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Abstract

We follow a constructive approach and find higher-dimensional black
holes with Ricci nilsoliton horizons. The spacetimes are solutions to Ein-
stein’s equation with a negative cosmological constant and generalises
therefore, anti-de Sitter black hole spacetimes. The approach combines
a work by Lauret – which relate so-called Ricci nilsolitons and Einstein
solvmanifolds – and an earlier work by the author. The resulting black
hole spacetimes are asymptotically Einstein solvmanifolds and thus, are
examples of solutions which are not asymptotically Anti-de Sitter. We
show that any nilpotent group in dimension n ≤ 6 has a corresponding
Ricci nilsoliton black hole solution in dimension (n+2). Furthermore, we
show that in dimensions (n + 2) > 8, there exists an infinite number of
locally distinct Ricci nilsoliton black hole metrics.

1 Introduction

The last decade has seen the interest for negatively curved spaces growing con-
siderably. From a mathematical point of view, the negatively curved spaces have
an extremely rich structure; for example, in three dimensions ”most” manifolds
are negatively curved [1, 2, 3]. From a physical point of view, negatively curved
spaces have arisen both in superstring theories and in higher-dimensional the-
ories of our universe (see e.g., [4, 5, 6]). The maximally symmetric Anti-de
Sitter space (AdS)– which is a solution to the Einstein equations with a nega-
tive cosmological constant – is the space that has attracted the most attention.
In this paper, however, we will draw attention to some other negatively curved
solutions to Einstein equations with a negative cosmological constant. In the
mathematics literature they are known as Einstein solvmanifolds [7, 8, 9], and
unlike the AdS spaces, are not maximally symmetric. We will study a class
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of Einstein solvmanifolds and show that they allow for a simple generalisation
which can be interpreted as black hole solutions with a horizon geometry being
that of a nilmanifold.

For a Lie algebra, g, we can contruct the two descending series,

g
(0)
D = g, g

(i+1)
D = [g, g

(i)
D ],

g
(0)
C = g, g

(i+1)
C = [g

(i)
C , g

(i)
C ],

called the derived and the lower central series, respectively. If the derived series

terminates, i.e., g
(k)
D = 0 for an integer k, we call the Lie algebra g nilpotent.

Similarly, if g
(k)
C = 0 for an integer k, we call the Lie algebra g solvable. Clearly,

any nilpotent Lie algebra is also solvable. Here, we will denote a generic nilpo-
tent Lie algebra 1

n. Any Lie algebra, g, gives rise to a unique connected and
simply connected Lie group, G, such that the tangent space of G (as a manifold)
at the unit element is g: g = TeG [10]. Any such Lie group can be equipped
with a left-invariant metric which turns G into a Riemannian space having a
metric which is invariant under the left action of G (see e.g., [11]). In the case
of a nilpotent Lie algebra n, this gives rise to a nilpotent Lie group N . Such a
nilpotent Lie group equipped with a left invariant metric is commonly denoted
as a nilmanifold. We will assume that this metric is Riemannian, unless stated
otherwise.

A Lie group usually possesses many non-isometric left-invariant metrics. A
natural question would therefore be: Is there a particularly nice or distinguished
left-invariant metric? Such a distinguished metric can, for example, be an Ein-

stein metric [12]; that is, a metric gµν that obeys

Rµν = λgµν , (1)

where Rµν is the Ricci tensor. However, this is not appropriate for nilmanifolds
since a well known result states that nilmanifolds do not allow for a left-invariant
metric which is Einstein [11]. On the other hand, Lauret [13] noted that some
nilpotent groups allow for metrics which obey

Rµν = λgµν + Dµν , (2)

where Dµ
ν as a linear map, D : n 7→ n, is a derivation of n; i.e.

D ([X, Y ]) = [D(X), Y ] + [X, D(Y )].

