.1]. As such, the event producer is often is

not the actual generator of the events, but rather an adapter that receives events

from a source like a sensor, translating and communicating these to the EPN.

Producers are autonomous in that they decide for themselves when to emit

an event, and furthermore does not rely on any further action to be made by other

components [114]: They are unaware of the consumers of their emitted events.

Likewise, consumers are unaware of the actual producers of events, and issue

their interest in events through subscriptions to the event notification service.

In other words, the basic interaction model between event producers and

consumers is publish/subscribe. The difference lies in the expressiveness of

subscriptions supported by the event processing network that resides between

the producers and consumers. While the event notification service in publish/-

52 CHAPTER 2. MIDDLEWARE: ABSTRACTIONS AND PARADIGMS

subscribe systems generally only allows for the processing of single events in

isolation, without regards for context, the event processing network (presented

in more detail in Section 2.5.4) allows for stateful subscriptions. The various

event processing models are covered in Section 2.5.5.

Even though producers and consumers in the context of the EDA model

are limited to the entities facing the EPN, a discussion of the actual sources

of events is in order, as they are an integral part of event processing applica-

tions. Categories of event producers include hardware, human interaction and

software[119]. In this section, these categories are exemplified and discussed.

2.5.2 Event Producers

The following list contains examples for each category of event producers:

• Hardware

– Sensors (temperature, luminosity, humidity, etc)

– Detectors (smoke, pressure, intrusion, etc)

– Cameras

– Microphones

• Human Interaction

– Appliance control (TV channel change, mute audio, turn alarm off,
etc)

– Identification (for instance using RFID chip or PIN code)

– Payment through a device such as a credit card terminal

– Placement of an order (via web or other)

– Indication of presence (checkins through Facebook, etc)

– Clicks on a web site

– Social network activity

• Software

– Applications

– RSS feeds

– Instrumentation (monitors, probes)

– Adapters

2.5. EVENT-BASED SYSTEMS 53

For the main categories, the distinctions are rather subjective and their bound-

aries should not be considered rigid. Subcategories in the realm of hardware

event producers include sensors, detectors, cameras and microphones. Sensors

and detectors report one aspect of their environment, and as such, it could be

argued that cameras and microphones are sensors, instead of having their own

categories. However, the complexity of the output signals requires decoding in

order to look at the video on a per frame basis, or a per sample basis with audio.

Furthermore, there are many different aspects of the signals one could look at.

In the case of a video signal, one could look at the movement in the picture, or

at the color spectrum, among other things. Similarly, there are many aspects of

an audio signal that can be analyzed; variations in amplitude, or the frequency

content, to name a few.

The output of sensors is more continuous in nature than detectors, which are

generally non-linear. Sensors may be polled, report at a fixed rate, or only out-

put an event when its readings crosses a predefined threshold. Hardware sensors

report a single aspect of its environment, measuring a physical quantity such as

luminosity or humidity, while detectors detect the absence or presence of some-

thing, such as smoke or movement. Other examples of hardware sensors include

medical equipment, such as heart rate monitors and blood pressure meters.

The Web is an abundant source of events generated by human interaction;

clicks on web pages, payment through web shops and activity on social net-

works are all examples of such events. Another type of events in this category

are those generated from users interacting with networked appliances such as

STBs and alarm panels.

In the software category of event producers, we have code that generates

events based on application logic, probes in industrial systems, and feeds of

various kinds, such as RSS or Atom, or financial stock feeds [119, Ch. 4.2.2].

2.5.3 Event Consumers

Event consumers are at the other end of an event-based interaction, and is the

entity that receives and possibly reacts on a produced event. The following list

contains examples for each category of event consumers:

54 CHAPTER 2. MIDDLEWARE: ABSTRACTIONS AND PARADIGMS

• Hardware

– Actuators (door locks, alarm sirens, etc.)

• Human Interaction

– Monitoring dashboard

– Email, SMS

– Social networking

– Alarm systems

• Software

– Event logs

– A WebSocket listener, updating a web page

An actuator represents the logical counterpart to a sensor. Areas of deployment

include home automation, industrial control and traffic control. A traffic light,

for instance, is an example of a traffic controlling actuator. When controlled

by a luminosity sensor, the small electrical motor controlling the blinds on the

windows of a house is an example of a home automation actuator.

In the human interaction category, we find various monitoring dashboards,

such as HP OpenView [76] and Cacti [103], which displays continuously up-

dated graphs and readings for an array of various indicators for things like

network latency, temperature, and CPU and memory utilization. Monitoring

dashboards can also visualize other, non-system attributes, like stock prices or

organizational health. The display of readings in context, enables operators to

perform their own, manual Complex Event Processing (CEP). In cases like this,

humans are the event consumers, and these systems depends on human inter-

vention for actions to be taken.

Social media networks such as Twitter and Facebook presents another ex-

ample of the human interaction category. In social networks, humans are both

producers and consumers of events, where status updates, friend requests and

shared links serve as the produced events, which in turn are consumed by other

people, and possibly responded to, producing new events.

2.5. EVENT-BASED SYSTEMS 55

The software category of event consumers are reserved for applications

without a user interface, such as event logs, and also include business logic

that is not part of the EDA itself [119, Ch. 5.2.3].

2.5.4 The Event Processing Network

The disseminating part of EDAs, the event processing network, is made from

event processing agents, connected by channels. Channels are any means of

distributing events from one agent to another. One obvious technique for this is

message passing, but there are also other ways, such as putting an event object

in a shared place [22], like in DDS.

Event processing agents are software that consumes events, processes them,

and emits new events, or simply forwards specific events, based on a filter cri-

teria. Input events can either be raw, meaning unaltered events generated by

event producers, or derived, meaning that they are events processed and emit-

ted by other software agents. In that regard, event processing agents can be

seen as both event consumers and producers, however, these categories are re-

served for components residing outside the boundaries of the event processing

network [119].

There are several subcategories of event processing agents: some merely

perform simple filtering, while others perform more complex tasks, such as

transformation, pattern matching and aggregation, composing new output events

from heterogeneous input events (Figure 2.10). Examples of event processing

agents include:

• JMS subscription filters

• Database triggers

• Pattern matching statements or queries written in a specialized language

• Blocks of code, dedicated to specific event processing tasks

2.5.5 Processing Models

While the traditional way of processing data is to store them in a database, and

subsequently query them, many scenarios, such as event clouds within busi-

56 CHAPTER 2. MIDDLEWARE: ABSTRACTIONS AND PARADIGMS

nesses (Figure 2.11) calls for event stream processing in real time. In many

cases, the sheer volume of input events as well as the need to make decisions

in real time, or near real time like in algorithmic trading, where a millisecond

of latency could potentially cost millions of dollars, mean that storing the data

prior to processing is not a viable solution.

Different models reflects different challenges, and here we will look at the

main categories of event processing, and show some areas of usage for each of

them.

Simple Event Processing

Most modern Database Management Systems (DBMS), such as Oracle, Post-

gres and MySQL, support some form of event processing in the form of trig-

gers. Active Databases is a term commonly used with reference to these kinds

of features. A trigger is a stored procedure that fires once a specific event is

detected, e.g. when a table is updated with a certain value. Triggers typically

come in the form of an Event-Condition-Action (ECA) rule, normally written

as WHEN event IF condition THEN action. However, triggers does not cater for

the demands of high volume, real-time event stream processing, as the data will

have to be persisted prior to the firing of a trigger. Persisting the data prior to

processing adds significant latency, and as already mentioned, the sheer amount

of data will in many cases prevent this from even being an option. Moreover,

simple ECA rules does not provide enough expressive power to represent com-

plex events/patterns.

A common characteristic shared between ECA rules described in the above

paragraph and the subscription models in publish/subscribe, presented in Sec-

tion 2.3.3, is that they operate on single events, without regard for context. In

other words, routing and filtering can only be based on the properties of a single

event at a time, which characterize simple event processing. Another character-

istic of simple event processing is that the only types of processing available is

filtering and routing [119].

Operating on a single event at a time, simple event processing is restricted

to trivial, boolean matching in isolation. Deciding whether a soccer event was a

2.5. EVENT-BASED SYSTEMS 57

goal or not, is a simple action that does not require any knowledge derived from

other events.

Illustrating this, Listing 2.1 is an excerpt from the HornetQ configuration

of a soccer event notification application, developed for Altibox. This config-

uration establishes a forwarding of events from a specified address to another

address, filtering out events that are of the type specified in the filter string.

Listing 2.1 Message filtering in HornetQ
<divert name="livecenter-divert">

<address>soccer.events</address>
<forwarding-address>

soccer.events.livecenter
</forwarding-address>
<filter string="type<>26 and type<>27 and type<>54"/>

</divert>

Complex Event Processing

CEP describes the process of identifying patterns of events in relation to other

events. Complex events are sometimes referred to as Composite Events [114],

and can be viewed as superevents because they are composed from simpler en-

tities. Events of this type can be made of any combination of other events, both

simple and complex, as illustrated in Figure 2.10.

Listing 2.2 Event Processing Language (EPL) query generating a complex event
1 insert into AdSummary
2 select * from pattern [every
3 (a=ViewersLost and b=MuteCount and c=VolSummary)]

Listing 2.2 shows an example from our ADSCORER implementation (presented

in Chapter 7), and shows a complex event generated from other complex events.

Examples of complex events include intrusion attempts on a networked sys-

tem and credit card fraud detection [132], where various events that may not

mean much as isolated occurrences may be recognized as parts of a larger event

when looked at in relation to each other. In order to detect a sophisticated at-

tack, the detection system must correlate several different events from disparate

58 CHAPTER 2. MIDDLEWARE: ABSTRACTIONS AND PARADIGMS

Simple

A
Event

Complex

C
Event

Complex

D
Event

Complex

C
Event

Simple

B
Event

Simple

A
Event

Figure 2.10: Complex events

sources, generated at various points in time and recognize an event pattern from

these.

Detecting complex events is often no simple task and, depending on the

complexity of the events, the number of states necessary to remember, the num-

ber of different event types, the volume and size of events, might require signif-

icant processing and memory resources. As such, the performance and scalabil-

ity requirements are in many cases a concern when designing such systems.

Event Stream Processing

Any set of events ordered by time can be viewed as streams [89], and can be

formally represented as an ordered pair (s, ∆), where s is a sequence of tuples

and ∆ is a sequence of time intervals.

A subset of CEP, Event Stream Processing (ESP) focuses on processing

high-volume event streams, such as market stock ticker feeds and traffic data,

where the number of input events are relatively large in comparison to the gen-

erated output events. Being able to process events in the order of their arrival

allows for high performance and low memory usage, as the processing engine

does not have to keep track of a very large set of events. A sliding window tech-

nique, where old events are discarded as new ones arrives is commonly used.

This is illustrated in Listing 2.3, which is taken from an Esper [28] tutorial. Es-

per is a stream focused event processing engine, and is presented in more detail

in Chapter 4. The query demonstrates a sliding window that returns the average

stock price of the events that occurred over the last 30 second interval.

Note that the sliding window concept is not restricted to time-based windows; it

2.5. EVENT-BASED SYSTEMS 59

Listing 2.3 EPLnumbers query performing Event Stream Processing
1 select avg(price) from StockTickEvent.win:time(30 sec)

could also be specified as the number of consecutive events to examine.

One can look at ESP as an inversed model of the relational database man-

agement systems, where, instead of running a query over a set of stored data,

pulling out information, you store your query, and run incoming data over it in

a continuous manner. When incoming data matches the query, a notification is

pushed out.

Algorithmic trading is a businesses example that fits this processing model

perfectly, but also any other application that needs to handle near real-time pro-

cessing of high volume event input streams, consisting of few and well-known

event types.

2.5.6 Applications For Event Processing

This section covers some practical application areas for event processing:

Alarm systems are a good match for the EDA paradigm: events are passed

through the system, interacting with event processing agents, possibly trigger-

ing an action based on the context of the events and the state of the interacting

components. If an event occurs within a specified timeframe, for instance, the

appropriate action might be to trigger an alarm. This scenario represents event

processing in its simplest form. Continuing with the alarm example, take an IR

detector that provides a continuous stream of events; by specifying a threshold

for consecutive positive readings, we have an example of event stream process-

ing, where an event processing engine is required to keep track of state.

Tools for real-time log analysis, like Splunk [110], give system operators

a chance to detect network-wide failures with much less effort than allowed

by manual log inspection. Basically, this type of tool monitor an array of sys-

tem logs, and enable administrators to express interest in specific keywords,

as well as specify rules and thresholds for when, where and how many times

these keywords might appear. This can either be expressed in a specialized lan-

guage, or through a graphical user interface. By combining logs from different

60 CHAPTER 2. MIDDLEWARE: ABSTRACTIONS AND PARADIGMS

sources and analyzing them as a whole, such tools enable automatic plotting

and bucketing of events according to properties such as time, host, and factors

of interest [138].

Business Activity Monitoring [22, Ch. 10] (BAM) is another prime appli-

cation for event processing, where events generated by different systems needs

to be analyzed and correlated. Because the number of events generated in the

event cloud of a business (Figure 2.11), or between businesses, can be very high

(often in the scale of thousands per second), it is impractical, if not impossible

to store all the data before processing them. This is where event processing

enters the picture; by processing the events in real-time, an event processing

engine makes it possible to detect critical business events (a pattern of event

A, followed by C, followed by B OR D within a timespan of ten minutes, for

instance). Specialized event processing languages simplify the expression of

complex event patterns, even though this kind of logic is possible to implement

using a general purpose programming language. However, it generally requires

a significantly larger effort, as demonstrated in Section 4.

Event Cloud

Network
Monitoring

CRM System

Trouble Tickets

Product
Ordering
API

Service
Monitoring

Service
Provisioning

Logistics and
Billing

Business
Activity
Monitoring

Figure 2.11: Business Event Cloud

Electrical power grids also fit neatly into the EDA model. Between the devices

plugged into power outlets and the power plant, there is a multitude of additional

components that can be classified as event producers, consumers, or both. Smart

meters [81, 79] reports power usage for an installation in real time, and is a

2.6. THE SENSOR NETWORK APPLICATION DOMAIN 61

typical producer, consumed by the backend applications at the power company.

A number of smart grid initiatives [122, 65, 70] aim to reduce the number

of power outages and maintenance costs caused by overloaded transformers and

at the same time reduce overall consumption through smarter utilization of the

available power. The use of probes, installed across the power grid is central

to achieving these tasks, but it is also possible to imagine that smart meters

alone, combined with knowledge of the existing grid could provide sufficient

information in order to calculate the load on the components that make up the

power distribution network.

Sensor networks for smart home environments is another obvious arena

for event processing. These come with their own set of challenges, which will

be discussed in the following section.

2.6 The Sensor Network Application Domain

This section elaborate on the challenges involved in developing applications for

sensor networks within the context of smart homes (Figure 2.12), and how event

processing provides a natural solution to some of these, providing the back-

ground for the challenges HETEROGENEITY, INTERACTION STYLES and SERVICE

DISCOVERY as well as motivation for the SENSEWRAP middleware presented in

Chapter 3. Note that the focus will be on middleware functionality, rather than

low-level wireless communication protocols.

Wireless communication technologies enable seamless communication be-

tween residential network entities such as STBs, sensors, control units and other

devices, and are typically far less costly to install than their wired counterparts

due to cabling. These technologies have opened up a whole range of new appli-

cations in the utility segment, like remote control of heating, security and safety

systems and health monitoring.

Because the sensors in a wireless sensor network report aspects of their

environment, there is a limit to how long the readings are accurate or can be

trusted, thus it is important that they are delivered to the consumers in a timely

manner. These requirements matches well with the publish/subscribe communi-

62 CHAPTER 2. MIDDLEWARE: ABSTRACTIONS AND PARADIGMS

Sensors
and

actuators

Figure 2.12: Smart home

cation model of event-based systems, while CEP is an efficient way of extract-

ing meaningful information from a potentially vast amount of data produced by

such networks [85].

In addition to the challenge of extracting meaningful information from a

potentially massive amount of data from a variety of sensors, the heterogeneity

of communication protocols and the mixture of addressing schemes used by

networked devices of different make and model is one of the biggest challenges

when developing integrated smart home services.

Most smart home systems offered today are based on proprietary all-in-

one solutions, where the sensors and actuators might use a proprietary Radio

Frequency (RF) protocol over the 868MHz band, while others might use Zig-

Bee [68], Bluetooth [13] or WiFi. Furthermore, most devices have their own

application-level protocol for communicating control commands and retrieving

data. Moreover, due to the limited capabilities of many types of sensors, a full

communication stack with IP addressing is simply unfeasible. Yet, it would sig-

nificantly simplify application development if interaction with the sensors were

based on UDP or TCP sockets and IP addressing schemes. Currently, these is-

sues hamper innovation and development of new (possibly third-party) smart

home services.

Another obstacle to the adoption of smart home technologies is the com-

2.6. THE SENSOR NETWORK APPLICATION DOMAIN 63

plexity of setting up and managing the networking between devices, deterring

most home owners from acquiring such solutions. Add to this the mobility and

inherent unreliability (empty battery, communication problems, etc) of wire-

less sensors, one can imagine that the task of manually administering a smart

home sensor network could prove to be very demanding indeed. Hence, it is

paramount to the success of networked homes that device configuration is per-

formed automatically.

2.6.1 Service Discovery

Minimizing the burden of manual configuration is a requisite for the success of

smart home environments. Modern user devices are often multi-homed, mean-

ing that they may connect through different networks and topologies, such as

WiFi or 4G, which is not facilitated by the host-centric TCP/IP stack [117].

Finding a scalable and convenient way of handling service discovery in smart

home sensor networks is a challenge, both due to the limited resources of wire-

less sensors and actuators, as well as the potential volatility of such devices.

In this section, we discuss the SERVICE DISCOVERY challenge in further de-

tail, introduce the Zero Configuration Networking (ZeroConf) suite of proto-

cols [25], and give a brief overview of other service discovery protocols..

Service discovery protocols are designed to enable systems to automatically

find services in the network, without requiring user intervention. In order for

an application to use a networked service, it will have to know the network

address as well as the both the network and application protocols of the ser-

vice. Configuring this manually might work satisfactory in a static environment

administered by professionals, such as enterprises, but is not applicable to dy-

namic environments like sensor networks, where services may arrive, leave, or

relocate.

Zero Configuration Networking

ZeroConf is endorsed by the IETF [77], through various RFCs. There are sev-

eral implementations of ZeroConf for different platforms, e.g. Bonjour for Mac

64 CHAPTER 2. MIDDLEWARE: ABSTRACTIONS AND PARADIGMS

and Windows and Avahi for Linux. ZeroConf has become a widespread proto-

col for automatically discovering external devices such as printers, cameras and

iPads to communicate over an IP network. The protocol was designed for use

in small (less than 1000 clients) local networks. In order to achieve automatic

configuration of network devices, ZeroConf automates three core services: IP

addressing, name resolution and service discovery [25]. In other words, IP ad-

dresses will need to be assigned automatically to each device and coupled with

a meaningful name, and services have to be discovered automatically as they

enter the network. This is achieved with the following combination of tech-

niques [25]:

• Link-local addressing: Used to assign IPv4 addresses without relying on

a DHCP server present on the network: The device picks an IP address

from the reserved local private range of 169.254.x.x at random and sends

some ARP requests, asking for the owner. If no reply is received, the

device answers its own request, claiming the ownership itself. With IPv6,

link-local addressing is no longer required, as each device already has its

own local IP address, based on the MAC-address.

• Multicast DNS (mDNS): IP addresses are impractical and difficult for hu-

mans to relate to, especially when picked randomly and subject to fre-

quent change, as is the case with link-local addressing. When access-

ing web pages, users normally rely on the global Domain Name System

(DNS) system to provide them with a map between a user-friendly ad-

dress and the IP address of that site. The downside of the DNS system

is that it requires dedicated servers which needs to be configured and ad-

ministered, and is impractical for use within the home. mDNS offers the

functionality of DNS in a maintenance-free version, for use in local net-

works, where the service runs on all the connected devices instead of a

dedicated server. The principle behind mDNS is the same as with link-

local addressing: Basically, the device sends a few mDNS queries for a

self-assigned name, and takes ownership if no other device answers, pro-

viding name binding without the need for a DNS server.

2.6. THE SENSOR NETWORK APPLICATION DOMAIN 65

• DNS Service Discovery (DNSSD): Enable users to browse for services

without having to know anything about the hosts providing them. It builds

on existing standard DNS queries and resource types and provides service

discovery without a centralized directory service. Instead each ZeroConf

enabled device maintains its own directory of services, as shown in Fig-

ure 2.13.

The philosophy behind the ZeroConf platform is rooted in the assumption that

end users are interested in services, not devices. The goal is that users should

be able to select services from a list through a graphical user interface.

Figure 2.13: ZeroConf-enabled home network

Figure 2.13 illustrates a ZeroConf-enabled home network, where a laptop run-

ning iTunes software, a printer, a webcam, an iPhone and sensors can access

66 CHAPTER 2. MIDDLEWARE: ABSTRACTIONS AND PARADIGMS

each other’s services. Services are advertised in the format:

<Name><Type><Domain><Port>

where <Name> is the user-friendly name of the service, and <Type> is the

service type. The webcam, for instance, will advertise its service as

‘‘videostream’’ rtsp. tcp local 554

indicating that it offers a video stream over the RTSP protocol on TCP port 554.

Each device has its own DNSSD instance, keeping a list of available services. In

the illustration, the SENSEWRAP middleware (presented in Chapter 3) resides

between the sensors and the rest of the network, as most sensor nodes does not

have sufficient resources available to run their own DNSSD instances.

The list of services is kept up to date in a distributed and thought-out man-

ner, using a combination of the following techniques to keep track of available

services present on the network:

• Clients refreshes their local lists at irregular intervals, often as infrequent

as once an hour, to keep network strain low.

• At startup, new services sends a few multicast DNS packets, notifying all

clients on the network of their presence.

• When services leave gracefully, they send a multicast DNS goodbye mes-

sage.

• If a service crashes, loses its network connection or in some other way

leaves without being able to inform the network, the service stays in the

clients’ lists until the next time a client refreshes its list, or tries to access

the service, in which case the client removes the service from the list and

informs the other clients.

Combined, these methods prevent the network from being flooded with control

traffic.

2.6. THE SENSOR NETWORK APPLICATION DOMAIN 67

Other Service Discovery Protocols

ZeroConf is not the only protocol providing service discovery and automatic

network configuration: Some protocols, like Jini, are solutions to specific prob-

lems, while others, such as Construct [44, 32] provides a complete platform for

developing pervasive applications.

Service Location Protocol (SLP) is an IETF proposed standard, and is

supported by some of the largest industry actors, including Hewlett Packard,

IBM, Sun Microsystems 1 and Apple [9]. Apple did however replace SLP with

DNSSD and mDNS as the preferred ZeroConf protocol between Mac OS X 10.1

and 10.2, which makes the technology somewhat obsolete.

Jini is Sun’s take on service handling, and as such, it is Java-based. Theoret-

ically, any communication protocol that supports serialization of objects could

be used, but since Jini is built on top of RMI, it is not practical to use other

protocols. Jini systems are divided into Service, Lookup Service and Client

components. Although Sun maintains that it is platform independent, only Java

is used in practice [15]. It needs to run within a Java Virtual Machine (JVM),

and it is rather heavyweight. Even though it supports the Java 2 Micro Edition

(J2ME) virtual machine, clients need to be able to dynamically download and

execute Java classes, and small devices running J2ME typically does not have

the processing power and resources to do this [40]. This can be worked around

by including a proxy that executes the code and presents the data to the client

through a servlet [139], but it nonetheless complicates matters.

Universal Plug and Play (UPnP) have many of the same objectives as

ZeroConf, but while ZeroConf is a three layered foundation for automatic de-

vice configuration, UPnP is an organization, maintaining an open-ended collec-

tion of device-specific protocols [24]. Whenever a new device type appears on

the market, the UPnP forum creates a working group to develop a protocol for

that particular type of device. The application protocols is built on top of stan-

dard internet protocols such as IP, TCP, UDP, SOAP/XML and HTTP to ensure

platform independence.

1Sun Microsystems was acquired by Oracle in 2010. We continue to use the name Sun herein
for technology developed prior to this acquisition.

68 CHAPTER 2. MIDDLEWARE: ABSTRACTIONS AND PARADIGMS

UPnP offers automatic addressing, service discovery, and comes with pro-

tocols for controlling sensors and actuators. A key difference between UPnP

and ZeroConf is that while the UPnP organization is focusing mainly on appli-

cation protocols without paying very much attention to the underlying layers,

ZeroConf provides the underlying communication layers, but leaves it up to the

developer to decide how the application protocol for a specific device is going

to be implemented.

IP addressing is achieved in exactly the same manner as ZeroConf, us-

ing IPv4 link-local addressing. Unlike ZeroConf which have mDNS, UPnP

does not handle name resolution and thus requires a DNS server present on the

network to provide this. According to the UPnP Device Architecture defini-

tion [55], most often UPnP-enabled devices only provide URLs using numeric

IP addresses. UPnP-enabled components are either devices, hosting services, or

control points, controlling devices.

For use in smart home applications UPnP does have some disadvantages:

For one, UPnP use heavyweight SOAP XML objects over HTTP for commu-

nication, requiring an XML parser on both ends and at the same time increas-

ing processing and bandwidth usage. ZeroConf, on the other hand, uses stan-

dard DNS packets to advertise services, which are much smaller in comparison.

Another problem with the UPnP protocol is its inherent chattiness; Its Sim-

ple Service Discovery Protocol (SSDP) was built on an IETF draft which was

abandoned in 1999, partly because the working committee recognized that the

network would become flooded with control traffic in a setting with more than

ten SSDP devices communicating [24]. Another obstacle is that UPnP does not

include support for prolonged periods of the network link being down, which is

a likely occurrence in the noisy environment of a sensor-driven smart home.

Service Discovery in Retrospect

Some years have passed since the initial survey on service discovery protocols

was performed. During this time, a couple of elegant solutions for overcoming

the obstacles of the host-centric Internet protocols has emerged that is worth

mentioning:

2.7. SUMMARY 69

Serval [117] adds a service layer on top of the network layer, enabling ap-

plications to communicate directly via service names. This service layer is re-

sponsible for service discovery and resolving serviceIDs to network addresses,

essentially providing the same functionality as DNSSD used in ZeroConf and

SSDP used in UPnP. However, while the previously mentioned service discov-

ery protocols returns an IP address and port number in response to a service

lookup, needed by the application layer to communicate with the service, Ser-

val enables direct addressing of services by the application layer through the use

of a serviceID. Additionally, the middleware handles flow mobility and migra-

tion, leaving only the transmission of packets between endpoints to the transport

layer, which allows addresses to change dynamically as hosts move.

eXpressive Internet Architecture (XIA) [72] presents a radical redesign

of the Internet, and features a rich addressing scheme, where any attribute can

be principal, in contrast to the current infrastructure, centered around the host

attribute. The rationale behind not elevating one attribute above others is that

it is impossible to foresee how the internet will be used in the future. Han et

al. [72] describe how networks, hosts, services or content may be implemented

as true endpoints using the XIA stack of protocols, giving extra attention to

the case of elevating processes to addressable endpoints. In other words, XIA

supports addressing services directly on the application level, much like Serval.

Although current trends favours a service-centric approach to network address-

ing, services are only one of many possible principals of the architecture.

2.7 Summary

This chapter has introduced the concept of middleware at a general level, start-

ing with the underlying motivation, presenting the basic client/server model

and proceeding with the basic interaction models; request/reply, message queu-

ing and publish/subscribe, providing special attention to the publish/subscribe

model, as it is the interaction model of EDAs, presented in Section 2.5.

After covering the basics, we presented the RPC and MOM abstraction

models, along with an introduction of their most prominent implementations.

