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4 Abstract 

Abstract 

In this thesis a method has been developed to investigate if there is a statistically significant 

difference between the barrier performances of different operator companies. 

The method is developed using the predictive Bayesian approach, as described in Aven (2003). It 

includes two formulas; one formula for the prediction interval, which will be used to compare the 

operators’ failure rates, and the second formula for making a criterion to define the number of tests 

required in order to obtain an acceptable level for the failure rates. The method is comparable to the 

classical methods of “tests of two proportions” and “choice of sample size”.   

The Classical approach has also been compared to the predictive Bayesian approach.  The predictive 

Bayesian approach uses the previous data as background knowledge to find the predicted value of p. 

It could be argued that the predictive Bayesian approach is more reliable than the Classical approach 

because the result from the predictive Bayesian approach tries to describe how the states of the 

observable quantities are at present or in the future. The Classical approach on the other hand only 

calculates the probability as it was, implicitly excluding the evolution of the events. 

The method, in its essence, compares two of the operators’ failure rates at a time, for seven barriers. 

It determines the operator which has a statistically significant lower failure rate. The method has its 

main motivation in assuming that operator companies will show trends that reveal different 

maintenance, inspection and testing schemes and expertise for the barriers. 

The results from the developed method show that three comparisons of the operators’ barrier 

performance were found to have a statistically significant lower failure rate, while the results from 

the Classical approach found twelve such comparisons that showed a statistically significant lower 

failure rate. The Classical approach found more comparisons with statistically significant lower failure 

rates, because the developed method performed fewer comparisons due to the criterion for number 

of tests for next period was not fulfilled for each comparison. However, the developed method 

results in the same conclusions as the Classical approach, but the Classical approach gives more 

exaggerated indications compared to the developed method. 

 

 

  



 

 
 

5 Introduction 

1. Introduction 

In 1999-2000 a pilot project was launched by the Norwegian Petroleum Directorate (NPD) to develop 

a tool to measure the risk levels on the Norwegian Continental Shelf (NCS). The reason was that 

there was mistrust and disputes between the parties in the Norwegian petroleum sector in the latter 

part of the 1990s. There were extreme concerns from the representatives of the unions and the 

authority that the risk level was increasing, while the company managers claimed that safety had 

never been better. In order to create an unbiased and objective channel of information, the NPD 

started the pilot project “The risk level project” (Vinnem et al, 2006). The result of this project is the 

tool that has become the RNNP (“Risikonivå I Norsk Petroleumvirksomhet”), which translates:  

“Trends in risk level in the petroleum activity”. The purpose of “Risk Level project” (commonly 

referred to as RNNP), as stated in ”Trends in risk level in the petroleum activity” summary report 

from Petroleum Safety Authority (PSA) (2009), is to monitor the risk level development using various 

quantitative and qualitative indicators. It is an important part of the universal understanding of the 

risk level development and aims to improve health, safety and environmental conditions in the 

Norwegian petroleum sector.  

The RNNP has been developed in collaboration with the partners from the industry, who have in 

consensus agreed that the RNNP is a sensible and rational tool that establishes a common 

understanding of the level of risk in the petroleum industry. 

Before the project started, there was a limited amount of indicators being recorded. Among them; 

“frequency of work related accidents” and “loss of work hours due to work related accident” were 

the most common ones measured. It was agreed that these indicators did not give a representative 

picture of the risks and so additional indicators were necessary. DFU’s (Definert Fare og 

Ulykkesituasjoner which translates to: “defined situations of hazard and accident”) were developed, 

and cover all known scenarios that could lead to loss of life.  The occurrences of DFU were chosen as 

the indicators for the frequency of potential major accidents, and the performance of safety and 

preparedness barriers were chosen as indicators for the barriers quality (PSA, 2000).  

As of today, eleven annual RNNP reports have been published and many more papers that discuss 

methods and study the data from the risk indicators. These risk indicators have been collected by the 

PSA from the operator companies.  The RNNP is based on a triangulation of statistics, engineering 

and social science to provide a broad and commonly accepted picture of the risk. RNNP emphasizes 

that there is no single set of indicators that can represent all the relevant aspects of health, 

environment and safety. It is therefore necessary to show/present the risk indicators in a variety of 

ways so that more information about the risk levels can be provided. Simply put; the RNNP takes into 

account the information from observations, indicators and structured processes and uses this 

information to analyze and evaluate the risks in order to provide input on what risk reducing 

measures are needed.  

1.1 Background 

This thesis is a continuation of the core idea that more information can be extracted from the data 

that is collected if viewed and modeled in a different way than the previous studies. In 2009 Safetec 

performed the study called “Regression analysis of HC leaks against other indicators in RNNP”. The 
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purpose was to search for correlations between hydrocarbon leaks and other barriers (such as 

Christmas trees, gas detection, deluge, BOP etc.) for the installations on the NCS.  This study 

concluded that there was a correlation between the HC leaks and the safety culture on board an 

installation. Other studies have studied the correlation between two specific DFU’s, which prompted 

new ideas. One of these ideas was to compare the barrier performance of the operators, which is the 

basis for this thesis.    

1.2  Thesis problem 

By using the barrier data from RNNP, a method will be developed to compare the operator’s failure 

rate, using the predictive Bayesian paradigm. The RNNP also uses the predictive Bayesian approach 

to develop their risk indicators. The method will then be used to investigate if there is a statistically 

significant difference between the company’s barrier performances. The developed method will also 

be compared to the equivalent Classical approach of comparing the company’s barrier performance 

to investigate the differences in the two methods. 

Why is it important to do this?  

The purpose of comparing operator companies is to search for differences in barrier performances 

between the companies. By dividing the data in groups of operators; it is possible to see if one 

operator company is better at keeping a lower risk level in one certain area, than another operator. 

By singling out which barriers the operator companies have the lowest failure rate, a best practice for 

barriers can be developed and help lift the safety level for the petroleum activity in Norway.  

1.3 Limitations 

As there are many barriers that can be considered and analyzed, time doesn’t allow for all to be 

considered in this thesis, so only seven barriers will be used as the basis to “check” the developed 

method. Most of the uncertainty in the data is related to the activity levels and test culture, which 

will be argued later to be important contributions in the understanding of the barrier performances.  

 

  



 

 
 

7 Theory 

2. Theory 

In this chapter different methods will be presented, where analyses of barriers and incidents have 

been performed, to introduce what this thesis is based on and what has already been done by 

others. 

2.1 Definitions 

To be able to achieve the goals of this thesis, some terms need to be clearly defined. The first term 

that needs to be defined is probability. In school, students are thought that probability is the chance 

of something happening. This is the layman term used for describing probability in classical statistics. 

In classical statistics, probability as defined in Aven (2009) is: “the relative fraction of times the event 

occurs if the situation analyzed where to be hypothetically “repeated” an infinite number of times”.  

The belief is that there exists a true probability and the focus is to estimate this underlying true 

probability through repetitive trails. 

In predictive Bayesian approach however, probability is defined as” the means to express the 

uncertainty about possible occurrences, as seen through the eyes of the assessor, based on the 

background knowledge”.  This probability is regarded as knowledge based expressions of uncertainty, 

which cannot be described independently of the analyst (Heide 2009). Therefore, contrary to the 

classical statistics definition of probability, the predictive Bayesian approach focuses on describing 

the ”state of the world” through observable quantities. 

The next term that needs to be defined is risk. There are many definitions of risk, but not all can be 

used in the same context. Risk as described by Kaplan (1997) is the complete set of scenarios (Si), the 

likelihood (Li) and the consequences (Ci) of each scenario that is the set of all triplets {Si, Li, Ci}.  

Another definition of risk is “the combination of the probability or an event and its consequences” 

from ISO 2002.  

Yet another definition comes from Aven (2009 & 2010): risk is understood as the two dimensional 

combination of: “(i) event A and the consequences of this event C, and (ii) the associated 

uncertainties U (whether A will occur and what value C will take)”. Ergo: “the uncertainty about and 

severity of the consequences of an activity”. This is what is called the (A, C, U) perspective. 

This last definition is in line with the definition of probability used in the predictive Bayesian 

approach and will be used to define risk in this thesis. 

Next to define is an indicator. An example of an indicator used in everyday life is a thermometer, 

which is an indicator for temperature. A general definition for indicator is an instrument or variable 

that is used to measure a condition.  According to Øien (2001a) an indicator is defined as: “a 

measurable or operational variable that can be used to describe the condition of a broader 

phenomenon or aspect of reality”. A risk indicator is an indicator that measures risk. According to 

Vinnem et al, (2003b) a risk indicator is defined as: “a measurable quantity which provides 

information about risk”.   
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As the thesis will be comparing operators’ barriers, a barrier must also be defined. A barrier can be 

defined as “a measure that reduces the likelihood of triggering a potential risk of damage or reduces 

the potential for damage or harm” (ISO 17776). 

2.2 Classical vs. Bayesian approach 

Since barrier indicators provide information about the performance of barriers and systems which 

can be used to evaluate trends, it is important to choose a suitable statistical approach that will 

indicate the most realistic trend of the barriers or safety system. As this thesis will be comparing two 

different types of approaches, the statistical inference for the two approaches will be explained.  

From Walpole et al. (8th ed.) it is stated that the theory of statistical inference consists of methods 

that make generalizations about a population. The classical method is based on inference strictly 

from information obtained from a random sample selected from the population. The Classical 

approach is relative frequency based, which means that there is usually an event, xi, that is divided by 

the number of times the event has occurred, ni, in an experiment or study, when the experiment is 

hypothetically  repeated an infinite amount of times. To measure the performance of a barrier, a 

barrier is repeatedly tested with a result of either success or failure. 

  
   
  
  

 

P stands for the probability of success (or failure in this case as the interest is in measuring the failure 

rate). 

xi stands for the number of trails that has resulted in a success, and  

ni stands for the number of repeated tests.  

The probability distribution for these tests is called the binomial distribution and is denoted by  

 (     )   (
 
 
)                     

where, each independent trial can result in a success or failure, with probability p or q = 1-p 

respectively. 

As it is not possible to repeat the test or study infinite amount of times, so the Classical approach 

uses a sample size to represent the population.  The average number of failures that is calculated 

from this sample is given the sign  ̅. If the expected value of the average number of failures from the 

sample is the mean for the population;  ( ̅)   , it is possible to consider that the probability found 

from the sample is representative for the population. 

The RNNP method uses the predictive Bayesian approach, which will also be used in this thesis. 

According to Aven (2009) this perspective is based on” interpretation, and makes a sharp distinction 

between historical data and experiences, future quantities of interest such as loss of lives, injuries 

etc. (referred to as observables) and predictions and uncertainty assessment of these.” 
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According to Aven & Røed (2009), Heide et al. (2007) and Aven (2003), the predictive Bayesian 

(epistemic) approach focuses on the real population and the observable quantities that can be 

observed in the future as well. The knowledge that is available to the analyst is used to predict the 

future values/outcomes of the observations. When using the predictive Bayesian approach, it is 

assumed that the reference population n0 is relatively large and that x0 denotes the number of 

results that are in the failure mode.   The probability of an outcome, for example P(X1=1) (where Xi is 

the outcome), is not the same probability or “chance”, that is found in relative frequency based 

classical statistics, but it is the assessors assigned probability that is based on the available 

knowledge. (If p were known to the analyst, it would be the analyst’s probability of X=1 or any other 

outcome that would be applied). In this context however, the available knowledge is not in the form 

of expertise knowledge but the knowledge from the data from the previous years. Probability in this 

context means the measure of uncertainty of observable quantities/barriers in the future. 

This means is that from the knowledge or historic data that is available, the assessor assigns a 

subjective probability, which is the measure of uncertainty of future observable quantities, to say 

something or express the state of the barrier. 

This knowledge can be expressed in this manner: 

 (   )  
  
  

 

where x0 is the number of failures from the previous years and  

n0 is the number of tests from the previous years. 

Thus the prediction of the state of a barrier can be expressed in this manner: 

( | )  
  
  
   

p is the measure of uncertainty that is assigned about the future observable quantity,  

K is the knowledge which is represented by the previous years. 

This formula expresses that the assessor assigned the measure of uncertainty to be the number of 

failures divided by the number of tests from the previous years. To make sure that the background 

knowledge is strong, the reference population should be at least twice the size of the new 

populations, so that any new knowledge from the first new test will provide little new information to 

affect the background knowledge that is already established. 

The overall expression can be written like this; 

     (  
  
  
) 

where X is the observable quantity in the future and has a binomial distribution with parameters 

n – which is the number of tests that will be done in the future 

x0 – which is the number of failures from previous years and 

n0 – which is the number of tests from previous years. 
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Even though the trials are not independent, it is still valid as long as the previous number of tests n0 

is at least twice as large as n (Røed & Aven,2009). 

The reason why predicting the probability or proportion of failure from the predictive Bayesian 

statistics is more valid than Classical statistics, is because the predictive Bayesian approach uses the 

same data as in the Classical approach, but as a source of knowledge to predict the real probability 

instead of saying something about how the probability was before, which isn’t necessarily 

representative to what it is now or in the future. When predicting the future it is important to keep in 

mind that the uncertainties related to the future observable quantities are epistemic, which means, 

they result from lack of knowledge. 

2.2.1 Confidence interval and Prediction interval 

In classical data testing, the data are treated as samples from a larger population, and from the 

samples it is possible to calculate an estimated expected failure rate.  However, as point estimates 

are not good estimates for population parameters, it is preferable to determine an interval where 

the population parameters are expected to be found.  A confidence interval (Classical approach) 

shows graphically where the true population parameter is likely to be, in the form of (1-α) % degree 

of confidence.  

As the data that is being used has a binomial distribution (success or failure) and has many tests 

(n>>30) it is possible to use approximate normalized distribution.  

