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ABSTRACT  

On April 20
th

, 2010 the offshore petroleum industry was hit by a severe accident. The 

undetected entry of high pressure – high temperature, highly charged hydrocarbons 

out from the Macondo exploration well to the rig and the ignition of hydrocarbon 

caused a blowout and a catastrophic explosion. The accident took place during the 

temporary abandonment. It killed 11 platform workers while 17 others were seriously 

injured. 

The Macondo blowout was followed by extensive investigations, studies and 

researches with an aim at strengthening safety and reducing risk during drilling in 

complex offshore environment. 

In this Master thesis, a thorough analysis is conducted to evaluate the recent 

development of risk analysis and risk management in oil and gas industry. A focus 

will be on Macondo accident and its effect on organizational factors, effects on 

standard and regulations, impacts on regulatory bodies and associations. Based on risk 

analysis techniques, measures will be proposed to improve barriers performance and 

safety during drilling and wells completion in the Deepwater environment.  

The basis of this work will be the literature review, the study of existing 

investigations reports as well as interviews with professionals and experts within the 

oil and gas industry with the aim at finding how the Macondo accident has impacted 

the safety culture when it comes to the concept, the design and the drilling operations.  

 

Keywords: HPHT, Risk Analysis, Risk Management, Barriers performance, Risk 

communication 
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1. INTRODUCTION  

1.1. Background  

Although major accidents are generally a dark spot in the history of humanity, they 

are at the same time, a source of inspiration and a challenge for scientists and 

engineers in their efforts for creating measures to prevent accidents of its kind in the 

future. 

The Macondo blowout that took place nearly 3 years ago continues to be a subject of 

in-depth investigations, studies and researches with a purpose that lessons learned 

could serve for safe drilling operation in new oil and gas fields located in complex 

Deepwater offshore environments and in the Arctic. 

This tragic accident has called for profound transformation; new technologies have 

been introduced, new bodies and entities created while various policies, regulations 

and standards have been revised. On the other hand, commissions have been created 

and the experience obtained from Macondo accident is being used to improve safety 

and emergency preparedness in relation to drilling and well operations.  

In the aftermath of Macondo accident, several reports and publications were devoted 

on the event exhaustive review and therefore they reported on precautions and 

technologies that should be required to improve the safety of oil and gas exploration 

and production operations (US Department of the Interior, May 27, 2010). Others 

dealt with the facts surrounding the accident and thus analysed available information 

to identify possible causes and made recommendations to prevent  similar accidents in 

the future (BP Investigation Team, September 8, 2010, Petroleum Safety Authority, 

2011a, Transocean, 2011). While the remaining category, though not exhaustive in 

this study report, were made with an expectation that lessons learned from Macondo 

blowout bring new emphasis on practical risk analysis and risk management in the 

industry (Skogdalen and Vinnem, 2011, Vandenbussche et al., 2012, Ulveseter and 

Vasset, Sept 15th 2012 , Øien and Nielsen, 2012, John et al., 2013). 
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This master thesis will mainly examine the recent development of risk analysis and 

risk management following the Macondo accident.  A special attention will be the 

investigation of hazards linked to subsurface formation, drilling technology as well as 

the organizational and human decisions. It will suggest the needed improvements to 

avoid the occurrence of blowouts during drilling and/or wells completion in complex 

Deepwater environment. 

1.2. Purpose 

The purpose of this Master thesis is primary to evaluate the impacts of the Macondo 

accident on risk analysis and risk management, in particular changes related to 

regulatory bodies, organizational factors, standards and regulations.  

In addition, the aim of the thesis is to provide new insights on hazards/risks associated 

to organizational factors, subsurface geological conditions and the well design in 

order to avoid blowout and/or well loss problems during drilling operations in HPHT 

conditions. 

1.3. Content 

The master thesis is divided into 4 chapters, including this introduction chapter which 

provides a background for the work, the purpose, the content and the study 

methodology. 

The second chapter provides an exhaustive literature review of risk analysis and risk 

management studies followed by the Macondo blowout. It gives a comprehensive 

understanding of risk associated with deepwater drilling and completion from 

subsurface characterization and geohazards analysis, drilling technique and well 

design, operational barriers (human and organizational factors) as well as risk 

methods and tools used to analyse hazards during drilling operations. This chapter 

also discloses in detail the Macondo accident failure path by systematically revisiting 

the performance of primary and secondary barriers as well as flaws observed during 

the well control and response when the hydrocarbon was observed on the rig floor.  



12 
 

The third chapter reflects on the effects of Macondo accident on policy, regulations 

and organizations. It underlines changes occurred in USA, from the institutional 

reform to the introduction of the new offshore drilling regulation including the 

Drilling Safety Rule, the Workplace Safety Rule, and the requirement of the 

performance – based regulations for all operators in the OCS to implement a Safety 

and Environmental Management System. Here, the master thesis basically highlights 

revisions made with respects to the API recommended practices: API RP 53, API RP 

65–2, API RP 75 and API RP 96. Also highlighted is Norway, with the need of the 

industry to give a high priority the development of a more integrated and uniform 

approach to barrier management as well as specific changes occurred with Norsok D-

001, D-002, D-010 and Z-013. In addition, also discussed is the UK, with a sensible 

reinforcement of peer review of well design assessments and rigorous auditing 

approach of Safety Case acceptance for MODUs. 

The last chapter of the present study discusses barriers performance requirements as 

part of improvement in risk analysis and risk management. The chapter considers that 

technical, operational and organizational barrier elements must display characteristics 

such as: capacity, functionality, effectiveness, integrity, robustness and availability. 

The discussion held in this chapter emphasizes on barriers performance compared to 

recent improvement in policy, regulations and standards, the understanding of sub 

surface characterizations, the risk and technology development as well as the safety 

management perspective.  

In the conclusion, the master thesis finds that extraordinary improvements have been 

made in term of revised policy, regulations and standards. Other decisive efforts are 

also observed within technology development for a safe drilling operation in more 

difficult environment of Deepwater and in the Arctic. However, the study points out 

that the risk perception and risk communication remain crucial for an overall 

improved safety culture in the oil and gas industry.   
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1.4. The basis and study methodology  

The master thesis will be based on primary, secondary and tertiary sources: 

(1) Primary sources used in this study are standards, rules and regulations, the US 

President Commission investigation report known as the Salazar report as well 

as interviews with experts and professional in oil and gas industry. 

(2) Secondary sources include (i) the Deepwater Horizon Accident Investigation 

Report (2010) by BP Incident Investigation Team; (ii) the Final Report on the 

Investigation of the Macondo Well Blowout (2011) by Deepwater Horizon 

Study Group (DHSG); and (iii) The Macondo Well Incident: Transocean 

Investigation Report. Volume June 2011; while   

(3) Tertiary sources are textbooks and publications that describe and analyse the 

accident. Other readings about drilling operation will be also used with a focus 

on risk analysis and risk management. 
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2. MACONDO BLOWOUT: THE ACCIDENT AND THE FAILURE PATH 

Macondo
1
 is an oil field prospect located in Mississippi Canyon Block 252 of the Gulf 

of Mexico approximately 68 km southeast from the nearest shorelines in Louisiana. 

The prospect was purchased by British Petroleum (BP) for the mineral rights to drill 

for oil at the Minerals Management Service’s lease sale in March 2008 (Bureau of 

Ocean Energy Management Regulation and Enforcement (BOEMRE), 2008).  

The prospect may have held 50 million barrels (7.9×10
6
 m

3
) producible reserves of oil 

(Edward, May 13, 2010). On October 7
th

, 2009 the Transocean Marianas semi-

submersible rig commenced drilling, but operations were halted November 29
th

, 2009 

at 4,023 feet (1,226 m) below the sea floor, when the rig was damaged by Hurricane 

Ida (Spear, May 23, 2010). The Transocean Deepwater Horizon rig resumed drilling 

operations in February 2010 (www.subseaiq.com, Jan 20, 2012).  

On April 20
th

, 2010 the failure of well integrity followed by the undetected influx and 

the ignition of hydrocarbons caused a blowout and a catastrophic explosion on the 

Deepwater Horizon offshore oil drilling platform. To understand the Macondo 

accident, the contributing factors as well as risks associated to the blowout, the 

current study report has found necessary to review the subsurface characterizations 

and geo hazard analysis in addition to others complex relationship such as well 

design, human and organisational factors that made the Macondo disaster to happen. 

Based on existing investigation reports (BP Investigation Team, September 8, 2010, 

Chief Counsel's Report, 2011, Transocean, 2011, The Deepwater Horizon Study 

Group (DHSG), March 1, 2011), the following section systematically revisit barriers 

performance and raisons that have caused their defection during Macondo well 

completion. It also provides in brief the design, engineering, logistical, and 

operational challenges related to Macondo.  

                                                           
1
 Macondo- the prospect name given by BP, after the fictional town in Gabriel Garcia 

Marquez’s 1970 novel: “One Hundred Years of Solitude”. 
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2.1. A review of risk analysis and management studies related to 

the Macondo blowout  

Nearly three years have passed since the Macondo blowout. The accident happened 

April 20
th

, 2010 due to the loss of well control as all the system’s barriers failed to 

contain the hydrocarbon kick. The undetected entry of high pressure – high 

temperature, highly charged hydrocarbons out from the Macondo exploration well to 

the rig and its subsequent ignition caused a blowout and a catastrophic explosion. The 

accident killed 11 and severely injured 17 platform crew workers. A severe fire fed by 

the hydrocarbons from the well continued for 36 hours and caused the MODU sank. 

For almost three months, a large offshore oil spill followed causing a huge 

environmental damage in the Gulf of Mexico.  

Extensive investigations, studies and researches followed this accident. In the 

response to the US president’s directive, the Salazar report  on May 27, 2010, 

conveyed an exhaustive review of the Macondo event and reports on precautions and 

technologies that should be required to improve the safety of oil and gas exploration 

and production operations on the Outer Continental Shelf (US Department of the 

Interior, May 27, 2010). The report underlines that drilling activities in the Deepwater 

environment create increased risks and challenges. And there is a need to re-evaluate 

whether the best practices for safe drilling operations developed over the years need 

to be bolstered to account for the unique challenges of drilling in deep-water (US 

Department of the Interior, May 27, 2010). The Salazar report highlights immediate 

as well as short term actions to enhance the safety of future OCS drilling activities. 

Those recommendations cover specifically the following categories: 

 Blowout Preventer Equipment and Emergency Systems 

 Procedures to Ensure Adequate Physical Barriers and Well Control Systems 

are in Place to Prevent Oil and Gas from Escaping into the Environment 

 Organizational and Safety Management  

The BP and the Transocean investigation reports gathered the facts surrounding the 

accident, analysed available information to identify possible causes and made 
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recommendations to enable prevention of similar accidents in the future (BP 

Investigation Team, September 8, 2010, Transocean, 2011).  

The BP’s accident investigation team used fault tree analysis [see Appendices A] to 

define and consider various scenarios, failures modes and possible outcomes. Based 

on analysed information, the team found that the accident was due to a complex and 

interlinked series of mechanical failures, human judgements, engineering design, 

operational implementation and team interfaces in a circumstance of multiple 

companies and work teams involved over time (BP Investigation Team, September 8, 

2010).  

The Transocean investigation report, through an extensive interview of witnesses, the 

review of available information regarding well design and execution, as well as the 

examination of real-time well monitoring data; they found that the Macondo incident 

was the result of a succession of interrelated well design, construction and temporary 

abandonment decisions that compromised the integrity of the well and compounded 

the risk of its failure. At Macondo, the window for safe drilling between the fracture 

gradient and the pore-pressure gradient became increasingly narrow and to maintain 

the appropriate Equivalent Circulating Density (ECD) became difficult (Transocean, 

2011). And this was experienced through several kicks and losses of fluid to the 

formation, during the drilling operation. 

Many independent reports focused mainly on root causes, other analysed results from 

investigations reports and/or re-evaluated barriers performance to document the 

failure of Deepwater Horizon. Barrier is defined as measure which reduces the 

probability of realizing a hazard’s potential for harm and which reduces its 

consequence (International Standard Organisations, 2000). Barriers may be passive or 

active, physical, technical, or human/operational systems (Norsk, Feb. 2008). For the 

case of Macondo accident, barriers cover complex causal relationships such as human 

factors, the field subsurface characterizations and technology used during drilling 

operation. May 7
th

, 2010 the PSA established a project team to systematize and assess 

experience from Macondo incident and thus from the learning, draw 

recommendations that can contribute to the improvement of safety and emergency 

preparedness in relation to drilling and well operations on the NCS. Based on 
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produced investigation reports as well as on a number of assessments by various 

professional bodies and various national and international processes, the PSA team 

found that the accident underlying causes were the same as those identified for the 

Montara blowout happened 8 months early in shallow water of the Timor Sea. 

According to the PSA, the DwH accident must be seen as a wake-up call to the 

Norwegian petroleum sector, that it must lead to a big improvement in managing 

major accident risk, and that the conclusion that the safety culture needs developing 

throughout the industry must also be considered relevant for Norway’s petroleum 

activity (Petroleum Safety Authority, 2011a). Among other requirements of high 

priority, the PSA report suggests the improvement in barriers management and to 

improve the well integrity problems. 

More than thirty Working Papers by DHSG highlight lessons learned from 

Macondo’s failure. The papers’ findings recognize that oil and gas exploration and 

production has embarked in extreme environments such as in the ultra-deep waters 

and in the arctic that resource developments will require new strategies to reduce the 

future likelihoods of major failures such as uncontrolled blowouts, production 

operations explosions and fires (The Deepwater Horizon Study Group (DHSG), 

December 5, 2010). 

Several scientific papers, literature studies through textbooks and publications were 

made with an expectation that lessons learned from Macondo blowout bring new 

emphasis on practical risk analysis and risk management in the industry. Some 

focused on qualitative risks analysis(Januarilham, 2012), while others used 

quantitative risk analysis (Skogdalen and Vinnem, 2011, Bea, 2011).  

Qualitative risk analysis uses  the knowledge of risk from experts through 

brainstorming and group discussion to present a simplified risk picture in a descriptive 

categories or coarse scale (i.e. high, medium, low) (Aven, 2008). Through qualitative 

risk analysis and the use of tools such as reliability block diagram, FMECA 

(Januarilham, 2012) found  five critical components in a BOP that give the highest 

value of safety performance starting from (i) shuttle valve (blind shear ram function), 

(ii) blind shear ram (ram piston), (iii) flange (BOP stack), (iv) gasket (BOP stack) and 

(v) annular preventer (rubber housing) respectively. Thus the shuttle valve for blind 
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shear ram function and the blind shear ram are the most critical components in the 

BOP. 

The quantitative risk analysis (QRA) also known as Probabilistic Risk Assessment 

(PRA), Probabilistic Safety Assessment (PSA), Concept Safety Evaluation (CSE) and 

Total Risk Analysis (TRA) (Skogdalen and Vinnem, 2011) uses the knowledge of risk 

from model-based risk such as Event Tree Analysis, Fault Tree Analysis and other 

tools to represent the risk picture (Aven, 2008). Quantitative risk analysis studies 

(Andersen et al., 1996) showed that a  logical event tree model based on Fault Tree 

Analysis (FTA) and Cause Consequence Diagrams (CCDs) may provide an adequate 

modelling procedure on an overall level in the blowout model. Fault Trees typically 

give a static picture of the subject for analysis whilst CCDs allow a proper modelling 

of the dynamic conditions (Andersen et al., 1996). These modelling tools contribute to 

visualizing the cause and event sequences leading to kick and blowout and thus 

constitute suitable means for communicating risk aspects regarding kick and blowout 

to drilling and safety personnel.  A computer model BlowFAM (Blowout Frequency 

Assessment Model) capable to handle 300 risk elements and thus predict Blowout risk 

for a given site is described in (Dervo and Blom-Jensen, 2004). Today, BlowFAM 

development focuses on the risk contribution at coiled tubing and snubbing and 

incorporation of issues like underbalanced drilling. BlowFAM was developed using 

SINTEF Offshore Blowout Database. According to this database, risks (e.g. blowouts) 

due to unexpected overpressures, narrow pressure margin contribute to 60%. The 

contribution from operational aspects (e.g. tripping) is circa 8% while issues related to 

rig, riser and well (e.g. cementing, crew experience, equipment failure) amounts to 

32% (Vandenbussche et al., 2012).  BlowFAM model has shown positive advantages 

compared to traditional kick frequency/BOP reliability approach such the  kick 

detection at the surface measured by mean of delta flow at the rig floor (Ocean 

Energy Safety Advisory Committee, August 29, 2012).  

Kristen Ulveseter and Peder Andreas Vasset, in the article “The Next Generation 

Safety Approach Post Macondo”, provide some insights into on-going work on Well 

Control Philosophy. DNV is currently in the process of evaluating how the human 

operator may best be supported in a well control event in order to ensure that correct 
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actions are taken in time. Automated drilling operations are expected to increase 

drastically over the coming years and DNV is committed to further enhance safety 

and the use automation of the BOP system (Ulveseter and Vasset, Sept 15th 2012 ) 

whereby its efficiency will rely on early and accurate kick detection. To control the 

high-level pressure for marginal formation-pressure limits, an efficient and reliable 

kick-detection system is especially important. The quality and processing of the 

information flow will also be imperative and the automated functions will depend on 

the scenario, i.e. on-going operations, mud-balance system, well-control system 

configuration, drill-string configuration, etc., (Ulveseter and Vasset, Sept 15th 2012 ). 

A more recent program “Accident Sequence Precursor (ASP)” is being developed by 

ABS and Safetec Nordic AS to assess the well integrity. Through ASP, engineers 

have developed a risk model for a well kick, including all of the relevant precursors, 

along with a preliminary set of risk-influencing factors – such as competence, time 

pressure, the cement program, etc – and how these factors influence the probability of 

the precursor event (John et al., 2013). 

A persisting challenge in the aftermath of Macondo blowout consists of oil spill and 

the huge environmental damage caused by the accident. Substantial effort through 

hundreds of different assessments, thousands of samples across the Gulf in various 

forms have been underway in the attempt to restore the Gulf’s health and productivity. 

The interview with Jeffrey Brown and Garret Graves at PBS News Hour, reveal 

various anomalies seen in different areas (PBS News Hour, April 20th, 2012). The 

same media acknowledges that drawing conclusions in terms of grading the overall 

health of the Gulf will be premature at the current stage (PBS News Hour, April 20th, 

2012). 

