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SUMMARY

The degradation of topsides process piping on hafe platform carrying oil and gas
can result in undesirable events like bursts aradkages. In order to manage the
challenges arising from such failures, the pipisgeagularly inspected using different
types of Non Destructive Testing (NDT) methods. c8irthis piping has different

configurations and is often located in places #rat difficult to access, the associated
costs of these activities are quite high. To supgbe decision-making on the

development of an effective and efficient inspatiwogramme, Risk-Based Inspection
(RBI) analysis is often used. Based on the recondietgons of the RBI analysis, the

inspection is carried out and the results of thepéttion are then reinvested into the
inspection management programme to update thesasaly

This thesis presents a methodology based on Bawyapidating to formally ensure that
experience and knowledge are used in a systematyc when deciding how much

needs to be inspected in order to be convincedthigatorrosion group of components
does not contain any significant corrosion. Itxpected that the implementation of the
methodology will improve the inspection managengnproviding a systematic tool to

incorporate the inspection results, provide traggaland reveal critical assumptions.

This thesis will also present a method for how taleate and communicate different
uncertainty factors.
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CHAPTER 1
INTRODUCTION

1.1 Background

Inspection management is one of the important tesks offshore installation, because
several accidents have taken places due to inmuffignspection management and
corrosion of critical equipment. Topside pipindhsrefore regularly inspected to ensure
a safe and reliable operation. This inspectionmlanis often based on the concept of
Risk-Based Inspection, RBI. This analysis will heipdentifying areas where there are
high consequences if a leak or rupture occurs anerevthere exists a probability of
failure, PoF.

Deciding the probability of failure is a challengitask. Sometimes the PoF is based on
expert judgements, but is often calculated usirtgbéished degradation models, but
these models often turn out to be quite consematispections are therefore used to
reduce the probability of failure. The inspectidntapside equipment is expensive to
carry out, and should consequently be kept to anmmim. This raises the important
question, how much is necessary to inspect in dadeeduce the risk to an acceptable
level? What should this decision be based on, avd ¢an the decision be justified?
Should it only rely on expert opinions or is it pide to find methods that can be used
as decision support?

The purpose of the RBI analysis is to find an dffecinspection plan, which intends to
maximise the availability of assets at an acceptatast without compromising on
safety. The inspection plans today are often qoi@servative, leading to high
inspection costs. Still, knowledge can reduce theettainty, and inspections are
therefore required. However, when do we know endaggiop inspecting?

1.2 Aim of the Thesis

The aim of this thesis is to give an answer togheve-mentioned question: when do
we know enough about the piping’s condition to stegpection? In other words, how
much is it necessary to inspect in order to feelseabout the condition of the piping?
This thesis will develop a method that can be wedecision support when trying to
answer this question. The method used will alsargea systematic treatment of new
inspection results and combine those with all treglable background knowledge.
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1.3 The Scope of Work

This thesis will look into the use of Bayesian ujpt as decision support. This is a
method that can be used to decide the number pkeatsd hot spots necessary to
achieve the required confidence of the conditioa iarge corrosion group. In order to
apply this method a flow chart will be presented.

The need for an extended RBI analysis, where usiogyt factors are identified and
evaluated, will be presented.

The second part of the thesis presents the strergtid weaknesses of Bayesian
updating and guidelines to successful (right) usddgbe method.

1.4 Limitations

The main limitation of this method is the introdoat of a paramete, which can only
be given a meaningful interpretation as long asntlmaber of hot spots in a corrosion
group is high or it is possible to imagine a largenber of hot spots. This method
focuses on deciding whether or not significant @sion is present; if significant
corrosion is present, other methods should be tse@cide the need for measures or
more inspections.

1.5 Organization of the Thesis

This thesis contains five chapters with severdediint sub-chapters. The first chapter
gives an introduction to the thesis, the backgrowich, scope and terminology. The
next chapter will present the knowledge which isassary, in order to understand the
procedure introduced in Chapter Three. Chapterwilioalso give an introduction to
uncertainty factors, and how they can be treatéa@p€r Four will provide a discussion
regarding the procedure presented in Chapter Thvbde Chapter Five will give a
short conclusion.

1.6 Terminology

The terminology used in this thesis is in accor@awih the terminology presented in
Aven (2008, 2010).

Risk definition: Combination of an event A, its sequences C, and the
uncertainty U, related to the event and its conseges
(Aven, 2008).
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Risk description:

Uncertainty:

Aleatory uncertainty:

Epistemic uncertainty:

Probabilities:

Chance:

Expert:

Confidence interval:

Credibility interval:

Prediction interval:

(A,C,U,P,S,K). The event A, thiéfetent consequences C,
the uncertainties attached to both A and C, thealitities P
(knowledge-based) used to describe U, a sensitvity see
how variation in different input conditions and asgptions
changes the risk picture, and given the background
knowledge K. (Aven and Flage, 2009). See Secti@BZor
an alternative description.

Lack of knowledge about a phenomenon.

Variation of quantities irpapulation; for Bayesians, known
asvariation.

Uncertainty regarding a pmenon due to lack of
knowledge. Bayesians consider this as the only tgpe
uncertainty (Aven, 2010).

Knowledge-based judgement about daicties, comparing
the uncertainty of an event/consequence with drgwirblue
ball, p, out of an urn containing p% blue balls éAy 2010).
Also known as knowledge-based probability.

The fraction of “successes” if the expenimis repeated
infinitely under the same conditions.

Person with in-depth knowledge about a ¢ssec or
phenomenon.

A 90% confidence interval Jafbr a parameterf, means
that the parameter will be in the interval in 90f4he cases if
the experiment can be repeated infinitely.

A 90% credibility interval6f, 6,] for a parameter§, means
that the interval contairswith a probability equal to 0.90. In
other words, B <6 <6,) = 0.90.

A 90% prediction interval [a, for a quantity, X, means that
the interval contains X with a probability equald®0.
In other words, P(g& X < b) = 0.90 where X is an observable
quantity.

Exchangeable sequence: A sequence of random desntitvhere their joint

Event:

distribution functions are independent of the ordérthe
guantities in the sequence (Bernardo and Smith)200

The occurrence of a particular set of emstances (ISO,
2002).
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Significant corrosion: Measurable corrosion withotgntial to threaten the
equipment’s integrity.
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CHAPTER 2
BACKGROUND INFORMATION

2.1 Definitions and Explanations

2.1.1 Risk and Decision Making

Decisions are made every day, some of them monggtitehrough than others. Some
decisions are easy, while others are more complexasy decision can be identified as
a decision problem where the consequences of fferafit decisions are known and
you have one solution that is clearly the best caneqgb to the others. On the other side
are the more complex decision problems: decisiorsergy there are no clear
consequences and where uncertainties also becorpartaof the problem. Risk
management becomes an important task when dealitig decision making under
uncertainty.

When choosing between different decisions onelvalle to consider the event (A), the
event’s different consequences (C) and the unceieai (U) attached to both A and C.
This is in accordance with the risk definition greted in Aven (2008) and will be used
throughout this thesis.

In most situations people tend to prefer known egagences. Consider, for example,
the case where you can choose to get 1000 dokersure or you can choose to
participate in a game where you have the possiliitwinning 5000 dollars with a

chance of 0.4 or nothing otherwise. Some of us,ritle averse, will choose 1000
dollars, while others, risk seekers, prefer the gavhere they can win 5000 dollars. Let
us say that you get the opportunity to participatea game where you can win 5000
dollars with a chance 0.9, but you have to pay ldilrs to be allowed to play.

This seems like a game where you are almost cddairin, but what if the game is not
fair? You may wonder why anyone should give you eyotUncertainty becomes a part
of your decision problem: to play or not to play@uywill seek more information in
order to reduce the uncertainty, and hopefully emavith the “best” solution, a solution
which is beneficial. Has anyone played this gamfere@ What happened with them?
Will you be allowed to try the game before you dedio play? Can you trust the person
offering the game, and so on?

This need for information will always be presentemhdealing with decision making
under uncertainty. As will be the case in this ihesvhen do we have enough
information to feel secure about the conditionghie decision problem? In the example
above, necessary information could have come freapie that have already played the
game or the first impression you get of the gugifig the game, and it may be easier
to make a decision.
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2.1.2 Reducing Uncertainty

Probabilities are often used to express uncertaibtyt there exist two different
frameworks for probability. There is a strong nded an explanation of the two
different types. The classical viewpoint sees pbilig as a relative frequency,
meaning that P(A) is the fraction of times A occurshe situation can be repeated
under the same conditions infinitely.

Another approach to probability, the one that Ww#l adopted in this thesis, is called
knowledge-based probability. This probability comgzathe degree of uncertainty with
a standard. For example, to compare the uncertahtgn event/consequence with
drawing a blue ball, out of an urn containing p*®@lue balls (Aven, 2010), p is then
the probability.

Before going further, it is necessary to addregsdhgoing discussion regarding the
meaning of probability. Statisticians that see piolity as a knowledge-based
judgement about uncertainty are known as Bayesi@h#e statisticians that address
probability as a relative frequency are called tigtists. The main difference between
these two views is the possibility of assigningalability to a single event.

For frequentists, it is impossible and meaningl@ssalk about the probability of a
single event, as they will say that this does natehanything to do with the
mathematical theory of probability; see Leda Coswmicand John Tooby (1996).
Frequentists say that a single event can not hapmlaability as probability always
refers to a population (like Norwegians or a laaggount of marbles).

For Bayesians, on the other hand, probability exist single events. This is due to the
fact that they see probability as a personal espasof uncertainty regarding the
occurrence of an event given the available knowdedgome degree of knowledge
regarding the occurrence of an event will alwayistex

Leda Cosmides and John Tooby (1996), have in hieoduction to “Are humans good
intuitive statisticians after all? Rethinking soroenclusions from the literature on
judgement under uncertainty”, presented the diffees between what they call
subjective probabilities (also known as knowledgedual probabilities) and objective
frequencies. | refer to this article for an easylaration for why Bayesians and
frequentists disagree. The advantages of beingyadgan will be discussed in Section
3.3.

2.1.3 Epistemic and Aleatory Uncertainty

Uncertainties are often divided into epistemic aadatory uncertainty. Epistemic
uncertainty is uncertainty caused by lack of knalgks while aleatory uncertainties are
due to the variation within a population. Aleataenycertainties are present because the
system that is being studied can behave differeatlig these uncertainties are therefore
a part of the system. An example may be smokens;aye interested in the average
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number of smokers in each class at a school. Smaker be considered as your system
(population), and the number of smokers in eacksatan be different from the average
for the whole school. This variation between therage and the number of smokers in
one class is referred to as aleatory uncertainty.

Epistemic uncertainties are the only uncertaintibat exist when adopting the

knowledge-based approach to probability, meaniag ttie only uncertainties that exist
are due to lack of knowledge; variation in a popatdsystem is just called variation.

