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Abstract

Value at Risk (VaR) is a commonly used measurement for financial institutions and investment parties
to valuate the risk in a portfolio, and defines the worst case scenario within a certain confidence level
over a specified time horizon. Although it is a popular tool it has been criticized for being procyclical
and underestimating the market risk. Recently the Turner Review concluded that these
characteristics of VaR had been one of the factors which fuelled the financial crisis seen in 2008.

Statoil Hydro ASA experienced underestimation during the extremely volatile period after the
summer of 2008. The oil market itself is characterised by shifts between periods of low volatility and
periods of high volatility. It is therefore important to find a VaR method which can adjust to these
changes rapidly.

As this thesis will show the last years until the summer of 2008 was a period of relatively calm and
stable market development, after which it has become more volatile with bigger fluctuations from
day to day. These sudden shifts in market are difficult to include in a VaR estimation method and
Statoil Hydro ASA’s historical simulation failed to do this in the fall of 2008.

The thesis will therefore investigate other options in estimating VaR and examine Monte Carlo
methods. One of the important flaws of VaR estimates is that it often does not include the fat tails
and high peaks which most market factors experience. This was also pointed out by the Turner
Review, as VaR is highly dependant on the tails of a distribution.

The Monte Carlo methods in this thesis therefore try two alternatives which takes the fat tails more
into consideration. Firstly the change in portfolio (and VaR) is defined as a multivariate student t
distribution with the underlying risk factors being student t distributed. Secondly a delta-gamma
approximation is used in order to achieve an Importance Sampling where the fat tails are considered
important regions of outcome.

The two methods provide results which in the more volatile period (01.06.2008 — 31.12.2008) are
better than the historical simulation. However the multivariate student t is time consuming as it
converges slowly and needs much calculation for each estimate. The delta-gamma method is more
efficient, but seems to overestimate VaR, although this overestimation is reduced when the portfolio
value decreases.

The thesis include an estimation tool which lets users at Statoil Hydro ASA select portfolio based on
price history in Excel and estimate VaR with all implemented methods. The tool also includes several
variables which ensure many alternatives for the methods, as well as the possibility to run back-tests
to compare the methods.
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1. Introduction

This chapter will outline the scope of the thesis including an introduction of Value at Risk (VaR), its
features and the most common methods for solving VaR. In addition this chapter will present the
motivation for this thesis before giving an overview of the organization of this report.

1.1 Scope of the thesis

This thesis will compare several methods for estimating Value at Risk (VaR) which has been a widely
used estimate for companies and institutions to valuate the risk in a portfolio of assets. It provides
the answer to the question: How much is it possible to lose within a certain time period at a certain
confidence level?

The estimate is therefore dependant on two inputs to provide the outcome (VaR). Firstly it depends
on the time horizon of the evaluation, which is often a day. Secondly it depends on the desired
confidence level, which is often set to either 95% or 99%.

Thus the answer to the question can be:

e for the next day (period) 1% (significance level) of losses will be bigger than 500k (VaR), or

e |am 99% (confidence level) certain that my losses will not be bigger than 500k (VaR) the next day
(period).

Value at Risk (VaR) is defined with respect to a desired significance level p identifying the wanted
percentile. The VaR of a portfolio is the lowest amount x,, such that with probability p the loss L will
not exceed X,

P(L >xp) =p

There are 3 methods for estimating Value at Risk (VaR):
e Analytical approach
e Historical simulation
e Monte Carlo simulation

The historical simulation uses historical scenarios to estimate tomorrow’s VaR. This approach has
been efficient and is used widely in combination with other methods such as the exponentially
weighted moving average. However through changes of regimes when a relatively good (bad) market
becomes the opposite this approach has proved inadequate as it underestimates VaR.

The majority of analytical approaches to VaR rely on linear approximation of the portfolio risks. By
assuming a joint normal (or lognormal) distribution of the underlying market parameters VaR can be
easily calculated by setting the probability distribution of the change in portfolio to be normal with
mean zero and standard deviation a sum of standard deviation and correlation between the
underlying risk factors.

However, these assumptions are seldom correct as the distributions of the underlying risk factors
often experience positive kurtosis which means that the distributions have fat tails and high peaks.

This master’s thesis will give an alternative to the historical and analytical approach by estimating
VaR with Monte Carlo (MC) simulation. Theoretically MC will give a more accurate estimation, but
due to its nature and the size of a portfolio it might be time consuming.
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The most recent research on MC simulation has tried to reduce the variance of trial output in order
to reduce number of trials necessary to produce an accurate VaR. This thesis will implement a partial
simulation developed by Glasserman, Heidelberger and Shahabuddin (Glasserman, et al., 2000)
which utilizes delta-gamma approximation in a sampling method which emphasize the heavy tails in
VaR (Importance Sampling).

The thesis will develop a tool using Microsoft Excel and its native Visual Basic for Application (VBA)
for programming. This tool will include several methods to estimate VaR and make a comparison of
their estimates.

In addition to the comparison of VaR methods the thesis will provide an insight in the oil market and
do basic statistical analysis of the underlying risk factors in the thesis portfolio. This is important to
get a firm understanding of the development of VaR and its significance as a risk tool.

1.2 Background

Trading more than 2 million barrels of crude and condensate (light oil) oil per day Statoil Hydro ASA is
one of the biggest oil and gas companies of the world. It trades in petroleum products, methanol,
power and emission allowances and is ranked as the third largest net seller of crude oil in the world.
Represented in 40 countries it is a global company operating oil and gas fields in countries ranging
from Angola, Brazil and Canada to Libya, China and Venezuela. Still its largest activities takes place in
Norway and the operations on the Norwegian continental shelf make Statoil Hydro a leading offshore
operator.

With refineries in Norway (Mongstad) and Denmark (Kalundborg) crude oil and condensate (light oil)
is refined into petrol, jet fuel, diesel oil, propane, heating oil and fuel oil. The principal market of the
two refineries is Europe.

The main trading activities are controlled from the company’s head office situated in Stavanger,
Norway. Here the Qil Trading and & Supply department is placed where crude oil, refined products,
NGLs, electricity and carbon emission allowance are traded. Furthermore VaR is calculated on a daily
basis in order to capture the shifts in the market and the risk in Statoil Hydro’s portfolio. In addition
Statoil Hydro has trading offices in London (UK), Stamford (USA), Singapore, Riga (Latvia) and Oslo
(Norway).

StatoilHydro ASA uses historical simulation to estimate VaR and experienced in the fall of 2008
problems of including the regime shift in volatility. This caused underestimating of VaR and coverage
dropped below the wanted percentile. As a consequence the link to the University of Stavanger was
established and the scope of this thesis identified to examine optional estimation methods for VaR.

1.3 Organization of thesis
This first chapter has introduced Value at Risk and the scope and motivation of the thesis.

The second chapter gives an introduction to the oil market, emphasizing the different products,
volatility and demand and supply in the market.

The third chapter discusses the fundamental theoretical background including basic statistics and
develops important statistical notations used in the thesis. Different methods for estimating
correlation will be discussed; and the Greeks will be presented and explained. In addition this
chapter will include a presentation of Value at Risk and methods used to estimate it, including Monte
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Carlo methods and a discussion on possible variance reduction techniques. The chapter will compare
the methods and lead to a recommendation for the method used in this thesis.

Analysis of the historical data will be carried out in the fourth chapter. This part will also present the
portfolio used in this thesis. The analysis will include a discussion about distribution as well as a test
for kurtosis. In addition the correlation between the products will be examined.

The fifth chapter will present the estimation tool developed for this thesis. In addition to a
presentation of the graphical user interface (GUI) the key functions will be presented.

Results comparing today’s historical approach with this thesis’ Monte Carlo approaches will be
detailed in chapter six. This chapter includes a presentation of the back-test used for the simulation.
Furthermore it displays the results on accuracy, relative bias, tail size and correlation, as well as a
discussion about the underlying distribution of the different methods.

A summary and the conclusion are given in chapter seven. In addition some thoughts about further
work are included.

The bibliography is included at the end of the thesis followed by the appendices. The appendices
include the source code for the estimation tool developed in Excel and more results obtained during
the back-test.
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2. 0il market

This chapter will give a short introduction to the oil industry and paper contracts utilized to reduce
short term risk, before moving on to a presentation of market fundamentals. This includes an
examination of demand and supply and the elasticity of them. In addition possible exogenous factors
in the oil market are identified. The main focus will be on short term changes since the thesis’ agenda
is to estimate changes in small time frames. Still some comparisons and notes will be made about the
long term changes.

This introduction is followed by an empirical walkthrough comparing the market fundamentals with
historical evidence. Finally a glimpse of the future is provided with a discussion on price forecast and
long term considerations about short term factors.

2.1 Oil industry

The oil market is divided in three sectors:
- Upstream (search and recovery of oil and gas fields)
- Midstream (processing, storing, trading and transportation of oil)
- Downstream (marketing, selling and distribution)

Midstream is often included in downstream. The upstream oil sector is also known as the exploration
and production (E&P) sector, while the downstream includes processing, refinery and distribution of
oil to consumers. A fully integrated petroleum company is involved in all three areas of the oil
market.
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The differences in the hydrocarbon molecules (consisting of varying complexity and lengths of
hydrogen and carbon molecules, as well as some oxygen) are also what give them their diverse
properties. As a result the distillation process produces a range of outputs from paraffin, naphtenes
and alkenes to alkynes and dienes.

After the separation the fuel or lubricant can be sold without any further processing. However
different techniques can be used to further refine the outputs into more valuable products. Octane
grades and requirements can be achieved in processes like alkylation or catalytic reforming. Gasoils
might also be reprocessed by cracking which produces lighter short-chained oil.

Based on the way crude oil is distilled and separated into fractions the products can be grouped into
three categories:

- light distillates (LPG, gasoline, naphtha)

- middle distillates (kerosene, diesel)

- heavy distillates and residuum (fuel oil, lubricating oils, wax, tar)

The most common products of an oil refinery are:

- Liquid petroleum gas (LPG) - Fuel oils

- Gasoline (also known as petrol) - Lubricating oils
- Naphtha - Paraffin wax

- Kerosene and related jet aircraft fuels - Asphalt and Tar
- Diesel fuel - Petroleum coke

2.1.2 Transportation and storage

Since consumers of oil products do not live in the same area where the production takes place, an
important part of the oil market concerns transport. This creates exporting regions (like the Middle
East) where supply is greater than demand, and importing regions (like the USA) where the opposite
is true.

Moreover the storage of is oil another link between the producer, refiners, marketers and
consumers. Costs associated with transportation and storage is therefore crucial in determining the
trading pattern of importers and exporters.

In general the highest value produces the highest price. If quality is set aside the proximity of the
goods to the consumer defines the price, as oil moves to the nearest market first. This ensures low
transportation and storage cost and the seller therefore gets most profit.

These considerations can be seen in the major region’s trade, as most of the import to USA comes
from its neighbouring countries Canada and Mexico, while the great economies in Asia gets most of
its oil from the Middle East.

Transportation and storage do not only concern long term prices as the dependence on oil from
certain areas can create short term price jumps due to trade embargoes or wars. This is further
discussed in section 2.4.2 Exogenous factors.

2.2 Paper contracts

The trade in the oil market uses regular instruments, including derivatives like futures, forwards,
options, CFDs and swaps. For an oil company these instruments are utilized in order to reduce their
risk in the physical position of oil they hold. This risk reduction is known as hedging as risk is
transferred between two parties and a perfect hedge would completely eliminate risk.
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There are two possible hedges: short and long. A short hedge is incorporated when the investor
needs to offset their risk of a negative price development for an asset. E.g. an oil company who
knows it will sell an amount of oil within a time frame can use a short hedge to offset the possible
risk of a decrease in the oil price. Whenever the oil price decreases the reduction in oil value is offset
by the increased value of the short hedge.

A long position is mostly used when a company knows it will purchase an asset at a future date. By
going long price fluctuations in this asset will be offset by the long hedge as an increase in the price
will provide a profit which balances the extra cost of the future purchase.

Futures contracts are agreements to buy or sell an asset for a certain price at a certain future time. It
is a standardized contract traded on an exchange and settled daily. A standard future contract will
define the asset for sale, amount and price and are offered with a range of date delivery dates as
well as the grade of deliverable. This grade specifies for instance how high sulphur content is
acceptable.

In most cases the futures contract is closed out before the maturity date. This is done by entering
into an opposite position to the original futures contracts. E.g. an investor who is short on Brent oil
can buy a long position before the short position matures. The gain or loss of the original futures
contract is then decided by the change in the futures price between the original purchase and the
date that contract is closed out.

Daily settlements incur virtually no credit risk as the balance is settled daily via a margin account. The
margin account is organised by the exchange responsible for the trade and at the end of each day the
investor’s profit (or loss) is added to (or subtracted from) the margin account. This ensures only small
daily payments as the futures price develops towards the closing date. The only cost for the trade
parties is the maintenance margins which trading parties at the exchange must guarantee at their
margin account. Some exchanges do however offer interest on the margin account, thus making the
cost of this trade virtually zero.

On the other hand, a forward contract is a private contract between two parties to buy or sell an
asset for a certain price at a certain future time. It is not standardized and usually only has one
specified delivery date. The settlement is done at the end of the contract when delivery or final cash
settlement takes place.

This agreement suffers some credit risk as the settlement is not done before the end of the contract.
By that time either the will or ability to fulfil the agreement of one of the parties can endanger the
forward contract; the buyer or seller may regret the original agreement or have problems meeting
the agreement due to financial problems.

The profit or loss of an investment in the same asset for the same period of time is nevertheless
independent of what type of contract is used. The difference lies in how the settlement is carried out,
and while a futures contract spreads the profit over the whole period this is settled in one lump sum
at the end of a forward contract.

A third alternative is a swap which is an agreement between two parties to exchange cash flows in
the future. The exchanges are carried out on several dates and are usually adjusted by the future
value of an interest rate, exchange rate or other market variables. There are especially two common
swaps: plain vanilla interest rate swaps and fixed-for-fixed currency swaps.



The difference between the forward contract and a swap is that the latter contains several
exchanges. A swap therefore combines the frequency of the futures contract with the settlements
and delivery of a forward contract.

A swap does involve some credit risk as it is an agreement between two companies. As with a
forward contract one of the parties might endanger the fulfiiment of the contract by having financial
difficulties before the end of the contract and default.

Options are a fourth instrument utilized in the oil market. An option differs from a future, forward
and swap as the holder of an option does not need to exercise the right to fulfil the option. As
opposed to the other instruments an option incurs an up-front payment in order to attain this
possibility.

There are two types of options: a call option which gives the holder of the option a right to buy an
asset to a certain price, and a put option which gives the holder a right to sell an asset to a certain
price called the exercise or strike price. The option must be used within a certain date (or at a certain
date) known as the expiration or maturity date.

For each option there are two positions. One is for the buyer of the option which has entered into a
long position. The second is for the seller (or writer) of the options which has entered into a short
position. There are therefore four types of option positions.

One last possible instrument are the CFDs (Contract for Difference). A CFD is an agreement between
two parties to settle a future development in the price of an asset. If the asset increases in value the
seller must pay the difference to the buyer. If there is a negative development the buyer must pay
the seller. These contracts are therefore traded on margin, and it is possible for a company to make
the same profit without owning the asset. For a company this creates another possibility to go short
or long.

Unlike a futures or forward contract the CFD have no fixed expiry date and it does not have any
standardized contract. Since settlements are only done when the buyer ends the investment the
amount of profit or loss may build up and risk connected to CFD is therefore considered high.

Among the most important derivate exchanges trading in crude oil are the International Petroleum
Exchange and the New York Mercantile Exchange.

2.3 Oil prices

The oil market is characterized by periods of relatively calm and periods of dramatic changes in
volatility. The change of regimes is difficult to predict and recent developments confirmed this in the
summer and fall of 2008 as oil prices dropped from $140 pr bbl to below $40 in just 6 months time.
The last year has seen high volatility as a new price regime has yet to find its foundation.

The price of oil and its by-products/refinements are dependant on many factors. Its demand is firstly
dependant on the overall business cycles. As the world economy experiences steady growth this
leads to an increase in demand and the opposite. Still this is true only until the price reaches some
limit when alternative energy sources become competitive. These hypothesis have been confirmed
the last years and recently by the fall in demand in the aftermath of a global recession.

The supply side depends on factors like investment, decisions of oil production level by the major
producers and exogenous factors like politics and wars. Although the supply side is dependant on
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long term decisions these decisions also affect the supply side’s ability to adjust to market demand in
short term.

Hamilton (2009) concludes that the changes in the real price of oil have historically been:
e Permanent
e Difficult to predict
e Governed by very different regimes at different points in time

In this section the fundamental theory of demand and supply of the oil market is presented, which is
presented with recent market developments in mind. In addition a presentation of other exogenous
factors is covered. This is then compared to the historical development, before the section is ended
with some thoughts on future development.

2.3.1 Demand and supply

The microeconomic model for demand and supply is used to describe the relationship between price
and quantity in a market. The goal is to find the price and quantity equilibrium between the demand

of goods by consumers and supply of goods by producers. By using the aggregate supply and demand
curves it is possible to find the market equilibrium.

The supply curve is an upward sloping curve as the production is increased when the price offered
increases. A perfect market will have a supply curve where the supply is based on the marginal cost
of the suppliers without any mark-up. In the oil market this means that only a few suppliers can offer
the oil at low prices (e.g. at $10 per barrel), but considerably more can offer it at a medium price
(around $30-540). However if output reaches the short term capacity cost and thus prices will
increase exponentially as consumers now demands a very scarce good. See Figure 2-2.
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Figure 2-2 Aggregate supply curve Figure 2-3 Aggregate demand curve

The demand curve slopes downwards as it is inversely proportional to price and is determined by the
reservation prices of the buyers. When the price increases the consumers demand less. Together
with the supply curve the demand curve intersects at the equilibrium point. This point decides a price
p* where the consumers are willing to purchase a quantity g* units. At the same point the suppliers
are willing to sell g* items for p*. See Figure 2-4.

A shift in demand occurs when more consumers want to purchase the goods. This creates a higher
reservation price and the demand curve therefore switches outwards. As a result more goods are
produced and sold at a higher price. As seen in Figure 2-5 a shift outwards because of an increase in



demand of oil can lead to a relatively big increase in price. This is especially true in a short horizon
because of the inelasticity in both demand and supply.

A similar shift can happen for the supply side as a result of change in marginal cost (e.g. due to new
technology). A shift downwards occurs as a result of a reduction in marginal cost, and result in more
goods produced at lower prices. Consequently more consumers will purchase the good.

The slope of the supply and demand curve together with the size of the shift decides the degree of

volatility for a product. In periods of high volatility the shifts are bigger and it occurs at an inelastic
point of the demand-and-supply curve.
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2.3.2 Elasticity

Price volatility is closely linked to price elasticises of demand and supply. The price elasticity
measures the relationship between the quantity of demand and supply and their responsiveness to
price changes. If demand is elastic it will adjust to price changes rapidly, while an inelastic demand
will stay unaffected by changes in price. Likewise an elastic supply will adjust supply levels according
to the changes in price, while an inelastic supply will stay constant regardless of price level.

Price elasticity is defined as:
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Figure 2-6 Inelastic demand and supply curve. A change in Figure 2-7 Elastic demand and supply curve. A change in
demand results in a relatively big change in price. demand results in a relatively small change in price.
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Elasticity can graphically be interpreted as the slope of the demand and supply curve. A steep curve
is a characteristic of an inelastic demand as the demand is minimal affected by changes in price.
Similarly a steep supply curve indicates an inelastic supply as changes in the price do not affect the
output of suppliers, see Figure 2-6. Thus a small change in demand will create a big jump in price.

These characteristics can be easily seen for the supply curve of oil in Figure 2-5 at the end of the
output-axis. At a short time horizon the supply side is highly inelastic due to problems of adjusting
the production level according to the quantity demanded.

2.3.3 Exogenous factors

An exogenous event is characterized as a change that occurs outside the market model and which is
unaffected by the model. For an important commodity like oil most of the exogenous factors are a
consequence of international politics.

Wars have been fought to ensure a steady flow of oil as disagreements of boundaries between
countries and the ownership of natural resources have been an important reason for war.
Furthermore trade embargoes has been used to establish political power as oil is now the most
coveted resource on earth which has lead to both. Such exogenous events might only create
uncertainty in the supply of oil but can also create a temporarily stop in supply. The result is
nevertheless an increase in oil price.

Furthermore environmental issues have recently been fuelled with arguments for a reduction in oil
as the global warming continues to mount. Consumer preferences might be changed as a result of
the threat to the environment in addition with governmental regulations which can further deter the
consumption of carbon energy sources.

Other exogenous factors are the scarcity of oil and the development of new technology to provide
alternative energy sources which in many aspects are a perfect substitute for oil related energy.
These factors are both related to concerns about the environment and together they may provide a
considerably change in the oil market in the years to come.

2.4 Empirical evidence
This section will compare the market fundamentals with historical price development. Firstly the
demand and supply and its elasticity will be considered, before exogenous factors are discussed.

2.4.1 Demand and supply

The world’s population is dependant on energy to maintain its consumption and production of goods
and has been so since the industrial revolution in the 18" century. With the great expansion in the
world economy over the last decades, spurred by the growth in countries like China and India, this
has led to an enormous demand for oil. In addition consumption is rising worldwide as the newly
industrialized countries require the same standard of living as the western world has enjoyed for
decades. This increase in demand has led to several shifts outwards in demand therefore increasing
output and price. Furthermore; since this way of living is highly committed to consumption of oil and
gas in both mass production, transportation and user consumption the demand side is highly
inelastic in the short run and consumption therefore stays stable even at higher prices.

The increase in demand the last decade led to a record high oil price in the summer of 2008 when oil
was selling at 147.27 dollars per barrel. It has been discussed if the sharp rise was fuelled by
speculations in the futures market. Although an investigation by the U.S. Commodity Futures Trading
Commission (CFTC) has lead to an interim conclusion that this was not the case, several indicators
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suggest otherwise. CFTC has therefore coupled with the United Kingdom Financial Services
Authority and ICE Futures Europe in order to expand surveillance and information sharing of various
futures contracts.

The interim report gives a good understanding of several key properties of the oil market. Firstly the
oil market is dependant on business cycles. And because of a great expansion in the world economy
during the last years the demand for oil had outrun the supply of oil. Although this dependency on
business cycles is more a long term source for price changes, the change of business cycle causes
short term volatility which affect the price fluctuations.

Secondly both demand and supply of oil are inelastic in the short run, which ultimately resulted in
the record high price in 2008. The higher price did not deter the consumer as they had commitments
and habits that fuelled their consumption. These habits and commitments take time to adjust, thus
creating an inelastic demand. This was also confirmed statistically by Cooper (2003) who calculated
the short-run price elasticity of oil to be -0.05, while the long-run price elasticity was -0.21. Although
these numbers are debated by Hamilton, he also concludes that the elasticity must be low.

In addition, estimates by Hughes, Knittel, and Sperling (2008) indicate that the elasticity is far lower
now than in the 80s. Their calculations show that short-run gasoline demand elasticity was between -
0.21 to -0.34 over 1975-1980 compared to only -0.034 and -0.077 for the 2001-06 period. There are
several reasons to this, and the most important being the increased buying power of Americans.

Studies also conclude that the income elasticity has declined as GDP per person has increased. As a
consequence the share of oil consumption in GDP has been reduced from 8.3% in 1980 to 1.1% of
total GDP in 1998.

The supply side is equally inelastic as it needs time to adjust to the high demand since increasing
production is costly and time consuming. When both supply and demand sides are inelastic in the
short run this creates the possibility for big price shocks.

The decrease many of the oil producing countries experienced in this period further fuelled the gap
between supply and demand. Indeed, Norway is among the countries which have seen a decline in
oil production over the last years due to the scarcity of new findings. Other countries like Mexico,
Venezuela and USA have also seen a downturn in oil production. See Figure 2-8 below.
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Figure 2-8 — Crude oil production in selected countries from 1980 to 2006 in barrels/day in thousands

The official numbers from USSR is not published due to governmental regulations. The figure is
therefore based on numbers found in several sources®3*>.