Special interest has been the use of Macondo spill as an evaluation case to establish 

proactive safety indicators for monitoring of risk of oil spills in the Artic area. Øien 

and Nielsen used the Resilience Early Warning Indicator (REWI) method to provide 

early warnings to prevent major accidents. REWI is a set of self- assessment measures 

that provide information to senior managers and safety professionals within an 

organization about fundamental attributes of organizational safety and performance in 

the long run (Øien and Nielsen, 2012). Based on flow chart, the fundamentals 
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attributes of resilience covered by REWI method called Contributing Success Factors 

(CSFs) are: risk understanding, anticipation, attention, response, robustness, 

resourcefulness/rapidity, decisions support and redundancy (Øien and Nielsen, 2012).  

Macondo blowout is studied in this master thesis as an example of severe major 

accident in the offshore petroleum industry.  A ‘‘major accident’’ in the oil and gas 

industry is as any event arising from a work activity involving death or serious 

personal injury to five or more persons on the installation or engaged in an activity in 

connection with it (HSE, 2006). Major accident analysis is an important subject for 

offshore exploration and production facility. According to Vinnem, the main 

contributor to a major accident in the offshore platform can be: blowout, leakage due 

to process integrity, riser failure, fires in utility and accommodation, and marine 

accident (Vinnem, 2007).  

Although improvement in facility design, technology, and implementation of safety 

management system are already made, catastrophe accident is still on (Serrano and 

Foo, 2008). Nowadays, major accident prevention has led more focused attention on 

barrier management, stringent regulation, growing research on process safety area. 

And it is ultimate that systematic hazard identification has to be assessed to ensure 

protective measures are in place. 

2.2. Understanding risks associated with Deepwater drilling and 

completion. The case of Macondo field.  

In very recent days, the petroleum world business focuses on surveying and the 

exploration of news oil and gas resources located in complex extreme environments 

such as Deepwater, oil sands, shale plays and the arctic. For the case of Deepwater,  

four major Deepwater basins are identified in the world: USA 1.5 million b/d; Brazil 

1.7 million b/d, Angola 1.4 million b/d; and Nigeria 1.2 million b/d, along with other 

miscellaneous basins at 0.7 million b/d (Powers, 2012). Such reservoirs are more 

complex, more technology – intensive and they constitute a challenge to the current 

risk and risk management practices. The experience with the BP Macondo oil spill 

illustrates a noteworthy task in containing a blowout in Deepwater. 



21 
 

2.2.1. Subsurface characterization and geohazards analysis 

A key objective of a site survey is to assess geo hazards, and to enable the risk posed 

to drilling operations by the seabed and geological conditions to be managed and 

reduced. According to (Nadeau, 2011a), the Gulf of Mexico (GoM) is characterized 

mainly by extremely high rates of sedimentation and burial, having predominantly 

very young Neogene Tertiary reservoirs with exception of a few isolated unaffected 

by uplift and erosion occurrences such as certain reservoirs in the Perdido fold belt. In 

the GoM and the area of Macondo prospect, the Golden Zone across the basin is 

controlled mainly by the geothermal gradients and the sedimentary burial from the 

Mississippi River system. The Golden Zone (GZ) is a concept used by (Buller et al., 

2005, Nadeau, 2011a) to characterize the probabilities of hydrocarbons zones 

locations based on geothermal gradient. The basal zone, which is bounded by the 

200ºC and 120ºC isotherms, is where most hydrocarbons are generated from source 

rocks. The zone is therefore named the expulsion zone, and is characterized by low 

permeability and (hence) high pore pressure capable of hydraulically fracturing the 

rock (Buller et al., 2005). Here only a minor percentage of the oil and gas is entrapped 

while a grand statistical average shows that the highest volume concentrations of 

hydrocarbons corresponds to the 90ºC isotherm (Nadeau, 2011b).  

Analysed GoM data by (Buller et al., 2005, Nadeau, 2011a) show that, despite the 

extreme rates of porosity loss in the compaction zone, the median, P50, reservoir 

pressure probability is for normal or near hydrostatic  pressures to occur at 

temperatures <60ºC. At temperatures >60ºC, the probability of overpressure begins 

first to increase gradually and later at temperatures >120ºC, the P50 increases 

exponentially. Here, the subsea environmental conditions reflects reservoirs of High 

Pressure High Temperature (HPHT) (Nadeau, 2011a). The HPHT are defined as those 

with temperature  >120ºC and >1.4 times hydrostatic pressure gradients (i.e. >1.4 

g/cm3 specific gravity (SG) gradient or about >12 pounds per gallon (ppg) drilling 

mud weights (Buller et al., 2005, Nadeau, 2011a). According to Paul H. Nadeau those 

HPHT drilling conditions are more rigorous indicator of overpressure risks rather than 

the >1.7 g/cm
3
 (or ~15 pounds per gallon drilling mud weights) and >149ºC (300ºF) 

values currently used in the petroleum industry (Nadeau, 2011a). 
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The above findings are in agreement with the paper of Close et al., 2008, which 

indicates that the area  of GoM has a unique combination of Risk Influence Factors 

(RIFs) compared to Deepwater wells in other parts of the world [cited in (Skogdalen 

and Vinnem, 2011)]. The same paper points out that in water depths of over 3000 m, 

shut-in pressures are more than 690 bars; bottom hole temperatures are higher than 

195ºC. It also is observed problematic formations with salt zones and tar zones. At 

Macondo prospect, the total depth was reached at 18,360 ft (5,596 meters). Reservoirs 

sand contained hydrocarbons at pressures approximately 11,850 psi (817 bars) 

(Transocean, 2011). In order words, deep reservoirs - located in more than 9000 m 

true vertical depth and tight sandstone reservoirs (>10 mD ) display extreme flow 

assurance issues. 

As shown, the GZ concept presents a predictive power with respect to its ability to 

quantify exploration risks, particularly for overpressure development and for HPHT 

environments. Understanding the geological processes responsible for the occurrence 

of HPHT reservoirs is vital in order to properly assess these risks as well as increase 

exploration efficiency. Paul H. Nadeau has demonstrated that 79% or about four out 

of five GZ reservoirs (i.e. between 60ºC and 120ºC) are NPNT, as compared to 64% 

HPHT or about two out of three reservoirs in the expulsion zone. This means that the 

risk of high-pressure reservoirs increases by a factor of three, or 300%, at 

temperatures >120ºC (Nadeau, 2011b).  

In order to improve safety and lower environmental risks, both for exploration and 

production drilling operations, it is stressed in advance to use geothermal gradients 

and approximately calculate pore pressure curves before the drilling. A recommended 

practice in new areas is to identify the depth at which the 60ºC isotherm is likely to 

occur and design drilling programmes accordingly (Nadeau, 2011b). Drillers must be 

well prepared to manage the increased probability by penetrating over pressured 

hydrocarbon-bearing sandstones, and therefore diminish the potential of dangerous 

pressure ‘kicks’ (or blowouts).  

To understand the risk associated with drilling in Deepwater, one should not limit 

only on the studying of the thermal gradient but also on others hazards such as leak 

off pressure (LOP), fracture initiation, minimum stress, etc. For each hazard 
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identified, hazard potential should be stated in terms of the likelihood that the 

particular condition exists at a specific locality.  The Technical Notes provide 

interpretation guidelines for the assessment of some key geohazards that may be 

identified during site survey (International Association of Oil & Gas Producers, April 

2011). Table 1 illustrates some of the potential problems to be assessed during drilling 

operations.   

Table 1: List of issues that should be subjected to risk assessment while planning drilling in Deepwater 

Organization factors Well drilling design  Subsurface conditions 

Management 

Manning/organization 

Personnel competence/ 

experience  

Well planning 

Communication  

Training 

Work practice 

Work environment 

Testing/Maintenance 

Documentation 

Work schedule aspects  

Operational procedures 

Top drive, Riser, Kill and choke 

system, Casing, centralizers  

Well head Equipment Blowout 

preventer (BOP), Drillistring/down 

hole equipment 

Cement job, Drilling fluid (Mud 

weight), Swabbing, Stinger seal 

and/or packer seal 

Power generation and emergency 

power supply 

Gas lift valve, Short shoe track, 

Uncertainty regarding float 

conversion,  

Wireline, Heave Compensator, 

Coiled tubing, ROV system 

Drilling into neighboring well, 

Drilling direction, Drilling control, 

Maturity of new technology 

Top-hole geology 

Sedimentary sequences/ 

Stratigraphy: (Sand, Mud, 

Clay, Swelling, Clays or 

Gumbo, Marl, Carbonates, 

Salt, etc. 

Abnormal and High 

pressure/fracture gradient 

High temperatures 

Uncertainty of seismology  

H2S/CO2/H2S4environment 

Hydrate environment 

Shallow water flows  

Tight hole and loss of 

circulation 

Dip angle 

 

2.2.2. Drilling technique and well design 

Researches have revealed that drilling in Deepwater is complex (Mohr Engineering 

Division, October 31, 2008). The drilling window is narrow, and the narrower the 

window, the more difficult to execute drilling operations. In this situation, the 

industry needs to assess risks and monitor well operations in all life cycle. 
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Deepwater reservoirs have generally such narrow drilling windows between the pore 

pressure and the fraction gradient. Resolving one problem often creates another and 

the well control becomes detrimental (Mohr Engineering Division, October 31, 2008). 

The paper by (Ziegler, 2012) shows that the moment the previous shoe is drilled out, 

ECD (Equivalent Circulation density) is too high to drill a single foot of formation. 

Drilling technique for narrow windows: The drilling work for narrow windows 

involves two factors; the equivalent static density (ESD) as well as the equivalent 

circulating density (ECD). The Chief Counsel Report, 2011 defines ESD as the 

pressure exerted by a column of fluid in the wellbore in static condition while ECD 

refers to the total pressure that the same fluid column exerts when it is circulating 

(Chief Counsel's Report, 2011).  

When circulating, ECD exceeds ESD because the force required to circulate the fluids 

exerts additional pressure on the wellbore. This implies losses, and statically the 

overpressure exerted by the mud is too small to hold back formation contents, and a 

kick is the result. Such a well then is considered undrillable without the use of 

Managed Pressure Drilling (MPD) equipment to remove the ECD effect (Ziegler, 

2012).  

A Managed Pressure Drilling technique makes designing a Deepwater well simple 

(IADC, 2013). Retrofit Dual Gradient drilling system is one of the simple and low 

complex introduced technology. The technique uses two or more pressure gradients 

within selected sections to manage the well pressure profile and removes the drilling 

window constraints because of too little pressure increase per ft drilled. One of the 

biggest advantages of the pumped riser dual gradient system is that the empty part of 

the riser becomes a giant expansion chamber and therefore a perfect mud-gas 

separator (Ziegler, 2012).  

Well design: According to Pritchard and Lacy, the drilling industry needs to 

recognise where serious risks exist in complex well development, and to design wells, 

which deal with the uncertainties in geological risk. They claim that in some 

categories of complex wells, wellbore stability events are as high as 10% of the total 

Deepwater well time, and well control incidents over four times those of normal wells 
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[cited in  (Skogdalen and Vinnem, 2011)]. Basically, the well design must ensure that 

the drilling fluids and casing strings work together to balance and contain pore 

pressures in the rock formation without fracturing the rock.  

Depending on oil or gas future plan production, in addition to the learning of the 

subsurface geology, the design process involves in addition the study of the 

environmental and mechanical stresses over the design lifetime. To rank drilling 

complexity, industry has developed a risk index/standard point of reference called the 

Mechanical Risk Index (MRI). The MRI also called Dodson Mechanical Risk Index 

divides wells into five complexity levels, and the later categorization is based on how 

difficult will be to drill e.g. depth of water, total well depth, number of casing strings 

and salt penetration (Skogdalen and Vinnem, 2011).   

For deepwater conditions well design, special attention is paid to the annular pressure 

buildup (APB).  This occurs when the high temperature hydrocarbons travel up and 

heat up the well. In some cases, the pressure can become high enough to collapse 

casing strings. A number of design features to manage annular pressures or mitigate 

the risks of casing collapse exist.  These include rupture disks, compressible fluids in 

the annular space, and insulated production tubing. (Chief Counsel's Report, 2011).  

In the original plan for the Macondo well, BP specified the use of a long-string 

casing. After experiencing lost-circulation problems between the section 17,168 and 

18,360 ft, BP considered using a liner to minimize the downhole pressure exerted 

during installation and cementing. Industry data in Mississippi Canyon Block 252 

area indicates that approximately 57% of the wells used long strings while 

approximately 36% used liners or liners with tiebacks (BP Investigation Team, 

September 8, 2010). During temporary abandonment, the top of the long string would 

be sealed at the casing hanger in the wellhead for later production, while the liner 

would be sealed at the downhole liner hanger with the installation of a tieback at a 

later date before production start (BP Investigation Team, September 8, 2010).  

The paper of Ziegler points out that drilling riserless top hole to control shallow water 

and gas, i.e. having kill mud in the actual wellbore  may be considered as a major 

safety improvement (Ziegler, 2012).  
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However, to attain a minimum economic size for a production string or allow the use 

of modern logging/testing tools in the case of explorations/appraisal wells, multiple 

large and heavy casings are used.  

On the sea floor beneath, a blowout preventer (BOP) is used, capable to seal off the 

well with a number of hydraulic systems, including one designed to slice right 

through the whole stack. The Macondo well used a BOP, rated to operate at a 

maximum pressure of 15,000 psi and in water depths greater than 9,000 ft (BP 

Investigation Team, September 8, 2010). The fig. 1 below illustrates an example of 

well design. 

 

 Burst (typically changes to upper half of 

well) 

- Tieback (14”, 13‐3/4”, 13‐5/8”) 

- Use 16.04”, 16.15” instead of 16” 

- Higher rating (submudline) hangers 

- Or resolve with Cap & Flow 
 

 Collapse (typically changes to lower half 

of well)Use heavier 16.04”, 16.15” 
instead of 16” 

- Use heavier 14” instead of 13-5/8” 

- Higher rating 14” hanger systems 

- Use long string to control APB 

(weight limited) 

- Lower liners collapse (11-7/8” and 

smaller) 

 

 Formation strength (broaching)Move 

mechanical failure point deeper 

- Change casing setting depths to 
take advantage of strong formation 

(e.g., salt) or weak/thief zones 

- Or resolve with Cap & Flow 

 

 Using existing pre-NTL10 wells may be 

challenging 

- More complicated solutions, e.g., 

scab liners 

 
Figure 1: An example of a well design [source (JITF and API 96/97, 2010)]. 

2.2.3. Operational barrier (Human and organizational factors) 

 

Many cases of incidents take place because previous antecedent events had either 

been ignored and/or the organisation had failed to identify the root causes and 

implement the necessary operational barrier.   

The Macondo blowout occurred at time of 38 days behind the schedule and at an 

estimated $58 million above budget. (Walker, March10th, 2011) has ascertained that 

decisions have been largely the contributing factors of the accidents and hence the 
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failure of management. Below it is revealed that warning signs in the coming weeks 

prior to the incident were ignored to save time and money. This was the basis of 

(CSB, July 2012), affirmation that Macondo accident failed to learn from the previous 

accidents.  

In North Sea a few months prior to Macondo, Sedco 711 has registered a near miss, 

with the mud and hydrocarbons reaching the rig floor after a delayed response to kick 

indicators. Though Transocean was the drilling contractor, the experience of the 

incident was not shared with BP.  Unlike Macondo, the BOP of Sedco 711 well sealed 

and subsequently the ignition, the loss of life and the spill were avoided.  

Prior Macondo accident, various incidents, that took place were resolved by the shut 

in the well, or raising the mud weight and/or by sidetracked well. March 8
th

, 2010, the 

well kicked at 13,305 feet. The incident was followed by BP investigation from a 

geological perspective. A decision approved by MMS was communicated to reduce 

lost drilling time (National Commission on the BP Deepwater Horizon Oil Spill and 

Offshore Drilling (OSC), January 2011b) and a new drilling liner and the change of 

the production casing in long string from 9 7/8’’ to 7’’ were implemented (BP 

Investigation Team, September 8, 2010). Regarding this incident it was found that 

informal and verbal discussions held with Transocean however there is no evidence 

indicating that the event was investigated to draw lessons learned. Others similar 

incidents have been reported in (Chief Counsel's Report, 2011); i.e the well kicked at 

8,970 feet on October 26
th

, 2009, and the ballooning, or “loss/gain,” event on March 

25
th

.  

The issue of human factors in offshore drilling and well completion is particularly 

important as offshore well control programs currently rely to a large extent on manual 

control, procedures and human intervention to control hazards. In the view of CSB 

Investigator Cheryl MacKenzie; “There are no human factors standards or 

regulations in U.S. offshore drilling that focus on major accident prevention”. Giving 

an example, she points out that Transocean’s rig workers, originally were working 14-

day shifts, but they were required to go to 21-day shifts on board. From this change 

CSB is confronting to the question whether this decision was assessed for its impact 
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on safe operations and/or whether fatigue was a factor in this accident (CBS, Apr 19, 

2012). 

Khorsandi et al., 2013 have highlighted the need for better risk analysis methods, 

particularly for the operational phase through accounting for human and 

organizational factors, as well as taking account of platform specific characteristics 

such as specific work 

operations and the 

analysis of barriers 

(Khorsandi et al., 2013).  

A human factor is a 

wide-ranging discipline. 

It is concerned with both 

the human interactions 

with the technical 

components of the 

system (e.g. operating, 

monitoring maintaining) 

and the wider human activities required to sustain the system (e.g. training, work 

organisation) (Widdowson and Carr, 2002). Among organizational factors common 

for industries and engineering systems (Paté-Cornell, 1993) pointed out: 

- flaws in the design guidelines and design practices (e.g., tight physical 

couplings or insufficient redundancies), 

- misguided priorities in the management of the tradeoff between productivity 

and safety,  

- mistakes in the management of the personnel on board, and  

- errors of judgment in the process by which financial pressures are applied on 

the production sector (i.e., the oil companies’ definition of profit centers) 

resulting in deficiencies in inspection and maintenance operations 

This analytical approach allows identification of risk management measures that go 

beyond technical solutions (e.g., add redundancies to a safety system) in addition to 

management practices improvements. It is obvious that through risk analysis, it will 

Figure 2 : Time scale in relation to potential failures due to human belief. 

