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Abstract: This paper discusses the analysis approach when using event trees and fault 

trees in a quantitative risk assessment context. The basic question raised is when to 

introduce probability models and frequentist probabilities (chances) instead of using 

direct probability assignments for the events of the trees. We argue that such models 

should only be used if the key quantities of interest of the risk assessment are frequentist 

probabilities and when systematic information updating is important for meeting the aim 

of the analysis. An example of an event tree related to the analysis of an LNG (Liquefied 

Natural Gas) plant illustrates the analysis and discussion.  
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1.   Introduction 

     A common perspective on risk is the so-called triplet definition based on Kaplan 

and Garrick [5]:   

Risk is equal to the triplet (si, pi, ci), where si is the ith scenario, pi is the 

probability of that scenario, and ci is the consequence of the ith scenario, i = 1,2, 

…N.   

     For unique situations, the probabilities are interpreted as subjective probabilities 

(also referred to as knowledge-based or judgmental probabilities), whereas, if repeated 

similar situations can be generated, the probabilities pi have to be understood as 

frequentist probabilities (also referred to as chances). In the following we will use the 

subscript f to indicate when the frequentist interpretation is adopted. These probabilities 

are unknown, and subjective probabilities are used to express the (epistemic) uncertainties 

about the true value of the frequentist probabilities. The framework then established is 

referred to as the probability of frequency approach to risk assessment.     

     In practice, however, it is not obvious which of these two approaches should be 

adopted. When is the situation unique? Consider the event tree in Figure 1 representing 

release scenarios for an LNG (Liquefied Natural Gas) plant (Vinnem [8]). Are these 

events unique or can we justify the construction of chance models based on these events 

reflecting variation in the phenomena studied? What approach should we take?  This is 

the issue of the present paper. We seek to establish some guidelines for when these two 

approaches should be used. An example case based on the event tree of Figure 1 will be 

used to illustrate these two approaches and highlight the differences. It is straightforward 

to adjust the analysis to fault trees.
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X =# releases

Immediate

ignition A

Not 

immediate

ignition

Pool fire  

Z3 = 1     Pool fire Delayed ignition B

Z2 = 1 

No ignition

Explosion

No effect 

Z1 = 1 

 
Figure 1: Example of event tree for an LNG case 

     The issue discussed is related to the distinction between aleatory and epistemic 

uncertainties in risk assessment (Helton [3], Winkler [9]). The probability/chance models 

reflect the aleatory uncertainties, whereas the subjective probabilities express the 

epistemic uncertainties.  

     The paper is organized as follows. Firstly, in Section 2, we study the event tree in 

Figure 1 assuming the situation is unique. We summarize the features of this case and 

discuss its pros and cons. Then in Section 3 we consider analogously the case with 

probability models introduced. The final Section 4 provides some conclusions. The paper 

is partly based on Aven [2].  

2.   The Unique Event Case    

     The aim here is to implement the Kaplan and Garrick [5] scheme for the examples 

shown in Figure 1 for the unique event case. Let  

X = number of releases (which is approximately equal to 1 if a release occurs and 0  

 otherwise, as we ignore the probability of two releases in the period studied) 

Z1 = I(A)  (I is the indicator function which is equal to 1 if the argument is true and 0  

 otherwise),  A: Immediate ignition   

Z2 = I(B),     B: Delayed ignition  

Z3 = I(pool fire)   

Z = (Z1, Z2, Z3). 

We see that if a release occurs, it can either result in a pool fire, an explosion or no effect, 

depending on the results of the branching events, immediate ignition, and delayed ignition.  

The model provides four scenarios:  

      s1: release - A - pool fire   

      s2: release - not A – B - pool fire (flash fire)   

      s3: release - not A – B - explosion  

      s4: release - not A - not B - no effect.  

The quantities X and Z are unknown, and knowledge-based (subjective) probabilities are 

used to express the uncertainties (degree of belief). Suppose the following assignments 

have been made given the background knowledge K of the analysts:  

   P(X= 1) = EX = 0.005 
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   P(Z1 = 1) = P(A) = 0.3   

   P(Z2 =1| Z1 = 0) =  P(B| not A) = 0.2  

   P(Z3 =1| Z1 = 0, Z2 = 1) =  P(pool fire | not A,B) = 0.4.   

     To interpret these numbers, consider for example, P(Z1 = 1). We have  P(Z1 = 1) =  

P(A|K) = 0.3, which means that the analysts consider the uncertainty of immediate ignition 

occurring (given a release) to be the same as drawing a red ball out of an urn which 

comprises ten balls of which three are red (Lindley [6]).  

     From this input we can use simple probability calculus to compute knowledge-based 

probabilities of the various releases; for example, we find 

     P(s3) = 0.005 · 0.7· 0.2· 0.6 = 4.2 · 10-4.  