2Energy Information Administration (EIA)
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In the long term the supply-demand will eventually balance out as consumers find alternative energy
sources in response to the high prices. In addition the high prices spur investments in the oil
companies in order to produce more oil, thus raising the supply. This together ensures a mean
reversion where the market players adjust demand and supply to a stable level.

The latest years have seen such an increase in investments as the prices have been extraordinarily
high and the predictions for future prices have been optimistic. This has also lead to the
development of oil fields which were thought to be non-profitable due to their high production costs.
Examples are the Canadian oil sand and the continued utilization of marginal oil fields.

This investment plan is however debated as it also produces an increase in cost for the oil company,
thus increasing the marginal cost of an oil field. A simultaneous increase in use of oil rigs and other
equipment necessary for research, seismic and development of oil fields has seen cost climb sharply,
thus turning these marginal fields into more risky projects.

Although these investment plans are carried out in a long term horizon, the effects can also be
measured by increased or decreased elasticity on the supply side. Years of increase in investment in
research and production of oil fields increases the elasticity as more oil is available. Thus the output-
axis in Figure 2-5 is expanded to the right and the exponentially growth in price will not happen until
more oil is demanded.

As the financial crisis unfolded in the fall of 2008, the demand for oil plummeted. This resulted in big
inventories and the prices dropped to under $40 in just 6 months time from the peak of $147 per
barrel. When the supply exceeds the demand microeconomic theory says the price should collapse to
the marginal cost of production. For the greatest oil fields the marginal cost is around $10 pr barrel.
But for many projects undertaken in the most optimistic part of the expansion period the marginal
cost might be as high as $40-50, or even higher. Indeed, this is the case for many projects undertaken
in Canadian oil sand where companies are postponing production due to the fall in oil prices. If the
price drops further the most expensive wells become uneconomical and are shut down, at least
temporarily. Therefore price equilibrium is set somewhere near the production cost of the most
expensive source needed to meet the global demand.
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*Russia Energy Survey 2002 published by International Energy Agency (IEA)
*Monthly Oil Market Report, July 1992, published by IEA
*Index Mundi



2-13

In the latest 20 years oil production has still increased as seen in the figure below. This is despite the
reductions seen in the United States which has been covered by increase in production in other
areas. This figure is also based on approximations for oil production in the former Soviet Union. From
1992 oil production in Russia is included in the numbers for Europe.

2.4.2 Exogenous factors

Aside from the general demand and supply discussion there are other factors which affects the rise
and fall of the oil prices. These are related to international politics, as oil has already generated
embargoes, boundary politics and wars.

One evident example of this is the results of the Iranian revolution in 1978 when Iran dropped their
production by 5.4 million barrels per day. The production was additionally reduced by 3.1 mb/d as a
consequence of the war between Iraq and Iran commencing in 1980, creating a solid loss of oil
supply. The result was inevitably a large increase in oil price, and between January 1979 and April
1980 the price soared by 81.1% (logarithmically).

As seen in Figure 2-10 conflicts including oil producing nations have had imminent impact on the oil
price. From the Yom Kippur conflict in 1973 which was followed by an OPEC embargo, the Iran-Iraq
conflict in 1979-80, the Kuwait invasion in 1990 until today’s war in Iraq. The declines in oil price has
either come as a result of an imbalance in supply and demand, as in the 1980s when demand had
adjusted to the supply levels during the Iran-Iraq conflict and during the 1990s, or as result of a
financial crisis like the crisis in Asia in 1997 which brought the price down to $16 per barrel.
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Figure 2-10 Oil price development since World War Il with major events affecting the oil price.
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The imbalance between supply and demand combined with the inelasticity on both supply and
demand sides created the record high prices seen in 2008. The following financial crisis has since
reduced worldwide demand and the oil price has thus plummeted, as already discussed in section
2.4.1 Demand and supply.

Both Iran and Iraq are members of the Organization of Petroleum Exporting Countries (OPEC), which
controls two-thirds of the world’s oil reserves and 35.6% of the oil production. Despite its power the
cartel has had problems controlling the price, and since the 80s the increase in oil production in the
North Sea, Canada, Gulf of Mexico and Russia has challenged their superiority. Recent fall in oil price
has however been accepted by the cartel to ensure healthy growth conditions for companies
worldwide in the aftermath of the financial crisis.

The major challenge in OPEC is the members’ incentives to cheat on the collaboration in order to
maximize its own profit. Due to the fact that the marginal revenue for one individual member is
bigger than then marginal revenue of the whole group, the members will earn more by producing
more than the group has agreed upon. History has demonstrated that OPEC countries do not follow
the quotas set, and of the recent measures set to balance the financial crisis only Saudi Arabia has
followed up by cutting their production.

The latest decade has seen Russia become a superpower again, mostly because of their vast energy
resources of oil and gas. Their trading with China has furthermore increased this impression as well
as their stoppage of gas supply to Ukraine in the fall of 2008 proving their position as a major energy
supplier.

Furthermore politics is sure to become tense when the potential oil reserves below the North Pole
are to be explored. Already the debate is between the neighbouring countries Canada, Norway,
Russia, USA and Denmark (Greenland) on the definition of sea dominion.

The concern of the environment is another exogenous factor that has affected the development of
new oil fields and tried to affect our demand for oil. Firstly the major output of carbon dioxide from
the fossil fuel energy has created an environmental crisis, deeming the earth to a fever with warm
and chaotic weather resulting in melting poles and further global warming. Secondly there are
examples where production of oil has been set aside (at least temporarily) due to other
environmental issues like the natural habitat for fish and birds outside of Lofoten in the Norwegian
Sea.

Many actions have been taken in order to reduce the dependency on oil as leaders all around the
world (now including USA) are encouraging development of environmental energy resources to
become more independent of oil and revitalize the planet. It has been argued that the financial crisis
might even lead to a more environmental way of living as people need to decrease their
consumption, thus decreasing the demand for fossil fuel, and by giving more economical support to
research and production of environmental products.

The high oil prices occurring in 2008 has already resulted in increased investments in alternative
energy. Bio-fuel, solar and wind power are among the top renewable energy alternatives to fossil
fuel which all saw an increase in research and development in the last years.

The sharp decrease in oil price has however made solar and wind power less competitive. Even with
high subsidiaries the price of oil is comparatively lower. The alternatives are dependant on more
research in order to become more cost efficient.
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2.4.3 Final thoughts on historical development

History has shown that prices in the oil market have peaked due to political events more than
fluctuations in demand and supply. This is in part true due to the fact that supply until the 70s was
adequate enough to provide the world with low cost energy. The jump in price in the late 70s and
early 80s was a result of the Iranian revolution as well as the war between Iran and Iraqg. The small
peak in price in the beginning of the 90s was a direct result of the Gulf war. Since then the prices
have had some small adjustments according to international politics.

The last decade has however seen a higher dependence between prices and the supply and demand
balance. The record low of only $16 per barrel was set in January 1999, when Iran decided to
increase oil production at the same time the Asian financial crisis occurred and decreased demand.

The latest development with the colossal increase and the following decrease in 2008 was also a
result of imbalance between supply and demand, as concluded in the interim report by CFTC. As the
world economy was going at a high gear the oil suppliers did not manage (or wanted) to increase oil
production to meet the demand. Therefore the price jumped to a record in the summer of 2008.

It is speculated that Saudi Arabia further increased this imbalance between supply and demand by
cutting its production in 2006 and 2007 despite the increase in demand. Even though an oil price
above $100 gave other producers the chance to increase their productions at high profits, the long
lead times from initial discovery of an oil field to the production of oil made it difficult to meet
demands. This further demonstrates that the supply side in the short run is inelastic as discussed
before.

However due to the financial crisis and restrictions on credit demand turned down thus creating the
opposite imbalance and prices dropped below $40 in December 2008.

2.5 Price forecast

As is evident from Figure 2-10 the oil price has seen many shifts since the 70s. Hamilton (2009)
investigates the changes in oil price and defines p as 100 times the natural log of the real oil price
and Ap as the quarterly percentage change. Although Hamilton estimates the average change to be
1.12 percentages pr quarter over 1970:Q1-2008:Q1, the result is not statistically significant and
cannot reject the hypothesis that the expected oil price change could be zero or even negative.

Through a series of tests Hamilton concludes that the oil price is not easy to forecast and that the
real price of oil seems to follow a random walk without drift. While the price has increased since the
70s, the result might as well have been the opposite.

“To predict the price of oil one quarter, one year, or one decade ahead, it is not at all naive to offer as
a forecast whatever the price currently happens to be.”
Hamilton, 2009 p. 181

Although Hamilton suggests taking today’s price as the prediction for future prices he emphasizes
that this would be a prediction with much uncertainty. Over the sample period the standard
deviation for change in p was 15.28%. Hamilton further examines this by setting 2008 Q1 as the
origin with an average price of $115 per barrel and assuming a Gaussian distribution for the change
in p. This would produce a 95% confidence interval for the price in the next quarter to be between
$85 and $156.

By Table 2-1 we can now conclude that even though Hamilton included this summer’s big increase
(upper limit of $177 is above the record at $147 that summer), this wide confidence interval did not
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include the latest drop to $34 in December 2008 (2008 Q4 between $68 and $195). This proves how
difficult making predictions of future oil price are.

The reason why the standard deviation of price change in oil is big (above 15%) is that the big
changes dominate the data from 1970 until 2008. Thus the oil prices are very unpredictable.

date forecast lower upper
2008:Q1 115

2008:Q2 115 85 156
2008:Q3 115 75 177
2008:Q4 115 68 195
2009:Q1 115 62 212
2010:Q1 115 48 273
2011:Q1 115 40 332
2012:Q1 115 34 391

Table 2-1 Forecast model with 95% upper and lower bounds for oil price (Hamilton, 2009)

2.6 Future development

When considering future development there are two important features of the oil market that
cannot be ignored. First of all the population’s dependency on energy will continue to be strong and
thus the demand for oil will be high. Secondly the limitations in supply and availability; both as a
result of politics and as a consequence of it being a limited resource.

The demand for oil will continue to be high and inevitably keep growing in the nearest future. The
reason is the extreme growth in China, Middle East and India who is expected to continue their
growth despite the financial crisis. China had an increase in demand at 7.2% annually between 1991
and 2006, and at this rate they will consume the same amount of oil as USA by 2020. Within 2040
they will have doubled the consumption again. And even at those levels their consumption will be
less per capita than the USA, see Figure 2-11.
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Figure 2-11 Estimated oil consumption in China 2040 with a stable growth of 7.2% from
2 bbl/capita in 2006, compared to consumption in USA in 2006 at 25 bbl/capita.

Supply is and will be affected by the drainage of oil reserves as oil is a limited resource. The moment
of peak oil production has been widely discussed as some researchers believe we have already seen
the peak, while others estimates the opposite and believe the peak is yet to come in many years.
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However as mentioned before Norway, USA, Canada and Mexico have already experienced
difficulties in keeping the same oil production levels.

When the decline in oil production is a direct result of the shortage in oil reserves (after oil peak),
more of the oil production will take place at oil fields with a higher cost. The demand for oil will likely
encourage development of high cost oil sources like deep water sites, oil sand and oil shale. This will
result in a steeper supply curve, and shifts in demand will cause larger swings in market price.

In light of the fact that oil production many places in the world are declining the imbalance between
demand and supply might see even more extremes in the near future.

This chapter has provided some insight in demand and supply of oil and based on historical evidence
several key issues have been presented regarding oil price development. The low price elasticity of
demand, the strong growth in demand from China and other newly industrialized economies and the
failure of global production to increase were major contributors to the extreme increase in oil price
seen in 2008.

The financial crisis has put a stop to the high oil prices as demands are temporarily down worldwide.
However the factors just presented will become evident again as the financial system bounce back.

Politics will continue to play a significant part as dialogs between suppliers and purchasers is
entangled in other political disputes. With the world leaders trying to balance out the financial crisis
with the environmental challenges ahead the sum might have huge influence on the development of
the oil price in the near future.

The short term dynamics will be dependant on the same factors as discussed but these might
become strengthened as increased scarcity will increase the inelasticity of the supply side. Likewise
the consumer power of more of the world’s population creates higher inelasticity as much of the
energy consumption is fuelled by oil. The short term volatility might therefore be increased.
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3. Theoretical background

This chapter will introduce statistical notation and terms necessary to develop an understanding of
the model used in this thesis. These include covariance, correlation, skewness and kurtosis. In
addition the relationship between the portfolio and its underlying risk factors as measured by
different types of rate of change collectively called the Greeks (delta, gamma and theta) are
presented.

Value at Risk (VaR) will then be defined accompanied by the different methods to estimate VaR used
in this thesis. In addition to a comparison of the methods the chapter includes a discussion about
variance reduction techniques used with Monte Carlo.

Finally this chapter include an introduction to several methods used to compare the estimation
methods. The methods gives a better understanding as to what challenges exist when estimating
VaR.

3.1 Covariance and correlation

Covariance occurs when two or more distributions relates to each other by either sharing phases to
some degree or by having opposite phases. This can be seen as the two distributions either develops
in the same direction or in the opposite direction.

If X and Y are two random variates with sample size N, the covariance between the two distributions
is defined by;

Cov(X,Y) = E((X — py)(Y — uy))

N _ _
Cov(X,Y) = z (i — x)]\gyi )
i=1

where X and Y are two real random variables with expected value E[X] = uy and E[Y] = uy. Here
x and y can be found as the mean of the empirically drawn samples:

If the two distributions are independent of each other, their covariance is 0.

Covariance is a general form of correlation. While covariance can have values ranging from —infinity
to +infinity, a correlation will be in the range of -1 to 1. The correlation coefficient pxy between two
random variables X and Y with expected values uy and uy and standard deviations oy and oy is defined
as;

_Cov(X, V)  E(X— ) —py))
px,y Gxay O'xo'y

where the standard deviation is defined as:
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N
Var(x) = ﬁZ(xi —x)?
i=1

Var(x) = o2

With a high positive correlation the linear relationship between the two distributions are high. If the
opposite is true and the correlation is highly negative the linear relationship is still strong but now in
the opposite direction. If the correlation is 0 the two distributions are independent as before.

3.2 Kurtosis

The Law of Large Numbers and the Central Limit Theorem both envisage that the distributions of the
change of a market factor should converge towards a normal distribution with enough historical
data. However it has been proved in several studies (Mandelbrot (1963), Praetz(1972) and Huisman
et.al. (1998)) that this is not the case of market factors as they include heavy tails and high peaks.
This character is known as a positive kurtosis and can be found as the fourth moment of a
distribution;

KX:

N2—2N+3 < (Xi—x>4 , (=D -3)
O-x

(N=DWN = 2)(N -3) & ~ P NIN-2)(N-3)

-4 -2 0 2 4 6 8 10

Figure 3-1 Comparing 0 kurtosis in normal
distribution (green line) and positive kurtosis in
stutdent t (blue line)

The kurtosis is significantly different from a normal distribution if it is bigger than 2 standard errors of
kurtosis. The standard error of kurtosis can be found by:

k= |~
se N

Kurtosis can also be used to find the degree of freedom for a student t distribution. The excess
kurtosis for a student t distribution is found by;

, >4
v—4 v

where v is the degree of freedom.
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3.3 Skewness
A distribution might also be asymmetric around its mean. This character is measured by its skewness
and is found by the third moment of a distribution;

N —\ 3
N Xl'—x
5x=<N—1>(N—2);< o )

A positive skew indicates that the distribution is asymmetric towards the positive side with a heavy
right side. A negative skew indicates the opposite, as displayed in Figure 3-3.
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Figure 3-2 Positive skew Figure 3-3 Negative skew

The skewness is significantly different from a normal distribution if it is bigger than 2 standard errors
of skewness. The standard error of skewenss can be found by:

(24
ses = N

3.3 The Greeks

The Greeks presented in this part are important to the method developed later in this thesis. Delta,
gamma and theta together comprise the delta-gamma approximation used in the Monte Carlo
method.

3.3.1 Delta (6)

The rate of change of the portfolio with respect to an underlying asset is defined as:

5= daP
-~ aS;

Thus delta tells about the slope of the portfolio according to changes in the underlying asset. If delta

of the portfolio is 0.2 then a change in S; is reflected in the portfolio with a 20% change of that

amount.

One method often used to calculate delta is the explicit finite differencing approach as proposed by
Jackel (2002):

TS, AS,

Here Sy is yesterday’s position and ASO is the change in this position for today. The estimate is
therefore prone to error as it is only dependant on one point in the data series. Today’s slope only
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equals yesterday’s slope if there is a continuous growth which is seldom (or never) the case. In order
to make this estimate more robust it can be recalculated twice including an estimate for both
tomorrow’s and yesterday’s slope:

6 _ av - U(SO + ASO) - U(SO _ASO)
T3S, 2AS,

This is called the centre differencing approach. Since this estimate is dependant on tomorrow’s price
we could solve this by using an iterative method which is run until some convergence.

This thesis defines ASO as the percentage change in the position’s value, and (1) therefore becomes

N v(So(1 + ASy)) — v(So)
- AS,

Because of the linearity in the thesis’ portfolio it is possible to calculate the delta directly by defining:
17(50(1 + ASO)) - U(SO + SOASO) - U(S()) + SOASO

Which concludes:

U(SO) + SOASO - 17(50) _

S
AS, 0

~

An equal result can be produced when considering the centre differencing approach. Delta for an
underlying risk factor is therefore defined (for a linear portfolio) to be the position of the underlying
factor.

3.3.2 Gamma (I')

The rate of change of delta with respect to the price of the underlying asset is found by:

a%p

r=—
aS?

Gamma therefore tells by what degree the delta changes dependant on changes in the underlying
risk factor. If gamma is small, delta changes slowly.

As with delta the estimate of gamma can be calculated by using the centre differencing approach:

0%v _ v(So + ASy) — 2v(S,) + v(So — ASy)

I = ~
S2 AS2

For a linear portfolio the second derivative is always zero since delta is constant.

3.3.3 Theta (0)

The rate of change of the portfolio with respect to time is defined by:

_op
~ ot

which is often referred to as the time decay of the portfolio.
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3.4 Value at Risk (VaR)

Value at Risk (VaR) defines the worst case scenario within a certain confidence level over a specified
time horizon. This introduces the two parameters of a VaR: its confidence level and time horizon.

The confidence level defines at what rate the portfolio managers want the estimate to be within the
true change. A usual confidence level is 95% which means that the estimated VaR will not be

underrating the true change in 95% of the time.

Time horizon is often referred to as the holding period, the time which the assets in the portfolio are
constant and thus the portfolio is unchanged. A regular time horizon is 1 day.

VaR can be defined by asking a simple question: How much is it possible to lose within a certain time
period at a certain significance level?

P(L >xp) =p

E.g.: For the next day (period) 1% (significance level) of losses will be bigger than 500k (VaR). Or: |
am 99% (confidence level) certain that my losses will not be bigger than 500k (VaR) the next day

(period).

Most VaR approaches use historical data to estimate potential changes. There are 3 commonly used
approaches to estimating VaR which will be tested in this thesis:

- Historical simulation
- Analytical estimation

- Monte Carlo simulation

Figure 3-4 compares the methods which will be further developed later in this section.

Historical
simulation

Historical data

Calculate VaR

J

Analytical
estimation

Historical data

Estimate
characteristics

Calculate VaR

J

Monte Carlo
regular

Historical data

Estimate
characteristics

Run simulations

Calculate VaR

J

Monte Carlo
delta-gamma

Historical data

Estimate
characteristics

Delta-gamma
approximation

Run simulations
with IS

Calculate VaR

J

Figure 3-4 Comparison of the 4 methods used to estimate VaR in this thesis.



3-23

3.4.1 Historical simulation

By assuming that the historical development of the risk factors is a good model for tomorrow’s
development, the historical approach can give a good approximation for tomorrow’s VaR. This
approach does not make any assumptions on the distribution of data.

The historical approach uses the historical data directly by using historical changes as the possible
outcomes of the coming change. If the historical data comprise of 501 days, the 500 possible changes
together constitute the distribution of tomorrow’s change. By sorting the outcomes VaR can be easily
found as the 5™ worst scenario for a 99% confidence level.

The estimate can be easily updated day by day as the newest 501 days are used as the historical data
set.

3.4.2 Analytical estimation

Most analytical approaches assume normality and often serial independence in order to develop an
analytical solution to a VaR estimate. By assuming normality the wanted percentile is a multiple of
the distributions standard deviation of the portfolio’s change. Furthermore by assuming serial
independence the change one day will not affect the next day, which makes it easy to calculate VaR
for longer horizons by the square root of the number of days.

The change in the portfolio value consisting of n products can be defined as:
n

AP = Z ; Axi

i=1
Where q; is the amount invested in product i and Ax; is the return on asset i measured in percentage.

When assuming that the Ax; are multivariate normal, AP is also normally distributed. By definition the
expected change of Ax; are 0, thus meaning that the expected change of AP is also 0.

The key to the analytical estimation is therefore in the estimation of the standard deviation. It can be
estimated by the historical correlation and standard deviation of the portfolio’s products which is its
underlying risk factors. The variance of AP can be found by;

i=1 j=1

of = Z +222p a;Q;0,0;

i=1 j<i

As a more complex approach it is possible to calculate the standard deviation of the risk factors by
emphasising the most recent data. This is made possible by the exponentially weighted moving
average (EWMA) which adjusts the standard deviation of a risk factor t to be:

t—1
o= =2 Y A

s=t—k
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Here the parameter A is called the decay ratio or the smoothing factor and decides at what pace the
importance of data should decrease with time.

EWMA can be further generalised with GARCH (generalized autoregressive conditional
heteroskedasticity). More specified EWMA equals GARCH(1,1) where the sum equals to one as with
EWMA.

3.4.3 Monte Carlo simulation

Basic Monte Carlo is based on repeated random sampling in order to produce a distribution of
possible outcomes. Due to the often enormous amount of simulations and recalculations a computer
is necessary to carry out the Monte Carlo simulation.

The method has a wide area of applications, beginning with the estimation of physical mass in the
30s and further utilized for military purposes like the Manhattan Project and during the Cold War.
Because of the amount of simulations needed the method was researched more in depth with the
raise of computational power. This also led to the development of pseudorandom numbers to
further increase the efficiency.

While the computational power has increased since the late 40s when they needed 6 weeks to
generate 1 million random numbers (Jackel, 2002), the complexity of the tasks have also increased.
Today the method is used for simulating mathematical, financial and physical systems. It is most
often used when there is no analytical solution to the problem as the resulting distribution of a
Monte Carlo simulation will produce a close estimate of the true result.

In the financial world the method is widely used for estimating risk when there are several underlying
risk factors and significant uncertainty in inputs. This is the situation when evaluating Value at Risk
which is the purpose of this thesis.

3.4.3.1 Monte Carlo simulation methods

There are 3 approaches to a Monte Carlo simulation:
- Brute force

- Scenario simulation

- Partial simulation by variance reduction

While the brute force approach can give accurate results dependant on the assumptions made in the
model, it also requires the most time. The two alternatives were developed in order to meet the 2
difficulties concerned with the computational cost of Monte Carlo simulation:

1. Portfolio consists of large number of financial instruments.

2. Large number of runs required to obtain an accurate simulation.

The most common variance reduction techniques are presented and compared before the method
utilized in this thesis is further examined.

3.4.3.2 Brute force MC

The brute force approach utilizes the information of the underlying risk factors like their distribution
and correlation, in order to create random outputs. This approach therefore gives accurate estimates
but to achieve a high level of confidence the number of simulations needed is high thus resulting in a
time consuming approach.

The method for a brute force Monte Carlo simulation is given in Figure 3-5.
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Historical data Estimate characterstics

*Get data for portfolio's products. *Mean
eStandard deviation
eCorrelation
*Value the porfolio value today

Run simulations Calculate VaR

eRandomly draw output for each *Order the simulations and create
risk factor x;. the simulated distribution.
eEstimate portfolio value and the oFind correct percentile, e.g. the
change AP. 95th percentile gives the result for
eRepeat this step e.g. 1 000 times a95% VaR.