70 CHAPTER 2. MIDDLEWARE: ABSTRACTIONS AND PARADIGMS

The RPC abstraction effectively hides the system distribution from the devel-

oper at the expense of flexibility and performance, while the MOM paradigm

is more complex, requiring the developer to be aware of the system distribu-

tion. However, MOM enables a looser coupling between components, which

facilitates more scalable and modular software architectures.

Furthermore, we introduced the EDA paradigm and its components; event

producers and consumers, and the EPN consisting of EPAs connected via chan-

nels. Following this, an overview of the various event processing models was

provided. At the end of this section, application areas for event processing tech-

nologies was discussed.

Section 2.6 covered the sensor network application domain, linked it to the

EDA paradigm and principles of event processing, and identified heterogeneity,

dynamism and service discovery as its main challenges. This section also intro-

duced the ZeroConf suite of protocols, and also provided an overview of other

service discovery protocols.

Chapter 3

SENSEWRAP: Middleware for
Sensor Virtualization and
Self-Configuration

The SENSEWRAP middleware was developed with the goal of providing a gen-

eral smart home services platform for the IS-Home project (presented in Sec-

tion 1.1). The bulk of the content presented in this chapter has been published at

the 3rd ACM International Workshop on Context-Awareness for Self-Managing

Systems (CASEMANS) [50] in 2009, and at the 5th IEEE International Con-

ference on Intelligent Sensors, Sensor Networks and Information Processing

(ISSNIP) [49] later that same year.

Here, we present the design and implementation of a simple, yet elegant

middleware architecture providing virtual sensors as representatives for any

type of physical sensors. Our middleware, which we have named SENSEWRAP,

combines the ZeroConf protocols with hardware abstraction, giving a service-

oriented and lightweight middleware for application programmers to interact

with.

Our virtual sensor abstraction provides transparent discovery of arbitrary

sensor devices through the use of ZeroConf protocols [25]. This enable ap-

plications to discover sensor-hosted services through ZeroConf and it provides

71

72 CHAPTER 3. SENSEWRAP: SENSOR MIDDLEWARE

a standardized communication interface that applications can use without hav-

ing to deal with sensor-specific details. That is, virtual sensors also provides

a uniform communication interface to clients, based on UDP/TCP connections

or even HTTP. This is accomplished by abstracting functionalities common to

most sensor models, and writing custom wrappers (drivers) for the specifics of

each sensor model.

This way, applications need not know anything about the physical or log-

ical communication protocols used by the sensors, making the same network

services usable with any sensor model sharing the same basic functionality. For

instance, a light-controlling application should be able to operate independently

of the actual luminosity sensors used. Note that the architecture is generic and

can be used in a wide range of application areas where sensors needs to be con-

nected; however, for the sake of illustration, the examples presented here are

framed in a smart home setting.

By using virtualized sensors, third-party developers do not need to learn any

custom sensor APIs to interact with the sensors, even though the capabilities of

the sensors are limited to low-level RF communication. Assuming sensor ven-

dors provide the sensor communication API, third-party developers can supply

the necessary custom wrappers for the middleware to use, or vendors can pro-

vide such wrappers.

Virtual sensors give flexibility to applications, since replacing sensor de-

vices does not require modifying the implementation of applications using those

sensors. This is assuming the basic interaction is the same or similar. Fur-

thermore, with technology innovation, new sensor models may natively support

ZeroConf and link-local IP addressing. Applications can then use these with

minimal changes, bypassing the virtual sensors.

The chapter starts with background and assumptions, and proceeds with

an overview of the architecture, implementation details, and a description of

the middleware protocol. We then move on to a proof of concept, describing

the setup and hardware used to test the middleware, before presenting some

performance results. Following this is an overview of related work, before the

final conclusions, which also outlines directions for future work.

3.1. BACKGROUND AND ASSUMPTIONS 73

3.1 Background and Assumptions

The middleware focuses on self-configuration and offers support for develop-

ing integrated services, where multiple services can interact to offer synergies

across different technologies: For instance, a light-control service could inter-

act with the movement sensors associated with the alarm service, in addition to

luminosity sensors, to decide whether the light should be switched on.

In the context of the IS-Home project, we assume a residential networked

device capable of running our middleware; this could be a simple embedded

computer running the Linux operating system, like a base station, router etc.

Further, we assume the computer has multiple interconnection interfaces, e.g.

ZigBee, Bluetooth, WiFi, GPRS, Ethernet and USB ports for connecting other

network devices. This computer may run one or more network services, and

may act as a gateway between different network applications and devices.

3.2 Architecture Overview

The middleware architecture is organized into multiple layers of abstraction to

provide sensor-based services to clients. That is, physical sensors appears to

behave as if they provide ZeroConf-like services. Hence, the services provided

to applications become independent of the sensor hardware. The middleware

takes advantage of standardized ZeroConf protocols to provide automatic net-

work configuration of sensors and service discovery to clients. This makes the

sensor services available to any ZeroConf-enabled application on the same net-

work.

Keeping the services separated from the sensors is the most flexible solution

as it allows the system to support more than one service per sensor, e.g. a single

sensor unit may contain both temperature and humidity sensors. The separation

of services from sensors adhere to established object-oriented principles, as it

promotes high cohesion and low coupling between components. The details

of a sensor’s physical connection and battery status does not logically relate

to the attributes of, for instance, a temperature service. For the same reasons,

the communication drivers are separated from the virtual sensors and services,

74 CHAPTER 3. SENSEWRAP: SENSOR MIDDLEWARE

as the connection details between applications and services are neither related

to the logic of the sensor nor the service. Having the services separated from

the sensors gives the added advantage of allowing the service component to be

generic for all supported sensor types. This approach is a good match with the

ZeroConf APIs, as the methods provided by these are geared toward services

instead of devices.

Virtual
Sensor

Physical sensors

Sensewrap

Virtual
Sensor

Sensor protocol (ZigBee, Bluetooth, etc)

z
e
r
o
c
o
n
f

Driver Driver

Gateway

Service

UDP TCP

Service

TCP

Service

HTTP

Client Client Client

Figure 3.1: SENSEWRAP middleware architecture

Figure 3.1 show a conceptual view of the system, where the gateway hosts the

main components of the middleware. Each physical sensor is represented by

a corresponding virtual sensor. Furthermore, each service offered by the sen-

sor is accessible through an instance of a Service interface. A virtual sensor

can have many services, e.g. if the same hardware device hosts multiple sen-

sors, the different sensor readings can be offered to applications through distinct

3.3. IMPLEMENTATION DETAILS 75

services. A service can also have many connections through different commu-

nication drivers. For example, multiple services for the same sensor can be reg-

istered with ZeroConf at the same time, one accessible over TCP and another

over UDP. Client applications use ZeroConf to identify and locate services pro-

vided by sensors, and communicates with them through service instances in the

middleware.

3.3 Implementation Details

Here, we describe the technical details of the SENSEWRAP middleware, start-

ing with a description the main classes and interfaces. Furthermore, we describe

how to add new sensors and communication protocols to the middleware. Con-

cluding the section is an overview of the middleware protocol, describing how

to interact with SENSEWRAP services.

3.3.1 Interfaces, Classes and Abstractions

Our middleware define two core abstractions: SensorUnit and Service. A Sen-

sorUnit is a virtual representation of the physical device hosting the actual

sensors and actuators. Attributes include identity (typically a MAC address)

and location. Sensor units are subclassed into sensor types such as Small Pro-

grammable Object Technology (SPOTs) [99], SquidBee [111], etc. Figure 3.2

illustrates the attributes and relationships of the SensorUnit-interface and its im-

plementations in more detail.

The SensorUnit handles the communication between the middleware and

the physical sensor, communicating directly with the sensor nodes. It translates

application commands received through the communication driver and forwards

these to the physical sensor, using the native communication protocol of the

sensor. It is instances of this class that we refer to when using the term “virtual

sensor”.

Each virtual sensor keeps track of the state of its associated physical sensor,

which has the added benefit of being able to hide intermittent connection failures

to the application layer, as it may cache values internally, and refresh these

76 CHAPTER 3. SENSEWRAP: SENSOR MIDDLEWARE

Figure 3.2: The SensorUnit interface and associated classes

when the connection is restored. A sensor is considered to have failed if an

IOException is caught, e.g. due to a communications failure. If a sensor fails,

the virtual sensor is responsible for unregistering the service from ZeroConf,

removing itself from the list of sensors maintained by a SensorFactory instance

(a factory class that will be introduced shortly), and terminate. Similarly, if an

IOException is caught when clients are trying to access the service, the service

will be unregistered from ZeroConf itself.

A Service is hosted on the physical unit, and can either be a sensor or an

actuator. Examples of sensors includes temperature, humidity and luminosity

sensors. Examples of actuators are power and light switches, thermostats and

locking mechanisms. More examples of sensors and actuators are provided in

Section 2.5.3 and 2.5.2. Both types are represented in the middleware through

instances of the Service interface, which are subclassed into the classes Sensor

and Actuator (Figure 3.3). These instances register the communication endpoint

(host name and port number) of the service with ZeroConf and listen for con-

3.3. IMPLEMENTATION DETAILS 77

nection requests from clients. Upon receiving a connection request, the service

instance creates a communication driver to handle the communication with the

client.

Figure 3.3: The Service interface and associated classes

Another important part of the SENSEWRAP middleware is the SensorFactory
interface, illustrated in Figure 3.5. Subclasses implementing this interface listen

on the network for new sensor devices, and create virtual representations of

these. They also maintain a list of sensors that the middleware is capable of

communicating with. The sequence diagram in Figure 3.4 illustrates how the

SensorFactory listens for service advertisements broadcast by sensors in the

network. After the service has been registered with ZeroConf, it listens for client

requests on the corresponding TCP port, and spawns a ClientHandler thread for

each connection request.

78 CHAPTER 3. SENSEWRAP: SENSOR MIDDLEWARE

Figure
3.4:Service

discovery
and

connection
establishm

ent

3.3. IMPLEMENTATION DETAILS 79

The SensorFactory and SensorUnit implementations are the only components

in the SENSEWRAP middleware that needs customization to support new a new

sensor device. That is, they are both comprised of a generic part, and a custom

part that needs to be tailored specifically for each supported sensor type. Our

current implementation have support for Sun SPOTs and SquidBee sensor types.

Figure 3.5: The SensorFactory interface and associated classes

Listing 3.1 The ServiceRegistration interface
1 public interface ServiceRegistration {
2 void register(String serviceName, int port)
3 throws IOException;
4 void deregister();
5 }

Clients can multicast a DNSSD request for available services that resides on the

same network and the ZeroConf framework will reply with the name of the host

where the service is running, and the port number through which to connect.

An application can then send a connection request and obtain a connection in

response. Commands received by the client handler is forwarded to the virtual

sensor, which translates these into the appropriate sensor-specific command.

These, in turn, is transmitted to the physical sensor, using the device’s native

communication protocol, as represented by the sensor class for the given sensor

type.

80 CHAPTER 3. SENSEWRAP: SENSOR MIDDLEWARE

3.3.2 Adding New Sensor Types

Adding support for new types of sensors involves developing device-specific

subclasses of the SensorFactory and SensorUnit interfaces. In order to simplify

development, the middleware includes abstract classes, implementing common

parts of these interfaces, as illustrated in Figures 3.2 and 3.5. This enable im-

plementations to reuse common functionality, effectively providing developers

with a blueprint of the required classes.

Essentially, the custom part of the sensor factory needs code for detecting

connection requests from the physical sensors and for creating the appropriate

virtual sensor. Obviously, the virtual sensor must also be able to communicate

natively with the physical sensors.

3.3.3 Adding New Communication Protocols

The communication driver is a generic communication interface through which

clients connect. Different applications might require different communication

protocols, and the middleware supports adding new communication drivers.

Currently, a TCP-based communication driver is supported, while support for

UDP, HTTP, SOAP and RMI can easily be added. Once a driver has been de-

veloped, it can be reused without modification for all sensor types supported

by the middleware. In addition to making the middleware flexible, this ensures

future compatibility with new protocols as they emerge.

3.3.4 SENSEWRAP Middleware Protocol

SENSEWRAP supports both the request/reply and publish/subscribe interaction

models. The default interaction model is request/reply, while subscriptions can

be created by appending additional parameters to the basic service call.

After a service has been looked up through ZeroConf, and connection has

been established, the client applications use generic commands to communicate

with the services. Table 3.1 shows the available generic commands.

For instance, the way to do a simple temperature reading would be issuing

the command GET to the service. This would return a single reading. If the

3.4. PROOF OF CONCEPT 81

Command Parameters Description
GET Retrieves a single value
PUT Issues a command to an actuator
SUBSCRIBE Interval (optional)

Filter (optional)
Creates a subscription,
where events are pushed
at the specified rate

UNSUBSCRIBE Cancels the subscription

Table 3.1: SENSEWRAP application protocol

client wants to subscribe to the temperature service, it can ask the middleware to

feed it with periodic readings by appending the keyword SUBSCRIBE followed

by optional arguments for desired interval in milliseconds, and an optional filter

string. The middleware will keep sending readings at the specified interval until

it receives an UNSUBSCRIBE message, or until the connection is closed. If

no interval or filter string is specified, it will receive all values produced by the

sensor.

3.4 Proof of Concept

To demonstrate the capabilities of the SENSEWRAP middleware, a simple tem-

perature reading application was developed. The application uses programmable

sensors from Sun Microsystems, called SPOTs [99].

These are J2ME programmable sensors that come with built in temperature

sensors and accelerometers. We have implemented a driver for the SPOTs de-

vices, and implemented virtual services for the temperature sensors and light

emitting diodes (actuators) hosted on these units.

Native communication is done over the 2.4GHz band, using the wireless

IEEE 802.15.4 standard, which the ZigBee protocol is built on top of. Since

these particular sensors are highly programmable, they can be made to respond

to any command we choose. An interface that simply maps commands to a

byte-based protocol we implemented on the SPOTs was developed, and is im-

plemented by both the client class running on the physical sensor and the virtual

sensor class running within the middleware. The main reason for mapping com-

82 CHAPTER 3. SENSEWRAP: SENSOR MIDDLEWARE

mands to bytes in this manner is to improve the readability of the application

code, and to conserve power when transmitting data.

In addition to the SENSEWRAP middleware, the implementation consists of

the following applications:

• The Simple Sensor Client runs on the SPOTss and communicates wire-

lessly with the middleware over IEEE 802.15.4 using a base station that is

connected to the host computer via USB. It is a multithreaded application

that supports both broadcast and unicast over a SPOT-specific datagram

protocol.

• A Service Browser application allows the user to browse for services and

request values from these through a web browser. It uses the functions

provided by Apple’s Bonjour API to browse and resolve services without

requiring the user to perform any network configuration. The Apache

Struts presentation framework is used to generate the web pages.

The service browser application uses the BrowseListener interface from the

ZeroConf Java API to find services on the network with very little code. The

constructor:

new BrowseDNSSD("_ishome._tcp");

starts a thread that finds services of type ishome that speaks TCP and keeps

the application updated with any changes. When the user clicks on a service,

displayed as a link on the web page, the following method call is made:

DNSSD.resolve(0, DNSSD.ALL_INTERFACES, name,

"_ishome._tcp", domain, this);

The call returns a service name, host name and port, and by using this informa-

tion the ServiceBrowser application can create a TCP connection to the service,

which is listening on the advertised port. Once connection is established, the

application can issue commands and get value readouts from the physical sen-

sor.

3.5. PERFORMANCE 83

We also implemented an actuator test application, controlling the LEDs on

the SPOTs, using the SENSEWRAP middleware platform. However, this was

not used during performance tests.

3.5 Performance

Because the middleware is intended to run on a dedicated machine within the

home, we do not see scalability as a big concern. Typically, the number of

sensors to be handled in such an environment are limited to less than 100, and

as such, the demands for scalability is not critical. However, we have performed

tests on this matter to reveal potential flaws of the architecture. Response time

(the time it takes for clients to receive an answer to a request) under realistic

client load was measured with clients

Regardless of the scalability of the middleware itself, the number of services

running on the middleware is limited by the underlying ZeroConf framework,

which becomes ineffective when the number of nodes approaches 1000 [25].

Tests were performed by running the middleware on a dedicated machine,

while polling it for sensor readouts from other machines on the same local net-

work. At the most, 19 computers, hosting eight clients each, was continuously

polling the middleware. The “server” had 2GB of RAM, an Intel Core Duo

2 E8300 processor and was running Fedora Core 11 with Sun’s Java version

1.6 14. Measurements were obtained using the request/reply model.

3.5.1 Results

Here, we present the results from an experiment that involved loading the SENSE-

WRAP middleware with continuous requests issued from an increasing number

of clients. This experiment allows us to observe how the latency of SENSE-

WRAP is affected under heavy load, and to get some measurements of the sys-

tem’s performance.

The latency was measured as the time elapsed between query and response

from a temperature sensor on a Sun SPOT through the SENSEWRAP middle-

ware. It was measured at the client. A caching mechanism implemented in the

84 CHAPTER 3. SENSEWRAP: SENSOR MIDDLEWARE

0 20 40 60 80 100 120 140 160

0

0.2

0.4

0.6

0.8

1

Number of simultaneous clients

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Average response times (caching enabled)

Figure 3.6: Average response times (measured at the clients)

middleware was set to reread values from the sensor only if the existing value

was older than four seconds.

Figures 3.6, 3.7 and 3.8 illustrates the results of this experiment in different

ways: Figure 3.6 shows the average latency per run, for six runs, with an in-

creasing number of clients. Figures 3.7 and 3.8 shows the individual data points

collected for a run of 95 simultaneous clients.

Performance were measured to an average of 6.8 milliseconds with a test

run of ten simultaneous clients, each issuing 1000 requests (Figure 3.6), im-

mediately sending a new query as soon as a reply is received. This amounts

to an average capacity of handling about 147 queries per second under load.

Predictably, the average response times rise as more clients are jamming the

middleware with queries, and drops to a capacity of around 5.5 queries per sec-

ond with 152 simultaneous clients. The error bars in Figure 3.6 illustrate the

standard deviation from the average response time. As we can see from the fig-

ure, the standard deviation rises to 0.84 seconds with 152 simultaneous clients,

due to a small number of outliers having high response times.

The first scatter plot (Figure 3.7) shows an excerpt of 14000 operations from

3.5. PERFORMANCE 85

a run of 95 clients simultaneously querying the middleware a total number of

190000 times while caching of sensor readings is set to four seconds. The plot

starts ten seconds into the experiment, to be sure that all clients have started,

and to allow the JVM running the SENSEWRAP middleware to optimize its

operation. The y-axis shows the round-trip time for each query, measured in

seconds. The x-axis shows time elapsed, also measured in seconds.

10 12 14 16

0

0.2

0.4

0.6

0.8

1

1.2

Time since start of experiment (seconds)

R
es
p
on

se
ti
m
e
(s
ec
on

d
s)

Caching enabled

Figure 3.7: Response times for 95 simultaneous clients and 14000 requests

An observation that can be made from Figure 3.7 is that it takes only 6.38 sec-

onds to finish 14000 operations, giving an average of 4.6 milliseconds per op-

eration. Note that the average observed when measuring individual client op-

erations is 6.8 milliseconds. This indicate that having the clients waiting for

a response before issuing a new command does not load the middleware suffi-

ciently to make it the performance bottleneck. In other words: the aggregated

4.6 millisecond average we observe when dividing the number of performed

operations by time, suggests that parallel processing of requests are the reason

behind the lower aggregated than individual average.

86 CHAPTER 3. SENSEWRAP: SENSOR MIDDLEWARE

10 12 14 16
0

2

4

6

8

10

Time since start of experiment (seconds)

R
es
p
on

se
ti
m
e
(m

il
li
se
co
n
d
s)

Caching enabled

Figure 3.8: Response times under 10 ms for 95 simultaneous clients and 14000
requests

The scatter plot in Figure 3.8, was generated from the same data set as Fig-

ure 3.7, but here, response times higher than 10 milliseconds are filtered out.

From this plot, we can observe that a majority of responses under heavy load

are in the sub 2 millisecond-range. With this in mind, we can draw the con-

clusion that the 4.6 millisecond average is caused by a relatively few outliers

having very high response times (the maximum observed value was 1166.959

milliseconds). These outliers also explain the high standard deviations of Fig-

ure 3.6.

3.5.2 Evaluation

In a smart home scenario, the middleware is likely to run on less powerful hard-

ware than what was used in our tests, but our rationale is that even if one divide

the performance by ten, it is still more than sufficient to handle the requirements

of a typical smart home. We also measured the execution time for each renewal

3.6. RELATED WORK 87

of the cache at the server. A total of 56 sensor readings had an average value of

951.57 ms, which would give the middleware a capacity of just over one reading

per second per sensor, thus illustrates the performance gain of caching.

3.6 Related Work

In previous work, Construct [44] offers a distributed middleware for perva-

sive systems and provides mechanisms for capturing sensor data and converting

them into Resource Description Framework (RDF) formatted data for storage.

Like SENSEWRAP, Construct employs ZeroConf to locate services, but does

not allow discovery of sensor devices as in our middleware. While our focus

is on finding a standardized way for applications to communicate with sensors,

the main focus of Construct appears to be on data capture and the processing of

information.

Hourglass [134] is an infrastructure for connecting sensor networks to ap-

plications. It provides a data collection network, that aggregate functionality

from several disparate sensor networks, and offer this to Internet-based appli-

cations. Compared to our architecture, Hourglass focuses on the underlying

network links and data streams more than the service aspect. The main effort

is on handling unreliable connectivity by providing links between networks and

applications that buffers data and retransmits these at a later point in cases of

link loss. Neither Hourglass or Global Sensor Network (GSN) [1] focus on

service discovery. Like our own middleware, GSN aims to solve the problem

of hardware heterogeneity in sensor networks. GSN also use adapters to ab-

stract physical devices into virtual sensors. With SENSEWRAP, we take the

abstraction one step further by virtualizing the services as well. With GSN the

emphasis is to provide the ability to query all supported sensors using SQL, and

to provide a homogeneous view of sensor data.

Open Services Gateway initiative (OSGi) provides a gateway for connect-

ing different devices and services together through a central point, allowing ap-

plications to be composed from different, reusable service modules [43]. The

framework is module based and only specifies the application programming in-

88 CHAPTER 3. SENSEWRAP: SENSOR MIDDLEWARE

terface, not the underlying implementation, leaving it up to the developers to

handle the actual communication with the sensors or actuators.

Using OSGi as a foundation, Gürgen et al take a “database approach” in their

SStreaMWare middleware [67], offering a schema to represent sensor data in

a generic manner. Interaction with the sensors is performed with declarative

queries in a SQL-like relational language. Like SENSEWRAP, SStreaMWare

uses adapters to transform generic commands into the necessary device-specific

format, and it also provide both publish/subscribe and request/reply commu-

nication models. However, the scope of SStreaMware is quite different from

SENSEWRAP, as SStreaMWare comes as a complete package, where sensor

interaction is performed via a provided graphical user interface and not at appli-

cation level. This makes the system difficult to adapt to third party applications,

which it is clearly not intended for. The scope of our middleware is to facilitate

integration between sensors and applications with minimal effort. Our approach

to virtualizing sensors based on ZeroConf, using communication drivers to in-

terface with applications is more lightweight and allows better application level

adaptation.

Tenet [63] is more of a network architecture than middleware, dividing sen-

sor networks into tiers, consisting of masters and motes. The argument for this

architecture is that sensor motes are unreliable and underpowered, hence all

but the simplest computing tasks are better left to more powerful master nodes.

Furthermore, the authors claims that software re-usability is enhanced by having

most of the application logic on master nodes, as device specific customization

of the code is less likely to be needed. This is not unlike our approach, but in-

stead of several masters, we use a single gateway to perform the heavy lifting

in terms of computational tasks. The reason for not using several masters is

simply that we don’t see the need for more in a private smart home, although it

would be relatively easy to include additional gateways if required (one way of

achieving that would be to set up an additional gateways to listen for different

types of services).

The Hydra framework [61] provides much of the same functionality as

SENSEWRAP, and is built upon many of the same concepts, with virtualiza-

3.7. CONCLUSIONS AND FUTURE WORK 89

tion of hardware resources as the fundamental idea. It is also more mature than

our solution. However, we argue that it is fundamentally flawed as a scalable

middleware for sensor networks in a number of ways; For one, it uses “Big”

Web Services to expose sensor services, which means that the sensor network

must pass around heavyweight SOAP objects in order to use the services. Ad-

ditionally, it uses the UDDI protocol for service discovery, a protocol which we

in Section 2.6.1 argue is far to chatty for efficient service discovery in a sen-

sor network. Additionally, it uses the obsoleted JXTA [118] protocol for P2P

communication between sensors.

3.7 Conclusions and Future Work

By virtualizing the physical sensors in smart homes, we can provide client ap-

plications with a uniform communication interface. We have demonstrated how

the important task of automating the discovery of services and devices as well

as the networking between applications can be solved using ZeroConf.

While the middleware presented here makes the communication protocol

between sensors and application generic, the application protocol is not. A log-

ical next step would be to expand the SENSEWRAP middleware application to

include support for other types of sensors beyond the Sun SPOTs supported in

the current implementation.

Enabling remote access to the services in the home over wide area networks

such as the Internet or GPRS can be useful for tasks like adjusting the heat

before coming home, or turning off the alarm to let someone in. Remote acces-

sibility brings up some security and privacy concerns that needs to be addressed

at some point.

Having multiple higher-level applications competing for resources (actua-

tors) introduces the issue of resource ownership and dependency management.

For instance, two applications accessing the same actuators could potentially re-

sult in conflicts where one of them is constantly turning a switch off, while the

other turns it back on. A priority concept, like the one outlined by Retkowitz

and Kulle [125] could be worth looking into in future versions.

90 CHAPTER 3. SENSEWRAP: SENSOR MIDDLEWARE

Chapter 4

EVENTCASTER: A Platform for
Stateful Event Processing

This chapter introduces the EVENTCASTER platform, a general-purpose event

processing platform that is built on the principles discussed in Section 2.5, ad-

dressing the EVENT PROCESSING ARCHITECTURE challenge. That is to provide

a general architecture for the efficient processing of high volumes of events.

EVENTCASTER is the underlying platform on which the implementations pre-

sented in Chapters 6 and 7 are built upon.

Section 4.1 provides a high-level overview of the EVENTCASTER software

architecture, while Section 4.2 gives some implementation details and intro-

duces the underlying technologies and the reasons for choosing these. Configu-

ration of the system is described in Section 4.3, while deployment requirements

and options are discussed in Section 4.4. Section 4.5 concludes the chapter with

a brief summary.

4.1 Architectural Overview

The EVENTCASTER plaform follows the Event-Driven Architecture (EDA)

paradigm introduced in Section 2.5.1. To reiterate; the main building blocks of

an EDA are event producers and consumers, Event Processing Agents (EPAs)

and channels, as illustrated in Figure 2.9. Event producers are software that

91

92 CHAPTER 4. EVENTCASTER: EVENT PROCESSING PLATFORM

introduce raw events to an Event Processing Network (EPN). An EPN is com-

posed from EPAs connected by event channels. After being processed by EPAs,

events are distributed from the EPN to event consumers, which represent the

endpoints in event-driven interactions. Event producers and consumers are lo-

cated outside of the EPN.

Event Procesing Network

Event
Processing

Event producers

Event consumers

Real-time events

Push

Pull

Events

Raw events

Complex events

Logged
events

Message bus

Database

Figure 4.1: EVENTCASTER general architecture

Figure 4.1 shows the EVENTCASTER platform from a birds-eye perspective. In

addition to the event producers and consumers, it includes a message bus, rep-

resenting event channels. The message bus connects producers to EPAs, EPAs

to EPAs, and EPAs to consumers. The EPAs are located within the event pro-

cessing applications, represented by the green ellipse in Figure 4.1. EPAs are

pieces of code that performs event processing in some form, including filtering

and transformation. Additionally, it includes a database, which is not part of

the EDA model presented in Section 2.5.1. It is used in the EVENTCASTER

architecture to store derived and aggregated events, as well as snapshots of ap-

plication state.