  ̂         √
 ̂(   ̂)

 
  (Eq. 2.2.1) 

Using formula (Eq. 2.2.1) where; 

p – is probability of failure,  

α – level of significance = 10, 

z – is 1.65 (for α/2 = 5) and  

n is the sample size. 

As an example a confidence interval will be made. The data can be found in Appendix B-1. 

A 90 % confidence interval is made for a 4 year period to be between (α=10);  

[0,21 % and 0.25 %] for Operator 1 and [0.40 % and 0.58 %] for Operator 4.  
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Figure 2.2.1.1 shows graphically the confidence interval for the period 2006-2009. The shaded area 

represents the 90 % confidence interval. 

As can be seen from Figure 2.2.1.1, Operator 1 has a narrower confidence interval than Operator 4 

which gives Operator 1 a “more reliable” confidence interval. In other words, the width of the 

interval shows how much uncertainty there exists for the degree of confidence, therefore the 

narrowest interval has less uncertainty. This reflects the point stated above that intervals are more 

reliable than point estimators. The confidence interval shows that Operator 4 has a weaker ground 

for their “good” failure rate.  

In the predictive Bayesian approach the assumption is that the data present represents the 

population and the goal is to figure out how the population will look in the future.  A prediction 

interval can then be constructed to show where the failure rate is likely to lay.  

 (    | )  (
 
  
)   (   )      Eq.2.2.2 

The data observed and collected is considered to be the previous knowledge and is used to 

determine the “future” values of the probability, by using the number of tests that are planned for 

the next period.  

The parameters; 

x0 – number of failures from “the previous knowledge”, 

n – number of tests next period (the period that the prediction interval is for), 

p – probability of a failure from “the previous knowledge”,  

α – 10, i.e. 90 % prediction interval. 
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If the number of tests in the next period for Operator 1 is 37 222 and 4 372 for Operator 4, the 

prediction interval (from formula Eq.2.2.2) for the failure rate is [0.19 % to 0.27 %] and [0,32 % to 

0,66 %] respectively.   

In both the prediction interval and confidence interval, the same data is used to calculate the 

probability of a failure “p”. But in the prediction interval the probability includes the number of tests 

that will be performed next period. This means that the confidence interval and the prediction 

interval don’t describe the same thing; actually confidence interval describes the past while the 

prediction interval describes the future.  

   

Figure 2.2.1.2 shows the prediction interval for Operator 1 and Operator 4. The shaded area 

represents the 90 % prediction interval. 

Figure 2.2.1.2 shows that Operator 4’ prediction interval is less narrow than Operator 1’s prediction 

interval.  

In this chapter it has now been presented by means of an example, how the failure rates can be 

calculated in the Classical approach and the predictive Bayesian approach. 

2.2.2 Summary: classical vs. pred. Bayesian approach. 

List of the differences for classical and pred. Bayesian approach: 

 The Classical approach estimated the probability, p, of a population from the sample by 

relative frequency;   
   

  
 , where xi is the number of failures and ni is the number of tests. 

The predictive Bayesian approach assigns a probability from the reference group (x0 is the 
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number of failures made in the past, and n0 is the number of tests performed in the past); 

( | )  
  

  
   

  

  
, which is called a conditional perspective. 

 In the pred. Bayesian approach the parameters are viewed as unknown and random 

variables while in the Classical approach the parameters are unknown but fixed quantities. 

 Pred. Bayesian approach uses data (or previous knowledge) that is at least twice the amount 

of the new population to keep a solid background knowledge, while the Classical approach 

only has a recommendation that n >30.  

By comparing the Classical approach and the predictive Bayesian approach, the reader is shown how 

the predictive Bayesian approach uses a learning process which allows the method to supplement in 

new information or “trends” to be accounted for in the “future” data testing.  

2.3 Indicators 

From Vinnem et al. (2006) it is stated that when considering the risk of major hazard during the stay 

aboard an offshore installation there are two types of indicators that are developed:  

1) Event based and,  

2) Performance based.  

Barrier indicators are performance based and, therefore, it is easier to acquire more of this data than 

the event based indicators, like near-miss. It is in the company’s best interest to record this data as 

often as reasonably possible to ensure the quality of the barriers that is supposed to protect the 

people on board from major hazards. 

Occurrence based indicators are indicators that measure the occurrence of occupational injuries, and 

exposure of employees to selected hazards with occupational illness potential. 

It is important to note that indicators also fall under two other categories; leading and lagging.  

Leading and lagging indicators may have several definitions but not very different. 

According to Heide (2009), a Leading/lagging indicator can defined by how quickly the indicator 

reacts to change. So with this definition, indicators aren’t fix to be either leading or lagging, but can 

be sorted on a continuous scale with leading in one end and lagging on the other, ergo, degree of 

leading or lagging.  

For instance, the number of hydrocarbon leaks is more lagging than gas detection because changes in 

the gas detection failure rate are found in a shorter time than for hydrocarbon leaks. 

According to Vinnem et al (2003a), leading and lagging indicators have another definition: 

A proactive (leading) risk indicator is “A measurable quantity which provides information about risk, 

explicitly addressing an aspect of future performance (for example, anticipated number of hot work 

hours next year). 

A reactive (lagging) risk indicator is “A measurable quantity based on outcomes of accidents and 

incidents. 
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Both definitions are quite similar, and barrier indicators will fall under leading indicators in both 

cases.  

2.4 The RNNP method  

The RNNP uses the predictive Bayesian approach where the indicators are normalized over a 3 year-

period to predict the trends for next year. The trends give a picture of whether the increase or 

decrease in the amount of, for example, failures of a certain barrier is reasonable, for the period in 

question. The narrower the prediction interval is, the better it is at noticing trends. 

In method report, two different methods are presented for proportion of failures for barrier 

indicators. The first method is the “total proportion of failure” where the sum of failures on 

installation j (xj) is divided by the sum of the number of tests (Xj).  

                            
∑   
 
   

∑   
 
   

  Eq. 2.4.1 

The total proportion of failure reflects the quality of the barrier for installations which perform 

sufficient number of tests, but it doesn’t necessarily reflect the quality of the barrier for the entire 

continental shelf.  

The second is “facilitated proportion of failure” where the sum of the ratio of failures on installation j 

(xj) divided by the number of tests (Xj), is divided by the number of installations that has done tests 

for the barrier element. 

                                  
 

 
∑

  

  

 

   

  Eq. 2.4.2 

The facilitated proportion of failure avoids the problem where installations with many test dominate 

the result, but the statistical data for the installation with fewer test will be poorer.  It is therefore 

seen as necessary to use both methods to gain a greater picture for the barrier performance. 

The normalization of data is common in most approaches when analyzing trends. As frequency data 

usually don’t take into account for relevant information about the activity level or exposure level, the 

trends that are produced contain false signals which need to be eliminated. Normalization is 

therefore an important aspect when comparing the frequency by a parameter like man-hour, 

installation years or wells drilled etc. If normalization is not done, the data will most likely give a 

misguided picture of the risk level. 

For onshore plants a method has been devised for compensating for too little data when analyzing 

status and trends. It is a weighted combination indicator which is produced when multiplying the 

weighted number of observed incidents (event based data) with observed fraction of test failure 

(barrier performance based data). It describes the amount of incidents that isn’t detected 

automatically by a certain detector in the area. When there is missing data and “zero occurrences” 

the assigned number of observed incidents and observed fraction of test failure are replaced with 

the average values for the continental shelf (Heide et al., 2007). In this way an installation with 

missing data will not be totally overlooked. (Method report, 2010) 
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2.4.1 Disadvantages 

What are the advantages for using method RNNP? What are the disadvantages by using the RNNP 

method? 

 The disadvantages with the 3 year rolling average is that when there are years that have 

exceptionally large amounts of failures for a test, the 3 year rolling averages doesn’t show this 

trend and the impression that there is a “new” downwards trend can be misinterpreted. If the 

data isn’t treated with a 3 year rolling and only the yearly failure rate are shown the failure rates 

may show different trends, where the dominant trend is the more realistic one and the indicator 

can be analyzed properly. An improvement could be to either omit the years that are not 

representative for the trend, or use them in a different way when analyzing the data. Maybe the 

2 last year’s average vs. the last 5 years would represent the trend better etc. The point being 

made is that the data should be not be analyzed in the same way as trends may be lost. 

2.5 Regression analysis 

As a part of a research project to investigate if there are possible indicators that can be used to high-

light exposures to major accidents and unveil possible important cause factors (either indirectly or 

directly), Safetec performed the study “Regression analysis of HC leaks against other indicators in 

RNNP” (2009). Correlations coefficients with number of (non-ignited) HC leaks were calculated for 

the barrier data, falling objects, serious personnel injuries and noise data in the period 2003 to 2008.  

The methods that have been used to perform the regression analysis are explained and presented 

where they appear to be relevant for the understanding of the concept of developing a method. 

Not all the information that is available can be used in the form they are collected. That is why some 

of this information is normalized, scaled or weighted before being used in a correlation or regression 

analysis. Below some of these methods are presented. 

As the information about the leak points for all the process modules is not available, and not all the 

people on board can contribute to leak frequencies, the weight of the process module, and 

personnel related to leak frequency is used instead. When considering the number of personnel that 

has access to equipment that can cause a leak, the POB is far too high number. Therefore the 

number used is the number of people that work with process and maintenance. In the analysis, the 

weight of the process module had a correlation of 65% (from 18 installations), which makes the 

relationship between the weight of the process module and the number of leak points satisfactory. 

Traditional linear regression and Poisson regression are then performed to find if there is a 

correlation between these variables and the other barriers and occurrences mentioned previously. 

Substantial weight was given to the questionnaires that were performed, which are used to 

determine the risk level of the safety culture. As the method as to which the questionnaires are 

analyzed and processed will not be used in the thesis, it is not seen as necessary to say more about 

them that they resulted in a good correlation to the Hydrocarbon (HC) leaks. 
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To be able to analyze the data for number of serious personnel injuries for the specific time period, 

some scaling needs to be done. 

Scaling serious personnel injuries: 

                                                                

                                                    
 Eq. 2.5.1 

In this equation an additional value of 0.5 is added to the injuries in the period so that the installation 

without registered personnel injuries with high POB received a lower personnel injury value then an 

installation with a lower POB. This means that installations with a higher POB with no injuries are 

seen as safer than one with lower POB. 

Weighting leak categories: Due to the fact that some HC leaks have a higher potential of harm than 

others, the HC leaks are be weighted accordingly.  From the RNNP report of 2008 the weightings of 

hydrocarbon leak rates are shown below.  

Table 2.5.1: weighting of leakage category based on RNNP weighting 

Leak rate Weighting of leakage 

<0.1       0.0054 

0.1 – 1       0.0108 

1 – 10       0.0296 

>10       0.412 

The study makes use of the total proportion of failure (Eq. 2.4.1) for the barrier data to calculate the 

average total proportion of failure per year per installation. The study also takes into account that 

there are installations that perform significantly more tests than others by outlining a criterion to 

filter what data is significant to use. The criterion is; the number of tests for an installation for a given 

year has to be at least 10% of the average number of test per installation to be included in the study. 

This applies for the barriers fire- and gas- detection. The remaining barriers must have 20 % to be 

included. 

To be able to compare the probability level for a HC leak for the installations, it helps to assign all 

installations with a small probability for a HC leak. All installations are given “half a leakage” with rate 

<0.1 kg/s, which doesn’t reflect a real leak, but rather a size which is used to differentiate the 

installations with 0 leaks when the number of leaks are scaled. 

The study uses Spearman correlation calculations and simple linear –, multiple linear- and Poisson – 

regression models.  The reason for choosing these models and advantages and disadvantages to 

these methods are explained below. 

Spearman correlation is used because it is easily adaptable to a generalized linear model. 

Advantages to this correlation are; that it can measure non-linear relationships and it is robust 

against extreme values. The disadvantage is that some information is lost when observations have 

the same value, as it is not possible to differentiate between observations that are the same.   
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Simple linear regression is performed with the cause variables listed on p. 8 of the report. Then a 

multiple linear regression is adapted to investigate if it is possible to explain parts of the variation in 

the scaled number of leaks from the cause variables. 

From Walpole, (8th Ed. Chpt. 11.1) linear regression is used to find the best relationship between the 

dependent variable (Y) and the independent variable (regressor) (x). Most cases are not deterministic 

(a given x does not always give the same value for Y), and the problems are probabilistic in nature. 

When a linear regression uses only one regressor, it is called a simple linear regression. This means 

that the interest lays in the what influence one cause variable has on the relationship that is being 

analyzed. When there is more than one regressor, it is called multiple linear regression and is used 

when the interest is to have several cause variables to help explain the relationship.  The reason why 

linear regression is so often used, is because more often than not, the relationships between the 

parameters α, β1, β2 etc. are linear in nature. The variance in a linear regression is often of interest 

because it explains how well the regression line fits to the data. Therefore to analyze the variance, an 

ANOVA (Analysis of Variance) table can be produced to test the linearity of the regression.  

An ANOVA table looks like this: 

Table 2.5.2 ANOVA table 

Source of 

variance 

SS df  

(degrees of 

freedom) 

MS F p-value 

Between 

groups 

SSA k-1    

   
 

   

   
 

 (      ) 

Within groups SSE N-k    

 (   )
 

  

Total SST N-1    

SST is the total sum of squares, SSA is the treatment sum of squares and SSE is the error sum of 

squares. SSE can be due to “noise”, and SSA can be due to different expected values in the groups. 

The relationship between them is:  

            

k is the number of groups or “treatments” and N is the total number of tests done. 

The p – value which is produced from the ANOVA table can be explained as the probability to 

observe something just as extreme, as what has just been observed, given that the null hypothesis is 

correct (Kvaløy, 2005).   