Figure 3-5 Monte Carlo Brute Force method outlined

When assuming a normal distribution for every underlying risk factor the change in the portfolio’s
value AP can be found by the same distribution as in the analytical estimate. However due to
randomness in the sample drawing this does not necessarily mean that the brute force Monte Carlo
method with normality assumption and the analytical estimate will give the same output. Still it will
converge to the same result as the number of draws is increased due to the central limit theorem
and the law of large numbers.

Since estimates of VaR are especially concerned with the fat tails of the distribution the student t-
distribution can provide better estimates. A key characteristic of a student t-distribution is its ability
to include uncertainty at the end of the distribution by setting the degree of freedom. As the degree
of freedom (df) is increased the distribution converges to a normal distribution, and this is evident
already from df > 10 as seen in Figure 3-6.
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0,07 == Student t (10)
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Figure 3-6 Normal distribution compared to Student t distribution with 3 (red line) and 10 (green line) degrees of
freedom. Student t distribution converges to normal as the degree of freedom increases.

For market factors it is recommended by Glasserman, Heidelberger and Shahabuddin (2000) and
others to use a degree of freedom between 3 and 7, depending on the risk factors at hand. This will
then increase the probability of drawing outcomes at the end of the tail.
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A portfolio which consists of underlying risk factors with student t-distribution can be calculated as a
multivariate student t-distribution. This is accomplished by:

|4
Toyf=——==V+ /df/Xﬁf
/Xﬁf/ df

where X? is Chi-distributed with df degrees of freedom and;
V=CxZ

Zis a standard normal distribution and C is found by the Cholesky decomposition with the correlation
matrix 3.

ccT=y

3.4.3.3 Scenario Simulation

Scenario simulation was introduced by Jamshidan and Zhu (1997) as a faster approach than the brute
force method. The key issue was to separate the portfolio revaluations from the simulation step in
VaR by Monte Carlo by defining possible scenarios in advantage. The scenarios are later referred to in
a lookup table which promptly produces the outcome of a simulation. However, the results have not
been all positive as the number of scenarios might get out of hand and problems with finding the
extreme results. This becomes evident in the fat tails of a VaR, where scenario simulation has a
tendency to underestimate the 99" percentile more often than the 95 percentile (Abken, 2000).
Also see Rockafellar and Uryasev (2000).

The method for scenario simulation is given in Figure 3-7.

Historical data Estimate characterstics Define scenarios

*Get data for portfolio's products. *Mean *Save the scenarios and possible
eStandard deviation outcomes in a lookup-table

e Correlation
*Value the porfolio value today

Run simulations Calculate VaR

*Randomly draw output for each ¢ Order the simulations and create
risk factor x;. the simulated distribution.

e Recognize a scenario of AP in the *Find correct percentile, e.g. the
lookup table. 95th percentile gives the result

« Repeat this step e.g. 1 000 times fora 95% VaR.

Figure 3-7 Monte Carlo Scenario Simulation method outlined

3.4.3.4 Variance reduction techniques

To decrease the necessary number of trials several methods have been developed in order to reduce
the variance. With a lower variance the simulation will be more precise, and thus fewer runs are
required.

The algorithms for a Monte Carlo simulation utilizing a variance reduction technique are similar to
the brute force approach. In order to achieve the variance reduction the algorithm must however
include an analytical part before the simulation. See method outlined in Figure 3-8.
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There are several variance reduction techniques and the following text relies heavily on Glasserman
(2004) and Hull (2008), which describes the techniques in more detail. The techniques discussed are:
- Antithetic variates

- Control variates

- Stratified Sampling (SS)

- Latin Hypercube (generalization of SS into more dimensions)

- Quasi random sampling

- Importance Sampling (IS) (also known as delta-gamma or quadratic)

The first two techniques draw random outcomes and try to correct the error of the outcome by
adjusting it. The last four use methods to draw outcomes with more precision by trying to approach
the true distribution.

Estimate characterstics Utilize variance reduction
«Mean technique

Historical data

¢ Get data for portfolio's products.
eStandard deviation oE.g. calculate delta and gamma
e Correlation of input data.

*Value the porfolio value today

Run simulations Calculate VaR

eOrder the simulations and create
the simulated distribution.

eFind correct percentile, e.g. the
95th percentile gives the result
for a 95% VaR.

eRandomly draw output for each
risk factor x; based on the
variance reduction.

e Calculate AP.
e Repeat this step e.g. 1 000 times

Figure 3-8 Monte Carlo with Variance Reduction outlined

An antithetic variable technique sample averages Fs of two opposite outcomes by changing the sign
of the first outcome for the second. If the first outcome f1 is positive the second outcome is
therefore negative. This provides a lower variance due to the fact that the two outcomes often will
be on each side of the true value. The estimate of the price is then the average of all Fs.

F=(f1+f2)/2

A control variate uses an observed error to control the outcomes of trials. The observed error is
calculated by a second and similar commodity where there is an analytical solution. An example is a
commodity A with a stochastic volatility and a similar commodity B with a constant volatility. By
utilizing the correlation between the outcomes of the two commodities in the trials it is possible to
correct the estimates for the wanted commodity.

fA=f*A-f*B+{B

In stratified sampling (SS) the outputs are divided into fractions (strata) with a set possibility for an
outcome to appear in a given fraction. Random sampling does not take into account any probability
for which fractions the outcomes will reside in (other than the probability distribution). When the
number of trials increases the random sampling should however approach the stratified sampling. SS
therefore eliminates sampling variability across strata but keeps sampling variability within strata.
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Latin hypercube is a generalization of stratified sampling to include more dimensions. Compared to a
random sampling Latin hypercube sampling can guarantee that the ensemble of random numbers is
representative of the real variability. A further improvement is the orthogonal sampling which gives a
very good representative of the real variability.

Quasi random sampling (low-discrepancy sampling) also resembles stratified sampling but is more
flexible as we do not need to know how many samples will be taken in advantage. The samplesin a
guasi random sampling are always filling in the gaps between the existing samples, thus putting the
samples evenly spaced in the probability space.

Through a delta-gamma approximation importance sampling (IS) changes the measurement in order
to give more weight to important outcomes. This increases the sampling efficiency. For a VaR
estimator this will give more weight to outcomes at the tails of a distribution, thus imitating the fat
tails. The measurement change is made with a likelihood ratio to determine the likelihood of
outcomes in the important area.

Glasserman, Heidelberger and Shahabuddin (GHS) have in their papers concerning Monte Carlo
simulation of VaR tried to minimize the variance in their models. With variance reduction techniques
such as Importance Sampling they have proved a reduction in variance for a portfolio which also
reduces the number of runs required in MC (GHS, 1999). The resulting model uses a delta-gamma
approach in their partial simulation.

This method uses the structure of a basic brute force Monte Carlo and includes an analytical part
before the simulation where delta and gamma is calculated. The analytical part results in a more
effective sampling method and thus requires less simulation runs. This effectiveness must however
be considered in conjunction with the extra time needed to calculate the likelihood of each drawn
estimate.

GHS (1999) concluded that the delta-gamma method with importance sampling would reduce
variance by 14-52 times compared to regular brute force Monte Carlo simulation. The most effective
scenarios included portfolios where the underlying assets are not correlated and long options. Still
for the portfolios with correlated assets the variance was reduced by 14-28 times.

As concluded by Figure 3-9; Importance Sampling is the most complex method but also has most
potential and produces the best variance reduction. The IS approach can however produce the
adverse as the efficiency is dependant on calculation time of delta, gamma and the covariance matrix
as well as the assumptions made in the model (e.g. the distribution of the risk factors). The wrong
assumptions might even create a worse estimate.

[ |
oy
c
Q2
=
E + +
w
Antithethk Variate Quasirandom Stratified Latin Hypercube Impoftance
Sampling Sampling Sambling

Complexity

Figure 3-9 Comparison of variance reduction techniques
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This Importance Sampling (delta-gamma) method is implemented in this master’s thesis. The
implementation is based on the method described in GHS 2000. In this method the portfolio is a
multivariate normal distribution which does not directly correct for the heavy tails in the
commodities’ distribution. However the IS will emphasize the important areas which are at the fat
tails of the distribution of AP.

3.4.3.5 Monte Carlo delta-gamma

The Monte Carlo delta-gamma uses the delta-gamma approximation described by Glasserman,
Heidelberger and Shahabuddin (2000) in order to accomplish an importance sampling process as
described in the previous part. By reducing variance and generating more precise random outcomes
the number of runs in the simulation can be reduced, thus minimizing the amount of time needed for
the simulation.

However, as described in section 3.4.3.4 Variance Reduction Techniques this method requires some
calculations before commencing the simulation. It therefore occur a trade-off between the time won
by reducing variance and the time cost in order to produce this reduction. In the evaluation of GHS
they argue that most financial institutions have delta and gamma available from other tools, and this
part therefore does not entail any time consume on their methods.

The Monte Carlo delta-gamma method is outlined in Figure 3-10.

The first two parts are identical for all Monte Carlo models as they are dependant on the same
characteristics of the historical distributions. In addition to the regular characteristics this model
needs to calculate the delta and gamma of the underlying risk assets. This is accomplished as
described earlier in this chapter.

The correlation (Js), delta (8) and gamma (I') matrices complete the inputs for the Importance

Sampling method developed by GHS. These inputs are then further employed in order to carry out
the process.

Historical data

Estimate characterstics Delta-gamma
approximation

*Mean
eStandard deviation eCalculate delta and gamma
eCorrelation of products in portfolio

*Get data for portfolio's
products.

Calculate VaR

eOrder the simulations in
accordance to its likelihood

*Find correct percentile

Importance Sampling

eDraw possible outcomes
based on the delta-gamma
approximation

Figure 3-10 Monte Carlo delta-gamma method outlined

A change in the portfolio’s value is approximated by a Taylor series;

1
L ~ —0At — 8TAS — EASTI'AS
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where a bold symbol denotes a matrix and " notates a transposed matrix. Further the AS is a matrix
of changes in the underlying risk factors over the time period At and 0 is the calculated theta. At is
defined to be 1 day in the model.

O is argued by Hull (2008) to be 0 as the equation is dominated by the delta and gamma parts since ©
is very close to zero. This assumption is also used in this thesis and L is therefore defined as:

1
L~ —8"AS — EASTFAS

AS is defined to be a multivariate normal with mean 0 and the correlation matrix as its standard
deviation. That is:

AS~ N (0, Xs)
AS is found by:
AS =CZ

Where Z is a multivariate standard normal distribution (Z-N(0,1)) and C is found by solving the
following equation by Cholesky decomposition:

ccT =Y
By defining
bT = -87C
and
A4 0 .00
A= 0 4, 0
00 - n

with 4, > 4, > -+ > A, the eigenvalues of — %I‘ZS, and m number of products. This can be found
with the C found in the Cholesky decomposition:

1
A=—5CT5sC

The definitions of b and A together with the implicit definition of Z in AS achieve a rewrite of the
approximation of L:

L~b"Z+2Z"AZ

Here Z is based on the correlated changes in AS, the b is dependant on 6 and A is dependant on T. As
a result of this revision the characteristic function of L is now be defined by:

1 (6h,)?

v =2 302,

1=

—log(1 —264;)]
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A key characteristic of the Importance Sampling method is the change in the distribution from which
the underlying risk factors are generated from. This change creates more samples from the
important areas of the distribution and is accomplished by changing Z from a standard normal
distribution into:

Zi~ N(u(9),%(6))

Here pand ) are defined by the parameter 8 which is found by an iterative process where 0 is solved
for:

difgl/’(@x) = E oxy000] = x
Forany8 > Oand 6 < 1/261; we have:
(@) =U—-20A)7T and u6) =06%.(0)b
Now Z; becomes normal with mean and variance:

1

ob,
KO =1= zle;ti and 07(0) = 1= 201,

The key identity for the importance sampling is the following probability:
P(L > x) = E,s[L(D)I(L > x)]
This corrects for the change in distribution with a likelihood ratio:
1(2) = |Z|0.5e—O.SuTZ_lue—0.5[ZT(I—Z_1)Z—2uTZ_1Z]
This expression is challenging but thanks to the use of a parameter 8 it can be simplified to;
1(2) = e—0Q+Y(6)
where Q = bTZ + ZTAZ.

By sampling Z from N(u(6,),Y.(6,)) the scenarios which were rare now are typical, thus increasing
the chances of drawing from the important areas.

The estimate returned after completing the simulation with importance sampling is given by:

1 N
NZ e=00+O) [([i > x)
i=1

3.5 Comparison methods

As already described VaR is dependant on two factors; the time horizon and level of confidence.
Moreover the estimates also depend on the historical time horizon, which is how much of the
historical data will be used to calculate possible scenarios in the historical simulation and be the
foundation for the data analysis in the analytical approach and Monte Carlo simulations. Finally the
Monte Carlo simulation is dependant on the number of runs. A higher number of runs creates a more
precise estimate but consumes more time.
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These variables will together create many alternatives for the methods presented earlier and need
several comparison methods to separate their accuracy and efficiency. The methods presented in
this are described in the paper by Hendricks (1996) who introduces several methods in order to
compare the historical simulation with two analytical approaches based on equally weighted moving
average and EWMA.

Accuracy is tested by checking the fraction of outcomes covered by a chosen method. An optimal
method will cover 95% of the daily changes over a given timeframe when testing for a 95% level of
confidence. The magnitude of a loss bigger than VaR is not of importance in this comparison.

Mean relative bias controls the mutual distance between the methods estimates. By comparing a
method’s estimate to the average of the tested methods deviations can be easily found.

The size of the error in an estimate can be captured by looking at the multiple an actual loss outdoes
the VaR estimated by the method when it fails to cover the actual loss. Although a method covers
95% of the actual changes at 95% VaR it can still cause less or more damage as indicated by this
measurement.

A similar comparison method tests the average multiple of tail event to risk measure and thus
indicates the size of the tail of the method. This examines by what factor the average loss is bigger if
the estimate for VaR does not cover the actual loss. A further expansion of this test can be carried
out by inspecting the maximum multiple of tail event, which checks what the biggest multiple of VaR
has occurred.

Finally Hendricks suggests a test which examines the correlation between risk measure and the
absolute value of outcome. If the correlation is highly positive between the method’s estimate and
the actual changes in the portfolio value this means that the estimate follows the market changes
closely.

These tests are accomplished by a back-test which simulates VaR estimates over a historical time
period. It is therefore easy to test if the methods meet the standards needed for a good estimation
method.
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4. Analysis of data

The historical price data for each product provides an important link between the theory presented
and the model developed. The goal of analysing data is to get a better understanding of the market
factors including their distribution and correlation.

Firstly the portfolio will be presented. The products have different characteristics as described in
chapter 2, but their price is still dependant on many of the same factors as described in chapter 2 Qil
market. This presentation will also give a brief discussion about their price and volatility history.

Secondly the statistical attributes of the products will be analyzed, and their probable distributions
mapped.

As already discussed many of the risk factors do not have a normal distribution, but tend to have
higher peaks and fat tails. This is perhaps more true when considering short horizons, as the regularly
small changes are intercepted by occasionally very large changes. The products in this thesis will be
tested for kurtosis by a Jarque Bera test.

Finally the products correlation will be calculated.

All analysis is carried out on the logarithmic percentage change, that is:

Here X; is the ith element of the distribution, while x; is the historical data for the ith day.

4.1 The portfolio

The portfolio consists of products covering a wide range of Statoil Hydro ASAs portfolio of refined
products. The thesis’ portfolio contains the following 9 products:

Brent NWE CIF ARA Platts Mid As Quoted(USS:F/T)

Propane NWE FOB Seagoing Platts Mid As Quoted(USS:F/T)
Gasoil 0.2% NWE CIF ARA Platts Mid As Quoted(USS:F/T)
Jet/Kerosene NWE CIF ARA Platts Mid As Quoted(USS:F/T)

e HSFO 3.5% NWE CIF ARA Platts Mid As Quoted(USS:F/T)

e No0.6 1%/LSFO NWE CIF ARA Platts Mid As Quoted(USS:F/T)

e Naphtha NWE FOB Barges Platts Mid As Quoted(USS:F/T)

e ULSD 10ppm NWE FOB Barges Platts Mid As Quoted(USS:F/T)
e Unleaded NWE FOB Barges Platts Mid As Quoted(USS:F/T)

Platts is the supplier of market data and their glossary can help clarify the terms used in the product
descriptions as presented below:
e All products are NWE, which means that they are traded from the Northwest Europe oil and
petrochemicals market.
e In addition the products are MID which means that the price is an arithmetic average
between high and low quotations of the day.
e Products termed ARA are used in shipping when discharge or loading occur in one of the
three ports in Amsterdam-Rotterdam-Antwerp.
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Chapter 4 Analysis of data

CIF and FOB are two types of insurance and decides the responsibility for risk of the cargo
during freight. Generally Cost, Insurance and Freight (CIF) are more expensive as the goods
are effectively priced at the delivery port, compared to Free on Board (FOB) where the goods
are priced at the loading port and the buyer must pay for shipping and insurance of the
goods in transport.

As shown in Figure 4-1 the price increased steadily for all products until 3 of July 2008. Since then
the positive trend was broken and decreased for the rest of the data period. However it is still to
early to say if this is a structural break or if the reduction in prices are a result of mean reversion. The
financial crisis has made the downfall even steeper, but as the market normalizes it is possible that
the price will settle somewhere in between the high and lows of 2008, and perhaps continue the
positive trend.
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Figure 4-1 Price development in USD/ton for products in portfolio from 1st October 2002 to 31st December 2008.
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Figure 4-2 Volatility in data period as measured by standard deviation over the last 250 days.



4-35

At the same time as the prices has been falling the volatility of the products has increased. This is
evident from the Figure 4-2 which shows the volatility development in the data period based on the
last 250 days at each point. A shift like this makes the estimation of VaR very difficult as it is based on
historical data. In the beginning of a volatility switch the majority of the historical data is based on
the historical volatility level. As illustrated by Figure 4-2 the oil market went from low volatility to
high, but this effect is not captured immediately as a trend needs some time to settle. When going
from low to high volatility the VaR estimate is likely to be underestimating the risk in the market, and
the opposite is true when going from high to low volatility.

As shown in Table 4-1 the mean of the price change of every product is very close to 0. This is further
confirmed by a hypothesis test, where Z lies inside the interval of a two-sided test for significance
level at both 0.01 and 0.05. In addition all confidence interval at a 5% level contains O.

ON\O () Er\oj kel

y g 2 5 o 3 £ £ E

2 3 2 35 - 5 28 <

m [N (V) - X T =z 4 =2 I o]

Mean 5.19E-04 2.99E-04 5.18E-04 5.20E-04 2.86E-04 3.46E-04 3.38E-04 5.39E-04 3.82E-04
St.Error 5.61E-04 4.02E-04 5.47E-04 5.09E-04 6.46E-04 5.60E-04 6.36E-04 5.73E-04 6.41E-04
Median 1.42E-03 0.00E+00 9.29E-04 6.16E-04 0.00E+00 0.00E+00 1.15E-03 8.63E-04 5.66E-04
Mode 0 0 0 0 0 0 0 0 0
St.Dev 0.0223 0.0160 0.0218 0.0202 0.0257 0.0223 0.0253 0.0228 0.0255
Variance 4.96E-04 2.55E-04 4.73E-04 4.09E-04 6.58E-04 4.96E-04 6.39E-04 5.19E-04 6.50E-04
Excess kurtosis 2.342 16.088 3.199 1.071 4.966 3.064 7.836 4.128 3.044
Skewness -0.148 0.514 -0.282 0.016 0.170 -0.081 -0.008 -0.320 0.187
Jarque-Bera 34.300 11339.80 23.477 244846 261.897 1.986 1538.907 110.760 9.314
z 0.925 0.744 0.946 1.022 0.443 0.618 0.531 0.940 0.595
p-value 1.645 1.543 1.656 1.693 1.342 1.463 1.405 1.653 1.448
Range 0.235 0.287 0.254 0.168 0.297 0.231 0.377 0.271 0.269
Minimum -0.120 -0.110 -0.169 -0.084 -0.124 -0.115 -0.189 -0.180 -0.108
Maximum 0.115 0.176 0.084 0.085 0.173 0.116 0.188 0.091 0.160
Observations 1579 1579 1579 1579 1579 1579 1579 1579 1579

Conf.int high 1.62E-03 1.09E-03 1.59E-03 1.52E-03 1.55E-03 1.44E-03 1.58E-03 1.66E-03 1.64E-03

Conf.int low -5.86-04 -4.9E-04 -5.5E-04 -4.8E-04 -9.8E-04 -7.5E-04 -9.1E-04 -5.8E-04 -8.8E-04
Table 4-1 Summary of key statistical characteristics of products in portfolio. Based on price changes during 02. Oct 2002 -
31. Dec 2008

Skewness measures how asymmetric a distribution is around its mean as defined in section 3.2. As is
evident in Table 4-1 the majority of the distributions has some skewness. A distribution is often
regarded as significantly skewed if the skewness is bigger than 2 standard errors of skewness. Apart
from Naphta, Jet/Kerosene and No. 6.1% LSFO the products therefore appears to be significantly
skewed.

Kurtosis measures the peakness of a distribution compared to a normal distribution as defined in
section 3.2. A positive excess kurtosis indicates that the distribution has a higher peak, which is
evident for every product. The lowest excess kurtosis is measured for Jet/Kerosene at 1.071; this is
still significant as a normal distribution would return an excess kurtosis of 0. A comparison with 2
standard errors of skewness returns the same conclusion.
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A positive kurtosis confirms that the distribution is leptokurtic which indicates simultaneously high
peaks and flat tails.

Based on the kurtosis and skewness of a distribution the Jarque-Bera test examines any departure
from a normal distribution. As a goodness-of-fit test it checks how well the distribution fits the
statistical model. The Jarque-Bera test is carried out as a hypothesis test where the hypotheses are
defined as:

HO: The distribution is a normal distribution
HA: The distribution is not a normal distribution

As the sample size increases Jarque-Bera converges to a chi-square distribution with two degrees of
freedom. Thus the test can be compared to the table of chi-square distribution, e.g. at a 5%
significance level the null hypotheses is rejected if the Jarque-Bera test is bigger than Xglos'z =
5.991. Compared to the Jarque-Bera values in Table 4-1 the null hypothesis is rejected for every
product as it is clear that their distribution is not normal. The only exception is LSFO which keeps the
null hypothesis with a distribution close to normal.

4.2 Distribution

The strong law of large numbers together with the central limit theorem suggests that over a large
period the distribution of price change for any product and any market should converge to a normal
distribution. However, many studies have concluded otherwise as the empirical returns show higher
peaks and fat tails, especially over short horizons.

Glasserman, Heidelberger and Shahabuddin (2002) introduces many of these studies, ranging from
the early studies by Mandelbrot (1963) and Praetz (1972) to more recent work by Huisman et. al.
(1998) and Embrechts, McNeil and Straumann (2001). They all conclude that liquid markets have high
kurtosis and fat tails.

The products’ distributions are presented together with a normal distribution for easy comparison;
see Figure 4-3 to Figure 4-11. Every product shows proof of high peaks and heavy tails and thus
confirms the studies mentioned earlier and the conclusion of the kurtosis and Jarque Bera test. LSFO
being the only exception as mentioned in the Jarque Bera test.

The propane graph differs from the other products due to many days of no change in price. The
graph therefore has an especially high peak.

As proven by the data analysis of the product’s distribution and key characteristics the price change
of the products are not normally distributed. As an alternative the student t distribution is often
mentioned, as it more closely resembles a symmetric leptokurcic distribution.

Furthermore, the student t distribution can have more or less kurtosis by adjusting the degree of
freedom. Glasserman, Heidelberger and Shahabuddin (2002) conclude that by setting the degree of
freedom between 3 -7 most of the real world market factors will be more correctly modelled. In
addition they recommend using the t-Copula if it is necessary to use different degrees of freedom for
different risk factors in the portfolio.
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Figure 4-11 Histogram of price changes Unleaded

By utilizing the formula for kurtosis in section 3.2 Kurtosis it is possible to find the degree of freedom
for each product. Table 4-2 presents the degree of freedom for each product based on the complete
historical period.

Brent  Propane  Gasoil  Jet/Kerosene = HSFO No.6 Naphtha ULSD Unleaded
0.2% 3.5%  1%/LSFO 10ppm

Degree of

Gt 7 4 6 10 5 6 5 5 6

Table 4-2 Degree of freedom calculated for each product based on the complete data period.