The EVENTCASTER platform facilitates general event processing by com-

bining our own Java interfaces with XML, Java 2 Enterprise Edition (J2EE)

4.1. ARCHITECTURAL OVERVIEW 93

technologies and the Esper CEP engine. The Esper engine is programmed using

the declarative EPL language, which builds on the SQL-92 syntax. An overview

of Esper and EPL is provided in Section 4.2.1.

4.1.1 Package Organization

Here, a brief overview of the software packages included in the EVENTCASTER

middleware are provided, along with a description of their role in the system.

Figure 4.2 shows the relationships between the packages.

core

adapters

producers

common

mgr

Figure 4.2: EVENTCASTER package organization

• Common: As the name implies, this package contains the common in-

terfaces and utility methods used by all other packages in the EVENT-

CASTER middleware.

• Core: The core package contains the Esper event processing engine, and

hosts the EPAs, in the form of EPL statements as well as EPAs written in

Java. The core package is represented with a green ellipse in Figure 4.1.

• Producers: Events arrive over various protocols, and are piped onto the

message queue by producers, which are standalone clients for handling

events and putting them on a message queue. Producers are represented

by the blue circles in Figure 4.1.

• Adapters: Adapters are used by producers to fetch data at the protocol-

level. Currently, this package includes adapters for receiving data over

94 CHAPTER 4. EVENTCASTER: EVENT PROCESSING PLATFORM

J2EE Application Server

Esper

configuration

producers

adapters

UdpListener

TcpListener

FileListener

J2EE Application Server

core

Manager GUI

Event
Producer

mgr

JMX

HornetQ
Esper

configurationEvent
Producer

Figure 4.3: Overview of the EventCaster package structure and components

UDP and TCP, as well as tailing log files and monitoring folders for the

arrival of new files.

• Mgr: The mgr package contains the EVENTCASTER manager web appli-

cation, from which a screenshot is displayed in Figure 4.6, which enables

users to install and remove EPL queries at runtime.

Figure 4.3 illustrates another view of the EVENTCASTER platform. The soft-

ware packages described above are denoted with dotted lines, application in-

stances are blue, and application server instances are denoted with yellow squares.

In the lower left part, we have the adapters, which are general protocol adapters,

used by producers to receive data.

The core package is deployed on several instances of the JBoss Application

Server. When deployed, it is packaged as an Enterprise Archive (EAR), with

4.2. IMPLEMENTATION 95

all instances being identical, except the main configuration file, which resides

outside of the EAR package. This configuration file contains the EPL statements

(EPAs), and defines the wiring between the message queues and EPAs, as well

as between EPAs and event publishers. It is covered in detail in Section 4.3.

The primary interaction model of EVENTCASTER is publish/subscribe, which

allows event producers and consumers to be changed without affecting other

parts of the system, and at the same time eliminates some of the latency and

processing overhead that typically comes with request/reply interactions. Man-

agement of the event processing engine (mgr), however, is exposed over a re-

quest/reply interface, due to the synchronous nature of applying configuration

changes through a web-based user interface.

In addition to the push interface of the MOM for subscribing to live data,

persisted historical data can be pulled from a relational database (Figure 4.1).

4.2 Implementation

This section presents some implementation details, including the underlying

technologies used to build the platform. We start with describing the flow of

events through the system, and a discussion on how EVENTCASTER applica-

tions are composed.

Event
Processor

Adapter

Event
Publisher

Event
Processor

Event
Publisher

Message bus

Producer Core

Event

EPL

EPL
Update
Listener

Figure 4.4: EVENTCASTER event flow

Essential to the implementation of the EVENTCASTER middleware is a pair of

interfaces, named EventProcessor and EventPublisher, presented in Listings 4.1

96 CHAPTER 4. EVENTCASTER: EVENT PROCESSING PLATFORM

and 4.2. Figure 4.4 illustrates the flow of events through the middleware, and

shows how events transmitted over various protocols are received by adapters

before being passed on to EventProcessor instances in the producers package.

These instances perform simple event processing such as transformation and

error-checking on the events, before introducing them to the EPN through an

EventPublisher.

Listing 4.1 The EventProcessor interface
1 /**
2 * @param <T> class of events to process
3 */
4 public interface EventProcessor<T> {
5 /**
6 * @param event object to process
7 */
8 public void processEvent(T event);
9 }

EventProcessors are also used in the core application, where they convert events

from various formats into Java objects before sending them to the Esper runtime.

Here, they are processed by one or more EPAs, represented by EPL statements.

Access to the output of an EPL statement in Java code requires the registra-

tion of an UpdateListener with the statement. The UpdateListener, presented

in Listing 4.3, is an Esper interface containing an update() method that is

called whenever the EPL statement outputs events.

The EventPublisher interface are used both by producers to publish events

to the message bus, and within the core application for publishing events re-

ceived by an UpdateListener to external consumers, represented by the yellow

circle in Figure 4.4. EventPublishers may also publish events back to the mes-

sage queue, for further processing by other core application instances. However,

this alternative flow of events was omitted from the illustration in order to pre-

serve clarity.

Furthermore, an UpdateListener may also perform event processing in Java,

before introducing a modified or derived event to the Esper engine, without

publishing it to external consumers. This alternative event flow was also omitted

4.2. IMPLEMENTATION 97

from Figure 4.4 to avoid clutter.

As can be seen from Figure 4.4, an EVENTCASTER producer is composed

of three objects: An Adapter, an EventProcessor and an EventPublisher. Of

these three components, only the EventProcessor needs to be developed in order

to create a new producer, provided that an adapter for the underlying commu-

nication protocol already exists. Writing an adapter of this type is a one-time

task, as it may be reused for all new producers receiving events over the same

protocol.

Listing 4.2 The EventPublisher interface
1 /**
2 * @param <T> class of events to publish
3 */
4 public interface EventPublisher<T> {
5 /**
6 * @param event object to publish
7 */
8 void publishEvent(T event);
9 /**

10 * @return address of the published events
11 */
12 String getDestination();
13 }

Listing 4.3 The UpdateListener interface from the Esper distribution. Some
comments and parts of the Javadoc have been removed for the sake of brevity

1 public interface UpdateListener {
2 /**
3 * @param newEvents is any new events. This will be
4 * null or empty if the update is for old events only.
5 * @param oldEvents is any old events. This will be
6 * null or empty if the update is for new events only.
7 */
8 public void update(EventBean[] newEvents,
9 EventBean[] oldEvents);

10 }

With the EVENTCASTER middleware, a complete event processing application

may be implemented by writing one or more EventProcessors, and setting up

the appropriate channel connections in the main configuration file.

98 CHAPTER 4. EVENTCASTER: EVENT PROCESSING PLATFORM

4.2.1 Underlying Technologies

Here, the technological building blocks of the EVENTCASTER platform is in-

troduced. Because the platform is deployed in an industrial environment, as

mentioned in Chapter 1, research prototypes were not considered.

We start off by presenting the message bus, which provides the event chan-

nels of the platform, before introducing the application server that hosts the

core application. A J2EE application server comes with useful abstractions for

handling things like database connections, access control and application man-

agement. Furthermore, it opens up possibilities for high availability through

clustering and automatic failover [137]. Even though setting up high availabil-

ity is fully achievable in other ways, much of the required functionality for this

is already included with most application servers.

The section is concluded with a presentation of the event processing engine.

Using a specialized event processing language gives us access to some useful

abstractions that simplifies the development of more advanced event processing

applications. The benefits and drawbacks of this approach are discussed in detail

in Chapter 6.

HornetQ Message Bus

HornetQ [75] was chosen as the distribution layer for events due to its high

performance and ease of use. It comes with the usual functionality included in

MOM, such as filtering, transformation, persistence and delivery guarantees, as

presented in Section 2.4.2.

Getting started with HornetQ was fairly simple, and simply a matter of

downloading the distribution, making some small changes to the main configu-

ration file and executing the startup script.

Interacting with the HornetQ server was straightforward as well, and re-

quired only the inclusion of two JAR libraries on the client side (three, if one

needs to use the JMS overlay). Even though the HornetQ distribution includes a

JMS overlay, we opted to use HornetQ’s native core API instead. The core API

only offers two abstractions; queue and address, and the documentation sug-

4.2. IMPLEMENTATION 99

gests that one can build any interaction included in the JMS specification from

these.

There was, however, a learning curve regarding the behavior of the middle-

ware, most notably in the behavior of message acknowledgments and having

messages removed from the server after client delivery, and implementing the

publish/subscribe interaction pattern.

HornetQ provides a JMS API in the form of an overlay library that can be

used instead of the native API. HornetQ’s JMS api does not offer any function-

ality that cannot be achieved with the native API. However, some of the chal-

lenges in understanding the behaviour and interactions of the HornetQ MOM,

could probably have been avoided by using the JMS API, as it offers a more

intuitive implementation of messaging and publish/subscribe interactions. The

reasons for going with the native API was that it meant one less JAR to depend

on and the documentation suggesting slightly better performance and a simpler

abstraction. It seems clear now, however, that using the JMS overlay would have

been the easier route to take, at least for the publish/subscribe interactions.

HornetQ offers excellent performance, and its STOMP interface has proved

a convenient way of providing push-style interactions to non-Java client devices.

Events are distributed on multiple queues, according to event type, which

allows for greater flexibility and cleaner code on the consumer part. That is,

there is no need to set up a filter for extracting different event types. In the

current deployment, the 5 minute average CPU load typically hovers around

1% for the HornetQ server during normal operation.

JBoss Application Server

HornetQ is built and maintained by the JBoss community, and the JBoss appli-

cation server [100] comes with HornetQ support out of the box, and as such,

was a natural choice of application server.

The use of an application server allows for the convenience of packaging the

core application together with all its dependencies in a single EAR, deployable

to the application server. The building and packaging of EARs can be auto-

mated using a build tool like Maven [92], and is an elegant way of handling

100 CHAPTER 4. EVENTCASTER: EVENT PROCESSING PLATFORM

dependencies.

The JBoss application server also handles database connections, and in-

cludes ready-made functionality for connection pooling. Furthermore, it facil-

itates redundancy through automatic failover, as well as load-balancing across

multiple instances. However, the load balancing part in particular is not very

straightforward to implement, and as such, was not used in the EVENTCASTER

system.

With this in mind, it is not a given that the benefits outweighs the added

complexity of running the EVENTCASTER core component in an application

server, and it is something that may well be reconsidered at a later stage.

Event Processing Language

Here we briefly survey the capabilities of the EPL [46] language and its runtime

environment, the Esper event processing engine. Esper provides an open-source

implementation of its processing engine, and the necessary Java libraries for

interacting with it. Our choice of Esper and EPL is primarily motivated by its

focus on stream processing.

EPL is a declarative query language derived from SQL; it shares much of its

syntax and functionality with SQL, such as select, insert, update, and aggrega-

tion functions for summation, averaging, and join operators. However, instead

of operating on relational database tables, EPL operates on streams of data. Us-

ing these operators, one can construct a wide variety of online queries used to

process data from event streams, such as the stream of channel changes (zaps)

from customer STBs. An EPL query will process one or more event streams,

looking for event patterns that match the query, and produce an output event.

Moreover, since streams are continuous, i.e. not temporally restricted, EPL

introduces a sliding window concept to be able to construct queries that operate

over limited, but sliding time intervals. This is a very useful construct that

was introduced in Section 2.5.5, and are used extensively in the applications

presented in Chapters 6 and 7. Figure 4.5 illustrates the sliding time-window

concept. In this example where the window only keeps the events received in

the last 10 seconds.

4.3. CONFIGURATION 101

win:time(10 sec)

time
0 10 20

now

e1 e2 e3 e4 e5

Figure 4.5: Sliding time-window

Esper can handle events represented in a variety of ways, e.g., as Java or C# ob-

jects that provide getter and setter methods to access its attributes, and is the ap-

proach used in the EVENTCASTER platform. Events can also be represented by

Java objects that implement the java.util.Map interface, using the map’s

get method to access the attributes. Event objects in Esper are assumed to be

immutable.

Deploying an Esper server typically involves the following steps:

1. Start the Esper processing engine.

2. Install EPL queries.

3. Establish subscriptions by registering UpdateListeners with the Esper pro-
cessing engine. These subscriptions are connected with the installed queries,
acting as handlers for output events generated by the queries.

4. Construct Java objects to be passed to the processing engine to be pro-
cessed by the previously installed queries.

5. Receive and parse events from the data stream.

4.3 Configuration

To ease the deployment of EVENTCASTER applications, the EPL statements

and the wiring of these to other components of the platform are kept in a con-

figuration file, separated from the rest of the application.

We now describe how to configure an EVENTCASTER deployment, giving

special attention to the main configuration file, that controls the EPL statements,

and the general operation of the application. The configuration file defines the

102 CHAPTER 4. EVENTCASTER: EVENT PROCESSING PLATFORM

set of EPL queries to install and which event processors to load at startup. List-

ing 4.5 shows a complete example configuration. We explain its structure below.

Changes to the configuration can be made in several ways: One approach

is to use the Java Management Extensions (JMX) interface accessible through

the web interface of the application server or the JConsole tool bundled with the

Java SDK. JMX is a management protocol for Java applications. Alternatively,

the mgr interface, shown in Figure 4.6, enables the installation and wiring of

EPL statements to EventPublishers at runtime through a web browser, as well as

providing an overview of the currently deployed EVENTCASTER configuration.

Figure 4.6: EventCaster Manager GUI

Another approach is to modify the configuration file Figure 4.5 directly. This

is currently the only way to make persistent changes to the configuration of

4.3. CONFIGURATION 103

an EVENTCASTER deployment. Because it is loaded on startup, the latter ap-

proach requires a restart of the application server for the changes to be loaded.

Listing 4.5 is from the configuration of an EVENTCASTER instance, and shows

how publishers are connected to EPL queries. The structure of the file is:

• external-hq-server: The URL of the message broker.

• processors: List of Java processors to be loaded at startup. Processors

subscribe to message topics, process the messages, and sends them to

the Esper processing engine. The input-resource attribute tells the

processor where to look for messages, e.g. a HornetQ queue name.

• epqueries: List of EPL queries in the given configuration. The output

of these may be directed to other queries for additional processing, or

to custom-made Java update listeners. Listeners perform functions such

as persisting state snapshots to a database, or publishing derived events

back onto the message bus. An epquery represent an EPA in the core

application. A @Name attribute at the start of the statement can be used

as a key to look up and modify the execution status (pause, destroy, etc)

of statements after they have been installed in the Esper engine.

• Optional listeners may be attached to an epquery. These are Java

classes that implements the UpdateListener interface from Esper, and

are loaded dynamically at using startup, using reflection to instantiate a

class object from the class name, specified in the name attribute of the

listener entry (see Listing 4.5 for examples). As mentioned in Sec-

tion 4.2, an UpdateListener receives the events emitted by the EPL query

it is attached to.

• The optional output-resource attribute of a listener is used if

the UpdateListener forwards its received events to an EventPublisher, as

illustrated in Figure 4.4, and specifies the destination of the events. The

destination can be anything from a text file to a database table.

• statehandler contains two attributes: name and stmts-to-

isolate. The name attribute specifies the name of the class responsible

104 CHAPTER 4. EVENTCASTER: EVENT PROCESSING PLATFORM

for restoring state on startup, and persisting state on shutdown. stmts-

to-isolate is a list of EPL statements to suspend when restoring state

on startup to ensure that the ordering of events is correct. This is necessary

because EPL statements started before state is restored, introduces the risk

of live events being superseded by older events, retrieved from persistent

storage.

Listing 4.4 EVENTCASTER Processor configuration
<!--List of processors to be loaded at startup-->
<processors>

<processor>
<name>tv.ChannelStatProcessor</name>
<input-resource>lvq.tv.stats.viewerstats</input-resource>
<enabled>true</enabled>

</processor>
</processors>

Listing 4.4 is an excerpt from the configuration of the ADSCORER system, pre-

sented in Chapter 7, and illustrates how an EventProcessor instance are con-

nected to a message queue.

4.3. CONFIGURATION 105

Listing 4.5 EVENTCASTER Example configuration
<configuration>
<external-hq-server><!--Address of HornetQ server-->
<uri>tvmq1</uri>

</external-hq-server>
<processors><!--List of processors to be loaded-->
<processor>
<name>tv.STBEventProcessor</name>
<input-resource>tv.entries.input.zap</input-resource>
</processor>

</processors>
<epqueries>
<epquery><!--Window containing the state of STBs-->
<statement>
@Name(’STBWin’)
create window STBWin.std:unique(ip) as tv.STB

</statement>
</epquery>
<epquery><!--Decorating channelstats with percentage-->
<statement>
@Name(’ChannelStatPublish’)
select cs.*, percent(cs.viewers, totalActive) as share,
current_timestamp as time,
(select count(*) from STBWin(mute = true)
where channel = cs.channel) as muted
from ChannelStats cs

</statement>
<listeners>
<listener>
<name>tv.TvStatDataMiner</name>
<output-resource>viewer_stats</output-resource>
</listener>
<listener>
<name>tv.TvStatSnapshotPublisher</name>
<output-resource>lvq.tv.stats.viewers</output-resource>
</listener>

</listeners>
</epquery>

</epqueries>
<statehandler>
<name>StateHandlerViewStats</name>
<stmts-to-isolate>
<name>STBWin</name>
</stmts-to-isolate>

</statehandler>
</configuration>

106 CHAPTER 4. EVENTCASTER: EVENT PROCESSING PLATFORM

4.4 Deployment

Due to its modular and flexible architecture, a complete EVENTCASTER appli-

cation may be deployed on either a single host, or on multiple hosts.

For optimal performance, it is recommended that a dedicated host is as-

signed for each producer, an additional host for the message bus, as well as to

one or more hosts assigned to the core application. These requirements depends

on the complexity and size of the event processing task at hand.

Like the core application, the mgr application also runs on the JBoss J2EE

server, and can either be deployed on the same JBoss instance as the core ap-

plication, or on a separate server. Since the manager application is not resource

intensive, it makes sense to install it on the same server as the core application.

If the application requires persistent logging of events, it is recommended to

use a database, which should be assigned a dedicated host as well. A relational

database is the most likely component of an EVENTCASTER application to be-

come a bottleneck. Consequently, the structure of the database schema along

with the rate of writes must be carefully considered.

Figure 4.7 illustrates an example of how the EVENTCASTER system can

be distributed among multiple hosts. The following subsection describes the

network setup in detail.

Producer Message
bus

Database
Core

+
Manager

TCP: 5445

TCP: 5445

TCP: 3306

Figure 4.7: Recommended minimal deployment

4.5. SUMMARY 107

4.4.1 Network Setup

The message queues on the HornetQ server are exposed over several APIs that

all use TCP for transport. Java clients may use either the native HornetQ API,

or a JMS API over the same TCP port, which is configurable on the server, and

defaults to 5445.

For the EVENTCASTER system, we only use the native HornetQ API for

the producers, meaning that a single open TCP port is sufficient for the com-

munication between producers and the message bus. This also applies for the

communication between the message bus and the core application.

Event consumers written in Java also subscribe to the message bus using

the same port. Non-Java consumers may use the STOMP protocol, and web

applications can use STOMP over WebSockets, which enable push interactions

directly to a web browser. STOMP is a platform independent text-based proto-

col for publish/subscribe interactions that runs over TCP. STOMP and STOMP

over WebSockets require an additional TCP port each. If a database is included

in the system, it requires an open TCP port from the core application to the

database server as well.

4.5 Summary

In this chapter, we have introduced the EVENTCASTER general-purpose event

processing middleware, an industry-ready platform built from state-of-the-art

middleware technologies combined with a custom-written layer of application

logic. The key components of the middleware are the producers, adapters and

the core software packages. Event processing is performed within the core ap-

plication, using the Esper CEP engine, and events are distributed over the Hor-

netQ message bus.

The components of the EVENTCASTER middleware are loosely coupled,

which allows them to be distributed across multiple servers. This aids scalability

and flexibility of deployment.

The core application can be managed via a web browser interface, or via a

configuration file. This eases the deployment of EVENTCASTER applications,

108 CHAPTER 4. EVENTCASTER: EVENT PROCESSING PLATFORM

as changes in configuration may be performed at runtime, eliminating the need

for recompilation and redeployment, which would have been necessary if the

EPL statements and their wiring to other components were hardcoded.

The EVENTCASTER middleware enables developers to focus on implement-

ing the logic of the actual event processing task at hand, instead of details unre-

lated to the primary goal, such as integration tasks and system architecture.

Chapter 5

Television Viewership Ratings

The current approach used to obtain official television channel statistics is based

on surveys combined with specialized reporting hardware. These are deployed

only on a small scale and batch processed every 24 hours. With the enhanced

capabilities of present-day STBs for Internet Protocol Television (IPTV), net-

work operators can track channel popularity and usage patterns with a degree of

precision and sophistication not possible with existing methods.

Altibox has more than 320,000 STBs deployed in their customer network,

and as such, provides us with an ideal scenario for the analysis of viewer be-

haviour. By using event processing technologies, this analysis can be performed

in near real-time. Additionally, it is also an excellent use case for performing an

event processing paradigm comparison.

In Chapter 6, we develop a viewership statistics application in two distinct

programming and event processing paradigms, comparing the performance and

complexity of the resulting applications.

We build on this application to develop another novel application for scor-

ing advertisements in Chapter 7. The ADSCORER application scores the per-

formance of televised advertisements in near real-time, presenting a detailed

evaluation on a per-advertisement basis within a second after the advertisement

has finished.

While the previous chapter gave a technical overview of the underlying

EVENTCASTER platform, which the event processing applications presented

109

110 CHAPTER 5. TELEVISION VIEWERSHIP RATINGS

in Chapters 6 and 7 are built upon, this chapter provides background and moti-

vation for this work.

We begin by describing the current state-of-the-art in measuring viewership

and program rating, focusing on the Norwegian television market. This initial

section also covers a brief historical overview of the measurement methods used,

and argues why these needs to change. Section 5.2 describes the deployment

scenario of the work presented in Chapters 6 and 7, while Section 5.3 covers

related work. Finally, some thoughts on the future of the media measurement

industry is presented in Section 5.4. A summary concludes this chapter.

5.1 The Current State of Media Measurement

The media measurement industry is in turmoil, with the old prediction-based

models being challenged by more accurate measurement-based techniques, based

on actual viewer behaviour drawn from much larger sample selections. Cur-

rently, media are divided between online and offline media, where media dis-

tributed on the internet are categorized as online, while media distributed on the

traditional channels, such as print, radio and broadcast television, are catego-

rized as offline. The consumption of media distributed on the internet can be

measured with great precision, and in near real-time, which is not the case with

offline media.

As measurement methods converge across different types of media, the on-

line versus offline measurement divide will diminish. Television is one such

medium that has traditionally required offline measurements because of its in-

herent one-way communication style. Dorai et al. [45] predicts that the online

versus offline division we have today will soon be replaced by measured ver-

sus unmeasured, as measurement methods converges between different types of

media. This view is shared by others as well; Internet and television is predicted

to be measured as one by 2015 in a report [29] published by Forrester Research.

Advertisers are, for the most part, still accepting predictions based on his-

torical data rather than current facts. Despite the limitations of purely statistical

evidence, yearly spendings on television advertisements are still much higher

5.1. THE CURRENT STATE OF MEDIA MEASUREMENT 111

than for any other medium, and rising. Despite the fact that viewing habits and

media delivery methods has changed drastically over the last decade, the basic

methodology for measuring the impact of television content is still the same as

in the early 1990s [90], with some aspects, like the survey part, dating back to

the 1950s.

While the public’s response to web advertisements can be analyzed and eval-

uated in near real-time with reasonable precision and confidence, advertisers are

generally limited to base their evaluation on surveys and the daily logs of a small

sample of selected households (7500 in the US as of 2010 [29]) when it comes

to advertisements presented on television. A detailed survey of the current state

of television audience measurement is provided in [51].

As the traditional method of television content distribution (one-way broad-

cast) is replaced by full-duplex distribution capabilities made possible by IPTV,

the traditional survey approach used to estimate television viewership will be

replaced by more accurate methods, such as the analysis of measurements ob-

tained from STBs [29, 80, 45, 51]. We argue that there is no longer any reason

to base the analysis on surveys, other than it being the established currency that

the industry knows, referred to as entrenched practices [29, 62] by some.

In the 1950s, the Nielsen company [116] invented the rating system that

dominates the television industry today. In Norway, the main provider of view-

ership data to the official television networks is TNS Gallup [142], a company

that specializes in polls and ratings. The measurement methods used by TNS

Gallup are still the same as those pioneered by Nielsen.

To measure the viewership, a device dubbed the mediameter is used to

record and log inaudible sonic signatures emitted from the audio part of tele-

vision and radio programs that the device is exposed to. The participants in

this continuous poll are required to carry the device with them, and to keep the

sound audible in order for the mediameter to record appropriately. The device

must then be placed in a docking station overnight, to transmit the recorded

data to TNS Gallup. In addition to the mediameters, TNS Gallup also collect

data from 1,000 selected households whom have a specialized logging device

attached to their television, but still requires operating a special remote to record

112 CHAPTER 5. TELEVISION VIEWERSHIP RATINGS

changes. The device records viewer data and transmits these every night. View-

ership is computed from the collected data, where each household supposedly

represents 2,000 households from the same district. This type of continuous

polling represents the state-of-the-art in obtaining viewership, and similar sys-

tems are deployed in many other countries, including the US [116]. Anecdotally,

non-technological approaches like viewer diaries are apparently also still being

used [116].

The status quo in the media measurement industry is maintained by con-

tracts that make it very difficult for competitors to unseat the existing players.

Yearly spendings on long term contracts are estimated to be around $50 million

per year [62] between networks such as NBC Universal and Nielsen. And the

contracts runs for a long time; the current contract between TNS Gallup and the

Norwegian networks runs from 2008 until 2015.

5.2 The Altibox IPTV Deployment Scenario

Here, we provide an overview of the deployment scenario in which our viewer

statistics and ADSCORER applications are situated.

Altibox [6] is the largest distributor of television over a pure IP-based net-

work in Norway, with a deployment of over 320,000 STBs, distributed amongst

approximately 250,000 households. Customers are connected to two main dis-

tribution centers by fiber-to-the-home, giving customers a unique bandwidth ca-

pacity to support a variety of services, including internet, burglar and fire alarm,

Voice-over-IP (VoIP), IPTV, Video-on-Demand (VoD), and Personal Video Re-

corders (PVRs). The STB is the host device for IPTV, VoD, and PVR services,

and to simplify interacting with these services, an Electronic Program Guide

(EPG) is also available to users. Technically, the EPG is essentially a database

accessible through a web service interface that associates channel name to in-

formation about the programming of that channel. Currently, Altibox offers a

total of 253 TV channels, accessible through the STB by way of IP multicast

(over their fiber-based broadband network).

The software on STB devices are updated with new service offerings, bug

5.3. RELATED WORK 113

fixes, and quality-of-experience monitoring and diagnostics applications [83, 3]

on a regular basis. Moreover, since STBs also have two-way communication

capabilities, network operators can update their functionality to track program

popularity and usage patterns by recording channel change (zap) events. This

can take place without any observable changes to current user behavior, such as

using a special remote or carrying a mediameter.

Thus, data collection is transparent to the user, and the reported data is

expected to be more accurate, since users cannot forget to record the change.

Moreover, we also avoid the embarrassment factor sometimes present in sur-

veys, where users report an idealized version of their habits due to embarrass-

ment over their factual habits. It is not unthinkable that this factor can play a

role when viewers decide whether to use the special remote when viewing pro-

gramming that is perceived as of lesser quality. Finally, it also allows for a much

more accurate understanding of viewer behavior than existing methods, as the

sample size is more than 300 times larger, representing approximately 11 % of

the Norwegian television population.