 Source OGP cited in (OLF et al., 2012) 
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be possible to find which human decision and actions that influenced the occurrence 

of the basic events, and then identifies the organizational roots of these decisions and 

actions. Fig. 2 shows a time scale in relation to potential failures due to human belief 

during the drilling operation management. The illustration demonstrates that the 

response time is an important aspect of concern to avoid accidents. Some decisions 

embedded in organizational aspects have to be implemented years to avoid accidents 

and those are undoubtedly the Safety Leadership. In other term the following 

summarises the underlying causes of an accident: (i) Ineffective leadership; (ii) 

Compartmentalisation of information and deficient communication; (iii) Failure to 

provide timely procedures; (iv) Poor training and supervision of employees, (v) 

Ineffective management and oversight of contractors; (vi) Inadequate use of 

technology/instrumentation; (vii) Failure to appropriately analyse and appreciate risk; 

(viii) Focus on time and costs rather than control of major accident risks.  

Table 2: HOFs that influence major hazard risks. By Sklet et al., 2010 Source cited in (Skogdalen and Vinnem, 
2011) 

Work practice  The complexity of the given task how easy it is to make mistakes, 

best practice/normal practice, checklists and procedures, silent 

deviations and control activities. 

Competence  Training, education, both general and specific courses, system 

knowledge, etc. Communication between stakeholders in the process 

of plan, act, check, and do. 

Management Labour management, supervision, dedication to safety, clear and 

precise delegation of responsibilities and roles, change management.  

Documentation Data-based support systems, accessibility and quality of technical 

information, work permit system, safety job analysis, procedures 

(quality and accessibility).  

Work schedule 

aspects 

Time pressure, work load, stress, working environment, exhaustion 

(shift work), tools and spare parts, complexity of processes, man- 

machine-interface, ergonomics. 

 

According to (Mohr Engineering Division, October 31, 2008), human error can be 

expressed as follows: 
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A useful check on whether all HF activities are being addressed, is illustrated in Table 

2.  The relevance of these domains for a system or piece of equipment shows the 

nature of the issues in each domain which may vary from project to project. 

2.2.4. Risk methods and tool to analyses hazard during drilling 

operations 

a) Overview of risk analysis 

According to T. Aven, 2011, risk definition has changed throughout the history.  

Basically, risk analysis has two objectives: (i) to accurately estimate the risk, that is 

the probabilities Px – a concept that has been pioneered by Kaplan, S. (1988),  Parry, 

G.W. (1988), Singpurwalla, N. (2006)  etc. cited in (Aven, Revised version 24 April 

2012), and (ii) to describe the uncertainties about the world (Aven, 2011). T. Aven, 

2011, points out that the probability should be restricted only to a tool that 

describes/measures uncertainties rather than the definition of risk. 

With regard to Macondo accident, risk analysis is used as a basic analytical tool to 

identify the “failure path” or accident sequence such as : (i)initiating events, (ii) 

intermediate developments and direct consequences of these initiating events, (iii) 

final systems’ states, and (iv) consequences (i.e. losses). 

Typically, there are two approaches for risk analysis: qualitative and quantitative risk 

analysis (Malloy and McDonald, Oct. 31, 2008). Qualitative risk analysis uses the 

knowledge of risk from experts through brainstorming and group discussion to 

present a simplified risk picture in a descriptive categories or coarse scale, i.e. high, 

medium, low, etc.; While quantitative risk analysis (QRA) uses the knowledge of risk 

from model-based risk such as Event Tree Analysis, Fault Tree Analysis and other 

tools to represent the risk picture (e.g. specific events that may occur and the 

magnitude of their consequences) in more detail (Aven, 2008). The obtained risk 
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picture will be evaluated against the risk acceptance criteria and when applicable 

compared to alternative. Risk reducing measures is presented and generally cost 

benefit analysis is followed as part of decision making. Quantitative risk analysis 

requires quantified data to assess risk; usually those are combined with the expert 

judgment. 

Depending on the intention of the analysis and result, criticality and reliability are 

tools used to support the risk analysis process. Those tools are particularly important 

for the design of components or machineries in the production and safety systems 

and/or when it is needed determine the system robustness and redundancy in order to 

give the highest value of production and safety assurance.  

The most effective way to improve risk analysis is to improve the quality and the 

quantity of the data, and to quantify the uncertainties. The uncertainties for the case of 

drilling in Deepwater may be related to (i) variability of the earth, random by nature 

and inherent to the geological process that can not resolved even with additional data 

(ii) uncertainties characterized as epistemic due to incomplete knowledge of 

geological process, which can be reduced through R&D projects, and in particular, 

model uncertainty that reflects the inability of a simulation model to represent 

precisely the true physical behaviour of the process (iii) uncertainties due to a lack of 

available/accurate data, and/or poor resolution. Such uncertainties include accuracy 

and precision of field data (measurement errors, limited, non-representative or 

unavailable data, data handling errors). 

In addition to these geo mechanical parameters, uncertainties related to the remote 

sensing acquisition method (geophysical acquisition and processing parameters, 

spatial and vertical resolution) and the site specific measurements (geotechnical and 

Logging While Drilling (LWD) quality and interpretation) should be considered. 

On the Norwegian sector, the risk from blowout are studied from safety and the 

environmental perspective, through Quantitative Risk Assessments and 

Environmental Risk Analyses respectively with input parameters: the blowout 

probability, the flow rates and duration. For the assessment of blowout risks, the 

developed methodology by DNV uses the field specific reservoir challenges, best 
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available technology (BAT) and best operational practices  to generate a more field 

and operation specific risk exposure. 

b) Risk Management 

Risk management utilizes multiple approaches and strategies with aim at minimizing 

both likelihoods and consequences of failure. Prevention, remediation – emergency 

response, and control – crisis management are employed in continuous coordinated 

interactive processes intended to achieve acceptable risks throughout the life-cycle of 

a system (Bea, 2011). Three general categories of risk management approaches are 

employed: (i) proactive (before activities are carried out), (ii) reactive (after activities 

are carried out), and (iii) interactive (during performance of activities).  

An offshore safety regime based on prescriptive/proactive regulation has the 

advantage of being relatively easy and simple to implement and follow up however its 

weakness can be found in not preventing new 

types of accidents that may appear in the 

future. The regime may also limit operators’ 

dedication and understanding of 

responsibility as well as proactive initiatives 

to increase the safety level beyond 

compliance. This is particularly important in 

the Deepwater offshore where new 

technologies and techniques to improve 

production and safety and also reduce costs 

are being constantly developed, but by their 

nature may introduce potential new risks.  

As per fig. 3, classical risk management 

includes three main phases: (i) a hazard 

assessment including a hazard analysis (hazard characterization and frequency 

analysis) and a consequences analysis (consequence scenario and severity of 

consequences) (ii) a risk assessment (risk estimation and tolerance criteria and (iii) a 

proper risk management plan through mitigation and feedback. Those phases must be 

Figure 3: Risk Management Flow chart 
(source Eric Cauquil: Risk Matrix for Non 

Recurrent Geological Process: Application to 
the Gas Hydrate Hazard OTC, 2009 Houston 

Texas, May 4-9, 2009) 
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sequential but also iterative. The hazard assessment gathers, organizes and 

summarizes all data relevant to risk assessment and management. 

c) Environmental risk management 

In this section, discussion will only be limited to a short introduction of the 

environmental risk management for drilling operations in Deepwater. In absence of 

the EIA study baseline on Macondo, it has not been possible to go in depth of the 

topic.   

Generally, the environmental QRA is confined to “incidental” or “acute” hazardous 

events (International Standard Organisations, 2000). Facilities for Deepwater 

hydrocarbons exploration and production are in many cases sufficiently remote that 

considerations of this type of risk to the public do not dominate. In downstream 

activities, risk to the public is often the main concern. 

Following Macondo accident, immense amounts of toxic reservoir fluids and gases 

from the Macondo well were able to escape into the open waters of the Gulf of 

Mexico. Some of these fluids and gases reached the surface. For mitigation measures, 

a large amount of dispersants were introduced into the well flow stream near the 

seafloor prevented a large amount of the otherwise buoyant oil from reaching the 

surface and thereby reduced the surface impacts on nearby wetlands, wildlife, 

beaches, and communities. This dispersed oil and other toxic fluids from the Macondo 

well reservoir were transported by strong surface and subsea currents to many parts of 

the Gulf of Mexico. 

Currently, the impact of Macondo environmental disaster is being evaluated in terms 

of the costs associated with immediate and direct injuries to human lives, property, 

and productivity. Traditionally, the cost is extended to short and long term effect on 

the publics, their industries and commerce. And today, it may become difficult to 

accurately assess the environment impact. 

The US government Commission has found that information from the leasing and 

permitting processes, obtained by MMS followed in the Gulf of Mexico before the 

Deepwater Horizon incident, diverged with the environmental review process for 

OCS activities and that, the Interior’s approach to the application of NEPA 
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requirements in the offshore oil and gas context needs significant revision (National 

Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling (OSC), 

January 2011a). The US government commission has found the need to revise and 

strengthen NEPA Policies and Practices in the Offshore Drilling context.  

d) Risk analysis and risk management during drilling operations 

Drilling operation in Deepwater has revealed to be of large uncertainty due to well 

pressure drops below the formation pore pressure that may occur during drilling. In 

the book “Misconceptions of Risk” by Terje Aven, too high a well pressure may 

results in a low drilling speed, differential sticking problems and, in the worst case, 

fracturing of the formation.   

Prior drilling operation, a risk assessment is conducted that consist of a risk model 

identifying first all possible consequences/major hazards such as blowout, 

fire/explosion, structural failure, etc. as well as related accident sequences. In the 

second stage all safeguards/barriers in place are identified. The fig. 4 below illustrates 

steps followed to determine appropriate risk assessment. 

 

 

Figure 4 : Step to determine appropriate risk assessment source (Bea, 2011) 

 

A comprehensive literature review specifically for risk analysis application on Gas 

and Oil well drilling operations can be found in (Cunha et al., 2005). This master has 



35 
 

grouped the development of risk analysis methods in drilling activities into three 

categories: 

(a) The 1
st
 group covers simple models developed to examine possible outcomes 

and compare different options for investment with different levels of risk and 

uncertainties. Those models can be found in: (i) Newendorp and Root, 1968, 1969. 

(ii) Newendorp, 1983, reflected a more sophisticated model accounting for 

uncertainties in both geologic data and economic uncertainties; (iii) Cowan, 1969, 

combined the probabilistic geological engineering and economic data to produce 

possible distribution functions related to potential outcomes of exploiting new 

reserves; (iv) Turley,1976, used Monte Carlo Simulation Technique to show that 

expected costs and all the decisions in drilling situations are ultimately linked to the 

formations pressure; (v) Virine and Rapley, 2003, used the risk analysis toolsets in 

economic evaluation applications for the oil and gas industry; (vi) when McIntosh, 

2004, used the probabilistic modeling/process to manage the most critical and 

unexpected events, the “non-productive time” and the determination of  whether the 

minimum cost while drilling is attained. 

(b) The 2
nd

 group is referred to the application of risk analysis in the areas of 

reliability and availability analysis, safety management techniques and human and 

organizational factors. This group can also be linked to a wide use of QRA for 

offshore operations following the Pipe Alpha accident in 1988.  First such works are 

discussed in Ostebo et al, 1991; In the same category, the work by (Andersen et al., 

1996) suggested an approach to blowout risk modeling based upon physical causal 

mechanisms and expert judgments (a subjectively assessed probability) combined 

with hard data rather than worldwide blowout statistics. Those models are found in  

Kårstad, 1980, Tørhaug et al., 1980, Dahl et al. 1983, NPD, 1985, Nilsen, 1992; 

Ottesen et al., 1999 used quantitative risk analysis (QRA) and proposed a wellbore 

stability analysis method capable of quantifying the risks associated with the 

operational failure which enables the engineer to choose the appropriate mud density 

to avoid wellbore instability problems; the work by Thorogood et al., 1991, used the 

mathematical analysis of the probability of collision combined with a decision tree to 

describe the consequence; In Coopersmith et al., 2001, is used project parameters 

such as reservoir size, production rates, number of wells and drilling schedule to 
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describe applications of decision tree analysis in the oil and gas industry; In  Liang, 

2002, by means of probabilistic distribution functions, it is  demonstrated that risks 

associated to kick or loss of circulation can be minimized or controlled by changing 

some of the drilling parameters such as mud weight, mud rheological properties, flow 

rate, tripping speed, penetration rate 

(c) The 3
rd

 group refers to risk analysis methods that wide use digital technology 

e.g. real time well monitoring and Model Updating during drilling activities. Those 

new concepts called Integrated Operations are also referred as: the digital Oil field, 

Intelligent Field, eField or iField. The use of such technology has enabled the decision 

makers in the O&G industry to access to remarkable new technologies to acquire 

huge amount of data at unprecedented speed such data obtained from sensors to 

measure drilling operational and reservoir parameters.  

Reference of digital technology in drilling operation can be found in (Rajaieyamchee 

and Bratvold, 2009). Here the influence diagrams known as Bayesian Decision 

Networks are used to frame, analyze and support real time drilling decisions. Such 

influence diagrams have been built and tested for optimal placement of casing (CSG) 

shoe, such to solve wellbore stability problems such Lost Circulation (LC), Stuck Pipe 

(SP), and kick during drilling a Deepwater well.  

For every foot drilled, the operator considers cost in determining whether the CSG 

needs to be set- to case off most of the pressure transition zone and maximize the 

formation fracture resistance at the shoe for subsequent sections, or to take one of the 

following actions (i) drill ahead, (ii) increase MW&drill ahead, or (iii) abandon the 

well or stop and circulate, (iv) set CSG or (v) plug-back. The decision- maker has 

some control over the downhole conditions by reading information provided by 

relevant sensors. Those read the pore pressure, the equivalent circulation density 

(ECD) also known as Equivalent Mud Weight (EMW), the MW and the true vertical 

depth of the hole (TVDhole). 

With an upgrade of an object-Oriented Influence Diagram (OOID), the decision 

problem is split into sub-problems to enhance the computational tractability and 

comprehensibility of influence diagram models. The OOID model allows to have a 

the potential for fostering multi-level decisions by giving the operator a confidence in 
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strategic decision  for CSG setting as well as enable drilling engineers to discuss the 

process at different levels to reduce information overload, thereby minimizing the 

potential of secondary consequences being overlooked. 

Another example of the use the digital technology in drilling operation can serve the 

developed expert system by Texas A&M University. The system which was 

developed first by Al-Yami et al., 2010, uses an artificial Bayesian Intelligence as a 

systematic approach for optimum selection and execution of cementing operations 

(Al-Yami and Schubert, 2012). The developed expert system is more flexible than 

using flow charts. According to Shadravan et al 2010, the design of drilling fluid 

expert system depends mainly on previous experience and knowledge, effective 

communication, as well as a good coordination between the engineer, the service 

company and the rig foreman. Recent development shows that Bayesian updates can 

be used to combine the generic and rig data on barrier reliability.  

Beside BlowFAM indicated in section 2.1., a dedicated flow modelling software e.g 

OLGA from SPT Group can define the range of potential blowout flow rates from the 

studied well. On the Norwegian market scenario modelling is typically carried out by 

specialized companies and provided as part of blowout and kill studies 

(Vandenbussche et al., 2012). 

According to the Underbalanced Operations and Managed Pressure Drilling 

Committee of the International Association of Drilling Contractors, the Managed 

Pressure Drilling is defined as (Mohr Engineering Division, October 31, 2008):  

“An adaptive drilling process used to precisely control the annular pressure profile 

throughout the wellbore. The objectives are to ascertain the downhole pressure 

environment limits and to manage the annular hydraulic pressure profile accordingly. 

The intention of MPD is to avoid continuous influx of formation fluids to the surface. 

Any influx incidental to the operation will be safely contained using an appropriate 

process” 

MPD has the capability to control the back pressure, fluid density, fluid rheology, 

annular fluid level, circulating friction, and hole geometry, or combinations. 
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Therefore, the MPD requires a certain minimum amount of equipment, technology, 

and know-how.  Among equipment and tools for the MPD are: Rotating Control 

Device installed above the Annular Preventer augmented with a drilling choke 

manifold (separate from the rig choke manifold), Non-return Valves (NRV) in the 

drill string, and a “what-to-do-if” guideline for those operating the equipment.  

To demonstrate how potential hazardous aspects, operations and procedures related to 

the application of MPD can be; a typical HAZID + HAZOP or a What-if+Checklist 

are performed in the planning stages. Checklists and ‘what-if analysis,’ can be used 

early in the system lifecycle when little detailed information is available. HAZOP as 

well as FMEA require more details of the drilling machinery system but produce 

more comprehensive information on the hazards. 

HAZID (Hazard Identification Studies) is designed to identify all potential hazards, 

which could result from operation of a facility or from carrying out an activity. A 

comprehensive and successful HAZID should be based on conceptual well-design 

schematics, conceptual layout drawings showing the UnderBalanced drilling 

operation (UB) or Managed Pressure Drilling (MPD) equipment, the rig and 

equipment, the hazardous areas/zones and the 

escape routes, and conceptual procedures. By 

(IADC, 2012), examples of hazards introduced 

by a UB/MPD operation include, but not 

limited:  

(a) Change in barrier philosophy  

(b) Drilling fluid medium  

(c) New equipment  

(d) New or modified procedures 

a. Well control  

b. Normal operating  

(e) High pressure lines at surface  

(f) Personnel training and competence  

Figure 5: HAZOP process 
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The Hazard and Operability Study (HAZOP Study) is defined as a standard hazard 

analysis technique used in the preliminary safety assessment to determine what would 

happen if that component were to operate outside its normal design mode. The 

HAZOP process is illustrated in Fig. 5.   

A HAZOP study involves an ‘examination session’ in which a multi-disciplinary 

team. It systematically uses a series of guide words/terms to examine how a deviation 

from the design intent may occur and to identify the potential consequences.  

For drilling operations, the examination in HAZOPs is carried out with guide 

words/terms (see IEC 61882) such as ‘TOO FAR’, ‘NOT FAR ENOUGH’, ‘TOO 

SLOW’, ‘TOO FAST’, ‘RELEASED’ ,’NOT RELEASED’. Sometimes a serious 

hazard may involve the interaction between several parts of a system. In such cases 

there may be a need for more detailed study using techniques such as Fault Tree and 

Event Tree Analysis. As with any hazard identification technique there can be no 

guarantee that HAZOP by itself will identify all potential hazards or operability 

problems.  

What If Analysis and Checklist are designed to review process systems and operating 

procedures to confirm whether they will operate and be operable as intended, without 

having introduced any avoidable hazards. Combination of What If Analysis and 

Checklist are forerunner to HAZOP method. This implies to the technique of 

quantitative assessment of particular risks, the likelihood or frequency of the event 

and the severity of the consequence using key words. This is often combined with the 

analysis of proposed risk reduction (or protection) measures to provide a risk 

assessment report. 