By assuming that the degree of freedom for the multivariate student t distributed portfolio is
dependant on the underlying risk factors this suggests that the degree of freedom can be set to 6.
However as is evident from Figure 4-12, by generating the degree of freedom based on the last 250
days of data the product’s degree of freedom fluctuates more. Some periods the degree of freedom
is even high enough to assume a normal distribution. However as the data is clearly student t
distributed the limit is set to 15.
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Figure 4-12 Degree of freedom moving estimate (250 days data period).

A similar analysis of the portfolio where the portfolio’s degree of freedom is the average of the
underlying risk factor’s degree of freedom is shown in Figure 4-13. The low degree of freedom at the
beginning and the end of this period indicates that the data in these two periods are more volatile
than in the period between.

Degree of freedom
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0 T T T T T

26 september 26 september 26 september 26 september 26 september 26 september
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Figure 4-13 Degree of freedom for portfolio as the average of the underlying risk factor's degree of freedom (250 days
data period)

4.3 Correlation

A diversified portfolio reduces the risk for the owner because of the correlation between its assets.
This is less true if the products are all highly and positively correlated, since the assets then develops
in the same way. Two products with correlation 1 are perfectly correlated and their value will move
synchronous. If the opposite is true and the correlation is -1 the two products will move in opposite
direction and a portfolio consisting of equal positions in these two assets would have zero risk. If the
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correlation is 0 the products are considered uncorrelated and there are no dependency between the
products.

The correlation matrix between the portfolio’s products is presented in Table 4-3 and is calculated as
defined in section 3.1. The correlations are calculated based on the whole data period, and every
product combination has a strong positive correlation.

Brent  Propane  Gasoil  Jet/Kerosene HSFO No.6 Naphtha ULSD Unleaded

0.2% 3.5% 1%/LSFO 10ppm

Brent 1 0.949 0.9939 0.9928 0.9759 0.9764 0.9832 0.9901 0.9805
Propane 0.9496 1 0.9422 0.9381 0.9349 0.9355 0.9610 0.9365 0.9193
Gasoil 0.2%  0.9939 0.9422 1 0.9987 0.9649 0.9719 0.9697 0.9986 0.9711
Jet/Kerosene 0.9928 0.9381 0.9987 1 09642 09707 0.9682 0.9977 0.9709
HSFO 3.5% 0.9759 0.9349 0.9649 0.9642 1 09913 0.9610 0.9585 0.9539
No.6 0.9764 0.9355 0.9719 0.9707 0.9913 1 0.9511 0.9667 0.9462
1%/LSFO

Naphtha 0.9832 0.9610 0.9697 0.9682 0.9610 0.9511 1 0.9639 0.9816
ULSD 10ppm  0.9901 0.9365 0.9986 0.9977 0.9585 0.9667 0.9639 1 0.9664
Unleaded 0.9805 0.9193 0.9711 0.9709 0.9539 0.9462 0.9816 0.9664 1

Table 4-3 Correlation matrix between portfolio's products for the entire data period.

This strong correlation can be further confirmed by considering the pattern of the price development
in Figure 4-1. However this figure does not take into consideration the different price levels. Figure
4-14 displays the relative change from the beginning of the period by dividing every price point with
the price at the first date of the data period. Most of the products move in parallel as only LSFO and
HSFO deviate some from the majority. At the end of the graph all plots are drawn together, and thus
confirming the findings in the correlation matrix
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Figure 4-14 Relative price development for products in data period.
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However when the data period is changed the correlation is not as apparent as Table 4-3 presumes.
The correlation matrix of a randomly selected date period is presented in Table 4-4. The data period
consists of 124 trading days from the first 6 months of 2006.

Brent  Propane  Gasoil  Jet/Kerosene HSFO No.6 Naphtha ULSD Unleaded

0.2% 3.5%  1%/LSFO 10ppm
Brent 1 0.3878 0.8820 0.8647 0.7452 0.6517 0.8599 0.8481 0.8199
Propane 0.3878 1 0.4226 0.4020 0.3031 0.3458 0.3481 0.3992 0.3495
Gasoil 0.2%  0.8820 0.4226 1 0.9567 0.7542 0.6622 0.8078 0.9483 0.8288
Jet/Kerosene 0.8647 0.4020 0.9567 1 07831 0.6690 0.8111 0.9312 0.8213
HSFO 3.5% 0.7452  0.3031 0.7542 0.7831 1 0.7661 0.6987 0.7143 0.7028
No.61%/LSFO 0.6517 0.3458 0.6622 0.6690 0.7661 1 0.6265 0.6166 0.5703
Naphtha 0.8599 0.3481 0.8078 0.8111 0.6987 0.6265 1 0.7778 0.7697
ULSD 10ppm  0.8481 0.3992 0.9483 0.9312 0.7143 0.6166 0.7778 1 0.8141
Unleaded 0.8199 0.3495 0.8288 0.8213 0.7028 0.5703 0.7697 0.8141 1

Table 4-4 Correlation matrix between portfolio's products for data between 01.01.2006 and 01.07.2006

Although the correlations are all positive the coefficients are considerably lower in many cases. The
correlation matrix must therefore be updated for each new estimate based on the historical period
used for the estimation.
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5. Estimation tool

This chapter will present the estimation tool developed to compare different methods for estimating
Value at Risk. The chapter will first discuss why Microsoft Excel 2003 was chosen as the programming
platform. Next the basic classes and structure of the code will be introduced, before the graphical
user interface (GUI) is presented.

The full code is presented in Appendix A —Source Code.

5.1 Programming platform
The tool used for estimating VaR is developed using Microsoft Excel 2003.This was chosen due to
several reasons:

e Availability and familiarity with Excel 2003 at Statoil Hydro ASA
e Visual Basic for Application (VBA)

e Flexible presentation tool

Statoil Hydro ASA uses Excel 2003 for both analysis and calculation of VaR today. This availability and
familiarity is important for the tool to be utilized frequently. Knowledge about VBA also ensures that
it can be easily improved by the users both by making adjustments or further development.

Excel 2003 use Visual Basic for Application (VBA) as its programming language. While the program
includes many essential mathematical functions, VBA ensures complicated calculations to be carried
out by user defined functions. In addition VBA enables classes to be utilized for object oriented
programming.

VBA also gives the opportunity to create sub routines which can combine user defined functions,
built-in function and worksheet data to carry out standard procedure. The results can then be
directly presented in an Excel worksheet, which is another key feature of Excel. The subroutines
programmed with VBA can output data directly to worksheets in Excel and directly utilize functions
available from Excel on the newly output data. This output to worksheets also makes further
processing of the results easy.

The alternatives considered were Matlab and Excel 2007. Matlab is stronger for mathematical
calculations like linear algebra and has the ability of object oriented programming, but the
knowledge and presentation of results (including later processing of the results) are not as readily
available compared to Excel. And although the 2007 version of Excel has undergone improvements
like the implementation of VBA .NET and the expansion in number of rows and columns, the older
version was chosen to ensure better availability for the user.

5.2 Classes and structure

The structure and classes used when programming needs to be efficient in order to make the tool
easily editable as well as ensuring simulation speed. This is carried out with object oriented
programming (OOP) which utilizes reusable code and classes.



5.2.1 Classes

The product class gives an important
foundation to the estimation. To avoid several
readings of data and calculations of key
characteristics of a distribution the data is saved
as a product instance. An instance of the
product is instantiated with the call
setInitValues which uses a data range as input.
The data is then read and the characteristics
calculated.

Table 5-1 displays variables as well as the most
important functions and parameters for the
product class.

When CalculateDelta is called the delta of the
product is calculated as defined in section 3.3.1
Delta (6).

GetRangeOfData returns a range of data as
specified by the start and end parameter. This
function uses the getDataAt to retrieve data
from the Data variable.

To achieve an efficient back-test and
comparison of methods, several key features of
the VaR-estimates need to be calculated by one
subroutine. This is made possible by the
VarEstimate class which includes a confidence
interval (high and low) as well as the maximum
and mean excess loss. Table 5-2 displays
VarEstimates variables and functions.

Each class’ parameter is set and retrieved
through the properties Set, Get and Let. Set and
Let are used to write to the parameter while
Get is used to retrieve data.

5.2.2 Model
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Product

Name As String

Weight As Double
WeightUSD As Double
Avg As Double
standardDev As Double
Max As Double

Min As Double

Median As Double
Quartilel As Double
Quartile3 As Double
Observations As Integer
Data As Range
PrcChange() As Double

Public Sub setInitValues(Value As Range, first
As Boolean, namelnput As String,
weightsinput As Double)

Property Get CalculateDelta() As Double
Property Get getRangeOfData(start As Integer,
sEnd As Integer) As Variant

Property Get getDataAt(ind As Integer) As
Double

Table 5-1The Product class and its variables and functions

VarEstimate

VaR As Double

ConfUpper As Double
ConfLower As Double
MeanExcessLoss As Double
MaxLoss As Double

Table 5-2 The VarEstimate class and its variables and
functions

The model for the VaR estimation tool is divided into 3 parts:

- Input
- Processing
- Output

As seen in Figure 5-1 input consists of the historical data and parameters as defined by the user. The
parameters include significance level for the VaR estimate (alpha) and historical period in days which
sets the amount of data history to use in the estimation. In addition there are several optional
parameters used with different methods. Runs must be defined when estimating VaR with a Monte
Carlo simulation. Degree of freedom is a parameter only applicable to methods utilizing the student t
distribution. The back-test period defines the number of days used in a back-test.

The default values for the parameters are:
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- Alpha=0.01

- Historical period = 250

- Runs =100

- Degree of freedom =3

- Back-test period = 0, which equals no back-test and estimates next day’s VaR.

The last input defines what methods to use for the estimation. It is possible to choose several
methods for comparison.

INPUT

Parameters:

e Alpha

e Historical period (days)

e *Runs (for simulation)

e *Degree of freedom (student t)
e *Backtest period

Historical data Method(s)

_/

l

BACKTEST J DATA ANALYSIS

(for backtest period)
> Calculate key

l characteristics

DEFINE PERIOD Ji
PROCESSING
Run simulations
Estimate VaR
Method J

OUTPUT

VaR estimate . Backtest result
comparison

Figure 5-1 Model data flow with inputs, processing and output.

The processing part is divided into two parts dependant on the use of back-test. A back-test lets the
user define a number of historical days to compare estimated VaR with actual change in portfolio. If
used the period needs to be redefined for each day in the back-test before the data is analysed and
processed in order to estimate VaR.
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A back-test therefore utilizes the second component of the processing part. It consists of the data
analysis which calculates the key characteristics of the products and portfolio before the processing
which estimates the VaR.

Output presents the VaR estimates as well as a method comparison if several methods are chosen. In
addition the back-test results are displayed if this option is selected.

5.3 User defined functions

User defined functions allow processing of worksheet data as well as internal data in form of arrays
and classes and return values depending on the processing. In the estimation tool created for this
thesis the functions fall into two types of categories: linear algebra and VaR methods.

In addition to mathematical functions and the VaR methods a function for data cleaning is
programmed. This function checks if any of the risk factors misses data at a certain date. If this is the
case then that date is excluded (and deleted) from the historical data. The data is therefore read as a
forward feed.

Key functions are presented in Table 5-3 and Table 5-4 and the code can be viewed in the appendix.

5.3.1 Linear algebra

Matrix functionality had to be programmed in VBA in order to certify that the dimensions where
correct. The functions include transpose, multiplication and inverse as well as addition and
subtraction of both matrices and constants. In addition the Cholesky decomposition, eigenvectors
and eigenvalues had to be programmed.

The inputs and outputs of the functions are in most cases Variants or Objects. A Variant in VBA is an
open data type which can hold any data type. This is necessary as the dimensions of the matrices are
unknown both for input and output matrices.

The inputs and outputs are listed in Table 5-3.

Function name Inputs Output Comment
GaussianElimination index As Integer Object Solves Ax = b

A As Object

b As Object
MultiplyScalar A As Object Object Vector A multiplied

¢ As Double with scalar c
MatrixSqrt A As Object Object Square root of vector A
MatrixPower A As Object Object AP, where A is vector

p As Integer
Transpose A As Object Object Transpose of vector A
AddOrSubtract index As Boolean Object Vector A+B or A-B

A As Object according to index

b As Object
MultiplyTwoMatrices index As Boolean Object Vector A*B or B*a

A As Object according to index

b As Object
Cholesky Mat As Object Object CC’ = Mat, returns C
MatEigenvalue_Jacobi A As Variant Variant Eigenvalue of vector A
MatEigenvector_Jacobi A As Variant Variant Eigenvector of vector A

Table 5-3 Matrix algebra in VBA with input and output.
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5.3.2 VaR methods

The VaR methods are all functions which return a VarEstimate. This ensures that calculation of other
characteristics than VaR is carried out in parallel. The inputs of each method are listed in Table 5-4
and are further described in the following text.

The historical simulation follows the technique described in section 3.3.1 Historical simulation. The
inputs for HistoricalSim are the significance level (alpha) and a collection of products with their price
data and other characteristics as described in Table 5-1. These two inputs are common for every VaR
method.

The AnalyticalVaR function estimates VaR analytically as described in section 3.3.2 Analytical
estimation. In addition to significance level and the portfolio’s price data it takes a correlation matrix
(CorrelM) as an input. This correlation matrix is also input for Monte Carlo and DeltaGamma.

The MonteCarlo function is based on the technique discussed in section 3.3.3.2 Brute Force MC. It
includes several alternatives in order to differentiate between a normal assumption (bNormal =
true), a student t assumption (bNormal = false) and a student t with automatically calculated degrees
of freedom (bDfAuto = true). The degree of freedom is then calculated as described in section 3.2
Kurtosis.

Function name Inputs Output Section

HistoricalSim alpha as Double VarEstimate 3.3.1 Historical
ProductsTmp As Variant simulation

AnalyticalVaR alpha as Double VarEstimate 3.3.2 Analytical
CorrelM As Variant estimation

ProductsTmp As Variant
cLevel As Double*

MonteCarlo alpha As Double VarEstimate 3.3.3.2 Brute Force MC
runs As Integer
CorrelM As Variant
ProductsTmp As Variant
df As Integer
bNormal As Boolean
bDfAuto As Boolean

DeltaGamma alpha As Double VarEstimate 3.3.3.4 Variance
runs As Integer reduction techniques
CorrelM As Variant
ProductsTmp As Variant

MonteCarloDGNormal VaRdelta As Variant VarEstimate 3.3.3.4 Variance
VaRgamma As Variant reduction techniques
VaRcovmatrix As Variant
smethod As String*
alpha As Double
days As Integer
runst As Integer
ProductsTmp As Variant

Table 5-4 VaR methods in VBA with overview of inputs and outputs.
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The DeltaGamma function prepares the MonteCarloDGNormal as it computes delta and gamma of
the input ProductsTmp. The delta and gamma matrices are then input into MonteCarloDGNormal, in
addition to the covariance matrix, number of runs (runs) and time horizon (days). This function is
based on section 3.3.3.4 Variance reduction techniques and the XploRe tool developed by Hardle was
used as a reference program.

5.4 GUI

This section will examine the graphical user interface (GUI) of the estimation tool and give a
presentation of how the results are displayed.

5.4.1 User form
The GUI is created with Excel’s user form and necessary interaction with worksheet is achieved with
built-in functions.

The data used needs to be arranged as data in Table 5-5. This is due to the organization of the data
reading in the data analysis.

A B C #
1 Name Risk Factor #1 Risk Factor #1 Risk Factor #m
2 Position 2000 -450 1000
3 Day #1 123.20 140.12 71.23
4 Day #2 123.60 140.90 74.24
n-2 Day #n 170.98 158.90 102.90

Table 5-5 Data arrangement for input of historical data and position in risk factors.

The user form is initialised by pressing CTRL + SHIFT + f. The user is then presented with the form as
in Figure 5-2.

The first form asks the user to select risk factors. By clicking select the btnSelectAreas_Click sub
routine is called and Excel’s InputBox prompts the user to select a range. The InputBox allows the
user to interact with the workbook. The selection only needs the area of the risk factor’s names
(B1:#1), as the rest of the data (position anld pric? histo‘ry) is slelecteld by tflle sub routine.

A D E F G H

|.B__ | _¢C ]
| 3 |Date \Brent Propane _ Gasoil Jet/Kerose HSFO LSFO Maphta ULSD Unleaded
4 |Position | 600 1800)  -1560] 1240] 1100] 900 500 400 1800
5 01 oktober 2002 217.9875 272,5| 250,625 278 158 179.5 2475 2855 2755
6 02 oktober 2002| 216,8625 2725 25525 279.75 159 179.5 2485  285.75 277175
| 7| 03 oktober 2002| 213,225 2735 2525 278.625 158 177.5 2445 283 278
| 8 | 04 oktober 2002| 213.7875 276 25025 276,75 157 177.5 245 281,75 2745
9 | 07 oktober 2002 214,275 279,5 249 275,5 157 177.5 246 280,25 276,75
E 08 oktober 2002 213 2835 2445 274.5 155 173.5 2455 276.5
| 1] 09 oktober 2002| 213,375 282.5|( vaR: Make selection of products - Step 1 of 4 |£|
| 12| 10 oktober 2002| 209,9625 282
| 13 | 11 oktober 2002| 212175 282 Select WMethods ] Parameters ] Review ]
| 14| 14 oktober 2002| 216,3375 2815
| 15| 15 oktober 2002| 2154375 281.5 Select product's range, indude header.
16 16 oktober 2002| 2125125 2825
E 17 oktober 2002) 214,575 283 | Iﬂl
18| 18 ok’ Choose assets 1
19| 210
| 20 | 22 oM | Choose assets (indude titles):
21| 230
122| 2o
23| 250
24 280
25| 290 $843:4183|
% g? E Cancel | | MNext > Finish |
E 01 nove!
20| N4 navambar 20020427 2276 97T R A 198! 164! 224 £ MAE!

Figure 5-2 Estimation tool GUI: Make selection of products - Step 1 of 4
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When the selection is done the process first erases dates with empty data and automatically starts to
calculate basic key characteristics on the data input. This is a part of the setlInitValue of the Product
class and includes the calculation of an array with the daily change in percent. The risk factors are
then gathered in a collection of Products before the correlation matrix is calculated.

With the portfolio selected and saved the next step lets the user decide what methods to use for the
estimation of VaR. As seen in Figure 5-3 it is possible to select multiple methods for comparison of
the outputs.

VaR: Choose methods- Step 2 of 4 ﬁ

Select Methods IParameters | Review |

r E.ﬂmalyﬁml (Mormal distribuﬁun}é

[ Historical simulation
[~ Monte Carlo (Normal distribution)
[ Monte Carlo (Student t distribution)

[ Monte Carlo (Importance Sampling, normal)

Cancel | < Prev Finish |

Figure 5-3 Estimation tool GUI: Choose methods - Step 2 of 4

The third step includes setting the different parameters necessary to perform the estimation, see
Figure 5-4. Some of the parameters are only used in combination with some of the methods as
explained in section 5.2.2 Model. The user form has the default value visible in the form if it has not
been edited.

VaR: Set parameters - Step 3 of 4 ﬁ

Select | Methods Parameters IF‘.euiew |

Set parameters for selected methods

Alpha Runs

| 0,01 | 100
Period (historical days) Backtest days
| 250 | 1

Degree of freedom
| 3

[ calculate df automatically

Finish |

Cancel | < Prev Mext =

Figure 5-4 Estimation tool GUI: Set parameters - Step 3 of 4
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The last step displays a review of the methods and parameters chosen see Figure 5-5.

WaR: Review - Step 4 of 4 Lé]

Select ] Methods ] Parameters Review

Cancel ‘ < Prev ‘ ‘ Finish ‘

Figure 5-5 Estimation tool GUI: Review - Step 4 of 4

5.4.2 Presentation of results

The results are divided into two sections. The first gives an overview of all methods used and their
estimates for VaR in a worksheet called “Backtest” or “VaR” depending on the method used. The
back-test will include estimates of every day included in the back-test period, while the VaR
worksheet will include an estimate for mean and max excess loss in addition to the VaR-estimate.

The second section displays the estimation of each method. For a historical simulation the scenarios
are printed out in a worksheet called “Historical simulation” where the scenarios are sorted by
change in portfolio. This therefore has the opportunity to create a histogram of the scenarios to
examine the distribution.

For a Monte Carlo estimation each run in the simulation is printed. For a regular Monte Carlo
simulation the data is sorted by change in portfolio, while for a Monte Carlo delta gamma the data is
sorted by the likelihood ratio. The output is printed in worksheets “MC student t” or “MC normal”
and “MC delta-gamma” respectively. Both therefore have the opportunity to create a histogram to
get a better understanding of the distribution of the portfolio change.

The analytical does not have any individual output as it only provides an estimate for VaR.

Note that if the test is a backtest only estimate for the last date is displayed in the second section of
outputs.

In addition to these simulations related outputs the key characteristics of each risk factor as well as
the correlation between them are printed in the worksheet “Summary”.
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6. Empirical results

This chapter presents the results of an extensive back-test where multiple combinations of the
presented methods and alternatives are tested. The back-test setup is presented first in this chapter
along with the different portfolios tested. The back-test included several key characteristics
according to the comparison methods mentioned in section 3.4 Comparison methods.

As proved by the testing the methods performed similarly on every portfolio. Therefore every result
for every portfolio test is not included in this chapter, but can be viewed in the appendix.
Furthermore due to the amount of combinations section 6.2 Considerations about the alternatives
reduces the number of methods compared in this chapter.

In addition to the results comparing the methods the chapter includes a discussion about the
different methods’ distribution. This tries to explain why the methods provide different estimates for
VaR.

The chapter also includes a discussion about time concerns.

6.1 Back-test setup

Figure 6-1 displays the back-test setup used for the comprehensive comparison of methods and
different alternatives. Both Monte Carlo methods have 3 alternatives tested as the number of runs
for each estimate varies between 100, 500 and 1000 runs. In addition the student t method varies in
3 and 7 degree of freedom, in addition to an automatically calculated degree of freedom which
calculates the degree of freedom as an average of the underlying risk factor’s degree of freedom.
This method calculates the degree of freedom as explained in 3.2 Kurtosis and uses this as suggested
in 4.2 Distribution. In total this gives 14 methods and variations.

Two levels of alpha and 3 levels of historical periods are tested. This gives a total of 84 (14x3x2)
estimates for each portfolio tested. The test for one portfolio was estimated to take approximately
25.5 hours.

14 methods 2 alpha levels 3 historical periods 1 backtest period

Analytical estimate o=0.01 Days = 750 Period = 500
Historical simulation o =0.05 Days = 250
9 MC Student t* Days = 50

3 MC delta-gamma*

Figure 6-1 Backtest setup consisting of 14 methods, 2 alpha levels and 3 historical periods for back-test period.

The back-test was setup to run for one portfolio at a time and automatically output the different
estimates for each combination of historical period and alpha level. Thus 6 worksheets of output
were automatically generated for each portfolio estimate consisting of 14 estimates pr worksheet.
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The methods were tested on 5 portfolios which are presented in Table 6-1. The portfolios were all
combinations of the 9 products selected for this thesis. Except for portfolio A the value of the
positions was close to equal.

Q ©
£ = 5 £ £ &g 3 .
b= o © O v £ [a)
e 5 3% 35 8% 53 3 833 & 5
@ a 0o 3 v T 29 2 S =) >
A 600 1800 -1560 1240 1100 -900 500 -400 1 800 2 032 407,50
B 580 450 460 400 1000 930 450 450 450 2 036 798,25
C -420 420 420 -300 -750 -700 420 420 -340 -111,75
D -580 -450 -460 400 -1000 -930 -450 -450 -450 -2 036 798,25
E - 2 000 2 000 1740 -4200 - - - - 2 033 745,00

Table 6-1 Portfolios used in back-test: Their combination of positions and value at 10.01.2007.

Portfolio A is a random portfolio where the amount invested in each product is not of the same size.
In portfolio B every position is long and since the underlying risk factors are correlated this should
create higher VaR than portfolio A.