In comparison, satellite television amounts for 36.6%, coaxial cable 35,2%,

and the digital national distribution network has a 13.6% share. The total share

of television subscriptions over fiber was 14.2% for the same period, which

implies that Altibox has the majority of subscriptions in this category. These

numbers were published in an official report [105], issued by the Norwegian

Post and Telecommunications authority [107], and applies for the first half of

2012. The report also indicates a steady growth of fiber subscriptions, combined

with a decline in satellite subscriptions (fiber is up from 8.6% two years earlier,

while satellite is down from 42.7% in the same interval).

5.3 Related Work

This section gives an overview of existing work that use channel change events

obtained from STBs, or in other ways challenges the existing measurement

regime of television viewership.

In their 2008 study, Cha et al. [20] captured the channel changes of some

114 CHAPTER 5. TELEVISION VIEWERSHIP RATINGS

250,000 households over a period of six months in an IPTV network where

channels are sent via multicast, which is the same technique used by Altibox.

By thoroughly analyzing this massive data set, they were able to create more ac-

curate statistics of user behavior than with traditional sampling methods like the

ones utilized by Nielsen Media Research [116]. According to the authors, this

is the first large-scale measurement of viewer channel-change behaviour in an

IPTV network. In their paper, they presented some general observations, such

as overall viewing patterns correlated to the time of day, identifying spikes in

arrivals and departures. The analysis also revealed great local variations in chan-

nel preferences across Digital Subscriber Line Access Multiplexers (DSLAMs),

which acts as switches in DSL networks. In one instance, 42% of the total view-

ing time spent by the subscribers connected to one particular DSLAM was spent

on a specific channel during one day, while the subscribers connected to another

DSLAM only spent 10% of their total viewing time on that channel during the

same period.

Another observation was that over 60% of the channel changes was related

to channel surfing. With this in mind, they argue that optimizing the channel

selection process is especially important in IPTV networks, as the switching

delay in IPTV systems is generally higher than the 100-200 millisecond delay

that is the limit for what is perceived as instantaneous by viewers. Suggestions

for optimizing the channel selection process include dynamic reorganization of

the channel list, either based on channel popularity for each user, or by overall

program popularity. Even though they do not present a solution for calculating

viewer statistics in real-time, the point is made that real-time statistics can be

achieved by exploiting the bidirectional capabilities of STBs in an IPTV net-

work, and used to assist users in selecting channels. This work is closely related

to ours, in that it analyzes channel changes from a large IPTV network, how-

ever, it is strictly a statistical analysis of IGMP logs, and does not consider any

real-time applications. Since the study is based on IGMP logs, the only events

containing information about viewing behaviour are IGMP join and leave en-

tries.

The viewer statistics applications that will be presented later in this thesis,

5.3. RELATED WORK 115

on the other hand, takes a slighly different approach, as they are based on a

software agent deployed on each STB. This agent, which we have dubbed the

ZAPREPORTER, reports a number of additional user actions, including HDMI

status (indicating whether the television set is powered on or off), mute/unmute

and volume, which facilitates a deeper understanding of viewer behavior than

channel changes alone. Furthermore, these attributes are all analyzed in near

real-time, with the results being made available through a push-interface. This

opens up a wide range of possible applications, such as annoyance detection

(discussed in Chapter 6) that would be impossible to implement if restricted to

historical channel change data.

Commercial vendors like JDS Uniphase [131], Mariner [91] and Agama [3]

delivers agent-based solutions for monitoring QoS that also provides channel

usage statistics. However, the interaction model of these solutions are all pull-

based, and typically stored in a relational database, either wrapped in a SOAP

API, graphical view from within the application, or through export functions

that allows users to export historical data to a file. The long query delays of such

systems makes them unsuitable for the purpose of computing channel statistics

and presenting them in near real-time. Thus, none of the commercially available

solutions today have interaction models that is suitable for incorporating their

functionality into a larger event-driven architecture. Moreover, they cannot be

used to develop specialized applications like annoyance detection. The reasons

for this can probably be attributed to business protectionism, attempting to lock

IPTV operators to their solutions as much as possible, coupled with limited

knowledge of the push-based interaction model that is vital in developing event-

driven architectures and real-time functionality.

What separates our work from previous work is that none of the aforemen-

tioned solutions leverage event stream processing to compute online channel

usage statistics, limiting their use to identifying historical usage trends. Further-

more, we provide added insight through monitoring more parameters in addition

to channel changes, such as HDMI and mute status. By performing the compu-

tations online in near real-time, we are able to provide the users and operators

with the added value of having instant access to emerging usage trends.

116 CHAPTER 5. TELEVISION VIEWERSHIP RATINGS

5.3.1 Methods For Measuring Advertisement Response

In this section, we discuss existing methods for measuring how the audience re-

sponds to televised advertisements, providing background information and mo-

tivation for the ADSCORER advertisement scoring application.

Kempe et al. [80] argues that audience response should be reflected in the

pricing, ordering and selection of ads within a commercial break. The current

pricing structure, where advertisers are not held directly accountable for causing

viewers to change the channel, does not carry enough incentive to keep view-

ers watching. The goals of advertisement effectiveness and avoiding viewer

annoyance are often conflicting; though a loud and silly jingle might annoy

many viewers, and cause them to switch channels, its popularity as a stimuli

in televised advertisement speaks to its effectiveness. Recent technological ad-

vances facilitating time-shifted viewing1 and easily accessible on-demand con-

tent, combined with an ever-increasing selection of channels has made it easier

than ever before to avoid advertisements, by fast-forwarding over these. With

this in mind, it is becoming increasingly important for television networks to

hold on to their viewers.

A number of algorithms to measure viewer behavior in response to commer-

cials are presented by Kempe et al. [80], concluding with a more sophisticated

algorithm that builds upon the insight gained from these, named the Audience

Value Maximization Algorithm (AVMA).

Dorai-Raj et al. [45] also advocates a business model that to a greater extent

considers the audience response to advertisements in television. The idea is to

apply many of the techniques used in online advertising to television. One of

their proposed units of viewer response measurement is the Initial Audience Re-

tained (IAR) metric, which is included in the scoring results of the ADSCORER

system, presented later in Section 7.3. The IAR metrics is a very simple one, and

computes the fraction of viewers retained for the duration of an advertisement.

It is calculated as follows:

IAR =
ε

α

1The recording or pausing of a television program, to be viewed or resumed at a more conve-
nient time.

5.3. RELATED WORK 117

where ε represent the number of viewers that stayed on the channel throughout

the advertisement and α represent the number of viewers at the start of the ad-

vertisement. By excluding the viewers that were not present at the start of the

advertisement we eliminate most channel surfers (viewers that constantly flicks

between channels during the commercial break).

We implement the IAR metric in ADSCORER because it is easy to imple-

ment, and gives an intuitive understanding of viewer behaviour in response to

an advertismement. It is easy to implement alternative scoring metrics and in

ADSCORER, but we leave this as future work.

An obvious, but important insight presented by Kempe et al. [80], is that

while online ads can be measured through the positive action of a click, viewers

are primarily limited to the negative action of changing the channel in response

to televised commercials.

However, the actions of muting/unmuting the audio or turning off the TV or

STB are not mentioned by Kempe, or in any of the other papers we reviewed,

but also belongs to the current repertoire of viewer responses. The inclusion of

the aforementioned user actions is one of the features of ADSCORER that sets it

apart from other systems.

At the commercial end of the spectrum, Rentrak [64] appears to be the mar-

ket leader for STB data aggregation, and is already collecting usage data from

millions of STBs deployed by AT&T, Charter, Dish Network and Midcontinent

Communications [64]. One of their products; AdEssentials includes total ad

impressions, average viewing time and unduplicated unique views per adver-

tisement among its metrics.

UK satellite operator BSkyB is another actor in the STB data market that are

already collecting STB usage data from over 30 000 devices, correlating these

with brand purchasing history from many of the same homes [18].

TRA [143] also combines STB data with credit card transactions, using a

third-party blind matching method, where TRA never sees any addresses or

names involved in the transactions, in order to measure the effectiveness of ad-

vertising campaigns, as well as profiling viewer groups. Data generated from

the ADSCORER system could also be correlated with purchase activity in the

118 CHAPTER 5. TELEVISION VIEWERSHIP RATINGS

same manner as TRA and BSkyB, and to target ads, like BSkyB intend to do in

2013, provided that privacy laws permits it.

CasterStats [19] provides audience measurement for streaming media, in

the form of reports that can be generated through a web interface. However, this

appears to be limited to media distributed over the internet and not broadcast

television media, unlike the work presented in the following chapters.

Coalition for Innovative Media Measurement (CIMM) [26] is a coalition of

television content providers, media agencies and advertisers intent on finding

new and better ways to measure television media consumption, in the changing

media landscape. A main objective of this effort is finding values and applica-

tions of STB data, and their contributions include an analysis for the STB viewer

measurement data landscape, as well creating and maintaining metrics and an

ontology relating to STB data [27]. If CIMM were to succeed in establishing

a common standard for STB viewer measurement data, it would greatly benefit

all actors who have access to STB data, including Altibox.

5.4 The Future of Media Measurement

Because the competition for audience attention has become increasingly intense

through the digitization of media, the advertising industry need to continuously

improve and re-evaluate its measurement and targeting methods. The reason-

ing behind this is that information consumes the attention of its audience, and

while telecommunication bandwidth is practically infinite, human bandwidth is

becoming increasingly scarce [62]. A logical conclusion that can be extracted

from this insight, is that television networks should change their business model

from selling audience exposure in the form of network time to selling viewer

attention, as argued by Kempe et al [80].

Where the traditional mass media channels have established currencies for

audience measurement, no such standard currency exists for Internet audiences.

In 2002 the Interactive Advertising Bureau attempted to establish a standard set

of guidelines on how to count impressions. However, this ended up “extremely

confusing and ultimately a compromise” [62]. The main reason for this is the

5.5. SUMMARY 119

sheer complexity involved in delivering the content.

The difficulties of standardization, however, is unlikely to prevent new mod-

els of media measurement from emerging in the near future, as the advertisers

and content providers becomes aware of the opportunities of more accurate au-

dience targeting afforded by technologies.

As mentioned earlier in this chapter, many predict that the current online/off-

line division of media will be soon replaced by measured versus unmeasured [45,

29]. Despite these predictions, the established currencies in mass media audi-

ence measurement are unlikely to go away anytime soon, simply because ad-

vertisers and media channels needs to agree on a common measure for pricing,

even if this is inaccurate [62]. However, the increasing expectations for account-

ability will create a market for additional, more accurate measurements that can

supplement the standard currencies, and may eventually replace them.

The repertoire of viewer actions is likely to grow in the near future, as the

media of television gains more interactivity. Examples include interactive links

to buy a product, rating possibilities, like/dislike buttons and games.

5.5 Summary

This chapter has provided background and motivation for the work presented

in Chapters 6 and 7, discussing the current state of the media measurement

industry and its main actors, as well as providing a brief account of its history.

We also discussed how the status quo is being challenged by more accurate

measurement methods, facilitated by the two-way communication capabilities

of modern-day STBs, by companies such as Rentrak and TRA.

By ignoring volume changes, muting/unmuting and HDMI status informa-

tion, current academic research and commercial offerings does not take advan-

tage of the full repertoire of viewer response actions. Furthermore, while current

offerings are restricted to historical viewer statistics, the work presented in the

following chapters, demonstrates how viewer statistics can be made available in

near real-time, using event processing techniques.

120 CHAPTER 5. TELEVISION VIEWERSHIP RATINGS

Chapter 6

Computing TV Channel
Statistics from Channel Zap
Event Streams: A Paradigm
Comparison

In this chapter, we present a paradigm comparison that addresses Research Chal-

lenge 5. To perform this paradigm comparison, we develop a television viewer

statistics application that is novel in its own right. It addresses the current lim-

itations of television viewer measurement, caused by small sample selections,

one-way communication and offline reporting, as outlined in Chapter 5. Most of

the work presented here was published at the 5th ACM International Conference

on Distributed Event-Based Systems (DEBS) in July 2011 [51].

Chapter organization: Section 6.1 gives a brief introduction to the work

presented here, and its context. Section 6.2 describe the architecture of our

current deployment, and outline plans for improving the accuracy of statistics

and provide new services to customers. Focusing on the event processing logic,

Section 6.3 describe the details of our viewer statistics application, and its im-

plementation in the two programming paradigms that we compare. Section 6.4

describe our annoyance detection algorithm, which is also implemented in both

121

122 CHAPTER 6. AN EVENT PROCESSING PARADIGM COMPARISON

paradigms.

In Section 6.5 we give a brief analysis of the viewer statistics obtained

from our current deployment. Additionally, we evaluate our implementations

in terms of throughput and memory usage, and program complexity. Finally,

Section 6.6 concludes the paper with an overall discussion of the merits of the

two paradigms.

6.1 Introduction

Viewer statistics is the most important metric used by television broadcasters

to plan their programming, and for many broadcasters, to rate their advertise-

ment time slots. Gaining an improved understanding of viewer behavior and

responses to the current programming is essential to a successful TV channel,

going forward in a highly competitive TV market. The state-of-the-art approach

to obtain the viewership of a program is to sample a very small selected, but

hopefully representative portion of the population. In Norway, the sample size

is 1,000 out of 2,000,000 television households (0.05 %) [59], while in the US,

only 25,000 out of 114,500,000 households are sampled (0.02183 %) [116].

Such a small sample size is often criticized as being statistically insignificant [116],

and may lead to incorrect conclusions about actual viewer interests in a specific

program, and viewer exposure to advertisements.

With the enhanced capabilities of present-day STBs, network operators can

track channel/program popularity and usage patterns with a degree of precision

and sophistication not possible with existing methods. This can be done by

recording or aggregating channel change events (also called ZAP events) from

customer STBs. Hence, assuming that the network operator’s customers rep-

resents a statistically significant portion of the population, collecting statistics

based on ZAP events is likely to provide a much more accurate statistic com-

pared to state-of-the-art.

There are generally two approaches to compute accurate viewership. One

is to store every ZAP event for later bulk processing, e.g. using transactional

databases or techniques based on Map-Reduce [39, 86], or aggregate statistics

6.1. INTRODUCTION 123

can be computed on-the-fly, based on in-memory state. We take the latter ap-

proach, as we are mainly interested in aggregate information from these events

and want to avoid storing huge volumes of data generated by channel surfers.

Only aggregate numbers are stored on disk or forwarded to interested parties.

In this chapter, we describe the architecture in which STBs are deployed,

and how channel ZAP events are propagated to an aggregation cluster for online

incremental event processing. Based on this architecture, our goal is to ana-

lyze the capabilities and trade-offs between two programming paradigms for

building our application to obtain viewership statistics. Hence, we have imple-

mented two applications that compute two different statistics based on received

ZAP events:

1. The number of viewers for all channels.

2. Detecting a 15 % rise/drop in the viewership for a channel.

The first is used to generate a top-ten list of the most popular channels and

programs in near real-time. The second application reveals useful information

about which programs are luring people away from other channels. An impor-

tant characteristic of both these applications is that they are stateful and demand

significant computational resources to ensure timely processing. Although the

applications that we cover here are fairly simple, their statistical measures might

be interesting to network operators and broadcasters. Furthermore the calcula-

tion of viewer numbers per channel provides the foundation for the more so-

phisticated ADSCORER application, presented in Chapter 7.

The two applications have been implemented in two very different program-

ming paradigms. One based on the general-purpose object-oriented program-

ming language Java, and the other based on the EPL language [28, 98], intro-

duced in Section 4.2.1. We are interested in exploring the trade-offs between

these two paradigms, to determine their suitability for our applications. Specifi-

cally, we are interested in the performance trade-off and the program complexity

of each implementation.

Java is expected to have higher program complexity than EPL, since EPL is

specifically designed for processing events. We compare our implementations

124 CHAPTER 6. AN EVENT PROCESSING PARADIGM COMPARISON

using on several metrics for analyzing code complexity, including lines of code

and Halstead’s complexity measure [73, 36, 71], in addition to a more subjective

discussion based on our experience developing these applications. The results

indicate that EPL might yield easier reuse compared to Java. Because EPL

facilitates event stream reuse and includes a number of constructs for expressing

event patterns with fewer lines of code, it is easy to prototype.

Previous, but simple, benchmarks conducted with the EPL benchmark kit [46],

have indicated that it would offer competitive performance. However, at the out-

set of this work it was not clear if EPL would offer competitive performance for

our somewhat involved applications. Our performance evaluation involves data

obtained from more than 250,000 STBs. We conduct both memory profiling

and throughput analysis, and find that our implementations of these applica-

tions have very different performance characteristics in the two programming

paradigms.

6.2 Architecture

In this section, we present the architecture of the deployment at the time when

our experiments were conducted. We then discuss some changes that were im-

plemented after the measurements were obtained. These changes will hopefully

significantly improve the accuracy of future measurements, at the expense of

more demanding processing and network overhead. We also outline a few ap-

plications that become possible with more accurate measurements.

6.2.1 Deployment Used During Experiments

The STB devices deployed in customer residences for supporting IPTV, VoD,

and PVR, are fully capable of two-way communication, and have been aug-

mented with a software agent to keep track of and report ZAP events to a cen-

tralized server. We call these the ZAPREPORTER client and ZAPCOLLECTOR

server, respectively. A simplified architecture is illustrated in Figure 6.1.

The ZAPREPORTER monitors channel changes performed by the user of the

STB, and generates ZAP events containing the following information:

6.2. ARCHITECTURE 125

Broadband Network

Data
Center

Data
Center

STB STBSTB STB
....

Zap
Reporter

Zap
Collector

Figure 6.1: Network architecture illustrating the Altibox IPTV network.

〈STB-IP, TIMESTAMP, TOCHANNEL, FROMCHANNEL〉

The event is encoded as text, and one event is typically less than 60 bytes, hence

approximately 25 events can be sent in one 1500 byte long UDP/IP packet. The

clocks on the STBs are synchronized using the Network Time Protocol (NTP),

and thus provide higher accuracy than what is needed for our purposes. The

ZAPREPORTER records ZAP events with a per second granularity. Events are

generated according to Algorithm 1, and described informally as follows: When

a user changes channel, the ZAPREPORTER record this change event locally on

the STB and may batch together multiple change events in the same UDP/IP

packet. T is the number of seconds a viewer has to stay on the same channel in

order for the channel change to be recorded. S is the timeout period in minutes

between sends.

At the time of the experiments, the ZAPREPORTER was configured in the

following way: On the first channel change, a timer is started. If the user stay

on the same channel longer than 60 seconds, the event is saved away in unsent.

If the user changes channel again before the 60 second timer expires, the event

is overwritten (i.e. not recorded in unsent). Periodically, the events stored in

unsent is sent off to the ZAPCOLLECTOR and emptied.

126 CHAPTER 6. AN EVENT PROCESSING PARADIGM COMPARISON

This strategy ensured that the total number of messages sent was kept to

approximately two messages per hour per STB, and at most 30 events needs to

be kept in STB memory. With this configuration, we expected that we would

rarely see more than 50 events generated by the same STB in one hour, requiring

more than two 1500 byte messages to be sent. Hence, in the worst case, when

all 320,000 STBs were active, we might see a total of 640,000 messages per

hour, or just over 2 Mbps (on average). Moreover, if the hourly total message

count per STB was 50 ZAP events, the processing rate would have to be about

4.4k events/second.

On the server side, the ZAPCOLLECTOR collect events from all the STBs

and store them in log files that are rotated daily. The events are stored in the

order they are received from the STBs. However, since each message contained

about 30 minutes worth of ZAP events, the log files are not initially sorted by

the timestamp. Therefore, the event logs must be sorted before they can be used

to produce incremental statistics. At the time this work was conducted, there

were no service offerings at Altibox that took advantage of these log files. With

the viewer statistics applications presented in this and the next chapter, the data

generated by the STBs are put to use.

Algorithm 1 ZAPREPORTER pseudo code
1: Initialization:
2: T ← 60 {Timeout period (seconds)}
3: S ← 30 {Period between sends (minutes)}
4: event← ⊥ {Most recent event, not yet recorded in unsent}
5: unsent← ∅ {Set of unsent zap events}
6: startPeriodicTimer(〈SENDTIMEOUT〉, S)

7: on 〈CHANNELCHANGE, toCh, fromCh〉
8: event← prepareEvent(toCh, fromCh) {Update event}
9: restartTimer(〈RECORDTIMEOUT〉, T)

10: on 〈RECORDTIMEOUT〉
11: unsent← unsent ∪ event {Record event}

12: on 〈SENDTIMEOUT〉
13: ∀e ∈ unsent : send 〈ZAPEVENT, e〉 to ZAPCOLLECTOR

14: unsent← ∅

6.2. ARCHITECTURE 127

6.2.2 Current Deployment

The one-minute granularity of the ZAPREPORTER deployed at the time of the

experiments is too low to capture all the nuances of the viewers’ behaviour.

Furthermore, the 30-minute batching of events, described in Algorithm 1, made

any near real-time functionality impossible to implement.

Some time after the measurements presented in this and the following chap-

ter, we were able to deploy a new ZAPREPORTER in the Altibox network. Note

that, the ZAPREPORTER functionality implemented in STBs is beyond the di-

rect control of the authors of this work. However, we were able to influence and

request implementation changes to the STBs. The reasons for this is corporate

policies relating to accountability for changes that can potentially cause prob-

lems for customers. Moreover, the STB can only be updated two times a year,

during a relatively short time window. Hence, this poses some challenges for us

in implementing the desired functionality.

There are several reasons why we are interested in increasing the accuracy

of these statistics. First of all, we want to be able to provide a ranking (top-10

list) of programs in near real-time to both viewers and broadcasters. Also, we

are interested in detecting flash crowds, i.e. when a large number of viewers

change to or from the same channel within a short period of time. This might

be expected either when a new (popular) program is beginning, or during com-

mercial breaks. The former we have seen evidence of from our current datasets.

However, to understand better the user behavior in commercial breaks, we need

more accurate information from the ZAPREPORTER. Also to provide a real-time

ranking, we must to revise the ZAPREPORTER.

In the current deployment we report channel changes (lasting 10 seconds or

more) within a 10 second interval. In Algorithm 1, S represents the minimum

time a viewer has to stay on a channel, in order for it to be stored in the unsent

buffer, while T represents the timeout for reporting the stored events back to the

ZAPCOLLECTOR.

Thus, in Algorithm 1, we set S = 10 seconds, and T = 10 seconds. This, in

effect means that the unsent buffer will never contain more than a single event.

Technical limitations in the ZAPREPORTER which are beyond our control are

128 CHAPTER 6. AN EVENT PROCESSING PARADIGM COMPARISON

the reason for not setting these attributes to even lower values. Obviously, no

message will be sent if there are no channel changes. This also means that no

packet will ever contain more than one ZAP event. Limitations in the ZAP-

REPORTER prevented lower values than 10 seconds for S and T , though ide-

ally, we would like T to be smaller, as it would enable us to capture zapping

behaviour at an even finer resolution than what is currently possible.

To determine the worst case network resources necessary with this sam-

pling frequency, assume all 320,000 STBs generate 1 event every 10 seconds.

Assuming every event takes 60 bytes, the packet size should be roughly 60+70

bytes (including headers). Under these assumptions, the worst case network

load would be around 33 Mbps overall, and 32,000 events/second would have

to be processed. These numbers are obviously above what is expected in the

normal case, but we would like to be able handle flash crowds that might reach

towards such numbers.

On the ZAPCOLLECTOR end, we introduced a ZAPPROCESSOR to process

events incrementally to compute statistics for program ranking in near real-time,

and for detecting flash crowds and other similar statistics. We have implemented

these services and in Section 6.5 we evaluate our ZAPPROCESSOR implemen-

tations in both Java and EPL, based on real data obtained from our log files.

6.3 Viewer Statistics

In this section we present two implementations of an application for obtaining

viewership statistics, one implemented in Java, and the other implemented using

EPL. We describe both implementations in detail, specifically focusing on the

event processing aspect.

In order to obtain statistics for the different channels, we simply count the

occurrences of ZAP events changing to the different channels. Moreover, we

also have to reduce the count for the channel the STB is moving away from (or

the previously recorded channel of that STB). We do not reduce the count of

any channel if the event originate at an STB from which we have no recorded

events. With this approach it will take some time to build up the data needed to

6.3. VIEWER STATISTICS 129

compute statistics since not all STBs have its channel state recorded.

6.3.1 Java Implementation

Algorithm 2 shows Java-like pseudocode for the ZAPPROCESSOR implementa-

tion used to obtain viewer statistics. The core of the algorithm (lines 9-18) deals

with processing ZAP events received from STBs. Lines 10-13 of Algorithm 2

checks to see if the STB have been active in the past, and if so replaces the

fromCh field of the message with the last recorded previous channel. This is nec-

essary because not all channel changes are propagated to the ZAPPROCESSOR,

due to the 1 minute rule imposed by the ZAPREPORTER. Otherwise, our count-

ing in the last part would not be correct.

In the Java implementation, we implement the counting of ZAP event oc-

currences using a multiset, where each entry (the channel) is associated with a

count value representing the number viewers on that channel.

Periodically, output events are generated by first determining which chan-

nels have the most viewers, and for each channel query the EPG to determine

which program is currently being broadcast on that channel. To avoid frequent

database queries, we cache program information in memory. From this we con-

struct the top-10 list of programs to be sent to interested subscribers, providing

near real-time viewership information. One such subscriber that we have im-

plemented is the EPG itself. In this case, we integrate the top-10 list within the

program guide interface on the STB device, enabling users to see statistics and

choose program from the list.

An important improvement that these real-time viewer statistics provide

over batched statistics is that broadcasters could potentially adjust their adver-

tisement programming based on actual viewer numbers.

6.3.2 EPL Implementation

Both the Java and EPL implementations share a common logic in how events are

handled (see Figure 6.2 and Algorithm 2). However, the EPL implementation

requires a slightly different understanding of how events are related, and hence

130 CHAPTER 6. AN EVENT PROCESSING PARADIGM COMPARISON

Algorithm 2 ZAPPROCESSOR pseudo code
1: Initialization:
2: R {Subscribers of output events}
3: EPG {Electronic Program Guide database}
4: S ← 10 {Period of between output events (seconds)}
5: STBs← ∅ {Set of known STB-IP addresses}
6: viewers← ∅ {Multiset: viewer count for each channel}
7: prevCh← ∅ {Map from STB-IP to previous channel}
8: startPeriodicTimer(〈OUTPUTTIMEOUT〉, S)

9: on 〈ZAP, ip, timestamp, toCh, fromCh〉
10: prev← prevCh.get(ip) {Get previous channel of ip}
11: if prev 6= null then
12: fromCh← prev
13: prevCh.put(ip, toCh) {Update previous channel of ip}
14: viewers.add(toCh) {Increase count of toCh}
15: if ip ∈ STBs then {Have we seen STB before?}
16: viewers.remove(fromCh) {Reduce count of fromCh.}
17: else
18: STBs.add(ip) {New STB, record ip}

19: on 〈OUTPUTTIMEOUT〉
20: topProgList← ∅
21: topCh← viewers.mostFrequent(10) {Top-10 channel}
22: for ch ∈ topCh
23: prog← EPG.getProgram(ch) {Query EPG}
24: topProgList.add(prog) {Create top-10 program list}
25: send 〈TOP10LIST, topProgList〉 to R

the following gives a more succinct description from the EPL perspective, while

the algorithmic descriptions closely match the Java implementation.

6.3. VIEWER STATISTICS 131

Set fromChannel to
previous toChannel

Lookup previous
event from StbWin

Lookup toChannel

Set viewers + 1

Add STB to
known hosts

Set viewers - 1

Lookup fromChannel

Zap event

Yes

Yes

No

No

Figure 6.2: Viewer Statistics Activity Diagram

132 CHAPTER 6. AN EVENT PROCESSING PARADIGM COMPARISON

As shown in Figure 6.2, incoming events are matched against the previous event

received from the same STB, comparing its fromChannel field with the toChan-

nel field of the STB’s previous ZAP event. Different values might be observed

at this stage, either due to packet loss, or more likely due to the way that the

ZAPREPORTER generate events (not all events are actually sent). To compen-

sate for this, we set the fromChannel of the incoming event to the toChannel of

the previous event. If no previous event exist, no action is taken.