Uncertainty is then something that can be redugethtreasing the knowledge about
the phenomena that are being studied. Variatiomcaie reduced as it is a part of the
phenomena that are being studied.

When doing inspection planning, uncertainties dneags present. These uncertainties
are attached to the consequences, the occurredctharocation of a leak. There are

several different factors that influence these uaggties. The consequences of a leak
have to do with nearby equipment, the content & fiping, the pressure and

temperature of the content, size of the leak, ifitign sources are present, the
effectiveness of implemented measures like firesydllast walls, fire water and so on.

2.1.4 Valueof Information

When doing research, new information may becomalable. This new relevant
information may change the direction of the redeard influence the final conclusion.
It is therefore important to make sure that neworimfation is processed in a systematic
way so that all relevant information is considebedore a decision is made. Systematic
coherent treatment of inspection results can beeaetl by Bayesian updating.
Coherent treatment means that the decision prasdegical; an example of coherent
behaviour can be that alternative a is better thanvhich is better than c. Then
alternative a is also better than c; see LindI©&8E).

A well-known concept in risk management is the ALRARrinciple, meaning that one
should reduce risk to an as low as reasonably ipadxte level. In the context of
inspection management, ALARP will mean that th& attached to a leak should be
reduced to a level which is as low as reasonabhctmable. Because risk can be
defined as the combination of the event, a leakctinsequences, like fire or explosion
and the different uncertainties attached to both dbcurrence of the event and the
different consequences. Consequently, there aee ttifferent areas where measures
can be implemented to reduce the risk. Measuresedace the probability of the
occurrence of the event - for a leak, thicker makecorrosion inhibitors and more - can
be used. Fire and explosion walls can be useddoceethe consequences of a leak,
while knowledge can be used to reduce the uncéytdimowledge can be found when
performing inspections or by comparing with simgguations and so on, but when do
we know enough to stop inspecting?

The risk can be considered as high as long as Hreréarge uncertainties attached to
both the occurrence and the consequence of a Matkall the uncertainties can be
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expressed by a probability. When dealing with cgion, the uncertainty is mostly
associated with the actual state of the piping. @tresequences are often quite clear,
and models are developed to calculate the corrasitenand thereby be able to predict
the state of the piping. Still, it is important riotforget the different uncertainty factors
related to the background knowledge; this will lesatibed further in Section 2.2.2.

Nevertheless, inspectors get surprises, both whey find corrosion which was not

expected and the other way around. The need fpeat®ns is therefore clear, as it
increases the knowledge about the piping condammhthereby reduces the uncertainty.
Inspections give more available information andb&comes easier to predict the
condition of the remaining part of the piping irettorrosion group. Further, inspections
increase the knowledge and reduce some of thenatigncertainty factors; see Section
2.1.2.

Still, it is important to remember that inspectiandy increase the knowledge as long
as the inspection method used is suitable. Witigh bhance of detection (POD), the
fraction of times the inspection methods do noteed¢vany corrosion, even though
corrosion is actually present, should be low. Klealge about how degradation occurs
is also an advantage to be able to select the étispepoints which will give the most
valuable information.

Following the argumentation that inspections inseedhe knowledge, one should
always inspect everything, and in that way remoNeh& uncertainty. This will be
extremely costly and the ALARP principle is not rgeifollowed. Consequently, an
important question arises: how much is it necessanyspect to be sure that you do not
inspect so much that it ends up in gross disprapotb the costs and benefits of doing
inspections? In other words, the cost should bghted against the value and need for
new information (inspection results).

2.2 | ngpection M anagement

Inspection planning is an important part of insmectimanagement and today is based
on Risk-Based Inspection, RBI analysis. Inspectrmanagement and risk management
have a lot in common, as both of them strive totrmdnunwanted events and
consequences. Below are some points that can loeassguidelines when ensuring a
good inspection management process:

» The inspection management should have an outsgndiderstanding of the
system performance.

= The models that are used should be “sufficientueate” representations of the
world; their goodness in describing the world hasrbevaluated (Aven, 2004).

= All observable quantities are precisely defined.

= The meaning of risk and uncertainty should be «testly treated and fully
understood.
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» The background information for the analysis is wllcumented and available
to all parts: dose planning, performing and evahggthe inspection.

In Aven (2004), the above-mentioned points are usddghlight the factors necessary
to ensure a high quality risk analysis. These gaané not very different when it comes
to inspection management and planning. Inspectenes performed to reduce the
uncertainties and mitigate risk related to a leAkleak may have several different
consequences, some of which may be very serious th# possibility of several
fatalities; considering the Piper Alpha accidenbasexample, see Lord Cullen (1990).
Inspection management and risk management are fdhergelated. Inspection
management based on risk, known as Risk-Baseddtigpefocuses the inspection on
areas where the consequence of a leak is mosesaeett will be possible to act before
a leak occurs. The following section will give eoghdescription of the RBI analysis,
and the different uncertainty factors. A descriptad an Extended RBI analysis, ERBI
analysis, which includes the uncertainty factordl, e presented in Sections 2.2.2 and
2.2.3, see also the Appendix.

2.2.1 Risk Based Inspection, Hot Spotsand Corrosion Groups

Risk based inspection, RBI, is a framework for dateing where, what, how and when
to inspect in a cost-effective manner, ensuring shéety requirements to personnel and
environment are fulfiled. When doing inspectiofitsjs normal to inspect locations
where the condition being discussed is expectdzbtmost severe DNV (2009). These
locations are called hot spots. Hot spots withstime degradation mechanisms belong
to the same corrosion group, meaning that the pamtssn this group are exposed to the
same internal or external environment and madéefsame material, thus having the
same degradation mechanism. These groups showidjaerised so it is natural to relate
inspection results in one part of the group tohbespots in the remaining part of the
group; see DNV (2009).

The RBI analysis is used to locate the areas exipmsthe highest risk and in need of
inspection. In the RBI analysis, different areas divided into different consequence
and probability categories, based on expected salfithe analysis concludes that the
combination of probability of significant corrosiar erosion and the consequence of
corrosion/erosion is unacceptable, it is decided ithspection is necessary.

Inspections may also be necessary if some conditiorthe piping are unknown or
insecure. In situations where the consequencesledkaare very high, inspections are
done to look for surprises or to check assumptiohieh the RBI analysis is based on.
Furthermore, when the RBI analysis recommends ot&pes, the next step is to decide
how much to inspect. This will, as already mentthnge the main focus of this thesis,
and the number of inspections will depend on tleepiable level of uncertainty.

After an RBI analysis has been performed, a timms$pection will be recommended.
The time is dependent on the probability and comseges of failure for the
component/corrosion group/system, etc. being stiydat, according to Selvik, et al.
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(2011), doesfail to bring into account all the relevant uncariges”. This means that
all the relevant uncertainties in the RBI analysis not revealed when only focusing on
probabilities. Not all uncertainties can be expeedsy probabilities; see Section 2.2.2.

In an RBI analysis, one is forced to produce prdllestimates to be able to perform
a risk estimate. When deciding these probabiliii®s different assumptions have to be
made, and the probabilities that are used are basetie best available background
knowledge (K). Often the background knowledge iskyeand the assumptions that are
made are wrong. In some situations an assumption bed'constant sand content of
two percent”, this assumption is necessary to sayeshing about the piping
degradation.

A probability for degradation failure is calculatbdsed on this, and the probability is
used to estimate the risk and thereby the timeetd mspection. When presenting the
probability and time to next inspection, the asstiompof two percent sand content is
often forgotten. When introducing this assumptiam,uncertainty factor follows. What
if this assumption is wrong? Will it influence thime to next inspection (the decision),
and how much can it change before the time to imspiection changes (sensitivity)?

The example of two percent sand content is fakfcand in many situations this
assumption is checked using sensitivity analysisvextheless, there is a need for a
more systematic approach to handle the differenédainty factors. Not all uncertainty
factors are as visible as the one mentioned alsmrag may be difficult to reveal, and
experience may be necessary.

Let us take another example. Consider a case wlmerdhave a low probability of a
leak, and the consequence of failure is classdiganedium. Low probability of a leak
is calculated based on degradation rate. This datgom rate is calculated based on an
assumption: no presence of corrosive sources. Bhmulation of degradation and,
following that, the probability of a leak is themnditioned on this very important
assumption. If the only information that is beingronunicated to the management is
that the probability of a leak is low, importantarmation is hidden and the decision
regarding time to next inspection may be influendédne assumes that no corrosive
sources are present, one will normally not planif@pection in the first couple of
years. On the other hand, if corrosive sourcepegsent an expected degradation will
be calculated and inspection will be planned. Ié @xpects fast degradation, time to
next inspection will be short to make sure thatnteaiance is performed before a leak
occurs. It follows that it is clear that this assfion is important, and should be
communicated to the management.

This example is a bit far-fetched, but the pointhiat the background knowledge, often
expressed by assumptions, may “hide” uncertaimigt,these uncertainties are known as
uncertainty factors; see Selvik and Aven (2011y Salvik et al. (2011). They present a
method for how to handle uncertainty factors. Theidconcept of this method will be
presented below.

10
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Governing Requirements (authority regulations, codes, standards, company regulations, philosophies, etc.)
(Section 5.4)

[information Gathering
(Section 5.6)
| Identify assets & group into systems |
|
|
Screening Assessinent
(Section 5.7)
| Identify main failure modes I
Detailed Assessment
. ’F (Section 5.8)
- Low Higl Medium & Identify functional equip. & Assignment of detailed
Lal High Risk equip. types failure modes
=] Medium
T
L
o
o
z .
E Medium
Low Risk
Medium & High Risk
Identification of failure
causes
Low Risk
Develop maintenance,
inspection & test strategy.
Identify monitoring. Identify
spares.
Planning
(Section 5.9)
A 4 A A
Minimum surveillance, planned corrective Development of planned CM .
maintenance, as required. routines Development of PM routines
Verify input data to confirm low risk
Task optimisation &
job planning
Execution & Evaluation
(Section 5.10)

Y MoC
Execute plan process
required

A

Report integrity management Evaluate findings for Evaluate findings for
plan effectiveness plan status equip. status

Update database

¥nexpected equip

Root Cause Failure
Analysis

Replace equip.

| Equip. modification / redesign / replacement or revise plan

Resources (competence, software, hardware, guidelines, procedures, etc.)
(Section 5.5)

Figure2.1 RBI process, DNV (2009).
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2.2.2 Uncertainty Factorsin the RBI Analysis

Motivated by the example in the section above niged for an evaluation of uncertainty
factors can be justified. In the method presente8elvik et al. (2011), the assessment
of uncertainty factors is added as an extra detisigpport after the traditional RBI
analysis has been performed. They denote this agstanded RBI analysis: ERBI.