Portfolio C is a balanced portfolio where the sum at the beginning of the back-test period is close to
0. This portfolio should therefore have a very low VaR as the correlated underlying products should
balance each other out.

For portfolio D every position is short. The positions are of the same size as portfolio B and the value
of this portfolio at the first date of the back-test is therefore same as for portfolio B. The two should
consequently have approximately the same VaR.

Portfolio E only consists of 4 out of the 9 products (randomly selected), but has the same amount
invested as portfolio A, B and D at the beginning of the period. Because of the reduced number of
underlying risk factors this should provide higher VaR due to a less diversified portfolio.

6.2 Considerations about the alternatives

Because of the high number of combinations of methods and alternatives we will first do some early
considerations about the methods in order to reduce the options being compared. This will include a
discussion about convergence for the Monte Carlo methods and a short comparison of the different
student t methods. In addition some thoughts about the historical period are presented.

Portfolio A is the basis of the discussion in this section. For brevity the considerations made in this
section will exclude the majority of the combinations from being presented in the later sections of
this chapter. For a full display of every method compared, please see the appendix.

6.2.1 Monte Carlo convergence

One of the major concerns considering Monte Carlo simulation is the great number of runs needed
to achieve a precise estimate because of the high variance. As the delta-gamma approximation
method is a variance reduction technique leading to an importance sampling it should therefore
converge earlier towards the VaR-estimate.

As displayed in Figure 6-2 this is also true when comparing the MC delta-gamma to the MC student t
methods. Already at 100 runs the delta-gamma method has less variance and is more accurate than a
student t method has at 1000 runs. So the delta-gamma method is at least 10 times as accurate.
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This becomes even more evident as we consider the degree of freedom of the student t method. A
lower degree of freedom (e.g. 3) for the student t method will increase the variance and thus require
more runs to be efficient.

70 \

0 \

SN N\

. N\ AN

30 \ \ (), 05
N N\ —o001

\\ MEL 0,05
10 %
—— ——MEL 0,01

Standard deviation in thousands

N S S S S S

~$ RS S S S S

Hr /\ \ N Q
O O O Qe K S
X X X X <
& N & & & &
O ¥ S ¥ #0 L
s & & & & bqg@

Figure 6-2 Variance test for Monte Carlo methods comparing variance of 95% and 99% VaR-estimate, as well as the 95%
and 99% mean excess loss-estimate (MEL).

The differences in variance become bigger when considering the longer end of the tails. Thus the
relative accuracy of delta-gamma at 99% VaR is even more advantageous than at 95% VaR.

This is further confirmed when considering the mean excess loss (average estimated loss bigger than
VaR-estimate) where the variance of the student t is even more volatile than for a regular VaR-
estimate, see section 6.6 Tail size.

Due to this the student t methods will only be tested with the estimates approximated with 1000
runs.

6.2.2 Student t comparison

3 levels of degree of freedom are included in the back-test for the Monte Carlo student t method.
The recommendations of Glasserman, Heidelberger and Shahabuddin (2002) are followed by testing
with 3 and 7 degrees of freedom (df). Furthermore an automatically student t method as presented
in section 4.2 Distribution is included as the third alternative.

The convergence issues seen in the previous section are evident also in Figure 6-3. Because of the
high variance in the VaR-estimate of student t with 3 df it has a bigger spread in its estimates and is
more volatile.

Student t with 7 df and the automatically calculated student t method estimates VaR equally. This is
not surprisingly as the calculated student t often is between 6 and 10 (see Figure 4-13).

Student t with 3 degrees of freedom estimates VaR considerably bigger than the two other methods,
and therefore has a higher coverage, see Figure 6-4 and Figure 6-5. This is particularly evident in the
99% VaR-test.
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Figure 6-4 Student t comparison of coverage of 95% VaR. Figure 6-5 Student t comparison of coverage of 99% VaR.
(500 days: Light blue line, 106 days dark blue line) (500 days: Light blue line, 106 days dark blue line)

6.2.3 Historical period

The historical period decides how many dates should be included in the calculation of the correlation
matrix as well as how many scenarios are included in the historical simulation. Since the methods
implemented in this method weight every historical data equally (as opposed to EWMA as described
in section 3.4.2 Analytical estimation), the length of the historical period can decide important key
characteristics for the underlying risk factors.

Generally the more data points in a calculation the less volatile the output will be. This is true also for
the estimates carried out in this thesis, and although it is apparent for all methods tested it is most
obvious in the delta-gamma method, see Figure 6-6. When considering only the latest 50 days the
estimation of VaR is more sensible to short term changes. These short term changes do not affect the
longer term by the same factor and both the 250 days and 750 days estimate therefore are
smoother.
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Figure 6-6 MC delta-gamma comparison of historical period, set to either 50, 250 or 750 days.

Because of the little difference in 750 and 250 days the latter will be presented in the coming
analysis. The 50 days alternative will be presented where relevant.

6.3 Accuracy

A perfect method for VaR estimation would cover exactly the wanted percentile over time. Over a
period of 500 days the perfect method would fail to predict the actual loss in only 25 (5) days and
thus cover 95% (99%).

In addition to the 500 days the comparisons is done by only looking at the latest 106 days (from
01.06.2008 to 31.12.2008). This period was characterised by high volatility (as seen in Figure 4-2),
and it may therefore hold as a stress-test were the changes in the market were rough.

As seen in Figure 6-7 the MC student t with 3 degrees of freedom performs best when considering
the 95% VaR. Although slightly over the 95% mark over the full 500 days period it has the best
performance on the stress-test over the last 106 days of 2008 with when it averages at 0.949 and has
minimum at 0.934 and maximum at 0.981 with a historical period of 50 days. What is more
important is that it performs equally well on every portfolio with VaR coverage around 0.95.The
other variations of student t performance similarly but has bigger differences between maximum and
minimum.

The delta-gamma method is the only method which averages at around 0.95 for each historical
period for the stress-test. On the basis of the numbers for each portfolio it is clear however that it
overestimates VaR for portfolios A, B and E (average coverage at 0.99) and underestimate VaR for
portfolio C (average coverage 0.90), see appendix.

The historical simulation does not reach the 0.95 mark for the full 500 period tests but performs well
on every historical period for this timeframe and equally on every portfolio. On the stress-test the
historical simulation performs worst when using a longer period of historical data, which is natural
since this would neglect the changes in volatility which occurred during this period. Still the 50 days
stress test only averages at 0.90.
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Just worse than the historical simulation is the analytical approach which uses the assumption of
normal distribution for each underlying risk factor. Although it averages reasonably well at the 500
days back-test it falls through at the 106 days stress-test in the same way as the historical simulation.
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Figure 6-7 Coverage at 95% VaR for both back-test and stress-test period.

The performance at the 99% VaR clearly favours the MC student t with 3 degrees of freedom as it
performs just around 0.99 even in the stress-test period. Although it seems to overestimate when
only using 50 days as the historical period, with 250 days it performs very well averaging at 0.99 in
the stress-test period with minimum at 0.972 (portfolio C). Still when considering the numbers it
seems the method overestimates 3 of 5 portfolios (B, D, E) as it has a 100% coverage.
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Figure 6-8 Coverage at 99% VaR for both back-test and stress-test period.
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This overestimation is however corrected by the other alternatives of MC student t by their higher
degree of freedom. With a historical period of 50 days both MC student t 7 and MC student t auto
performs well with coverage averaging at 0.99 (minimum 0.982 and maximum 0.998). Both also
achieve good results for the stress-test period.

MC delta-gamma also has a high coverage at 99% VaR and performs best with 250 days as the
historical period. Similar to the student t with 3 degrees of freedom it overestimates VaR for
portfolio B and E, but performs strongly on the 3 other portfolios.

Both the analytical and the historical estimate perform fairly well at the full 500 back-test averaging
at 0.97. Nevertheless they fall through for the stress-test period where their best performance (with
50 historical days) average at 0.94.

Figure 6-9 to Figure 6-13 display the back-test and the stress-test for every portfolio at 95% VaR
when used with a historical period of 250 days. The appendix also includes figures for every method
compared as well as for the historical period of 50 days.
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Figure 6-11 Coverage at 95% VaR for portfolio C estimated

Figure 6-12 Coverage at 95% VaR for portfolio D
with 250 historical days.
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Figure 6-13 Coverage at 95% VaR for portfolio E
estimated with 250 historical days.

6.4 Relative bias

To examine how the different VaR-methods perform relative to each other the relative bias
compares the VaR-estimate of a method to the average VaR-estimate of all methods. If a method’s
VaR-estimate equals the average of the VaR-estimates it will have a factor of 0. A positive factor
indicates that the average is bigger (with a higher loss) than the VaR-estimate and a negative factor
indicate the opposite (the VaR-estimate indicates a higher loss than the average).

The box-and-whisker graph displays the median, first and third quartile as the boxes, with the
whiskers marking the lower and higher limits of the interval at a maximum of 1.5 times the
interquartile range. Furthermore the average is marked by a diamond.

As seen in Figure 6-14 to Figure 6-17 the MC student t with 3 degrees of freedom is closest to the
average estimate. In addition the VaR-estimate of MC delta-gamma seems to be overestimated as it
is on average 1.1 times as big as the average estimate. The other methods are slightly lower than the
average estimate.

This is also confirmed in the majority of the portfolios as the MC delta-gamma is in many cases
overestimating VaR, and MC student t 3 df always is somewhere between the delta-gamma method
and the other estimates. Eventually this also leads to the MC student t 3 df being negative (and thus
estimating VaR to be bigger than the average), like in portfolio D, see Figure 6-16 and Figure 6-17.

The only deviating portfolio was portfolio C and this was especially evident when using only 50 days
of historical data. Here both historical simulation and student t 3 df were estimating VaR higher than
the average, and both student t 7 df and student t auto were estimating at the average.

Also evident in these figures are the spread of estimates compared to the average. Both historical
simulation, delta-gamma and student t 3 df has bigger spreads than the other methods. Still the
graph does not include outliers due to high number of outliers.

These differences are also clearly evident from a graph of the estimated VaR by the methods over
the back-test period. As seen in Figure 6-18 the MC delta-gamma method is situated below the other
methods in the first 400 days before it gradually reduces towards the other methods. The very high
VaR and increase in VaR during these first 400 days is a result of the high and increasing value of the
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portfolio (see Figure 4-1) combined with a high correlation between the underlying risk factors (see
Table 4-3). Since the fall in portfolio value in the latest 100 days the VaR-estimate has decreased.
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Figure 6-14 Box-and-whiskers diagram: Deviation from
average for 95% VaR-estimates in portfolio A at 50
historical days.
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Figure 6-16 Box-and-whiskers diagram: Deviation from
average for 99% VaR-estimates in portfolio D at 50
historical days.
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Figure 6-15 Box-and-whiskers diagram: Deviation from
average for 95% VaR-estimates in portfolio A at 250
historical days.
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Figure 6-18 VaR-estimates over back-test period.

6.5 Size of error

It is important to know by what factor the actual change in the portfolio can outdo the VaR-estimate.
This is done by comparing the actual change to the VaR-estimate for the times the VaR-estimate
failed to cover the real change.

The box-and-whiskers diagrams presented in Figure 6-19 to Figure 6-23 review this for each portfolio
at a 95% VaR-estimate with a 250 historical data period. Here the outliers are included and marked
by dots.

The averages of the excess loss are for all methods practically the same in every portfolio. The only
deviation comes from MC delta-gamma which for portfolio D and E only has small excess loss.

The boxes (measuring the difference between 3" and 1% quartile) are all of equal size, except for the
MC delta-gamma which generally has smaller boxes. Some deviations in the size of the boxes occur
from portfolio to portfolio but these are only minor.

The biggest differences when comparing these numbers are the maximum excess loss, which follows
the observations seen earlier. MC delta-gamma has very low maximum excess loss due to its high
coverage. The student t 3 which performs best of the other methods has a lower maximum excess
loss, while both the analytical approach and the historical simulation performs worst with the highest
excess loss for most portfolios. This can be seen by the outliers of the figures.

The appendix also includes graph of 99% VaR with 250 historical days, as well as 95% and 99% VaR
with 50 days of historical data. These show similar trends, although 99% VaR for portfolio C with 50
historical days deviated from the rest as MC delta-gamma performs worst with most and biggest
outliers. However at 250 days MC delta-gamma performs as normal.
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Figure 6-19 Box-and-whisker diagram: Excess loss when
95% VaR-estimate fails for portfolio A at 250 days of
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Figure 6-21 Box-and-whisker diagram: Excess loss when
95% VaR-estimate fails for portfolio C at 250 days of

historical data.
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Figure 6-20 Box-and-whisker diagram: Excess loss when 95%
VaR-estimate fails for portfolio B at 250 days of historical

data.
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Figure 6-23 Box-and-whisker diagram: Excess loss when 95% VaR-
estimate fails for portfolio E at 250 days of historical data.

6.6 Tail size

Another measure to test the tail is to compare the mean excess loss with the estimated VaR. This is
done by calculating the average estimate bigger than the estimated VaR. This test was performed on
the Monte Carlo methods as well as the historical simulation.

Figure 6-24 identifies several key characteristics about the tail events simulated by the different
methods. Firstly the MC student t 3 has the highest spread, meaning that its estimate is the most
volatile and has the highest uncertainty. The figure therefore confirms the findings in section 6.2.1
Monte Carlo Convergence and section 6.2.2 Student t comparison (see Figure 6-3).

Furthermore the MC delta-gamma has the smallest spread which is a result of the high collection of
samples around the estimated VaR as one of the key characteristics of the delta-gamma
approximation and its importance sampling.

Another important note is that the historical simulation has the smallest multiple average meaning
that its tail is thin. This is a confirmation of the thin tail of the historical simulation’s distribution, and
may lead to underestimation of VaR, especially at 99%.

Figure 6-25 displays the same result but for 95% VaR. The figure shows the same trend, but with a
slightly higher factor due to the fact that there is more of the tail left for a 95% estimate compared to
the 99% estimate.

The same results appear regardless of the number of historical days used in the estimation. Also the
trend is confirmed for the same test for the other portfolios.
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Figure 6-24 Box-and-whisker diagram: Mean excess loss for portfolio A at 99% VaR.
2 -

| FF =+ | = T | =

Multiplication factor
[EnY

0 T T T T T

MC Student t (3, MCStudentt(7, MCStudentt MC delta-gamma Historical
1000) 1000) (auto, 1000) (1000) Simulation

Figure 6-25 Box-and-whisker diagram: Mean excess loss for portfolio A at 95% VaR.

The maximum excess loss compares the worst outcome estimated by the method to the estimated
VaR. This measures the multiple of the far end of the distribution’s tail, and as seen in Figure 6-26
and Figure 6-27 it varies most for MC student t 3 due to its low convergence and high volatility in the
estimation. Additionally MC delta-gamma has the biggest multiple when considering the 99% VaR,
but is outdone by the MC student t 3 at the 95% VaR.

As with the mean excess loss the MC delta-gamma method has the lowest spread for the maximum
excess loss. This underlines the method’s good features due to its importance sampling.

The historical simulation further confirms its small tail as it has the lowest maximum excess loss
multiple for both the 95% VaR and the 99% VaR.
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Figure 6-26 Box-and-whisker diagram: Max excess loss for portfolio A at 99% VaR.
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Figure 6-27 Box-and-whisker diagram: Max excess loss for portfolio A at 95% VaR.

The figures are representative for all portfolios as they show similar trends.

6.7 Correlation with portfolio

By examining the correlation between the VaR-estimate of the methods and the actual portfolio
change it is possible to say something about the method’s ability to adjust to changes in risk over
time. The correlation is independent of the portfolio’s scale and can easily be interpreted.

As seen in Figure 6-28 the correlation tend to be bigger when used with a short historical period as
the estimates based on 50 historical days all produces a higher correlation than when using either
250 or 750 days. Still only the historical simulation produces a somewhat significant correlation as it
averages at 0.15 with a maximum correlation of 0.25.

The differences between the correlation of 99% VaR and 95% Var are insignificant and therefore only
95% VaR is displayed.
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Figure 6-28 Correlation between actual portfolio change and VaR-estimates.
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More interestingly are the strong correlation between the scale of the portfolio’s value and the
estimate of VaR. As already noted in Figure 6-18 the estimate by MC delta-gamma is reduced
significantly when the portfolio’s value is reduced. This correlation is confirmed by the correlation
test between the size of the VaR-estimate and the size of the portfolio, see Figure 6-29.
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Figure 6-29 Correlation between portfolio value and VaR-estimates.

The correlation between portfolio value and size of VaR-estimate is especially clear when using a long
historical period. However for MC delta-gamma it is strong for every size of the historical period.

6.8 Time concerns

One of the major challenges for the Monte Carlo methods is the number of runs needed to create an
accurate simulation and estimate. These issues are tried solved with the delta-gamma approximation
in order to achieve an importance sampling which will lead to faster convergence (as proved in 6.2.1
Monte Carlo convergence), and thus require less runs for an accurate estimate.

The time test is performed by doing 100 estimates of the same VaR and Figure 6-30 displays the
average of these 100 estimates.

As is clearly evident the Monte Carlo student t (with a 1000 runs) needs by far most time to achieve a
result. What is furthermore disturbing is that even at a 1000 runs the student t method does not
seem to converge (see section 6.2.1).

The delta-gamma method performs much faster than the student t method and also has a faster
convergence. Still at only a 100 runs the convergence would be better than for the student t method,
and at this low number of runs the delta-gamma would be as quick as the historical simulation
method.

The fastest method is the analytical approach which uses virtually no time to estimate VaR even at 72
underlying risk factors.
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Figure 6-30 Time test of the methods displaying average time to calculate VaR at different sizes of the portfolio.

6.9 Underlying distributions

One of the key advantages with Monte Carlo simulation of VaR is the possibility to produce a plot for
the simulated distribution. Figure 6-31 displays a typically scenario for a simulation with Monte Carlo
with delta-gamma (dark violet: 95% VaR, violet: 99% VaR), student t (red: 3 degrees of freedom (df)
and green: 7 df,) historical simulation (blue) and the analytical or normal distribution (cyan).

Due to the importance sampling achieved with the delta-gamma approximation the simulated
scenarios created by MC delta-gamma have higher collection of outcomes close to the wanted
percentile. This ensures as shown in section 6.2.1 Monte Carlo convergence a higher precision due to
its low variance. Furthermore, as described in section 3.3.3.5 Monte Carlo delta-gamma the desired
percentile is now the expected value as it is the 50" percentile. While the estimated VaR for every
other method is found by examining the 5% cumulative percentile, the delta-gamma method uses
the likelihood ratio and produces outputs around VaR as its most common output.

Figure 6-31 presents the 95% VaR estimates by each method by a dotted line. Both the analytical
estimate and the estimate by the historical simulation are comparatively low just over 50 000. The
two student t methods follow with the student t with 3 degrees having the highest VaR of the two.
The biggest VaR at 95% is estimated by MC delta-gamma at around 90 000.

Figure 6-31 also displays where the 99% VaR is found for MC delta-gamma. This can be compared to
where the 99% VaR is found for the alternative methods at the 1** percentile of their cumulative
graphs. While delta-gamma had the biggest VaR estimate at 95% it is outdone by the student t with 3
degrees of freedom at the 99% VaR estimate. Student t with 7 degrees of freedom ends up between
delta-gamma and the historical simulation. The historical simulation and the analytical approach are
still very close at 99% VaR.

As noted in section 6.6 Tail size the historical simulation has the thinnest tail of the distributions. This
is also confirmed by Figure 6-31 as the curve of the historical simulation is steepest around 0 change
in portfolio. Although the sharpness in this estimate is not general for every estimate, in this estimate
even the analytical approach has a fatter tail than the historical simulation.
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Figure 6-31 Distributions of VaR-estimates for 31.12.2008 for portfolio A estimated with 250 historical days.
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7. Summary and conclusion

The objective of this thesis is to consider Monte Carlo estimation of Value at Risk (VaR) and compare
it to the historical simulation and analytical estimation. VaR has been a widely used estimate for
companies and institutions to valuate the risk in a portfolio of assets and this thesis compares the
methods empirically with a portfolio of oil products.

The estimation of Value at Risk (VaR) is complicated and involves many factors and their correlation.
It defines the worst case scenario within a certain confidence level over a specified time horizon. This
introduces the two parameters of a VaR: its confidence level and time horizon.

VaR can be further defined by asking a simple question: How much is it possible to lose within a
certain time period at a certain significance level?

P(L >xp) =p

The methods for estimating VaR has been criticised recently by the Turner Review which evaluates
the reasons for the financial crisis. One of the deficiencies used to explain the risk positive financial
market in the booming years was the reliance on a deceitful Value at Risk (VaR) estimate. The flaws
of VaR helped create more risk as years of low volatility encouraged more risk due to its procyclical
character. In addition the assumption of normal distributed products used in most VaR models
underestimated the fat tails empirically confirmed.

Statoil Hydro ASA also experienced underestimation during the extremely volatile period after the
summer of 2008. Such periods of high volatility is not uncommon in the oil market as it shifts
between periods of relatively calm and periods of high volatility. It is therefore important to find a
VaR method which can adjust to these changes rapidly.

This thesis has discussed why the oil market and oil price plummeted during the fall of 2008. While
much of the historical price shifts has happened due to some exogenous incident, this shift came as a
result of a sharp reduction in demand as a consequence of the financial crisis.

To incorporate such shifts it was decided to examine a Monte Carlo method as an alternative to
today’s historical simulation for VaR estimation. Thus this thesis includes two Monte Carlo methods:
One based on student t for the underlying risk factors while the second uses delta-gamma
approximation to achieve importance sampling. In addition the historical simulation which calculates
VaR on the basis of historically scenarios and an analytical approach which uses normality
assumption for the underlying risk factors were implemented for comparison.

7.1 Conclusion

Throughout this thesis several alternatives to estimate VaR has been implemented and tested. As
presented in section 6.3 Coverage the analytical approach and historical simulation tends to
underestimate VaR (especially in the stress-test), Monte Carlo delta-gamma tends to overestimate
VaR (although not in the stress-test). The best performance was seen by the Monte Carlo student t
which in most cases performed best with 3 degrees of freedom at 95% VaR, while for the 99% VaR
both student t 7 and the student t auto performed better. The added flexibility of adjusting the
degree of freedom according to the risk in a portfolio this method therefore ensures added value.

Both the historical simulation and analytical approach failed the stress-test averaging below 0.90 for
the 95% VaR and below 0.95 for the 99% VaR even with the smallest historical period.
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The student t 3 was the estimate closest to the average of the compared methods and thus had the
lowest relative bias, see section 6.4. For this criterion the overestimation of delta-gamma compared
to the other methods was clear as it had by far the biggest relative bias. The other methods were
slightly underestimating VaR compared to the average.

Furthermore the student t with 3 degrees of freedom performed best when comparing the size of
error for each method. While the delta-gamma method had the lowest average due to its abnormally
high coverage, the student t 3 had a healthy coverage and the size of error were kept at a small rate
with few outliers (see section 6.5 Size of error).

In the majority of the cases the shorter historical period demonstrated the best performance.
However for the hedged portfolio C the best historical period for Monte Carlo delta-gamma and
student t 3 was 250 days.

As further concluded in section 6.3 Coverage the Monte Carlo student t with 3 degrees of freedom
together with Monte Carlo delta-gamma has the best coverage for the 95 % VaR. Furthermore for
the 95% VaR these methods should be combined with a short historic period, e.g. 50 days, in order to
get an optimal coverage. However for 99% VaR they should be implemented with a longer historical
period, e.g. 250 days. For student t with 3 degrees of freedom this will avoid overestimating VaR to
some degree, while for delta-gamma this will ensure better and more balanced coverage.

While the Monte Carlo student t performed very well it has a major issue concerning both time and
convergence. Due to the numerous calculations necessary before a simulation the method consumes
more time than the other methods. Furthermore as proved in section 6.2.1 Monte Carlo
convergence, due to its variance MC student t needs at least 10 times the runs to converge
compared to the delta-gamma method. This can prove a problem for large portfolios with hundreds
of underlying factors, as seen in section 6.8 Time concerns.