The next step is to update the number of viewers by adding one to the chan-

nel matching the toChannel field of the ZAP event and subtracting one from the

channel matching the fromChannel field. If the event received is from a previ-

ously unknown STB, the fromChannel is not subtracted, as it is the first event

received from this particular STB. This is appropriate since the STB has not

attributed to any channel counts. Finally, the STB is added to the list of known

devices.

The EPL queries contains all of the logic illustrated in Figure 6.2, while the

EPL implementation also requires some Java code to handle parsing and object

creation for incoming events. Also, listener objects must implement a callback

interface in Java to receive output events generated by the Esper engine. We

have not included the Java code.

Listing 6.1 shows the complete EPL code for generating viewer statistics.

It consists of 10 statements, and makes extensive use of windows, which is an

Esper abstraction that provides a view of an event stream.

The first statement (lines 1 and 2) defines a simple datatype; ChannelTot-

Viewers, while the next statement (lines 3 and 4) creates a data window that

operates on a stream of objects of this type. The std.unique()-operator tells the

window to only keep the last object based on a given key attribute. In this case,

the key attribute is the channelName of a ChannelTotViewers object.

Next, we define the window StbWin. This window collects the first ZAP

event from each unique STB, using the firstunique()-operator. It is used to keep

track of known STBs. The tv.Zap variable refers to the Java object created when

parsing incoming ZAP events. To keep track of the last ZAP event from each

STB, we create the ZapWin, beginning on line 7.

6.3. VIEWER STATISTICS 133

The update istream query is necessary to compensate for any discrepancy

in from/to channel values, as described above, and operates on the ZAP event

before it enters any stream.

Lines 18-30 of Listing 6.1 implements the core logic of the viewer statistics

application, as illustrated in Figure 6.2 and listed in lines 10-18 of Algorithm 2.

This part of the code updates ChannelWin, containing viewer numbers, as well

as adding the STB to the StbWin, containing known STBs.

The insert statements in lines 10 and 32 of Listing 6.1 populates the pre-

viously defined windows. Esper performs the statements in the order of which

they are installed, and for the logic to be correct, the StbWin containing the list

of known STBs must not be updated before the core logic has been performed.

If the insert operation listed on line 32 in Listing 6.1 is performed before lines

10-30, the exists condition listed on line 28 will always return true.

The final statement in Listing 6.1 outputs an ordered snapshot every 15 sec-

onds into an event stream named ZapSnap. The snapshot is taken from Channel-

Win, which contains channel name and the total number of viewers on that chan-

nel. The statement augments these attributes with a percentage value, providing

the share of the total viewers, which is calculated by a custom method imple-

mented in Java.

The reason for using the whole tv.Zap object most of the time, instead of

extracting only the necessary values is that according to the Esper documenta-

tion [28], selecting individual properties from an underlying event object comes

with a performance penalty, as the engine must then generate a new output event

containing exactly the selected properties. Additionally, it simplifies the syntax.

We ran both the Java and EPL implementations with the same datasets as

input, and after a few rounds of debugging, we observed identical output for

both implementations.

134 CHAPTER 6. AN EVENT PROCESSING PARADIGM COMPARISON

Listing 6.1 EPL Viewer Statistics
1 create schema ChannelTotViewers
2 as (channelName string, viewers int)
3 create window ChannelWin.std:unique(channelName)
4 as ChannelTotViewers
5 create window StbWin.std:firstunique(ip)
6 as tv.Zap
7 create window ZapWin.std:unique(ip)
8 as tv.Zap
9

10 insert into ZapWin select * from tv.Zap
11
12 update istream tv.Zap as zap
13 set fromChannel =
14 (select toChannel from ZapWin where ip = zap.ip)
15 where fromChannel !=
16 (select toChannel from ZapWin where ip = zap.ip)
17
18 on tv.Zap zap merge ChannelWin cw
19 where zap.toChannel = cw.channelName
20 when matched
21 then update set viewers = viewers + 1
22 when not matched
23 then insert
24 select toChannel as channelName, 1 as viewers
25
26 on tv.Zap zap merge ChannelWin cw
27 where zap.fromChannel = cw.channelName and
28 exists (select * from StbWin where ip = zap.ip)
29 when matched
30 then update set viewers = viewers - 1
31
32 insert into StbWin select * from tv.Zap
33
34 insert into ZapSnap
35 select *, percent(viewers, sum(viewers)) as activity
36 from ChannelWin
37 output snapshot every 15 sec
38 order by viewers desc

6.4. ANNOYANCE DETECTION 135

6.4 Annoyance Detection

Here, we discuss the second application which is aimed at detecting if a partic-

ular ad is causing viewers to change channel. Broadcasters would most likely

want to know about this, in order to remove or charge more for ads that annoy or

upset viewers. To support such ad annoyance detection, we must detect changes

in the viewership beyond some threshold, e.g. measured as a fraction, P , of the

total number of viewers on that channel.

6.4.1 Java Implementation

Here, we present the Java implementation of the annoyance detection algorithm.

Algorithm 3 shows the additional code necessary for such annoyance detection.

To implement this, we again rely on a multiset to keep a count of the number of

ZAP events seen in the current interval. The interval width used in this case is

60 seconds, but this can easily be adjusted for more fine grained intervals.

Note that ival is an integer, and the ⊕ symbol represents concatenation.

Hence, the element of the multiset is the concatenation of channel name and

an integer representing an interval. To ensure that memory usage is kept low,

we immediately expunge data from a previous interval, and if an output event is

generated within one interval, we reset the counting for that interval. This allows

multiple output events to be generated for the same interval, if the fraction of

viewers changing channel in that interval is ≥ 2P .

6.4.2 EPL Implementation

The EPL implementation of the annoyance detection algorithm builds on the

viewer statistics application from Section 6.3.2, and demonstrates how effort-

lessly EPL implementations can be augmented with new functionality.

The annoyance detector in Listing 6.2 looks at the average viewer number

over the last minute, constantly comparing the most recent number with the

average. If the viewer number drops with 15 % compared with the last minute

average, an output event is triggered.

136 CHAPTER 6. AN EVENT PROCESSING PARADIGM COMPARISON

Algorithm 3 Annoyance detection pseudo code
1: Initialization:
2: F {Multiset: counts viewers moving from channel in intervals}
3: M ← 2000 {Minimal # of viewers to consider for detection}
4: P ← 0.15 {Fraction of viewers moving from channel in interval}
5: W ← 60 {Interval width}
6: prevIval← ⊥ {The previous interval}

7: on 〈ZAPEVENT, date, time, ip, toCh, fromCh〉
8: ival← time/W {Get interval of this event (sec)}
9: if ival 6= prevIval then

10: F .clear() {New interval begun; expunge old entries}
11: prevIval← ival
12: F .add(fromCh⊕ival) {Increase count changing from channel in ival}
13: F .remove(toCh⊕ival) {Reduce count for channel moved to in ival}
14: v ← viewers.count(fromCh) {#Viewers on fromCh}
15: if v > M ∧ F .count(fromCh⊕ival) ≤ P · v then
16: Generate output
17: F .setCount(fromCh⊕ival, 0) {Reset count for ival}

To construct the annoyance detector query, we make use of the ZapSnap event

stream from the viewer statistics code in Listing 6.1. For this case, the power

of sliding time windows is illustrated: The query selects properties from the

ZapSnap stream of viewer statistics, exposed as a sliding time window.

Every 15 seconds, a snapshot of the viewers on each channel combined with

additional statistics are published to the ZapSnap event stream. As in the Java

implementation, channels having less than 2000 viewers are filtered out before

they enter the window in order to prevent channels with only a few or no viewers

from triggering annoyance events. The average number of viewers is calculated

from the events kept in the 1-minute window, while events older than this leave

the window.

Listing 6.2 EPL Annoyance Detector
1 select channelName, viewers, avg(viewers)
2 from ZapSnap(viewers > 2000).win:time(1 min)
3 group by channelName
4 having viewers < avg(viewers) * 0.85

6.5. EVALUATION 137

Annoyance detector

ZapSnap
.win.time
(1 min)

channelName,
viewers,
avg(viewers)

avg(viewers)
having(...)

channelName,
viewers

Figure 6.3: Annoyance detector illustrated

Figure 6.3 illustrates the EPL statement from Listing 6.2, and shows how ag-

gregated events, containing channel statistics from the ZapSnap event stream,

are fed into a sliding window. If the average number of viewers in this slid-

ing window drops by more than 15% in less than a minute, an output event is

generated.

6.5 Evaluation

The main goal of this chapter is to evaluate two paradigms for developing event-

based systems, and specifically if it can be applied to our enhanced high-volume

use case. Moreover, in this section we first give a brief analysis of the data

obtained from the initial deployment of ZAPREPORTER. This will be followed

by a performance benchmark and software complexity evaluation.

6.5.1 Brief Data Analysis

To be able to predict the kind of traffic one might expect, when scaling up the

number of events that will be generated, we examine the current trend of chan-

nel zapping. Hence, we selected a 15-day period (January 31 – February 14)

from our logged datasets obtained using the current infrastructure at the time, as

described in Section 6.2.1. This period constitutes approximately 1.7G bytes of

data, or about 118M bytes per day. The sampled dataset contains events from

253,985 unique STBs, and 183 different channels were visited at least once dur-

ing the period.

138 CHAPTER 6. AN EVENT PROCESSING PARADIGM COMPARISON

31 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

·106

Avg=2212097

Figure 6.4: Number of zap events/day over a 15-day period.

The number of events generated each day is shown in Figure 6.4, and the same

data is also shown in Figure 6.5, sampled at hour intervals. An interesting ob-

servation from Figure 6.4 is that Wednesdays (5,12) and Thursdays (6,13) rep-

resent a significant deviation from average zapping activity. We speculate that

this might be due to poor programming on these days across the board among

broadcasters. In Figure 6.6, we show the distribution of zap events over a 24-

hour period based on data from January 31. The plot confirms what is expected

from habitual patterns, with a peak in zapping activity around 20:00. We leave

it for future work to provide an in-depth analysis of these data, when we have

better accuracy.

The data for the statistics presented in Figure 6.7 was sampled at Saturday

the 21st of May, 2011. The graphs shows the viewing trends for different regions

for TV2, the second largest channel in Norway, and illustrates viewer numbers,

6.5. EVALUATION 139

Friday Jan. 31, 20:00

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

·105

Time (hrs)

Hour interval

Figure 6.5: Number of zap events/hour over a 15-day period.

calculated from ZAP events. We used the EPL implementation from Listing 6.1

to calculate these numbers.

Placing these trends on top of a canvas containing the channel programming

for the same time period makes the relationship between the number of viewers

and the programming quite clear. For instance, one can see that the most popular

program on that particular evening was the nine o’clock news, which should

come as no surprise to those familiar with Norwegian viewing habits. Another

interesting observation that can be made from this graph is the spike in viewer

numbers at around 17:40, which correlates with a summary of highlights from

the bicycle tournament “Giro d’Italia”.

In addition to presenting the total viewer numbers for TV2, Figure 6.7 also

divides the viewers into four regions: North, Center, East and South/West,

which is a common division of Norway. Since these graphs reflects actual

140 CHAPTER 6. AN EVENT PROCESSING PARADIGM COMPARISON

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·105

Time (hrs)

30 Minutes
15 Minutes
5 Minutes

Figure 6.6: Number of zap events over a 24-hour period for different sampling
intervals: 5, 15, and 30 minutes.

viewer numbers, they do not indicate relative share. Instead, they give an in-

dication of the number of deployed STBs in the different regions. As can be

observed from the plot, viewer number fluctuations are fairly identical for all

the regions, suggesting that viewing patterns are quite similar across the whole

country. There are some minor differences, suggesting that the viewers in the

eastern part of Norway leaves the channel sooner during a commercial break,

when compared to viewers in the south and west. This can be observed in the

commercial break after the nine o’clock news, where we see a slightly steeper

drop curve for the viewers in the eastern part of the country.

Figure 6.8 combines the top graph from Figure 6.7 with viewer numbers

from NRK1, which is the largest television channel in Norway. Note the inverse

correlation between the two graphs, suggesting that a majority of viewers on

6.5. EVALUATION 141

both channels were switching internally between the two channels. This graph

also illustrates that the interval between 18:00 and 22:00 is the prime time view-

ing hours on a Saturday evening. NRK is government owned and commercial

free, while TV2 is a commercial network, which might explain why the TV2

graph contains more fluctuations, like the sawtooth pattern that can be observed

around eight o’clock.

6.5.2 Performance Evaluation

Here we provide a brief performance evaluation of both our implementations

for the viewer statistics application. The annoyance detector application was

difficult to test with Esper due to lack of real data, and for this reason was not

benchmarked.

Environment and Experiment Setup

To benchmark our applications, we used a server with RedHat Enterprise Linux 6,

64-bit, with 14GB RAM, and a single Intel Xeon E5530 (8MB cache) Quad

Core 2.4GHz CPU. Java version OpenJDK 1.7.0-ea and Esper version 4.0.0

was used to conduct the experiments.

Since the ZAPREPORTER was not generating events at the desired rate at

the time of experimentation, we wanted to verify if our implementations could

sustain the expected traffic volume. Therefore, we built a test framework, in

which we process a log file containing zap data from one day (January 31),

carrying a total of 2,117,897 zap events. We measure the throughput obtained

and memory usage while processing this file. The throughput is measured in

four ways:

1. By reading the entire file into memory before processing it from memory

2. By reading the file line-by-line from disk

3. By receiving the events over UDP

4. By receiving the events via the HornetQ message bus

142 CHAPTER 6. AN EVENT PROCESSING PARADIGM COMPARISON

The reason for running both experiment 1 and 2 was to reveal whether the per-

formance bottleneck is I/O or CPU bound.

6.5. EVALUATION 143

Trude

Sykkel:Girod‘Italia14.etappe

Sport&Spill

Reisemål

Lørdagsmagasinet
Sportsnyhetene
Været

Vinnpåminuttet

Nyhetene

GodkveldNorge

Sportsnyhetene

Film:Mordpåkreditt

Sykkel:Girod‘Italia-oppsummering

Farmen

Nyhetene

Akvariet

TV2hjelperdeg

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

12
:0

0
14

:0
0

16
:0

0
18

:0
0

20
:0

0
22

:0
0

Viewers

Ti
m

e

V
ie

w
er

s
fo

rT
V

2
N

or
ge

+
T

V
2

H
D

,S
at

ur
da

y
21

.0
5.

20
11

,S
ep

ar
at

ed
by

Z
ip

C
od

es

To
ta

lv
ie

w
er

s
E

as
t

W
es

t/S
ou

th
M

id
dl

e
N

or
th

Fi
gu

re
6.

7:
V

ie
w

er
nu

m
be

rs
fo

rT
V

2,
w

ith
pr

og
ra

m
sc

he
du

le
.

144 CHAPTER 6. AN EVENT PROCESSING PARADIGM COMPARISON

30000

35000

40000

45000

50000

55000

60000

65000

70000

12:00
14:00

16:00
18:00

20:00
22:00

Viewers

Tim
e

V
iew

ers
forT

V
2

N
orge

and
N

R
K

1,Saturday
21.05.2011

T
V

2
+

H
D

N
R

K
1

+
H

D

Figure
6.8:V

iew
ernum

bers
forT

V
2

and
N

R
K

1.

6.5. EVALUATION 145

Each experiment was repeated 11 times, allowing one iteration for the Java

hotspot compiler to optimize the code. The experiment results are presented

as the average over ten iterations of each test, as shown in Figures 6.9 and 6.10.

The results were validated by comparing the final state of both Java and EPL

implementations, as they should end up with the exact same number of viewers

per channel, and number of STBs observed after a completed run.

VisualVM v1.3.2 with a tracer plugin for collecting heap memory usage,

was used to measure memory consumption. VisualVM only supported a sam-

ple rate of 1 Hz, so the precision was limited, but nonetheless gave an overall

impression of the memory consumption of the two implementations.

Results

As seen in Figure 6.9, the native Java implementation outperforms the EPL

implementation by a very large margin, with an average throughput surpassing

700,000 events per second compared to an average of only 64,275 events for

the EPL version with the in-memory tests. Similar results are observed for the

from-disk tests. We believe this can be accredited to the flexibility offered by

a general-purpose language like Java to express and optimize data structures

for the specific problem at hand. Relying only on pure EPL code to express

complicated queries seems to hurt performance in a significant way. This can

probably attributed to the fact that EPL provide general constructs for event

processing, while Java can cut corners and optimize.

Another interesting observation is the negligible performance hit on both

implementations introduced by reading the events from disk instead of mem-

ory, indicating that the performance bottleneck is CPU-bound. By looking at

Figure 6.9, it is also clear that receiving events over UDP introduces a signifi-

cant performance penalty, reducing throughput by approximately 90 % for the

Java implementation, from an average of 641,112 events per second (from-disk)

to 63,515 events per second (UDP). Using the HornetQ message bus for event

passing, a further performance hit is observed, to 22,546 events per second, or

only 3.5 % of the throughput compared to reading the events from disk. For

the EPL version, the throughput drops from 62,846 to 34,146 events per sec-

146 CHAPTER 6. AN EVENT PROCESSING PARADIGM COMPARISON

ond (46 % reduction) over UDP, and to 12,623 events per second when using

HornetQ.

Although the performance hit on the Java application seems significant for

the UDP and HornetQ cases, it still offers roughly 45 % higher throughput com-

pared to the corresponding EPL versions. Moreover, the observed CPU load

during the experiments was significantly lower with the Java version.

Memory Disk UDP HornetQ

0

2

4

6

8
·105

E
ve

nt
s/

se
c

Esper Java

Figure 6.9: Average throughput over 10 runs.

The error bars in Figure 6.9 represent the standard deviation for each experi-

ment. In the UDP experiments, the average packet drop for the Java version

was 0.16 %, and 0.3 % for Esper. No packets were dropped by HornetQ.

Figure 6.10 once again shows the efficiency of the Java implementation. The

average heap memory consumption of the Esper implementation is almost three

times more than its Java counterpart, while it seems to confirm the negligible

difference in performance between reading the events from disk versus loading

them into RAM before processing. The negligible difference in performance

between reading the events from disk suggests that performance is limited by

the processing of events, and not by I/O.

Error bars, indicating standard deviation was omitted from this figure, be-

cause of the way the experiment was conducted: The heap memory usage was

6.5. EVALUATION 147

From memory From disk

600

800

1,000

1,200

1,400

1,600 1,570

1,401

590 577

M
em

or
y

us
ed

(M
B

)

Esper Java

Figure 6.10: Average heap memory consumption over 10 runs.

measured on a per-second basis over the course of ten repetitions, with the num-

bers presented in Figure 6.10 referring to the average value of all of the samples.

Because of the way the memory is handled in the JVM, where a garbage collec-

tor frees up memory at irregular intervals, we will normally observe significant

fluctuations in heap memory usage that is not directly related to the operation

of the application itself. Hence, the standard deviation for this type of measure-

ment will be adversely affected by the Java garbage collector.

6.5.3 Software Complexity

Software complexity is in general an equally important evaluation criteria to per-

formance, when comparing the different approaches. Simpler code amounts to

more robust and maintainable software [73], while the performance of hardware

increases steadily. Therefore, we also evaluate our rather simple code examples

using Halstead’s software complexity metric along with a subjective discussion.

Complexity is measured using Halstead’s formula [73, 133, 148, 4], that,

when applied to the number of operators and operands in a program, is said to

predict the following attributes of the program:

• Length, volume, difficulty, and level of abstraction

148 CHAPTER 6. AN EVENT PROCESSING PARADIGM COMPARISON

• Effort and time required for development

• Number of faults

Predicting something that has already occurred is obviously self-contradictory,

as the program must be developed before the number of operands and operators

can be counted. The first two bullets are therefore in practice only used to

validate the theory, and to give a metric of the complexity of a program, which

is how it will be used in this evaluation.

There has been some dispute [71] regarding the usefulness and predictive

powers of the Halstead metrics, and it could also be argued that the validity of

these metrics are limited when applied to modern day object-oriented program-

ming languages like Java, as they were conceptualized in an era of procedural

languages. Nevertheless, we will include the non-predictive metrics, since these,

together with total lines of source code, hopefully can give us some objective

insight regarding the scope and complexity level of the implementations.

Originally, we used a software tool to automatically compute the Halstead

metrics of the Java implementation. However, since we were unable find a tool

that can compute the metrics for both Java and EPL, and because there are no

universal consensus on the exact way of counting operators and operands in a

given block of code [5], it was decided to calculate them manually instead, in

order to ensure that the counting strategy is consistent between the two imple-

mentations.

Li et al. [37] addresses some of the challenges involved in applying Hal-

stead to object-oriented languages, and the essence of their findings is imple-

mented in our own strategy for counting operators and operands. This in-

cludes ignoring import statements and package declarations, but counting ev-

erything that is necessary to express the program. Operators that are syntac-

tical identical, but semantically different through context, are counted as dif-

ferent operators. Examples include the parenthesis ’()’ operator, which is

counted as an operator in the case of grouping expressions, e.g. (2+2)*4

and type casting, but not when used in methods. Furthermore, the dot oper-

ator ’.’ were ignored in package names when referring to objects, such as

6.5. EVALUATION 149

tv.ChannelZap, and included when delimiting an operator from an operand,

as in ZapWindow.std:unique(). The colon operator ’:’ is also ignored

in cases like this, when used to reference methods from package names, but

included in statements like: fields.hasNext() ? fields.next() :

"OFF";

Because Halstead’s metric is designed to measure algorithms as opposed to

complete programs [133], the metrics were calculated on class level in the Java

implementation and subsequently summed together.

0 100 200 300 400

Vocabulary (n1+n2)

Program length (N1+N2)

Total operators (N1)

Total operands (N2)

Unique operators (n1)

Unique operands (n2)

Lines of code

(Java)
(EPL)

Viewer Statistics
Annoyance Detector
Parsing and Query Setup
Utility Functions

Figure 6.11: Complexity metrics breakdown per function for EPL (upper bar)
and Java (lower bar).

Java Esper + Parsing and setup (Java)
Metric Viewers Annoy Viewers Annoy Parsing
Source lines of code 62 19 23 4 24
Prog. length (N1+N2) 262 116 132 24 149
Unique operators (n1) 51 21 27 7 35
Unique operands (n2) 56 26 15 10 37
Total operators (N1) 233 56 73 13 77
Total operands (N2) 182 60 59 11 72
Vocabulary (n1+n2) 107 47 42 17 72

Figure 6.12: The underlying complexity metrics for Figure 6.11

150 CHAPTER 6. AN EVENT PROCESSING PARADIGM COMPARISON

Figure 6.11 gives a break down per function for both EPL (upper bar) and

Java (lower bar) implementations, while Figure 6.12 provides the underlying

numbers. The bar chart should be read as follows: The metric for the viewer

statistics is shown to the left, followed by the metric for the annoyance detector

application. In the case of Java, these are the only metrics necessary to rep-

resent both applications; event parsing is included in the code for the viewer

statistics application. For the EPL implementation, we also include metrics for

the additional Java code necessary for parsing, Esper setup, and a custom utility

function for calculating percentage. These are in addition to the query language

itself. For both Java and EPL, the annoyance detector application builds upon

the viewer statistics application, thus the numbers for the former includes the

code from the latter.

On reading these metrics, it should be noted that the EPL implementation

was done by a novice EPL programmer, and more efficient implementations

might be possible.

The EPL implementation scores slightly better in all of the complexity met-

rics for the viewer statistics application, and significantly better for the annoy-

ance detector. We do not find the difference in score between the two viewer

statistics implementations wide enough to draw the conclusion that one is easier

to develop than the other. However, upon expanding the basic viewer statistics

application with annoyance detection capabilities, the additional programming

effort required for expanding the Esper implementation (four lines of EPL) is

significantly smaller than for the Java version (19 additional lines of code). The

observed program length numbers points in the same direction, with an added

program length of 116 versus only 24 for the EPL version. These observations

are supported by the findings presented in Appendix A, where the complex-

ity of two similar event processing applications implemented in Cayuga Event

Language (CEL) and Java is compared.

One aspect of complexity, not covered by the software metrics, is the chal-

lenge of learning and understanding a new query language such as EPL or CEL.

Although prior knowledge of SQL, possessed by many programmers, will be

of great aid to this task. One concern in terms of using EPL for our applica-

6.5. EVALUATION 151

tions is that we still had to write Java code to interface with other application

code. Although, this interface code was minor in our case, it is easy to imagine

having to write substantial amounts of wrapper/interface code outside of EPL

for a variety reasons. Hence, it is obviously a disadvantage having to know and

use two languages in order to develop an application. And another disadvantage

with any declarative language is that we lose type-safety, an important software

engineering principle for building robust applications.

Based on these observations, it is tempting to draw the conclusion that a

general-purpose language is the most efficient tool for doing event stream pro-

cessing. However, although it is the most effective implementation for the pre-

sented application in this case, dedicated event processing languages seems to

gain efficiency relative to general-purpose languages upon expansion of the pro-

cessing tasks, as indicated by the lesser effort required to add annoyance de-

tection capabilities. This however, assume that streams can be reused across

applications.

It should also be mentioned that the Java implementation is highly tuned

and optimized using specialized data structures desgined for our purpose. This

optimization took a fairly long time to achieve, despite the relatively few lines

of code. Even though the Java implementation has better performance, the per-

formance of the Esper implementation is more than sufficient for the application

presented here. As long as the performance requirements are met by both im-

plementations, the additional performance offered by the Java version does not

translate into any real practical value. Thus, maintainability and speed of pro-

totyping are likely to be the deciding factors when choosing which paradigm

to use. As indicated by the complexity measures presented here, EPL performs

better in this regard. Finally, it could be argued that a declarative programming

language offers a more natural and intuitive way of expressing event patterns

than what is possible with an imperative programming language.

152 CHAPTER 6. AN EVENT PROCESSING PARADIGM COMPARISON

6.6 Conclusions

In this chapter, we have demonstrated that we are able to get much more accurate

viewer statistics than with traditional methods by capitalizing on the two-way

communication capabilities of IP-enabled STBs. By operating on the stream of

zap events from STBs, we have been able to generate viewer statistics in two

very different programming paradigms. Furthermore, our results show that the

general programming paradigm outperforms the query language approach by a

surprisingly wide margin for this fairly simple application scenario, while at the

same time being fairly similar to its counterpart in terms of total lines of code

(taking the additional required lines of Java code into account).

The debate over which paradigm to choose for a specific implementation

should be about choosing the right tool for the job. If the application complexity

is modest and performance requirements are high, it is probably more efficient

to use a general-purpose language in most cases. If however the processing task

at hand is very complex, and performance requirements are met with a more

specialized language, going the query language route opens up possibilities for

more effortless maintenance and expansion of the application at a later stage. It

is probably wise to keep a generous performance margin in such cases, as our

tests indicated that added complexity hurts performance of EPL more than its

Java counterpart in applications like this, because of the limited flexibility in

selecting appropriate data structures.

Chapter 7

ADSCORER: Near Real-Time
Impact Analysis of Television
Advertisements

Building on the viewer statistics application, presented in the previous chapter,

the work presented here has been extended since it was first published at the 6th

ACM International Conference on Distributed Event-Based Systems (DEBS) in

July 2012 [52].

In this chapter, we present ADSCORER, a scoring system for television

advertisements. Our system is based on event stream processing techniques,

and can compute scores for advertisements in near real-time based on channel

change events from viewer set-top boxes. Our results show that ADSCORER

is capable of delivering detailed scores on a per-advertisement spot basis for

a whole block of commercials, immediately after the commercial break has

ended. The scores include regional breakdowns with viewer numbers and shares

for each geographical region of Norway as well as national scores.

Our evaluation of ADSCORER demonstrates that it is capable of scoring

numerous channels simultaneously. In our experiments, we used one machine

to analyze five channels, but our system can easily scale to support hundres of

channels by adding more machines.