The ERBI analysis is also based on a different pskspective than the RBI analysis
presented in DNV RP-G101 (DNV, 2009). The ERBI gsial is in accordance with the
risk perspective presented in Aven (2010). In tménition of risk, probability is being
replaced with uncertainty, making probability a ltased to describe uncertainties,
conditioned on the background knowledge. As a apmsece, the focus changes from
assessing probabilities and expected values to ridegr uncertainties. Since
probabilities can not describe all uncertaintiesewaaluation of the different uncertainty
factors is required.

The ERBI analysis follows the same methodology masR&8I| analysis, but with a
broader perspective on risk, as mentioned abowk Rithen seen as a combination of
the event (A), the consequence (C) and the unoégsi(U) about A and C; see Aven
(2008). Probabilities, P, are used to describeutieertainties related to the occurrence
of A and its consequences C. P is based on theavadtble knowledge and will
therefore not be able to describe the uncertaintredden” in the background
knowledge.

The ERBI analysis includes a risk perspective wignles a broader risk picture, and

includes uncertainties which may be hidden in tsumptions (which are based on the
background knowledge). These “hidden” uncertainties called uncertainty factors.

Including an evaluation of uncertainty factors nwlseire that the focus in the RBI

analysis is on describing uncertainties and nadt pusbabilities, and consequently on

being able to reduce the occurrence of unwantedtsins and surprises.

In addition to a broader risk perspective, the ERBalysis presented by Selvik et al.
(2011) presents a potential for methodological mrpments, consisting of extended
uncertainty assessments. The RBI methodology piegen DNV (2009) will still be
the platform, but the ERBI analysis requires aneeded incorporation of the
uncertainty factors. Some may argue that unceytéators are already included in the
RBI analysis, but a systematic methodology is lagki

Studies like those of Geary (2002), Herzog and skack(2009) and Simpson (2007)
indicate that uncertainties in assumptions madbarRBI analysis are limited, reflected
in the final result. None of the above-mentioneticks includes an evaluation of
uncertainty factors.

Before presenting the methodology for the ERBI wsial | would like to refer to
Vinnem (2008). He has performed a case study afN(G plant located in Risavika, an
urban area on the Norwegian west coast. He ishatig@n assumption which was made
when evaluating the risk attached to this planis Bssumption says that “in the event
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of impact of a passing vessel on an LNG tankeritgpét the quay the gas release
would be ignited immediately, presumably by spay&serated by the collision itself’.

Vinnem not only disagrees with the assumption heuélso notes that a treatment of
this assumption, such as a sensitivity study, ssmg? This can be seen as motivation
for why evaluations of the different uncertaintgttars are needed. A change in this
assumption in the LNG case could have influencediitision regarding the location
of the plant. At least the effects of this unceraifactor should have been investigated,
according to Vinnem (2008).

2.2.3 Methodology for Extended RBI Analysis

In this section, the ERBI methodology presentedSeivik et al. (2011) will be
described. As discussed in Section 2.2.2, the ndethdbased on the RBI analysis
presented in DNV (2009), but includes a broadés aisd uncertainty perspective. The
ERBI analysis is also based on a knowledge-baspaph to probability; see Section
2.1.2. Figure 2.2 presents the framework for thereed methodology as presented by
Selvik et al. (2011). Steps 0-3 represent the stahdRBI analysis, while steps 4-6
include the new steps included in the ERBI analysis

O=Fomnag 1 Equipment 3 Detailed sk (or 3~ Inspection
- vl ion g " screeni ) RoF) assessments " interval assessments
information update = = o D

Y
Jnspetﬂm_ 6 — Managerial 5 — Uncertainty ; ’
programme:; : . 4 — Uncertainty
e review and <+ evaluation and |+ .
Decision and . : analysis
& judgement presentation
Implementation.

Figure2.2 Framework for the extended RBI methodology, asgires] in Selvik et
al. (2011).

After performing an RBI analysis according to DN¥009), Selvik et al. (2011)
recommend an uncertainty analysis, which consfsts o

= Identification of uncertainty factors

= Assessment and categorisation of the uncertairdtpfa with respect to degree
of uncertainty

= Assessment and categorization of the uncertaingtofs. with respect to
sensitivity

= Summarization of the factors’ importance

It follows that the first step is to identify thecertainty factors. These are factors which
may come from assumptions made during the risksagsent. The next step is to rank
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the different uncertainty factors using a scorgghhimedium or low. This score is
motivated by Flage and Aven (2009) and, in Selvile(2011), is summarized as:

High uncertainty
If one or more of the following conditions are met:
= The assumptions made represent strong simplificatio
= Data are not available, or are unreliable
= There is lack of agreement/consensus among experts
= The phenomena involved are not well understoodratkgion models are non-
existent or known/believed to give poor predictions

Low uncertainty
If one or more of the following conditions are met:
= The assumptions made are seen as very reasonable
= Much reliable data are available
= There is broad agreement/consensus among experts.
= The phenomena involved are well understood; thgradiation models used
are known to give predictions with the requiredw@ecy

Medium uncertainty is defined for the factors whénere is a combination of the
conditions from low and high uncertainty. Consedlyersome uncertainty factors end
up with high uncertainty, but this does not necelysmean that they will influence the
risk level and thereby the time to inspection.

The third step in the methodology introduces a eegf sensitivity. As an example,
take the assumption: no presence of Microbiologloduced Corrosion, MIC. This
assumption introduces an uncertainty factor, whiey have a low, medium or high
degree of uncertainty. Let us say that the degfeescertainty is medium, but if MIC
actually is present, it will influence the finakki level and thereby the time to next
inspection.

This uncertainty factor therefore has a high degresensitivity, as presence of MIC
strongly influences the degradation rate. The coatimn of the sensitivity, how much
the factor is able to change the risk picture (titmeinspection), and the degree of
uncertainty, are interesting in a decision-makingtext. See Table A and Selvik et al.
(2011) for an example of how this can be preserikbd. combination of the degree of
uncertainty and sensitivity leads to the classiftcaof the uncertainty factors’ degree
of importance. Uncertainty factors with a high degrof importance should be
prioritised when the risk picture is being commauatéc to the management.

Let us introduce an example. Consider an n-yeargatform that is ready for
inspection. Some of the carbon steel piping is etipg corrosion. It is assumed that all
piping in a corrosion group is exposed to the s&n@perature, pressure and internal
medium.

In this situation, the piping is assumed to be a-water-hydrocarbon multiphase

system which can give uniform GQ@orrosion. According to DNV-RP-G101 (DNV,
2009), areas where it is expected that water irstant contact with the carbon steel
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will be chosen as hot spots, as L£€orrosion is most likely to take place at these
locations. In some cases these hot spots may lyegeed, meaning that they are easy
to locate. Good hot spots make it possible to $eeure that if corrosion is present in

the corrosion group, it would at least be preserithe hot spots. To make this simple,
let us present a list of some of the assumptioaswiil be present when planning time

to inspection for this corrosion group:

1. Water is in constant contact with the carbon steel

2. Inspection results are representative for the whoteosion group
3. The operational parameters are constant over time

4. No presence of MIC (microbiological induced corovgi

All the assumptions listed above represent differencertainty factors. When

performing the RBI analysis, the time to next ingmn is estimated based on these
assumptions.

The assessed risk, and thereby time to inspeatitingary if these assumptions turn out
to be wrong or imprecise. The degree of the chamgtee risk picture may be different
for each uncertainty factor. The uncertainty factdroduced by the assumption of no
presence of MIC (microbiological induced corrosias)characterised below as having
a high degree of uncertainty. MIC may occur if leaiet (from seawater) are present. In
this example, it is not expected, but it may od€tine sulphate removal package (SRP)
does not work as intended. MIC has never been w@eleas it is often not inspected for
either, in this corrosion group, but there exisggoasibility of MIC corrosion; it is just
not the most likely scenario. After identifying thdifferent uncertainty factors
introduced by the assumptions, the different degodeuncertainty can be determined.
The different degrees of uncertainty are:

1. Low
2. High
3. Low
4. High No presence of MIQ;

Further, each of these assumptions can be givegrael of sensitivity:

1. High

2. High

3. Medium

4. High No presence of MIQ;

The uncertainty factor identified in the assumptiegarding no presence of MIC is said
to have a high degree of sensitivity. This mears this uncertainty factor is able to
change the decision regarding the time to nexteaspn. If MIC is present, the
corrosion rate will be higher, and significant @sion will most likely occur earlier.
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After assessing the different degrees of uncestaint sensitivity, this is combined into
a degree of importance, as listed below. Uncestdenttors with a high or maybe also
medium degree of importance should then be commtedcto the management. As
seen in this example, the uncertainty factor wtanterged from the assumption of no
presence of MIC should be communicated to the memagt.

In many situations the management would ask foremigformation, like what would
happen if MIC was present. Uncertainty factors likes are also often being
communicated today, but not systematically, and pussibility of overlooking
uncertainty factors “hidden” in the assumptiongissent. It is clear that uncertainty
factors are very important and, if missed, unwasiaditions may arise.

Using the method presented in Selvik et al. (201i¢, degree of uncertainty and
sensitivity can be combined into a degree of imgoae. In this example:

1. Medium

2. High

3. Low - Medium

4. High No presence of MIQ;

When presenting the results from the ERBI analyssassumptions with a high degree
of importance should be highlighted. This is, tansodegree, included in the RBI
practice today. However, one may benefit from a ensystematic approach to
uncertainty factors, as presented in Selvik ef28l11). The ERBI process is more time-
consuming, but is recommended to be performed vdeating with decision making
under uncertainty.

After evaluating the uncertainty factor’'s importanthe ERBI analysis recommends an
uncertainty evaluation and presentation. This mag galuable information to the
management.

The next step in the framework for the extended RBthodology presents the role of
managerial review and judgement. This step enghasthe various assumptions and
uncertainty factors are seen in a broader pictgireng weight to different concerns,

limitations and boundaries. Management review adgg¢ment also reflect the fact that
decision making under uncertainty needs to balaliterent concerns, like risk, cost

and, in some situations, also reputation.

In this thesis, the focus is on the uncertaintedated to factors which influence the

occurrence and location of a leak. The aim of in8pes is to locate these areas before
a leak occurs. Different methods for calculatingrasion rates have been developed,
and the input in these methods is based on thagimpiaterial, medium, temperature,

pressure, etc. These calculation models are basedrber experience and research.

In some cases the degradation rates are eitheerhogHower than estimated. A central

assumption when performing inspection planninghis dividing of corrosion groups.
This assumption includes an uncertainty factor. Wihasome of the areas in this
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corrosion group are placed in the wrong corrosiooug? This may happen, but
experience and training may reduce this possibistyll, it is important to address the
uncertainty, especially in situations where theseguences of wrong corrosion group
are high. Often inspection points/hot spots aresehdo reduce the effect of “wrong”
corrosion group, meaning that areas with the higbessequences are preferred when
performing inspections.