These metrics have a nice interpretation in terms of special solutions of the Ricci

flow [14]. For a curve g(t) of Riemannian metrics on a manifold M , the Ricci
flow is defined by the equation

∂gµν

∂t
= −2Rµν . (3)

1The Abelian algebras are trivially nilpotent; however, we will assume that n is non-
Abelian.
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If a solution to the Ricci flow (3) moves by a diffeomorphism and is also scaled
by a factor at the same time, we call the solution a homothetic Ricci soliton [15].
In other words, if φt is a one-parameter family of diffeomorphims generated by
some vector field and

g(t) = c(t)φ∗

t g

is a solution of the Ricci flow, then g is a homothetic Ricci soliton.
Ricci nilsolitons are nilmanifolds with left-invariant metrics being homoth-

etic Ricci solitons. In addition, a Ricci nilsoliton has a unique decomposition
as given by eq.(2); hence, Ricci nilsolitons are in some way a generalisation of
Einstein metrics to nilpotent groups. These Ricci nilsolitons are also unique
up to isometry and scaling and can therefore be taken to be distinguished left-
invariant metrics on nilmanifolds [13]. 2

In this paper we will study black hole solutions where the horizon is locally
a nilmanifold, while the total spacetime is a solution to the Einstein equations
with a negative cosmological constant. Given an n-dimensional nilmanifold
N , we will see that we can construct such black hole solutions (with compact
horizons) of dimension (n + 2) provided that

1. The nilmanifold, N , allows for a nilsoliton metric.

2. The nilmanifold, N , allows for a compact quotient; i.e., there exists a
lattice Γ ⊂ N such that N/Γ is compact.

The nilsoliton metric will correspond to the (local) horizon geometry and con-
sequently these solutions are Ricci nilsoliton black holes. In particular, we will
see that for any nilmanifold of dimension ≤ 6, both requirements are fulfilled
(thus, there exists a corresponding black hole solution of dimension ≤ 8). On
the other hand, for nilmanifolds of dimension > 6, these requirements are not
always fulfilled, however, we will show that there exists an infinite family of
nilmanifolds for which they do. This implies that, for spacetime dimension > 8,
there exists an infinite number of locally distinct Ricci nilsoliton black holes.

The paper is organised as follows. First, we show how to construct Ricci
nilsolition metrics through a variational procedure. Then, using a method of
Lauret, we construct Einstein solvmanifolds which constitute the ”background”
spacetime. A simple generalisation allows us to construct black hole solutions
having Ricci nilsolitons as horizon geometries. Some aspects of these solutions
are discussed, among them, the asymptotic geometry. The paper is constructive
in nature and therefore, in the Appendix, a full list of the nilpotent Lie alge-
bras of dimension ≤ 6 is given, along with their corresponding Ricci nilsoliton
solution.

2Interestingly, the Ricci flow has shown to be of importance in resolving the Thurston
geometrisation conjecture [1] and thereby the famous Poincaré conjecture (see e.g., [16]).
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2 Finding Ricci nilsoliton metrics through a vari-

ational procedure

Let us consider a vector space n with a fixed inner product 〈·, ·〉 on n. Define a
nilpotent Lie algebra µ on n by the structure constants; i.e.,

[ei, ej ] = µ(ei, ej) = µk
ijek, 〈ei, ej〉 = δij . (4)

The set of nilpotent Lie algebras can be considered as an algebraic subset of
V = ∧2

n
∗ ⊗ n, the vectorspace of all skew-symmetric maps from n × n into n.

Any nilpotent Lie algebra µ defines a corresponding simply connected nilpotent
Lie group, Nµ, endowed with the left-invariant Riemannian metric determined
by 〈·, ·〉.

Moreover, define the action of A ∈ GL(n) on µ by

A ∗ µ(X, Y ) = Aµ(A−1X,A−1Y ), X, Y ∈ n. (5)

If µ̃ and µ are two Lie algebras, then µ̃ and µ are isomorphic as Lie algebras if
and only if they are in the same GL(n) orbit. Furthermore, the corresponding
nilmanifolds Nµ̃ and Nµ are isometric if and only if they are in the same O(n)-
orbit.