This illustrates the analysis; now let us reflect on the suitability of this approach in the risk 

analysis context.    

Discussion   

     This way of conducting the analysis is simple, and all quantities introduced are well- 

defined and understandable. The probabilities produced are expressing the analysts’ 

(experts’) uncertainty (degree of belief) conditional on the background knowledge K of 

the analysis. The assigned probabilities, for example P(A) = 0.3, could be based on data; 

for example, we may have a situation where we have 3 “successes” out of 10 observations. 

Hence we derive at P(A) = 0.3, where A is the “success” event. This is our (i.e., the 

analyst’s) assessment of uncertainty about A. This probability is not an estimate of an 

underlying true probability p=Pf(A) as in the frequentist setting, but an assessment of 

uncertainty related to the occurrence of A.  

     The probability P(A) could alternatively have been established on the basis of 

analyst judgements using all sources of information.  This is a method commonly 

adopted when data are absent or are only partially relevant to the assessment endpoint. A 

number of uncertain exposure and risk assessment situations are in this category. The 

responsibility for summarising the state of knowledge, producing the written rationale, and 

specifying the probability distribution rests with the analyst (Kaplan [4], Aven [1]). In 

some cases formal expert elicitation can also be adopted to assign the probabilities. 

Formal expert elicitation may be undertaken when little relevant data can be made 

available and when it is likely that the judgement of the analyst will be subject to scrutiny, 

resulting for example in costly project delays. Formal expert elicitation could be very 

expensive, so a justification for when to adopt such a procedure is required (Kaplan [4], 

Aven [1]).  

     The main problem with this approach is that there exists no formal procedure for 

systematically incorporating information and distinguishing between variation and lack of 

knowledge (epistemic uncertainties). Say that we, at a specific point in time, have assigned 

P(A) = 0.3 by a direct argument, and then need to adjust this number as a result of getting 

some new data relevant for this event.  How should we then update our probability? The 

answer using the direct assignment approach is simply to perform a new direct assignment. 

Obviously such a method could lead to inconsistencies and the production of some rather 

arbitrary numbers in some cases. The Bayesian machinery, as will be considered in the 

next section, is much better in this respect as it provides a well-established and justified 

approach for how to carry out such updates.                

     The use of modelling could of course improve the assignment process with respect 

to consistency. In the next section we cover the case when probability models can be 



Terje Aven 
 
314 

justified. But first let us summarise the method studied in the present section, its features 

and its pros and cons (Tables 1-2).     

Table 1:  Summary of Features of the Unique Event Case 

Feature Explanation 

Quantities  

of interest  

Occurrence of scenarios si  

Uncertainty description for these  P(si|K) 

Model  Event tree, for example s3 = g(X,Z1,Z2,Z3) =  

X(1- Z1) Z2 (1-Z3)   

Unknown model 

parameters/quantities 

X, Z1,Z2,Z3   

Uncertainty description for these P(X=1|K), P(Zi= 1|K), i=1,2,3    

Method for these assignments  Data, analyst judgement using all sources of information, 

formal expert elicitation, modelling 

Table 2:  Summary of Pros and Cons of Method for Unique Event Case 

Pros Cons 

  

Simple to conduct  Difficult to ensure consistency  

All quantities well-defined and can be 

given easily understandable interpretations  

Lack a procedure for taking  into account new 

information  

 The numbers assigned may be difficult to assign 

(numbers may be seen as somewhat arbitrary)    

3.  The Case with Probability Models introduced (Probability of Frequency 

Approach)    

     Now let us assume that the analysts can justify the introduction of a probability 

model with parameters as follows (see Figure 2): 

            q0 =  Ef[X] 

            q1 =  Pf(A)    

            q2 =  Pf(B| not A) 

            q3 =  Pf(pool fire| not A,B).  

     For q1, q2 and q3 it is tacitly assumed that the frequentist probabilities/chances are 

conditional on the occurrence of a release.  To interpret the parameters we need to 

construct infinite populations of similar situations to the one studied. For example, q1 

represents the fraction of times immediate ignition occurs in the case of a release if the 

situation is repeated over and over again.    

     If we know all parameter values we can calculate the probabilities of the various 

scenarios using standard probability calculus. However, all parameters are unknown and 

we use knowledge-based (subjective) probabilities to express the analysts’ uncertainties 

about the true value of these parameters.  
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X =# releases

Immediate

ignition A

Not 

immediate

ignition
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q3      Pool fire Delayed ignition B

q2

No ignition 

Explosion

No effect 

q1

q0 = Ef[X]

 

Figure 2: Event Tree for the LNG case, based on Probability Models   

     Let us concentrate our focus on the relative frequency probability of the scenario s2 

or s3 occurring; let us call this frequentist probability r. From the above analysis, we have 

established a relationship (model) between this quantity and the underlying model 

parameters:  q0, q1, q2 and q3:  

          r = Pf(s2) + Pf(s3) = q0 [(1- q1) q2 q3 + (1- q1) q2 (1-q3)] = q0 (1- q1) q2.  