The underlying distribution displayed by the delta-gamma method proves that it is an efficient
method to estimate VaR. Even though the method seems to overestimate VaR, the historical
problem according to the Turner Review has been the underestimating of VaR. In this thesis the
underlying risk factors were highly correlated (see section 4.3 Correlation) which caused delta-
gamma to estimate a relatively high VaR. Still the reduction in the portfolio value seen in 2008
caused the estimate of VaR by delta-gamma to decrease as a result of its high correlation with the
portfolio value (see section 6.7 Correlation with portfolio).

7.2 Further work

The results seen in this thesis further advocates the development of efficient and accurate Monte
Carlo methods. Both the delta-gamma method and the student t method have proved its advantages
as the delta-gamma is highly correlated with portfolio value, adjusts well to the correlation between
the underlying risk factors and converges fast to an accurate estimate. The student t method has
proved flexible with its degree of freedom and had the best coverage of all methods in this thesis as
VaR estimates with student t 3/7 covered just above 95% for 95% VaR and around 99% at 99% VaR.
Even in the most difficult period of the last 6 months of 2008 the estimate where effective for all
portfolios.

As seen in section 4.2 the underlying risk factors all have different degrees of freedom when
calculated based on the historical data. A further improvement could therefore be achieved by
utilizing a t copula which can differentiate the degree of freedom used for each risk factor.
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However as section 6.8 Time concerns concludes the amount of time needed to calculate necessary
inputs for the multivariate student t distribution can be a factor when the number of underlying risk
factors is increased. Furthermore Monte Carlo student t has proven to be more inefficient as it needs
more runs to converge to an estimate. Compared to the delta-gamma method which already
converges at around 100 runs, the Monte Carlo student t needs at least 10 times more runs to
converge.

It has been proven by Glasserman, Heidelberger and Shahabuddin (2002) that the heavy weighted
tails of the underlying risk factors can be modelled by a multivariate student t distribution combined
with the importance sampling achieved with the delta-gamma approximation. By combining the
good characters of the delta-gamma method and the flexibility and accuracy of student t this can
prove a more efficient and accurate method.

Moreover GHS (2002) recommends combining importance sampling with stratified sampling
(presented in section 3.3.3.4 Variance reduction techniques). This further increases efficiency by 3 to
4 times in their portfolios.
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Appendix A - Source code

The source code appendix is divided in three parts:

- Classes
- User Form
- Matrix algebra

The first part includes the Product class used for the underlying risk factors and the VaRestimate
class used to estimate VaR and other key characteristics simultaneously. The user form includes
every method implemented in this thesis as well as necessary code to interact with the user. Finally
some of the necessary matrix algebra is presented.

All code is written in Visual Basic for Applications (VBA).

A.1 Classes

Product class

Option Base 1

Private pName As String
Private pWeight As Double
Private pWeightUSD As Double
Private pAvg As Double

Private pstandardDev As Double
Private pMax As Double

Private pMin As Double

Private pMedian As Double
Private pQuartilel As Double
Private pQuartile3 As Double
Private pObservations As Integer
Private pKurtosis As Double
Private pData As Range

Private pPrcChange() As Double
Private pPrc As Range

® Set initial values with range
" calculate mean, averages, etc when inputing Range.
Public Sub setInitValues(Value As Range, first As Boolean, namelnput As String,
weightslinput As Double)
Dim X As Range

IT First Then
name = Value.Cells(l1, 1)
weight = Value_Cells(2, 1)
Set X = Value.Offset(2, 0).Resize(Value.Rows.count - 2, _
Value.Columns.count)
Else
name = namelnput
weight = weightslnput
Set X = Value
End If
Set Data = X "".Offset(l, 0).Address(0, 0) ~"_.Resize(-1, 0)
ReDim pPrcChange(1 To (Data.Rows.count) - 1) ""-1
setPrcChange X
Average = Application.WorksheetFunction.Average(pPrcChange)
standardDev = Application.WorksheetFunction.StDev(pPrcChange)
Min = Application._WorksheetFunction_Min(pPrcChange)



Max = Application.WorksheetFunction.Max(pPrcChange)

Quartilel =
Quartile3
WeightUSD
Observation

Kurtosis = Application.WorksheetFunction.Kurt(pPrcChange)

End Sub

Public Sub addT

Sheets(*'Sum
Range("'A1™)
I pCounter
ActiveC
ActiveC
ActiveC
ActiveC
ActiveC
ActiveC
ActiveC
ActiveC
ActiveC
ActiveC
ActiveC
ActiveC
ActiveC
ActiveC
ActiveC
Range ("
End If
ActiveCell.
ActiveCell.
ActiveCell.
ActiveCell.
ActiveCell.
ActiveCell.
ActiveCell.
ActiveCell.
ActiveCell.
ActiveCell.
ActiveCell.
ActiveCell.
ActiveCell.
ActiveCell.
ActiveCell.
ActiveCell.
pCounter =
End Sub

Public Property
name = pNam
End Property
Public Property
pName = Val
End Property

Public Property
weight = pW

Appendix A — Source Code

Application.WorksheetFunction.Quartile(pPrcChange, 1)
Application._WorksheetFunction.Quartile(pPrcChange, 3)

weight * Data(Data.Rows.count)
s = Data.Rows.count

oSummary(pCounter As Integer)

mary') .Select
.Select
= 0 Then
ell .FormulaR1Cl = "Products"

ell _Offset(0, 1).Range('Al™).Select

ell _FormulaR1Cl = "Weight"

ell _Offset(0, 1).Range('A1l™).Select

ell_FormulaR1Cl = "Average™

ell _Offset(0, 1).Range('A1l™).Select

ell .FormulaR1Cl1l = "'Stdev"

ell _Offset(0, 1).Range('A1l™).Select

ell .FormulaR1Cl = "Max""

ell _Offset(0, 1).Range('A1™).Select

ell .FormulaR1Cl = "Min"

ell _Offset(0, 1).Range('A1l™).Select

ell .FormulaR1Cl = "1st Quartile”
ell _Offset(0, 1).Range('A1l™).Select
ell _FormulaR1Cl1l = "3rd Quartile"
A1) .Select

Offset(pCounter + 1, 0).Range("'Al™).Select

FormulaR1Cl1l = name

Offset(0, 1).Range('Al™).Select
FormulaR1Cl = weight

Offset(0, 1).Range('Al™).Select
FormulaR1Cl = Average

Offset(0, 1).Range('Al™).Select
FormulaR1Cl1l = standardDev
Offset(0, 1).Range('Al™).Select
FormulaR1Cl = Max

Offset(0, 1).Range("'Al').Select
FormulaR1Cl = Min

Offset(0, 1).Range("'Al').Select
FormulaR1Cl1l = Quartilel
Offset(0, 1).Range("'Al').Select
FormulaR1Cl1l = Quartile3
pCounter + 1

Get name() As String
e

Let name(Value As String)
ue

Get weight() As Double
eight



164
165
166
167

169
170
171
172
173
174
175
176
177
178

End Property

Public Property Let weight(Value As Double)
pWeight = Value

End Property

Public Property Get WeightUSD() As Double
WeightUSD = pWeightUSD

End Property

Public Property Let WeightUSD(Value As Double)
pWeightUSD = Value

End Property

Public Property Get Average() As Double
Average = pAvg

End Property

Public Property Let Average(Value As Double)
pAvg = Value

End Property

Public Property Get standardDev() As Double
standardDev = pstandardDev

End Property

Public Property Let standardDev(Value As Double)
pstandardDev = Value

End Property

Public Property Get Max() As Double
Max = pMax

End Property

Public Property Let Max(Value As Double)
pMax = Value

End Property

Public Property Get Min() As Double
Min = pMin

End Property

Public Property Let Min(Value As Double)
pMin = Value

End Property

Public Property Get Median() As Double
Median = pMedian

End Property

Public Property Let Median(Value As Double)
pMedian = Value

End Property
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Public Property Get Quartilel() As Double
Quartilel = pQuartilel

End Property

Public Property Let Quartilel(Value As Double)
pQuartilel = Value

End Property

Public Property Get Quartile3() As Double
Quartile3 = pQuartile3

End Property

Public Property Let Quartile3(Value As Double)
pQuartile3 = Value

End Property

Public Property Get Observations() As Integer
Observations = pObservations

End Property

Public Property Let Observations(Value As Integer)
pObservations = Value

End Property

Public Property Get Kurtosis() As Double
Kurtosis = pKurtosis

End Property

Public Property Let Kurtosis(Value As Double)
pKurtosis = Value

End Property

Public Property Get Data() As Range
Set Data = pData

End Property

Public Property Set Data(Value As Range)
Set pData = Value

End Property

Public Property Get Prc() As Range
Set Prc = Range(Data.Offset(-1, 0)).Resize(Data.Rows.count - 1, 1) -
Range(Data.Offset(l, 0)).Resize(Data.Rows.count - 1, 1) / Range(Data.Offset(-
1, 0)).Resize(Pata.-Rows.count - 1, 1)
End Property
Public Property Set Prc(Value As Range)
Set pPrc = Value
End Property

Public Sub setPrcChange(Value As Range)
Dim celX As Range
Dim lastX As Double
Dim nextX As Double
Dim counter As Integer
lastX = 0
nextX = 0
counter = 0
For Each celX In Value.Cells
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nextX = celX.Value
If counter <> 0 Then
IT Not lastX = O Then
pPrcChange(counter) = (nextX - lastX) / lastX
Else
pPrcChange(counter)
End If
End If
lastX = nextX
counter = counter + 1
Next celX
End Sub

0

Property Get PrcChange(index As Long) As Double
PrcChange = pPrcChange(index)
End Property

Property Let PrcChange(index As Long, inValue As Double)
pPrcChange(index) = invalue
End Property

Property Get getDataAt(ind As Integer) As Double
Dim tmp As Variant
ReDim tmp(Data.Rows.count - 1)
tmp = Data
X = tmp(ind, 1)
getDataAt = X
End Property

Property Get getRangeOfData(start As Integer, sEnd As Integer) As Variant
Dim tmp As Variant
ReDim tmp(sénd - start, 1)
For 1 = start To sEnd - 1
tmp(i - start + 1, 1) = Data(i, 1)
Next i
getRangeOfData = tmp
End Property

Property Get CalculateDelta() As Double

CalculateDelta = getDataAt(Observations) * weight
End Property

VarEstimate class

Option Base 1

Private pVaR As Double

Private pConfHigh As Double
Private pConfLow As Double
Private pMeanExcessLoss As Double
Private pMaxLoss As Double

Public Property Get VaR() As Double
IT (IsNumeric(VaR) = False) Then

VaR = 0
Else

VaR = pVaR
End If

End Property

Public Property Let VaR(Value As Double)
pvaR = Value

End Property
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Vi

" Confidence high

Appendix A — Source Code

property

Public Property Get ConfHigh() As Double
ConfHigh = pConfHigh

End Property

Public Property Let ConfHigh(Value As Double)
pConfHigh = Value

End Property

Public Property Get ConfLow() As Double
ConfLow = pConfLow

End Property

Public Property Let ConfLow(Value As Double)
pConfLow = Value

End Property

Public Property Get MeanExcessLoss() As Double
MeanExcessLoss = pMeanExcessLoss

End Property

Public Property Let MeanExcessLoss(Value As Double)
pMeanExcesslLoss = Value

End Property

Public Property Get MaxLoss() As Double
MaxLoss = pMaxLoss

End Property

Public Property Let MaxLoss(Value As Double)
pMaxLoss = Value

End Property

Public Sub Copy(ByVval X As VarEstimate)
ConfLow = X.ConfLow
ConfHigh = X.ConfHigh
MaxLoss = X.MaxLoss

MeanExcessLoss
VaR = X.VaR
End Sub

A.2 UserForm

= X.MeanExcesslLoss

Declarations and interaction with user

Option Base 1

Public Products As Collection
Public ProductsBack As Collection

Public CorrelM As

Object

Const MAXROWS = 65536 ""USE 1048576 if Excel 2007

Const MAXDF 15

Const CONSTALPHA =

Const CONSTDF = 3

""defines maximum degree of freedom used in student t-
distributions
0.01
" "degree of freedom

Const CONSTBACKTEST = O

Const CONSTRUNS =
Const CONSTDAYS =

"*® Cancel button

100
250 ""historical period



Private Sub CommandButtonl_ Click()
End
End Sub

""Previous button

Private Sub CommandButton2_Click()
Dim i As Long
i = MultiPagel._Value - 1

IT 1 >= 0 Then
MultiPagel.Value = i

End If
End Sub

" "Next button
Private Sub CommandButton3_Click()
Dim i As Long

i = MultiPagel.value + 1

IT 1 < MultiPagel.Pages.count Then

MultiPagel.Value = 1

End If
End Sub

" Finish button
Private Sub CommandButton4_Click()
On Error Resume Next
IT (Products.count = 0) Then
UserForml.Hide()
Exit Sub
End 1If

Application.ScreenUpdating = False

""set default values:

Dim alpha As Double, numberOfRuns As Integer
Dim numberOfDays As Integer, numberOfBacktest As Integer, df As Integer

Dim cLevel As Double

IT IsNumeric(txtAlpha.Value) Then

alpha = txtAlpha.Value
Else

alpha = CONSTALPHA
End If

IT IsNumeric(txtRuns.Value) Then
numberOfRuns = txtRuns.Value

Else
numberOfRuns = CONSTRUNS
End If

IT IsNumeric(txtPeriod.Value) Then
numberOfDays = txtPeriod.Value

Else
numberOfDays = CONSTDAYS
End 1If

IT IsNumeric(txtBacktest.Value) Then
numberOfBacktest = txtBacktest.Value

Else

numberOfBacktest = CONSTBACKTEST

End If

IT IsNumeric(txtDF.Value) Then
df = txtDF.Value

Else
df = CONSTDF

End If

""First check if it is a backtest

Vii



viii

IT N

Else
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ot numberOfBacktest = 0 Then
Call BackTest(numberOfDays, numberOfRuns, alpha, numberOfBacktest, df,
cLevel)

Dim anVar As VarEstimate, MCNormal As VarEstimate, MCStudentT As
VarEstimate

Dim MCDeltaGamma As VarEstimate, HisSim As VarEstimate

anVar = New VarEstimate

MCNormal = New VarEstimate

MCStudentT = New VarEstimate

MCDeltaGamma = New VarEstimate

HisSim = New VarEstimate

""check what methods to run
IT chkAnalytical .Value = True Then
Call anvar.Copy(AnalyticalVaR(alpha, CorrelM, Products, clLevel))
End If
IT chkHistoric.Value = True Then
Call HisSim.Copy(HistoricalSim(alpha, Products))
End If
IT chkMCNormal .Value = True Then
Call MCNormal .Copy(MonteCarlo(alpha, numberOfRuns, CorrelM, Products,
df, True, chkAutoDF.Value))
End If
I chkMCStudentT.Value = True Then
Call MCStudentT.Copy(MonteCarlo(alpha, numberOfRuns, CorrelM, Products,
df, False, chkAutoDF.Value))
End If
IT chkMCNormalIS.Value = True Then
Call MCDeltaGamma.Copy(DeltaGamma(alpha, numberOfRuns, CorrelM,
Products))
End If

""print data to VaR-sheet.

AddSheet(*'VaR™)

ClearSheet(*'VaR™)

Sheets(""'VaR™) .Select()

Range("'A1'™) .Select()

ActiveCell _FormulaR1Cl1 = "'

ActiveCell .Offset(l, 0).Range(""Al™).Select()
ActiveCell _FormulaR1Cl1l = "VaR"™

ActiveCell .Offset(l, 0).Range(""'Al™).Select()

ActiveCell _FormulaR1C1l = "'Mean excess loss"
ActiveCell .Offset(l, 0).Range(""Al™).Select()
ActiveCell .FormulaR1C1l = "Max loss"

Range("'A1'™) .Select()
ActiveCell .Offset(0, 1).Range('Al™).Select()
ActiveCell _FormulaR1C1 = "Analytical VaR"
ActiveCell .Offset(0, 1).Range('Al™).Select()
ActiveCell _FormulaR1Cl1l = ""MC Normal (' & numberOfRuns & ")"
ActiveCell .Offset(0, 1).Range('Al™).Select()
IT (chkAutoDF.Value = True) Then
ActiveCell .FormulaR1Cl = "MC Student t (auto, " & numberOfRuns & ")"
Else
ActiveCell .FormulaR1Cl = "MC Student t (" & df & ™, " & numberOfRuns &

)
End If
ActiveCell .Offset(0, 1).Range("Al").Select()
ActiveCell .FormulaR1Cl = "MC Delta-gamma ("' & numberOfRuns & ')"
ActiveCell .Offset(0, 1).Range("Al").Select()
ActiveCell .FormulaR1Cl = "Historical simulation (" & numberOfDays & )"

ActiveCell .Offset(l, -4).Range("'Al™).Select()
ActiveCell _FormulaR1Cl1l = anVar.VaR

ActiveCell .Offset(0, 1).Range(""Al™).Select()
ActiveCell _.FormulaR1Cl1l = MCNormal.VaR
ActiveCell .Offset(0, 1).Range("'Al'™).Select()
ActiveCell .FormulaR1C1l = MCStudentT.VaR



153 ActiveCell .Offset(0, 1).Range('Al™).Select()
154 ActiveCell .FormulaR1Cl = MCDeltaGamma.VaR

155 ActiveCell .Offset(0, 1).Range("Al™).Select()
156 ActiveCell .FormulaR1C1 = HisSim.VaR

157

158 ActiveCell .Offset(1, -4).Range('Al").Select()
159 ActiveCell .FormulaR1C1l = anVar.MeanExcessLoss
160 ActiveCell .Offset(0, 1).Range("'Al1™).Select()
161 ActiveCell .FormulaR1C1l = MCNormal .MeanExcessLoss
162 ActiveCell .Offset(0, 1).Range("'Al1"™).Select()
163 ActiveCell .FormulaR1Cl = MCStudentT.MeanExcessLoss
164 ActiveCell .Offset(0, 1).Range('Al1"™).Select()
165 ActiveCell .FormulaR1C1l = MCDeltaGamma.MeanExcessLoss
166 ActiveCell .Offset(0, 1).Range("Al1™).Select()
167 ActiveCell .FormulaR1Cl1l = HisSim.MeanExcessLoss
168

169 ActiveCell .Offset(1l, -4).Range("'Al™).Select()
170 ActiveCell .FormulaR1C1l = anVar.MaxLoss

171 ActiveCell .Offset(0, 1).Range("'Al™).Select()
172 ActiveCell .FormulaR1C1l = MCNormal .MaxLoss

173 ActiveCell .Offset(0, 1).Range("'A1"™).Select()
174 ActiveCell .FormulaR1C1l = MCStudentT.MaxLoss
175 ActiveCell .Offset(0, 1).Range("'Al™).Select()
176 ActiveCell.FormulaR1C1l = MCDeltaGamma.MaxLoss
177 ActiveCell .Offset(0, 1).Range("'Al™).Select()
178 ActiveCell _.FormulaR1C1 = HisSim.MaxLoss

179 ActiveCell .Offset(0, 1).Range("'Al1™).Select()
180 Range('Al™) .Select()

181 End If

182 UserForml.Hide()

183 End Sub

184

185 ""select button
186 Private Sub btnSelectAreas_Click()

187

188 Application.ScreenUpdating = True

189 Dim VarRange As Range, subArea As Range, AreasStr As String
190 "—— initial selection area(s) will be used as suggestion
191 On Error Resume Next

192 VarRange = _

193 Application. InputBox(*'Choose assets (include titles and data):", _
194 "Choose assets', Selection.Address(0, 0), Type:=8)
195 On Error GoTo O

196 If VarRange Is Nothing Then Exit Sub

197 VarRange = Range(ColumnLetter(VarRange.Column) & VarRange.Row,
198 Range(ColumnLetter(VarRange.Column + VarRange.Columns.count - 1) &
199 MAXROWS) . End (x1Up))

200

201 Application.ScreenUpdating = False

202

203 Dim c As Integer

204 c=0

205

206 DeleteEmptyRows(VarRange)

207

208 Dim p As Product

209

210 Products = New Collection

211

212 Dim cStart, cEnd As Integer

213 cStart = VarRange.Column

214 cEnd = cStart + VarRange.Columns.count

215

216 StatusLabel = "Adding products and calculating properties.”
217

218 AddSheet(''Summary'")

219 ClearSheet("'Summary')

220 ""iterate columns and add as product.
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While (cStart < cEnd)
p = New Product
Dim X As Range
X = VarRange.Offset(0, cStart -
VarRange .Column) .Resize(VarRange.Rows.count, 1)

Dim s As String
s = "nada"
Dim dd As Double
dd = 1.0#
Dim bABC As Boolean
bABC = True
Call p.setlnitvValues(X, bABC, s, dd)
Products.Add(p)
p-.addToSummary(cStart - VarRange.Column)
cStart = cStart + 1
End While

StatusLabel = "Calculating correlation matrix."