Also from the ANOVA calculations, the coefficient of multiple determination; R2, can be calculated. R2 

can be used to find the variables that are useful predictors to find the “best regression”. R2 measures 

the proportion of variability in the response y, explained by the fitted regression model. Simply put, if 

the value of R2 = 1.0, the regression fits perfectly. The pitfall of having too many variables is that R2, 

increases artificially and the model becomes over fitted. R2
adjusted is a variation of R2 that provides an 

adjustment for degrees of freedom. Therefore R2
adjusted is calculated as well to show if R2 has too 
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many variables included, and if a reduced model fits better. This is why it is possible, in multiple 

linear regression, to analyze the multicollinearity (linear dependency) of the variables to see which 

are significant and which are not.  

When considering using simple linear regression it is important to check that there are no violations 

of the assumptions, so residual plots (studentized and normal probability) are essential. In multiple 

linear regressions it is important to keep in mind that linear statistical models are empirical 

approximations and the true linear model cannot be found. Also, too much attention to R2 when 

choosing the so-called best model is unfavorable since the value of R2 can be as large as one wish. 

The advantage and reason for using Poisson regression (GLM) is that it is not necessary to model for 

observations with the value 0. This means that it is not necessary to perform subjective scaling to 

take into account the size of the installation. The only drawback is that it is difficult to take into 

account that different types of leaks, as they have different types of severity and therefore should be 

weighted differently. This is however achieved in linear regression so the severity of the leak types is 

taken into account. 

The study concludes that there is a correlation between the safety culture and the frequency of 

hydrocarbon leakages on an installation. By using different cause variables and different regression 

methods, it is possible to see if some cause variables have a stronger or weaker correlation to HC 

leaks.  The barrier performance showed that there was a significant correlation with HC leaks as well, 

with the exception of Christmas tree barrier, however this could also be explained by older 

installations that have shown to have a negative effect with respect to HC leaks. 

2.5.1 Advantages vs. disadvantages 

 An advantage in the regression analysis is the criterion that was determined on what data is 

satisfactory to use, with regard to barrier test data. This criterion is very useful and helps the 

analysis to give a realistic picture of the barrier performance quality. 

 The disadvantages or weaknesses of the regression analyses is that the criterion for what 

results in a good barrier test are not discussed or taken into account. For example, a pressure 

test criterion on rig A may be keeping the pressure at 200 bar for 10 minutes, and on rig B it 

has to hold 150 bar for 30 minutes, and both are considered to be a good test. Another 

example is that if rig A has some problems with a down hole safety valve (DHSV), and fail to 

get a good test on four attempts due to complications reaching the valve. In the end they 

managed to reach the valve and get a good test on the fifth try. On rig B the same test was 

successful at first attempt.  In both these examples it could be considered that both rig A and 

B have achieved good tests because in their round of testing they managed to achieve good 

tests at the end. Unless a criterion is established, that for example test need to be successful 

at first attempt be counted as acceptable, one could in theory have several failed tests every 

time a round of test is scheduled but if the last test they take is good then it is considered to 

be a good test. (In a real emergency there may not be a second chance if barrier fail at first 

attempt to activate) 

 Another disadvantage is that the activity level in the production/process and drilling “area” 

are not considered when for example looking at how many barrier test and HC leaks are 

registered for process and how many barrier tests are done for drilling. This could give a 
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good indication for the reasons behind the number of HC leaks and barrier tests. If one 

assumes that larger installations have more active production wells than smaller 

installations, it would be logical to think that they have a higher activity level, but that 

doesn’t make it is necessarily true that they have more HC leaks or barrier failures. This is 

something that could be looked deeper into to reveal if there is any correlation between 

activity level and HC leaks. 

 The regression analyses seem to indicate (but do not conclude) that there are more noise, 

more falling objects and more HC leaks on installations that are older and larger. Older 

installations are sometimes assumed to be larger. Therefore, it could be investigated to see if 

indeed older installations in general are larger, and if the designs of older installations are 

also less convenient to operate and maintain than the newer ones. This could explain the 

observations that larger installations seem to have a higher level of risk than smaller ones.  

In general the regression analysis doesn’t point at any single indicator that has an effect on the HC 

leaks, but in connection with other indicators (multiple linear regressions) it is shown that there is 

some relationship to the safety culture. 

2.5.2 Improvements & suggestions 

 Including the activity level in the regression analysis could give more correlations than what 

was found. 

 Obtaining the barrier testing criterion that each operator use would help understand the 

background of the testing program, culture and results, which could lead to different 

conclusions that has previously not been found. 

2.6 Requirements for barrier reporting 

When analyzing barriers/ safety functions, criteria need to be defined to determine when test is 

acceptable and when it failed to meet these criteria.  If a specific criterion doesn’t exist for a barrier, 

then the decision whether the test was acceptable or failed will be subjective and the analyses will be 

misleading as mentioned in chapter 2.5.1.  

According to ISO 17776, the definition of a barrier is “a measure that reduces the 

likelihood of triggering a potential risk of damage or reduces the potential for damage/harm”. This 

definition also has to match/fulfill the description of barrier that is stated in the management 

regulations (styringsforskriften) §1, risk reduction, part 2: “barriers are to be established that a) 

reduces the likelihood that such errors, hazards and accident situations develop, b) limiting the 

possible damage and disadvantages”. 

PSA has made a document where the requirements for the companies reporting for barrier testing 

are given and is summarized below (PSA, 2010). The barrier data that is available can be divided into 

6 categories:  
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1. Fire and Gas detection: 

a. Proportion of fire detection test failure 

b. Proportion of gas detection test failure 

2. Shutdown: 

a. Proportion of riser, ESDV (Emergency shutdown valve) test failure 

b. Proportion of valve closing test failure 

c. Proportion of internal leak rate test failure/breach 

d. Proportion of BVD ( Blowdown valve) test failure 

e. Proportion of PSV (pressure safety valve) test failure 

3. Wellbore isolation: 

a. Proportion of Christmas tree test failure 

b. Proportion of valve closing (for Christmas tree) test failure 

c. Proportion of leak rate(Christmas tree) test failure/breach 

d. Proportion of DHSV (Down hole safety valve) test failure 

4. Wellbore isolation w/BOP: 

a. Proportion of BOP (Blow Out Preventer) test failure 

5. Fire safeguard: 

a. Proportion of deluge test failure 

b. Proportion of start test (fire pumps) test failure 

6. Emergency preparedness: 

a. Proportion of muster time test failure 

The definition for a failure for fire and gas detection test is when the “F&G logic” (Fire and gas logic) 

doesn’t receive a signal from the detector that it has detected a fire, smoke, heat or gas and activate 

an alarm in the “F&G panel” (Fire and gas panel).  The indicator takes into account each detector, so 

if one of the detectors fails, the indicator will register one failure, and if two detectors fail; two 

failures will be registered. For gas detection the gas needs to reach the upper alarm limit to be 

considered an approved test. 

For testing of ESDV, these have to close within the specified time interval, and the leak rate cannot 

exceed the rates specified for the individual valves. The indicator takes into account each detector 

like in the fire and gas detection. For BDV the pressure relief valve has to open within a specified 

time and also takes into account each BDV valve, so the failures will count for each valve.  The PSV 

test is a failure if the PSV doesn’t open at 120% of the set point, or over 50 bar, whichever is the 

lowest pressure criterion. Also the PSV indicator counts for each valve. 

For the wellbore isolation testing, each valve is tested separately. The Christmas tree has 2 separate 

reporting indicators; first, the Christmas tree valves has specific closing times which need to be 

satisfied, and second it has to withstand the required pressure so that the internal leak rates are 

within the boundaries of acceptance. The time requirement doesn’t apply for the DHSV, but the leak 

rate requirement does. The indicator takes into account each valve when counting the tests and 

failures. 

The BOP is pressure tested, and needs to keep a constant pressure for a certain time period to be 

approved. The number of failures is counted per sealing element and has a reference to NORSOK D-
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010 table A.1 (Appendix A). The amount of tests is defined as the number of pressure tests per 

sealing element in the BOP. 

The fire safeguard includes the deluge valves and the fire pumps. The failure mode for the deluge 

valve is when it doesn’t open. The indicator counts per deluge control valve, including the signal path 

from manual and automatic activation in the deluge panel. The fire water supply results in a failure if 

the firewater pumps don’t manage to start within a specified time and supply the minim volume and 

pressure. The indicator counts per pump, independently of its capacity, in addition the status of the 

pumps are continuously monitored.  

The emergency preparedness is measured in the form of the time it takes to muster according to 

emergency instructions. The indicator includes real mustering alarms and practice drills. The 

attendances of the drills are recorded (although it is not required to report it) and the time for all 

personnel to be accounted for is registered. The required mustering times are different for the 

individual installations due to different size and POB. The failure is registered if the required 

mustering time is exceeded.  

All these requirements are understood in the sense that once a barrier has failed, the failure is 

investigated to find the source of the problem and rectify this before testing the barrier again. So 

from the example in chapter 2.5.1 if a barrier is tested 5 times and the 4 first tests were failures, then 

the indicator registers 4 failures. It is also clear now from NORSOK D-010 that the requirement for 

pressure testing the BOP has to fulfill a minimum requirement as stated in table A.1. The time 

intervals in which they have to be tested are also stated. It is assumed that the other barriers have 

similar regulatory requirements, specified for each company, to ensure that a minimum standard has 

to be achieved.  
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3. Method 

To be able to compare the operator companies, it is first necessary to define the method to compare 

them. In this section the methods to analyze the data for the different types of barriers will be 

explained. To continue the comparison of classical vs. pred. Bayesian, the Classical approach will be 

presented first. 

3.1 The Classical Approach – Comparing two proportions. 

To find a method that will distinguish which installations/operators have the lowest proportion of 

failure for their barriers, the simplest way is to compare two installations and find the probability 

that one of the installations has a lower failure rate than the other.  

The normal distribution is a very suitable approximation for errors (distributions) in scientific 

measurements. It depends on the two parameters variance and mean. If the sample contains more 

than n ≥ 30 observations or tests, the sample distribution of the estimated mean,  ̅, can be said to be 

a good normal approximation. The central limit theorem (Walpole et al. 8th ed. Theorem 8.2), states: 

“If  ̅ is the mean of a random sample of size n taken from a population with a mean µ and finite 

variance σ2, then the limiting form of the distribution of  

  
 ̅   

√   ⁄

 

As n→ , is the standard normal distribution n (z;0,1)” 

where: 

  – is a standard normal random variable/standardizes normal random variables 

 ̅– is the average of the sample collected from the population 

   – is the true variance of the population 

  – is the number of tests from the sample  

The central limit theorem allows the analyst to quantify the statistical uncertainty that is associated 

with a single sample mean. A confidence interval can be constructed around the sample mean.  

As n → ∞ the distribution becomes a standard normal distribution. 

This means according to the central limit theorem,  ̅ ≈ N (µ,σ2),     
  ̅̅̅̅    
  
√  
⁄

  (   ) when 

 n1 → , and    
  ̅̅̅̅    
  

√  
⁄

  (   ) when  n2 →  etc.  

To be able to compare two distributions with each other, another theorem is necessary to introduce; 

theorem 7.11 (Walpole et al. 8th ed.) about linear combination of random variables. It states that: 

”If             are independent random variables having normal distribution with means 

           and variance   
    

      
 , respectively, then the random variable 

http://en.wikipedia.org/wiki/Confidence_interval
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Has a normal distribution with mean 

                    

And variance  

  
    

   
    

   
      

   
  .” 

This means that        (      
  

  
 
  

  
). 

 

By using the central limit theorem (theorem 8.2) and theorem 7.11 it is possible to compare two 

populations with each other from the formula below; 

Eq. 3.1.1 (Theorem 8.3)  

  
(  ̅̅ ̅    ̅̅ ̅)  (     )

√(
  
 

  
)  (

  
 

  
)

 

  – is a standard normal random variable/standardizes normal random variables 

  ̅̅ ̅ – is the average of the sample collected from population 1 

  ̅̅ ̅ – is the average of the sample collected from population 2 

   – is the true average of population 1 

   – is the true average of population 2 

  
  – is the true variance of population 1 

  
  – is the true variance of population 2 

   – is the number of tests from sample population 1 

   – is the number of tests from sample population 2 

The two distributions are independent and normally distributed;   (     
 ) and   (     

 ), because 

n1 and n2 for the two distributions are very large (n>>30) and          (   )   . As n→  the 

distributions become standard normal distributions, and therefore the differences between the 

sample means are:    ̅̅ ̅    ̅̅ ̅  and the sampling distribution:   ̅̅ ̅    ̅̅ ̅     (      
  
 

  
 
  
 

  
). 

As mentioned in Walpole et al (8th ed. chapter 9.11), it is stated that when       (     ), 

and       (     ) , and where the proportions (of failure) are   ̂      ⁄   (     (    )) 

and   ̂         (     (    ))⁄ , a confidence interval for       can be established by using 

  ̂ and   ̂.   ̂ and    ̂ can safely be assumed to be approximately normal distributed as long as 

    ̂    and     ̂   . From theorem 7.11, as previously explained, it can be concluded that; 

  ̂    ̂   (      
  (    )

  
 
  (    )

  
)  
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With this information it is possible to make the assertion that  (      ⁄
        ⁄

)     , 

where 

  
(  ̂   ̂) (     )

√(
  (    )

  
) (

  (    )

  
)
  

Eq. 3.1.2 

and α is the level of significance, usually 10%, and    
 ⁄

is the Z-value leaving an area of      ⁄  

outside the interval. As long as     ̂      ̂    (    )̂        (    )̂   are all greater than or equal 

to 5, it is possible to replace       with their estimates    ̂ and   ̂. The resulting formula becomes:  

  
(  ̂    ̂)  (     )

√(
  ̂(    ̂)

  
)  (

  ̂(    ̂)
  

)

 

where; 

  ̂ – is the estimated probability of population 1 

  ̂ – is the estimated probability of population 2 

   – is the true probability of population 1  

   – is the true probability of population 2 

   – is the number of tests from sample population 1 

   – is the number of tests from sample population 2 

Table 3.1.1 Data table for the PSV barrier for the two installations. 