153

154 CHAPTER 7. ADSCORER: IMPACT ANALYSIS OF TV ADS

7.1 Introduction

As described in Chapter 5, significant inaccuracies can be expected with the

traditional method of collecting broadcast television viewer statistics. This in-

accuracy mainly exists because of the broadcast nature of the traditional mass

media model, in which media consumers are secluded from providing feedback

to the broadcaster [62].

In recent years we have been shifting away from this traditional model to an

Internet-based model in which media consumers are empowered with numer-

ous additional capabilities. With this model, the audience is no longer a passive

crowd of media receivers, but increasingly active participants, uploading videos

on YouTube, blogging, and interacting with each other on social media plat-

forms such as Twitter and Facebook.

Additionally, the pervasiveness of devices such as STBs with recording

capabilities, smart phones and tablets has enabled people to create their own

daily media schedule, where they can choose what media to consume, where

and when. Thus, with this changing media landscape comes new opportunities

for more accurate prediction and analysis of audience behavior and responses.

However, despite the advantages of online advertisement in terms of account-

ability and targeting, yearly spendings on traditional television commercials is

rising [95, 38].

In this chapter, we perform an online analysis of the impact of advertise-

ments on channel change behaviors among a large population of viewers. The

analysis provides a score for each individual advertisement spot. The resulting

scores can be useful for numerous parties, such as TV networks, advertisers,

and cable network operators, as well as the general public.

To facilitate online analysis, we have developed ADSCORER, which lever-

age numerous advanced technologies, including CEP, video stream content recog-

nition, and message-oriented middleware, in order to generate an instantaneous

evaluation for each advertisement spot. ADSCORER is deployed in the Alti-

box network, which covers more than 11% of Norway’s 2.2 million house-

holds [105, 136], which is a sufficiently large and diverse sample to be sta-

7.2. SYSTEM ARCHITECTURE 155

tistically significant. As such, this gives us an excellent opportunity to observe

how the system performs in a large-scale, real-world setting.

Algorithms for evaluating the impact of television advertisements do ex-

ist [45, 80], but to our knowledge, none of these works carries the near real-time

aspect that our system provides, nor have they been deployed in a live IPTV

network at any scale. Furthermore, none of these covers the complete value

chain necessary to perform such calculations, which include STB clients, chan-

nel change event collection, distribution and aggregation layers for translating

channel change events into statistics, detection of advertisements from the TV

channel stream, and finally provide a score for each advertisement.

In Chapter 6, we have demonstrated how viewer statistics can be generated

in near real-time from processing STB ZAP events, both by using a specialized

event processing language (EPL) and a general purpose programming language

(Java). In this chapter we focus only on extending the EPL version. The system

presented here builds on the previous implementation in the following ways:

It has been extended to score advertisements, and it has been embedded in a

generalized CEP architecture, presented in Chapter 4.

Section 7.2 describes the overall architecture of the ADSCORER system,

and how EVENTCASTER is configured to provide a success score for each in-

dividual advertisement during commercial breaks. In Section 7.3 we discuss

the attributes that make up this success score. Section 7.4 describes the deploy-

ment scenario of the application, Section 7.5 provides a walkthrough of the EPL

statements used to evaluate advertisements, and in Section 7.6 we evaluate our

implementation. Finally, we present our conclusions in Section 7.7.

7.2 System Architecture

This section gives a high-level overview of the ADSCORER system architecture,

which consists of the following components:

• Broadcast television network

• STB client software

• Video stream content recognition software

156 CHAPTER 7. ADSCORER: IMPACT ANALYSIS OF TV ADS

• Message-oriented middleware (HornetQ)

• EVENTCASTER event processing middleware (presented in Chapter 4)

• Database

Figure 7.1 illustrates how these components interact at a high level. On the left

side of the figure, we have the two main event producers, the AdDetector located

in our data center and a large number of STBs located in cable customers homes.

The AdDetector component automatically identifies advertisement spots in the

television video stream, and subsequently publishes an event. An advertise-

ment is defined as a single unit of presentation and is typically 10-30 seconds in

length. We define a commercial break to consist of one or more advertisements,

and it may vary in length from 30 seconds to 6 minutes. An advertisement event,

from now on referred to as AdIdentified, contains the following attributes:

• An identifier for the advertisement

• The channel name

• The length of the advertisement

• The time of detection

• Begin or end status for the advertisement

These events are published to a message queue, and subsequently picked up by

another component, as we explain in more detail later. Events indicating the start

and end of commercial breaks are inferred from the stream of advertisement

events. For the rest of this chapter, we refer to these as CommBreak events.

Additionally, the STB clients generates several event types:

• Channel change event (also called a zap event)

• HDMI status event: TV set on/off

• STB audio on/off event (mute)

• STB volume change event

7.2. SYSTEM ARCHITECTURE 157

These STB events are transmitted over UDP to a ZAPCOLLECTOR in our data

center. The ZAPCOLLECTOR decodes the packets and places them on a message

queue.

ADSCORER uses one instance of the EVENTCASTER core application, pre-

sented in Chapter 4. This instance subscribes to events generated by STBs as

well as AdIdentified events emitted by the AdDetector, as described above. It

is responsible for scoring the advertisements, according to the criteria presented

in Section 7.3.

Components of the EVENTCASTER middleware are colored yellow in Fig-

ure 7.1.

TV Network

AdDetector
Mute

AdSuccess-
Evaluator

STBs

In
p

u
t ad

ap
ters

Stats

Ad start

Channel zap events

F
ilterin

g,
tran

sform
ation

Zap

Ad success score

Historical
stats

Processing

QueueingInput

Figure 7.1: ADSCORER Architecture Overview

ADSCORER is an event-driven architecture, in which event producers and event

consumers are decoupled [119]. Figure 7.2 illustrates the connection between

components of the ADSCORER system and the conceptual building blocks of an

EDA, presented in Section 2.5. To reiterate, the four main building blocks of an

EDA are producers, consumers, agents and channels [22].

158 CHAPTER 7. ADSCORER: IMPACT ANALYSIS OF TV ADS

ZapCollector

AdDetector

Advertising
Agency

Web
Dashboard

EPL
EPL

EventCaster
Instance

EPL

Message Queueing

EventCaster
Instance

EPL

EPL

EPL

Event Processing NetworkProducers Consumers

Figure 7.2: AdScorer as an EDA

In the figure, the ZAPCOLLECTOR and AdDetector entities are categorized as

event producers, even though they are not the actual generators of events. The

explanation for this can be found in Section 2.5.2, where we define producers

as the entities that introduce raw events to the EPN.

The green triangles in Figure 7.2 represent processing agents in the form of

EPL queries, using the same notation as in Figure 2.9. The channels connecting

the agents are either internal inter-process communication, or message queues,

depending on whether the EPL queries are located on the same EVENTCASTER

instance or not.

7.3 Scoring Criteria

This section discusses the scoring criteria used in in the ADSCORER system.

In our implementation, an advertisement spot is evaluated according to a wide

range of criteria, as listed in Table 7.1. Examples of usage for all of the criteria

listed in this table can be found in the code examples provided in Section 7.5.

These scoring criteria may be represented in both actual numbers, and ad-

ditionally in percentage form. In the cases where they are related to other num-

bers, such as interval between number of viewers at the start and end of the

advertisement, a percentage representation is more intuitive than the underlying

7.3. SCORING CRITERIA 159

Criteria Symbol
Viewers at the start of the advertisement α

Viewers at the end of the advertisement θ

The interval between α and θ τ

Viewers that stayed on the channel throughout the advertisement ε

Viewers that muted the sound during the advertisement ∆

Viewers that was in mute mode when the advertisement began γ

Viewers that unmuted the sound during the advertisement δ

Viewers that turned on TV during the advertisement Ω

Viewers that turned off TV during the advertisement ω

Average volume at the start of the advertisement Λ

Average volume at the end of the advertisement λ

Average volume during the advertisement κ

Initial Audience Retained (ε/α) IAR

Table 7.1: Scoring Criteria

numbers. As described in Chapter 5, the IAR metric presents the fraction of

viewers retained for the duration of an advertisement.

Another metric that we expect to be of interest, is the numbers of viewers

that pressed the mute button during the advertisement (∆). This metric should

give further indication to whether viewers are actually watching the advertise-

ment, as it is likely that viewers that have muted the sound, does not pay atten-

tion to the advertisement.

Furthermore, the ∆ trend of individual advertisements over time, combined

with the interval between the average volume at the start (Λ) and end (λ) of the

advertisement can potentially reveal advertisements where the audio contains

particularly high RMS levels. RMS is an abbreviation for Root-Mean-Square,

and when used in relation to audio, refers to the average loudness over time. The

way humans perceive loudness is to a much higher degree related to average

levels than peak levels. Advertisers take advantage of this, as the technical

limitations imposed upon broadcast media applies to peak levels, and not RMS

levels [113].

By reducing the dynamic range of the audio, advertisers are able to increase

the perceived loudness of their advertisements without exceeding the maximum

160 CHAPTER 7. ADSCORER: IMPACT ANALYSIS OF TV ADS

permissible peak level. In audio terms, a reduction of dynamic range is re-

ferred to as compression, and is the reason why the volume in commercial

breaks generally appears to be louder than in the programs that preceded them.

However, severe limiting of the dynamic range also introduces distortion in the

audio signal as a side-effect, which further serves to annoy listeners. In fact,

loud commercials has been number one complaint by television viewers to the

Federal Communications Commission (FCC) in the United States over the past

decade [94].

A study of RMS levels in televised advertisements, combined with scores

from the ADSCORER system could help the understanding of how viewers re-

spond to highly compressed audio in advertisements.

The criteria listed here could be combined to make up a final score, rep-

resented as a numerical value between 0 and 10. This score would say some-

thing about the impact of the advertisement, and could give advertisers an un-

precedented opportunity to measure the impact for each individual advertise-

ment spot, based on factual observations, as opposed to claimed attitudes and

numbers.

7.4 Deployment

We now describe the deployment scenario at the time the measurements of this

chapter were performed, as well as some additional features of the updated

ZAPREPORTER, presented in Section 6.2.2. The features of the updated ZAP-

REPORTER is expected to facilitate significantly more accurate statistics and

enable us to conduct more interesting behavioral analysis of television view-

ers. There are two ZAPREPORTER deployments – One that was deployed when

conducting the experiments presented in this thesis, with the exception of the

experiment presented in Section 7.6.2, and an improved version, which was

deployed after the experiments were performed. Due to time constraints, we

have not been able to repeat the experiments using data from the updated ZAP-

REPORTER.

The ZAPREPORTER deployed at the time the measurements in this chapter

7.4. DEPLOYMENT 161

were performed was the same as for the experiments presented in Chapter 6.

Thus, it only reported channel change events where the viewer remained on the

same channel for more than one minute. Unfortunately, this sampling mecha-

nism prevented us from capturing some interesting behaviors of television view-

ers, such as the channel surfing behavior during commercial breaks.

A new ZAPREPORTER has been deployed, in which channel changes and

other STB events are forwarded much more rapidly. The new ZAPREPORTER

also forwards STB events related to mute, volume, and HDMI status on or off.

The latter enables us to determine if the TV connected to the STB has been

turned off. We provide further details on how the new ZAPREPORTER will be

used in the current deployment below.

The AdDetector part of the scoring system, illustrated in Figure 7.1, is com-

mercial software from a vendor that also delivers content-recognition technol-

ogy to some of the major players in the media measurement industry. It is used

by content creators to detect violations of copyright, as well as advertisers to

measure that they are getting the exposure they have paid for.

7.4.1 Some Initial Findings with the Enhanced ZAPREPORTER

A better understanding of viewer behavior will hopefully be gained from ana-

lyzing the output of the new ZAPREPORTER, as it captures most of the channel

surfers, and also expands the viewer action repertoire by including mute and

volume events.

The use of HDMI status monitoring addresses the main criticism against

STB-based viewer statistics, namely that most people do not turn off their STB,

even though their TV is off. As such, it is impossible to determine whether

there are people watching unless there is STB event activity. Being able to

detect whether the TV is turned on or off, enables us to establish with great

confidence whether someone is watching, as virtually everyone turns off the TV

when going to bed or leaving the house.In some households, the TV may still be

running in the background, while people are doing other things, but then again,

the traditional methods are no better in this regard.

It is presently unclear what the impact of this flaw in our previous statis-

162 CHAPTER 7. ADSCORER: IMPACT ANALYSIS OF TV ADS

tics [51] and other IPTV measurements [20] will be. But we expect it to be

significant, as we discuss next.

The new ZAPREPORTER was deployed to customers as a silent upgrade,

which means that only those that power cycled their STB device was upgraded.

Those that left their STBs on, was upgraded at a later stage, during a forced

upgrade. One day after deploying the new STB software, approximately 15,000

STBs had upgraded, and after a week 80,000 STBs had upgraded. Out of a total

of 320,000 STBs, these numbers seems to indicate that a large fraction of STBs

are rarely powered off when the customer is not watching TV. Thus, for this

reason we expect that STB-based statistics may see significant discrepancies

between those that only monitor zap events and our approach that also captures

HDMI status.

7.5 Implementation

The ADSCORER implementation scores televised advertisements according to

the metrics presented in Section 7.3. In this section, we provide implementation

details such as how components of the ADSCORER system interact, as well as

code examples. We start with the component interactions, before going into a

detailed code description.

7.5.1 Component Interactions

The sequence diagram in Figure 7.3 shows the interactions between the Ad-

Detector, AdSuccessEvaluator and message queue components during the eval-

uation of an advertisement: An advertisement is identified by the AdDetector,

which generates an AdIdentified event, containing an identifier, duration, chan-

nel name, and a boolean begin-property for the advertisement identified. A

producer listens for these AdIdentified events, and puts them on the message

queue, where it is picked up by an EVENTCASTER instance, configured to

calculate advertisement scores. This EVENTCASTER instance is named Ad-

SuccessEvaluator in Figure 7.1.

When an AdIdentified event is received by the AdSuccessEvaluator, it starts

7.5. IMPLEMENTATION 163

to collect statistics about the STBs tuned to the channel of the advertisement.

These statistics includes viewer numbers, number of muted STBs, and average

volume among the STBs. The AdSuccessEvaluator collects these events until it

receives another AdIdentified event containing the same advertisement identifier

and channel name, with the begin property set to false to indicate the end of the

advertisement. Alternatively, if the duration of the advertisement, included in

the first AdIdentified event elapses, an AdIdentified event with the begin property

set to false is generated by the AdSuccessEvaluator itself. When one of these

two conditions are met, AdSuccessEvaluator calculates a final score, containing

the scoring criteria presented in Section 7.3.

164 CHAPTER 7. ADSCORER: IMPACT ANALYSIS OF TV ADS

Figure
7.3:A

d
Scoring

Sequence
D

iagram

7.5. IMPLEMENTATION 165

7.5.2 ADSCORER EPL Code

We now describe the EPL statements essential to the ADSCORER application.

The code examples listed here, runs in the Esper engine of the AdSuccess-

Evaluator instance, illustrated in Figure 7.1. It receives events generated by

the AdDetector system.

Listing 7.1 defines a context named AdBreakCtx, that lasts for the duration

of an advertisement. A context is an EPL abstraction that is created when one

or more conditions are met, and destroyed when another set of conditions are

met. Memory used by objects associated with the context are immediately and

automatically released when the context ends.

Listing 7.1 EPL AdScorer per-ad context definition
1 create context AdBreakCtx as
2 initiated by
3 tv.AdIdentified(begin=true) as ad
4 terminated by
5 tv.AdIdentified(detectionId=ad.detectionId,
6 begin=false) as endAd

In this context, we create a data window, containing all the STBs tuned to the

channel of the advertisement when the advertisement starts. Listing 7.2 creates

and populates this window, named STBWin. As can be observed from the query,

only STBs tuned to the channel of the advertisement, having an active HDMI

connection in unmuted mode are included, as we can assume that the remaining

STBs are not associated with any viewers.

Listing 7.2 EPL AdScorer per-ad STB window
1 context AdBreakCtx
2 create window STBsnapshots.win:keepall() as
3 STBWin
4 insert where
5 channel in (context.ad.channel)
6 and hdmi=true and mute=false

Viewers that leave the channel during the advertisement are inserted into an

event stream named Dropout by the statement included in Listing 7.3. The

166 CHAPTER 7. ADSCORER: IMPACT ANALYSIS OF TV ADS

statement included in Listing 7.4 subscribes to the Dropout event stream, and

removes these STBs from the STBWin data window. There is no corresponding

insert statement for keeping track of viewers that arrives at the channel after the

advertisement has started. This is because we are only interested in the details

of those viewers that watched the whole advertisement.

Listing 7.3 EPL AdScorer per-ad dropout insert
1 context AdBreakCtx
2 insert into Dropout
3 select * from tv.ChannelZap(fromChannel
4 in (context.ad.channel)

Listing 7.4 EPL AdScorer per-ad dropout remove from main STB window
1 context AdBreakCtx
2 on Dropout d
3 delete from STBsnapshots s
4 where s.ip = d.ip

Every time the number of STBs in STBWin changes, the statement in Listing 7.5

inserts the updated number into an event stream named ViewersCount. As pre-

viously mentioned, the number of STBs in STBWin are only reduced during an

advertisement: Viewers that arrives after the start of the advertisement are ig-

nored. The first and last value from ViewersCount in Listing 7.6 to calculate the

total number of viewers lost during the advertisement.

Listing 7.5 EPL AdScorer per-ad viewer dropout count
1 context AdBreakCtx
2 insert into ViewersCount
3 select count(*) as n
4 from STBsnapshots

The statement shown in Listing 7.7 keeps track of viewers that mutes the sound

during the advertisement. The content of this statement is only published on

termination of its associated context. Listing 7.8 continuously calculates the

average volume for the STBs in the STBWin, and inserts these values into an

event stream named AvgVol. AvgVol is subscribed to by the statement shown in

7.5. IMPLEMENTATION 167

Listing 7.6 EPL AdScorer per-ad viewers lost
1 context AdBreakCtx
2 insert into ViewersLost
3 select
4 first(n) as vBegin,
5 last(n) as vRetained,
6 context.ad.adId as adId,
7 context.ad.channel as channel,
8 context.ad.time as startTime,
9 context.endAd.time as stopTime

10 from ViewersCount.win:keepall()
11 output snapshot when terminated

Listing 7.9, which extracts the first and last events from AvgVol, and calculates

the overall average for all the AvgVol events published during the advertisement.

Listing 7.7 EPL AdScorer per-ad mute count
1 context AdBreakCtx
2 insert into MuteCount
3 select count(*) as mutes
4 from tv.Mute(mute=true) m
5 where
6 exists(select * from STBsnapshots
7 where ip = m.ip)
8 output snapshot when terminated

Listing 7.8 EPL AdScorer per-ad average volume calculation
1 context AdBreakCtx
2 insert into AvgVol
3 select avg(volume) as avgVol
4 from STBsnapshots

Listing 7.10 aggregates the various statistics collected during the advertisement,

and forwards them into an event stream named AdSummary. The content of

AdSummary is processed by the statement shown in Listing 7.11, which shows

the EPL query for collecting and generating statistics on a per-advertisement

basis.

The simplicity of the EPL language is shown in Listing 7.12, which is

the query for collecting all AdStat events for a television channel between two

168 CHAPTER 7. ADSCORER: IMPACT ANALYSIS OF TV ADS

CommBreak events. CommBreak events indicate the start and end of commer-

cial breaks. AdIdentified events can only occur between a CommBreak (be-

gin=true) and CommBreak (begin=false) event for the same channel. An Update-

Listener, implemented in Java, then publishes the result back to the message

queue. The query in Listing 7.12 is also subscribed to by another Update-

Listener, named EmailPublisher, that publishes events via email.

Listing 7.9 EPL AdScorer per-ad volume summary
1 context AdBreakCtx
2 insert into VolSummary
3 select
4 avg(avgVol) as average,
5 first(avgVol) as startVol,
6 last(avgVol) as endVol
7 from AvgVol.win:keepall()
8 output snapshot when terminated

Listing 7.10 EPL AdScorer ad summary
1 insert into AdSummary
2 select * from pattern [every
3 (a=ViewersLost and b=MuteCount and c=VolSummary)]

Listing 7.11 EPL AdScorer per-ad query
1 insert into tv.AdStat
2 select
3 s.a.adId as adId,
4 s.a.channel as channel,
5 s.a.startTime as startTime,
6 s.a.stopTime as stopTime,
7 s.a.vBegin as viewersBegin,
8 s.a.vRetained as retained,
9 s.b.mutes as mutes,

10 percent(s.a.vRetained, s.a.vBegin) as iar,
11 (s.a.vBegin - s.a.vRetained) as lost,
12 roundDouble(s.c.average) as vol,
13 roundDouble(s.c.startVol) as startVol,
14 roundDouble(s.c.endVol) as endVol
15 from AdSummary s

7.6. EVALUATION 169

Listing 7.12 EPL AdScorer whole break query
1 select * from pattern [
2 every
3 a=tv.CommBreak(begin=true)
4 -> b=tv.AdStat(channel=a.channel)
5 until c=tv.CommBreak(begin=false, channel=a.channel)
6]

7.6 Evaluation

In this section we describe some of the experiments that we have conducted with

ADSCORER. We present both a performance evaluation and some interesting

observations of viewer behavior derived from the ADSCORER system.

7.6.1 Environment and Experiment Setup

For the experiments, we obtained 1.5 hours of prime time broadcast television

sampled from the largest commercial networks, starting at 18:45 on a Thursday

evening. Before running the experiments, STB data from the 23 preceding days

were used to initialize the system. This ensured that the Esper engine had the

correct state when conducting the experiment.

Recorded video streams and STB data was used in order to be able to debug

and verify system correctness, rather than operating on live video streams and

STB data. Moreover, due to time constraints and lack of appropriate video

editing tools, the experiments was conducted by simulating the output from

the AdDetector system, using manually recorded timestamps and advertisement

IDs. However, fingerprints were made from each commercial in one of the

commercial breaks of the recordings, using the AdDetector system, and it was

verified that the system successfully detected each of them within two seconds

when streaming the broadcast recording to the AdDetector system.

The experiments involved three servers in addition to the database server

keeping track of the state of the channel statistics. One server was designated

event producer, simulating channel zaps obtained from STBs, and advertise-

ment identifications obtained from the AdDetector system. Another server were

running the message bus, and a third server were running the core application,

170 CHAPTER 7. ADSCORER: IMPACT ANALYSIS OF TV ADS

configured to score advertisements, as illustrated in the processing section of

Figure 7.1.

Performing these experiments was a time-consuming task, and for this rea-

son, the experiments were only repeated three times. When reviewing the re-

sults, it became apparent that there had been made a timing-error in the last

iteration, leaving us with the results of only two iterations. Even though this

is not a statistically significant amount of repetitions, it nonetheless serves as a

proof of concept of the scoring capabilities of the ADSCORER system.

Consistency of advertisement scoring results were verified by comparing

the results of the two iterations, ensuring that the values were not significantly

different from one run to another. The biggest observed deviation was a dif-

ference of 12 viewers for the first advertisement starting at 18:48:30 on TV2

Norge: 34351 retained viewers was logged for the first run, while this number

had increased to 34363 viewers in the second run – a 0.000349335% variation.

For the rest of the advertisements, the results were for the most part identical

between runs. The few additional variations observed were smaller than the one

mentioned here.

The variations in scores can be attributed to the distributed nature of the sys-

tem, combined with the event stream processing techniques used, where varia-

tions in network and processing latency might lead to slightly different states.

Because AdIdentified events are generated on a different machine than the one

generating ZAP events, small variations in viewer numbers, as described above

are likely to occur. Small variations in timing of arrived AdIdentified events

between runs can easily produce the kind of variations observed in this experi-

ment, considering the high rate of events sent to the AdSuccessEvaluator server,

with ZAP events arriving every millisecond.

7.6.2 Viewer Statistics During Commercial Breaks

We now discuss the results of our advertisement scoring experiments, and present

some general viewer statistics for the measurement period.

Table 7.2 lists the time and duration for the commercial breaks that occurred

on the commercial channels TV2 Norge and TVN during the sample period for

7.6. EVALUATION 171

Time Channel Duration
18:48:30 - 18:50:30 TV2 Norge 2 minutes
18:53:00 - 18:59:00 TVN 6 minutes
18:56:30 - 18:59:30 TV2 Norge 3 minutes
19:23:00 - 19:29:00 TVN 6 minutes
19:23:30 - 19:29:30 TV2 Norge 6 minutes
19:51:00 - 19:57:00 TVN 6 minutes
19:54:30 - 19:59:30 TV2 Norge 5 minutes

Table 7.2: Commercial breaks

Figures 7.4, 7.5, 7.6, 7.7 and 7.8, described in the previous section. Figure 7.4

shows the stacked numbers of viewers for the channels NRK1, TV2 Norge and

TVN. Figure 7.5 shows the actual viewer numbers for the same data set, while

Figure 7.6 shows the actual viewer numbers for TVN, the smallest of the three

channels.

Although most of the commercial breaks listed in Table 7.2 are clearly visi-

ble in some of the viewer plots, such as Figures 7.5 and 7.6, the drops in viewer

numbers are not nearly as significant as we had expected. Some of this may be

attributed to the lack of resolution on STB data, preventing us from accurately

capturing channel surfers, as explained in Section 7.4. Moreover, we can clearly

see from Figure 7.5 that there is a close to linear growth in viewer numbers over

the entire measured interval, except for the significant drop on TV2 at 19:54, and

similarly on NRK1 at roughly 20:00. We note that NRK1 is a non-commercial

TV channel, and the largest in Norway. The steady growth of viewers during

the measured interval means that the actual number of lost viewers during the

commercial breaks are higher than it might appear from viewing Figures 7.4, 7.5

and 7.6, which only shows actual viewership.

Figure 7.7 illustrates the retained number of viewers for each advertisement

in the commercial break that started at 18:56:30 on TV2 Norge, divided into

regions. The difference in viewer numbers between regions, for the most part,

reflects geographical variations in the number of deployed STBs in the Altibox

network. However, there are some relative differences as well, illustrated in

Figure 7.8, where the regional shares of one of the advertisements presented in

172 CHAPTER 7. ADSCORER: IMPACT ANALYSIS OF TV ADS

50	

60	

70	

80	

90	

100	

110	

120	

130	

140	

150	

160	 18:45	
18:47	

18:51	
18:54	

18:57	
18:59	

19:03	
19:06	

19:09	
19:12	

19:15	
19:18	

19:22	
19:26	

19:29	
19:33	

19:37	
19:41	

19:44	
19:48	

19:52	
19:56	

19:59	
20:02	

20:05	
20:09	

20:12	

TVN
	

TV2	

N
RK1	

Figure
7.4:Stacked

view
ership

(in
thousands)forthe

three
largestchannels,N

R
K

1,T
V

2,and
T

V
N

.

7.6. EVALUATION 173

10
	

15
	

20
	

25
	

30
	

35
	

40
	

45
	

50
	

55
	

60
	

65
	

70
	

75
	 18
:4
5	

18
:4
7	

18
:5
1	

18
:5
4	

18
:5
7	

18
:5
9	

19
:0
3	

19
:0
6	

19
:0
9	

19
:1
2	

19
:1
5	

19
:1
8	

19
:2
2	

19
:2
6	

19
:2
9	

19
:3
3	

19
:3
7	

19
:4
1	

19
:4
4	

19
:4
8	

19
:5
2	

19
:5
6	

19
:5
9	

20
:0
2	

20
:0
5	

20
:0
9	

20
:1
2	

N
RK

1	

TV
2	

TV
N
	

Fi
gu

re
7.

5:
A

ct
ua

lv
ie

w
er

sh
ip

(i
n

th
ou

sa
nd

s)
fo

re
ac

h
of

th
e

th
re

e
la

rg
es

tc
ha

nn
el

s,
N

R
K

1,
T

V
2,

an
d

T
V

N
.