When planning the time to next inspection, differassumptions are made. Often the
most conservative assumptions or expected valiesised. This may lead to quite a
conservative calculation of degradation rate, ahéons where significant corrosion
Is expected but not revealed during inspection oGyr.

Consequently, how much should then be inspectedrder to feel secure that no
corrosion is present? Is it not natural to belithet this should depend on the factors’
degree of uncertainty? Section 3.2.2 presents Hwéce of prior distribution in a
Bayesian analysis, and how this prior distributeam be used to reflect sonoé the
uncertainty. Still, it is important to rememberttitiae prior distribution only reflects the
uncertainties regarding the fraction of hot spotghwsignificant corrosion (the
distribution parameter), based on the availablek¢p@und knowledge, and that
evaluation of the uncertainty factors is necessary.

In Section 1.6 risk is described as the combinabbrthe event A, the different
consequences C, the uncertainties attached to Aotdnd C, the probabilities P
(knowledge-based) used to describe U, a sensit¥vity see how variation in different
input conditions and assumptions changes the iikine, and given the background
knowledge K. An alternative to this may be to diémerisk using (A,C,Q,K), where Q
represents the uncertainty. Some of this unceytaimay be presented using
probabilities, P, while the remaining uncertainggtbrs are presented when doing an
evaluation of the different uncertainty factors,. UEfollows that:

Uncertainty (Q) = P (A]JK) and UF

This section has presented an extended RBI metbggdbased on the RBI framework,
but with a stronger and more systematic focus ocedainties. The ERBI analysis
highlights uncertainties which may be “hidden” ihetassumptions on which the
analysis is based. This leads to a broader preagemtaf the risk, in which the
management will have to evaluate the important dacey factors and give weight to
different concerns like cost vs. benefit (redudsll)r Consequently, this will reduce the
possibility of surprises and unwanted events. Fam@e comprehensive example
regarding the treatment of uncertainty factors rédaler is referred to the Appendix.

2.3 Bayesian Updating

The Bayesian updating process is a well establishethod for the incorporation of
new information. There are several books which dles@ayesian updating; this thesis
will just touch the most basic parts of the thedfgr more advanced theory, see
Bernardo and Smith (2000), Ghosh et al. (2006) iog@rwalla (2006). Bayesian
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updating is a strong tool for handling new datagrehupdating the probability of an
event has the main focus. For Bayesians, probgalslia measure of uncertainty based
on the available background knowledge. This ised#ht from the relative frequency
approach to probability, where probability is tihaction of “successes” in the long run,
as already explained in Section 2.1.2. To Bayesihesrelative frequency of an event is
known as a chance. The probability of an event,)P¢An change as more data is
revealed. It is this opportunity to learn from esipece that is the known as Bayesian
updating. The original belief before more datavailable, P(A | H), is called the prior
distribution and is based on (given) the best ab#l background knowledge H. When
this probability is updated it is called the postedistribution, P(A| XH), where X
represents the new data (observable quantitieg) pdkterior distribution represents the
probability of event A occurring, given that datavh been observed and the
background knowledge H. Using Bayes’ formula to pate the posterior distribution
we get:

P(Al X) =c P(X A) P(A)

where c is a normalizing constant which ensurestttsasum (integral) over the density
equals one. P(X | A) is the probability of X océogr given that A has occurred, also
known as the chance distribution. H is removed fthenequation, but it is important to
remember that all these numbers are based on tigroand knowledge. Sensitivity

analysis can be performed to see how changes inirthet data (background

knowledge) may change the output.

2.3.1 Bayesian Inference

Say that there exists awhich is important for making a good decision. k&tthe
background knowledge, denote all that is known &Bolore information aboui will
become available; this new information can be fotnodh the dataX = Xg,...... Xn,
where X represents one observation/measurement. The gistbution, f (0 | H),
represents our initial knowledge, uncertainty, abbhuUsing Bayes’ formula we can
calculate the posterior distribution:

f(O|X,H)=cf(X]6, H)f(0]H) Equation 1
As already mentioned, c is a normalizing constanhghat the integral over the density
equals one andl ( X | 0) is the likelihood function o given X . Equation 1 can
therefore be written as:

f(O|X,H)=cL(0]|X)f(0]H) Equation 2
The objective of this updating process is to asgessincertainty of.

Furthermore, it is often the future which is ofergst. Starting with a prior distribution,
updating to a posterior distribution, and furthembining this and the law of total
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probability, finds the predictive distribution. Tharobability of a future event or
sequence of events can be written as:

P(X=x) :J-e P(X = x |0) F(db) Equation 3

where x is the outcome of the event (or sequent@)terest, F§) is the distribution
function of, prior distribution, and P(X = x6) is known as the chance distribution of
X. For simplicity, the background information, H suppressed in the equation, but
should not be forgotten.

Further, letX bea sequence of exchangeable variables that carihtakelue of 0 or 1,
a Bernoulli sequencé.is then the fraction of ones. The predictive disition can then
be written as:

POG= T %=1, Xo1= O %= 0) =)o 05 (1 —0)" ¥ F(p), ~ EQuation 4

This is known as de Finetti’'s theorem for zero-emehangeable sequences, meaning
that if you have an exchangeable sequence of randoiables, these variables can be
handled as if they were independent, conditionaltte parametef. Exchangeable
means “a sequence of observations where the jobtiapility distribution of any finite
subsequence of observations is invariant under pidsenutations of the order of
observations,” Aven (2010, p. 161).

6 (1 —0)" ~ ¥ is known as the chance distribution and F is ttier glistribution ofo,
which shall represent the knowledge ab6ubefore the new data is observed. The
selection of prior distribution can vary and is ped further in the next section.

2.3.2 Conjugate Analysisand Prior Distributions

The choices of prior distribution are not easy, amach has been written regarding
them; see for example Ghosh et al. (2006), BernamdbSmith (2000) or Singpurwalla
(2006). Different methods for selecting prior distitions can be used: the so-called
non-informative distributions which intend to refletotal lack of knowledge. For a
binomial case, the parametefon the interval [0, 1]) will have a non-informai prior
distribution if a uniform distribution is used; sEgure 3.7.

It can be claimed that there always exists somerege@f knowledge about a
phenomenon or the parameter for which the pridridigion is assigned. As Gudmund
R. Iversen writes in his book about Bayesian Ste#ic Inference from 1984,
“...research is never done in a vacuum, and if nothwege known about a parameter
we would not have thought of doing research infitts¢ place.” This is absolutely valid
for the situation which is studied in this thediswould not be interesting to know the
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fraction of hot spots with significant corrosiorwe did not know that corrosion existed
and would cause a leak if not controlled or avoided

At least it is known that the fraction exists andtheory can take all values between
zero and one. In most cases we also know more, tdudifferent degradation
mechanisms, history and research. When this isatefll in the prior distribution, it is
called an informative prior distribution. A non-ormative prior distribution is also
used in situations where all values of the paramate considered to be equally likely;
this means thatdh interval of values of fixed length is equalkely no matter where
the interval is located within the relevant ragetloé parametériversen (1984).

Informative prior distributions will be very inforative in situations where some
parameter values can be assigned a prior probabkijtial to zero. Doing this means
that certain values of the parameter are absolutepossible, and no matter what
evidence (new research) shows, the posterior piitiyabill always be zero. Due to
this, care should be used when assigning a prilevaqual to zero. So, as Lindley
(1985, p. 104) writesleave a little probability for the moon being maaé green
cheese, it can be as small as 1 in a million, lawehit there since otherwise an army of
astronauts returning with samples of the said cheesl leave you unmovedFor a
more comprehensive discussion regarding the ug®iaf distributions, see Bernardo
and Smith (2000, pp. 357-370) or Ghosh et al. (2006

When trying to find the prior distribution which stedescribes the available background
knowledge, informative or not, it is useful to ckewhether a conjugate prior
distribution exists. This distribution ensures tlia¢ prior and posterior distribution
belong to the same class of distributions. Consatyethis will make the Bayesian
updating easier, but a conjugate distribution sthaully be used in situations where it
also accurately expresses the prior knowledge. Baw @, p) distribution is a
conjugate distribution for the Bernoulli (A) distribution, which are the distributions
that will be used in this thesis. The Beta distiidnu is not only used because it is a
convenient choice, but also because it reflectptioe knowledge about the fraction of
significant corrosion in all the possible situasaonsidered in this thesis.

233 Bernoulli and Beta Distribution

A Bernoulli distribution is a discrete distributidanction, used in situations where the
values are either 1, with a chance of success dqual or O with chance 16. The
probability function can be expressed as:

0<6<1 x=0,1
Br(x|8) =0*(1-6)"" Equation 5

The Beta distribution is a continuous distributigmere:
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a>0, >0 0<f< 1 |
Be@|a,p) =%6”‘1 a-6)** Equation 6
E(6) = . Equation 7
a+f
_ ap '
vare)= (@+pB)(a+pB+1) Equation 8

Consider a case where you are interested in tHeapility of drawing a blue ball and in
the example from Ghosh et al. (2006):

X = {1 if theith ballisblue:

i ) i=12....n
0 otherwise.

wheren is the number of drawings and thes are exchangeable. Th¢ 's are then

Bernoulli distributed,Br (¥ )with a probability of a blue bal. Let the knowledge of
@ be represented with a Beta prior distribution.

Due to Bayes’ formula, the posterior density camhigéen as:

f (0 | X = X) = C(X)eaﬂ—l (1_ 8)ﬁ+(n—r)_1
Wherer = zi":lxi = numberof blueballsandC (x)™ is thedenominatoin theBayesformula.

Compared to Equation 5, it is clear that this isoala Beta distribution,
withBe(@|a +r,+(n-r)). Consequently the posterior mean and variance are

_oa+r
By T
B (@+r)(B+n-r)
Var(elx)_(a+ﬁ+n)2(a+,8+n+l) Equation 9

We can then see that the posterior mean is a veglghterage between the prior mean
and the information from the drawings, and that mvltee number of drawings
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increases, the weight from the prior distributi@tiase. This equation also shows that
if the alpha and beta values are high, more da&aecessary to “move” the prior mean
value. Thus, if your prior knowledge is strong,stiean be reflected by choosing high
alpha and beta values. Figure 2.3 shows how the dhietribution changes when the
alpha ¢) and betaff) increase. Figure 2.4 shows how the distributibanges after ten
drawings (or other new data, like inspections).

Beta Distributions Density, Prior

0,25

0,2 /_\

a=p=1,2
0,15 //_\\ a=p=2,0

a=p=4,0
0,1 a=p=10,0
— 0=B=20,0
0,05 -
0
QQ'} Q(*l/ Qr*b 0?‘ 0<? Q(*O Q/*\ QY O h¢

Prior Distribution for Fraction with Significant Co rrosion

Figure2.3 Different beta distributions, when=f > 1.