2004-2006 

Installation 

Total number of test for 

PSV (n) Total number of failures (x) 

Proportion of failure for PSV 

( ̂) 

AB (1) 1685 176 0,1044 

AH (2) 826 65 0,0787 

Width: (  ̂    ̂        ) 

As an example, random samples from two installations, for the PSV barrier, are chosen; installation 

AB (p1) and installation AH (p2). See Appendix B-2 for data used to find the values in Table 3.1.2. 

The first thing that needs to be done is to test if p1 actually is different from p2. Null hypothesis; H0: p1 

=p2 and alternative hypothesis H1: p1 ≠ p2. Using Eq. 3.1.2 it is possible to test the hypothesis. 

  
(  ̂    ̂)   

√(
  ̂(    ̂)

  
)  (

  ̂(    ̂)
  

)

  (       (
  ̂(    ̂)

  
)  (

  ̂(    ̂)

  
) )          
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The rejection area is then outside a two tailed 95 % confidence interval. Using the values in Table 

3.1.1., the values in the formula give; Z       (98.4%), which is larger than the confidence interval 

Z ± 1.96 (97.50%, 2.50%). Therefore H0 is rejected in favor of H1.  

As values for p1 and p2 are estimated values instead of true, a t-distribution would be more suitable 

to use instead of the normal distribution where;  

  
( ̅  ) (  √ )

√     
  

 

√  (   )
 , 

where    
(   )  

  
 which then results in: 

  
 

√   
 

T – is a student-t random variable 

  – is a standard normal random variable  

 ̅ – is the average of the sample collected from the distribution 

  – is the true average of the distribution 

   – is the true variance of the distribution 

  – is the number of tests from sample the distribution 

   – is the sample variance 

V – is a chi-squared random variable 

  – is the degrees of freedom 

Where Z is normally distributed:  
 ̅  

  √ 
 . 

The t-distribution is quite similar to the standard normal distribution, in fact, when n→  they are 

identical. But when n ≤ 30 (like for example when determining the height of the boys in a class), the 

values of S2 fluctuate considerably from sample to sample and is very different from the standard 

normal distribution. This is because the T-value depends on both  ̅ and S2, while the Z value only 

depends on  ̅. Since the variance in the t-distribution depends on the sample size, n, the variance is 

always greater than 1, whereas the variance for the standard normal distribution is 1. The tail of a t-

distribution is usually larger, giving the shape of the bell curve to be lower and wider than the normal 

distribution. As the number of degrees of freedom increase, the distribution becomes more and 

more normal.  

Another difference between the t-distribution and the normal distribution is that the t-distribution 

doesn’t relate to the central limit theorem.  However as the number of tests in this case is so large, S 

from the sample is treated as a sufficiently good estimator for σ, or as stated in Walpole et al (8th 

ed.); ” S will be very close to the true σ and thus the central limit theorem prevails”. This is the 

concept of a “Large-sample confidence interval” (chapter 9.4, Walpole et al 8th Ed.). 

To get a picture of the sampling distribution, a 90 % confidence interval for p1 – p2 is constructed: 

0.0061 < p1 – p2 < 0.0454, which gives an interval width of 0.039. The confidence interval shows that 

with a 90 % confidence that p1-p2 will always be higher than zero. To find the probability that P ( p1 - 
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p2 › 0 ), a one tailed confidence interval is constructed, where the lower limit is zero. The area under 

the graph to the right of the lower bound is the probability that P ( p1 - p2 › 0 ). 

Graph 3.1.1 Graphical representation of the probability; P ( p1 - p2 › 0 ). 

With a low end, one tailed confidence interval of 98,42 %, the value of the limit is 0, 00002255 ≈ 0. It 

is therefore found that P ( p1 - p2 › 0 ) = 98,42 %. 

The probability that installation AB has a higher proportion of failure than installation AH seems 

reasonable, as installation AB always has a higher proportion of failure than AH in each of the years.  

3.2 Pred. Bayesian Approach – Comparing two proportions. 

Today’s literature doesn’t show how to compare proportions based on the pred. Bayesian approach. 

In this chapter, one approach on how this could be done will be presented. 

As the same criteria are fulfilled in the pred. Bayesian approach as in the Classical approach, the 

theorems are briefly summarized below. 

From chapter 3.1 it was shown that by using the central limit theorem with the theorem about linear 

combination it is possible to compare two populations with each other giving; 

       (      
  
  
 
  
  
) 

Or the more useful; 

  ̂    ̂   (      
  (    )

  
 
  (    )
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1,58 % rejection area 
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And the formula becomes; 

  
(  ̅̅ ̅    ̅̅ ̅)  (     )

√(
  
 

  
)  (
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Or the equivalent: 

  
(  ̂    ̂)  (     )

√(
  (    )

  
)  (

  (    )
  

)

 

Eq.3.2.1 

  – is a standard normal random variable/standardizes normal random variables 

  ̂ – is the estimated failure rate from the sample of population 1 

  ̂ – is the estimated failure rate from the sample of population 2 

   – is the true failure rate of population 1 

   – is the true failure rate of population 2 

   – is the number of tests from sample population 1 

   – is the number of tests from sample population 2 

as n → ∞  

The pred. Bayesian approach uses the previous knowledge (or data) to calculate the failure rate in 

the future by using the number of tests for the next testing period.  

The data can be considered approximately normally distributed because the barrier data are 

binomial random variables with parameters n (number of tests next period) and p (the probability of 

a failure), with µ = np and σ2 = np(1-p). The requirements are still valid as µ is the equivalent future 

mean np, and σ2 is the future variance np(1-p). 

As long as np ≥ 5 and n(1-p) ≥ 5, the data can be considered approximately normally distributed even 

in the pred. Bayesian approach. Below the relationship is shown using the formula; 

   ̅         √
  

 
     ̂         √

 ̂(   ̂)

  
 

where;  

pf – is the future probability 

µ – is the true mean 

 ̂ – is the probability calculated from the previous data 

nf – is the number of tests that will be performed for the next period 

n – is the number of tests already performed 

σ2 – is the variance 

α – level of significance = 10, 

z – is 1.65 (for α/2 = 5) 
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It is therefore possible to conclude that the same criteria are fulfilled here as in the Classical 

approach and the limiting form of the normal approximation can be used to express the future 

failure rate pf; 

  
 ⁄
 
 ̂    

√
 ̂ ̂

  ⁄

  ̂    
 ⁄ √
 ̂ ̂

  ⁄     

Substituting this in for Eq.3.2.1 the results become; 
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where;  

n1F and n2F are the future number of test,  

p1F and p2F are the future  proportion of failures,  

and n1C, n2C, (and consequently the values x1C and x2C), p1C and p2C  are the number of tests (and 

number of failures) and proportion of observed failures in the experience data that have been 

determined by the analyst. The prediction interval then becomes; 
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Eq 3.2.2 

To find what factors can influence the results using the previous formula, the method for 

implementing (analyzing) the formula will be divided into steps. First all the normal data used in the 

Classical approach will be used to see what the formula actually does. This gives an interval of 

approximately 0.039. However, as it is unrealistic that the number of test in the next period is going 

to be as high as the past 6 years, the second step is to use realistic values for the number of tests for 

the next period. Using Eq 3.2.2 with n1F = 232 and n2F = 158 (which are values that are calculated with 

the least square method below), the results become: 

        (       )         

The interval is now broader, 0.097, because of the lower values of the number of test for the next 

period, and the interval now includes values below 0. This means that it is not possible to say with 90 

% certainty that the proportion of failure for installations AH is higher than installations AB.  

A possible third step could be to choose the appropriate value of the proportion of failure. One way 

that this can be done is to look for trends in the data, and exclude the data that doesn’t follow the 

dominant trend. Practically this means choosing the amount of failures and of tests the installations 

have performed the last years. From the table below, the number of failures for the last 6 years is 

shown:  
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Graph 3.2.1 The number of failures for installation AB and AH for a 6 year period. 

From Graph 3.2.1 a decreasing trend is visible for installation AB, where the number of test failures is 

decreasing every year. By only looking at the graph, it is possible to see that in 2007, there was a 

stronger decrease than the previous years, and then in 2008 the rate goes back to the trend shown 

before 2007. If the trend had continued in 2007, the number of failures that should have occurred 

that year would have been around 30. For installation AH, it seems that the number of test failures 

have first decrease a little and then started to slightly increase again. Overall it would seem it isn’t 

changing much, but if the focus would be on the last 4 years, it could seem like a new trend might 

have arisen, where the number of failures doesn’t change with more than 1 or 2 failures, as if it is flat 

lining a little.  

To make a proper assumption on which years gives a representative picture of the number of test 

failures, the years that don’t follow the overall trend are not included in determining the value for x1C 

an x2C. For installation AB, x1C is determined to be 159 (excluding the data from 2007) and x2C for 

installation AH to be 37 (excluding the data from 2004 and 2005). 

This next graph shows the number of tests that have been performed the last 6 years: 
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Graph 3.2.2 The number of PSV tests for installation AB and AH for a 6 year period 

From Graph 3.2.2 there are two peaks that seem pronounced for installation AB. A decrease trend 

from 2005 is visible with a small increase in 2008 before the trend continues as before.  For 

installation AH an increasing trend is shown, however the two first years, 2004 and 2005 has a 

steeper increase than the last 4 years, where 2006 – 2008 are basically the same with the only 

change is seen in 2009. 

To determine the value for n1C and n2C the same method is used as when determining x1C and x2C. As 

installation AB has a main decrease trend the first year, 2004 and 2008 are excluded since these 

don’t represent the trend very well. The value for n1C is then determined to be 1160. For installation 

AH the newest trend from 2006 to 2009 is chosen to be the representative trend and therefore 2004 

and 2005 are excluded. The value for n2C is then 608. 

From Graph 3.2.2, the number of test for the next period can be estimated by the help of the least 

square methods. Using the data points chosen by the analyst and making a regression line, the next 

point can be estimated, the number of test for the next period. 

What the method of least squares does is that it finds sum, where the squares of the residuals (the 

error in the fit of a linear model       ) becomes the minimum. This means that it finds the line 

were the residuals are at the minimum, which is known as the regression line. 
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From the values that are chosen, and listed in Appendix B-2, the values of a and b for installation AB 

are: a = 304.42 and b = -14.43, the resulting regression line becoming: y = 304.42 – 14.43x. The 

estimated number of test for the next period is then calculated to be 232. 

0

50

100

150

200

250

300

350

400

2004 2005 2006 2007 2008 2009

Number of PSV tests 

Number of test PSV for installation AB Number of test PSV for installation AH



 

 
 

31 Method 

For installation AH the values for a and b are: a = 150.57 and b = 1.43, and the resulting regression 

line becomes: y = 150.57 – 1.43x. The estimated number of test for the next period is calculated to 

be 158.  

Table 3.2.2 Prediction interval data for the two installations. 

n1f 232 x1c 159 

n2f 158 x2c 37 

n1C 1160 p1C 0,137 

n2C 608 p2C 0,061 

The 90% prediction interval for the future proportion of failures can be found using Eq. 3.2.2 and the 

data in Table 3.2.2: 
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       (       )        , giving an interval width of 0,097. 

The interval shows that the probability of p1f and p2f is always larger than zero with a 90 % prediction 

interval. To find the probability that p1F is larger than p2F the same method as for the Classical 

approach can be used; by construction a one tailed prediction interval. Assigning the lower limit to 

the value of 0,00000246 ≈ 0, it is found that P ( p1f - p2f  ≥ 0) = 99,51%. 

This shows that p1F in a 99,51% prediction interval will have a significantly higher failure rate than p2F. 

As the probability that p1F is larger than p2F for the Classical approach is a little lower (with 98.42%) 

than the pred. Bayesian approach, it could be argued that with the pred. Bayesian approach the 

results will show a stronger indication of the real risk. The point of constructing a pred. Bayesian 

interval is to illustrate a more “real” trend of the barrier performances of different installations.   

The main point is to find the general trend and not include misleading data points in the trend. 

Therefore some data points that do not follow the general trend are excluded. 

The prediction interval width for the pred. Bayesian approach is wider than for the Classical approach 

in chapter 3.1.But it is important to consider that the data that has been used for making the 

prediction interval is only the data that is relevant. Consider the scenario that a risk analysis is 

performed on an installation that has fewer data than what is common or satisfactory. The analyst 

might look at the interval and think that the interval is too broad and therefore gives an uncertain 

representation of the risk. However if the analyst were to take in more data that isn’t as relevant to 

the analysis, the interval width could become narrower. But is it really making the results more 

accurate? In the predictive Bayesian approach this is taken into consideration because when the 

analyst selects the data, the data is passed through the analyst’s filter of what is realistic or relevant 

and what is not. When the data then is represented in a prediction interval, the picture that it 
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illustrates is the most realistic combination of the data and the understanding of the barrier 

performance.  

This method might seem very time consuming to use when the data that is available consist of many 

installations and many years of operation. One way this method can be used effectively is to choose 

one installation that is of particular interest and compare it to the average of the rest of the 

installations. In this way the installation that is of interest can be analyzed for major differences 

compared to the average “normal” installation on the Norwegian continental shelf.  

Another method, that will be the subject of this thesis, is to find the overall failure rate for each 

operator and use the method to find which of the operators are statistically significant better than 

the others. 