     We next establish uncertainty distributions on the qi parameters and use the event 

tree model to propagate these uncertainties to an uncertainty distribution for r. A 

numerical example will explain the ideas.  

     Let us first consider q0, the expected number of releases.  As an estimate of q0, we 

used 0.005. To reflect uncertainties we use a subjective probability distribution. This 

distribution may, for example, be a beta-distribution, a triangular distribution or a uniform 

distribution. For this case we will simply assume that the analyst specifies a uniform 

distribution on the interval [0.003, 0.007], which means that the analyst is confident that 

the true q0 lies in this interval, and that his/her degree of belief that q0 lies in the interval 

[0.003, 0.005] is the same as [0.005, 0.007] (50%).  We make similar assumptions for the 

other parameters. See overview in Table 3.   

Table 3: Knowledge-based probabilities for the parameters q0, q1, q2 and q3 

Parameter  Distribution type  Interval  

q0 Uniform  [0.003,0.007] 

q1 Uniform [0.2,0.4] 

q2 Uniform [0.1,0.3] 

q3 Uniform [0.1,0.7]  

     Using these distributions and assuming “independent” distributions for the qi 

parameters, we can calculate the knowledge-based distributions for r. Independence here 

means that if, for example, we know that q2  is equal to 0.12 (say),  this would not affect 

our uncertainty assessment of q3 (say).  

     To establish the output distributions using analytical formulae is difficult. It is easier 

to use Monte Carlo simulation, and this is the common approach for performing this type 

of uncertainty assessment.  Random numbers for each parameter are drawn, and, using 

the formula r = q0 (1- q1) q2, we obtain the associated uncertainty distribution of r, shown 

in Table 4 and Figure 3. Note that these values are estimates of the probabilities given by 

the input of the Monte Carlo simulations: the uniform distributions and the formula r = q0 
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(1- q1) q2. The estimation error is small as the number of replications is large. Hence, there 

is a knowledge-based probability of 44% that the chance of at least one fatality is in the 

interval (0.04%, 0.07%].  

Table 4: Knowledge-based Probabilities P, for r 

Interval for r  Interval for r. 

Reformulated intervals 

(% ) (x 10-2) 

Simulated 

probability   

≤0.0002 ≤  0.02     0.00 

(0.0002, 0.0004] (0.02, 0.04]     0.12 

(0.0004, 0.0007] (0.04, 0.07]     0.44 

(0.0007, 0.0010] (0.07, 0.10]     0.28 

(0.0010, 0.0013] (0.10, 0.13]     0.13 

(0.0013, 0.0016] (0.13, 0.16]     0.03 

> 0.0016 > 0.16     0.00 

 

(0.0002, 0.0004] (0.0004, 0.0007] (0.0007, 0.0010] (0.0010, 0.0013] (0.0013, 0.0016]

Simulated probability

distribution of r 

r0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 

Figure 3: Knowledge-based Probabilities P for r based on Table 3   

Discussion  

     The probability of frequency approach is theoretically appealing. It is in line with 

Bayesian theory. The idea is to first establish probability models that adequately represent 

the aleatory uncertainties, i.e., the inherent variability of the phenomena studied. The 

epistemic uncertainties, reflecting incomplete knowledge or lack of knowledge about the 

values of the parameters of the models, are then represented by prior subjective probability 

distributions. When new data on the phenomena studied become available, Bayes’ formula 

is used to update the representation of the epistemic uncertainties in terms of the posterior 

distributions. Finally, the predictive distributions of the quantities of interest, the 

observables, are derived by applying the law of total probability. The predictive 

distributions are epistemic, but they also reflect the inherent variability of the phenomena 

being studied, i.e., the aleatory uncertainties.  

     However, in practice the method is not so easy to implement. Following this 

approach, the analysts are to express the epistemic uncertainties about the parameters of 

the probability models using subjective probabilities.  In practice, it could be difficult to 
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perform a complete uncertainty analysis within this setting. In theory, an uncertainty 

distribution on the total model and parameter space should be established, which is hard to 

do for complex cases with hundreds of parameters. If the uncertainty analyses do not cover 

all parameters, it is difficult to interpret the produced uncertainties.   