While conducting a baseline risk assessment, it is most important to narrow the scope 

of the drilling operation to hazards of a particular interest, or specific process, or 

impact area. In the case of this master thesis the scope of work is the Deepwater 

environment. If risk is defined as energy sources that can get out of control, we then 

assume that as a baseline the energy sources described are normally and initially 

under control. To maintain organization during the assessment, every hazard should 
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be considered for each step in the process under normal, abnormal, and emergency 

conditions. 

Once the baseline has been established and consequences identified, a risk model 

representing all of the accident sequences can be developed using an Event Tree 

(ETA) with linked Fault Trees (FTA), Bow-tie or Influence Diagrams.  

2.3. Macondo Accident pathway 

Traditionally to ensure the well integrity, we need at least two barriers.  Primary 

barrier are about the mud, cement, drilling riser, casing, etc. while the secondary 

barriers suggested by Offshore Standard DNV-OS-E101, October 2009 comprise the 

Blowout Preventer, the choke and kill system, the diverter system, etc.  

For Macondo prospect, the primary barriers were to prevent undesirable hydrocarbon 

flowing into the wellbore while secondary barriers controlled the influx hydrocarbon 

if primary barriers had become unsuccessful (Skogdalen et al., 2010). None of these 

barriers worked to prevent Macondo accident and in (Chief Counsel's Report, 2011), 

the investigation team identified a complex interplay of mechanical failures, human 

judgments, engineering design, operational implementation and team interfaces that 

initiated and escalated the accident . Barrier failure analysis for Macondo accident is 

as follow: 

2.3.1. Final casing   

The Macondo well design consisted of 8 casing (see fig. 6). BP engineers decided to 

retain the original design of a long-string production casing – a single length of 9-7/8-

in. x 7-in. casing extending from the subsea wellhead to 13,237 ft. below the seabed 

(18,304 ft. total depth) (BP Investigation Team, September 8, 2010). BP’s decision to 

run a long string rather than a liner and tieback reduced the number of barriers to 

annular flow to only two, the cement and the seal assembly.  

BP used dril Quip’s SS-15® BigBoreTM Subsea Wellhead System (18 ¾ in., 15,000 

psi) (PetroWiki, 2012). Subsea wellheads use a casing hanger system to suspend the 

casing in the pressure housing located at the sea floor. A seal assembly (or pack off) 

located between the casing hanger and the high pressure housing, is designed to 
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prevent hydrocarbons from entering the wellbore. Any wrong installation of the 

casing or the breach of the annulus cement barrier could have allowed hydrocarbons 

to enter the casing. 

Lowering the casing string into the well with the float equipment installed pushes 

drilling fluid ahead of it and can create surge pressures that can fracture the formation, 

leading to loss of drilling fluids and damage of the hydrocarbon production zones. BP 

incorporated a surge reduction system including an auto-fill type of float collar and 

reamer shoe to reduce surge pressure and protect the formation.  

 

Figure 6 : Long string, liner and liner with Tieback  (BP Investigation Team, September 8, 2010) 

 

During the running of the production casing, six centralizers were pre-installed on the 

lower 7-in. interval of the production casing string. Halliburton cementing models 

specified the use of 21 centralizers to prevent high risk of cement channelling and 

subsequent gas flow channelling. Though the BP investigation team didn’t found any 

indication that the use of 6 centralizers was behind inadequate integrity of cement as 
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barrier, Halliburton found that the decision to use an inadequate number of 

centralizers remains relevant because cement channelling can provide a flow path of 

hydrocarbons into the wellbore (Halliburton, 2010). 

2.3.2. Cementing job 

Primary cementing is the process of placing cement in the annulus between the casing 

and the formations exposed in the wellbore and therefore to achieve zonal isolation. 

Casing is typically installed with two sets of cementing check valves that constitute 

the mechanical barrier: the float shoe, located on the very bottom of the casing string; 

and the float collar, usually installed from two to six casing lengths (joints) above the 

bottom. Root cause of the cementing job failure could be due to high load condition, 

insufficient flow rate during the conversion of float collar, or float collar valve failure 

(The Deepwater Horizon Study Group (DHSG), March 1, 2011): 

Converting the Float Collar: A BP’s production casing design for the Macondo well 

called for only one cementing check device: a double valve, auto-fill float collar 

(Transocean, 2011). The float collar used at Macondo contained two flapper check 

valves that are held open during installation by an auto-fill tube. While open, these 

valves allow mud to pass through the float collar and up into the casing.  

Before cementing, the float collar is “converted” or closed. Specifically, the auto-fill 

tube is forced out of the float collar so that the flapper valves close and prevent mud 

and cement slurry from flowing back up into the casing. BP’s procedure to convert 

the float collar called for slowly increasing fluid circulation rates to 5–8 barrels per 

minute (bpm) and applying 500–700 pounds per square inch (psi) of differential 

pressure, consistent with manufacturer guidelines (BP Investigation Team, September 

8, 2010). At a flow rate of 1 bpm needed to convert the float collar, the drilling fluid 

did not flow through the float assembly, and pressure began to build, indicating that 

something was blocking circulation (Transocean, 2011). The drilling fluid started to 

circulate after nine attempts and ramping pressure up to 3,142 psi, which far exceeded 

the manufacturer guidelines and BP’s own procedures for this operation. After the 

break in pressure, BP directed the drill crew to continue circulating mud and to 

monitor the pressure. The observed circulating pressure was 137 psi instead of the 

expected 370 psi at 1 bpm, and 350 psi instead of the expected 570 psi at 4 bpm. With 
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anomalous conversion pressure (3,142 psi), low flow rates (less than 5 bpm), and low 

circulating pressure (less than modelled after conversion), no definitive evidence 

existed that the float valves had converted. Public testimony has revealed that BP 

personnel on the rig were concerned with the high amount of pressure needed to 

convert the float collar and that the float collar and/or the casing could have been 

damaged in that process (Halliburton, 2010). However the post-accident float collar 

testing has shown that 10,155 psi was required to cause damage to the internal float 

flapper assembly and it is believed that the ball may have been ejected from the ball 

seat without converting the float collar (Transocean, 2011).  

Debris removal before cementing: Before cementing, clean drilling mud is pumped 

down and through the well to push debris out of the casing to ensure nothing will 

impede the circulation of cement. Circulating a full “bottoms-up” using the full 

volume of mud from bottom to surface is considered a best practice prior to 

cementing. Volumes of the drill pipe and casing plus a safety factor are considered to 

be the absolute minimum mud volume. At Macondo, the original BP well plan called 

for circulation of 1,315 bbl, which was 1.5 times the casing volume (Transocean, 

2011). This was later modified on the updated casing program. BP performed only a 

limited circulation of 111 bbl. The total volume circulated, including circulation after 

float conversion, was 346 bbl, significantly less than the 1,315 bbl required in the 

original drilling program and the 2,750 bbl required for a full bottoms-up circulation.  

Cementing jobs: Mud contamination is a major cause of cement plug failure as it 

affects the compressive strength of the cement significantly. As foamed cements are 

compressible, the cement quality will change through the process of circulation. In 

severe pressure variations, expected values would see a 1,000 psi pressure decreasing 

when flowing down the casing where pressures may exceed 10,000 psi. 

Given its knowledge of the narrow window for safe drilling, BP selected a technically 

complex cement program that minimized the pressure exerted on the formation. The 

key features of the cement program included:  

 Using a lower density nitrified slurry cement  

 Using a small volume of cement  
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 Pumping the cement into the well at a low rate  

The nitrogen foam slurry formulation used by Halliburton for cementing operations 

consisted of an amount of retarder of 9 gallons per 100 sacks of cement. Though the 

Transcocean investigation team claims that a foam stability test was only conducted 

on a slurry formulation with an amount of retarder of eight gallon per 100 sacks of 

cement (Transocean, 2011); Halliburton reacted that other tests such as thickening 

time and compressive strength were also performed on the nine gallon slurry 

formulation and were shared with BP before the cementing job had begun 

(Halliburton, 2010). However there is no indication from BP that a risk assessment 

was made prior the commencement of cementation.  

After the cement was in place, the seal assembly was set and tested, and the BP well 

team and shore based drilling engineer, who was on board, notified their onshore 

counterparts that the cement job had gone as planned (Transocean, 2011). Afterward, 

the Halliburton cementer pumped 21.9 bbl of spacer into the well using the cement 

unit, followed by 132 bbl of mud for displacement at a rate of 4 bpm (Transocean, 

2011). This volume was sufficient to launch the top cement wiper plug from the 

subsea running tool at the wellhead.  

2.3.3. Run positive and negative pressure test 

Because it may be anticipated that a particular cement job may be faulty the oil 

industry has developed tests, such as the negative pressure test, the cement evaluation 

logs and the segmented or radial bond log, etc. to evaluate the integrity of the cement 

(Halliburton, 2010), and in a case of cement failure, remedial actions are also 

provided.  

Although, the appropriate personnel and equipment were on the rig and available to 

run a cement bond log test, BP personnel have publicly testified they intended to 

conduct the cement bond log test at a later date (BP Investigation Team, September 8, 

2010).  

The negative test was conducted. The test confirms the integrity of barriers in the well 

(such as cement barriers, mechanical barriers, casing, and seal assembly) by 
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simulating the reduction in hydrostatic pressure that occurs when heavy mud is 

displaced with lighter seawater, and when the BOP stack and the riser are removed. 

According to the Transocean investigation report, the design and interpretation of a 

negative pressure test was the responsibility of the operator in this case BP. The test 

design may vary from well to well, as there was no established industry standard or 

MMS procedure for performing a negative pressure test (Transocean, 2011).  

From data logs between 15
th

 and 20
th

 April 2010 as well as the information from the 

hydraulic analysis of Macondo #252 well prior to accident, the pressure was bled off 

three separate times in an attempt to reduce the drill pipe pressure to 0 psi so that the 

well could be monitored (Transocean, 2011).  

The negative pressure test was conducted by monitoring for flow via the kill line as 

specified in the MMS-approved April 16
th

 temporary abandonment plan (BP 

Investigation Team, September 8, 2010).  

In the “Genesis of the Deepwater Horizon blowout”, Phil Rea gives a view of the 

inexplicable pressure and flow anomalies during the negative test. This view which 

differs from the BP investigation team report, explains that during the pumping and 

displacement of this heavyweight spacer, a breach in pressure integrity at the casing 

shoe resulted in the undetected loss of about 80 barrels of drilling mud into the 

probably uncemented annulus (Rae, 2010). Thus the undetected loss of mud resulted 

in under-displacement of the heavyweight spacer and led to otherwise inexplicable 

pressure and flow anomalies during the negative test (Rae, 2010). 

The BP Investigation Report revealed that the negative tests were not successful and 

tests’ results, were misinterpreted by its own and Transocean’s employees on the rig 

(BP Investigation Team, September 8, 2010) and crew was not aware the differential 

pressure of 1400 psi was likely due to block of viscous spacer in the kill line. 

Meanwhile, Halliburton’s comments on National Commission cement testing released 

on Oct. 28
th

, 2010; well logs and rig personnel confirm that the well was not flowing 

after the cement job. The same report points out that if the negative tests had been 

accurately interpreted, necessary remedial action would have been possible. 
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2.3.4. Well monitoring and simultaneous operations 

 

Temporary Abandonment Plan: Temporary abandonment takes place when the 

cement is approved and the well is secure to let the operator to safely leave the well. 

This process requires displacing the drilling mud with seawater and sealing the well 

with a cement plug and/or mechanical plug.  

BP engineers generated at least five different temporary abandonment plans for the 

Macondo well between April 12 and April 20, 2010. The procedures varied 

considerably, calling for different sequences of activity, different depths at which to 

set the surface cement plug, different displacements, and different negative pressure 

test procedures (BP Investigation Team, September 8, 2010).  

On April 20, 2010, when the temporary abandonment was underway, BP shore-based 

engineers sent their final amended temporary abandonment plan to the rig. The 

displacement procedure which was developed by M-I SWACO and approved by BP, 

incorporated a large amount (425 bbl) of 16-pounds-per-gallon (ppg) spacer (i.e. more 

than double the average volume used in previous displacements) to complete the 

displacement (Transocean, 2011). Instead of using normal spacer material, BP mixed 

two viscous lost-circulation materials, or “pills,” left over from prior rig operations. 

Combining these water-based pills into one spacer would mean that they could legally 

be discharged overboard rather taken to shore for costly. The same procedure called 

for displacement of the weighted drilling fluid with seawater before setting a 

secondary cement barrier. It also directed the drill crew to displace to 3,300 ft. below 

the mudline with seawater in order to set the surface cement plug in water. However, 

the plan still maintained monitoring the negative pressure test on the kill line, as 

specified in BP’s MMS-approved temporary abandonment plan.  

Despite questions that remained regarding the integrity of the production cement and 

the float collar conversion (Transocean, 2011), and following the misinterpreted 

negative tests conducted after the cement job, BP instructed proceeded with mud 

displacement in the production casing and riser with lighter seawater, and this have 

allowed the well to flow (Halliburton, 2010). It has appeared that BP never subjected 
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the procedural changes to a formal risk assessment for the final temporary 

abandonment plan (The Deepwater Horizon Study Group (DHSG), March 1, 2011).  

Final Displacement: Upon completion of the cement program, the drill crew set up 

and ran into the well a 6-5/8-in. x 5-1/2-in. x 3-1/2- in. tapered drill string. While at 

4,817 ft., with the drill string just above the blowout preventer (BOP) stack, the blind 

shear ram (BSR) was closed to perform a positive casing test. The positive casing test 

confirmed the casing was competent and that the BSR had sealed.  

As the drilling mud was displaced, the investigation found that the well became 

underbalanced to one or more of the formations sometime between 8:38 p.m. and 8:52 

p.m., but there was no clear indication of an influx at that time (Transocean, 2011). 

Sheen Test: A sheen test is conducted to verify that the displacement of synthetic oil-

based mud was complete and that it was appropriate to discharge the remaining water-

based fluids in the riser overboard into the sea. Although the compliance engineer 

concluded the sheen test was successful, analysis by (Transocean, 2011) indicates that 

the spacer had not reached the surface. Post-incident analysis revealed that the volume 

of seawater pumped was inadequate to accomplish that, resulting in a portion of the 

spacer remaining below the BOP stack. Between 21:09 and 21:13, during the four-

minute interval that the sheen test was conducted, drill pipe pressure increased from 

1,013 psi to 1,202 psi. Based on post-incident analysis, this pressure increase was a 

result of hydrocarbons flowing into the well (Transocean, 2011) 

2.3.5. Well control and response  

Post-accident analysis indicates that the first indications of flow from the well (control 

problem) could be been seen in real time data after (at approximately) 20:58. The rig 

crew and the mud loggers either did not recognized indications of flow into the well 

until the hydrocarbons entered into the riser at approximately 21:38 hours. The first 

well control response likely took place at 21:41 hours when the drill crew attempted 

to close the annular preventer of the BOP. 

Based on hydrostatic pressure calculations, OLGA® well flow modelling and analysis 

of data from Macondo well static kill on August 4
th

, 2010; they have found evidence 

that hydrocarbons entered the casing through the shoe track. Therefore, the shoe track 
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cement and the float collar must have failed to prevent this ingress. However the 

report could not established an understanding of the causation of the accident in term 

of float collar failure (Transocean, 2011). 

Activation of the BOP: BOP has very serious implication on the overall success of 

drilling. Zeigler estimates that 40% of Deepwater well control problem events leading 

to total loss of wellbore are due to BOP failure. The first raison is due to risk of 

formation hydrates when gas mixes with free water while the second raison is 

connected to the narrow margin in between fracture gradient & pore pressure (Ziegler, 

2012), i.e. when the formation is not able to support the backpressure created by the 

choke line friction. Even if the BOP is close in time on an inflow, it is still 

challenging as the kick is still contained below the BOP, and there is no established 

drilling method to circulate out this kick (Ziegler, 2012). The current generation of 

subsea BOP’s, still in its functioning closely related to the original patented in 1929, 

but today very large, complex and heavy (355 tons) devices that require an enormous 

amount of maintenance and testing (Ziegler, 2012).When the hydrocarbons started to 

flow on the rig, there was already a large amount of hydrocarbons in the riser of 

which the BOP should have held back. 

Upon recognizing an influx, the drill crew took well-control actions including 

activating the upper annular BOP, diverting the flow of hydrocarbons from then riser 

into the mud-gas separator (MGS), and closing both of the variable bore rams 

(VBRs). Post-accident analysis revealed that the MGS was overwhelmed by the flow. 

MGS has function as separator to handle hydrocarbon release, mud, or fluid from the 

well. Mud and hydrocarbons began to pour out of the MGS vents and other piping, 

and gas spread rapidly across the aft deck and into the nearby internal spaces, setting 

off alarms as it spread (Transocean, 2011). MGS is not able to handle the high flow, 

hydrocarbon with hydrate formation and H2S content potential. It took only 4 min 

between time 9:45; when the team advised about the well control situation and 9:49; 

the time for the two explosions and the loss of the main power of the rig and 

subsequent the end of data transmission to shore (Transocean, 2011). The BP 

investigation report agrees that if fluids have diverted overboard rather than to the 
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MGS, there may have been more time to respond, and the consequences of the 

accident may have been reduced.   

Fire and explosion: On the Deepwater Horizon, the secondary level of protective 

systems included a fire and gas system as well as the electrical classification of the 

certain areas of the rig (BP Investigation Team, September 8, 2010). The explosion 

and the fire likely damaged the MUX cables. With the loss of the electrical power, the 

AMF activated automatically the high-pressure shear circuit to close the blind shear 

rams (BSRs). The BSR are designed to cut the drill pipe in the BOP stack, seal the 

well, and close the ST Locks to mechanically hold the BOP rams closed against 

pressure from the well. However the blind shear rams closed, a portion of the drill 

pipe became trapped, preventing the rams from completely shearing, closing, and 

sealing, thereby allowing fluids to continue to flow up the well bore. According to BP 

Investigation team report, the AMF sequence could not have been completed by either 

control pod, due to failed solenoid valve 103 in the yellow pod and an insufficient 

charge on the 27 Volt AMF battery bank in the blue pod (BP Investigation Team, 

September 8, 2010). Moreover, the Transocean Investigation Report pointed out that 

the high-velocity flow of material eroded the rubber of the sealing element and the 

metal of the drill pipe and prevented the annular BOP from sealing.  

All three operating methods of the BOP i.e. the emergency disconnect sequence 

(EDS), the automatic mode function (AMF) and the auto shear function operated by 

remotely operated Vehicle (ROV) failed to seal the well. The review of the rig audit 

findings and maintenance records by the BP investigation team has revealed 

indications of potential weakness in testing regime and maintenance management 

system for the BOP (BP Investigation Team, September 8, 2010). 