As already mentioned, Figures 2.3 and 2.4 demdedtinat the posterior distribution is
much more sensitive towards new data wiiemdp values in the prior distribution are
low. The density functions are moving towards zater ten drawings without getting a
blue ball, (or inspections without significant amston). For the prior distribution with
the lowesta andp values, the posterior mean also becomes lowest &#ih drawings
without getting a blue ball.
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Tablel Table 1 presents approximate numbers of prior aslepior mean and
variance for different values ofandp.

o =B ={a=p=20 |a=p=40 |a=p=100|a=p=20.0
1.2
Prior, mean 0.5 0.5 0.5 0.5 0.5
Prior, 0.07 0.05 0.03 0.01 0.01
variance
Number  of| 10 10 10 10 10
new
measurements
Posterior, 0.10 0.14 0.22 0.33 0.40
mean
Posterior, 0.01 0.01 0.01 0.01 0.005
variance
Beta Distributions Density, Posterior After 10
Inspections
04
0,35
0,3 \
—0=p=1,2
0,25 \ ™
/\[ \ aTh=20
0,2 AV a=p=4,0
015 - — a=3=10,0
— 0=p=20,0
0,1 1
0,05 7
0 T T k T
ng 0‘}/ 0(*5 0?‘ 0<? QG*D o ch, Qo >
Probability

Figure 2.4 Posterior Beta distribution, after combination afop distribution and new
information (i.e. drawings, inspections...).

This chapter has introduced the background of tbequure developed in this thesis.
The basic concepts of risk-based inspection, uaiceytfactors, Bayesian updating and
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the beta and Bernoulli distributions have beenentesi. Chapter three will show how
this theory can be used as decision support wheamglg inspections. More figures on

how the beta distribution changes when more inftionabecomes available will be
presented in Section 3.1.
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CHAPTER 3
DECISION SUPPORT FOR INSPECTION PLANNING

3.1 Application Example

Let us go back to the example presented in Seeti®3, where an n-year-old platform,
ready for inspection, is considered. Some of thibara steel piping is expecting
corrosion. All piping that is exposed to the sameenperature, pressure, internal
medium, CQ content, etc. is put in one corrosion group. is tdase the piping is a gas-
water-hydrocarbon multiphase system which can guweform CQ corrosion.
According to DNV-RP-G101 (DNV, 2009), areas wheresiexpected that water is in
constant contact with the carbon steel will be elmoas hot spots, as g@Qorrosion is
most likely to occur at these locations. In sontaagions these hot spots may be very
representative, meaning that they are easy todocat

Sometimes significant corrosion is expected in gasion group, but none of them
reveal any corrosion during inspection. How mucbudth then be inspected in order to
feel confident that no significant corrosion is @Bt in the corrosion group? During
inspections there will not be time to perform cétions. This procedure does,
therefore, give an output which can be used assibecisupport when deciding the
number of inspected hot spots if none indicateiiggmt corrosion. This is the method
intended for situations where significant corros®expected but not found.

For situations where significant corrosion is ngvected, the inspections will be carried
out to verify the assumptions which indicate nangigant corrosion, and to look for

surprises. This may be in situations where the tiaicey factors are classified with a
high degree of uncertainty; see Sections 2.2.2 22d3, see also the Appendix.
Verifying assumptions may reduce the degree of iaicey.

In situations where significant corrosion is nopeated, the probability of significant

corrosion is low and the method presented in thesis will require a high number of

inspections to “prove” that the probability of sifigant corrosion is even lower. The

focus when inspecting and not expecting corrossonat to reduce the probability, but

to look for surprises or verify assumptions in artbecheck if the pressure, temperature,
flow and so on actually are what were expected.s€quently, Bayesian updating will

not be used before the output from the RBI (préfigraan ERBI, see Section 2.2)

analysis is ready. It is necessary to have a fgekgarding the state of the corrosion
group and whether significant corrosion is expetieidre applying this method.

The method presented is based on the theory erplam Chapter 2 and will not be
repeated. It is important to remember that thishmetwill only be meaningful as long
as the parameter (fraction of hot spots with significant corrosioogqn be given a
meaningful interpretation. It must be possible &firte a large population (corrosion
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group) of similar hot spots. For cases where thaee just a few hot spots in the
corrosion group, other calculations/methods shdddused to support the decision
making, such as increasing the knowledge abousthie of the corrosion group by
inspecting a proportion of the total number of Bpbts, and in that way reducing the
risk to an acceptable level. The updating will et required, as inspection of, for
example, two out of four hot spots in a corrosiooug will often reduce the risk to an
acceptable level.

This chapter will present a method, based on Bapespdating, that can be used as
decision support when deciding the number of inspes. It will also be explained why
this method is suitable in uncertain situations.

311 Updating Procedure

Let 6 be the real chance of failure, the fraction ofesmwhen significant corrosion
occurs in the hot spots. The valuefois unknown, but information exists about what
this value may be. Further, let X=1 if the inspectishows significant corrosion and
X=0 otherwise. The sequence of zeroes and onesxaieangeable and Bernoulli
distributed, with parametdr. The uncertainty regarding the “true” valuefcan be
expressed by a beta, (8) distribution. The choice od andf values will reflect the
knowledge about the true fraction of hot spots wgijnificant corrosion. Background
knowledge can, for example, be found from earliespection results, personal
experience, DNV-RP-G101 (DNV, 2009) and more.

Figure 3.1.1 presents the basic concept of Bayegdating, which is the theory behind
the method introduced in this thesis.

Prior B
Distribution
Bayes Posterior
Formula "| Distribution
Data —

Figure3.1 Bayesian Updating.

In this method, the data represents the inspect@snlts and can be denoted by,(X
Xa,......Xn)= X ; the prior distribution represents the initial kiedge aboub and is
described with a betd®,(a, B) distribution. When assuming thatis exchangeable and
Bernoulli distributed, Bayes’ theorem can be usetind the posterior distribution. The
mean value in the posterior distribution can therekpressed as:
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a+r Equation 10

By T

wherea and S are parameters in the beta distributiors the sequence of hot spois,
is the number of inspected hot spots amslthe number of inspections with significant
corrosion. In this situation; is equal to zero as the method will only be used i
situations where no significant corrosion is présen

Further, decide the number of inspected hot spetessary to reduce the probability to
an acceptable level. In other words, how much dataquired to change your initial
probability of significant corrosion given your Ik@round knowledge?. Inspections
will increase the knowledge about the conditionsthe corrosion group and may
therefore also reduce some of the different unicegytdactors. The requirements with
regard to the probability, indicating the degreeuntertainty related to the fraction of
hot spots with significant corrosion, will of coaeralways depend on the consequences
of significant corrosion. The number of inspected $pots when there are no hot spots
with significant corrosion ( = 0 ) can be calculated:

a —
E@|x)

a-p

The posterior distribution is found easily as thetabdistribution is a conjugate
distribution for a Bernoulli distribution. The pesior distribution can therefore be
expressed as a beta distribution with parameterand S +n, when the number of
inspected hot spots with significant corrosion égjzaro ( = 0). See Section 2.3.3 for
more explanation.

To end up with a number of hot spots, one will hevdecide a value foE &(x| .)This
expresses the mean valuedah the posterior distribution after inspectionnddioned

on the background knowledge. The requirementHermosterior distribution may vary
as the quality of the hot spots may be differemtis’shows how the method has to be
used in combination with other available knowledd#ferent situations will require
different values oft § % )andVar @ ).

Decision problems often consist of different unaertaspects, and the probability of
significant corrosion is just one of them. It is@lrecommended that the consequences
of a leak and the “quality” of the hot spots arelunled. The different uncertainty
factors, which may be hidden in the background Kedge, should also not be
forgotten; see Chapter 2.2.

Further, in some situations hot spots are easgdaté and one can feel confident that
they are representing the areas which are mogy likexperience significant corrosion.
The fraction of significant corrosion will often bewer for the whole corrosion group
compared to the fraction of significant corrosiarthe hot spots, at least if the hot spots
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are of “high quality”. How should one account fars? Listed below are factors which
could influence the value d& (x| :)

= Consequence of significant corrosion
»= The “guality” of the hot spots:
o Easyto find?
o Do these hot spots represent “worst-case” aretigeinorrosion group?

It is not easy to find a solution to the choiceE@ |x , byt it is important to explain
why one ends up on a certain valu&dd X .|A)sensitivity analysis can also be used to
see how changes i& 8 (x| may influence the number of inspected hot spotsalée

of E(@|x) should not be used without explaining why.

For simplicity, the consequences are defined as, mgdium and low. Areas where the
consequences are defined as low are often notatespand will “run to failure”; this
method will not be needed and should thereforeydre used in such situations. For
situations where the consequences are high or medhe tolerance for uncertainty is
much lower and the choice d& & (x | 9hould reflect this. | am suggesting that the

output from this method is a sensitivity diagrame Bigure 3.2, which shows how the
numbers of inspected hot spots influence the degfeancertainty. When finally
deciding the number of inspection points, this thag can be used as support, and the
reason for inspecting n hot spots can be explaméd cost-benefit, “quality” of hot
spots, consequences of significant corrosion andkdsaund knowledge. If the
uncertainty factors, identified in the ERBI anatyésee Section 2.2), are classified with
a high degree of uncertainty, a sensitivity analysin be performed to check whether
changes in assumptions will influence the numbengpected hot spots. If so, it should
be communicated to the management, and they sklealde if there is a need for more
inspections.

Sensitivity Diagram

< 40

S 35 1\
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28 251

g)_ = 20 ——Figure 1, alpha =2
o 3 \ and Beta = 1,5
£, 15 N\

S o 10

T < 5 \
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0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4

Probability of significant corrosion
after x number of inspections

Figure 3.2 Sensitivity diagram, expected posterior value m@mber of inspections
without significant corrosion.
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Figure 3.2 shows how muchk & (x |changes when inspecting more. This figure shows
that the costs of reducing the probability from .tb 0.05 require many more
inspections than a reduction from 0.15 to 0.10sTdan, for example, be used to say
that ten inspections are enough as more inspectiave little influence on the
probability while the costs may increase signifiban For situations where the
consequences are medium and the hot spots are ((medlegree of uncertainty related
to the assumption of representative hot spots),bmayE ¢ Kk of 0.25 means that

approximately five hot spots will then be inspected

3.1.2 Selection of Prior Distribution

Selection of prior distribution is known as onetloé challenges when using Bayesian
updating, and the choice of prior distribution whibest describes the background
knowledge can be difficult. In the method preseriterk, the beta distribution has been
selected as prior distribution as it simplifies tbalculations and gives a suitable
description of the possible valuestoin different situations. To make this method more
user-friendly, some prior distributions will be g@gted for different scenarios. These
prior distributions are meant as examples and lfgaaed on a beta distribution. The
only difference will be the choice af and S values. | will differentiate between five

different scenarios:

1. Situations where the fraction of significant coroosis either very high or very
low.

2. Situations where the expected fraction is high, daut take all values between 0
and 1.

3. Situations where the expected fraction is symmatyiaistributed around 0.5.

4. A uniform prior, where all values @fare equally likely.

5. Situations where the expected fraction is low, tart take all values between 0
and 1.

For situation 1, the prior distribution will be Waped, meaning that boln=4 < 0.
Figure 3.3 shows how different values af=£ < 0 change the shape of the prior
distribution, and howa > and a <[ both less than zero will influence the prior
distribution.
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Beta Distributions Density , Prior
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Figure 3.3 Different Beta Distributions whem = < 0, situation 1.