The Ricci operator of Nµ can be calculated to be

〈Rµei, ej〉 =
1

4

∑

kl

[
〈µ(ek, el), ei〉〈µ(ek, el), ej〉 − 2〈µ(ei, ek), el〉〈µ(ej , ek), el〉

]
. (6)

Also, consider the two functionals, R(µ) and F (µ) defined by

R(µ) ≡ Tr(Rµ),

F (µ) ≡ Tr(R2
µ). (7)

We note that these functionals are the Ricci scalar and the ”square” of the Ricci
tensor, RijR

ij , respectively, of the left-invariant metric. The inner product 〈·, ·〉
defines an inner product on V , also denoted 〈·, ·〉, by

〈µ, µ̃〉 =
∑

ijk

〈µ(ei, ej), ek〉〈µ̃(ei, ej), ek〉 =
∑

ijk

(µk
ij)(µ̃

k
ij). (8)

This inner product defines a natural normalisation of V :

S =
{
µ ∈ V

∣∣ 〈µ, µ〉 = 1
}

. (9)

Note that this normalises R(µ) since R(µ) = −〈µ, µ〉/4. Since a constant rescal-
ing of the metric will rescale R(µ), there is no loss of generality to restrict to
S.

It is desirable to find a distinguished metric on a nilmanifold. Since nilpotent
groups do not allow for Einstein metrics, we can try the next best thing, namely
minimize the functional

Tr

[
Rµ − 1

n
Tr(Rµ)1

]2

= F (µ) − 1

n
R(µ)2, (10)
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which measures how far Nµ is from being an Einstein space. Therefore, fixed
points of F restricted to S are of particular significance. In fact, we have the
following theorem by Lauret [17]:

Theorem: For a nilpotent µ ∈ S the following statements are equivalent:

1. Nµ is a Ricci nilsoliton.

2. µ is a critical point of F : S 7→ R.

3. µ is a critical point of F : GL(n) ∗ µ ∩ S 7→ R.

4. Rµ ∈ R1⊕ Der(µ).

This Theorem intimately connects the critical points of F and the Ricci
nilsolitons. The Ricci nilsoliton metrics can therefore be considered to be par-
ticularly nice metrics on nilpotent groups.

For a Ricci nilsoliton there exists a symmetric derivation D ∈ Der(µ) such
that

Rµ = cµ1 + Tr(D)D, Tr(RµD) = 0. (11)

Thus,

cµ =
F (µ)

R(µ)
= −Tr(D2).

Since nilmanifolds are never Einstein, we necessarily have D 6= 0 for a Ricci
nilsoliton. Moreover, the scalar curvature never vanishes so R(µ) < 0.

A necessary condition for a Ricci nilsoliton metric to exist for a given nilpo-
tent Lie algebra µ, is therefore that µ has a non-zero symmetric derivation D.
In particular, if µ is characteristically nilpotent (i.e., Der(µ) is nilpotent) then
there cannot exist such a D and no Ricci nilsoliton metric exists. Therefore,
not all nilmanifolds allow for a Ricci nilsoliton metric. On the other hand, it
has been proven that all nilmanifolds of dimension ≤ 6 allow for one [19].

We now have an algorithm for finding Ricci nilsolitons for a given nilpotent
Lie algebra µ (if it exists):

1. Find the critical points of F : GL(n) ∗ µ ∩ S 7→ R. Any µ ∈ V such that
µ/〈µ, µ〉1/2 is a critical point will then correspond to a Ricci nilsoliton
metric.

2. The Ricci tensor can be calculated from eq.(6). Using eq.(11) the deriva-
tion D can then be determined.

An important observation is that the eigenvalues of D, up to a scalar multipli-
cation, can be arranged into a tuple:

(k; d) = (k1 < k2 < ... < kr; d1, d2, ..., dr), (12)

where the kl are integers without common divisors and dl are their correspond-
ing multiplicities. This tuple is called the eigenvalue type. Usually the Ricci
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nilsolitons are given in terms of its eigenvalue type as above due to the relation
to the classification of Einstein solvmanifolds (see, e.g, [9]).