Initial Emergency Response, Muster, and Evacuation: The explosions caused also 

significant damage in the drilling areas and engine rooms and left debris in some 

sections of the accommodations area, including the internal muster areas. With the 

loss of electric power and in the absence of adequate redundancy, the emergency 

system failed to start. A few batter-activated systems functioned for a while. The 

emergency lighting functioned briefly, and then failed. 
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At approximately 9:56 p.m., an attempt to use the BOP control panel to activate the 

emergency disconnect system (EDS) failed. The BOP control panel lights were on, 

indicating that it had power, but post-incident investigation confirmed that the EDS 

did not activate to separate the rig from the BOP.  

From the intense heat of the fires and damage from the explosions, it was quickly 

apparent to the bridge team that it was impossible to regain control of the well or to 

fight the fires. Instructions were given to abandon the rig, and personnel left the 

bridge to muster at the forward lifeboats. Many people were evacuated using 

lifeboats, others jumped from the forward end of the rig into the sea. Of 126 crew 

workers on board, 115 survived the accident. The BP investigations team indicates 

that so the Transocean rig crew was not sufficiently prepared to manage an escalating 

well control situation.  
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3. EFFECTS OF MACONDO ACCIDENT ON POLICY, REGULATIONS AND 

ORGANIZATIONS 

Every major accident from maritime oil spill at sea to offshore oil and gas accidents 

has been followed by new regulations. The loss of the Ocean Ranger semi-

submersible rig off Newfoundland in 1982 enabled the CNSOPB’s legislation 

amendment in 1992 to require a series of inspections and certifications (Kelm, 2011). 

The explosion and fire on Piper Alpha platform in the North Sea in 1988 where, 167 

workers died prompted fundamental overhauls of offshore safety systems in 1993. 

The same is the case in the chemical process industry such as accidents in Bhopal, 

Seveso and the fire at the Texas City refinery in the USA during 2005, those led to 

new US and EU regulations. Accidents such as the Exxon Valdez oil spill in the coast 

of Alaska in 1989, the sinking of the oil tanker Erika off the coast of France in 1999, 

the sinking of the Prestige followed by oil spill in Spanish waters in 2002, as well as 

the Alexander Kielland disaster in 1980 with 123 fatalities, all were followed by the 

enacting of provisions applied to operational safety.  

With regard to Deepwater Horizon, and shortly after the accident, the Department of 

the Interior enacted in October 2010, new offshore drilling regulation including the 

Drilling Safety Rule and the Workplace Safety Rule. Performance-based regulations 

that require all operators in the OCS to implement a Safety and Environmental 

Management System that has become law (McAndrews, 2011). New prescriptive 

rules for Deepwater drilling will have a significant impact on drilling engineering, 

operations, and costs. 

After completing its investigation, the US President Commission provided a number 

of recommendations in January 2011 with an aim on how the government can prevent 

and mitigate the impact of future offshore spills.  

The US presidential commission 2011 report proposes the creation of an industry-

operated self-regulating organisation (on the model of such bodies as the Institute of 

Nuclear Power Operations - Inpo) which can contribute to the development and 

implementation of high safety standards as well as providing evaluation of and advice 

on company operations, management, performance and behaviour. This type of 
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solution functioned well in the nuclear power industry, and Inpo has a good deal of 

positive experience which could also be useful for further development of government 

regulation and the petroleum industry in Norway (BP Investigation Team, September 

8, 2010). 

The US presidential commission gets across well that the route to improved 

management of major accident risk in the petroleum industry goes through strong and 

competent players. Measures which could be relevant include:  

 government assessment of the financial capacity of the companies as a safety 

factor in player qualification and licence award processes  

 government contributions, including through player qualification and licence 

award processes, to making company safety performance an important 

condition for securing access to business opportunities  

 Industry reviews of processes and criteria for qualifying suppliers of goods 

and services in light of experience from the DwH incident and earlier major 

accidents in order to assess whether management of major accident risk is 

taken sufficiently into account.  

As other many regulations enacted in post-accident situation, one must caution the 

potential weakness they present when they relate on issues of the moment rather than 

long term sound policy that extend on other possible future hazards.  

3.1. United State of America 

Until the Macondo accident, the Bureau of Ocean Energy Management, Regulation 

and Enforcement (BOEMRE), formerly the Minerals Management Service (MMS) 

was the United states Department of the Interior institution responsible for leasing, 

safety, environmental compliance, and royalty collection on the Outer Continental 

Shelf (OCS). Following the report to the President by the National Commission on the 

BP Deeepwater Horizon Oil Spill and the Offshore Drilling, September 14
th

, 2011, the 

BOEMRE proposed additional SEMS regulations that authorize unannounced rig 

inspections and third party audits. On October 1
st
, 2011, as part of a major 

reorganization, BOEMRE was split into 3 institutions: The Bureau of Ocean Energy 
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Management (BOEM) – with a mandate to regulate offshore exploration plans, the 

Bureau of Safety and Environmental Enforcement (BSEE) – to inspect oil rigs and 

enforce safety, and the Office of Natural Resources Revenue (ONRR)(National 

Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling (OSC), 

January 2011b). In section 21(b) of the OCS Lands act, the BOEMRE on behalf of the 

Secretary of Interior requires the use of best available and safest technologies in 

offshore drilling and production operations. The BOEMRE has the responsibility of 

determining the best available and safest technologies, and ensuring that they are 

applied to offshore drilling and production operations. BOEMRE regulations are 

largely prescriptive, and many of the regulations are based on the use of safe 

equipment which can meet the BAT requirement. 

The institution responsible for industry safety issues is now the Bureau of Safety and 

Environmental Enforcement (BSEE), which has responsibility for ensuring regulatory 

compliance within the industry with key functions: the Offshore Regulatory Program, 

the Oil Spill Response and the Environmental Compliance.  

The BSEE with headquarter in Washington DC. It manages national programs, policy 

and budget. BSEE through its several regional offices is responsible for reviewing 

applications for permits to drill to ensure that all the recently implemented enhanced 

safety requirements are met. Those offices conduct inspections of drilling rigs and 

production platforms, and investigate accidents and incidents. BSEE operates also a 

National Training Centre.  

Based on certain recommendations in the May 27
th

, 2010, report from the Secretary of 

the Interior to the US President Barack Obama  (US Department of the Interior, May 

27, 2010), a new Regulation Identifier Number (RIN) 1014–AA02 under the authority 

of BSEE replaced the former RIN 1010–AD68 which was published October 14
th

, 

2010.  

The Final Rule (RIN) 1014–AA02 that became effective on October 22, 2012 (Bureau 

of Safety and Environmental Enforcement, 2012b, Bureau of Safety and 

Environmental Enforcement, 2012a):  



54 
 

 Updates the incorporation by reference to the second edition of API Standard 

65-part 2, which was issued December 2010. This standard outlines the 

process for isolating potential flow zones during well construction. The new 

Standard 65-part 2 enhances the description and classification of well-control 

barriers, and defines testing requirements for cement to be considered as a 

barrier.  

 Revises requirements from the Internal Final Rule (IFR) on the installation of 

dual mechanical barriers in addition to cement for the final casing string (or 

liner if it is the final string), to prevent flow in the event of a failure in the 

cement. The Final Rule provides that, for the final casing string (or liner if it 

is the final string), an operator must install one mechanical barrier in addition 

to cement, to prevent flow in the event of a failure in the cement. The final rule 

also clarifies that float valves are not mechanical barriers.  

 Revises § 250.423© to require the operator to perform a negative pressure test 

only on wells that use a subsea blowout preventer (BOP) stack or wells with a 

mudline suspension system instead of on all wells, as was provided in the 

Interim Final Rule.  

 Adds new § 250.451(j) stating that an operator must have two barriers in 

place before removing the BOP, and that the BSEE District Manager may 

require additional barriers.  

 Extends the requirements for BOPs and well-control fluids to well-completion, 

well-workover, and decommissioning operations under Subpart E – Oil and 

Gas Well-Completion Operations, Subpart F – Oil and Gas Well-Workover 

Operations, and Subpart Q –Decommissioning Activities to promote 

consistency in the regulations.  

Following Macondo accident, API created 4 Joint Industry Task Forces (JITF) in the 

areas of Prevention, Intervention and Spill Response. The work made resulted in 

major effort to revise key existing standards and several new API standards. Usually 

API standards are reviewed and revised or withdrawn every five years. Many OGP 

members (mainly US based) have contributed actively to the revision and 

development of the API standards. In the following section selected API are 

discussed:   
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(a) API Std 53 : Based on a day-long forum at the Interior Department May 22
nd

, 

2012 whereby Frank Gallander, Chairman of API Std 53, Chevron (Gallander, May 22, 

2012) gave a public presentation on new developments related to API Std 53;After the 

Macondo accident, the API Std 53 was changed into a standard. The standard API Std 

53 is an industry document for the operation and maintenance of drilling BOP 

equipment. Primary it contained 21 sections. As other documents were in direct 

conflict with it, through a kind of a clean cut API Std 53 was narrowed down to seven 

sections. The first five sections, common to both, surface and subsea BOP, the 

Section 6 is assigned to surface BOP and control systems and how it is operated and 

maintained, while the Section 7 is more in-depth in the subsea side of it.  

In the new standard, it was incorporated some of the effects of negative pressure on 

subsequent BOP’s. And it was identified the condition-based maintenance as an 

alternative to schedule-based maintenance. Greater emphasis is on the 

communications route for the manufacturer and equipment owner.  

There’s some prescriptive points in the document, specifically the drawdown test, 

which refers back to specification 16-d and that’s for the design, manufacturing, and 

testing of BOP control systems or 16-c, which is choke and kill systems. With regards 

to 16-d, lines hydrocarbons can be introduced and permeate through the line structure, 

while for 16-c hoses for control systems must fulfil fire testing requirements. 

Regarding the failure of shear rams to seal, the API Standard 53 “Blowout Prevention 

Equipment Systems for Drilling Wells” proposes the use of dual shear rams as a base 

case for subsea BOPs (OLF et al., 2012).  

Based on the joint task force (JTF) equipment recommendations the ROV interface 

standardization has also been adopted into an industry standard. Minimum functions 

required to hold the ROV interface configuration were adopted.  

(b) API RP 75 : As per the BOEMRE Office of Public Affairs, the Fact Sheet on 

Safety and Environmental Management Systems (SEMS) makes mandatory 13 

elements of RP 75 that the Workplace Safety Rule must follow:  

http://fuelfix.com/blog/2012/05/22/feds-get-advice-from-industry-engineers-on-beefing-up-blowout-preventers/bsee.gov/NexGen-BOP.aspx


56 
 

- General provisions: for implementation, planning and management review and 

approval of the SEMS program.  

- Safety and environmental information: safety and environmental information 

needed for any facility, e.g. design data; facility process such as flow 

diagrams; mechanical components such as piping and instrument diagrams; 

etc.  

- Hazards analysis: a facility-level risk assessment.  

- Management of change: program for addressing any facility or operational 

changes including management changes, shift changes, contractor changes, 

etc.  

- Operating procedures: evaluation of operations and written procedures.  

- Safe work practices: manuals, standards, rules of conduct, etc.  

- Training: safe work practices, technical training – includes contractors.  

- Mechanical integrity: preventive maintenance programs, quality control.  

- Pre-start up review: review of all systems.  

- Emergency response and control: emergency evacuation plans, oil spill 

contingency plans, etc.; in place and validated by drills.  

- Investigation of Incidents: procedures for investigating incidents, corrective 

action and follow-up.  

- Audits: rule strengthens RP 75 provisions by requiring an audit every 4 years, 

to an initial 2–year re-evaluation; and then subsequent 3-year audit intervals.  

- Records and documentation: documentation required that describes all 

elements of the SEMS program.  

 

(c) API RP 96: API announced on April 1
st
, 2013 the publication of two new oil 

and natural gas industry standards for well design and drilling operations. 

The first, Deepwater Well Design and Construction, API Recommended Practice 96, 

provides engineers a system-wide reference for onshore well design, drilling and 

completion operations using subsea blowout preventers (IADC, 04 April 2013). It 

covers the range of considerations that must be taken into account when planning for 

Deepwater drilling operations. Those include: 
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- Appropriate barrier and load case consideration to maintain well control. 

- Guidance supplementing API 65-2, December 2010 on barrier philosophy and 

management (Isolation Potential Flow Zones during Well Construction) of 

API 90 on annular pressure buildup. 

- Risk assessment and mitigation practices for casing and equipment 

installation operations. 

Through various API among them the API RP 96 as well as others documents that use 

BOP in industry, a new definition of a BOP was proposed. The API RP 96 is a 

guiding document for the design and construction of Deepwater subsea wells. Here 

BOP is defined and classified with regard to well-control equipment with some 

relationship given to the pressure.  BOP is therefore defined based on MASP 

[Maximum Anticipated Surface Pressure] as a design load that represents the 

maximum pressure that may occur at the surface during well construction or 

production. And as part of the subsea well – the MAWHP [Maximum Anticipated 

Wellhead Pressure] is considered as the highest pressure predicted to be encountered 

at the wellhead in a subsea well. Another definition is the Maximum Speculative 

Wellhead Shear Pressure [MSWSP], which means the expected pressure at the 

wellhead for a given hole section, a specific shear pressure requirement, specific 

operating piston design, the drill pipe material specifications, to achieve shearing at 

MASP, MAWHP, or whatever other limiting design pressure for the well. 

According to IADC, it is the responsibility of each organisation involved in 

UBO/MPD Operations to ensure that all relevant documents in their specific working 

environment or region are consulted for applicability. The second, Protocol for 

Verification and Validation of High-Pressure High-Temperature Equipment, API 

Technical Report 1PER15K-1, establishes a process or evaluating equipment used in 

high-pressure and/or high-temperature (HPHT) environments both on and offshore.  

3.2. Norway 

An exhaustive historical development of the oil and gas regulatory regime in Norway 

and the use of risk assessment in the NCS, is well covered in the paper (Khorsandi et 

al., 2013). For the last 40 years, the regulation regime has evolved from the 



58 
 

establishment of the Norwegian Petroleum Directorate (NPD) in 1973 and the 

initiation of a simple technically oriented and prescription based rules to the creation 

of PSA in 2004 with the use five regulations i.e (i) Framework HSE Regulations, (ii) 

Management Regulations, (iii) Facilities Regulations (iv) Activities Regulations and 

(v) Technical and Operational Regulations. The current regulations administered by 

the PSA for governing offshore activities are a mixture of performance based and 

prescriptive requirements which largely refer to the NORSOK standards (Khorsandi 

et al., 2013).  According to the DNV, performance based regulation gives the industry 

a relatively high degree of freedom to selecting the right solutions that will fulfil 

regulatory requirements. More information, content and the overall principle of each 

regulation stated above are given in (Khorsandi, 2010). We should recall that in 

1999/2000, the Trend in Risk Level Project (RNNP) was initiated. Managed by PSA, 

the RNNP establishes a description of the risk level the parties in the industry could 

agree upon.   

Following the Deepwater Horizon drilling rig disaster in the Gulf of Mexico, the 

Petroleum Safety Authority Norway (PSA) established May 7
th

, 2010 a project team. 

The work conducted by the team was to develop the best possible basis for the 

authority’s supervision and other measures which could improve health, safety and 

the environment (HSE) on the Norwegian continental shelf (NCS) (PSA, 2011). As a 

result of the work, PSA has recognized that the Deepwater Horizon accident cannot 

be confined to incident affecting only BP, Transocean and Halliburton, Deepwater 

drilling, blowouts and/or the Gulf of Mexico. They recognized that the disaster 

affected all types of activity and all players in the national and international petroleum 

sector. It has been stressed that the accident must lead to improvements in the industry 

as a whole. 

The PSA has already identified three key areas in a need of improvement to help 

reduce major accident risk on the NCS (Petroleum Safety Authority, 2012, Petroleum 

Safety Authority, 2011b):  

a) Barrier management: In the PSA’s view, the industry must give a high priority 

the development of a more integrated and uniform approach to barrier 

management.  
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i. Capping and containment 

• Work has been launched to develop effective capping and containment 

solutions which can halt and/or divert the wellstream as quickly as 

possible in the event of a blowout. These efforts must be given high 

priority and closely monitored by the authorities, including the PSA. 

• The PSA is monitoring the development of equipment, plans, proposals 

for standards, and evaluating necessary adjustments to the regulations – 

such as requirements for consent applications, emergency preparedness 

and well control. 

• In connection with capping and containment, the PSA is in a dialogue 

with the OLF and the Subsea Well Response Project Group established by 

the International Association of Oil and Gas Producers (OGP) after the 

Deepwater Horizon accident. 

ii. Blowout preventers (BOPs) 

• Experience from the Deepwater Horizon incident reinforces the 

importance of applying modern barrier principles in order to integrate 

safety in BOP designs for both fixed installations and mobile units. 

• BOP integrity and operational issues presented by well control are being 

followed up through the PSA’s participation in the International 

Regulators’ Forum (IRF), the OGP and the International Association of 

Drilling Contractors (IADC). 

b) Risk management: The PSA sees the need to pursue ambitious studies and 

developments to secure better management tools. A particular requirement exists 

to be able to analyse, assess and understand change-related risk in every phase of 

an operation. That covers everything from extensive organizational and structural 

reshaping to variations from plans for implementing individual activities. 

c) Organization and management: This is reflected in decision making and 

prioritization processes, management of expertise and operational changes which 

aim at reducing major accident risk. Emphasis should be on communication and 

information sharing within companies and between operator and contractors, and 

management rather than the focus on short-term financial gain.  
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PSA recognises that Regulations and standardisation in Norway must have both 

national and international perspectives – and be seen in relation to existing work on 

regulatory development (Petroleum Safety Authority, 2011b). A total of 45 

recommendations have been made to the Norwegian petroleum industry in the OLF’s 

report. Most of these are preventive in character, but they include capping and 

collection, oil-spill clean-up, standards and industry practice. The OLF believes that 

this issue of blowout preventers (BOPs) is best handled by the expert committee on 

wells of the International Association of Oil & Gas Producers (OGP) (Petroleum 

Safety Authority, 16.08.2012). 