3.3 Number of tests criterion. 

When considering how to implement the method, some ideas were investigated but were found to 

be not suitable for the purpose. One of these ideas was to use a one way ANOVA table for each 

barrier type and test each barrier type has a statistically significant lower failure rate than the others.  

The hypothesis test would be defined as; the null hypothesis, H0: p1=p2=p3=p4 and the alternative 

hypothesis, H1: at least one of the failure rates will be different from the others. However the test 

would only show if there exists a statistically significant difference and would not show which one(s) 

it was. This poses as a problem as the interest is to find which operator has a statistically significant 

lower failure rate, and therefore this approach was not used. 

As mentioned in the introduction 6-7 barriers will be considered, one from each of the categories 

presented in chapter 2.6:  

a. Proportion of muster time test failure 

b. Proportion of start test (fire pumps) test failure 

c. Proportion of BOP (Blow Out Preventer) test failure 

d. Proportion of fire detection test failure 

e. Proportion of Christmas tree test failure or DHSV 

f. Proportion of riser, ESDV (Emergency shutdown valve) test failure 

From chapter 3.2 the developed method requires the number of tests that will be performed for the 

next period. One way to estimate this number is using the least square methods, if this information 

isn’t available. In this case the data for the next year, 2010, is available and it is possible to find how 

many tests were performed.  

To make this number more useful, a method to calculate the number of tests that is required to 

satisfy an accuracy criterion for the failure rates is developed. In other words; the method will 

calculate the number of tests that an installation must perform, to be within the accepted error of 

the failure rate. The installations that have performed at least this number of tests for the next 

period will be the contributing installations in calculating the average number of tests performed for 

the next period. 
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How many tests should a barrier have performed to be within a certain safety criteria? Consider the 

probability, p, as an estimated failure rate criterion for a barrier. Estimating the failure rate with few 

tests is not very accurate, so if an error uncertainty, e, also is considered together with a prediction 

interval, the failure rate will be more accurate and reliable.  

For a binomial random variable x, the expected future value µf is defined as nf multiplied by p, where 

nf is the number of tests for next period, multiplied by p the failure rate criterion, which in this case is 

determined by the number of failures observed from previous tests. The operator companies have a 

set failure rate criterion for each barrier, and should be used instead when available. 

    ( )   ̅      

The variance for a binomial distribution is defined by n multiplied by p, multiplied by q, where q = 1-

p. 

      ( )      

When the number of tests multiplied with the observed failure rate is larger than 5, a standard 

normal distribution can be assumed giving; 
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with α level of significance.  

This shows that the expected value for x with its error uncertainty can be expressed as; 

 ( )    

which gives; 
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This is how the error uncertainty is expressed for the random variable X, however the expression for 

a proportion, p, the accepted error will look like this;  
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Rearranging the formula to give the number of tests needed to satisfy a certain accepted error 

becomes:  
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 ⁄

 is the Z-value leaving an area of      ⁄  to the right, out of the prediction interval 

 ̂ is the estimated failure rate criterion 

 ̂     ̂  

nf is the number of future tests that is needed and 

e is the “accepted” error that will define the accuracy of the calculated failure rate. 

The value for the estimated failure rate criterion would in this case mean the accepted failure rate 

each operator had for their barriers. As these accepted failure rates are unknown at present time, 

the values have been estimated from the lowest or “best” failure rates for each operator that are 

available. Table 3.3.1 shows the accepted failure rate for 7 barriers for each operator, rounded down 

to 1 decimal. 

Table 3.3.1 failure rate criteria for 7 barriers 

Barrier Operator 1 Operator 3 Operator 4 Operator 5 

Muster time 14,8% 3,6% 10,5% 21,7% 

Start test fire 

pumps 

0,2% 0,3% 0,3% 0,2% 

BOP 0,3% 3,7% 2,0% 3,8% 

Fire detector 2,4% 0,1% 0,3% 0,3% 

Christmas tree 0,3% 0,1% 0,9% 0,1% 

DHSV 2,4% 0,1% 4,9% 2,8% 

ESDV 1,0% 0,1% 0,5% 3,8% 

As some of these failure rate criteria are quite high, the values have been reduced to a more suitable 

value, shown in table 3.3.1-1 

Table 3.3.1-1 failure rate criteria revised. 

Barrier Operator 1 Operator 3 Operator 4 Operator 5 

Muster time 8% 1,9% 6,0% 10% 

Start test fire 

pumps 

0,2% 0,3% 0,3% 0,2% 

BOP 0,3% 2,5% 2,0% 2,7% 

Fire detector 2,4% 0,3% 0,3% 0,3% 

Christmas tree 0,3% 0,3% 0,9% 0,1% 

DHSV 2,4% 0,3% 4,0% 2,8% 

ESDV 1,0% 0,3% 0,5% 3,0% 

These failure rates might seem very strict for some of the installations for the operators but as these 

are estimated values in the place of the operator’s real failure rate criteria it isn’t necessary to put 

too much emphasis on them.  If the failure rate criteria are used in the way they are meant to, a 

barrier should be properly examined and tested when it is over the failure rate set by the operator. 

The next value that needs to be determined is the accepted error, e. This could be done in different 

ways; there could be an e for each barrier, or for each operator of both. For simplicity and 



 

 
 

35 Method 

comparability, the accepted error will be chosen to be for each barrier as these are the values that 

are supposedly most similar to each other. 

Table 3.3.2 error, e, in estimating p, for each barrier 

Barrier Accepted error, e 

Muster time 0,070 – 7% 

Start test fire pumps 0,0100 – 1% 

BOP 0,0200 – 2% 

Fire detector 0,008 – 0,8% 

Christmas tree 0,007 – 0,7% 

DHSV 0,012 – 1,2% 

ESDV 0,012 – 1,2% 

In order to be sure that the error in the calculated failure rate is small, the value for e should be as 

small as possible, but still be realistic in practice. 

Using a 90% critical region, the number of tests each barrier must perform next period to satisfy the 

accepted error criterion for the failure rates are shown in Table 3.3.3. 

Table 3.3.3 number of tests required for each installation for each operator. 

Barrier Operator 1 Operator 3 Operator 4 Operator 5 

Muster time 41 10 31 50 

Start test fire 

pumps 

54 81 81 54 

BOP 20 165 133 178 

Fire detector 990 126 126 126 

Christmas tree 165 165 493 165 

DHSV 440 56 722 511 

ESDV 186 56 93 547 

These results are quite interesting, for example it shows that Operator 3 only needs to take 10 tests 

per installation per year instead of 26 which is the normal amount of tests for mustering on offshore 

installations. This is because their observed failure rates are low and given their criteria, they have 

established a good barrier for mustering time. It also shows that the other operators don’t test the 

mustering barrier enough and therefore need to perform more tests than the normal 26. 

The results presented in Table 3.3.3 are sensitive to the estimated values of the failure rate  ̂ and e. 

If the values of these two estimates were to change, the value for n will also change correspondingly. 

The values for e are estimated with respect to how many tests can be performed and still be 

achievable for the operators. If e were to be too small, the value for n will be very high and it would 

be nearly impossible to perform that amount of tests of the barrier. The way this problem has been 

solved is to choose one e for each barrier to make the operators comparable to each other and so 

that none of the operators exceed the assumed maximum number of tests. The results will then 
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show that one or several of the operators might be close to the maximum number of tests and the 

rest will be lower. 

Now that the estimated number of tests for each operator is established, it is possible to choose the 

installation that has at least these amounts of test and compare them using the method described in 

chapter 3.2. 
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4. Results 

In this thesis a method for comparing barrier performances from different operators has been 

developed using the arguments and views of the predictive Bayesian approach. The core idea of the 

method is that by estimating the failure rate for a barrier from previously observed data, and 

combining it with the number of tests that will be performed for the next period, it is possible to 

calculate a more accurate prediction interval for the failure rate than making a confidence interval in 

classical statistics.  Furthermore, the value for the number of tests that will be performed for the 

next period is calculated by choosing an accepted error that defines the quality of the barrier, 

together with a chosen failure rate criterion for each barrier. This is given by the formula; 

   
  

 ⁄
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The method has then been used to compare two failure rates with each other (the overall operator 

failure rate), to determine if one has a statistically significant lower failure rate than the other. This is 

given by the formula; 
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The interval width’s for the prediction intervals varied, but it is worth mentioning that when the 

accepted error is integrated in the method, the interval widths are at their narrowest in these 

comparisons.  

The following results were found when comparing the operators overall failure rate for each barrier 

using this method, and the Classical approach for comparison. 

4.1 Fire detection barrier 

From Appendix C, the graphs show the number of failures and number of tests two operators 

(Operator 1 and Operator 4), from 2004 to 2009. From these graphs a trend is determined and with 

the data that participate in the general trend, a prediction interval is made with the number of tests 

that are performed for the next year. The prediction interval is tested to find if there is statistically 

significant difference between the two compared operators for a critical region of 90%, i.e. 1.645 < zα 

< - 1.645.  

The graphs for the failure rate for all the comparisons can also be found in Appendix C. 

Excluding the data for 2004 for both operators for number of failures, and excluding 2006 for 

Operator 1 and 2009 for Operator 4 for number of tests, gives the following values;  
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Table 4.1 Data table for Operator 1 vs. Operator 4 Fire detector barrier 

n1f 1735 x1c 507 

n4f 363 x4c 92 

n1c 188189 p1c 0,0027 

n4c 21397 p4c 0,0043 

This gives the prediction interval of          (       )          .The interval width is 

0,012 which has a considerably narrow prediction interval. A hypothesis tests (with null hypothesis; 

H0: p1F=p4F, H1: p1F<p4F) reveals that -0,4393 > - 1,645, H0 is not rejected, there is no significant 

difference between the two operators. 

The same procedure has been performed for the other 5 comparisons, and is listed in the Table 4.1.1 

below: 

Table 4.1.1 Results for fire detection barrier comparisons from the method. 

Lower 

bound 

Compared 

operators 

Upper 

bound z 

Interval 

width % 

-0,0076 < P1f - P4f < 0,0044 -0,4393 0,0120 33,02 % 

-0,0090 < P3f - P4f < 0,0038 -0,6616 0,0128 25,41 % 

-0,0048 < P1f - P5f < 0,0015 -0,8715 0,0063 19,18 % 

-0,0064 < P3f - P5f < 0,0013 -1,1072 0,0077 13,41 % 

-0,0059 < P4f - P5f < 0,0068 0,1108 0,0127 54,41 % 

-0,0026 <P1f - P3f < 0,0045 0,4212 0,0071 66,32 % 

For the fire detection barrier it was found that there was no statistically significant differences 

between the operators when hypothesis testing with a 90% significance level. 

For comparison a 90% confidence interval for the Classical approach is also performed for the barrier, 

the results are shown in table 4.1.2 

Table 4.1.2 Results for fire detection barrier comparisons for the Classical approach 

Classical approach 

Lower 

bound 

Compared 

operators 

Upper 

bound z 

Interval 

width % 

-0,0055 < P1f - P4f < 0,0010 -1,1414 0,0065 12,69 % 

-0,0064 < P3f - P4f < 0,0002 -1,5591 0,0066 5,95 % 

-0,0027 < P1f - P5f < 0,0011 -0,6793 0,0039 24,85 % 

-0,0036 < P3f - P5f < 0,0003 -1,3734 0,0040 8,48 % 

-0,0020 < P4f - P5f < 0,0049 0,7012 0,0069 75,84 % 

-0,0008 < P1f - P3f < 0,0025 0,8549 0,0033 80,37 % 

The results show that that there was no statistically significant differences between the operators 

when hypothesis testing with a 90% confidence interval. 
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4.2 Start test fire pumps barrier 

The results for the start test for fire pumps barrier is shown in table 4.2.1. The z value shows that 

none of the operators has a statistically significant lower failure rate than any of the others, as all of 

the z values are within the 90% prediction interval; - 1.645 < zα < 1.645. 

4.2.1 Results for the Start test barrier comparison. 

Lower 

bound 

Compared 

operators 

Upper 

bound z 

Interval 

width % 

-0,0137 < P1f - P4f < 0,0082 -0,4108 0,0219 34,06 % 

-0,0072 < P1f - P3f < 0,0083 0,1140 0,0155 54,54 % 

-0,0095 < P1f - P5f < 0,0078 -0,1638 0,0173 43,49 % 

-0,0099 < P4f - P5f < 0,0136 0,2623 0,0235 60,34 % 

-0,0108 < P3f - P5f < 0,0131 0,1635 0,0239 56,49 % 

-0,0144 < P3f - P4f < 0,0130 -0,0825 0,0274 46,71 % 

For the Classical approach the results are shown in table 4.2.2. 

Table 4.2.2 Results for the start test barrier comparison for the Classical approach. 

Classical approach 

Lower 

bound 

Compared 

operators 

Upper 

bound z 

Interval 

width % 

-0,0080 < P1f - P4f < 0,0025 -0,8576 0,0105 19,56 % 

-0,0030 < P1f - P3f < 0,0041 0,2462 0,0072 59,72 % 

-0,0047 < P1f - P5f < 0,0030 -0,3667 0,0077 35,69 % 

-0,0038 < P4f - P5f < 0,0075 0,5464 0,0113 70,76 % 

-0,0045 < P3f - P5f < 0,0069 0,3424 0,0114 63,40 % 

-0,0074 < P3f - P4f < 0,0060 -0,1684 0,0134 43,31 % 

The z value for the Classical approach doesn’t show that any of the operators has a statistically 

significant lower failure rate than any of the others 

4.3 BOP barrier 

The BOP stands for Blow out preventer and is a large specialized valve used to seal, control and 

monitor the fluids in the well that is being drilled. For the BOP barrier not all of the barriers met the 

requirements for the number of tests and therefore only two operators were compared. For this 

comparison it was found that Operator 1 has a statistically significant lower failure rate than operator 

4 as – 2,5098 < – 1,645. 