If µ is an n-dimensional nilpotent Lie algebra for which µ/〈µ, µ〉1/2 corre-
sponds to a fixed point of F (µ) as explained above, then

Dµ =
〈µ, µ〉 1

2

2

[
n

(
k2
1d1 + ... + k2

rdr

)
− (k1d1 + ... + krdr)

2
]− 1

2 D̃, (13)

where D̃ is the derivation of µ with eigenvalues ki of multiplicities di.
Let µ̃ be the extension of µ by adding an Abelian factor: ñ = n ⊕ R

m; i.e.,
µ̃|

n×n
= µ and [Rm, n] = 0. Then F (µ̃) = F (µ) and the critical point has the

eigenvalue type

(
αk1 < ... <

k2
1d1 + ... + k2

rdr

d
< ... < αkr; d1 < ... < m < ... < dr

)
, (14)

where d = mcd(k1d1 + ...+ krdr, k
2
1d1 + ...+ k2

rdr) and α = k1d1+...+krdr

d . In the

case that
k2

1
d1+...+k2

rdr

d = αki for some i, then the multiplicity is m + di. This
result will be useful for us since adding a time-direction will add an additional
one-dimensional Abelian factor to the nilpotent group.

3 From Ricci nilsolitons to black holes

The reason for stressing the properties of the Ricci nilsolitons is because of the
importance it has for constructing Einstein solvmanifolds. This relation be-
tween Ricci nilsolitons and Einstein solvmanifolds seems to have been noticed
by Lauret [13, 17, 18, 20]. Moreover, when going from the homogeneous solv-
manifold to the inhomogeneous black hole solutions, the isometry group of the
Ricci nilmanifolds will survive the construction of the black hole spacetime. The
Ricci flow will therefore have a particular role for the black hole spacetimes3.

3.1 Einstein solvmanifolds and Ricci nilsolitons

Let us first state a theorem due to Lauret [13]:

Theorem [Lauret] : A homogeneous nilmanifold (n, 〈·, ·〉) is a Ricci nilsoliton

if and only if (n, 〈·, ·〉) admits a metric solvable extension (s = a ⊕ n,g) with a

Abelian whose corresponding solvmanifold (S,g) is Einstein.

This solvmanifold can be constructed as follows: Consider the following metric
solvable extension of the nilpotent algebra n (with brackets µ):

s = a ⊕ n, [s, s]s = n, [·, ·]s
∣∣
n×n

= [·, ·]n, (15)

3Interestingly, the role of the Ricci flow and black holes has been studied in a different
context in [21].
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and

〈·, ·〉s
∣∣
n×n

= 〈·, ·〉n, 〈a, n〉s = 0. (16)

Moreover, let a = R, D ∈ Der(µ) and let E ∈ a such that 〈E, E〉s = 1. Then we
can define the solvable Lie algebra by

[E, ei] = Dei, [ei, ej] = µ(ei, ej). (17)

Let (S,g) be the corresponding solvmanifold equipped the left-invariant metric.
The Ricci tensor of S can found to be ([22])

g(RsE, E) = −Tr(D2), (18)

g(RsE, ei) = 0, (19)

g(Rsei, ej) = g([−Tr(D)D + Rµ]ei, ej). (20)

Hence, (S,g) is Einstein if µ is a Ricci nilsoliton with D ∈ Der(µ) given in
eq.(11):

Rs = cµ1, cµ = −Tr(D2). (21)

These Einstein solvmanifolds will correspond to the asymptotic metric for the
black holes. In particular, this means that the black holes are not asymptotically
AdS, but rather asymptotically a solvmanifold.

The Einstein solvmanifolds has been in the centre for a long outstanding
question regarding the classification of negatively curved homogeneous Einstein
manifolds [12, 9]. All known examples of negatively curved homogeneous Ein-
stein manifold are isometric to a Einstein solvmanifold, however, it is not proven
that all necessarily are. Only in low dimensions some progress had been made
(see [23] for dimension 5)4. In spite of the lack of a classification result, numer-
ous examples of Einstein solvmanifolds exist. The most commonly known are
the real, the complex and the quaternionic hyperbolic spaces H

n, H
n
C
, H

n
H
, and

the Cayley hyperbolic plane H
2
Cay. These hyperbolic spaces can be further gen-

eralised to the so-called Damek-Ricci spaces [26] which are solvable extensions
of generalised Heisenberg spaces.