Beta Distributions Density , Prior

a=2,B3=1,5
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Figure 3.4 Different Beta Distributions whe > 3 > 1, situation 2. High expecte
fraction of significant corrosion.
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For situation two, where the fraction of signifitaorrosion is expected to be high, the
distribution may look as the ones in Figure 3.4reHthe main density of the prior
distribution is located above 0.5. When choosing tHistribution shape, one is
expecting to find corrosion. A prior distributioike this will haver > 8 > 1.

If the background knowledge is weak, a distributiaa shown by the yellow line in
Figure 3.4, could be used. This may reflect siaretiwhere uncertainty factors with a
high degree of uncertainty exist. Still, it is inmfant to remember that even though the
prior distribution can reflect some uncertaintigs,will not reflect all. Important
uncertainty factors may often be able to change lmle shape of the prior
distribution.

An example may be that it is assumed that MIC tspnesent. The prior distribution is
then selected based on this assumption; the pigirikdition will not reflect the
uncertainty factor related to the presence of M#ad(the other assumptions which
represent the background knowledge). It will ordflect the uncertainty related to the
frequency of significant corrosion, given no MIGeeSSection 2.2.3 and the Appendix
for a description of how uncertainty factors cantteated. Still, the prior distribution
may reflect uncertainty factors related to the vatee and availability of historical
data. Strong and relevant historical data may Heated by choosing high alpha and
beta values.

For situation five, > a > 1, and the expected fraction of significant osion is
based on the background knowledge expected tosbdHan 0.5; see Figure 3. 5.

Beta Distributions Density , Prior
0,18
0,16 -
0,14 -
0,12 [N\ =15, B=2
01 - a=2, 3=4
a=3, =4
0,08 -
—0=1,5, =5
0.06 T — — N — =2, B=5
0,04 -
0,02 -
0 ;
QQ'*» Q(J’ Qr*b Q?‘ Q<? QY QO Oy O h¢
Prior Distribution for Fraction with Significant Co rrosion

Figure 3.5 Different Beta Distributions whe> a > 1, situation 5.
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The values ofa and S will be hold low as this allows the greatest ieftice from the
data. An increase iy and S values will, in practice, say that we feel sea@garding

the true frequency of significant corrosion, andrendata are required to prove us
wrong. Figure 3.6 shows how the prior distributdmanges whemr and S increase

for a situation where the distribution is symmaegtig around 0.5.

Beta Distributions Density , Prior
0,18
0,16
0,14 / \
0,12 - a=1,5, =15
01 - 0=3, B=3
a=4, =4
0,08
—0=6, =6
0,06 - — =8, B=8
0,04 -
0,02 +——
0
00'*» Q(*l’ Qs Q?( 0?) QO 0/*\ QY O >
Prior Distribution for Fraction with Significant Co rrosion

Figure 3.6 Different Beta Distributions whe> o > 1, situation 3.

For situation four, there is no information whiaidicates which value di is most
likely to occur. This is a situation which is expst to be rare, as some sort of
information almost always exists which will say sgihing about the value @, the
fraction of significant corrosion. See Figure 3.7.
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Beta Distributions Density , Prior
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Figure 3.7 Beta Distributions when = = 1, situation 4. Uniform distribution, there is
no information abou.

In the following section, a flow chart will be usemlexplain how the Bayesian updating
can be utilised as decision support in the deciprogess when planning for inspection.
For simplicity, the decision maker will be givewdibeta prior distributions to choose
between. These distributions are chosen as thegsept different corrosion scenarios,
and small shape changes in the distribution will result in huge changes in the
number of inspected hot spots.

For decision makers familiar with the beta disttibn, it is possible to assign their own
prior distribution. To make this method easy to asd available for decision makers
without knowledge of how to change the shapes ef distribution, five different
distributions will be suggested. These five differalistributions are based on the
shapes described in the section above and preserfgglre 3.8.

To summarize this section, the beta prior distrdrutan take a lot of different shapes,
and one of them will be suitable when describing fifaction of significant corrosion

conditioned on the background knowledge for sigaifi corrosion in a specified

corrosion group. The next section will introduce ftosterior distribution and how this
changes when the number of inspection points iseea

33



Development of a Procedure for Making InspecticamBlIfor Corroding Oil and Gas
Piping

Beta Distributions Density, Prior
0,18
0,16
0,14 \ |
0,12 - a=1,p=1
01 | a=2, =2
a=4,5, p=2
0,08
—0=2, 3=4,5
0.06 1 —a=0,5, f=0,5
0,04 -
0,02 - AN
0 S~
00§¢ er’ 0’? Q?‘ Q<? Q(? Q/\\ O Q- e
Prior Distribution for Fraction with Significant Co rrosion

Figure 3.8 Beta Distributions for different values afandp, representing situations 1-5
for different corrosion scenarios.

3.2 Practical Usein Decision Process

First, let us return to the introduction in thisapkter. There is a situation in which it is
expected that the corrosion group will have sigaifit CQ corrosion. The outcome
from the ERBI analysis says that this corrosiorugranust be inspected as degradation
could have reached its limit; see DNV-RP-G101 (DNA@09) for more information.
There are high quality (representative and easitatied) hot spots available, and it is
expected that the hot spots will have a high netatiequency of significant corrosion.
The background information therefore indicates #ghptior distribution with shapes like
the ones presented in Figure &4 suitable choice, using the beta distributidti w =

4.5 andB = 2 which is also presented in Figure 3.8.

Following the flow chart presented in Figure 3.4ifynificant corrosion is expected and
can be explained with the assumptions used in tR8lEanalysis. The age of the
system, the nominal wall thickness, the fact thatisi a water-gas hydrocarbon
multiphase system and so on can be used when eixglavhy significant corrosion is

expected. Reasons like this can be found in DNVE&RP4 (DNV, 2009). The choice of
prior distribution has already been discussed, thednext step is now to look at the
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diagram which shows how the probability of sigrafi¢t corrosion is changing as the
number of inspection points increases. This caseles in Figure 3.%ituation 2.

Number of Inspections vs. Posterior Mean Value
70
= Sjtuation 1,
60 - a=pB=05
g 50 - Situation 2,
= a = 4.5, B =
S 2
& 401 Situation 3,
< a= B: 2
5 30 1
o Situation 4,
2 20 1 a=f=1
>
z 10 +— = Situation 5,
a=2,B=
0 T T 1 I T 1 45
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8
Posterior Mean Value, Degree of Uncertainty after
Inspection

Figure 3.9  Sensitivity diagram, showing how the updated prdhiglchanges when the
number of inspections changes for different sitreti

For this corrosion group, it is considered thathibespots are easy to locate and that if
corrosion is present it will be found in the chosen spots, located where one expects
that water is in contact with the metal. A postepgmbability of significant corrosion in
the hot spots equal to approximately 0.3, is careid satisfactory.

Consequently, nine hot spots are being inspectéer geir inspection, one of them
reveals significant corrosion. When taking a sedoo# at this hot spot, it is clear that
water from a valve has been dripping directly ai® hot spot. It follows that this hot
spot is different; it is removed from the rest bé tcorrosion group and considered a
special case. Another hot spot is then inspectbd. lew hot spot does not show any
corrosion, and the uncertainty regarding the preser significant corrosion is reduced
to an acceptable level. In other words, | am coreahthat no significant corrosion is
present in the corrosion group.
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Posterior Distribution, After 10 Inspections
without Significant Corrosion
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Figure 3.10 Posterior distribution for situations 1 to 5 afted inspections without
significant corrosion. Alphaoj and Betaff) values updated using Bayesian
updating.

When following the flow chart in Figure 3.11, itimportant to explain each step, and
why a certain prior distribution is selected. Thidl make it easier for others to trace
the decision process and learn from good decisibrsan also be used to check the
assumptions and find out what went wrong if a leegurs after inspections.

If inspections do not reveal any expected significarrosion, actions should be taken
to find the reason. This will improve the knowledgsout degradation mechanisms and
is an important task after inspections have beeafomeed. The Bayesian updating
process will allow others to see how an expert éamuated and weighted different
information and concerns.

In addition, the process will be transparent angilitbe possible for other experts, who
may disagree with the final result, to reproduce pinocess and the assumptions that
have been made. It is easier to discuss differssuraptions and see how changes in the
assumptions may influence the result, than to dseunumber.
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Figure3.11 Flow chart which can be used as guidance wieerdohg the number of
hot spots to be inspected in a large corrosionrou
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3.3 Strengths of Bayesian Updating

The method presented above, based on Bayesianingadatovides a strong tool for
decision making and will be useful in situationsendsignificant corrosion is expected
but not found. Bayesian updating in general cancafrse, be used in many other
situations, and this is just an example. See fangpte Aven and Eidesen (2007).

The main advantage of this method is the combinatiobackground knowledge and

new data, an approach which secures a systematcpioration and treatment of new

data and at the same time includes the backgromodvikdge. Consequently, this

combination makes it possible to use all the exymee and background knowledge that
exist and at the same time allow new data to camvims that the original belief was

wrong or validate what was expected.

The focus on assumptions and why different actltage been made is also one of the
strengths of Bayesian updating. All assumptions r@adons for different choices have
to be addressed. In the method presented abogeisthiery clear when the reason for
choice of prior distribution has to be explainedhy\Nis this distribution chosen as a
representation for the prior knowledge in thataian? Just the focus on this choice
forces one to evaluate and comment on the backdrkonowledge. Why (for example)

believe that the presence of MIC will lead to ahhpgobability of significant corrosion?

Furthermore, this will make it possible for someami¢ghout experience to look into
earlier inspection plans and reports and see hoperex have evaluated different
concerns and assumptions. This may be used asngyaor to explain different

decisions. It is not only novices who may benefdni this, it will also make the

decisions traceable. The evaluation of differerduagptions in combination with an
evaluation of the uncertainty factors will prevemtportant assumptions from being
hidden.

Moreover, it will be possible to trace a “bad” d@on and figure out what and why the
decision turned out to give unwanted or surprisc@nsequences. If significant
corrosion is present, but not found, it should tadard procedure to try and explain
why. Are the models used to predict the degradatomn conservative, or are other
aspects also influencing the lack of corrosion?