Table 4.3.1 Results for the BOP barrier comparison. 

Lower 

bound 

Compared 

operators 

Upper 

bound z 

Interval 

width % 

-0,06915 < P1f - P4f < -0,0144 -2,5098 0,0835 0,60 % 
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For the Classical approach the results are shown in table 4.3.2. 

Table 4.3.2. Results for the BOP comparison for the Classical approach. 

Classical approach 

Lower 

bound 

Compared 

operators 

Upper 

bound z 

Interval 

width % 

-0,0581 <P1f-P4f< -0,0254 -4,2012 0,0835 0,00 % 

-0,0746 <P1f-P3f< 0,0076 -1,3406 0,0822 9,00 % 

-0,1006 <P1f-P5f< -0,0237 -2,6617 0,1243 0,39 % 

-0,0522 <P3f-P4f< 0,0357 -0,3103 0,0166 37,82 % 

-0,0951 <P3f-P5f< 0,0201 -1,0709 0,1152 14,21 % 

-0,0728 <P4f-P5f< 0,0143 -1,1032 0,0871 13,50 % 

For the Classical approach two comparisons were found to have a statistically significant difference; 

Operator 1 has a statistically significant lower failure rate than Operator 4 and Operator 5. 

4.4 Muster barrier 

Mustering time is the time it takes for all the people on board an installation to gather at the 

lifeboats or muster station when then general alarm is sound. The barrier for mustering time did not 

include all operators as some didn’t meet the criteria for number of tests. Therefor only 3 operators 

were compared. Among these operators it was found that operator 3 had a statistically significant 

lower failure rate than operator 1 as 2, 1645 > 1,645. 

Table 4.4.1 Results for mustering barrier comparison. 

Lower 

bound 

Compared 

Operators 

Upper 

bound z 

Interval 

Width % 

-0,0842 < P1f - P4f < 0,1671 0,5428 0,2512 70,64 % 

0,0298 < P1f - P3f < 0,2182 2,1645 0,1884 98,48 % 

-0,1842 < P3f - P4f < 0,0192 -1,3351 0,2033 9,09 % 

For the Classical approach the results are show in Table 4.4.2. 

Table 4.4.2 Results for the muster barrier comparison for the Classical approach. 

Classical approach 

Lower 

bound 

Compared 

Operators 

Upper 

bound z 

Interval 

Width % 

-0,0269 < P1f - P4f < 0,1098 0,9981 0,1366 84,09 % 

0,0689 < P1f - P3f < 0,1791 3,6999 0,1102 99,99 % 

-0,1313 < P3f - P4f < -0,0338 -2,7846 0,1650 0,27 % 

-0,1267 < P1f - P5f < 0,0634 -0,5476 0,1901 29,20 % 

-0,2377 < P3f - P5f < -0,0735 -3,1168 0,3112 0,09 % 

-0,1646 < P4f - P5f < 0,0184 -1,3139 0,1830 9,44 % 



 

 
 

41 Results 

The results show that there are 3 comparisons that gives a statistically significant difference; 

Operator 3 has a statistically significant lower failure rate compared to the 3 other operator 

companies. 

Also for the comparison of operator 3 and 4 the Classical approach results in a significantly lower 

failure rate than the developed method. From the other comparisons it is possible to see that the 

Classical approach has a tendency to result in more exaggerated z-values than the developed 

method.  A reason for this could be that the Classical approach does not restrict data like the 

developed method and only relies on previous data to calculate the confidence interval. The 

developed method however, updates its knowledge by including a criterion on how many tests needs 

to be performed next period. 

4.5 Christmas tree barrier 

A Christmas tree is an assembly of valves, spools and fittings that directs and controls the flow of 

formation fluid for completed wells. Operator 1, 3 and 5 were the operators that met the number of 

tests criteria for the next period and none are shown to have statistical significant lower failure rates 

than the other as all z values lie within the – 1.645 < zα < 1.645 interval. 

Table 4.5.1 Results Christmas tree barrier comparison. 

Lower 

bound 

Compared 

operators 

Upper 

bound z 

Interval 

width % 

-0,0045 < P1f - P3f < 0,0115 0,7212 0,0160 76,46 

-0,0111 < P1f – P5f < 0,0058 -0,5163 0,0169 30,28 

-0,0142 < P3f – P5f < 0,0019 -1,2532 0,0162 10,51 

The result for the Classical approach is shown in table 4.5.2. 

Table 4.5.2 Results for the Christmas tree barrier comparison for the Classical approach. 

Classical approach 

Lower 

bound 

Compared 

operators 

Upper 

bound z 

Interval 

width % 

-0,0014 < P1f - P3f < 0,0084 1,1825 0,0097 88,15 % 

-0,0095 < P1f - P5f < 0,0042 -0,6404 0,0136 26,10 % 

-0,0123 < P3f - P5f < -0,0001 -1,6627 0,0123 4,82 % 

-0,0147 < P1f - P4f < 0,0019 -1,2723 0,0166 10,16 % 

-0,0176 < P3f - P4f < -0,0022 -2,1194 0,0198 1,70 % 

-0,0053 < P4f - P5f < 0,0128 0,6810 0,0181 75,21 % 

The results show that for 2 of the comparisons there is a statistically significant difference in the 

failure rate; Operator 3 has a statistically significant lower failure rate compared to operator 5 and 

operator 4. Here, as in the mustering barrier, it is possible to see that for the comparison of Operator 

3 and 5, the classical approach has found a significant lower failure rate where the developed 

method has not. The same explanation can be used; the Classical approach is less restricted and 

therefore results in more exaggerated z-value. 
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4.6 DHSV barrier 

A DownHole Safety Valve is a valve that acts like a failsafe to prevent unwanted fluids to reach the 

surface. For the DHSV barrier only two operators met the criteria for number of tests required for the 

next period; operator 1 and operator 3. It was found that operator 3 had a statistically significant 

lower failure rate than operator 1 with 1,645 < 1,6796. 

Table 4.6.1 Results for DHSV barrier comparison. 

Lower 

bound 

Compared 

operator 

Upper 

bound z 

Interval 

width % 

0,0003 <P1f-P3f< 0,0317 1,6796 0,0320 95,35 % 

The result for the Classical approach is shown in table 4.5.2. 

Table 4.5.2 Results for the DHSV barrier for the Classical approach. 

Classical approach 

Lower 

bound 

Compared 

operator 

Upper 

bound z 

Interval 

width % 

0,0072 < P1f - P3f < 0,0248 2,9869 0,0320 99,86 % 

-0,0568 < P1f - P4f < -0,0148 -2,8062 0,0717 0,25 % 

-0,0223 < P1f - P5f < 0,0094 -0,6706 0,0317 25,12 % 

-0,0715 < P3f - P4f < -0,0322 -4,3428 0,1037 0,00 % 

-0,0365 < P3f - P5f < -0,0085 -2,6413 0,0450 0,41 % 

0,0057 < P4f - P5f < 0,0530 2,0423 0,0587 97,94 % 

The results show that for 5 of the comparisons there is a statistically significant difference in the 

failure rate; Operator 3 has a statistically significant lower failure rate compared to the three other 

operators, Operator 1 has a statistically significant lower failure rate than Operator 4, and Operator 4 

has a statistically significant lower failure rate than Operator 5. 

4.7 ESDV barrier 

The Emergency shutdown valve is a valve that stops the flow of hazardous fluid when a dangerous 

event has occurred on an installation. For the ESDV barrier, only operator 1 and operator 3 met 

criteria for the number of tests for next period, but no statistical significant differences was found. 

Table 4.7.1 Results for ESDV barrier comparison. 

Lower 

bound 

Compare 

operators 

Upper 

bound z 

Interval 

width % 

-0,0094 < P1f - P3f < 0,0228 0,6816 0,0322 75,22 % 

The result for the Classical approach is shown in table 4.7.2. 
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Table 4.7.2 Results for the ESDV barrier comparison for the Classical approach. 

Classical approach 

Lower 

bound 

Compare 

operators 

Upper 

bound z 

Interval 

width % 

-0,0039 < P1f - P3f < 0,0173 1,0362 0,0212 85,00 % 

-0,0592 < P1f - P4f < 0,0348 -0,4273 0,0940 33,46 % 

-0,0912 < P1f - P5f < 0,0235 -0,9706 0,1147 16,59 % 

-0,0648 < P3f - P4f < 0,0270 -0,6767 0,0918 24,93 % 

-0,0969 < P3f - P5f < 0,0159 -1,1807 0,1128 11,89 % 

-0,0943 < P4f - P5f < 0,0510 -0,4894 0,1453 31,23 % 

The results show that for the Classical approach none of the operators had a statistically significant 

lower failure rate than any of the others. 
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5. Discussion 

In this section the results, methods and influencing factors are discussed.  

5.1 Discussion of the results 

The results from the method are dependent on many uncertain factors such as; design, test culture, 

activity level and maintenance program. This makes it difficult to say for certain that one operator is 

better than another because they may have different design, different test culture, and different 

activity level and different maintenance program. This is why it is interesting to develop a method 

that can give an indication of the results these differences contribute to in the barrier performance 

for the operators.  

The results in chapter 4 show the comparisons in the developed method (which follow the predictive 

Bayesian paradigm) and comparisons in the Classical approach.  In the developed method not all 

operators have been compared because some of the operators didn’t satisfy the requirement for the 

number of tests for next period, but in the Classical approach all operators have been compared with 

each other.  

The results for the developed method show that there were three barriers that showed statistically 

significant lower failure rate for one of the operators. 

Below some of the statistically significant differences are shown.  

Table 5.1.1: The BOP comparisons shown for the developed method and the Classical approach. 

Lower 

bound 

Compared 

operators 

Upper 

bound z 

Interval 

width % 

-0,06915 < P1f - P4f < -0,0144 -2,5098 0,0835 0,60 % 

Classical approach 

Lower 

bound 

Compared 

operators 

Upper 

bound z 

Interval 

width % 

-0,0581 <P1f-P4f< -0,0254 -4,2012 0,0835 0,00 % 

Table 5.1.2: The Muster time comparisons shown for the developed method and the Classical 

approach. 

Lower 

bound 

Compared 

Operators 

Upper 

bound z 

Interval 

Width % 

0,0298 < P1f - P3f < 0,2182 2,1645 0,1884 98,48 % 

-0,1842 < P3f - P4f < 0,0192 -1,3351 0,2033 9,09 % 

Classical approach 

Lower 

bound 

Compared 

Operators 

Upper 

bound z 

Interval 

Width % 

0,0689 < P1f - P3f < 0,1791 3,6999 0,1102 99,99 % 

-0,1313 < P3f - P4f < -0,0338 -2,7846 0,1650 0,27 % 
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Table 5.1.3: The Christmas tree comparisons shown for the developed method and the Classical 

approach. 

Lower 

bound 

Compared 

operators 

Upper 

bound z 

Interval 

width % 

-0,0142 < P3f – P5f < 0,0019 -1,2532 0,0162 10,51 

Classical approach 

Lower 

bound 

Compared 

operators 

Upper 

bound z 

Interval 

width % 

-0,0123 < P3f - P5f < -0,0001 -1,6627 0,0123 4,82 % 

Table 5.1.4: The DHSV comparisons shown for the developed method and the Classical approach. 

Lower 

bound 

Compared 

operator 

Upper 

bound z 

Interval 

width % 

0,0003 < P1f - P3f < 0,0317 1,6796 0,0320 95,35 % 

Classical approach 

Lower 

bound 

Compared 

operator 

Upper 

bound z 

Interval 

width % 

0,0072 < P1f -P3f < 0,0248 2,9869 0,0320 99,86 % 

 For the BOP barrier; Operator 1 was found to have statistically significant lower failure rate 

than Operator 4.  

 For the mustering barrier; Operator 3 was found to have a statistically significant lower 

failure rate than Operator 1.  

 For the DHSV barrier; operator 3 was found to have a statistically significant lower failure 

rate than operator 1. 

In the Classical approach there were 12 comparisons that showed to have statistically significant 

lower failure for four barriers.  

 For the BOP barrier; Operator 1 was found to have a statistically significant lower failure rate 

for comparison with Operator 4 and Operator 5.  

 For the mustering barrier; Operator 3 was found to have a statistically significant lower 

failure rate compared to the 3 other operator companies.  

 For the Christmas tree barrier; Operator 3 was found to have a statistically significant lower 

failure rate compared to operator 5 and operator 4.  

 And lastly for the DHSV barrier; Operator 3 was found to have a statistically significant lower 

failure rate compared to the three other operators, Operator 1 was found to have a 

statistically significant lower failure rate than Operator 4, and Operator 4 was found to have 

a statistically significant lower failure rate than Operator 5. 

As mentioned before the developed method didn’t compare all operators for each barrier because of 

the number of test criteria, and therefore the Classical approach shows more comparisons that have 

resulted in statistically significant differences in failure rates than for the developed method. 

However, for the three comparisons that show statistically significant different failure rates in the 



 

 
 

46 Discussion 

developed method are also shown in the Classical approach, but with lower or higher z-values than in 

the developed method. 

From the table 5.1.1-5.1.4 above there are some differences that need to be commented. The 

Classical approach shows a stronger difference compared to the developed approach: for example, 

for the BOP barrier, the z value is -2,5098 for the developed method and for the classical the z value 

is -4,2012 i.e. the Classical approach shows a lower z value. For the DHSV the z value is 1,6796 for the 

developed approach and 2,9869 for the Classical approach, showing a higher value for the Classical 

approach. This is the general trend when comparing the two methods; the Classical approach will 

show a stronger difference, but in the “same” direction as the developed method. From Appendix D, 

the relationship between the z-value and the probability percentage for the operators are shown in 

graphs for each barrier. The general trend shown in these graphs is that the Classical approach will 

give values that are both lower in value on the negative side, and higher on the positive side, when 

compared to the developed method. Therefore the graph for the Classical approach occupies a larger 

interval of the graph than the developed method.  