3.2 Black holes

We can now proceed to constructing Ricci nilsoliton black holes. More specif-
ically, the constructed black hole spacetime, in spite of being inhomogeneous,
will possess an isometry group inherited from the Ricci nilsolitons. These black
hole solutions were discussed in an earlier paper in a more general context [27].
For the time being it is advantageous to keep the manifold Riemannian and
assume that you can foliate the space using Ricci nilsoliton hypersurfaces. We

4Moreover, recently a paper by Lauret appeared [24] proving that all Einstein solvmanifolds
are necessary standard (see also [25]).
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introduce the extrinsic curvature k which is a bilinear and symmetric tensor liv-
ing on the hypersurfaces. We define the extrinsic curvature operator K : n 7→ n

by
〈Kei, ej〉 = k(ei, ej).

Let us also introduce the Gaussian coordinate y such that ∂/∂y is a unit normal
vector to the nilmanifolds. Assume further that n contains an Abelian factor
spanned by e1, say, so that [e1, n] = 0. This Abelian factor will eventually
correspond to the time direction. For the Ricci nilsoliton this implies

Rµe1 = 0. (22)

Moreover, let D be the constant derivation given earlier. We can decompose D
and K as

D =

[
D11 0

0 D̃

]
, K =

[
K11 0

0 K̃

]
. (23)

Here, D11 = Tr(D2)/Tr(D), which follows from eq.(22). By assuming K̃ =

Λ(y)D̃ where Λ(y) is some function of y, implies that K is also a derivation
of n. Since the derivations are the generators of the automorphism group, this
choice of K implies that the geometry of the hypersurfaces is preserved as you go
along the Gaussian coordinate y. So Ṙµ = 0, where dot denotes (Lie) derivative
with respect to y, and hence, Rµ = −Tr(D2)1 + Tr(D)D where the derivation
D can be considered to be a constant.

The Gauss’ equations now reduce to

K̇ + Tr(K)K − Rµ + λ1 = 0, (24)

Tr(K2) − [Tr(K)]2 + Tr(Rµ) − (n − 1)λ = 0. (25)

We note first that the solution given by

K = D (26)

is the Einstein solvmanifold given above, with λ = −Tr(D2).
Another set of solutions can be found by

K = coth[D(y − y0)]D +
σ

sinh[D(y − y0)]
, (27)

where we have set D = Tr(D) and

σ =

[
(D − D11) 0

0 −D̃

]
. (28)

We note that σ is trace-free and orthogonal to D; i.e.,

Tr(σ) = 0, Tr(σD) = 0. (29)

8



The Rµ and λ are constants and given as above.
The solutions given above are the Euclidean versions of Ricci nilsoliton black

holes given in terms of the nilsoliton foliation of the solutions. It is useful to
write down the metric for this solution in the standard form. This can be
accomplished by introducing the coordinate w by

y − y0 =
2

D
artanh

√
1 − M exp(−Dw). (30)

By diagonalising D = diag(q1, q2, ..., qn), we can write

s.
2 =

w.
2

1 − Me−Dw
+ (1 − Me−Dw)e2q1w(x.

1)2 +
n∑

i=2

e2qiw
(
ω

i
)2

, (31)

where {x.1, ωi} is an appropriate set of left-invariant vectors on n. These obey
ω.

k = −(1/2)Ck
ijω

i∧ω
j where Ck

ij are constants and are the structure constants
of n.

A Lorentzian solution can now be found by Wick-rotating the coordinate x1;
i.e., by setting t = ix1, we get

s.
2 = −(1 − Me−Dw)e2q1wt.

2 +
w.

2

1 − Me−Dw
+

n∑

i=2

e2qiw
(
ω

i
)2

. (32)

A more standard form can be accomplished by defining a new variable r by
w = (1/q1) ln(q1r) for which we get

s.
2 = −f(r)t.

2 +
r.
2

f(r)
+ hAB(r)ωA

ω
B, f(r) = q2

1r
2 − M(q1r)

−
D−2q1

q1 . (33)

We therefore see that these nilsoliton black holes are generalisation of the stan-
dard toroidal AdS black holes. This is also clear from the fact that the toroidal
black holes have flat horizon geometry; so in a sense, the toroidal AdS black
hole is the trivial case where the nilpotent group is Abelian.