In addition to classical statistics, Bayesian sta$ addresses what is actually uncertain
and not a number based on what has already happ@&hedis an advantage as it
focuses on the future. We already know what hapdragd, but we do not know what
will happen in the future. The already observedaafy no longer be representative for
the future, and Bayesian updating makes it possthbecount for this. If something is
known about the past, it is not necessarily cettzét the behaviour will be the same in
the future.

The next step will then be to look at what is knoabout the past and what is known
about the future and then try to combine it inteeasonable estimate, expressed by the
prior distribution. This is exactly what can be domvhen assessing the prior
distribution: keeping what is relevant from the tpasd combining it with the future,
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making a prior distribution which reflects the le¢éland uncertainty regarding the event
(situation).

Bayesian updating is therefore suitable when perfog decision making under

uncertainty. Still, it should not be used withontevaluation of the different uncertainty
factors. When communicating the number of inspacpoints, an evaluation of the
uncertainty factors should also be addressed. Wimsertainty factors with a high

degree of uncertainty exist, it may be useful tafdoBayesian updating using different
prior distribution, checking the sensitivity of thumcertainty factor. If changes in an
assumption result in a very different prior disiitibn, and following a very different

number of inspection points, it may be classifiscaa important uncertainty factor, and
should be communicated to the management; seeoSexH.

Beside the other advantages of Bayesian updatingioned above, it is easy, it does
not require any difficult calculations and it istnome-consuming. That is why this
could be used, without difficulty, as decision sogipwhen doing inspection

management.

3.4 Challengeswith Bayesian Updating

Bayesian updating is a well established method tla@dise of this updating process has
increased in the last couple of years. The formutasd in this thesis are quite simple;
the combination of the Bernoulli distribution anttetconjugate beta distribution has
made the calculations easy. In other situationgatieese distributions are not suitable,
the calculations may become more difficult, and patars that are able to handle
complicated calculations are necessary. These ¢cagdl calculations have often been
considered as one of the main disadvantages ofsBayeipdating; see Bernardo and
Smith (2000).

The next challenge when using Bayesian updatingdsdifficulty when deciding the
prior distribution. How do you find a distributiomhich reflects your knowledge and
which is reasonable? This may sometimes be a ciga)ebut in the method presented
above the choice of prior distribution is clear.

It is also important to be aware of the limitatiomBen using probabilities to describe
uncertainties. As mentioned earlier, the choiceradr distribution is based on a set of
assumptions; the uncertainty factors addressetiaset assumptions are not visible if
not evaluated after performing the standard RBIllysmsa Some of these uncertainty
factors may be revealed when explaining the chateprior distribution. After
identifying these uncertainty factors, they shobédevaluated as presented in Section
2.2.

In situations where it is difficult to define theiqr distribution, sensitivity analysis can

be used. A sensitivity study can be used to chebkther different choices of prior
distributions will lead to another conclusion. @ifént prior distribution may come from
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different weighting of the background knowledgeyirtg to see how variation in the
different assumptions and inputs changes the output

Another question which may arise is the need fir tiethod. As already mentioned, it
IS no use in introducing, if it can not be given a meaningful interpretatidhis means
that 0, interpreted as the long run frequency of exchablgeO and 1s, should exist.
There is a need for a large number of hot spoteencorrosion group, in order to use
the method presented above. Not all corrosion gragmsist of a large number of hot
spots, and the standard Bayesian approach, likentbepresented here, should not be
used. There is no need for a method like this ag &s there are only a few hot spots in
the corrosion group.

What happens in situations where the corrosion g@ntains a small number of hot
spots? The important assumption of a large numbleotospots will not hold. What can

be done if the Bayesian updating method leadsniangber of inspected hot spots which
is above the number of available hot spot in tl@tasion group? It should not be
necessary to inspect all the hot spots to redueeautitertainty to an acceptable level.
Should it not be good enough to inspect 80% ifabeeptable probability of significant

corrosion is 0.27?

inspectedhotspots

Acceptabl@robabiliy = :
numberof availabléehotspots

numbetrof availablehotspots< 50?7

As already mentioned, Bayesian updating is basethemse of a likelihood function
and the prior distribution. When using this updatirased on new information, one may
forget an important aspect: does this new inforamafit into the first assumed models,
or does some of the information indicate that ymodels are absolutely wrong or
misleading? If updating is done without checkinge tlassumptions, important
information may be lost. As Aven (2010) writesin “many cases, though, new
information requires a rethinking of the whole imfation basis including the
uncertainty assessments and the modelling, andsB#y&orem is not appropriate.

This may happen when it is suddenly discovered ¢haroup of hot spots in the
corrosion group is very different from the rest;yin@ those hot spots should be divided
into another corrosion group. If the updating pesces being followed without paying
attention to the assumptions and the available keubye before inspection, valuable
information may be lost.

Another issue which may be addressed as a challehge using Bayesian updating, is
the need for a knowledge-based probability. Someaae claim that this probability is
difficult to assess, and that the numbers are raryitif produced by persons without
statistical training. On the other hand, Jennifgn Lee has written a very interesting
master thesis abouBayesian Reasoning Method for Intelligence Usingtuié
FrequenciesShe discusses the benefits of using Bayesian rggsand argues that it is
not difficult for people to assess probabilitieslasg as they are presented in a way
which is natural and known.
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She says that:Natural frequencies are a way of representing staial information in

a way that people without a strong mathematical kigaound can understarid.
Furthermore, she argues that it is easier to utatedslO out of 100, than 10 percent,
based on the fact that 10 out of 100 has a referema population, while 10 percent is a
base rate. She also receives support for her statefrom Leda Cosmides and John
Tooby from the Center for Evolutionary Psychologytlze University of California,
Santa Barbara. They have done some research whoersghat natural frequencies are
advantageous because they preselwgpdrtant information that would be lost by
conversion to a single-event probabilityCosmides and Toby (1996). | see this as
similar to assessing probability with referenceatstandard, like drawing a particular
ball out of an urn.

Chapter 3 has presented an example of how Bayap@eaiting can be used as decision
support when doing inspection management. Secadisand 3.4 have presented the
benefits and challenges when using this method.fdll@ving chapter, Chapter 4, will
present a discussion of the use of Bayesian ugglatid the introduction of an extended
RBI analysis.
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CHAPTER 4
DISCUSSION

The use of Bayesian updating represents a strony fto the combination of
background knowledge and new information. Stiliniy be a challenge to make sure
that these numbers are used as decision supportcnceated as the “truth”. Bayesian
updating in combination with an evaluation of thiffedent uncertainty factors will
secure a systematic treatment of both new infoonatind the uncertainty factors that
are often forgotten.

After performing an RBI analysis, and preferablyextended RBI analysis, including
an evaluation of the uncertainty factors, Bayesigdating can be used to find the
number of inspected hot spots in a corrosion grang,sensitivity studies regarding the
different uncertainty factors can be performed, imgkt possible to check how the
different uncertainty factors may influence the fmem of inspection points in the
corrosion group.

In this thesis, the use of Bayesian updating i®tham the classification of different
corrosion groups. Assuming that different area®rglto a specific corrosion group
introduces an uncertainty factor. In some situatitins uncertainty factor may have a
high degree of uncertainty, due to lack of expexeh new equipment and so on. In
other situations, the classification of corrosionups is clear; there is a lot of relevant
data, research, experience and so on. Still,important that this uncertainty factor is
evaluated; if found important it should be presdntnd communicated to the
management. The number of inspection points foumu the use of Bayesian updating
should be communicated and presented in combinatwth an evaluation of
uncertainty factors.

Corrosion groups are nothing new in the inspect@magement process, and dividing
hot spots into corrosion groups is normally notlpematic. It requires insight into the
performance of the piping and how different factmftuence corrosion. Even though
the process of dividing different areas into diéfetr corrosion groups has been done for
many years and a lot of experience exists, mistakesstill happen. It is therefore
important to evaluate the feedback from inspeciiod to re-evaluate assumptions if the
output from the inspection is different from whasivexpected.

Furthermore, all uncertainties can not be addredsgdprobabilities. Uncertainty
regarding the fraction of hot spots with signifitamrrosion can be described using
probabilities. The probability is found conditionexh the background knowledge,
which may conceal important uncertainty factorspot identified and communicated.
There is therefore a need for an extended riskebampection analysis which includes
an evaluation of the different uncertainty factdreeluding a systematic treatment of
uncertainty factors, also using Bayesian updatinghteck the sensitivity, may reduce
the possibility for surprises. An example of thgortance of evaluation of uncertainty
factors, which is relevant for this thesis, is ithepection method. This thesis has a
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focus on the number of inspected hot spots, butoihething is wrong with the
inspection method, performance, equipment and sonvenwill not get very far and
there will be no need to perform Bayesian updatihgs therefore also necessary to
evaluate the uncertainty factor related to the rmggion of suitable inspection methods
and experienced inspectors.

Dividing the hot spots into different corrosion gps requires a high degree of
knowledge about the different corrosion mechanis®tl, even though a lot of
research has been done on corrosion, there isustiértainty regarding the state of
different piping. These uncertainties can have eddit backgrounds; maybe the
parameters in the piping have changed, the pipasybdeen damaged due to external
accidents or maybe something unforeseen has happeseections are also performed
to check for factors like this, but these uncetias are difficult to express by
probabilities. The need to look beyond probab#itietherefore also present when doing
inspection planning; see Aven (2010). There isuageér in overlooking surprises when
only focusing on probabilities.

The use of prior distribution should also be diseds frequentists will argue that the

use of prior distribution is based on subjectivégements and should be avoided. As an
answer to this | refer to Iversen (1984, pp. 66-&7) other Bayesians who remind us
that the use of classical statistics is also stieto some degree, like the choice of
significant level when determining whether or natudl hypothesis should be rejected.

Another aspect is the fact that different priors/iead to different posteriors, at least as
long as the number of new data is small, but thisot a new problem. People are daily
arguing about the result of different researchy thee interpreting the data differently
due to their different prior knowledge. Iversen &9 uses a good example, the main
point of which is as follows:

A Democrat and a Republican are faced with the samemployment figure:

The Democrat says that the figure shows we need gmrernment involvement,
while the Republican argues that the private se@todoing well and will be

able to solve the problem.

This is an honest disagreement in which the diffeeeis in the prior knowledge and
opinion, not in the new data represented by themmh@yment figure. The prior
knowledge should not be hidden, and when decidimg prior distribution this
knowledge should be clarified and different assuomst can be checked using a
sensitivity analysis.