174 CHAPTER 7. ADSCORER: IMPACT ANALYSIS OF TV ADS

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

S
E

S
E

S
E

TVN
	

Figure
7.6:A

ctualview
ership

(in
thousands)forT

V
N

annotated
w

ith
Startand

E
nd

ofcom
m

ercialbreak.

7.6. EVALUATION 175

Sub
aru

Omeg
a3

Obs
by

gg

Riis
bil

gla
ss

Norg
esE

ne
rgi

Elkj
øp

BM
W

Lam
bi

1.5

2

2.5

3

·104
V

ie
w

er
s

Viewers retained

Vest
Nord
Oslo

Innland
Midt
Sor

Oslofjord

Figure 7.7: Viewers retained for several commercial spots, split into regions

Tota
l

W
est

Nort
h

Oslo
Inl

an
d

Cen
ter

Sou
th

Oslo
fjo

rd
0

2

4

6

8

10
9.01

9.71 10

7.17

10.11

6.54

9.36 9.35

Sh
ar

e
(%

)o
ft

ot
al

vi
ew

er
s

pe
rr

eg
io

n

Region sharesAdvertisement: BMW

Figure 7.8: Regional viewer shares for a single advertisement

176 CHAPTER 7. ADSCORER: IMPACT ANALYSIS OF TV ADS

Figure 7.7 are displayed. From this particular BMW advertisement, we can see

that there is a relatively low viewer share of retained viewers for Oslo and the

center part of Norway than the rest of the country.

We can think of a number of reasons for this: One explanation could be that

TV2 Norge generally has a smaller viewer share in these parts of Norway, an-

other reason could be that the BMW car manufacturer has less brand recognition

here. A third reason may be that people in Oslo and the center part of Norway

are more likely to change the channel during a commercial break. These are just

speculations, but could the subject of further research.

Live-Data Scoring Results

The following experiment was performed at a later time than the previous ones,

and is the only experiment presented in this thesis that was performed after the

deployment of the improved ZAPREPORTER, discussed in Section 7.4.1. It was

performed with live STB data, in a prime-time commercial break on TV2 Norge,

which is the largest commercial channel in Norway.

Figure 7.9 shows how many viewers were lost and retained for a commer-

cial break between the evening news and sport news on TV2 Norge. The ad-

vertisements are listed on the x-axis in chronological order, as they appeared,

not reflecting the duration of each advertisement. As is evident from the chart,

viewer drop is quite significant in the beginning of the break, and it continues

to drop well beyond the middle of the break. We imagine that advertisers would

be very interested in having access to this type of data, in order to influence

the ordering of the advertisement spots within a commercial break. What Fig-

ure 7.9 does not show is the viewer numbers after the commercial break. In this

case, the commercial break was followed by two minutes of advertisements for

scheduled programs on the same network.

7.6. EVALUATION 177

Figure 7.9: Retained viewers per ad-spot for a prime-time commercial break.

Figure 7.10: New viewers per ad-spot for a prime-time commercial break.

178 CHAPTER 7. ADSCORER: IMPACT ANALYSIS OF TV ADS

Figure 7.10 shows the number of viewers that arrived at the channel during

each advertisement. The numbers were calculated by subtracting the number

of retained viewers of the preceding advertisement from the starting number

of viewers for the following advertisement. The number of new arrivals include

channel surfers that stayed on the channel for 10 seconds or more, before leaving

the channel again.

With this method, there is a natural tendency for more viewers to arrive

during longer advertisements, such as “Elkjøp”, which lasted for 30 seconds,

compared to short advertisements such as “Expert”, having a duration of 15

seconds. However, the difference between the two advertisements mentioned

is more than double, with 94 arrivals for the “Expert“ advertisement, versus

412 arrivals for ”Elkjøp“. We believe this can be partly attributed to the fact

that the ”Expert“ advertisement is located at the beginning of the break, while

the ”Elkjøp“ advertisement is located in the middle, as will be discussed in the

following paragraph.

A plausible explanation for the low number of arrived viewers in the first

advertisements in the break relative to the later ones is that people switch away

from the channel when the break starts, channel surfing on other channels in

the beginning, and switches back after a while, to check if the next program

has started. This theory is supported by the rising trend of arriving viewers as

the commercial break progresses, which can be observed in Figure 7.10. Note

that, even though there is an increasing number of arriving viewers as the break

progresses, there is still more viewers leaving the channel, so the net result is

still a trend of viewers leaving the channel.

The last advertisement in the commercial break is omitted from this chart,

as we did not record viewer data after the break had ended for this experiment,

which makes it impossible to calculate the number of arrived viewers for this

last advertisement.

7.6.3 Advertisement Scoring Capacity

To understand the system’s ability to handle multiple channels simultaneously,

we ran tests by synthetically generating CommBreak and AdIdentified events

7.7. CONCLUSIONS 179

for five different channels at the same time, while the system was receiving live

channel zap events.

System load was not significantly affected during this experiment. The re-

sulting output files appeared to be correct for the time period sampled, although

it was not possible to repeat the experiment with identical values, as the system

was operating with live STB data for this particular experiment.

7.7 Conclusions

We have demonstrated a new way of scoring television advertisements that is

more in line with current measurement methods for online media than what is

the current practice in the media industry, and more suited for the new models

of media consumption.

Furthermore, the ADSCORER system provides a proof-of-concept for the

EVENTCASTER middleware, proving its capabilities as a platform for building

event processing applications.

Our results indicate that our implementation is capable of scoring adver-

tisements on multiple channels simultaneously in near real-time with consistent

results, and that event processing is an effective tool for achieving this. Further-

more, ADSCORER is capable of delivering an unprecedented level of detail, not

possible through the current measurement regime.

We are already in the process of developing a graphical front end that op-

erates on live data and displays the scoring results in near real-time. With this

we intend to conduct more detailed viewer behavior analysis in order to derive

an improved understanding of the media and to use this understanding to devise

new service offerings.

180 CHAPTER 7. ADSCORER: IMPACT ANALYSIS OF TV ADS

Chapter 8

Conclusions

The exponential increase of data being produced by both humans and appli-

cations, combined with a trend towards ever-increasing pervasiveness of appli-

cations, entails processing demands that cannot be met by the traditional re-

quest/reply interaction model.

Publish/subscribe interactions offers better scalability, flexibility and timeli-

ness than request/reply to the kind of pervasive, information-driven applications

discussed in this thesis. However, publish/subscribe alone only allows for state-

less subscriptions, operating on single events in isolation. While sufficient for

a range of simpler tasks, more advanced applications require putting events in

context. By introducing statefulness and context to the publish/subscribe model,

CEP can be seen as a natural evolution of publish/subscribe middleware.

8.1 Summary

In this thesis, we have discussed the challenges involved in building information-

driven applications from the ground up, starting with the sensor/actuator net-

work of a smart home, and ending with the real-time processing of the events

generated by hundreds of thousands of connected devices.

The heterogeneity of hardware and protocols in smart home systems is one

of the main obstacles preventing the widespread adoption of these technologies.

With the SENSEWRAP middleware, presented in Chapter 3, we addressed the

181

182 CHAPTER 8. CONCLUSIONS

challenge of HETEROGENEITY, through the virtualization of physical resources.

Furthermore, in order for a middleware to effectively support both sensors

and actuators, it needs to facilitate both pull and push interactions (INTERACTION

STYLES). This challenge was also addressed by SENSEWRAP.

The final challenge in the sensor/actuator domain, SERVICE DISCOVERY, was

to find a scalable and convenient way of handling service discovery in the sensor

network of a typical smart home. With SENSEWRAP, we demonstrated how the

ZeroConf suite of protocols provide elegant mechanisms for service discovery

in sensor networks.

Moving on to the event processing domain; being able to process the ag-

gregated events generated by the devices situated in the kind of pervasive en-

vironments that smart home systems represent in near real-time, opens up an

array of possibilities for new functionality. However, such applications relies on

a middleware capable of handling large volumes of potentially heterogeneous

events in near real-time. The challenge of developing a general event process-

ing platform that is able to handle these requirements was identified as EVENT

PROCESSING ARCHITECTURE.

With the implementation of the EVENTCASTER platform, presented in Chap-

ter 4, we have addressed this challenge: By combining message-oriented mid-

dleware and an event processing engine with our own extensions, the EVENT-

CASTER middleware can effectively handle and analyze the output of hundreds

of thousands of connected devices in near real-time. The usefulness and perfor-

mance of the EVENTCASTER platform is proven by a real-world deployment in

the Altibox network.

In addition to this, a paradigm comparison between an imperative and declar-

ative approach to event processing highlighted the advantages and drawbacks

of the two paradigms in terms of complexity and performance, addressing the

TRADEOFFS challenge. Our findings indicate that the specialized, declarative

approach has the edge when it comes to simplicity, and, consequently maintain-

ability, while the imperative approach is the most performant, but requires more

effort with regards to optimization.

We have also highlighted some of the shortcomings of the current media

8.2. FUTURE WORK 183

measurement regime, and demonstrated how these can be addressed through the

use of event processing techniques: The viewer statistics application, presented

in Chapter 6 is a significant improvement of the current model for viewership

measurements. This, and the ADSCORER application bridges the gap between

online and offline media measurement, giving content providers and advertisers

an unprecedented level of detail of television viewership by capitalizing on the

two-way communication capabilities of IP-enabled STBs.

While being Research Contributions in their own right, demonstrating novel

areas of application for CEP, the viewer statistics application and ADSCORER

system also serve as proof of the capabilities of the EVENTCASTER platform.

8.2 Future Work

Our experiences from the real-world deployment of the viewer statistics appli-

cations indicates that the relational database, where state and historical statistics

are being persisted is the bottleneck of the current deployment. It is likely that a

relational database is the wrong tool for the job in this case, and that the persis-

tence and logging functions of such a high-throughput event processing system

as this would be better served by a time-series database [112], optimized for

rapid writes and large tables. This would also allow for logging at a higher

granularity than the 1 minute resolution used for historical data in the current

implementation.

However, the issue of persisting high volumes of data is a research area in its

own right, and was defined as out of scope for this thesis, but should nonetheless

be addressed at a future point in time.

It could also be worthwhile to evaluate MOM based on other specifications

than JMS for the dissemination of events, such as DDS, which addresses some

of JMS’ shortcomings, such as the lack of type safety and QoS, while providing

a fully distributed messaging service.

The possibilities for further statistical analysis of the ZAP events collected

by the ZAPCOLLECTOR are many. We have probably just scratched the surface

of viewer behaviour analysis enabled by modern-day STBs. The correlation

184 CHAPTER 8. CONCLUSIONS

between RMS levels in advertisements and viewer behaviour, as discussed in

Section 7.3, is one example of an area that could be subject to further analysis.

The regional differences in viewer shares for individual advertisements, as dis-

cussed in Section 7.6.2, is another case that could be subject to further research.

Bibliography

[1] K. Aberer, M. Hauswirth, and A. Saheli. The global sensor networks

middleware for efficient and flexible deployment and interconnection of

sensor networks. Technical report, School of Computer and Commu-

nication Sciences, Ecole Polytechnique Federale de Lausanne (EPFL),

CH-1015 Lausanne, Switzerland, 2006.

[2] Apache activemq. Website, 2010. http://activemq.apache.org/.

[3] Agama web site. Web, 2011. http://www.agama.se.

[4] BB Agarwal, SP Tayal, and M. Gupta. Software Engineering & Testing:

an Introduction. Jones & Bartlett Learning, 2010.

[5] R.E. Al Qutaish and A. Abran. An Analysis of the Design and Definitions

of Halstead’s Metrics. In 15th Int. Workshop on Software Measurement

(IWSM’2005). Shaker-Verlag, pages 337–352, 2005.

[6] Altibox web site. Web, 2011. http://www.altibox.no.

[7] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The cql continuous

query language: semantic foundations and query execution. The VLDB

Journal, 15(2):121–142, 2006.

[8] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V. Mit-

tal, H. Cao, M. Demirbas, M. Gouda, Y. Choi, T. Herman, S. Kulkarni,

U. Arumugam, M. Nesterenko, A. Vora, and M. Miyashita. A line in the

sand: a wireless sensor network for target detection, classification, and

185

http://activemq.apache.org/
http://www.agama.se
http://www.altibox.no

186 BIBLIOGRAPHY

tracking. Computer Networks, 46(5):605–634, 2004. Military Commu-

nications Systems and Technologies.

[9] J. Kalliosalo I. Karvinen B. Silverajan. Using ietf service discovery meth-

ods in ipv6 and middleware platforms and implementing slpv2 for ipv6.

In EUNICE 2003. 2003.

[10] Roberto Baldoni, Roberto Beraldi, Leonardo Querzoni, and Antonino

Virgillito. Efficient publish/subscribe through a self-organizing broker

overlay and its application to siena. Comput. J., 50:444–459, July 2007.

[11] Roberto Baldoni, Carlo Marchetti, Antonino Virgillito, and Roman

Vitenberg. Content-based publish-subscribe over structured overlay net-

works. In In Proceedings of 25th ICDCS, pages 437–446, 2005.

[12] Jakob E. Bardram and Martin Mogensen. Dolclan - middleware support

for peer-to-peer distributed shared objects. In Jadwiga Indulska and Kerry

Raymond, editors, Distributed Applications and Interoperable Systems,

7th IFIP WG 6.1 International Conference, DAIS 2007, Paphos, Cyprus,

June 6-8, 2007, Proceedings, volume 4531 of Lecture Notes in Computer

Science. Springer, 2007.

[13] P. Baronti, P. Pillai, V.W.C. Chook, S. Chessa, A. Gotta, and Y.F. Hu.

Wireless sensor networks: A survey on the state of the art and the 802.15.

4 and zigbee standards. Computer communications, 30(7):1655–1695,

2007.

[14] Philip A. Bernstein. Middleware: a model for distributed system services.

Commun. ACM, 39:86–98, February 1996.

[15] Blerta Bishaj. Comparison of service discovery protocols. Helsinki Uni-

versity of Technology, 2007.

[16] Lars Brenna. System Support for a Push-based Web. PhD thesis, Univer-

sity of Tromsø, 2010.

BIBLIOGRAPHY 187

[17] François Bry, Michael Eckert, and Paula lavinia Pătrânjan. Querying

composite events for reactivity on the web. In In Proc. Int. Workshop on

XML Research and Applications, pages 38–47. Springer, 2006.

[18] Bskyb preparing for linear targeting, scheduled for spring

2013. Website, 2011. http://www.v-net.tv/

bskyb-preparing-for-linear-targeting-in-spring-2013/

(accessed 30.05.2012).

[19] CasterStats. Web, 2011. http://www.casterstats.com/ (accessed

29.11.2011).

[20] Meeyoung Cha, Pablo Rodriguez, Jon Crowcroft, Sue Moon, and Xavier

Amatriain. Watching Television over an IP Network. In IMC, 2008.

[21] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J.

Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy,

Samuel R. Madden, Fred Reiss, and Mehul A. Shah. Telegraphcq: con-

tinuous dataflow processing. In Proceedings of the 2003 ACM SIGMOD

international conference on Management of data, pages 668–668, New

York, NY, USA, 2003. ACM.

[22] K. Chandy and W. Schulte. Event Processing: Designing IT Systems for

Agile Companies. McGraw-Hill, Inc., New York, NY, USA, 1 edition,

2010.

[23] S. Cheshire, B. Aboba, and E. Guttman. Dynamic configuration of ipv4

link-local addresses. Web, May 2005. http://tools.ietf.org/

html/rfc3927 (accessed 02.10.2012).

[24] S. Chesire. How does zeroconf compare with viiv/dlna/d-

hwg/upnp? http://www.zeroconf.org/ZeroconfAndUPnP.html

(accessed 31.08.2012).

[25] S. Chesire and D.H. Steinberg. Zero Configuration Networking - The

Definitive Guide. O’Reilly, 2006.

http://www.v-net.tv/bskyb-preparing-for-linear-targeting-in-spring-2013/
http://www.v-net.tv/bskyb-preparing-for-linear-targeting-in-spring-2013/
http://www.casterstats.com/
http://tools.ietf.org/html/rfc3927
http://tools.ietf.org/html/rfc3927
http://www.zeroconf.org/ZeroconfAndUPnP.html

188 BIBLIOGRAPHY

[26] Coalition for innovative media measurement. Web, November 2011.

http://www.cimm-us.org/about.htm.

[27] Cimm lexicon 1.0. Web, May 2010. http://www.cimm-us.org/

CIMM_STB_Lexicon_1_May_2010.pdf (accessed 08.11.2011).

[28] Esper contributors & EsperTech Inc. Esper - complex event processing.

http://esper.codehaus.org/index.html, 2007.

[29] David M. Cooperstein, Kim Le Quoc, and Jean-Yves Lugo.

The future of media measurement. Web, January 2010.

http://www.forrester.com/The+Future+Of+Media+

Measurement/fulltext/-/E-RES54091?objectid=RES54091

(accessed 19.03.2013).

[30] A. Corsaro, L. Querzoni, S. Scipioni, Tucci S. Piergiovanni, and A. Vir-

gillito. Quality of Service in Publish/Subscribe Middleware, volume 8.

IOS Press, July 2006.

[31] Angelo Corsaro. The data distribution service for

real-time systems: Part 1. Web, 2010. http:

//www.drdobbs.com/architecture-and-design/

the-data-distribution-service-for-real-t/222900238#/

(accessed 13.08.2012).

[32] L. Coyle, S.Neely, G. Stevenson, M. Sullivan, S. Dobson, and P. Nixon.

Sensor fusion-based middleware for smart homes. pages 53–60. Int‘l

Journal of Assistive Robotics and Mechatronics (IJARM), 2007.

[33] Dave Crane, Eric Pascarello, and Darren James. Ajax in Action. Manning

Publications, October 2005.

[34] Gianpaolo Cugola and Alessandro Margara. Processing flows of infor-

mation: From data stream to complex event processing. ACM Comput.

Surv., 44(3):15:1–15:62, jun 2012.

http://www.cimm-us.org/about.htm
http://www.cimm-us.org/CIMM_STB_Lexicon_1_May_2010.pdf
http://www.cimm-us.org/CIMM_STB_Lexicon_1_May_2010.pdf
http://esper.codehaus.org/index.html
 http://www.forrester.com/The+Future+Of+Media+Measurement/fulltext/-/E-RES54091?o bjectid=RES54091
 http://www.forrester.com/The+Future+Of+Media+Measurement/fulltext/-/E-RES54091?o bjectid=RES54091
http://www.drdobbs.com/architecture-and-design/the-data-distribution-service-for-real-t/222900238#/
http://www.drdobbs.com/architecture-and-design/the-data-distribution-service-for-real-t/222900238#/
http://www.drdobbs.com/architecture-and-design/the-data-distribution-service-for-real-t/222900238#/

BIBLIOGRAPHY 189

[35] Edward Curry. Middleware for Communications, chapter 1, pages 1–28.

Wiley, 2004.

[36] B. Curtis, S. B. Sheppard, P. Milliman, M. A. Borst, and T. Love. Measur-

ing the Psychological Complexity of Software Maintenance Tasks with

the Halstead and McCabe Metrics. IEEE Trans. Softw. Eng., 5:96–104,

March 1979.

[37] V.K. Da Yu Li and O. Ormandjieva. Halstead’s Software Science in To-

day’s Object Oriented World. Metrics News, pages 33–41, 2004.

[38] Tv ad spending shoots up in 2011. Website, 2012. http:

//www.thedailystar.net/newDesign/news-details.php?

nid=222421 (accessed 30.05.2012).

[39] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Pro-

cessing on Large Clusters. Commun. ACM, 51:107–113, January 2008.

[40] Ron Dearing. J2me clients with jini services. Web, 2003. http://

java.sys-con.com/node/37557 (accessed 19.03.2013).

[41] Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald,

and Walker White. Towards expressive publish/subscribe systems. Lec-

ture Notes in Computer Science, 3896:627–644, 2006.

[42] Alan Demers, Johannes Gehrke, Biswanath Panda, Mirek Riedewald,

Varun Sharma, Walker M White, et al. Cayuga: A general purpose event

monitoring system. In Proc. CIDR, pages 412–422, 2007.

[43] P. Dobrev, D. Famolari, C. Kurzke, and B.A. Miller. Device and ser-

vice discovery in home networks with osgi. In IEEE Communications

Magazine • August 2002, pages 86–92. IEEE, 2002.

[44] S. Dobson, P. Nixon, L. Coyle, S. Neely, G. Stevenson, and

G. Williamson. Construct: An open source pervasive systems platform.

In 4th IEEE Consumer Communications and Networking Conference

(CCNC 2007), pages 1203–1204. IEEE, 2007.

http://www.thedailystar.net/newDesign/news-details.php?nid=222421
http://www.thedailystar.net/newDesign/news-details.php?nid=222421
http://www.thedailystar.net/newDesign/news-details.php?nid=222421
http://java.sys-con.com/node/37557
http://java.sys-con.com/node/37557

190 BIBLIOGRAPHY

[45] S. Dorai-Raj, Y. Interian, I. Naverniouk, and D. Zigmond. Adapting on-

line advertising techniques to television. Online Multimedia Advertising:

Techniques and Technologies, page 148, 2010.

[46] Esper, Performance-Related Information. Web, 2011. http://esper.

codehaus.org/esper/performance/performance.html.

[47] Patrick Eugster. Type-based publish/subscribe: Concepts and experi-

ences. ACM Trans. Program. Lang. Syst., 29, January 2007.

[48] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie

Kermarrec. The many faces of publish/subscribe. ACM Computing Sur-

veys, 35(2):114–131, 2003.

[49] Pål Evensen and Hein Meling. Sensewrap: A service oriented middle-

ware with sensor virtualization and self-configuration. In ISSNIP 2009:

Fifth International Conference on Intelligent Sensors, Sensor Networks

and Information Processing, pages 261–266, Piscataway, N.J., Decem-

ber 2009. IEEE.

[50] Pål Evensen and Hein Meling. Sensor virtualization with self-

configuration and flexible interactions. In Casemans ’09: Proceedings

of the 3rd ACM International Workshop on Context-Awareness for Self-

Managing Systems, pages 31–38, New York, NY, USA, 2009. ACM.

[51] Pål Evensen and Hein Meling. A paradigm comparison for collecting tv

channel statistics from high-volume channel zap events. In Proceedings

of the 5th ACM International Conference on Distributed Event-Based

Systems, DEBS ’11, pages 317–326, New York, NY, USA, 2011. ACM.

[52] Pål Evensen and Hein Meling. Adscorer: an event-based system for near

real-time impact analysis of television advertisements (industry article).

In Proceedings of the 6th ACM International Conference on Distributed

Event-Based Systems, DEBS ’12, pages 85–94, New York, NY, USA,

2012. ACM.

http://esper.codehaus.org/esper/performance/performance.html
http://esper.codehaus.org/esper/performance/performance.html

BIBLIOGRAPHY 191

[53] R. Fielding, H. Frystyk, T. Berners-Lee, J. Gettys, and Jeffrey C. Mogul.

Hypertext transfer protocol - http/1.1. 1996.

[54] Roy T. Fielding. Architectural styles and the design of network-based

software architectures. PhD thesis, University of California, Irvine, 2000.

[55] UPnP Forum. Upnp device architecture 1.0, 2008.

[56] Tony Fountain, Sameer Tilak, Peter Shin, Sally Holbrook, Russell J.

Schmitt, Andrew Brooks, Libe Washburn, and David Salazar. Digital

moorea cyberinfrastructure for coral reef monitoring. In ISSNIP 2009:

Fifth International Conference on Intelligent Sensors, Sensor Networks

and Information Processing, pages 243–248, Piscataway, N.J., Decem-

ber 2009. IEEE.

[57] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object

Modeling Language. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 3 edition, 2003.

[58] Tak-chung Fu, Fu-lai Chung, Robert Luk, and Chak-man Ng. Stock time

series pattern matching: Template-based vs. rule-based approaches. Eng.

Appl. Artif. Intell., 20(3):347–364, apr 2007.

[59] Hva er TNS Gallup TV-panel? (What is TNS Gallup TV-panel?). Web,

2011. http://www.tns-gallup.no/?aid=9072596.

[60] Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S. Yu, and

Myungcheol Doo. Spade: the system s declarative stream processing

engine. In Proceedings of the 2008 ACM SIGMOD international confer-

ence on Management of data, pages 1123–1134, New York, NY, USA,

2008. ACM.

[61] Daniel Giusto, Antonio Iera, Giacomo Morabito, Luigi Atzori, Markus

Eisenhauer, Peter Rosengren, and Pablo Antolin. Hydra: A development

platform for integrating wireless devices and sensors into ambient intelli-

gence systems. In The Internet of Things, pages 367–373. Springer New

York, 2010. 10.1007/978-1-4419-1674-7_36.

http://www.tns-gallup.no/?aid=9072596
10.1007/978-1-4419-1674-7_36

192 BIBLIOGRAPHY

[62] Marissa Gluck and Meritxell Roca Sales. The future of television?

advertising, technology and the pursuit of audiences. Web, The Nor-

man Lear Center, University of Southern California, September 2008.

http://www.learcenter.org/pdf/FutureofTV.pdf.

[63] O. Gnawali, B. Greenstein, K. Jang, et al. The tenet architecture for tiered

sensor networks. In Proceedings of the ACM Conference on Embedded

Networked Sensor Systems(SenSys’06). ACM, November 2006.

[64] David Goetz. Mpg signs rentrak deal for set-top-box data to help with

upfront planning. Web, April 2011.

[65] GreenBus Datasheet. Web, 2011. http://www.greenenergycorp.

com/File/View/5052bd52-fb51-4add-a095-c9e300ffed24

(PDF, accessed 06.06.2012).

[66] William Grosso and Robert Eckstein. Java RMI. O’Reilly & Associates,

Inc., Sebastopol, CA, USA, 1st edition, 2001.

[67] Gürgen, Roncancio, Labbé, Bottaro, and Olive. Sstreamware: a service

oriented middleware for heterogeneous sensor data management. In 5th

int‘l conf. on Pervasive services, Sorrento, Italy, 2008.

[68] J. Haartsen. Bluetooth-the universal radio interface for ad hoc, wireless

connectivity. Ericsson review, 3(1):110–117, 1998.

[69] Kim Haase. JavaTM Message Service API Tutorial. Sun Microsystems,

Inc., 2002. http://cs.unc.edu/Courses/jbs/documentation/

j2ee_messaging/jms_tutorial.pdf (accessed 22.11.2010).

[70] Paul Haase. Intelligrid: A smart network of power. EPRI Journal,

(Fall):26–32, 2005.

[71] Peter G. Hamer and Gillian D. Frewin. M.H. Halstead’s Software Science

- a critical examination. In ICSE, 1982.

[72] Dongsu Han, Ashok Anand, Fahad Dogar, Boyan Li, Hyeontaek

Lim, Michel Machado, Arvind Mukundan, Wenfei Wu, Aditya Akella,

http://www.learcenter.org/pdf/FutureofTV.pdf
http://www.greenenergycorp.com/File/View/5052bd52-fb51-4add-a095-c9e300ffed24
http://www.greenenergycorp.com/File/View/5052bd52-fb51-4add-a095-c9e300ffed24
http://cs.unc.edu/Courses/jbs/documentation/j2ee_messaging/jms_tutorial.pdf
http://cs.unc.edu/Courses/jbs/documentation/j2ee_messaging/jms_tutorial.pdf

BIBLIOGRAPHY 193

David G. Andersen, John W. Byers, Srinivasan Seshan, and Peter

Steenkiste. Xia: Efficient support for evolvavle internetworking. In The

9th USENIX Symposium on Networked Systems Design and Implementa-

tion (NSDI’12), Berkeley, CA, USA, 2012. USENIX Association.

[73] Bjarne E. Helvik. Dependable Computing Systems and Communication

Networks - Design and Evaluation. Tapir academic publisher, January

2009.

[74] Kathleen Hickey. Agencies finding more uses for sensor

technology. http://gcn.com/articles/2010/06/24/

sensor-technology-use-expected-to-spread.aspx, 2010.