As a result of Macondo accident and following other near miss recently occurred in 

the NCS; those include the Gullfaks B hydrocarbon leak December 4th, 2010, and the 

gas leak on Heimdal main platform May 26
th

, 2012 see (Petroleum Safety Authority, 

2013), the Norsok D-001 and D-010 standards review became evident. Both standards 

provide the norms for drilling and well requirements on the Norwegian continental 

shelf (NCS).  Information provided below are based (OLF et al., 2012): 

(a) Norsok D-001: The standard is about the “drilling facilities”. The Norsok 

revision work has been on-going since spring 2011. OLF considers it the 

responsibility of each individual operator and drilling contractor to review, evaluate 

and, if necessary, revise its internal management system and steering documentation 

to take account of these recommendations:  

- To reduce the risk of a gas cloud over the rig, Norsok D-001 will specify that 

the mud gas separator (MGS) should no longer be connected directly to the 

diverter system. The diverter system itself should be upgraded to a “safety 

system” designed to divert any gas in the riser to the overboard lines and 

safely away from the rig.  

- In Norway, explosion risks are already significantly reduced by the Norwegian 

Maritime Directorate (NMD) requirement for automatic closure of air intakes 

and automatic shutdown of non-explosion (non-Ex) equipment upon gas 

detection. There is also NMD requirements in-place for fully independent 

power supplies for “re-lighting” and dynamic positioning (DP).  

http://www.ogp.org.uk/committees/wells/
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-  Norsok D-001 and D-010 include more explicit requirements for primary and 

back-up BOP control systems, their ability to perform in emergencies and 

testing of them.  

 

(b) Norsok D-010 rev.4: The standard is about “well integrity in drilling and well 

operations”. In Macondo, the first cause was the failure of the cement to isolate 

hydrocarbons behind the casing. Sintef study recommended the update of NORSOK 

D-010 rev.4 ”Well integrity in drilling and well operations” with respect to the cement 

as a primary barrier, and the use of new technology (Tinmannsvik et al., May 2011). 

Based on existing new technologies, NORSOK D-010 rev.4 has been updated in 

terms of improved procedures for planning, mixing, pumping and qualification of 

cement as a primary barrier: 

Cement jobs: Norsok D-010 rev.4 finds “critical” cement jobs. It requires that 

cement and casing design for slurries placed across hydrocarbon zones be verified in 

cementing company labs prior the use. For critical slurry designs, such as those 

containing foam cement or gas block additives, the slurry design, slurry properties, 

waiting on cement times and cementing plan should be independently verified. This 

verification can be performed by either an independent in-house department or an 

external third party.  

The standard also expects that all displacement to a lighter underbalanced fluid should 

be done with a closed BOP and through the choke and kill lines.  

Inflow (negative) pressure testing: Norsok D-010 rev.4 has been updated to define 

the requirements related to inflow (negative) pressure testing clearly. Under 

Norwegian rules, putting a well in an unbalanced condition prior to establishing well 

integrity is not accepted. For Macondo case, barrier verification should have taken 

place before circulating the well to an underbalanced condition. Well programmes 

should provide a detailed procedure and acceptance criteria for all inflow tests. Inflow 

tests should be conducted in a controlled manner with detailed procedures which have 

been approved by an authorized person, and accompanied by a demonstrated risk 

analysis.  
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BOP: Many reports including that from DNV, identified deficiencies in control 

systems, maintenance requirements and failure of the shear rams. Norwegian 

regulations require five year overhaul and recertification of all BOP components, a 

back-up control system and regular testing. And Norsok D-010 rev.4 further proposes 

improvement and the strengthening of testing procedures of the BOP, its control and 

emergency back-up systems. 

Norsk D-010 anticipates the operators to conduct a risk assessment to determine the 

optimum BOP configuration for each well, utilising the latest BOP reliability, 

performance and assessment data, the design of the well to be drilled, and the rig in 

use. The findings should be recorded in the well control bridging document. A risk 

analysis shall be performed to decide upon the best BOP configuration for the 

location in question.  

Regarding the BOP, we should mention that though, the American Petroleum Institute 

(API) Standard 53 proposes the use of dual shear rams as a base case for subsea 

BOPs.  The OLF has found that this may not always be the safest option. Due to the 

variability of rig and drilling environments in the NCS, all ram configurations should, 

as part of well planning, be subject to comprehensive well specific risk and 

engineering analysis, using the latest BOP reliability and performance data.  

Casing, well control emergencies: Norsok D-010 rev.4 updates requirements for 

routine well control exercises, specifically in the areas of:  

- spacing out and centralizing pipe prior to shearing and disconnecting 

- diverter line-up to overboard lines  

- well control exercises to be conducted (scope, frequency, acceptance, etc.)  

The Norsk D-010 rev.4 finds that a MOC procedure covering the well life cycle 

should be included in the operator’s management system steering documentation.  A 

proposed change shall be supported by a justification that should address the 

following:  

a) reason for change 

b) description of the new proposed solution 

c) possible consequences and uncertainties 
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d) updated risk assessment in line with the proposed change 

 

(c) Norsok Z-013: Revision 3 of NORSOK Z-013 is related to “Risk and 

emergency preparedness assessment”. In its cf. sf. § 17, the standard requires that the 

quantitative analysis will be significantly more suitable to establish and/or tone 

required performance standards for all relevant barriers. According to “Principles 

for barrier management in the petroleum industry”; by (PSA, 2013) a barrier 

management can be defined as coordinated activities to establish and maintain 

barriers to ensure that they maintain their function at any time. 

 

(d) Norsok D-002:  is about “well intervention”. The system requirements well 

intervention equipment whereby primary barriers are harmonized with the Norsok D-

010, while the secondary barriers have been expanded to reflect the expectation of the 

current industry development. 

3.3. United Kingdom 

In UK, the offshore regulation went into a revolution following the Alpha pipe 

accident in 1988. A systematic and thorough consideration of safety and 

communication was introduced into UK legislation. An Offshore Installations (Safety 

Case) Regulations (OSCR) came into effect May 31
st
, 1993 and replaced the former 

safety standard that was often based on prescriptive codes. Since then QRAs was 

introduced into UK legislation as a part of the safety cases for both existing and new 

installations (e.g. drilling, production or accommodation rig). A Safety Case “is a 

comprehensive and structured set of safety document that demonstrates that all major 

hazards have been identified and assessed, that the proper measures are in place to 

manage those hazards, and that the risks have been reduced to ALARP”(HSE, 2006). 

The revised OSCR in 2005 intended to relieve unnecessary burdens on duty holders 

and on HSE, to enhance the safety case’s value to the duty holder and to provide a 

greater stimulus for continuous improvement.  

Reference to Vinnem 2000, the offshore regulation for the Norwegian industry as well 

as for the UK is mainly goal based, with functional safety requirements stated by the 
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regulations, thus giving the industry extensive flexibility with respect to how to reach 

the stipulated goals. Today many countries have endorsed similar legislations.  

At the time of Macondo blowout, a new Government in UK led by David Cameron 

was being created while the parliament was in recess. The accident quickly developed 

attention in Britain media not only because the operator on Macondo – BP was a 

British company in USA, but also due to the waking up of public awareness following 

the huge oil spill threatening marine life. Particular interest was the public/press 

realisation of Deepwater drilling in UK West of Shetland and what will be the 

potential impacts of a moratorium on Deepwater drilling posed by the US 

Government.  

Shortly after the Macondo, and in view of the early Montana blowout in 2009, the 

Offshore Division (OSD) set up its internal Deepwater Horizon Incident Review 

Group (DHIRG) to provide a forum to assess the implication of those incidents for the 

UKCS. Today DHIRG final report is not yet published as the final reports (e.g. CBS 

reports on Macondo) are not received from the US investigations. 

From the published investigations reports on Macondo, the HSE initiated and 

performed a quick review of safety regulatory regime to gain an insight into the UK 

sector’s asset integrity key performance indicators; part of arrangements for 

monitoring and measuring major accident risk contributors with an aim at checking if 

the existing systems around the safety case regime were working properly.  It 

followed a sensible reinforcement of peer review of well design assessments and 

rigorous auditing approach of Safety Case acceptance for MODUs with specific 

actions being undertaken: 

- Multiple layers of regulatory protection 

- Established Safety Case regime for MODUs 

- Wells notification to HSE  

- Independent wells examiner 

- Independent verification of safety critical elements (e.g. BOPs) 

- Duty Holder focused intervention by HSE wells specialists and other offshore 

HSE inspectors 
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- Weekly drilling operations reports to HSE 

- Mature, goal setting safety regime 

- Safety culture/work force involvement in North Sea 

Table 3: A summary of changes in policies, regulations and standards following Macondo blowout 

Country 

 

Majors Changes 

Changes registered  Discussed standards in this study, as 

revised after Macondo blowout  

Early 

edition  

New 

edition 

USA - New offshore drilling regulation including the Drilling Safety 

Rule, the Workplace Safety Rule, and the requirement of the 

performance – based regulations for all operators in the OCS 

- BOEMRE split into 3 institutions: BOEM, BSEE and ONRR 

- SEMS regulations that authorize unannounced rig inspections and 

third party audits 

API Spec 16A  
“Drill through equipment (BOPs)”  

2004 Dec. 2012 

API Spec 16C “Choke and kill 

systems” 
 

1993 May 2013 

API Spec 16D  

Control systems for drilling well 

control equipment and diverter 

systems 

2004 Jan. 2013 

API Std 53 “Recommended Practices 
for Blowout Prevention Equipment 

Systems for Drilling Wells” 

1997 Jan.2012 

API RP 65-part2 “Isolating potential 

flow zones during well construction” 

2002 Dec. 2010 

API RP 75 “Recommended Practices 

for a development of safety and 

environmental management for OCS 

operations and facilities” 

2004 Under 

revision 

API RP 96 “Deepwater well design 

Considerations” 
New Ed.1, Mar. 

2013 

Norway - PSA established a project team to follow the DwH accident  

- Supervision and other measures which could improve health, 

safety and the environment (HSE) on the Norwegian continental 

shelf (NCS) 

- Specification in Norsk D-001 that the mud gas separator (MGS) 

should no longer be connected directly to the diverter system.  

- a “safety system” designed to divert any gas in the riser to the 

overboard lines and safely away from the rig 

- improved procedures in Norsok D-010 for planning, mixing, 

pumping and qualification of cement as a primary barrier 

- MOC procedure covering the well life cycle should be included in 

the operator’s management system steering documentation 

- Requirement in Norsok D-Z013 of a quantitative analysis to 

establish and/or tone required performance standards for all 

relevant barriers  

Norsok D-001 “drilling facilities”.  

 

1998 Ed 3, Dec. 
2012 

Norsok D-002“well intervention” 
 

2000 Applicable 
for all wells 

after Jan 1st, 

2014 

Norsok D-010 “well integrity in 

drilling and well operations” 
 

2004 Rev4, 2013 

Norsok Z-013 “Risk and emergency 
preparedness assessment” 

2010 Ed.3, Oct. 
2010 

UK - The creation of the DHIRG, OSPRAG and WLCPF 

- peer review reinforcement of well design assessments and 

rigorous auditing for MODUs 

- adoption of minimum, prescriptive safety standards for fail-safe 

devices such as the blowout preventer 

- - - 

ISO - Several ISO standards are being updated, and mostly are  

- To adopt the outcome of the API work and Norsok standards. 

ISO/TC 67 “Materials, equipment and 

offshore structures for petroleum, 

petrochemical and natural gas 

industries” 

The 
latest 

update
2009 

- 

 

 

With regards to oil spill and its impact on the environment, the UK established in 

addition, the Oil Spill Prevention and Response Advisory Group (OSPRAG), which 
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later formed the Well Life Cycle Practices Forum (WLCPF) as a group to provide a 

permanent platform for industry to share and build good practices around well design, 

construction and completion. Under the WLCPL, five sub teams were created with the 

following responsibilities:  (i) the BOP Issues, (ii) Relief Well Planning 

Requirements, (iii) Well Life Cycle Integrity Guidelines, (iv) 

Competency/Behaviours/human Factors and (v) Well examination/verification. By the 

time of the present Master thesis report, the Forum report was not yet published.  

The Department of Energy and Climate Change (DECC), as initial response on 

environmental issues anticipated the review of environmental and pollution response 

regulatory regime once clear lessons emerge from GoM. In addition, DECC together 

with HSE inspectors doubled  number of MODU environmental inspections and all 

E&A wells and in particular Deepwater wells (>300 metres) were being reviewed and 

consented on a case by case basis.  

In general, Macondo accident was discussed in the Chief Executive’s Report to the 

Board, 2011. The report refers to 25 conclusions and recommendations relating to 

safety, environmental protection, oil spill response and liability to avoid problems 

such as the Macondo and Montara accidents. Those recommendations cover a number 

of issues and they are about: improving industry planning for high-consequence, the 

Government should adopt minimum prescriptive safety standards for fail-safe devices 

such as the blowout preventers, ensuring that the UK offshore inspection regime does 

not allow simple failures to go unchecked, and that measures to improve safety 

culture are undertaken (Health and Safety Executive Board, 2011). Very recently, new 

online guidance was introduced to makes easier the understanding of the health 

surveillance. 

Beside efforts in the UK, the European Commission envisaged future amendments to 

Offshore Oil and Gas Directives – including Directive 92/91/EEC which covers the 

minimum requirements for improving the safety and health of workers in the mineral-

extracting industries through drilling. The document which was published in Summer 

2011, outlined the EC’s ideas to ensure that a disaster similar to the one in the Gulf of 

Mexico will never happen in the waters around the EU and that the best practices 
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existing in Europe should become the standard throughout the area (Health and Safety 

Executive Board, 2011).  

In general, this master thesis has observed that a robust and a high offshore regulatory 

standards exemplified by HSE’s Safety Case regime is led by the Step Change in 

Safety Leadership Team. The Team comprises industry, regulators, trade unions and 

the workforce. 

3.4. International Standard Organization 

The following section is based on recent industry action plan events by the ISO/TC 67 

Management Committee Ad-hoc Group (AHG) prepared in response to the Montara 

and Macondo. It is suggested that a number of the high priority subjects are already 

being addressed in API, and the proposed ISO/TC 67 activity for these subjects is 

generally to adopt the outcome of the API work into ISO (ISO/TC 67 Management 

Committee AHG Industry Events (ISO/TC 67 MC N088), March 1st, 2011). 

The Norwegian Electrotechnical Committee and Standards Online AS, states that 

most of the international standardization activities are organized in ISO/TC 67 

“Materials, equipment and offshore structures for petroleum, petrochemical and 

natural gas industries”. By third quarter 2011, 154 standards were published of which 

52 were in revision and 43 new work items were proposed. A total of 60 countries 

participate/observe the activities. Norway takes part in all 6 sub-committees in 

ISO/TC 67, and contributes with experts in most of the working groups. The 

Norwegian petroleum industry participates also in many of other international 

standardization committees, see [http://www.standard.no/en/sectors/Petroleum/].  

Some of these proposals will seek to merge several existing industry standards, bring 

useful national standards into the international arena for broad industry consensus 

agreement and make the resulting ISO standards readily available for global adoption 

in Europe, Gulf States, Russia, US and many other regions around the globe. 

Normally, the ISO revision is pre-scheduled to be revised every 10 years. The last 

ISO update happened in 2009. It is therefore seen that with Macondo experience, the 

http://www.standard.no/en/sectors/Petroleum/
http://www.standard.no/en/sectors/Petroleum/
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industry and many ISO users will still have to rely on changes that were discussed in 

the previous sections with API and Norsok standards. 
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4. DISCUSSIONS 

4.1. Barriers performance and safety management during wells 

completion in Deepwater  

Barriers performance and what will be the requirements to ensure safe drilling 

in Deepwater? Barrier performance is a topic discussed first by Vinnem, 2000 in his 

paper “Risk Monitoring for Major Hazards”. He finds necessary a universal effort to 

report the barrier performance though he recognized the difficult to design such 

reporting scheme given its complex data and parameters aggregation. This master 

thesis recognized that the trends in risk level in the petroleum activity (RNNP) 

adopted by the PSA, mostly emphasis the gathering and reporting information on 

incidents such as oil spills, fire, explosion, blowout, etc. Those accidents and 

incidents may take place because barriers failure to prevent and/or to limit hazards or 

accidents from occurring. It is clear that the reporting of incident will remain 

incomplete as far as the experience with barriers performance is not reported/or not 

known.  

PSA requires that functionality of barrier should be maintained during facility lifetime 

by establishing various barrier strategies (Kristensen, September 12, 2012). Barrier 

act as prevention measure (prior accident happened) and mitigation measures (after 

accident happened, to mitigate and limit disastrous consequence). 

A substantive progress has been made by the PSA through its reports “Principles for 

barrier management in the petroleum industry”, 2013. The experience acquired by the 

PSA through its supervision has shown that working in a structured and purposeful 

manner to minimize risk at an early stage provides a significantly better chance of 

implementing good solutions without incurring substantial costs or facing major 

challenges (PSA, 2013). 

PSA has established the governing principles as well as indicators/activities/measures 

employed in the industry today to verify the performance requirements for a number 
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of barrier elements as it is illustrated in figure 7. 

 

Figure 7 Performance verification of barrier functions and associated barrier elements source (PSA, 2013)  

 

Based on ISO 31000, it is required that non-functioning or impaired barriers must be 

identified.  This is achieved through one or more iteration processes by risk 

assessments, identification of uncertainties, and – as a consequence of additional 

details in the project’s development/planning phase – reassessment and optimization 

of performance requirements with an aim at making sure barriers functions and 

associated barrier elements have the intended properties. 

In the figure 7, PSA has categorized barriers based on their requirements for 

technical, operational and organizational barrier elements. Therefore, they often 

display characteristics such as: capacity, functionality, effectiveness, integrity, 

robustness and availability. 

For the case of drilling operation, an example of technical barrier elements provided 

by the barrier function is to secure an adequate fluid column during drilling 

operations. In this respect, the monitoring operation and the initiation of necessary 

countermeasures to prevent and/or to deal with a kick will depend on predefined 
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routines/procedures in addition to equipment such as mud pumps and blowout 

preventers (BOPs) that must function efficiently. The performance requirements for 

operational and organisation barrier elements could include personal expertise in 

doing the work as well as criteria for action, response time, notification to the central 

control room, number of personnel and availability.  

In the Norsok D-010 rev.4, the well integrity requirement needs to be ensured to 

prevent influx hydrocarbon during drilling activity. Norwegian regulations require 

that personnel must be capable of handling hazards and accidents, and that provision 

must be made so that personnel with control and monitoring functions are able to 

acquire and respond to information efficiently at all times. The following shows an 

example of bow tie diagram to visualize causes and consequences while drilling with 

the new technology of Managed Pressure Drilling method. 