It is a lot easier to discuss the prior knowledagking whether some information has
been forgotten or given too little weight, thansitto discuss some produced numbers.
Iversen states that when forced to express persmualledge (opinion and biases) in
the prior distribution, the analysis becomes lagsjextive. | will have to say that |
agree; in theory everyone should end up with thmesposterior distribution if their
background knowledge is the same. This may turrtabe difficult, but should not be
seen as a weakness. The main point is to clarifgtwbur analysis is based on, to make
sure that your decision process is open and ea®jters to understand.
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This is also what will be the main advantage ofrtiethod presented in this thesis: the
need to explain the initial belief and backgrourfdth® inspection planning. Why is
corrosion expected, why do we expect a high fraabibsignificant corrosion and so on.
This will make it easier to communicate why insp@tts required and also justify the
amount of inspection points. If one can not comaricagreement on the inputs to the
analysis, one may use sensitivity analysis to seethe different assumptions influence
the posterior distribution; maybe it does not egkange the output.

Sometimes the background knowledge is poor andnanformative prior distribution
is chosen, like the uniform distribution preseniedrigure 3.7.In some situations this
may be a suitable choice, and the numerical valudéise posterior distribution will in
this case be the same as when using classicatsmtiBoth the posterior distribution
and classical statistics can be used to calcutatédence intervals, and for the uniform
prior distribution this will result in the same narical intervalsBUT the interpretation
of the interval is completely different and, in rpinion, is also one of the benefits of
Bayesian statistics and knowledge-based probasiliti

A 90% confidence interval in classical statistiagssthat these intervals will contain the
parameterf (here “real” fraction of significant corrosion) B0% of the cases in the
long run, meaning that you will need a lot of saespand that 90% of the confidence
intervals from each of these samples will containThis is a very strange concept, and
it is very difficult to understand what this actyaheans.

A Bayesian credibility 90% interval, on the otheand, is an interval where lies
between a and b with a probability equal to 0.9emeha and b are numbers. When the
Bayesian interval is used to directly assess amrghble quantity, it is known as a
prediction interval (see Aven, 2010), and can als® specified directly using
knowledge-based probabilities. For situations whbee sample size is small, a direct
assignment of the prediction interval will make maense than the use of a non-
informative prior or classical statistics as theg#l result in very wide intervals.
Observe the new data, and directly assign an ialteéhat has a probability equal for
example to 0.9 to contain the parameter or quaatitgterest.

Chapter 4.4 in DNV RP G101 (DNV, 2009) divides tR&| method into three:
quantitative, qualitative and semi-quantitativelgatve. In the quantitative model,
numerical values can be calculated and traditictassical statistics are used. Next, in
the qualitative model an expert judgement is uteelnumerical values are assigned not
calculated. Further it saysHOwever the results are subjective, based on opgand
experience of the RBI team, and are not easily tgadéollowing inspectiafi This is
exactly where the method based on Bayesian updailhngome in to use; there will be
no use for a distinction between quantitative, da@e and semi-
quantitative/qualitative models, as long as thekgeaund knowledge is assessed and
the uncertainty factors evaluated.

A probability is assigned, no matter whether ib&sed on calculations and estimation

or knowledge and experience or even a combinaltierebf. The method in this thesis
will make it easier to follow just one method, retjass of the type of the available
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knowledge. Consequently, it will not be problematiaupdate the probabilities and the
risk after inspections.
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CHAPTER 5
CONCLUSION

The use of Bayesian updating as decision suppdirsegure a systematic treatment of
new data, and also make sure that all availablevledge can be used: knowledge that
can be expressed by expert opinion, historical,daa trends, fraction of hot spots
with significant corrosion in similar corrosion ggos and so on. Furthermore, the
method results in a coherent treatment of the backgl knowledge with new
information, in this procedure represented by nespéction results.

It is important to remember that not all uncertastcan be expressed by probabilities
and/or prior distributions, and that there is achém an evaluation of the different

uncertainty factors. A methodology for incorporatiof these uncertainty factors has
been presented in Section 2.2, and is known asxéen@ed Risk Based Inspection

analysis (ERBI).

The method presented in this thesis is standaré®ary updating, which can be used as
decision support when deciding the number of hotssphat need to be inspected in a
large corrosion group.

When introducing the extended risk based inspecti@thodology, an appropriate
weight is given to the different uncertainty fastoand the possibility of surprises can
be reduced. The focus on background knowledge ssuhgptions secures an open and
traceable decision process in which it is easyotbark and see what different decisions
are based on, and why certain actions have beéoriped.

Further, when presenting uncertainty factors witthigh degree of uncertainty or
sensitivity, the management will get the opportunib perform the necessary
judgements and give weight to all relevant aspecthe decision process. It will also
be possible to check whether changes in the assmsptesult in another risk picture
and thereby a different time to next inspectionpdmant uncertainty factors are not
hidden in the analysis, and it becomes the managgsnesponsibility to choose the
most suitable decision.
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CHAPTER 6
SUGGESTION FOR FUTURE WORK

The method described presented in this thesislisare application area of Bayesian
updating, and may also be used when inspectingetermiine the degradation, the
deepest corrosion pit or degradation rate.
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APPENDIX

Example on Treatment of Uncertainty Factors

When assessing the uncertainty factors, we areestedl in the factors which may be
able to change the probability of a leak and therthle time to next inspection. After
performing an RBI analysis, the uncertainty hasbéo evaluated. This section will
present another example of how to perform an etialuaf the uncertainty factors, and
may be skipped if understood after reading Se@iars.

The first step in the evaluation of uncertaintytéas is to find the most important
assumptions and identify the different uncertaifaigtors. Some uncertainties may be
partially covered by the use of knowledge-basedaindities in the RBI process. Still,
probabilities are not enough to cover all the ratgvuncertainty. When assessing
probabilities, the probabilities (P) are based un liest available knowledge (K); these
probabilities are then conditioned on the backgdoknowledge P(A|K), where A
represents the event.

Consequently, as mentioned in Section 2.2.3, tleeeeneed for an assessment of the
uncertainty factors which may be “hidden” in theckground knowledge. This section
will give an example of how some of these uncetyafiactors can be treated. The
reader is referred to Section 2.2.1 or DNV RP-G@V, 2009) if unfamiliar with the
standard RBI process.

Consider an n-year-old platform where an RBI anslys@s been performed. Assume
that the RBI analysis is performed using the pracedoresented in DNV RP G101
(DNV, 2009), steps 0 — 3 in Figure 2.2. There faloan evaluation of the different
uncertainty factors, steps 4 — 6 in Figure 2.2sdme situations, data were insufficient
to complete a detailed RBI, and conservative assongpwere made. The RBI analysis
is therefore built on several assumptions, somgé&i more important than others. A
list of three assumptions follows:

1. No presence of MIC (microbiological induced coroogi

2. No CG, corrosion

3. The evaluated degradation mechanisms are corrasid®rosion.
The first uncertainty factor addressed is the agpsiam that there is no presence of
MIC. Corrosion problems due to MIC have so far heen reported from earlier
inspections. No bacteria analysis/monitoring progree has been performed, and it is

unknown whether MIC is a present problem. It iswnadhat seawater is present, and
hence there is a possibility of MIC. MIC may ocdlthe sulphate removal package
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(SRP) does not work as intended. However, due éofdlt that there have been no
earlier problems with MIC, it is disregarded.

The second assumption of no £€drrosion is built on another assumption, thatgas
is dry. Even though the water dew point temperatarehe hydrocarbon gas is well
below the normal operating temperature, condensaan occur in low points and dead
legs. Condensation may also occur in the case ofdstvn and other abnormal
operations. This represents the second uncertéaotyr, that the gas actually is dry
and hence no C{xorrosion.

The third uncertainty factor to be addressed isagsmption that all degradation is due
to corrosion and erosion. Fatigue is not conside®dco good detailed methods for
assessing fatigue exist. The third uncertaintydiacs then related to the presence and
criticality of fatigue.

The first step in the uncertainty analysis is nogvf@rmed: to identify the different

uncertainty factors. The next step is then to assexl categorize the degree of
uncertainty and sensitivity attached to these uamdy factors. The degree of
importance can be decided after combining the @egfeuncertainty and sensitivity,

and is presented in Table A.

Table A Uncertainty assessment

Uncertainty factor | Degree of | Degree of | Degree of
uncertainty sensitivity importance

Presence of MIC High High High
Presence of CO Medium High Medium - High
Presence of otherHigh Medium High - Medium
degradation
mechanisms  thanp
corrosion and
erosion

The sensitivity is found by looking at the uncermtgifactors’ possibility to change the

time to next inspection. If MIC actually is presgihtvould have a high influence on the

time to next inspection. The occurrence of fatiguey also be able to change the time
to next inspection, as occurrence of fatigue unglrere conditions (cyclic stress)

happens fast and with a high consequence.

Further, it is important to communicate the unaaetyafactors with a high degree of
importance. Uncertainty factor one has a high degreimportance and should be
prioritized when communicating with the management.

After communicating and presenting the importanteutainty factors, is it up to the
management to make the final inspection plan. défytfind some of the uncertainty
factors to be very important, they may ask for Hart analysis or testing. In this
example, they may want to install a bacteria momtpprogramme to be able to detect
bacteria at an early stage and prevent MIC befarecurs.
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Managerial review and judgment are important, a&sehare the people making the
decisions. When making inspection plans, an RBIlyaigis used as support. Table A
will act as additional decision support in the ER&ialysis work. This gives a
systematic treatment of the different uncertaindgtdérs and makes sure that the
management has all the available knowledge. Evesituations where the assumptions
that are used are conservative, it is up to theage@ment to judge and make decisions.
The results from Table A may also be used in auF@iModes, Effect and Criticality
Analysis (FMECA) process, in which additional colsnregarding the uncertainty
factors and their importance are added. See Aved8)Xor a description of an FMECA
analysis, also referred to as FMEA (Failure Mode Bffect Analysis).

In some situations very conservative assumptiong ead to high inspection costs.
Uncertainty factors introduced by these assumptioressy have a high degree of
uncertainty and sensitivity, but will not resultany higher risk. This is due to the fact
that even though the uncertainty factor has thesipisy to change the time to next
inspection, it will only result in a later inspeati date.

Uncertainty factors leading to a higher risk pietuare of most importance, but
uncertainty factors which come from very consemgassumptions may lead to higher
inspection costs and, in some situations, theses coay become in gross disproportion
to the benefits (ref. ALARP). The main point withiaduating the different uncertainty
factors is to make sure that the important fachoespresented and communicated to the
management.

In some situations these important uncertaintyofacare related to very conservative
assumptions, and it should be up to the managetoelgcide whether these uncertainty
factors are acceptable or not. It is up to the mameent, and not the team who perform
the RBI analysis, to decide whether the costs ®ktttra inspections can be justified.

Step 6 in Figure 2.2, management review and judgenmeeds to reflect the fact that

decision making under uncertainty has to balan&erdnt concerns, like risk, cost,
reputation and so on.
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