     It is obviously a challenge in practice to establish the epistemic distributions, as 

indicated above. However, more important is the conceptual issues. Introducing the 

chances means two levels of uncertainty, and one may question what is gained by this 

second level. The standard answer would be that we need to establish the probability 

models with the associated parameters to be able to apply the Bayesian machinery for 

ensuring consistency in the probability assignments and in the updating of probabilities in 

the case that new information becomes available. For many types of applications, such 

updating is important, in particular for risk assessments in an operational phase. However, 

for many cases (like the LNG case), such an updating is not considered essential, as the 

assessments are carried out at particular points in time to support specific decisions at 

these points. The assessment process is not of the form typically implemented when using 

Bayes’ formula.  

     This approach presumes that a probability model can be justified. The key point is 

that we can generate an infinite, i.e., in practice a large, number of similar situations to the 

one studied. For the LNG case, we need to think about similar years, or weeks or plants, 

but we quickly see that defining such a large population could be difficult – what should 

be fixed and what should be allowed to vary to generate the aleatory uncertainties?  

Defining the population that generates the aleatory uncertainties is critical for the proper 

understanding of what the parameters express. It is obvious that if we cannot provide 

meaningful interpretations of the parameters, the uncertainty analysis of the parameters 

will lose its importance as the numbers generated lack basis.   

     As noted by Singpurwalla [7], p. 17, the concept of frequentist probabilities “is 

applicable to only those situations for which we can conceive of a repeatable experiment”. 

This excludes many situations and events. Think of the rise of the sea level over the next 

20 years, the guilt or innocence of an accused individual, or the occurrence or not of a 

disease in a specific person with a specific history. Probability models cannot easily be 

defined. In our LNG case, it is easier to think about repeatability, but the definition of the 

large population is not obvious. The analysts need to make it clear what this repeatability 

means. In practice, it is seldom seen that such clarifications are made.   

     Tables 5 and 6 summarise the main features and the pros and cons of the probability 

of frequency approach.  

Table 5: Summary of features of the Probability of Frequency Approach 

Feature Explanation 

  

Quantities  

of interest  

Pf(si), for example r = Pf(s2) + Pf(s3)   

Uncertainty description for these  Knowledge-based distribution of these frequentist 

probabilities (chances)  

Model  For example r = q0 (1- q1) q2  

Unknown model 

parameters/quantities 

qi, i = 0,1,2,3  

Uncertainty description for these P(qi ≤ q| K), i = 0,1,2,3    

Method for these assignments  Bayesian analysis  
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Table 6: Summary of Pros and Cons of the Probability of Frequency Approach 

Pros Cons 

The method has a strong theoretical 

foundation  

Quite complex to conduct  

It provides a basis for ensuring 

consistency  

Could be difficult to interpret the 

parameters of the probability models  

It makes it possible to 

systematically take into account 

new information  

Difficult to carry out complete 

uncertainty analyses  

4.   Conclusions   

     The issue is then, in a real case, which approach should be adopted? To answer this 

question, one has to clarify what are really the key quantities of interest. If it is clear that 

these quantities are frequentist probabilities, the probability model approach – i.e., the 

probability of frequency approach − should be adopted. If it is not clear what the key 

quantities of interest are, the following question needs to be asked: is it important to have 

at hand a framework where new information can be systematically incorporated? If the 

answer is yes, the probability of frequency should be adopted, provided that frequentist 

probabilities can be justified. In all other cases, the unique event case should be adopted. 

Figure 4 shows the different alternatives.        

     Following these guidelines, the probability of frequency approach must be justified. 

The analysts need to make some reflections – are these criteria met? − before proceeding 

to the next stage of the analysis process – introducing the probability model with 

parameters. Such reflections are not often seen in practice.  

     The author of the present paper has good experience with using the unique event 

approach in many cases, for example for situations similar to the LNG case studied in this 

paper. The probability assignment processes are then rather simple, and the results 

achieved have been considered informative for supporting the decision making. Of course, 

due attention also has to be paid to the background knowledge (assumptions) that the 

assessment is based on. The results must always be seen in light of the background 

knowledge. The need for reflecting on the background knowledge also applies of course to 

the probability of frequency approach.   

     When applying the unique event approach, it is possible to use Bayesian analysis for 

a specific event. Say that a frequentist probability p is introduced for the event A, meaning 

that p is the fraction of times A occurs if we consider an infinite (large) number of similar 

situations to the one studied. Then the predictive probability to be used in the overall 

analysis is    

         P(A)  = ∫ P(A|p) dH(p) = ∫ p dH(p) = E[p]  

Where, H is the subjective probability distribution over p.   

     Having said this, it is clear that there exist situations (as shown by Figure 4) that 

benefit from introducing the more comprehensive set-up of the full probability of 

frequency approach. This approach has its attractive features, as discussed in Section 3, 

the main one being that the Bayesian machinery can be applied. Especially for application 

in the operational phase, this machinery is very useful as it allows for a systematic 

incorporation of new information.  
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of frequency
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Figure 4: Schematic Procedure for selecting Analysis Approach    
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