 

Figure 8: A bowtie risk diagram models the causes and consequences of an influx of Hydrocarbons into the 
well, and shows how MPD adds layers of well control and mitigation source(Sammat, 2013) 
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In the [Appendices B], it is provided a summary of the Macondo barrier failure with 

MTO approach. Different barriers can be of a technical, operational or organizational 

nature, or a combination. A complete set of indicators for managing Major Accident 

Risk must cover the Man, Technology and Organization (MTO) perspective 

Issues related to policy, regulations and standards: Since the end of 19
th

 century, 

the oil and gas industry has been registered a tremendous change and improvement in 

policies, regulations and standards by ensuring that the G&O exploration and 

production are conducted safely. As other major accidents such the Pipe Alpha, Texas 

City Refinery, etc., the Macondo accident has been also a precursor of substantial 

change in policy, regulations and standards.  

Changes have mainly been recorded in USA and Norway but also the other 

worldwide community has been following Macondo with special interest. Most 

changes has particularly been seen through the revised Norsok and API 

Recommended practices as well as the institutional reform with an aim at improving 

safety during drilling operation in Deepwater environment. In USA, the Macondo 

Accident has led to significant reform of the US Department of the Interior’s offshore 

safety and environmental regulator. The dual roles MMS as a leasing agent and 

regulator, early strongly criticized (Brown, 2012) has been restructured with the 

creation of new bodies as reflected in section 3.1. It has been stressed that the new 

created regulators bodies should be properly resourced and not subject to undue 

political and industry pressure.  

Some changes in decision risk management have recommended the US offshore 

regulatory regime, to adopt a proactive, risk-based performance approach similar to 

the UK safety case approach in the North Sea.  

Sub surface characterizations: From personal communication with P.Nadeau and as 

it is also reflected in the appendix E, a setup of an adequate barrier in a situation of 

HPHT environment call for a sound understanding of the subsurface geologic 

environment. For an exceptional case such the Macondo prospect of the Gulf of 

Mexico (GoM), even an experienced scientist, geologist can make easily a mistake 
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when care is not well taken to analyse the anomalously low leak off pressure (LOP) 

without properly considering the sub-surface stress regimes.  

With the subsurface generally limited in total stratigraphic extent, it results in a rapid 

departure from more hydrostatic pressure condition, to very high degrees of 

overpressure, often approaching lithostatic gradients, and near the Leak Off Pressure 

limit of the formations (Nadeau, 2011a). As it has been revealed by P. Nadeau, the 

risks can be compounded if the operator fails to realize that “LOP” test results could 

in fact be FPPs (Fracture Propagation Pressures, normally close to the minimum 

stress) (Nadeau, 2011b).  

The master thesis has found that the combination with Goldon Zone (GZ) geological 

processes, the stress regimes (e.g. a careful analysis of Formation Break-down 

Pressure (FBP) and the Fracture Propagation Pressure (FPP)) as well as the Leak off 

Pressure (LOP) will be an important step for significant improvement in risk analysis 

and risk management for adequate well completion/casing and cementing design. This 

is equally important for the risk analysis process as it will provide the correct 

hydrostatic pressure gradient which is necessary for a proper drilling mud weights 

design that will allow excellent cement distribution and bonding during cement 

displacement in the situation of HPHT conditions. 

Risk and technology development: The drilling of Macondo well used the Best 

Available Technology (BAT), a 5
th

 generation MODU. According to the technical 

specification, the Deepwater Horizon was equipped with Dynamic Position type DP3, 

a device with redundancy in technical design and with an independent joystick back-

up. The back-up dynamic positioning control system must enable the MODU to 

automatically disconnect in a case of emergency.  

Other equipment, instruments and monitoring system of the Deepwater Horizon were 

of the highest quality: “e-drill” – a drill monitoring system whereby real-time drilling 

data from the rig was received for maintenance and troubleshooting information, the 

BOP of 15000 psi –as the last critical component designed to contain the hydrocarbon 

in a case of kick. Other characteristics included the pressure and drill monitoring 

technology, to automated shutoff systems. The OptiCem cement modelling system, 
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used by Halliburton in April 2010 for BP's Gulf of Mexico drill, played a crucial part 

in cement slurry mix and support decisions.   

Beside the above mentioned perfections, one can never be sure that possible incidents 

were all identified and that risks and uncertainties have been adequately identified, if 

alternatives have been assessed at the right time and that they were sufficiently 

consistent with the identified risk picture. 

Today, the Macondo accident has created the possibility of new technology testing 

and implementation.  A MPD approach is currently wide used for a BHP control 

during Deepwater drilling. In the contrast of the mud weight designed to 

hydrostatically overbalance exposed formation pressures, the Norsok D-010 rev.4 has 

strengthen the primary well barrier with the MPD equipment and in addition to mud 

column in the well. The MPD equipment is used to adapt and control the annular 

hydraulic pressure profile within the exposed formation pressure limits. Though the 

primary and secondary well barriers remain independent, the MPD still maintain the 

same function for the secondary well barrier as well as for the primary well barrier. 

We should recall that the Norsok D-010 rev.4 has maintained the same definition for 

the secondary well barrier found in the conventional drilling which consists of an 

envelope of several well barrier elements, e.g. casing or liner strings, casing or liner 

cement, casing or liner packers, plugs wellhead and BOP. The tertiary well control 

consists of the last barrier for well integrity. It includes the pumping substance i.e. 

heavy slug into the wellbore to stop uncontrolled flow in the well.  Following the 

Norsk D-10 rev.4, revision, a new crossflow well barrier is suggested to prevent flow 

between formations (i.e. where crossflow is not acceptable). The crossflow well 

barrier may also function as primary well barrier for the reservoir.  

One of many cases of the recent technological development referred to in this Master 

thesis, consists of new aqueous-based version: “the SandWedge® conductivity 

enhancement system” announced by Halliburton following the Macondo disaster. The 

new version delivers proprietary conductivity enhancement technology with more 

operational efficiency, versatility and reliability. The aqueous-based system also 

enables important applications in remedial fracture treatments (Halliburton, 2012).  
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Safety management perspective: The empirical literature accounts some consistent 

associations between specific leadership styles and safety outcomes [see table 4]. The 

reader is advised to consult the HSE Research Report by (Lekka, 2012) for more on 

effective leadership behaviours for safety. 

According to Hollnagel et al., 2008, the modern research into workplace accidents has 

identified that missing the side effects of change is the most common form of failure 

for individuals and organizations cited in  (Smith, 2011). During well design, a 

rigorous peer-review process takes place, however when changes such as drilling 

procedures or well design occur in the weeks and days and/or during drilling 

operations it may become unrealistic to conduct a thorough peer-review and  

subsequently adopt a management of change (MOC) process. A passive leadership at 

Macondo, seems to have guided some decisions that made possible the accident. 

Table 4: Leadership styles and their safety outcomes adapted from (Bea, 2011) 

leadership styles Safety outcomes 

Transformational leadership (e.g. acting as a role 

model, inspiring and motivating employees to 

work safely and showing concern for employees’ 

welfare,  It enhances employees’ levels safety 

consciousness (i.e. knowledge).) 

 Fostering perceptions of a positive safety 

climate,  

 Promoting higher levels of employee 

participation in safety activities, 

 Compliance with safety rules and procedures 

and safety citizenship behaviors (e.g. 

participation in safety committees, looking 

out for workmate’s safety)  

Transactional (contingent reward) leadership (e.g. 

clarifying performance expectations, monitoring 

and rewarding performance; It enhances 

employee safety performance such as safety 

citizenship behaviors.) 

 perceptions of a positive safety climate, 

 positive safety behaviors and reduced 

accident rates 

Passive leadership (i.e. turning a blind eye to 

safety) 

 Negative perceptions of safety climate and an 

increase in safety-related events and injuries.  

 

Several publications (Smith, 2011, Kelm, 2011) as well as the investigations reports 

have revealed that safety-related processes, policies, and procedures (e.g. the adequate 

review by the Minerals Management Service and/or whether commercial pressures 

led to breaches of legally approved practice) and the ad hoc lack of formal risk 

analysis or internal expert review that in some cases caused catastrophic 

consequences during Macondo well abandonment plan.   



76 
 

The rig operations continued despite flaws observed along the drilling activities on 

Macondo: e.g. the extraordinary pressure necessary to convert the float collar, the 

cement job on the production casing without making sure that the selection of only six 

centralizers on the casing string would not lead to channelling of the cement in the 

annulus and the casing shoe track, the inadequate negative pressure test. All those 

decisions [see table 5] compromised the well integrity.   

It is obvious that an understanding of different types of leadership and behaviours in 

complex organizations, that promote error detection and prevention, is extremely 

crucial in order to avoid small margins of errors given that they will lead to very 

serious consequences. 

Table 5: Examples of Decisions that increased Risk at Macondo while saving time (Hair and Narvaez, 2011) 

Decisions Was there A less risky 

alternative available? 
Less time than 

alternative? 
Decision-maker 

Not waiting for more 
centralizers of preferred 

design 

Yes Saved time BP on shore 

Not waiting for foam 

Stability Test Results and/or 
Redesigning Slurry 

Yes Saved time Halliburton and (perhaps BP) 

on shore 

Not Running Cement 

Evaluation Log 

Yes Saved time BP on shore 

Using Spacer Made form 
Combined lost Circulation 

Materials to Avoid Disposal 

issues 

Yes Saved time BP on shore 

Displacing Mud from Riser 

Before Setting Surface 

Cement Plug 

Yes Unclear BP on shore 

Setting Surface Cement Plug 

3000 Feet Below Mud line in 

Seawater 

Yes Unclear BP on shore 

(Approved by MMS) 

Not installing Additional 
Physical Barriers During 

Temporary Abandonment 

Procedure 

Yes Saved time BP on shore 

Not Performing Further well 

integrity Diagnostics in light 

of troubling and Unexplained 
Negative Pressure Test  

Results 

Yes Saved time BP (and perhaps Transocean) 

on Rig 

Bypassing Pits and 

conducting Other 
simultaneous Operations 

During Displacement 

Yes Saved time Transocean (and perhaps BP) 

on Rig 

 

Taking Halliburton example reported in the Corporate Sustainability Report 

(Halliburton, 2011), many incidents continue to happen due to employees do not 

proper follow procedures. The same report shows that the near misses and high-

potential incidents reporting has enabled the company to identify and fix behavioural, 
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process or equipment issues before they result in incidents. Though the overall 

reporting rate declined by 6%, the near-miss reporting increased by 11% year-over-

year and high-potential incident reporting also increased slightly.  

One of the most popular safety management approaches consists of the occupational 

health and a safety measure which is limited to report measures on near misses, 

accident involvement and injuries. In Norway, the use of the RNNP, to illustrate 

contributors in incident as well as the comparison between incidents reported, shows 

that over the last 40 years the risk exposure with regards to both major accidents and 

occupational accidents have considerably reduced. The same situation is also 

observed in UK since the introduction of the Safety Case. In USA, SEMS regulations 

have now authorized unannounced rig inspections and third party audits of SEMS 

programs. Recent drilling contracts for work in the US Gulf of Mexico often address 

new post-Macondo regulatory requirements relating to BOP certification and testing. 

Provisions obligating the contractor to act in accordance with the operator’s Safety 

and Environmental Management System “SEMS” requirements are also frequently 

proposed by operators along with more stringent terms addressing maintenance, 

testing and certification of BOP, rig crew training, etc…..The  proposals would like 

lessees also to systematically identify risks, establish procedures to address those 

risks, authorize any employee on an offshore facility to stop work, delineate authority 

for operational safety and establish guidelines for reporting unsafe conditions 

(Moomjian, 2012).  

The above picture shows that the promotion of ZERO, or near-ZERO, HSE results 

and Safety Quality (SQ) performance information require extensive involvement of 

company in addition to training, networking within the industry. On the other hand, 

the master thesis finds that the effectiveness study of leadership in high hazard 

contexts calls for development of specific indicators (similar to RNNP) to measure the 

leadership behaviours in view to guarantee high levels of safety.  

Various studies (Austnes-Underhaug et al., 2011) have shown that the safety 

management system is often hampered by the continuous interior restructuring and 

integration process in companies. This situation creates significantly stresses in the 

security management and environmental protection. Since 1998, BP has known such 
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transformation with the extensions of its operation by continuous merger and 

reorganization.  Though the company asset increased considerably, the management 

may remain difficult to success due to the culture difference.  

The same observation has been seen with in relation to Gullfaks C incident in May 

2010. The study by (Austnes-Underhaug et al., 2011) showed that among several 

underlying causes of the incident, the merge of Statoil and Hydro in one company in 

2007. In this context, the full integration of all activities, resources and management 

documentation created too many topics in documents procedures with the group’s 

system of governing documents (DocMap) largely copied into the system’s governing 

documents (APOS). This created a challenging situation to differentiate between 

processes, requirements and methods. This also connects to non-compliance.  

Issues related to governance documentation and compliance may thus have served as 

underlying causes of the incident on Gullfaks C. Similar observations were mare with 

regards to Snorre A in 2004 (Austnes-Underhaug et al., 2011). Procedures perceived 

as cumbersome and difficult to deal with, and can sometimes also be difficult to 

follow because there are conflicting claims to the same operation. 

Furthermore,(Austnes-Underhaug et al., 2011) points out that the staffing change 

Autumn 2009 - Spring 2010 has had an impact on management and decision-making 

on Gullfaks C. Much of the leadership of the Gullfaks C was replaced, and it is 

pointed out a lack of lessons learned in this process.   

When a new management system such as ARIS
2
 and/or a new technology such as 

MPD are introduced in a system, it follows normally several conflicting requirements 

of the systems. It is therefore important that more detailed risk assessment, risk 

management plan and issues such as “organizational context”, “management and 

decision-making” and “compliance” are well analysed. This is a concern especially 

for rotation, experience transfer and management documentation. An example related 

to organizational context can serve that employees may be less willing to summarize 

                                                           
2 ARIS (Work process oriented management) is Statoil's management system describing 

roles, work flow, requirements and methods for the various activities. ARIS replaced 

APOS since 2010 
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and systematize the knowledge they possess and share this, or a feeling of loss of 

ownership, power and importance of the organization, as well as fear of being fired. 

Lack of motivation may for example result in deferral, hesitation, sabotage or 

rejection of the implementation and application of new knowledge.  

4.2. Dilemma in risk communication  

By recalling findings of the investigations team’s reports, some problems of Macondo 

go beyond the Code of Professional Conduct. In various situations, decisions were 

taken without any formal risk analysis: e.g. the cement design as part of the primary 

well barrier, the casing with in short supply of centralizers as part of the secondary 

well barrier. Other flaws during the well completion were recorded: e.g. the use of 

excessive pressure to convert the float collar, the misinterpretation of the negative 

pressure test, the use of spacer made form combined lost circulation materials to avoid 

disposal issues, the decision not to install additional physical barriers during 

temporary abandonment procedure, etc. The tertiary well control/barrier recommends 

the use of heavy slug into the wellbore to control the flow in the well. This could not 

happen because the excessive pressure and the damage caused to others equipment’s 

among them the BOP.   

Though some decisions were criticized by certain contractors and the fact that 

information on hazards was not shared among all the stakeholders involved in the 

well completion, this master thesis report has raised concerns on the effectiveness  of 

risk analysis and/or risk management used on Macondo. For some decisions, the 

acceptable state of art of the use of risk analysis and risk management was just 

ignored. As the operator and contractors failed adequately to implement the needed 

risk analysis there was nothing left to proceed with risk communication? On the other 

hand, few occasions when risk was understood there is no indication that those 

occasions of risk were subject to communication or consultation as it is recommended 

by ISO 31000. The BP culture of communication during the drilling the Macondo 

well drilling has to be questioned. Some attitudes and behaviours which are neither 

ethical nor professional have been also discovered in the post Macondo time. One BP 

former employee on the name of Kurt Mix, who resigned in 2012 purposely deleted 
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oil flow estimates i.e. around 200 messages and emails that made difficult the 

investigation to reconstruct some situations of the accident. 

Findings of the investigations teams have shown that Macondo accident took place 

because mainly human and organizational errors. Those extend to working practice, 

competence, communication, procedures and management (Skogdalen and Vinnem, 

2011). This master thesis goes beyond this simplified statement and confirms that act 

of negligence/irresponsibility and the circumstance of not performing risk analysis 

and risk management as required by acceptable standards and rules are among the 

challenges scientists, engineers and the leadership will have to improve. Meanwhile, 

Sintef, 2011 recognizes the extremely difficult or even the impossible circumstances 

to access the information related to human errors e.g. the organizational safety 

culture, the organization management, and personal experience. 

In the Fig. 9, it is shown the basis of regulatory requirements, [ISO 31000 Risk 

management – principles and guidelines and ISO standards for management and 

leadership]. The fig. 9 has been used by (PSA, 2013) as a starting point to describe a 

barrier model which specifies principles for barrier management.  

 

Figure 9: Process for risk management in ISO 31000 
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From the above risk management model, the responsible party must ensure (and 

demonstrate) that communication and consultation with both internal and external 

stakeholders are appropriate throughout the barrier management process. This is 

intended in part to ensure:  

- good quality – by drawing on relevant expertise and experience throughout 

the process, including when establishing the context, when conducting risk 

assessments and management, and for supervising and monitoring at all times  

- participation by and a sense of ownership among stakeholders who will be 

affected by decisions in every phase  

- understanding of the background to decisions  

- that risk analyses are communicated in such a way that target audiences 

obtain a nuanced and coherent presentation of the analysis and its results  

-  that documentation of the barrier strategy(ies) is actively used to provide 

those involved with a common understanding of the basis for the requirements 

specified for the various barriers.  

Communication and consultation are not to be regarded as an independent activity, but as 

one which will pervade the whole barrier management process in every phase. 

In the aftermath of the 2010 BP Gulf of Mexico spill, former Shell president, John 

Hofmeister said that in order for BP to truly make changes to its HSE management 

practices and procedures, the changes must be fully integrated into the company. He 

said BP must “penetrate the minds and hearts of people who implement these 

procedures, and that takes times and education and communication” (Souder, June 20, 

2010). In other meaning companies that fail to dedicate an appropriate amount of 

time, education and communication to ensure practices are in line with their values 

and policies, they will continue to experience high costs due to social risk and missed 

opportunities for cost savings, reputational capital and strategic business 

opportunities. 