""add the correlation matrix
Sheets(*'Summary') .Select()
Range("'A1'™) .Select()
Selection_End(xIDown) .Select()
ActiveCell .Offset(4, 0).Range(""Al™).Select()
ActiveCell .FormulaR1C1l = "Correlation matrix"
For i = 1 To Products.count
ActiveCell .Offset(1l, 0). Range( ‘A1) _Select()
ActiveCell _.FormulaR1C1 = """ &
Next i
Range("'A1'™) .Select()
Selection.End(xIDown) .Select()
ActiveCell .Offset(4, 0).Range("Al").Select()
ActiveCell _FormulaR1C1 = "Correlation matrix"
For i = 1 To Products.count
ActiveCell .Offset(0, 1). Range( ‘A1l .Select()
ActiveCell _FormulaR1Cl = & 1
Next i

Range("'A1'™) .Select()
Selection.End(xIDown) .Select()
ActiveCell .Offset(4, 0).Range(""'Al™).Select()

ReDim CorrelM(1 To Products.count, 1 To Products.count)
For i = 1 To Products.count
Dim pl As Product
pl = Products(i)
For j = i To Products.count
IT 1 =J Then
""return 1
CorrelM(i, j) =1
Else
Dim p2 As Product
p2 = Products(j)
""return correlation between ranges

CorrelM(i, j) = Application._WorksheetFunction.Correl(pl.Data,

p2.Data)
End If
ActiveCell .Offset(i, j)-Range("Al™).Select()
ActiveCell _FormulaR1Cl = CorrelIM(i, j)
ActiveCell .Offset(-i, -j).Range("Al"™).Select()
ActiveCell .Offset(jJ, i1)-Range("Al").Select()
ActiveCell _FormulaR1C1 = CorrelM(i, j)
ActiveCell .Offset(-j, -i).-Range(’'Al™).Select()
Next j
Next i

StatusLabel = "Finished selecting products.™



289

317
318
319

353
354
355
356

For Each
Ifc

Else

End
C:
Next sub

TextBox1
End Sub

Private Sub
If Multi
Comm

Comm
User

Elself M
Comm
Comm
User

Elself M
Comm
Comm
User

Elself M
Comm
Comm
User
Gene

Else
MsgB

End If
End Sub

Private Sub
UserForm
txtAlpha
txtPerio
txtBackt
txtRuns.

subRange In VarRange.Areas
> 0 Then
AreasStr = AreasStr & ";" & subRange.Address(0, 0)
AreasStr = AreasStr & subRange.Address(0, 0)
It
c+1
Range
-Text = AreasStr

MultiPagel_Change()
Pagel.Value = 0 Then
andButton2_.Enabled = False
andButton3.Enabled = True

Forml.Caption = "VaR: Make selection of products - Step 1 of 4"

ultiPagel.Value = 1 Then
andButton2_.Enabled = True
andButton3.Enabled = True

Forml.Caption = "VaR: Choose methods- Step 2 of 4"

ultiPagel.Value = 2 Then
andButton2.Enabled = True
andButton3.Enabled = True

Forml.Caption = "VaR: Set parameters - Step 3 of 4"

ultiPagel.Value = 3 Then

andButton2.Enabled = True
andButton3.Enabled = False

Forml.Caption = "VaR: Review - Step 4 of 4"
rateReview()

ox("Error: invalid page value™)

UserForm_Initialize()

1_.Caption = "VaR: Make selection of products - Step 1 of 4"

.Value = CONSTALPHA
d.Value = CONSTDAYS
est.Value = CONSTBACKTEST
Value = CONSTRUNS

txtDF.Value = CONSTDF
CommandButton2_Enabled = False
MultiPagel.Value = 0O
End Sub
Private Sub GenerateReview()
Review.Text = "The following methods are chosen:" & vbCrLf
Dim count As Integer
count = 0
IT chkAnalytical .Value = True Then
Review.Text = Review.Text & "Analytical VaR"
count = 1
End If
IT chkHistoric.Value = True Then
IT (count = 0) Then
Review.Text = Review.Text & "Historical simulation™
Else

Review.Text = Review.Text & vbCrLf & "Historical

simulation”

X



384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
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End If
count = 1
End If
IT¥ chkMCNormal .Value = True Then
IT (count = 0) Then
Review.Text = Review.Text & "Monte Carlo normal'’
Else
Review.Text = Review.Text & vbCrLf & "Monte Carlo normal®
End If
count = 1
End If
IT chkMCStudentT.Value = True Then
IT (count = 0) Then
Review.Text = Review.Text & "Monte Carlo student t"
Else
Review.Text = Review.Text & vbCrLf & "Monte Carlo student t"
End If
count = 1
End If
If chkMCNormallS.Value = True Then
IT (count = 0) Then
Review.Text = Review.Text & "Monte Carlo delta-gamma"
Else
Review.Text = Review.Text & vbCrLf & "Monte Carlo delta-gamma™
End If
count = 1
End If

Review.Text = Review.Text & vbCrLf & vbCrLf & "The following parameters are
specified:" & vbCrLfF

Review.Text
Review.Text
vbCrLf
Review.Text
Review.Text
vbCrLf
IT (chkAutoDF.Value = True) Then
Review.Text = Review.Text & "Degree of freedom:" & vbTab & "Auto™
Else
Review.Text = Review.Text & "Degree of freedom:" & vbTab & txtDF.Text
End If

Review.Text & "Alpha level:" & vbTab & txtAlpha.Text & vbCrLf
Review.Text & "Historical period:" & vbTab & txtPeriod.Text &

Review.Text & "Simulation runs:" & vbTab & txtRuns.Text & vbCrLf
Review.Text & "Backtest period:"™ & vbTab & txtBacktest.Text &

End Sub

Methods for estimating VaR

""calculate analytical VaR
""get standard deviation for the multinormal distr.
Public Function AnalyticalvaR(ByVal alpha As Double, ByVval CorrelM As Object, ByVval
ProductsTmp As Object, ByVal cLevel As Double) As VarEstimate
Dim anVar, anVar2 As Double
anvar = 0
For Each p In ProductsTmp
Dim al, varl As Double
al = p.-WeightUSD
varl = p.standardDev
anVar = anVar + ((al * al) * (varl * varl))

Next p
anvar2 = 0
For i1 = 1 To ProductsTmp.count
For jj =1 To ii -1
Dim ai, vari, rho, aj, varj As Double
ai = ProductsTmp(ii).WeightUSD
aj = ProductsTmp(jj) -WeightUSD
vari = ProductsTmp(ii).standardDev
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varj = ProductsTmp(jj) -standardDev
rho = CorrelM(Jj, ii)
anVar2 = anVar2 + ai * aj * vari * varj * rho
Next jj
Next ii

anvVar
anvVar

anvVar + (2 * anvVar2)
Sgr(anvar)

IT Not anVar = 0 Then
anVar = Application._WorksheetFunction_Normlnv((1 - alpha), 0, anVvar)
End If

AnalyticalVaR = New VarEstimate
AnalyticalVaR.vVaR = -anVar
End Function

"“calculate historical simulation
""first copy all pricehistory into a new sheet
""then calculate every possible scenario for a day
""sort the data and find the correct alpha-level VaR
Private Function HistoricalSim(ByVval alpha As Double, ByVal ProductsTmp As Object)
As VarEstimate
AddSheet("'Historical simulation™)
ClearSheet("'Historical simulation ')

Sheets("'Historical simulation ") .Select()
Range("'A1'™) .Select()

ActiveCell _FormulaR1Cl = "Day™
ActiveCell .Offset(0, 1).Range(""Al™).Select()
For Each p In Products
ActiveCell _FormulaR1Cl = p.name
ActiveCell .Offset(0, 1).Range("'Al™).Select()
Next p
ActiveCell _FormulaR1C1 = "Portfolio”
ActiveCell .Offset(1l, -(ProductsTmp.count + 1)) _Range('Al').Select()

Dim pTmp As Product
pTmp = ProductsTmp(1)

Dim i1 As Long
For ii = 1 To pTmp.Observations - 1
Dim Sum As Double
Dim chn As Double
Sum = 0
ActiveCell _FormulaR1Cl = 1ii
ActiveCell .Offset(0, 1).Range("'Al'™).Select()
For Each p In ProductsTmp
chn p-PrcChange(ii) * p.WeightUSD
Sum Sum + chn
ActiveCell _FormulaR1Cl = p.PrcChange(ii)
ActiveCell _Offset(0, 1).Range("Al™).Select()
Next p
ActiveCell _FormulaR1C1l = Sum
ActiveCell .Offset(1l, -(ProductsTmp.count + 1)) _Range(''Al').Select()
Next i

Dim SortCell

Range(*'B1') .Select()

Selection.End(xIToRight) .Select()

SortCell = ActiveCell_Address

Range("'B2'") .Select()

Range(Selection, Selection.End(xIToRight)).Select()

Range(Selection, Selection.End(xIDown)).Select()

Selection.Sort(Keyl:=Range(SortCell), Orderl:=xIDescending, Header:=xlGuess, _
OrderCustom:=1, MatchCase:=False, Orientation:=xITopToBottom, _
DataOptionl:=x1SortNormal)
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“"Display VaR HisSim
Dim VaR As Double
Dim VaRDay As Double
Dim A, b As Double
Dim bWeight As Double
VaRDay = (pTmp.Observations - 1) * (1 - alpha)
Range(SortCell).Select()
bWeight = VaRDay - Application.WorksheetFunction.Floor(VaRDay, 1)
ActiveCell .Offset(Application.WorksheetFunction.Floor(VaRDay, 1),
0) .Range("*A1™) .Select()
A = ActiveCell _.Value
ActiveCell .Offset(l, 0).Range("Al").Select()
b = ActiveCell _Value
BCell = ActiveCell _Address
On Error Resume Next
VaR = (A * (1 - bWeight)) + (b * bWeight)
IT Err.Number > 0 Then
VaR = b
End If

HistoricalSim = New VarEstimate
HistoricalSim.VaR = VaR

""find maximum loss:

Range(SortCell)_Select()

Selection.End(xIDown).Select()

HistoricalSim_MaxLoss = ActiveCell _Value2

HistoricalSim._MeanExcessLoss =
Application._WorksheetFunction.Average(Range(BCell, ActiveCell _Address))
End Function

""call Monte Carlo with simulation of every product
""change in portfolio = sum of changes in products
""use normal assumption with bNormal = True
""use student t distr. with bNormal = False
""use copula-t distr with bDfAuto = true
Private Function MonteCarlo(ByVal alpha As Double, ByVal runs As Integer, ByVval
CorrelM As Object, ByVal ProductsTmp As Object, ByVal df As Integer, ByVal bNormal
As Boolean, ByVal bDfAuto As Boolean) As VarEstimate
Randomize()
Dim p As Product

IT (bNormal = True) Then
AddSheet(**"MCNormal'™)
ClearSheet(""MCNormal')
Sheets(**"MCNormal™) .Select()

Else
AddSheet(**"MC Student t™)
ClearSheet("'MC Student t'")
Sheets(*'"MC Student t").Select()

End If

Range(""'A1™) .Select()

ActiveCell _FormulaR1Cl = "Sim#"

ActiveCell .Offset(0, 1).Range("Al™).Select()

Dim pHistory() As Double
ReDim pHistory(1l To ProductsTmp(l).0Observations - 1)

IT bDfAuto = True Then
last = sumProductValueAtTmp(1l, ProductsTmp)
For i = 1 To ProductsTmp(l).0Observations - 2
""calculate portfolio history
nxt = sumProductValueAtTmp(i + 1, ProductsTmp)
pHistory(i) = (nxt - last) / last
last = nxt
Next i
End If
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Dim copulaT() As Double
ReDim copulaT(1l To ProductsTmp.count)
Dim copulaT2() As Double
ReDim copulaT2(1 To ProductsTmp.count)

cnt

=1

avgdf = 0
For Each p In ProductsTmp

ActiveCell _FormulaR1Cl = p.name

ActiveCell .Offset(0, 1).Range("'Al™).Select()

""create cop
If bDFfAuto =
Dim abcd

ulaT-matrix
True Then
() As Double

ReDim abcd(1 To p-Observations - 1)

Dim iii
For iii

abcd(iii) = ProductsTmp(cnt).PrcChange(iii)

Next iii

copulaT(cnt) = Application.WorksheetFunction._Min(MAXDF,
Application.WorksheetFunction.Round(4 + (6 / p.Kurtosis), 0))
avgdf = avgdf + copulaT(cnt)

cnt = c¢n
End If

Next p

As Long

= 1.0# To p.Observations - 1

t+1

IT (bDfAuto = True) Then
avgdf = Application._WorksheetFunction.Floor((avgdf / ProductsTmp.count), 1)

End

ActiveCell _FormulaR1C1 = "Portfolio"
ActiveCell .Offset(1l, -(ProductsTmp.count + 1)) .Range('Al™).Select()

m =

df = avgdf
If

runs

N = ProductsTmp.count
ReDim zz(1 To N, 1 To m)
ReDim s(1, 1 To m)

For j =1 Tom

For i =1 To N
argx = RndQ)
While (argx = 0)
argx = RndQ)
End While
Next i
argz = RndQ)
While (argz < 0.000001)
argz = RndQ)
End While
Next j
X = MultiplyTwoMatrices(True, Cholesky(CorrelM), zz)
Dim i1 As Long, abc As Integer
For ii = 1 To runs

zz(i, j) = Application.WorksheetFunction.NormSinv(argx)

s(1, j) = Application.WorksheetFunction.Chilnv(argz, df) ""df

Dim Sum As D
Dim chn As D
Sum = 0

ActiveCell .F

ouble
ouble

ormulaR1Cl = ii

ActiveCell .Offset(0, 1).Range("'Al™).Select()

abc = 1
For Each p 1
IT bNorm
ITb

Else

n ProductsTmp
al = False Then
DfAuto = True Then

chn = 0 + p.WeightUSD * p.standardDev * TInvCdf(TCdf(X(abc,

* Sqr(df /7 s(1,

ii)), df), df)

XV
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225 chn = 0 + p.WeightUSD * p.standardDev * TInvCdf(TCdf(X(abc, ii)
226 * Sqr(df / s(1, ii)), df), df)

227 End If

228 Else

229 chn = 0 + p.WeightUSD * p.standardDev * X(abc, ii)

230 End If

231 Sum = Sum + chn

232 ActiveCell _FormulaR1Cl = chn

233 ActiveCell .Offset(0, 1).Range('Al™).Select()

234 abc = abc + 1

235 Next p

236 ActiveCell _FormulaR1Cl = Sum

237 ActiveCell .Offset(1l, -(ProductsTmp.count + 1)).Range("'Al™).Select()
238 Next ii

239

240 Dim SortCell

241 Range("'B1) .Select()

242 Selection.End(xIToRight).Select()

243 SortCell = ActiveCell_Address

244 Range("'B2') .Select()

245 Range(Selection, Selection.End(xIToRight)).Select()

246 Range(Selection, Selection.End(xIDown)).Select()

247 Selection.Sort(Keyl:=Range(SortCell), Orderl:=xIDescending, Header:=xlGuess, _
248 OrderCustom:=1, MatchCase:=False, Orientation:=xITopToBottom, _
249 DataOptionl:=x1SortNormal)

250

251 ""Display VaR MC Normal

252 Dim VaR As Double

253 Dim VaRDay As Double

254 Dim A, b As Double

255 Dim bWeight As Double

256 VaRDay = (runs) * (1 - alpha)

257 Range(SortCell) .Select()

258 bWeight = VaRDay - Application.WorksheetFunction.Floor(VaRDay, 1)
259 ActiveCell .Offset(Application._WorksheetFunction.Floor(VaRDay, 1),
260 0) .Range(**A1™") .Select()

261 A = ActiveCell _Value

262 ActiveCell .Offset(1l, 0).Range("Al™).Select()

263 b = ActiveCell_Value

264 BCell = ActiveCell.Address

265 VaR = (A * (1 - bWeight)) + (b * bWeight)

266 MonteCarlo = New VarEstimate

267 MonteCarlo.VaR = VaR

268

269 “*find maximum loss:

270 Range(SortCell) .Select()

271 Selection.End(xIDown).Select()

272 MonteCarlo.MaxLoss = ActiveCell _Value2

273 MonteCarlo.MeanExcessLoss = Application.WorksheetFunction.Average(Range(BCell,

274 ActiveCell .Address))
275 End Function

277 Private Function DeltaGamma(ByVal alpha As Double, ByVal runs As Integer, ByVal
278 CorrelM As Object, ByVal ProductsTmp As Object) As VarEstimate

279 ""create necessities for ImportanceSampling

280 Dim VaRdelta, VaRgamma, VaRcovmatrix As Object

281 ReDim VaRcovmatrix(ProductsTmp.count, ProductsTmp.count)
282 ReDim VaRdelta(ProductsTmp.count)

283 ReDim VaRgamma(ProductsTmp.count, ProductsTmp.count)
284 VaRcovmatrix = CorrelM

285 ""this is due to linearity

286 For i = 1 To ProductsTmp.count

287 For j = 1 To ProductsTmp.count

288 VaRgamma(i, j) = O

289 Next j

290 VaRdelta(i) = ProductsTmp(i).CalculateDelta()
291 Next i

292



DeltaGamma = New VarEstimate

Call DeltaGamma.Copy(MonteCarloDGNormal (VaRdelta, VaRgamma, VaRcovmatrix, *IS™

alpha, 1, runs, ProductsTmp))
End Function

Private Function MonteCarloDGNormal (ByVal VaRdelta As Object, ByVal VaRgamma As
Object, _

ByVal VaRcovmatrix As Object, ByVal smethod As String, ByVal optAlpha As
Double, ByVal optDays As Integer, _

ByVal optRuns As Integer, ByVal ProductsTmp As Object) As VarEstimate

Randomize()

Dim p As Product

Dim N As Integer
printCorrel (VaRcovmatrix)
N = ProductsTmp.count

""create a matrix of random numbers according to a standard normal
distribution.

Dim z As Object

ReDim z(N, optRuns)

z = normal (N, optRuns)

""cholesky, send covarianceMatrix as input
"""expand" the covarianceMatrix first
For i = 1 To ProductsTmp.count

For j = i + 1 To ProductsTmp.count

VaRcovmatrix(j, i) = VaRcovmatrix(i, jJ)

Next j
Next i
“divide by days:
VaRcovmatrix = MultiplyScalar(VaRcovmatrix, optDays / 365)
A = Cholesky(VaRcovmatrix)

" "Importance Sampling!

""1. Decompostion Process

tem = MultiplyScalar(MultiplyTwoMatrices(True, Transpose(A),
MultiplyTwoMatrices(True, VaRgamma, A)), -0.5)

"vx = eigsm(tem)

v = MatEigenvector_Jacobi (tem)

lamda = MatEigenvalue_Jacobi (tem)

c = MultiplyTwoMatrices(True, A, V)

b = Transpose(MultiplyTwoMatrices(True, MultiplyScalar(Transpose(VaRdelta), -
1), ©))

""2. Use Newton-Raphson method to find solution for theta
Dim theta As Double

theta = 0
ac = 1
i=1
di =1

""use Delta normal method to set initial guess of x
X = -gfn(optAlpha) * Sqgr(columnSum(theta, lamda, b, 'B2'))
While ((ac <= -0.0001 Or ac >= 0.0001) And i1 <= 1000)
ac = columnSum(theta, lamda, b, "AC'™) - X
di = columnSum(theta, lamda, b, "DI')
theta = theta - ac / di
i=i+1
End While
""3. set sig and mu
sig = GaussianElimination(l, AddOrSubtract(False, diag(matrix(N, 1)),

MultiplyScalar(diag(lamda), 2 * theta)), 0)
mu = MultiplyTwoMatrices(True, MultiplyScalar(sig, theta), b)

""4._. Simulation

XVii
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360 z = AddOrSubtractSpecial(True, mu, MultiplyTwoMatrices(True, sgrtMatrice(sig),
361 z))

362 cs = MultiplyTwoMatrices(True, c, z)

363 L = MultiplyScalar(matrix(optRuns, 1), 0)

364 w = MultiplyScalar(matrix(optRuns, 1), 0)

365

366 ""To calculate the value for moment generating function
367 psi = 0.5 * columnSum(theta, lamda, b, "psi')

368 i=1

369 tmpDelta = MultiplyScalar(Transpose(VaRdelta), -1)

370 tmpGamma = MultiplyScalar(VaRgamma, -1)

371 While (i <= optRuns)

372 ""sum vector calculations manually:

373 Dim tmpQl, tmpQ2 As Double

374 tmpQl = 0

375 tmpQ2 = 0

376 For jkl = 1 To MatrixDim(tmpDelta)

377 tmpQl = tmpQl + (tmpDelta(l, jkI) * cs@kl, 1))
378 tmpQ2 = tmpQ2 + (tmpGamma(jkl, 1) * cskl, i) * cskl, 1))
379 Next jkli

380 L(i, 1) = tmpQl + tmpQ2

381 w(i, 1) = Exp(-theta * L(i, 1) + psi)

382 i=i+1

383 End While

384 Dim WL As Object

385 WL = concatArrays(w, L)

386 Wtem = MultiplyScalar(cumsum(Sort(w, 1)), 1 / optRuns)
387 WL = Sort(WL, 1)

388 On Error Resume Next

389 nrow = UBound(paf(Wtem, optAlpha), 1)

390 If Err.Number > 0 Then

391 nrow = optRuns

392 End If

393 VaRMC = WL(nrow, 2)

394

395 AddSheet(**MCDel taGamma™)

396 ClearSheet("'MCDeltaGamma')

397 Sheets(""MCDe ltaGamma') .Select()

398 Range("'A1') .Select()

399 ActiveCell .FormulaR1Cl = "Sim#"

400 ActiveCell .Offset(0, 1).Range('Al™).Select()

401 ActiveCell _FormulaR1C1 = "Likelihood"

402 ActiveCell .Offset(0, 1).Range('Al™).Select()

403 ActiveCell _FormulaR1Cl = "Portfolio”

404 ActiveCell .Offset(1l, -2).Range('Al™).Select()

405 -

406 Dim ii As Long

407 For ii = 1 To optRuns

408 ActiveCell _FormulaR1C1l = ii

409 ActiveCell .Offset(0, 1).Range("Al"™).Select()

410 ActiveCell .FormulaR1Cl1 = WL(ii, 1)

411 ActiveCell .Offset(0, 1).Range("'Al™).Select()

412 ActiveCell .FormulaR1C1 = WL(ii, 2)

413 ActiveCell .Offset(1, -2).Range('Al™).Select()

414 Next ii

415 -

416 Dim SortCell

417 Range(*'B1").Select()

418 SortCell = ActiveCell_Address

419 Range(*'B2") .Select()

420 Range(Selection, Selection.End(xIToRight)).Select()
421 Range(Selection, Selection.End(xIDown)).Select()

422 Selection.Sort(Keyl:=Range(SortCell), Orderl:=xIDescending, Header:=xlGuess, _
423 OrderCustom:=1, MatchCase:=False, Orientation:=xITopToBottom, _
424 DataOptionl:=xISortNormal)

425

426 MonteCarloDGNormal = New VarEstimate

427 MonteCarloDGNormal .VaR = VaRMC
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**find maximum loss:

Range(SortCell)_Select()

ActiveCell _Offset(optRuns - nrow, 1).Range('Al™).Select()

BCell = ActiveCell.Address

Range(SortCell).Select()

Selection_End(xIDown).Select()

ActiveCell .Offset(0, 1).Range("'Al™).Select()

MonteCarloDGNormal .MaxLoss = ActiveCell _Value2

MonteCarloDGNormal .MeanExcessLoss =
Application._WorksheetFunction.Average(Range(BCell, ActiveCell _Address))
End Function

A.3 Matrix and linear algebra
The Gaussian eliminiation code to solve Ax = b was provided by Urroz (see
http://www.neng.usu.edu/cee/faculty/gurro/). The linear algebra with calculation of eigenvector and

eigenvalue is from the free source code at http://digilander.libero.it/foxes/SoftwareDownload.htm.

Matrix calculations

XiX

Option Explicit On
Option Base 1

Public Function GaussianElimination(ByVal index As Integer, ByVal A As Object,

ByVval

b As Object) As Object

This subroutine calculates the matrix X with values X = [x1 x2.. xnB]
where the xi®s are the right-hand side vectors of the matrix equations
A*x1 = bl; A*x2 = b2; ...; A*XnB = bnB.

The subroutine uses Gaussian elimination, and can be used to calculate

a matrix inverse too.

The particular operation performed by the subroutine depends on the value
of the parameter "index"™, as follows:

index = 1 --> inverse
index = 2 --> determinant
index = 3 --> linear system solution

"Declaration of variables

Dim i, j, k As Integer

Dim nA As Integer, mA As Integer

Dim nB As Integer, mB As Integer

Dim temp As Object

nA = UBound(A, 1) "“rows A

IT Not (index = 1 Or index = 2) Then

nB = UBound(b, 1) ""rows B

mB = MatrixDim(b) ""columns B
Else

nB =0

mB = 0
End If

mA = MatrixDim(A) "“columns A
ReDim temp(nA, mA)

Dim X, xR, aMax, s As Object

ReDim X(nA, mA)

ReDim xXR(nA, mA)

ReDim aMax(nA)

ReDim s(nA)

Dim detA As Double, factor As Double
Dim Order As Object, Otemp As Integer
ReDim Order(nA)

Dim Sum As Double, epsilon As Double
Dim nExchanges As Integer

Dim scaleFlag As Boolean


http://www.neng.usu.edu/cee/faculty/gurro/
http://digilander.libero.it/foxes/SoftwareDownload.htm
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"Making sure matrix A is a square matrix
IT nA <> mA Then
Error = "Matrix A must be a square matrix to calculate"
IT index = 1 Then
Error = Error + " the inverse matrix."
Elself index = 2 Then
Error = Error + " the determinant."

Else
Error = Error + " x from A*x = B."
End If
Exit Function
End If

"Read Matrix B if needed, otherwise load identity matrix
IT index = 1 Or index = 2 Then
ReDim b(nA, mA)
IT index = 1 Then
nB = nA - mB = mA

Else
nB=nA : mB=1
End If
For 1 = 1 To nA
For j =1 To mB
IT 1 =] Then
b(i, j) = 1.0#
Else
b(i, j) = 0.0#
End If
Next j
Next i
Else
b=>b
End If

" Check that matrices are compatible

If nA <> nB Then
Error = "Matrices A and B must have the same number of"
Error = Error + "rows in order to solve for the linear system Ax=B."
Exit Function

End If

"Create the Order vector and load default values of aMax(i)
For i =1 To nA

Order(i) =i

aMax(i) = 1.0#
Next i

"Augmenting Matrix A
ReDim Preserve A(nNA, nA + mB)
For 1 =1 To nA
For J =1 To mB
AC(I, § + nA) = b(i, J)
Next j
Next i
nA = UBound(A, 1)

"Scaling
ReDim s(nA)
For 1 =1 To nA
s(i) = 0.0#
For J =1 To nA
s(i) = s(i) + Abs(A(i, 1))
Next j
Next i

scaleFlag = False
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For 1 =1 To (nA - 1)
For j = (i + 1) To (nA)
IT s(i) > factor * s(J) Or s(J) > factor * s(i) Then
scaleFlag = True
End If
Next j
Next i

IT scaleFlag Then
For 1 =1 To nA
aMax(i) = 0.0000000001
For J =1 To (nA + mB)
IT (A(i, J) > aMax(i)) Then
aMax(i) = A(i, J)

End If
Next j
Next i
For i =1 To nA
For j =1 To (nA + mB)
ACi, §) = ACi, J) / aMax(i)
Next j
Next i
End If

"Elimination procedure applied to rows 2 to n to Ffill with
"zeros lower triangular part of matrix

nExchanges = 0

For k =1 To (nA - 1)

"Pivoting implemented in the next If statement
For 1 = (k + 1) To nA
IT Abs(A(Order(i), k)) > Abs(A(Order(k), k)) Then
nExchanges = nExchanges + 1
Otemp = Order (i)

Order (i) = Order(k)
Order(k) = Otemp
End If

Next i

For 1 = (k + 1) To nA
For j = (k + 1) To (nA + mB)
A(Order(i), j) = A(Order(i), j) - AQOrder(i), k) * A(Order(k), j) 7/

“Calculate and print determinant

detA = 1.0#
For 1 = 1 To nA
detA = detA * A(Order(i), i) * aMax(i)
Next i
detA = (-1) ™ nExchanges * detA
If Iindex = 2 Then
GaussianElimination = detA
Exit Function
End If

"If the determinant is small, then the matrix is singular
If Abs(detA) < epsilon Then

MsgBox(""Matrix is singular.')