Whether the Classical approach shows a better indication of the quality of the barrier performance 

due to the “stronger” z-values could be argued for, however it could also mean that the Classical 

approach overestimates and/or underestimates the barrier performances. As mentioned in the start 

of this chapter, there are uncertainties that have to be taken into account as well before a definitive 

conclusion about the methods can be made. 

5.1.1 The barriers 

The barriers that were used in the method were chosen because they are considered to be some of 

the most important barriers on an installation, there is at least one barrier represented for each of 

barrier categories:  

1. Fire and Gas detection,  

2. Shutdown,  

3. Wellbore isolation,  

4. Wellbore isolation w/BOP, 

5. Fire safeguard and  

6. Emergency preparedness. 

The fire detector barrier comes from the first category and is one of the barriers which aren’t 

expected to show much difference between the operators, as there is usually a standard type of fire 

detector used for most installations. The fire detectors are usually abundant on installations, where 

there is at least one in each room. Thus there exists quite a lot of redundancy for this barrier to make 

sure that the barrier works. 
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Graph 5.1.1.1 Failure rate for fire detection barrier for the last six years 

The start test for the fire pumps is a very important barrier because in the case there is a large fire, 

the fire pumps will help reduce the damage dramatically. The start test for the fire pumps, on most 

installations, are connected to a computer system, with a manual start button somewhere closer to 

the fire pumps. In the requirement for barrier testing it is specified that a failure is registered for 

both procedures. This means that a failure for this barrier could be due to an electrical or computer 

failure from the computer system or physical damage or deterioration to the motor or the pumps 

themselves. Unlike most of the other barriers, this one isn’t dependent on activity level. As long as 

the installation is active there should be routine tests performed to make sure that it works. This can 

been seen also from the graph below; 

 

Graph  5.1.1.1 Number of test performed for start test the last six years. 
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All the operators have a relatively stable testing procedure for this barrier; independent of the type 

activity that is being performed. 

When calculating the failure rate criteria it was found that the poorest barrier criteria for all of the 

operators were mustering time, BOP and DHSV. By poorest, it means that their failure rates were the 

highest. Mustering time and BOP are quite different types of barriers. Mustering time depends on all 

the workers on an installation to act as they should in an emergency situation, who know and 

remembers what to do. It is strongly dependent on the human factor, such as if a worker takes the 

mustering drill seriously or not, if they get scared or confused from the scenario that is being 

simulated, and so on. This barrier is hard to control because it involves all the workers at the same 

time. Another factor that could affect the mustering time is how strict the time criteria for the 

operators are. The average mustering time for Operator 1 is: 19 mins, Operator 3: 15 mins, Operator 

4: 22,5 mins and Operator 5: 32,5 mins. It is assumed that the times depends on the “slowest” 

person to reach the life boats, which would mean that the time criteria are estimated by the time it 

would take for the person that has his/her station the farthest away, to secure their work station and 

get to the nearest lifeboat. According to the failure rates in Table 3.3.1 the operator with the lowest 

failure rate is Operator 3, which also coincidently has the fastest mustering time requirement. The 

operator with the highest failure rate is Operator 5, which also has the slowest mustering time 

requirement. This could mean that there are fewer people on the installations of Operator 3 than 

Operator 5, or that the installations are smaller than Operator 5. It could also mean that there is 

more focus on the mustering time on the installations of Operator 3 than Operator 5, in the form of 

incentives or cultural norms that have been cultivated by the operator, therefore improving the 

affect the human factor has. 

The BOP however is a mechanical barrier that is in use most of the time when there is drilling 

activities. Its main purpose is to seal, control and monitor the well to prevent any unwanted fluids or 

gases to reach the atmosphere. The state of the BOP can be monitored by regular maintenance and 

BOP tests to ensure the quality of the barrier. The number of BOP tests that is required to be 

performed is dependent on how many valves are needed to be pressure tested. This can range from 

4 to 10 dependent on how complicated the BOP is. In some cases a BOP test can take up to 24 hours 

and the company man on the installation has to consider the costs of having to take “too many” tests 

to ensure the quality. Another important point to mention is that when testing BOP’s, it would be 

misleading to say that one installation that drills few new wells a year (like 3) has a less accurate 

failure rate than another installation that drills many new wells a year (like 10). It depends on how 

many sections the well has and how long or deep the well is. The BOP is a barrier that is very 

dependent on the activity level. When there is little activity, there is less deterioration, and so the 

BOP will be tested less. What deteriorated the BOP is mainly the sand or solids that become part of 

the drilling fluid when drilling. It grinds and polished the pipe and valves which could compromise the 

integrity of the sealing function of the BOP. This is why it is important to have routine BOP tests 

according to the drilling time. It would also depend on the drilling parameters – more vigorous 

drilling could lead to faster deterioration. 

The same arguments used for the BOP can be used for Christmas trees. One installation might have 

more producing wells than another and therefore the one that has more wells will test more than 

the other. Also the production rate can be a factor in the deterioration of the Christmas tree. For a 
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formation that has high pressure, water and sand problems, these Christmas tree might be tested 

more than other Christmas trees which produce from “problem free” formations.   

The DHSV’s frequency of testing should be determined on the problems of the wells, like scaling or 

water intrusion which are the most common and serious problems. This barrier, like the Christmas 

tree, is dependent on the formation it is producing from. Together with the Christmas tree, these are 

the two barriers that have to be approved in order to produce from the well. This is why it is so 

important that they have strict failure rate criteria and regular maintenance and testing. For wells 

that have a lot of problems, the DHSV is tested very often and if there is a test failure the DHSV is 

replaced with a new one.  

ESDV are in place to isolate the hydrocarbon containing sections on an installation. ESDV’s are 

mounted on the pipelines in order to isolate these and prevent hydrocarbons from these to sustain a 

fire on the platforms. This is one of the barriers that contribute when calculating the FAR values for 

an installation, and has much focus in HAZOP’s. These valves can be very large, and is very 

specialized, takes a long time to manufacture, and therefore it is very difficult to get a new one in a 

hurry if something were to go wrong with it. A test failure for this barrier is dependent on leakage 

rate, when the closing time is too short (giving a hammer shock) or to slow. To fix this problem the 

closing time is adjusted to the correct closing time interval. When the leak rate is too high, it means 

that the barrier has too much wear and is deteriorating. In the case where there is too much 

deterioration for the ESDV to be an effective barrier, a new one needs to be ordered if repairs cannot 

bring it to an acceptable condition. This doesn’t happen very often as the ESDV normally is very 

robust and is designed for a long life time. 

5.1.2 Test culture 

The test culture on an installation is a good indicator on how well the barriers are performing. An 

installation that tests its barriers often would automatically have a good record of their barriers and 

if a barrier is performing poorly it can be rectified before any incidents occur.  

However testing a barrier often is quite time consuming and in the petroleum industry, time is 

money. The operators have to decide how much time they will spend on a barrier to ensure that it is 

efficient and at the same time be cost efficient. For barrier tests that are very time consuming, the 

time-cost-efficiency can be hard to determine. For example, when analyzing the data to calculate 

realistic failure rate criteria, it was observed that some of the barriers, like BOP, have very different 

test cultures for the different installations. Some installation had an extraordinary amount of tests 

being performed and on others very few were performed.  

When looking for other explanation for this, it was found according to the RNNP report of 2010 (page 

3), that there exists a lot of uncertainty around the data collected for BOP’s. There could be many 

reasons for these uncertainties in data collecting; some installations may only report one test when 

they have tested the whole BOP, while other installation considers each value as one test. There are 

some installations that aren’t having much drilling activity one year and will therefore not test the 

BOP as many times as the previous year and could be misunderstood as the amount of testing has 

gone down for this installation. The same is the case for DHSV. When testing the DHSV, a coil has to 

be run in hole to get to the DHSV to be tested and sometimes the coil can get stuck and has to be 
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pulled out of hole. Should this count as one test? The DSVH has actually not been tested because of 

the restriction, but it has been attempted to test it. So after several tries the coil reached the DHSV 

and the DHSV is tested and it might be counted as one test. 

Even so, the number of tests that are registered performed, should be an indication of what is 

actually being performed. The testing culture and their misunderstandings should be quite constant 

each year so the barrier data can be considered to be useful in the sense of indicating the state of the 

barriers.  

According to some experts, the PSV tests are difficult barriers to compare on an operator scale 

because they are tested differently. This is why there should be a common census on how much 

overpressure is required to get a good test for all the operators. But as there are different designs 

and different options on what should result in a good test, these differences may not be so easy to 

change.  

One observation that can be seen when looking at the data, is when an installation doesn’t have a 

drilling rig on it and needs assistance to drill new wells or to drill re-entry wells, the BOP tests aren’t 

registered for that operator but might be registered for the jack-up rig that is placed over the 

installation to drill the re-entry wells. As the responsibility for the activities on the rig lies with the 

operator who is renting the rig, this data isn’t registered in the correct manner. This wouldn’t pose a 

problem if all these jack up rigs data were registered for the operator and available to be analyzed, 

but in some cases they are not. This doesn’t give the correct picture of the operator’s procedures and 

requirements for the BOP barrier.  

5.1.3 Activity level 

The activity level on an installation is crucial to include when the goal is to find the performance of a 

barrier. The first thing that has to be considered is what type of activity is being done. In this thesis 

the activities are divided into 3 categories: drilling, production and maintenance. The barriers 

consider different type of activity so it is important for the explanation and understanding of the test 

frequency to know what activity this installation is concerned with this year. 

As some of the barriers, that is be used in the method, are in connection with drilling activities, like 

BOP, the activity level should have been in the form of how many wells are being drilled that year. 

Christmas tree or DHSV are production related barriers and will be in the form of how many active 

wells the installation has. 

Some barriers are tested more often because of problems related to that particular barrier, while 

others are seldom tested are working just fine. Examples of critical barriers that needs to be tested 

regularly are DHSV, Christmas trees, ESDV and BOPs. These barriers ensure the safety of the main 

operations on the installations and needs to be functioning all the time.  

The fact that the activity level for each installation isn’t registered in a common database can lead to 

misunderstandings when considering barriers that are registered. 
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5.1.4 Maintenance 

Maintenance can be categorized into two types; corrective maintenance and preventive 

maintenance.  Corrective maintenance is done on the barrier when it has failed and needs to be 

restored to the accepted functioning state again. Preventive maintenance is maintenance done in 

planned periodical intervals and before the system fails to prevent that the system doesn’t fail or 

breakdown. The goal is to preserve and enhance the quality of the system so that the lifespan of the 

system will at least last as long as it was designed for. 

From the RNNP report of 2010, it is also mentioned that several operators have challenges with 

maintaining an expected level of maintenance management in the light of the regulations. Barriers 

that don’t have sufficient preventive maintenance can be shown to require corrective maintenance 

more often because the barrier hasn’t been taken care of as it was designed for. The number of 

barrier failures and corresponding corrective maintenance can therefore also be used as an indicator 

to measure the effectiveness of the preventive maintenance program 

5.2 The method 

One of the most difficult assertions made in the method is the approximate normal distribution 

assumptions for the developed method. As the “normal approximation to the binomial distribution” 

(Walpole et al. 8th Ed.) states; if X (here meaning the barrier data) is a binomial random variable with 

parameters n and p, the X has approximately a normal distribution with µ = np and σ2 =np(1-p). The 

approximation is good if np and n(1-p) are greater or equal to five. In the pred. Bayesian paradigm 

the probability that is of interest is the one that lays in the future, which could be comparable to the 

Classical approaches’ “true” probability. As this thesis is comparing these two types of probability, it 

is seen as reasonable to also integrate this “comparison” in developing the method. It is therefore 

considered that the approximation to normal distribution is a valid argument. 

Continuing looking at the differences in the Classical approach and the developed method, there 

were some interesting results that were observed. In table 4.4.1 and 4.4.2, a distinction can be seen 

between the developed method and the Classical approach. From the comparisons in the Classical 

approach the results show exaggerated z-values, to the extent that a comparison in the Classical 

approach resulted in a statistically significant lower failure rate compared to the developed method. 

Overall the Classical approach has more exaggerated z-values than the developed method. In 

Appendix D, the relationship between the z-value and the probability percentages that a specific 

operator has a lower failure rate then another are shown. The graphs show that there is a trend, 

where the Classical approach always has more extreme values compared to the developed method, 

but both methods show indications in the same direction. This means that where the developed 

method has found that Operator 1 has a lower failure rate (like 10 %); the Classical Approach has 

found that Operator 1 has a failure rate that is lower (like 6 %) than what the developed method 

found. 

A possible reason for this trend could be that the Classical approach does not restrict data like the 

developed method and only relies on previous data to calculate the confidence interval. The 

developed method however, updates its knowledge by including a criterion on how many tests needs 

to be performed next period, and therefore has “less” data included in the prediction interval. 
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When it comes to the prediction intervals, there are some figures that need elaborated comments. 

Figure 2.2.1.2 shows the prediction interval for Operator 1 and Operator 4. It is interesting to notice 

that the interval is much narrower for Operator 1 than for Operator 4. This could be explained by the 

fact that Operator 1 performed much more tests than Operator 4, and therefore has a smaller error 

in the failure rate than Operator 4.To be able to compare the Operator companies on the same 

standard, it was important to develop the formula for the number of required tests to be performed 

for the next period, as has been done in chapter 3.3 and can be seen in the result tables in chapter 4. 