[75] Hornetq user manual. Website, 2010. http://hornetq.

sourceforge.net/docs/hornetq-2.1.2.Final/

user-manual/en/html_single/index.html.

[76] Jill Huntington-Lee, Kornel Terplan, and Jeff Gibson. HP Openview: A

Manager’s Guide. McGraw-Hill, Inc., New York, NY, USA, 1997.

[77] IETF. Internet engineering taskforce. http://www.ietf.org/.

[78] Rajive Joshi. A comparison and mapping of data distribution

service (dds) and java message service (jms). White paper,

2006. http://portals.omg.org/dds/sites/default/files/

Comparison_of_DDS_and_JMS.pdf.

[79] Kamstrup. Website, 2012. http://kamstrup.com (accessed

01.07.2012).

[80] D. Kempe and K.C. Wilbur. What can television networks learn

from search engines? how to select, price, and order ads to

maximize advertiser welfare. Technical report, Working paper,

Viterbi School of Engineering, University of Southern California.

http://ssrn.com/abstract1/41423702, 2009.

http://gcn.com/articles/2010/06/24/sensor-technology-use-expected-to-spread.aspx
http://gcn.com/articles/2010/06/24/sensor-technology-use-expected-to-spread.aspx
http://hornetq.sourceforge.net/docs/hornetq-2.1.2.Final/user-manual/en/html_single/index.html
http://hornetq.sourceforge.net/docs/hornetq-2.1.2.Final/user-manual/en/html_single/index.html
http://hornetq.sourceforge.net/docs/hornetq-2.1.2.Final/user-manual/en/html_single/index.html
http://portals.omg.org/dds/sites/default/files/Comparison_of_DDS_and_JMS.pdf
http://portals.omg.org/dds/sites/default/files/Comparison_of_DDS_and_JMS.pdf
http://kamstrup.com

194 BIBLIOGRAPHY

[81] Landis+gyr. Website, 2012. http://www.landisgyr.com (accessed

01.07.2012).

[82] Craig Larman. Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design and Iterative Development (3rd Edition).

Prentice Hall PTR, Upper Saddle River, NJ, USA, 2004.

[83] Latens web site. Web, 2011. http://www.latens.tv.

[84] Bruce Lawson and Remy Sharp. Introducing HTML5. New Riders Pub-

lishing, Thousand Oaks, CA, USA, 1st edition, 2010.

[85] Shuoqi Li, Ying Lin, Sang H. Son, John A. Stankovic, and Yuan

Wei. Event detection services using data service middleware in dis-

tributed sensor networks. Telecommunication Systems, 26:351–368,

2004. 10.1023/B:TELS.0000029046.79337.8f.

[86] Dionysios Logothetis, Christopher Olston, Benjamin Reed, Kevin C.

Webb, and Ken Yocum. Stateful Bulk Processing for Incremental An-

alytics. In SoCC, 2010.

[87] S. Loreto, P. Saint-Andre, S. Salsano, and G. Wilkins. Known issues and

best practices for the use of long polling and streaming in bidirectional

http. Web, April 2011. http://tools.ietf.org/html/rfc6202

(accessed 21.09.2012).

[88] Peter Lubbers and Frank Greco. The go programming language.

Web, 2012. http://www.websocket.org/quantum.html (ac-

cessed 21.09.2012).

[89] David Luckham. What’s the difference between esp and cep?

http://www.complexevents.com/2006/08/01/what%E2%80%

99s-the-difference-between-esp-and-cep/, 2006.

[90] Karl Philip Lund. Gamle målemetoder! Web, October 2010. http:

//www.kampanje.com/kommentert/article5772345.ece

(accessed 25.11.2011).

http://www.landisgyr.com
http://www.latens.tv
http://tools.ietf.org/html/rfc6202
http://www.websocket.org/quantum.html
http://www.complexevents.com/2006/08/01/what%E2%80%99s-the-difference-between-esp-and-cep/
http://www.complexevents.com/2006/08/01/what%E2%80%99s-the-difference-between-esp-and-cep/
http://www.kampanje.com/kommentert/article5772345.ece
http://www.kampanje.com/kommentert/article5772345.ece

BIBLIOGRAPHY 195

[91] Mariner Partners - IPTV Monitoring Software. Web, 2011. http://

www.marinerpartners.com.

[92] Apache maven. Website, 2012. http://maven.apache.org/ (ac-

cessed 22.05.2012).

[93] Scott McLean, Kim Williams, and James Naftel. Microsoft .Net Remot-

ing. Microsoft Press, Redmond, WA, USA, 2002.

[94] Paul McNamara. Ban on loud tv commercials takes effect today.

Web, 2012. http://www.networkworld.com/community/blog/

ban-loud-tv-commercials-takes-effect-today (accessed

21.01.2013).

[95] Magna: Tv ad spending on the upswing for foreseeable future. Website,

2010. http://www.mediapost.com/publications/article/

129755/ (accessed 30.05.2012).

[96] Hein Meling. Adaptive middleware support and autonomous fault treat-

ment : architectural design, prototyping and experimental evaluation.

PhD thesis, Norwegian University of Science and Technology, 2006.

[97] Daniel A. Menasce. Mom vs. rpc: Communication models for distributed

applications. IEEE Internet Computing, 9(2):90–93, mar 2005.

[98] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram

Dustdar. Advanced Event Processing and Notifications in Service Run-

time Environments. In DEBS, 2008.

[99] Sun Microsystems. Sun small programmable object technology. http:

//www.sunspotworld.com/, 2012.

[100] Misc. Jboss community. Web, 2013. http://www.jboss.org/

(accessed11.01.2013), url = http://www.jboss.org/,.

[101] Miscalleneous. Streaming text-oriented protocol. Web, 2012. http:

//stomp.codehaus.org (accessed 01.11.2012).

http://www.marinerpartners.com
http://www.marinerpartners.com
http://maven.apache.org/
http://www.networkworld.com/community/blog/ban-loud-tv-commercials-takes-effect-today
http://www.networkworld.com/community/blog/ban-loud-tv-commercials-takes-effect-today
http://www.mediapost.com/publications/article/129755/
http://www.mediapost.com/publications/article/129755/
http://www.sunspotworld.com/
http://www.sunspotworld.com/
http://www.jboss.org/ (accessed 11.01.2013)
http://www.jboss.org/ (accessed 11.01.2013)
http://stomp.codehaus.org
http://stomp.codehaus.org

196 BIBLIOGRAPHY

[102] Miscellaneous. Faq: Technical - mono. Web. http://www.

mono-project.com/FAQ:_Technical (accessed 19.03.2013).

[103] Miscellaneous. Cacti. Web, 2012. http://www.cacti.net/.

[104] Miscellaneous. Comet (programming). Web, 2012. http:

//en.wikipedia.org/wiki/Comet_(programming) (accessed

21.09.2012).

[105] Miscellaneous. Det norske markedet for elektron-

iske kommunikasjonstjenester. Web, 2012. http:

//www.npt.no/marked/ekomtjenester/statistikk/

det-norske-ekommarkedet-rapporter/_attachment/3910?

_ts=13a78405f3b (accessed 08.01.2013).

[106] Miscellaneous. The go programming language. Web, 2012. http:

//golang.org/.

[107] Miscellaneous. The norwegian post and telecommunications authority.

Web, 2012. http://eng.npt.no/portal/page/portal/PG_NPT_

NO_EN/PAG_NPT_EN_HOME (accessed 08.01.2013).

[108] Miscellaneous. Rentrak expands tv contract with local tv, llc.

Web, 2012. http://www.prnewswire.com/news-releases/

rentrak-expands-tv-contract-with-local-tv-llc-151096845.

html (accessed 24.11.2012).

[109] Miscellaneous. Sinclair drops nielsen for rentrak in 4 cities. Web,

2012. http://www.tvnewscheck.com/article/60414/

sinclair-drops-nielsen-for-rentrak-in-4-cities?utm_

source=Listrak&utm_medium=Email&utm_term=Sinclair+

Drops+Nielsen+For+Rentrak+In+4+Cities&utm_campaign=

Sinclair+Drops+Nielsen+For+Rentrak+In+4+Cities (ac-

cessed 24.11.2012).

[110] Miscellaneous. Splunk. Web, 2012. http://www.splunk.com/.

http://www.mono-project.com/FAQ:_Technical
http://www.mono-project.com/FAQ:_Technical
http://www.cacti.net/
http://en.wikipedia.org/wiki/Comet_(programming)
http://en.wikipedia.org/wiki/Comet_(programming)
http://www.npt.no/marked/ekomtjenester/statistikk/det-norske-ekommarkedet-rapporter/_attachment/3910?_ts=13a78405f3b
http://www.npt.no/marked/ekomtjenester/statistikk/det-norske-ekommarkedet-rapporter/_attachment/3910?_ts=13a78405f3b
http://www.npt.no/marked/ekomtjenester/statistikk/det-norske-ekommarkedet-rapporter/_attachment/3910?_ts=13a78405f3b
http://www.npt.no/marked/ekomtjenester/statistikk/det-norske-ekommarkedet-rapporter/_attachment/3910?_ts=13a78405f3b
http://golang.org/
http://golang.org/
http://eng.npt.no/portal/page/portal/PG_NPT_NO_EN/PAG_NPT_EN_HOME
http://eng.npt.no/portal/page/portal/PG_NPT_NO_EN/PAG_NPT_EN_HOME
 http://www.prnewswire.com/news-releases/rentrak-expands-tv-contract-with-local-t v-llc-151096845.html
 http://www.prnewswire.com/news-releases/rentrak-expands-tv-contract-with-local-t v-llc-151096845.html
 http://www.prnewswire.com/news-releases/rentrak-expands-tv-contract-with-local-t v-llc-151096845.html
 http://www.tvnewscheck.com/article/60414/sinclair-drops-nielsen-for-rentrak-in-4 -cities?utm_source=Listrak&utm_medium=Email&utm_term=Sinclair+Drops+Nielsen+For+ Rentrak+In+4+Cities&utm_campaign=Sinclair+Drops+Nielsen+For+Rentrak+In+4+Cities
 http://www.tvnewscheck.com/article/60414/sinclair-drops-nielsen-for-rentrak-in-4 -cities?utm_source=Listrak&utm_medium=Email&utm_term=Sinclair+Drops+Nielsen+For+ Rentrak+In+4+Cities&utm_campaign=Sinclair+Drops+Nielsen+For+Rentrak+In+4+Cities
 http://www.tvnewscheck.com/article/60414/sinclair-drops-nielsen-for-rentrak-in-4 -cities?utm_source=Listrak&utm_medium=Email&utm_term=Sinclair+Drops+Nielsen+For+ Rentrak+In+4+Cities&utm_campaign=Sinclair+Drops+Nielsen+For+Rentrak+In+4+Cities
 http://www.tvnewscheck.com/article/60414/sinclair-drops-nielsen-for-rentrak-in-4 -cities?utm_source=Listrak&utm_medium=Email&utm_term=Sinclair+Drops+Nielsen+For+ Rentrak+In+4+Cities&utm_campaign=Sinclair+Drops+Nielsen+For+Rentrak+In+4+Cities
 http://www.tvnewscheck.com/article/60414/sinclair-drops-nielsen-for-rentrak-in-4 -cities?utm_source=Listrak&utm_medium=Email&utm_term=Sinclair+Drops+Nielsen+For+ Rentrak+In+4+Cities&utm_campaign=Sinclair+Drops+Nielsen+For+Rentrak+In+4+Cities
http://www.splunk.com/

BIBLIOGRAPHY 197

[111] Miscellaneous. Squidbee. Web, 2012. http://www.libelium.com/

squidbee/.

[112] Miscellaneous. What’s opentsdb. Web, 2012. http://opentsdb.net/

(accessed 11.10.2012).

[113] Brian C. J. Moore, Glasberg Brian R., and Michael A. Stone. Why

are commercials so loud? perception and modeling of the loudness of

amplitude-compressed speech. Journal of the Audio Engineering Soci-

ety, 51(12):1123–1132, 2003.

[114] Gero Mühl, Ludger Fiege, and Peter R. Pietzuch. Distributed Event-

Based Systems. Springer, 2006.

[115] Ted Neward. The busy java developer’s guide to scala: Dive deeper into

scala concurrency. http://www.ibm.com/developerworks/java/

library/j-scala04109.html, April 2009.

[116] Nielsen Ratings. Web, 2011. http://en.wikipedia.org/wiki/

Nielsen_ratings.

[117] E. Nordstrom, D. Shue, P. Gopalan, R. Kiefer, M. Arye, S. Ko, J. Rex-

ford, and M.J. Freedman. Serval: An end-host stack for service-centric

networking. Proc. 9th USENIX NSDI, 2012.

[118] S. Oaks, B. Traversat, and L. Gong. JXTA in a Nutshell. O’Reilly Media,

Incorporated, 2002.

[119] Opher Etzion and Peter Niblett. Event Processing In Action. Manning,

August 2010.

[120] M. Parashar and S. Hariri. Autonomic computing: concepts, infrastruc-

ture, and applications. CRC Press/Taylor & Francis, 2007.

[121] Peter Robert Pietzuch. Hermes: A Scalable Event-Based Middleware.

PhD thesis, University of Cambridge, 2004.

http://www.libelium.com/squidbee/
http://www.libelium.com/squidbee/
http://opentsdb.net/
http://www.ibm.com/developerworks/java/library/j-scala04109.html
http://www.ibm.com/developerworks/java/library/j-scala04109.html
http://en.wikipedia.org/wiki/Nielsen_ratings
http://en.wikipedia.org/wiki/Nielsen_ratings

198 BIBLIOGRAPHY

[122] M. Pipattanasomporn. Multi-agent systems in a distributed smart grid:

Design and implementation. In Power Systems Conference and Exposi-

tion, 2009. PSCE ’09. IEEE/PES, pages 1–8, 2009.

[123] Edmund Prater, Gregory V. Frazier, and Pedro M. Reyes. Future impacts

of rfid on e-supply chains in grocery retailing. Supply Chain Manage-

ment: An International Journal, 10(2):134–142, 2005.

[124] IBM Research. The gryphon project. http://www.research.

ibm.com/distributedmessaging/gryphon.html (accessed

28.11.2010).

[125] D. Retkowitz and S. Kulle. Dependency management in smart homes.

In Twittie Senivongse and Rui Oliveira, editors, Distributed Applications

and Interoperable Systems, 9th IFIP WG 6.1 International Conference

(DAIS 2009), volume 5523 of LNCS, pages 143–156. Springer Verlag,

2009.

[126] Mark Richards. Understanding the differences between amqp & jms.

Web, 2011. http://www.wmrichards.com/amqp.pdf (accessed

01.11.2012).

[127] Java rmi over iiop. http://java.sun.com/products/rmi-iiop/. Last visited

December 2010.

[128] C. Rong, H. Meling, and D. Wåge. Towards integrated services for health

monitoring. In First Int‘l Workshop on Smart Homes for Tele-Health,

Niagara Falls, Canada, May 2007.

[129] P. Saint-Andre, K. Smith, and R. Tronçon. XMPP: The Definitive Guide:

Building Real-Time Applications with Jabber Technologies. O’Reilly

Media, Incorporated, 2009.

[130] M Scheffler and E Hirt. Wearable devices for telemedicine applications.

Journal of Telemedicine and Telecare, 11(1):11–14, 2005.

http://www.research.ibm.com/distributedmessaging/gryphon.html
http://www.research.ibm.com/distributedmessaging/gryphon.html
http://www.wmrichards.com/amqp.pdf

BIBLIOGRAPHY 199

[131] Jean Schmitt. NetComplete Home Performance Management

(PM). White paper, November 2009. http://www.jdsu.com/

ProductLiterature/netcompletehomepm_WP_sas_TM_AE.pdf.

[132] Nicholas Poul Schultz-Møller, Matteo Migliavacca, and Peter Pietzuch.

Distributed complex event processing with query rewriting. In DEBS ’09:

Proceedings of the Third ACM International Conference on Distributed

Event-Based Systems, pages 1–12, New York, NY, USA, 2009. ACM.

[133] V.Y. Shen, S.D. Conte, and H.E. Dunsmore. Software Science Revisited:

A Critical Analysis of the Theory and Its Empirical Support. IEEE Trans.

Softw. Eng., 9:155–165, 1983.

[134] J. Shneidman, P. Pietzuch, J. Ledlie, M. Roussopoulos, M. Seltzer, and

M. Welsh. Hourglass: An infrastructure for connecting sensor networks

and applications. Technical report, Harvard University, 2004.

[135] James Snell, Doug Tidwell, and Pavel Kulchenko. Programming Web

services with SOAP. O’Reilly & Associates, Inc., Sebastopol, CA, USA,

2002.

[136] Statistisk sentralbyrå (statistics norway). Website, 2012. http://www.

ssb.no/familie/ (accessed 26.05.2012).

[137] Brian Stansberry, Galder Zamarreno, and Paul Ferraro. High

availability enterprise services with jboss application server clusters.

Web, 2012. www.jboss.org/jbossclustering/docs/cluster_

guide/5.1/pdf/Clustering_Guide.pdf (accessed 08.10.2012).

[138] Jon Stearley, Sophia Corwell, and Ken Lord. Bridging the gaps: joining

information sources with splunk. In Proceedings of the 2010 workshop

on Managing systems via log analysis and machine learning techniques,

SLAML’10, pages 8–8, Berkeley, CA, USA, 2010. USENIX Association.

[139] Inc. SYS-CON Media. J2me clients with jini services. http:

//www2.sys-con.com/itsg/virtualcd/Java/archives/

0806/patil/index.html, 2004.

http://www.jdsu.com/ProductLiterature/netcompletehomepm_WP_sas_TM_AE.pdf
http://www.jdsu.com/ProductLiterature/netcompletehomepm_WP_sas_TM_AE.pdf
http://www.ssb.no/familie/
http://www.ssb.no/familie/
 www.jboss.org/jbossclustering/docs/cluster_guide/5.1/pdf/Clustering_Guide.pdf
 www.jboss.org/jbossclustering/docs/cluster_guide/5.1/pdf/Clustering_Guide.pdf
http://www2.sys-con.com/itsg/virtualcd/Java/archives/0806/patil/index.html
http://www2.sys-con.com/itsg/virtualcd/Java/archives/0806/patil/index.html
http://www2.sys-con.com/itsg/virtualcd/Java/archives/0806/patil/index.html

200 BIBLIOGRAPHY

[140] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems:

Principles and Paradigms. Prentice Hall PTR, Upper Saddle River, NJ,

USA, 1st edition, 2001.

[141] R. Thurlow. Rpc: Remote procedure call protocol specification version

2. Web, May 2009. http://tools.ietf.org/html/rfc5531 (ac-

cessed 18.11.2012).

[142] TNS Global Market Research. Web, 2011. http://www.tnsglobal.

com/.

[143] TRA Global. Web, 2011. http://www.traglobal.com/ (accessed

27.11.2011).

[144] Robert Tripp. Report 1.2: Core banking processes and recent strategies.

Web, April 2003. http://www.howbankswork.com/1-2.html#7

(accessed 02.10.2012).

[145] S. Vinoski. Rpc under fire. Internet Computing, IEEE, 9(5):93–95, 2005.

[146] Steve Vinoski. Corba: Integrating diverse applications within distributed

heterogeneous environments. IEEE Communications Magazine, 14:46–

55, 1997.

[147] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex

event processing over streams. In Proceedings of the 2006 ACM SIG-

MOD international conference on Management of data, pages 407–418,

New York, NY, USA, 2006. ACM.

[148] Horst Zuse. A Framework of Software Measurement. Walter de Gruyter

& Co., Hawthorne, NJ, USA, 1997.

http://tools.ietf.org/html/rfc5531
http://www.tnsglobal.com/
http://www.tnsglobal.com/
http://www.traglobal.com/
http://www.howbankswork.com/1-2.html#7

Appendix A

Comparing Two M-Shape
Implementations

This appendix contributes to the paradigm comparison presented in Chapter 6.

Performing an additional paradigm comparison between Java and another spe-

cialized event processing language than EPL, provides us with further observa-

tions regarding the tradeoffs between different programming language paradigms

for performing event processing.

In particular, we are interested to see how the differences in complexity

between implementations using Java and a specialized event processing pro-

cessing languages compares to our previous findings when applied to another

application and another event processing language.

For this reason, we compare the complexity of two functional identical im-

plementations of an algorithm for detecting an “M-shape” pattern (also referred

to as “double top” in the financial industry [58]) in a stream of values. One is

implemented in Java, while the other is implemented using the specialized event

processing language Cayuga Event Language (CEL). CEL is part of the Cayuga

event monitoring system [42], and like EPL, it is a declarative programming

language with an SQL-like syntax. The CEL implementation is borrowed from

Lars Brenna’s PhD thesis [16].

Listing A.1 lists the CEL implementation. Listing A.2 lists the Java im-

plementation. We refer to Brenna’s thesis and other Cayuga publications for

201

202 APPENDIX A. COMPARING TWO M-SHAPE IMPLEMENTATIONS

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 5 10 15 20 25

Syntethically generated M-shape pattern

Figure A.1: Repeating M-shape pattern

details concerning CEL. Tests were performed on the Java implementation to

verify that it exhibited the desired behaviour. Clients were connected through

HornetQ.

To test the performance of the Java implementation of the algorithm, a file

consisting of 100 000 repeating M-shapes was generated. The file also included

some ”noise“ in the start, to verify that the pattern detection was working cor-

rectly. Figure A.1 shows the start of the file, and includes four valid M-shapes,

where the middle of the ”M“ is not lower than the beginning or end of the pat-

tern.

Ideally, we would also have compared the performance of the two imple-

mentations. However, a turn of events led us to focus our efforts on developing

the ADSCORER application instead.

Using Halstead’s metrics in the same way as described in Section 6.5.3, we

were able to calculate complexity scores for each implementation, as shown in

Table A.1. As illustrated in Figure A.2, the Java implementation has higher

complexity scores in all categories. This is hardly surprising when considering

203

that CEL is a specialized tool for these kinds of tasks, and adds further weight

to our conclusions in Chapter 6, where Java was compared to another dedicated

event processing language. Similar to the results of this exercise, the complex-

ity metrics of the implementation presented in Chapter 6 written in the EPL

language were lower than the metrics of its Java equivalent.

0 50 100 150 200 250 300

Vocabulary (n1+n2)

Program length (N1+N2)

Total operators (N1)

Total operands (N2)

Unique operators (n1)

Unique operands (n2)

Lines of code Java
Cayuga

Figure A.2: Complexity metrics breakdown for CEL and Java

Metric Java CEL
Source lines of code 58 23
Program length (N1+N2) 292 82
Unique operators (n1) 18 14
Unique operands (n2) 24 17
Total operators (N1) 138 48
Total operands (N2) 154 34
Vocabulary (n1+n2) 42 31

Table A.1: The underlying complexity metrics for Figure A.2

204 APPENDIX A. COMPARING TWO M-SHAPE IMPLEMENTATIONS

Listing A.1 Detection of M-shape stock pattern, written in CEL
1 SELECT Name, pA, pB, pC, pD, Price AS pE, pF
2 FROM FILTER {pF Price AND pF pA} (
3 FILTER {Price 1.1pB} (
4 SELECT Name, pA, pB, pC, p 1 AS pD, Price
5 FROM
6 FILTER {Price 0.9pB} (
7 SELECT Name, pA, pB, p 1 AS pC, Price
8 FROM
9 FILTER {Price 0.9pA AND Price = 1.1pA} (

10 SELECT Name, pA, p 1 AS pB, Price
11 FROM
12 FILTER {Price 1.2pA} (
13 SELECT Name, p 1 AS pA, Price
14 FROM
15 (FILTER {Price p 1}(
16 (SELECT Name, Price FROM Stock)
17 NEXT {$1.Name = $2.Name} Stock)
18 FOLD {$1.Name = $2.Name, $2.Price $.Price,} Stock))
19 FOLD {$1.Name = $2.Name, $2.Price $.Price,} Stock)
20 FOLD {$1.Name = $2.Name, $2.Price $.Price,} Stock)
21 FOLD {$1.Name = $2.Name, $2.Price $.Price,} Stock)
22 NEXT {$1.Name = $2.Name2}
23 (SELECT Name AS Name2, Price AS pF FROM Stock))

205

Listing A.2 Detection of M-shape stock pattern, written in Java (partial)
1 public void eval(Double newValue) {
2 switch (state) {
3 case Reset:
4 Double rVal = 0.0;
5 if(baseValues.get(Reset) != 0)
6 rVal = baseValues.get(Reset);
7 baseValues.clear();
8 if(rVal != 0.0)
9 baseValues.put(Reset, rVal);

10 else
11 baseValues.put(Reset, prevValue);
12 if (newValue >= (baseValues.get(Reset) * 1.2)) {
13 state = Up;
14 baseValues.put(Up, newValue);
15 }
16 else if (newValue < prevValue)
17 baseValues.put(Reset, newValue);
18 break;
19 case Up:
20 if (newValue < baseValues.get(Reset))
21 state = Reset;
22 else if (newValue <= (baseValues.get(Up) * 0.9)) {
23 state = UpDown;
24 baseValues.put(UpDown, newValue);
25 }
26 else if (newValue > baseValues.get(Up))
27 baseValues.put(Up, newValue);
28 break;
29 case UpDown:
30 if (newValue < baseValues.get(Reset))
31 state = Reset;
32 else if (newValue >= (baseValues.get(UpDown) * 1.1)) {
33 state = UpDownUp;
34 baseValues.put(UpDownUp, newValue);
35 }
36 else if (newValue < baseValues.get(UpDown))
37 baseValues.put(UpDown, newValue);
38 break;
39 ...
40 // Listing is only partial to fit code on one page
41 }
42 prevValue = newValue;
43 }

	Acronyms
	Introduction
	Project Context
	Research Challenges
	Summary of Contributions
	Impact
	Outline of Thesis

	Middleware: Abstractions and Paradigms
	The Motivation Behind Middleware
	The Client/Server Model
	Interaction Models
	Request/Reply
	Message Queueing
	Publish/Subscribe

	Middleware Models
	Remote Procedure Calls
	Message-Oriented Middleware

	Event-Based Systems
	Event-Driven Architectures
	Event Producers
	Event Consumers
	The Event Processing Network
	Processing Models
	Applications For Event Processing

	The Sensor Network Application Domain
	Service Discovery

	Summary

	SenseWrap: Sensor Middleware
	Background and Assumptions
	Architecture Overview
	Implementation Details
	Interfaces, Classes and Abstractions
	Adding New Sensor Types
	Adding New Communication Protocols
	SenseWrap Middleware Protocol

	Proof of Concept
	Performance
	Results
	Evaluation

	Related Work
	Conclusions and Future Work

	EventCaster: Event Processing Platform
	Architectural Overview
	Package Organization

	Implementation
	Underlying Technologies

	Configuration
	Deployment
	Network Setup

	Summary

	Television Viewership Ratings
	The Current State of Media Measurement
	The Altibox IPTV Deployment Scenario
	Related Work
	Methods For Measuring Advertisement Response

	The Future of Media Measurement
	Summary

	An Event Processing Paradigm Comparison
	Introduction
	Architecture
	Deployment Used During Experiments
	Current Deployment

	Viewer Statistics
	Java Implementation
	EPL Implementation

	Annoyance Detection
	Java Implementation
	EPL Implementation

	Evaluation
	Brief Data Analysis
	Performance Evaluation
	Software Complexity

	Conclusions

	AdScorer: Impact Analysis of TV Ads
	Introduction
	System Architecture
	Scoring Criteria
	Deployment
	Enhanced ZapReporter

	Implementation
	Component Interactions
	AdScorer EPL Code

	Evaluation
	Environment and Experiment Setup
	Viewer Statistics During Commercial Breaks
	Advertisement Scoring Capacity

	Conclusions

	Conclusions
	Summary
	Future Work

	Comparing Two M-Shape Implementations