IT index = 3 Then

Error = " No solution is possible."
Elself index = 1 Then

Error = " Inverse does not exist."
End If
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Exit
End If
"Calcula
For j =

X(Or
For

Next
Next j

Gaussian
End Function

Public Funct
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Function

ting solutions
1 To mB
der(nA), j) = AOrder(nA), j + nA) / A(Order(nA), nA)
i = (A -1) To 1 Step -1
Sum = 0.0#
For k = (i + 1) To nA
Sum = Sum + A(Order(i), k) * X(Order(k), j)
Next k
X(Order(i), j) = (A(Order(i), j + nA) - Sum) / A(Order(i), i)
i

Elimination = X

ion MultiplyScalar(ByvVal A As Object, ByVal c As Double) As Object

"This functi

on calculates the multiplication of Matrix A with a scalar c

Dim nA A
Dim cA A
nA = UBo
mA = Mat
I (mA =
ReDi
Else
ReDi
End If
- Dim
Dim 1 As

"Multipl
For i =

s Integer, mA As Integer
s Object

und(A, 1) "A.Count
rixDim(A) *A_Columns._Count
0) Then

m cA(nhA)

m cA(nA, mA)

c As Double
Integer, j As Integer

y all elements of the matrix by c
1 To nA

For j =1 To mA

cA(i, J) = c * A(i, 1)

Next j
IT (nA = 0) Then
cA(i) = ¢ * A(i)
End If
Next i

MultiplyScalar = cA

End Function

Public Function MatrixSqrt(ByVval A As Object) As Object

"This fu

nction takes the square root of Matrix

"Declaration of variables
Dim nA As Integer, mA As Integer
Dim cA As Object

nA = UBo

und(A, 1) *A.Count

mA = MatrixDim(A) "A.Columns.Count
ReDim cA(nA, mA)

Dim 1 As

“Multipl
For i =

Integer, j As Integer

y all elements of the matrix by c
1 To nA

For J =1 To mA

CA(T, J) = Sar(A(i, 1))

Next j

Next i
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279
280
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284
285
286
287
288
289
290
201
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

MatrixSqrt = cA
End Function

Public Function MatrixPower(ByVal A As Object, ByVal p As Integer) As Object

"This function takes the power of Matrix

"Declaration of variables
Dim nA As Integer, mA As Integer
Dim cA As Object
nA = UBound(A, 1) *A.Count
mA = MatrixDim(A) "A.Columns.Count
IT (nA = 0) Then
ReDim cA(nA)
Else
ReDim cA(nA, mA)
End If
Dim i As Integer, j As Integer

"Multiply all elements of the matrix with the power p
For i = 1 To nA
IT (nMA = 0) Then
CA(i) = A(i) * p
Else
For j =1 To mA
CACi, §) = ACi, §) ~ p
Next j
End If
Next i

MatrixPower = cA
End Function

Public Function Transpose(ByVal A As Object) As Object

FAEAAEAET A A A AL A A A A A A AL A A A AA A AL AAAAXAAAAAAAAXAAAXAALAXAAXAAAAALAAAAAAAAAAAAA XA XA AXX

"This function returns the transposed matrix of the iInput matrix

FAEAAEAET A A A AL A A A A A A AL A A A AA A AL AAEA AKX A AKX AAAAXAAAXAAAAAAAAAALAAALAAAAAAAAAA LA AKX AL XX

"Declaration of variables
Dim nA As Integer, mA As Integer
Dim cA As Object
nA = UBound(A, 1) "A.Count
mA = MatrixDim(A) *A.Columns.Count
Dim AT As Object
IT mA = 0 Then
ReDim AT(1, nA)
Else
ReDim AT(mA, nA)
End If
Dim i As Integer, j As Integer

"Produce transpose
IT mA =0 Then
For i =1 To nA
AT(1, 1) = A(I)
Next i
Else
For i =1 To nA
For j = 1 To mA
AT, 1) = AG, §)
Next j
Next i
End If
Transpose = AT
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End Function

Public Function AddOrSubtract(ByVal index As Boolean, ByVal A As Object, ByVval b As
Object) As Object

T AAAAAAAAAAA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkAAAAhhhii

" This subroutine adds two matrices A and B

* If index = True, then perform addition.

" If index = False, then perform subtraction.

e T

"Declaration of variables

Dim ¢ As Object

Dim nA As Integer, mA As Integer

On Error Resume Next

nA = UBound(A, 1) *A.Count

IT (Err.Number > 0) Then
AddOrSubtract = -1
Exit Function

End If

mA = MatrixDim(A) "A.Columns.Count
Dim nB As Integer, mB As Integer
nB = UBound(b, 1) "B.Count
mB = MatrixDim(b) "B.Columns._Count
IT (mB = 0) Then
ReDim c(nA)
Else
ReDim c(nA, mB)
End If
Dim i As Integer, j As Integer

* Check that matrices are compatible

IT NnA <> nB Or mA <> mB Then
MsgBox(**Matrices A and B are not compatible for addition or subtraction.')
Exit Function

End If

“Calculate sum/subtraction of matrices
For i =1 To nA
For j =1 To mA
IT index Then

c(i, J) = A1, J) + b(d, J)
Else
c(i, J) = A(1, J) - b(d, J)
End If
Next j

If mMA = 0 Then
If index Then

c(i) = ACi) + b(i)

Else
c(i) = A(I) - b(i)
End If
End If

Next i
AddOrSubtract = c
End Function

Public Function AddOrSubtractSpecial(ByVal index As Boolean, ByVal A As Object,
ByVal b As Object) As Object

" This subroutine adds two matrices A and B of different sizes

" number of rows must be the same and matrix A is only one dimension
* IT index = True, then perform addition.

" If index = False, then perform subtraction.




“Declaration of variables

Dim ¢ As Object

Dim nA As Integer, mA As Integer

nA = UBound(A, 1) "A.Count

mA = MatrixDim(A) "A.Columns.Count
Dim nB As Integer, mB As Integer

nB UBound(b, 1) "B.Count

mB = MatrixDim(b) *B.Columns.Count
ReDim c(nA, mB)

Dim i As Integer, j As Integer

® Check that matrices are compatible

IT NnA <> nB Or mMA > 1 Then
MsgBox(*'"Matrices A and B are not compatible for this special addition or
special subtraction."™)
Exit Function
End If

"Calculate sum/subtraction of matrices
For 1 = 1 To nA
For j = 1 To mB
If index Then

c(i, J) = A, 1) + b(, J)
Else
c(i, J) = A, 1) - b(, J)
End If
Next j

Next i

AddOrSubtractSpecial = ¢
End Function

Public Function MultiplyTwoMatrices(ByVal index As Boolean, ByVal A As Object,
ByVal b As Object) As Object
A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A AATAAAAAAAAAAAAAAAAAAAAAAAAAAA AR ddhhK

" This subroutine adds two matrices A and B

* If index = True, then calculate A * B.

" If index = False, then calculate B * A.

FAEAEAEAEAAA A AL A AL AA A AL AAAAXTAAAAAAAXAAAXAAAXAAXAAXAALAXAAXAAAAAAAAAAXAAAXAAAXAA XA AXAAXX

"Declaration of variables

Dim matrixA As String, matrixB As String

Dim c As Object

Dim nA As Integer, mA As Integer, mAix As Integer
Dim nB As Integer, mB As Integer, mBix As Integer
Dim 1 As Integer, j As Integer, k As Integer

nA = UBound(A, 1) ""rows A
nB = UBound(b, 1) "“rows B
mB = MatrixDim(b) "“columns B
mA = MatrixDim(A) ""columns A
IT (mB = 0) Then
mB = 1
End If
IT (mMA = 0) Then
mA =1
End If

® Check that matrices are compatible
IT index Then
ReDim c(nA, mB)
IT mA <> nB Then
MsgBox(**Matrices A and B are not compatible for multiplication A*B."
Exit Function
End IT
Else
ReDim c(nB, mA)

XXV
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IT mB <> nA Then
MsgBox(*'"Matrices A and B are not compatible for multiplication B*A.")
Exit Function
End If
End If

"Calculate multiplication of matrices
mBix = MatrixDim(b) ""columns B
mAix = MatrixDim(A) ““columns A
IT index Then
IT mBix = 0 Then
For 1 =1 To nA
For j = 1 To mB

c(i, j) = 0.0#
For k = 1 To mA
c(i, J) =c(i, J) + ACi, K * bk
Next k
Next j
Next i
Else
For i =1 To nA
For j = 1 To mB
c(i, j) = 0.0#
For k = 1 To mA
c(i, §J) = c(i, §) + AGi, K) * bk, §)
Next k
Next j
Next i
End If
Else
If mAix = 0 Then
For i =1 To nB
For J =1 To mA
c(i, j) = 0.0#
For k = 1 To mB
c(i, J) = c(i, §) + b, k) * Ak
Next k
Next j
Next i
Else
For 1 =1 To nB
For j =1 To mA
c(i, j) = 0.0#
For k = 1 To mB
c(i, J) =c(i, j) + b(i, k) * Ak, 1)
Next k
Next j
Next i
End If
End If

MultiplyTwoMatrices = ¢
End Function
Public Function MultiplyTwoMatricesByRows(ByVal index As Boolean, Byval A As
Object, ByVal b As Object) As Object
T AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhhhi
" This subroutine adds two matrices A and B
" If index = True, then calculate A * B.
" If index = False, then calculate B * A.

“Declaration of variables

Dim matrixA As String, matrixB As String

Dim c As Object

Dim nA As Integer, mA As Integer, mAix As Integer
Dim nB As Integer, mB As Integer, mBix As Integer
Dim 1 As Integer, j As Integer, k As Integer



587
588
589

nA = UBound(A, 1) ""rows A
nB = UBound(b, 1) "“rows B
mB = MatrixDim(b) "“columns B
mA = MatrixDim(A) ""columns A

IT (mB = 0) Then
ReDim c(nB)
Else
ReDim c(nB, mB)
End If

IT (mB <> mA) Or (nB <> nA) Then
MsgBox("'"Matrices A and B are not compatible for multiplication B*A.")
Exit Function

End If

For 1 = 1 To nA
IT (mB = 0) Then
c(@) = A1) * b(i)

Else
For j =1 To mA
c(i, J) = AG, J) * b@, )
Next j
End If
Next i

MultiplyTwoMatricesByRows = ¢
End Function

“http://puremis_net/excel/code/076.shtml

Function MatrixDim(ByVal VariantArray As Object) As Integer
Dim i As Integer, X As Long
On Error GoTo tooManyDims

1 =1
Do
= VariantArray(1, i)
i=i+1
Loop
tooManyDims:

MatrixDim = 1 - 1
End Function

"Cholesky decomposition: CC” = T :: input T, output C
Function Cholesky(ByVal Mat As Object) As Object
Dim A, L() As Double, s As Double

A = Mat
N = UBound(Mat, 1) “mat.Rows.Count
m = MatrixDim(Mat) "mat.Columns.Count

If N <>m Then
Cholesky = "?"
Exit Function

End If

ReDim L(1 To N, 1 To N)
For j =1 To N
s=0
For k
s

[

=1Toj -1

=s + LG, kh ~2

Next k

LA, 1) = AQ, J) - s

If L, J) <= 0 Then Exit For
LA, 1) = Sar(LA. 1))

For i = j +1 To N
s=0
For k =1 To j -1
s =s+ L, k) * LA, K
Next k
LA, » = AG, 1) -s) /LA,
Next i
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Next j

Chol
End Func

esky = L
tion

Eigenvalue and eigenvector

Appendix A — Source Code

Function MatEigenvalue_Jacobi(Mat, Optional MaxLoops)
“returns all eigenvalues of symmetric matrix
"uses the fast-Jacobi rotation algorithm

“mod

11-1-07 VL

Dim A, t As Double, Loops As Integer, si As Double, co As Double, dpqg As

Double,

Dim N As Long, p As Object, g As Object, X As Object

IT IsMissing(MaxLoops) Then MaxLoops

A =
N =
LOOp
tol
Do U

Loop
MatE
End Func

Private Sub Jacobi_Find_Max(Byval A, ByVal

tol As Double

Mat

UBound(A, 1)

s =1

=2 *10 N -14

ntil Loops > MaxLoops
Loops = Loops + 1
Jacobi_Find_Max(A, p, 9)
IT p =0 Then Exit Do

dpg = A(9, 9) - A(p, p)
IT dpg = 0 Then
t=1
Else
X =dpq /7 A(p, q) 7/ 2
t =
End If

co=1/Sqgr(t ~ 2 + 1)
si =t * co

= 200

FastRotation_Jacobi(A, si, co, p, Q)

igenvalue_Jacobi = MatMopUp(A, tol)

tion

Sgn(X) / (Abs(X) + Sgr(X ~ 2 + 1))

i, Byval j)

“search for max value out of the first diagonal

“mod

ified 23-6-02

Dim i_ As Integer, j_ As Integer, N As Integer, big As Double

N = UBound(A, 1)
big = 0
i=0:3J=0
For i_ =1 To N
For j_ =1 To N
If i_ <> j And Abs(A(i_,
big = Abs(ACi_, jJ)) :
End IFf
Next j_
Next i_
End Sub

Private Sub FastRotation_Jacobi(Byval A, Byval si, ByVval co, Byval p, Byval q)

"fas
“co
"si
Dim
N =
For

t rotation 11-6-2005 VL
= Cos(teta)

= Sin(teta)

i&, j&, N&, Ap#, ag#
UBound(A)

i=1ToN

co * Ap - si * aq
si * Ap + co * aq



For j =1 To N
Ap

Function MatRotation_Jacobi(ByVal Mat)

"returns the Jacobi rotation matrix
"only for symmetric matrix

Dim A, t, b

Dim u() As Double, w() As Double
Dim p, g

A = Mat

N = UBound(A, 1)
Jacobi_Find_Max(A, p, Q)

d =A@, 9) - A(p, pP)

IT d =0 Then

1

-
1

d 7/ A(p, q) /7 2
Sgn(X) / (Abs(X) + Sgr(X ~ 2 + 1))

C

X

t

|

17 Sqgr(t 2+ 1)

t*

mu(l To N, 1 To N), w(1 To N, 1 To N)

1
1

c:ul, q =s
-s tu(g, 9) =c
c:w(, q) =-s
s - w(g, 9) c

b = Application.WorksheetFunction .MMult(A, u)
b = Application.WorksheetFunction.MMult(w, b)
MatRotation_Jacobi = u

End Function

Function MatEigenvector_Jacobi(Mat, Optional MaxLoops)

"returns the approx eigenvectors of a symmetric matrix
"uses the fast Jacobi iterative algorithm
"mod. 11-6-05 VL

Dim A, t As Double, Loops As Integer, si As Double, co As Double, dpqg As
Double, N As Long
Dim u() As Double, v As Object, p As Object, q As Object, X As Object, i
Integer

A = Mat

v = Mat

N = UBound(A, 1)
Loops = 1

IT IsMissing(MaxLoops) Then MaxLoops = 100
“"initialize v with unit matrix
v = M_ID(N)
*Jacobi algorithm start
Do Until Loops > MaxLoops
Loops = Loops + 1
Jacobi_Find_Max(A, p, Q)

IT p =0 Then Exit Do "fix bug 2.1.2007, thanks to David Schwartz

dpg = AC9, @) - A(p, P)
IT dpg = 0 Then
t=1
Else
X =dpq /7 A(p, o) / 2
t = Sgn(X) /7 (Abs(X) + Sgr(X ~ 2 + 1))

XXiX
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131 End If

132 co=1/Sqgr(t ™2+ 1) "cosine
133 si =t *co "sine

134

135 FastRotation_Jacobi(A, si, co, p, Q)
136

137 ReDim u(1 To N, 1 To N), w(l1 To N, 1 To N)
138

139 For i =1 To N - u(i, i) =1 : Next i
140 u(p, p) = co : u(p, 9q) = si

141 u(q, p) = -si : u(q, q) = co

142 v = Application.WorksheetFunction.MMult(v, u)
143 Loop

144 MatEigenvector_Jacobi = v

145 End Function

146

147 Function M_ID(ByVval N)

148 "ldentity Matrix

149 Dim i As Integer, j As Integer

150 Dim AQ

151 ReDim A(1 To N, 1 To N)

152 For i =1 To N

153 For j =1 To N

154 AGi, j) =0

155 ITi=]j Then ACi, jJ) =1

156 Next j

157 Next i

158 M_ID = A

159 End Function

160

161 Function MatMopUp(Mat, Optional ErrMin)

162 “eliminates values too small

163 Dim A, i As Integer, j As Integer

164 If IsMissing(ErrMin) Then ErrMin = 10 » -14
165 A = Mat

166

167 For i = 1 To UBound(A, 1)

168 For j = 1 To UBound(A, 2)

169 If IsNumeric(A(i, j)) Then

170 I Abs(A(i, j)) < ErrMin Then A(i, j) = 0
171 End If

172 Next j

173 Next i

174 MatMopUp = A

175 End Function



Appendix B - Coverage
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This appendix presents results that were ignored for brevity in the report. Each portfolio is presented
with every combination of method and parameters tested in the back-test with a coverage graph in

this appendix.

In general blue line is the back-test (for 500 days) and red line is the stress-test (106 days period.) The
graphs are presented in order by 50, 250 and 750 historical days, and the 95% VaR is presented to

the left and 99% VaR presented to the right.
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B.5 Portfolio E
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Appendix C - High-mean-low

This appendix presents the numbers behind the coverage graphs displayed in section 6.3 Accuracy
and the graphs in 6.7 Correlation with portfolio.

C.1 High-mean-low coverage
50 days historical period

Backtest 95% VaR 99% VaR
Period high low mean high low mean
. 500 days 0.942 0.894 0.928 0.988 0.946 0.972
Analytical
106 days 0.953 0.868 0.891 0.981 0.925 0.945
Historical 500 days 0.944 0.922 0.932 0.984 0.958 0.972
106 days 0.925 0.877 0.902 0.981 0.906 0.947
500 days . . . . . .
MC student t 3 y 0.988 0.956 0.974 1.000 0.998 1.000
106 days 0.981 0.934 0.949 1.000 1.000 1.000
500 days 0.970 0.906 0.949 0.998 0.978 0.990
MC student t 7
106 days 0.962 0.896 0.913 1.000 0.943 0.979
MC student t 500 days 0.966 0.908 0.949 0.998 0.982 0.991
auto 106 days 0.972 0.887 0.911 1.000 0.972 0.985
MC delta- 500 days 1.000 0.848 0.950 1.000 0.906 0.981
gamma 106 days 1.000 0.830 0.951 1.000 0.896 0.977
250 days historical period
Backtest 95% VaR 99% VaR
Period high low mean high low mean
. 500 days 0.942 0.858 0.913 0.986 0.934 0.963
Analytical
106 days 0.925 0.755 0.821 0.953 0.849 0.894
Historical 500 days 0.936 0.908 0.922 0.984 0.958 0.973
106 days 0.906 0.736 0.821 0.962 0.877 0.917
500 days . . . . . .
MC student t 3 y 0.986 0.932 0.963 1.000 0.990 0.997
106 days 0.953 0.849 0.892 1.000 0.972 0.991
500 days 0.960 0.884 0.933 0.990 0.958 0.979
MC student t 7
106 days 0.934 0.811 0.849 0.972 0.896 0.934
MC student t 500 days 0.956 0.888 0.933 0.990 0.964 0.979
auto 106 days 0.934 0.802 0.849 0.972 0.896 0.932
MC delta- 500 days 1.000 0.916 0.975 1.000 0.990 0.998

gamma 106 days 1.000 0.906 0.955 1.000 0.962 0.991



750 days historical period
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Backtest 95% VaR 99% VaR
Period high low mean high low mean
. 500 days 0.966 0.876 0.930 0.982 0.938 0.965
Analytical
106 days 0.906 0.745 0.800 0.934 0.821 0.870
Historical 500 days 0.948 0.910 0.934 0.982 0.960 0.973
106 days 0.896 0.708 0.796 0.934 0.821 0.885
500 days . . . . . .
MC student t 3 y 0.982 0.938 0.966 1.000 0.982 0.993
106 days 0.934 0.830 0.874 1.000 0.925 0.968
500 days . . . . . .
MC student t 7 y 0.976 0.896 0.943 0.986 0.956 0.978
106 days 0.925 0.764 0.821 0.943 0.858 0.913
MC student t 500 days 0.974 0.902 0.943 0.986 0.960 0.977
auto 106 days 0.915 0.774 0.823 0.943 0.868 0.908
MC delta- 500 days 1.000 0.938 0.980 1.000 0.976 0.995
gamma 106 days 1.000 0.868 0.951 1.000 0.896 0.977
C.2 High-mean-low correlation
50 days historical period
high low mean
Analytical 0.801 0.236 0.599
Historical 0.769 0.060 0.497
MC student t 3 0.793 0.227 0.590
MC student t 7 0.798 0.235 0.593
MC student t auto 0.795 0.242 0.598
MC delta-gamma 0.968 0.801 0.886
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250 days historical period

high low mean

Analytical 0.940 0.731 0.881
Historical 0.935 0.787 0.850

MC student t 3 0.886 0.703 0.846
MC student t 7 0.905 0.731 0.862
MC student t auto 0.904 0.717 0.860
MC delta-gamma 0.998 0.817 0.957

750 days historical period

high low mean

Analytical 0.997 0.833 0.957
Historical 0.996 0.847 0.952

MC student t 3 0.966 0.799 0.923
MC student t 7 0.977 0.817 0.937
MC student t auto 0.976 0.817 0.936

MC delta-gamma 0.998 0.674 0.932
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Appendix D - VaR-estimates

This appendix summarizes the VaR-estimates for the methods presented in the report. Included in
the graphs is also the average of the methods as well as the actual change in portfolio value.

The graph covers the whole back-test period (09. January 2007 — 31. December 2008). Portfolio A, B
and C are included and each portfolio is presented with graphs in the following order:
e 95% VaR estimated with 50 days historical period
e 95%VaR estimated with 250 days historical period.
99% VaR estimated with 50 days historical period
99%VaR estimated with 250 days historical period.

All graphs follow the legend in figure below:

e B nalytical Wak T Student t (3, 1000)

e W C Student £ (7, 1000) s [ C Student t {auto, 1000)

e W C delta-gamma (1000) = Historical Simulation
Average e Change

Portfolio D and E followed the same trends seen in portfolio B and A respectively.

D.1 Portfolio A
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D.2 Portfolio B
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D.3 Portfolio C
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Appendix E - Size of error

This appendix presents every method’s mean excess loss for portfolio A — E. The box-and-whisker
graph displays the median, first and third quartile as the boxes, with the whiskers marking the lower
and higher limits of the interval at a maximum of 1.5 times the interquartile range. Furthermore the
average is marked by a diamond and outliers by a grey dot.

Every portfolio is presented with 50 days and 250 days, with the 95% VaR-estimate to the left and
99% VaR-estimate to the right.
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E.2 Portfolio B
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E.4 Portfolio D
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E.5 Portfolio E
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