An example is the start test for the fire pumps, table 4.2.1-4.2.2, where the interval widths are very 

similar, which means that their possible errors in failure rates are comparable to each other. 

The criteria for the failure rates of the barriers that have been tested are only educated guesses as 

information of the operators’ test philosophy and acceptance criteria for the selected barriers were 

not available. Some of the failure rate criteria have been reduced more than the estimated criteria 

showed, because the failure rates found in the data were too high. If the failure rate criteria are too 

high it may be necessary to perform much more test than an installation may be able to take per 

year. One example is mustering time, where the failure rate was between 14 and 20% at “best” for 

some of the operators.  A barrier such as mustering time is an important barrier and it is almost 

certain that the operators have tried and is still trying to develop new routines and encourage the 

workers on the installation to improve the performance and obtain compliance with the 

requirement.  

Ideally, to make criteria for the failure rates for the barriers and determining how many tests the 

operators should be performing, careful consideration should be given for each barrier with their 

respective activity level and consequence of failure for the respective installation. Out of the four 

uncertainty variables mentioned earlier, the activity level is probably the most unbiased variable 

because it is a recording of what has happened, the facts. When using the data to test the method, 

activity level wasn’t available but could make the results look very different if normalized according 

to their activity level. However if it is assumed that all the operators have installations with little and 

high activity, then they could be considered to be at approximately the same average activity level. It 

would then be possible to calculate, on operator level, the failure rates and number of tests that 

should be performed for each of their installations. 

5.3 Lessons learned from major accidents 

The petroleum industry has experienced many major accidents that have taken the lives of hundreds 

of people during the last 40 years or so. One of the most famous major accidents is the Piper Alpha 

accident that happened on June 6th 1988, where 167 people lost their lives. The Piper Alpha accident 

was one of the worst offshore oil disasters at the time, in terms of lost lives and industry impact, and 

started a movement that resulted in the rewriting and renewal of the safety procedures for the 

English petroleum authority (Vinnem, 2007). 

In recent years there have been at least 4 incidents that have caught the public’s eyes; 

 December 12th 2007 – Statfjord A (Statoil). 4 000 m3 of crude oil was released during an 

offshore loading of the tanker Navion Britannica. 
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 May 24th 2008 – Statfjord A (Statoil). An oil leak was discovered in one of the shafts of the 

platform and most of the people were evacuated. 

 August 21st 2009 – West Atlas jackup (Seadrill/PTTEP). 4 500 – 34 000 m3 Oil and gas leak 

into the Timor Sea (shallow water). 

 April 20th 2010 – Deepwater Horizon (BP). Blow out that caused explosion and one of the 

largest oil leaks in history (deep water). 

There are also other accidents which aren’t mentioned here that have helped motivated the PSA to 

investigate and publish recommendations for the petroleum industry to reduce the risks of loss of 

life, loss of property and pollution of the environment.  

As most accidents that occur in the petroleum industry are so divers in nature, it would seem natural 

that they all are representative to situations that could occur in any country. From PSA’s report on 

the Deepwater Horizon accident (PSA, 2010), reviews and recommendations are outlined so that the 

Norwegian petroleum industry can learn from the mistakes done on DwH (Deepwater Horizon). The 

report highlights that more attention needs to be given to the continued development to improve 

the barrier performance and barrier control, with respect to the level of ambition for the 

performance criteria, for testing, maintenance and monitoring of all types of barriers. 

In the DwH report the BOP has been given extra attention even though it wasn’t the triggering failure 

that caused the blow out, but it was a big contributor to the disastrous outcome of it. When using 

the barrier data to compare the operator’s barrier performance of the BOP, it was found that there is 

a lot of inconsistency with how the tests are being performed and how often they are tested, as 

previously stated. From the RNNP 2010 it is also mentioned that there was a negative trend for the 

BOP, where less tests were reported and a higher percentage of test failure was observed. The BOP is 

such an important barrier and PSA has expressed that more attention should be given to make sure 

that all operators do the best they can to make sure that it is kept in optimal condition at all times. 

The DwH report also mentioned that there were challenges related to the safety culture onboard the 

DwH. This has already been analyzed and presented the regression analysis in chapter 2.5; where the 

conclusion was that there is a correlation between the safety culture and the frequency of 

hydrocarbon leakages on an installation. From the RNNP report of 2010 it was also mentioned that 

over the last three years there is a negative trend in reported hydrocarbon leaks on production 

facilities offshore. The fact that a regression analysis was performed shows that the industry is 

actively looking for answers.  

Lastly the DwH report mentions several times that the whole industry and all its participants from all 

stages must come together and contribute in reducing the risks together. This is the motivation that 

lies behind making a method to compare operator companies’ barriers so that it is possible to learn 

from each other and increase the level of quality of all the barriers. 

History has shown that the neglect of physical and organizational barriers is the reasons why major 

accidents occur. Also there is often more than one barrier failure that leads to a major accident. If 

the Deepwater Horizon accident should teach the petroleum industry anything, it is that all the 

barriers that are set in place to ensure the safety of the people on board and the quality of the 

activity done, has to be given continuous attention. 
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6 Conclusion 

By using the values and views of the predictive Bayesian approach, a method has been developed to 

conclude whether an operator will have a statistically significant different failure rate than another. 

The method includes two formulas; one formula for the prediction interval, which will be used to 

compare the operators’ failure rates, and the second formula for making a criterion to define the 

number of tests required to satisfy an accepted error for the failure rates. 

Two operators are compared at a time to investigate if one of these operators will have a statistically 

significant lower failure rate than the other. In order to have a statistically significant lower failure 

rate, the z-value for operator’s barrier must lie outside the critical region of 90%, i.e. outside the 

interval 1.645 < zα < -1.645.  

The developed method found three comparisons that showed one operator having statistically 

significant lower failure rate then another. The results show that: 

 For the BOP barrier, Operator 1 has a statistically significant lower failure rate than Operator 

4. 

  For the mustering time barrier, Operator 3 has a statistically significant lower failure rate 

than Operator 1. 

 And for DHSV barrier – Operator 3 has a statistically significant lower failure rate than 

Operator 1. 

The Classical approach found twelve comparisons where an operator had a statistically significant 

lower failure rate then another.  

 For the BOP barrier; Operator 1 was found to have a statistically significant lower failure rate 

for comparison with Operator 4 and Operator 5.  

 For the mustering barrier; Operator 3 was found to have a statistically significant lower 

failure rate compared to the 3 other operator companies.  

 For the Christmas tree barrier; Operator 3 was found to have a statistically significant lower 

failure rate compared to operator 5 and operator 4.  

 And lastly for the DHSV barrier; Operator 3 was found to have a statistically significant lower 

failure rate compared to the three other operators, Operator 1 was found to have a 

statistically significant lower failure rate than Operator 4, and Operator 4 was found to have 

a statistically significant lower failure rate than Operator 5. 

Operator 3 was found to have the most statistically significant lower failure rates out of the 

comparisons that were made. 

The results show that there are operators with statistically significant lower failure rate than others. 

In this case the interesting question is: what makes one operator better than another?  It is most 

likely because of the different combination of the design, test culture, activity level and maintenance 

program. The operators that were found to have statistically significant lower failure rates for certain 

barriers have most likely found the right combination of these variables to manage the barriers in a 

safer way. 
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The developed method, which is based on the predictive Bayesian approach, is compared to the 

Classical approach of comparing two proportions. In the Classical approach, the probability or 

“chance” of an event is relative frequency based; while in the predictive Bayesian approach the 

probability is defined as the assessors’ assigned uncertainty about an activity (whether it will occur) 

and the severity of the consequences of the activity, based on the available knowledge (A,C,U 

perspective). 

Because of this difference, the Classical approach and predictive Bayesian approach are not actually 

comparable as they don’t belong to the same set of views and values, i.e. they belong to different 

paradigms. The reason why the Classical approach and the predictive Bayesian approach is compared 

in this thesis, is to show the actual differences in results that these two methods produce.  

If the two approaches are considered as methods to find the most reliable probability, p, it is possible 

to compare them, but keeping in mind that they don’t express the same type of probability.  

In the predictive Bayesian approach the uncertainty in the data is taken into consideration and is 

given attention when calculating p. This is because the predictive Bayesian approach is an epistemic 

approach. This means that when predicting the future, the uncertainty related to the future 

observables is a result from lack of knowledge. 

In the Classical approach the method is considered as objective and therefore the uncertainty that 

lies in all data is hidden and not considered. 

The predictive Bayesian approach uses the previous data as background knowledge to find the 

predicted value of p. It could be argued that the predictive Bayesian approach is more reliable than 

the Classical approach because the result from the predictive Bayesian approach tries to describe 

how the states of the observable quantities are at present or in the future. The Classical approach on 

the other hand only calculates the probability as it was, because present data about the observable 

quantities is not available, implicitly excluding the evolution of the events.  The uncertainty in the 

data that is available is also not scrutinized because the Classical approach is considered to be 

objective. It is therefore considered that the predictive Bayesian approach is a more valid method for 

measuring barrier performance than the Classical approach. 
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7 Possible further work 

A possible continuation of this work could be the integration of the activity level and/or test culture 

into the method to see if they have an impact on the outcome or not. In this thesis they have been 

discussed and highlighted because of their believed importance in the understanding of the barrier 

performances. 

Another possibility that could be investigated is to see if there is a correlation between the barrier 

performance and the different designs of the barriers, or maintenance programs, or test culture, if 

this information were to become available. It has been stated several times that it is believed that 

the barrier performances are connected to how well the test culture and maintenance program is 

managed in accordance to the activity level and the design of the barriers. If some any of these 

correlations are found to make the barriers more reliable, then a new best practice can be 

formulated. 

While working on this thesis it has become apparent that these aspects could lead to very different 

results than what has been obtained. The developed method only gives an indication of which 

operators have found the correct balance between test culture, maintenance program, activity level 

and design of the barriers. When these four aspects have been properly investigated in accordance 

to the barrier performance, a much better understand will have been obtained as how to properly 

manage the barriers. 
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8 Abbreviations 

 

RNNP – RisikoNivå Norsk Petroleumsindustri / “Risk level project” 

NCS – Norwegian Continental Shelf 

POB – People on Board 

FAR - Fatal Accidental Rate 

PLL - Potential Loss of Life 

DFU – Defined situations of hazard and accident 

ANOVA – Analysis of Variance  

R2 – Coefficient of multiple determination 

 R2
adjusted – Adjusted coefficient of multiple determination that provides adjustment for degrees of 

freedom. 

ESDV – Emergency shutdown valve 

BDV – Blowdown valve 

PSV – Pressure safety valve/ pressure relief valve. 

DHSV – Down Hole safety valve 

HAZOP – Hazard and Operational study 
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Appendix A 
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Appendix B-1 
 

Operator 1 Observed data future 

data 

  2006 2007 2008 2009 2010 

x 110 88 57 88 ... 

n 33435 40064 38711 36676 37222 

p 0,0033 0,0022 0,0015 0,0024 0 

 

Operator 4 Observed data future 

data 

  2006 2007 2008 2009 2010 

x 13 18 30 25 ... 

n 4249 4712 4874 3651 4372 

p 0,0031 0,0038 0,0062 0,0068 0,0000 

 

  Operator 1 Operator 4 

Confidence interval 

p 0,0023 0,0049 

n 148886 17486 

Z 1-α/2 1,645 1,645 

Lower bound p 0,0021 0,0040 

Upper bound p 0,0025 0,0058 

Interval width 0,0004 0,0017 

 

 

  Operator 1 Operator 4 

Prediction interval 

p 0,0023 0,0049 

x 148886 17486 

nf 37222 4372 

  0,05 0,05 

  0,95 0,95 

Lower bound x 71 14 

Upper bound x 101 29 

Lower bound p 0,0019 0,0032 

Upper bound p 0,0027 0,0066 

Interval width 0,0008 0,0034 
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Appendix B-2 
 

This diagram shows the number of tests, number of failures and the probability for the PSV barrier 

for the two installations AB and AH. 

year 2004 

Installation: number of test PSV (n) number of failures (x) PSV (p) 

AB 214 41 0,191588785 

AH 97 16 0,164948454 

Year 2005 

Installation: number of test PSV (n) number of failures PSV 

AB 345 38 0,110144928 

AH 121 12 0,099173554 

Year 2006 

Installation: number of test PSV (n) number of failures PSV 

AB 311 34 0,109324759 

AH 149 10 0,067114094 

Year 2007 

Installation: number of test (n) number of failures PSV 

AB 285 17 0,059649123 

AH 148 8 0,054054054 

Year 2008 

Installation: number of test (n) number of failures, (x) PSV 

AB  311 25 0,080385852 

AH  149 9 0,060402685 

Year 2009 

Installation: number of test (n) number of failures (x) PSV 

AB 219 21 0,095890411 

AH 162 10 0,061728395 

 

sum 

Installation: number of test for PSV (n)   proportion of failure for PSV 

AB 1685 176 0,104451039 

AH 826 65 0,078692494 
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Appendix C 
 

Graphs to determine the general trend as explained in chapter 4.1. 

 

 

  

0

20

40

60

80

100

120

140

160

180

2004 2005 2006 2007 2008 2009

Number of failures Op1 vs Op4 Fire 
det. 

number of failures Op1 number of failures Op4

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

2004 2005 2006 2007 2008 2009

Number of tests Op1 vs Op4 Fire det. 

Number of tests Op1 Number of tests Op4



 

 
 

62 Appendix 

Fire detection barrier: 
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Start test fire pump barrier: 
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BOP barrier: 

 

 

Mustering time barrier: 
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Christmas tree barrier: 
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DHSV barrier: 
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ESDV barrier: 
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Appendix D 
The relationship between the z-value and the probability percentages that a specific operator has a 

lower failure rate then another are shown 
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