In particular, the followings should be highlighted for better success in risk analysis 

and risk management: (i) the use of rigorous and structured method for risks 

identification, (ii) the management has ownership and understanding of risks, (iii) the 
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access of  experienced rig crews and service personnel, (iv) the review and discussion 

of risk management on a daily basis during the operation, (v) the use of purpose 

designed software for capturing, reporting and tracking actions in the risk 

management, (vi)  the mitigation measures are fully understood by the rig team at the 

time of execution , (vii) clear responsibilities of the various people in the team in 

relation to the identification and management of risk, (viii) the external validation of 

the project during the peer review process, (ix) enables a formal link to the wider 

organizational experience to be made through access to Lessons Learned databases. 

In this era, the use of digital oil field technology offers its advantage to the industry 

with a possibility to access huge amounts of information that help to make high-

quality decisions and the ability to share information at unprecedented speeds and 

quantities. If safety communication (e.g. open and trusting channels for sharing 

safety-related information) and hazard awareness and management (e.g. including an 

organisations’ use of audits and risk assessments to identify problems and put the 

necessary control measures in place) will be part of the routine of risk assessment, this 

will bring an improvement in safety. 

As demonstrated, systematic risk assessment as detailed by ISO 31000 is one of the 

key tools for successful project management of drilling operations. A single consistent 

approach is taken to the identification, evaluation, mitigation and management of risk 

throughout the whole process. It links the identified risks to uncertainties in the 

project cost and connects the rig team with those risks at the point of execution of the 

job. Time response remain crucial in making decisions, thus one will avoid surprises 

by conducting an in-depth risk analysis before the project starts and make sure all risk 

have been identified and understood. 

In the overall objective, it is stressed that the development process must focus on 

“Human Centred.” This should adhere to the principles of ISO 9241-210:2010 

“Ergonomics of human-system interaction—Part 210: Human-centred design for 

interactive” in which both hardware and software components of interactive systems 

can enhance human–system interaction. Today, many companies require employees 

to conduct regular behaviour-based safety (BBS) observations as a way to increase 

awareness and improve safety behaviours.   
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5. CONCLUSIONS 

A quote by George Bernard Shaw says “a life spent on mistakes is not led only more 

honourable but more useful than a life spent doing nothing”.  It is part of human 

nature that experience teaches at the cost of mistakes. Investigations reports analysed 

in this master thesis as well as various used publications have confirmed that 

Macondo accident was due to human errors, the failure in organization culture,  in 

particular the wrong decisions, personnel deficiencies, oil platform design flaws and 

technical problems. In Appendices F, it summarizes what author finds, are the major 

contribution by this Master thesis. 

By adopting the complacency attitude and the lack of oversight, the Macondo 

operator and contractors appear never to have undertaken any risk analysis nor to 

have established mitigation plans regarding their performance of simultaneous 

operations after the cement barrier was judged being safe.  

It has been seen that the recent risk analysis and risk management development is 

being strongly impacted by Macondo accident. Extraordinary improvements are 

recorded in term of revised policy, regulations and standards. In addition, decisive 

efforts are observed within technology development for a safe drilling operation in 

more difficult environment of Deepwater and the Arctic. This study has confirmed 

that no matter that a risk analysis is made, the risk communication remain crucial to 

avoid major accidents.  

For the case of Deepwater drilling activities, the understanding the subsurface 

geology, rock mechanics will be the basic primary guarantee for a safe design system. 

We have seen a need to develop indicators that will deal with barriers performance 

evaluation both during the design and the operation in deeper HPHT wells. This is 

should be part of the improvement of risk analysis techniques in an attempt to show 

which factors from subsurface formation, drilling technology and human decisions 

will have more influence on the occurrence of a blowout.  
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B. APPENDICES: PROPOSED BARRIER STRATEGY FOR DRILLING AREA (SUMMARY OF THE MACONDO BARRIER FAILURE WITH MTO 

APPROACH) 

Barriers Performance 

Standard 
Human  Technology Organization 

 

Containment 

Barrier  
- Containment 

Function 

- Drilling and 

Well Barrier  

- Personnel involved 

in cement job should 

be competent 

- The consequence for 

any modification 

should be assessed 

properly by performed 

personnel  

- Well integrity should be ensured from good cement 

mixture. 

- Improved well design for wells with high flow 

potential 

- Location of float collar at the bottom shoe to create 

overbalanced and prevent poor integrity of shoe track 

- Adequate centralizer should be installed to prevent 

channeling 

- Audit on cementing technical activity 

should be conducted regularly. 

- Comprehensive cement lab test is available 

- Management of change should be clear 

- Regulation and industry accepted 

recommended practices must be followed. 

- Effective quality assurance/audit should be 

performed to ensure good contractor 

performance. 

Barrier to 

Limit Spill 

Size/Cloud 

- Gas 

Detection 

System 

- Ignition 

Source 

Control 

- Personnel should assess any 

multiple and simultaneous 

operation to prevent 

distraction and loss of focus 

for major work 

- Personnel should be 

competent in technical to 

identify signal in 

hydrocarbon release 

- ESD must be initiated automatically with the 

activation of fire and gas detector. 

- Use of more accurate kick detection devices 

- Availability joint document or procedures 

between company and contractor to handle 

well control. 

- Specific regulation from authority and 

company for negative pressure test should 

be developed with clear minimum standard 

acceptance. 

- Competency and training system should 

ensure personnel to have required 

competency in well control 

Barriers to 

Prevent 

Ignition 

- ESD System 

- Process 

Safety 

System 

 

- Personnel should be 

competent to act in the event 

of abnormalities. 

 

- Fire and gas detector must be able detect gas to form 

flammable volume 

- HVAC engine room is designed to shut off upon gas 

detection 

- Location of any venting system outlet is designed to 

have adequate distance with ignition sources. 

- Engine room must be classified 

- Emergency shutdown system must be initiated 

automatically in the course of gas detector is activated. 

- Automatic activation of safety system on 

the rig. 

- Regular audit system on the rig to identify 

hazard on the rig. 

- Training system for personnel to react in 

the event of emergency. 

- Clear procedure in rig to determine the 

time to use diverter or MGS should be 

available 
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Barriers Performance 

Standard 

 

Human  Technology Organization 

 

Barriers to 

Prevent 

Escalation 

- Natural 

Ventilation & 

HVAC 

- Fire 

Detection 

System 

- Active Fire 

Fighting 

- Passive Fire 

Protection 

- Explosion 

Barrier 

- Personnel must assess 

manual operation for 

firefighting, EER, and safety 

instrumented system 

- Personnel should 

continuously monitor well 

performance during critical 

activity 

- Personnel must competent 

to take any proper action in 

case 

of emergency situation occur 

- MUX cable should be protected from explosion and 

fire. 

- Control pod and batteries should be designed with 

redundancy and longer life time 

- OEM electrical connector should be used and 

installed at solenoid valve 

- Pump at the ROV should be reliable to initiate any 

emergency action to close BOP 

- Company should have proper safety 

management system on critical equipment. 

- Audit finding for critical equipment should 

be closed immediately and appropriately. 

- Rig contractor must follow and confirm 

with regulation and vendor policy for critical 

equipment 

- BOP diagnostic practices should cover all 

critical components of the control system 

(e.g., AMF batteries). 

Barrier to 

Prevent 

Fatalities 

- Escape and 

Evacuation 

- PA and 

Alarm 

- Personnel should aware 

consequence of safety critical 

Equipment, such as alarm, 

inhibition. 

- General alarm must be designed to automatically 

sound in case of hydrocarbon released detected from 

fire and gas detector 

- Company should give high attention of 

process safety rather than personal safety. 

- Lesson learned from near misses or 

precursor event should be distributed to all 

employee and contractor. 

- Proper emergency training system should 

be in place 

- Inhibition of critical equipment should be 

treated critical. 
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C. APPENDICES:  MATRIX FOR CATEGORIZATION AND CLASSIFICATION FOR 

WELL CONTROL INCIDENT. DRILLING AND COMPLETION OPERATIONS  

 

Pink: alert to PSA according to management regulation § 29 

Blue: notification to PSA according to management regulation § 29 
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D. APPENDICES:  LEAK OFF PRESSURE TEST ILLUSTRATION SOURCE  

(NADEAU, 2011B) 

 
Global Leak Off Pressure (LOP) 

pressure trend and that of 

anomalously low observation from 

offshore Louisiana, deeper than 3km 

below sea floor. Values with less than 

1.7 g/cm3 equivalent mud weight 

gradients are a particular concern for 

drilling operations. 

A Leak Off Pressure (LOP) test vs. time 

plot for mud pressure in a well 

borehole. The test is performed by 

pumping drilling mud at a constant 

rate into the borehole. Normally the 

test is only performed until the mud 

starts to leak into the formation (LOP). 

The Formation Break-down Pressure 

(FBP) is typically ~10% greater than the 

LOP. After the formation has broken 

down, a hydraulic fracture is 

propagated at the Fracture Propagation Pressure (FPP). Note that the LOP and FPP can have 

similar pressure values 
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E. STANDARDS FOR DRILLING, WELL CONSTRUCTION AND WELL OPERATIONS, 

RELEVANT TO THE MACONDO ACCIDENTS. ADAPTED FROM (ISO/TC 67 

MANAGEMENT COMMITTEE AHG INDUSTRY EVENTS (ISO/TC 67 MC 

N088), MARCH 1ST, 2011, OGP INTERNATIONAL ASSOCATIONS OF OIL 

&GAS PRODUCERS, NOVEMBER 2012) 

I. Engineering design, systems & equipment related documents: 
API TR 6AF Capabilities of API flanges under 

combinations of load 

API Spec 16A /ISO 13533 Drill through 

equipment (BOPs) (Revised) 

API Spec 16C Choke and kill systems 

(Revised) 

API Spec 16D/ISO 22830 Control systems for 

drilling well control equipment and diverter 

equipment (Revised) 

API Spec 16RCD Drill through equipment 
rotating control devices 

API RP 49 Recommended practice for drilling 

and well servicing operations involving hydrogen 
sulfide 

API Std 53 BOP equipment systems for drilling 

wells (Revised) 

API RP 59 Well control operations 

API RP 64 Diverter systems equipment and 

operations 

API RP 65-1 Cementing shallow water flow 

zones in deep water wells (Revised) 

API RP 65-2 Isolating potential flow zones 

during well construction (Revised) 

API RP 90 Annular casing pressure management 

for offshore wells (under revision) 

API RP 90-1 (formerly RP 90) annular casing 

pressure management for offshore wells (under 

revision) 

APPEA Australia offshore oil and gas title 

holder self-audit checklist 

DNV OS-C101 Drilling plant  

EI Guidelines for routine and non-routine subsea 
operations from floating vessels 

EI Model code of safe practice, Part 17 Volume 

1: High pressure and high temperature well 
planning 

EI Model code of safe practice, Part 17 Volume 

2: Well control during the drilling and testing of 
high pressure, high temp offshore wells 

EI Model code of safe practice, Part 17 Volume 

3: High pressure and high temperature well 
completions and interventions 

IMO MODU (Mobile Offshore Drilling Units) 

Code 

ISO TR 10400/API TR 5C3 Equations and 

calculations for the properties of casing, tubing drill 
pipe and line pipe used as casing or tubing 

ISO 10405 Care and use of casing and tubing 

ISO 10423/API Spec 6A Wellhead and Christmas 
tree equipment  

ISO 10426-1/API Spec 10A Cements and materials 
for well cementing 

ISO 10426-2/API Spec 10B-2 Testing of well cements 

(under revision) 

ISO 10426-3/API Spec 10B-3 Testing of deepwater 

well cement formulations 

ISO 10426-4/API Spec 10B-4 Preparation and 
testing of foamed cement slurries at atmospheric 

pressure (under revision) 

ISO 10426-5/API Spec 10B-5 Determination of 
shrinkage and expansion of well cement formations at 

atmospheric pressure 

ISO 10426-6/API Spec 10B-6 Methods of 
determining the static gel strength of cement 

formulations 

ISO 10427-3/API RP 10F Performance testing of 
cementing float equipment 

ISO 11960/API Spec 5CT Casing and tubing for 

wells (under revision) 

ISO 11961/API Spec 5D Steel drill pipe  

ISO 13354 Shallow gas diverter equipment 

ISO 13624-1/API RP 16Q Design, selection and 
operation of marine drilling riser systems 

ISO 13625/API 16R Marine drilling riser couplings 

ISO 13628-1/API RP 17A Design and operation of 

subsea production systems (Revised) 

ISO 13628-2/API Spec 17J Unbonded flexible pipe 

systems for subsea and marine applications 

ISO 13628-4/API Spec 17D Subsea wellhead and tree 

equipment 

ISO 13628-5/API Spec 17E Subsea umbilicals 

(Revised) 

ISO 13628-6/API Spec 17F Subsea production 

control systems (Revised) 

ISO 13628-7/API RP 17G Completion/ workover 

riser systems (under revision)  

IEC 61892-7 Mobile and fixed offshore units-
Hazardous areas 

ISO 13628-8/API RP 17H Remotely operated 

tools and interfaces on subsea production 
systems (under revision)  

ISO 13628-11/API RP 17B Flexible pipe 

systems for subsea and marine applications 

ISO 13679/API RP 5C5 Procedures for 

testing of casing and tubing connections 
(under revision) 

ISO 13680/API Spec 5CRA CRA casing and 

tubing 

ISO 14224/API Std 689 Collection and 

exchange of reliability and maintenance data 

for equipment  

ISO 14310/API Spec 11D1 Packers and 

bridge plugs 

ISO 15156/NACE MR 0175 Materials for 
use in H2S-containing environments in oil 

and gas production 

ISO 19901-6/API RP 2MOP Marine 
operations 

ISO 19901-7 Stationkeeping systems for 

floating offshore structures and mobile 

offshore units (under revision) 

ISO 19904-1 Floating offshore structures—

Monohulls, semi-submersibles and spars 

ISO 20815 Production assurance and 

reliability management 

ISO 23251/API Std 521 Pressure relieving 
and depressuring systems (under revision) 

ISO 28300/API Std 2000 Venting of 

atmospheric and low-pressure storage tanks 
(under revision) 

ISO 28781 Subsurface barrier valves and 

related equipment 

NORSOK D-001 Drilling facilities 

(Revised) 

NORSOK D-002 System requirements well 

intervention equipment (Revised) 

NORSOK D-SR-007 Well testing system 

(under revision) 

NORSOK D-010 Well integrity in drilling 

and well operations (Revised —considered 

in API 96 and ISO 16530) 

Norwegian Oil and Gas 117 Well integrity 

guideline 
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II. Management related documents: 
API Bull E3 Environmental guidance document: 

Well abandonment and inactive well practices for 

U.S. exploration and production operations 

API RP 75 Development of a safety and 

environmental management program for offshore 

operations and facilities 

IADC HSE Case guidelines for mobile offshore 

drilling units  

IADC Deepwater well control guidelines 

ISO 13702 Control and mitigation of fires and 

explosions on offshore production installations 

(under revision) 

ISO 15544 Requirements and guidelines for 

emergency response 

ISO 17776 Guidelines on tools and techniques for 
hazard identification and risk assessment (under 

revision) 

NORSOK Z-013 Risk and emergency 
preparedness analysis 

 

OGP 210 HSE Guidelines for the development and 

application of HSE management systems (under 

revision) 

OGP 415 Asset integrity - the key to managing major 

incident risks 

OGP 435 A guide to selecting appropriate tools to 
improve HSE culture 

 

 

OGP 476 Recommendations for 

enhancements to well control training, 

examination and certification 

OGUK OP006 Guidance on suspension and 

abandonment of wells (under revision) 

OGUK OP064 Guidelines on relief well 
planning — subsea wells 

OGUK OP065 Guidelines on competency 

for wells personnel including example 

OGUK OP069 Well integrity guidelines  

OGUK OP070 Guidelines on subsea BOP 

systems 

OGUK OP071 Guidelines for the 

suspension and abandonment of wells 

including guidelines on qualification of 
materials for the suspension and 

abandonment of wells 

OGUK SC033 Guidelines for well 
operators on well examination and 

competency of well-examiners  

 

 
III. Documents in development 

API TR PER15K-1 HPHT Protocol for equipment 

rated greater than 15K PSI 

API Std 16AR (New) Repair and remanufacture 

of drill-through equipment (working title) 

API Spec 17W – Subsea capping stacks  

API RP 90-2 Annular casing pressure 
management for onshore wells 

API RP 96 Deepwater well design 

considerations (New) 

API Bull 97/IADC Well construction interface 

document 

ISO TR 12489 Reliability modelling and 
calculation of safety systems 

 

 

 

 

ISO 13628-16/API Spec 17L1 Petroleum 

and natural gas industries — Design and 

operation of subsea production systems —
Specification for flexible pipe ancillary 

equipment 

ISO 13628-17/API Spec 17L2 Petroleum 
and natural gas industries — Design and 

operation of subsea production systems — 

Guidelines for flexible pipe ancillary 
equipment 

ISO 14998 Completion accessories  

ISO 17969 Guidelines on competency for 
wells personnel 

ISO 16339 Well control equipment for 

HPHT (High Pressure High Temperature) 
drilling operations 

ISO 16530 Well integrity in the operational 

phase 
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F. THE CONTRIBUTION BY THE MASTER THESIS: 

1. Has grouped the development of risk analysis methods in drilling activities into 

three categories: 

- The 1
st
 group covers simple models developed to examine possible outcomes 

and compare different options for investment with different levels of risk and 

uncertainties 

- The 2
nd

 group is referred to the application of risk analysis in the areas of 

reliability and availability analysis, safety management techniques and human 

and organizational factors.  

2. The 3
rd

 group refers to risk analysis methods that wide use digital technology e.g. 

real time well monitoring and Model Updating during drilling activities. Has 

found that the combination with Goldon Zone (GZ) geological processes, the 

stress regimes (e.g. a careful analysis of Formation Break-down Pressure (FBP) 

and the Fracture Propagation Pressure (FPP)) as well as the Leak off Pressure 

(LOP) will be an important step for significant improvement in risk analysis and 

risk management for adequate well completion/casing and cementing design. This 

is equally important for the risk analysis process as it will provide the correct 

hydrostatic pressure gradient which is necessary for a proper drilling mud weights 

design that will allow excellent cement distribution and bonding during cement 

displacement in the situation of HPHT conditions. 

3. Finds that the effectiveness study of leadership in high hazard contexts calls for 

development of specific indicators (similar to RNNP) to measure the leadership 

behaviours in view to guarantee high levels of safety 

4. Goes beyond this simplified statement and confirms that act of 

negligence/irresponsibility and the circumstance of not performing risk analysis 

and risk management as required by acceptable standards and rules are among the 

challenges scientists, engineers and the leadership will have to improve 

5. Has confirmed that no matter that a risk analysis is made, the risk communication 

remain crucial to avoid major accidents 

Stavanger, June 2013 