We usually assume that black holes have compact horizons. In order for
the horizon to be compact, one must require that the nilmanifolds allow for a
compact quotient; i.e., there exists a lattice Γ ⊂ Nµ such that Nµ/Γ is a compact
manifold. For nilmanifolds the existence of such a lattice can be determined
using the Lie algebra µ [28]:

Theorem: A nilmanifold can be compactified if and only if there exists a

frame such that [ei, ej] = Ck
ijek where Ck

ij are all rational constants.

By inspection of the nilpotent Lie algebras of dimension ≤ 6 we get an im-
mediate consequence of this theorem:

Corollary: All nilmanifolds of dimension ≤ 6 allow for a compact quotient.
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There are only a finite number of nilpotent Lie algebras of dimension ≤ 6 (50
including the Abelian ones), all of which allow for a Ricci nilsoliton metric [19]
(a copy of Will’s list is given in the Appendix).

Among the 7-dimensional Lie algebras, there exists a curve of non-isometric
Lie algebras. These allow for a nilsoliton metric of type (see [18])

(1 < 2 < 3 < 4 < 5 < 6 < 7; 1, ..., 1).

The curve of nilsoliton Lie algebras can be given by

µ3
12 = µ7

34 = (1 − t)
1

2 , µ5
14 = µ7

23 = t
1

2

µ4
13 = µ6

15 = µ7
16 = µ5

23 = µ6
24 = 1. (34)

This algebra can be shown to be isomorphic to the algebra denoted 1,2,3,4,5,7I:t
in Seeley’s list of 7-dimensional nilpotent Lie algebras [29]. Hence, the above
algebra is isomorphic to the Lie algebra given by

µ̃7
34 = (1 − t), µ̃7

23 = t

µ̃3
12 = µ̃5

14 = µ̃4
13 = µ̃6

15 = µ̃7
16 = µ̃5

23 = µ̃6
24 = 1. (35)

Thus, by virtue of the above theorem, if t is rational then the corresponding
nilsoliton metric allows for a compact quotient. This implies that there exists
an infinite number of model nilmanifolds which allows for a compact quotient.

Therefore, if we classify the black hole solutions in terms of the model ge-
ometries, we have that for every nilpotent group of dimension ≤ 6, there exists
a corresponding black hole solution in dimension ≤ 8. Moreover, for any dimen-
sion > 8, there is an infinite number of locally distinct black hole solutions with
a nilsoliton metric as a horizon.

Note that there may be many different lattices Γ for a given nilmanifold (for
example, there is an infinite number of possible non-homeomorphic quotients of
N3,1). Also, we have not addressed the issue of moduli space of non-isometric
quotients.

3.3 Making the Euclidean solution regular

To make the Euclidean solution regular we must ensure that the solution behaves
regularly at the horizon. We can use the Gaussian coordinate y and approximate
the solution close to y = y0. This yields

s.
2 ≈ y.

2 + (y − y0)
2

(
D

2
M

q1
D x.

1

)2

+
n∑

i=2

M
2qi
D (ωi)2. (36)

Hence, if we identify x1 under the map

x1 7−→ x1 +
4π

DM
q1
D

,

the solution closes of regularly and the Euclidean solution is everywhere regular.
If we write this identification as x1 7→ x1 + β then β is usually interpreted

as the inverse temperature of the black hole; i.e., β = 1/T . This implies that
T ∝ M q1/D and so the temperature increases as the mass increases.
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3.4 Generalisations

Let us recapitulate what assumptions were made in order for eq.(27) to be a
solution:

1. K is a derivation of n.

2. Tr(σ) = Tr(σD) = 0.

3. Tr(σ2) = [Tr(D)]2 − Tr(D2).

We can therefore generalise the above solution as long as these criteria are
satisfied.

So, for example, consider an m-dimensional Abelian factor of n such that
[Rm, n] = 0. Furthermore, assume that the Abelian factor is spanned by
e1, ..., em. Then 〈Rµei, ei〉 = 0 for i = 1, ..., m and the derivation D can be
decomposed as

D =

[
D111m×m 0

0 D̃

]
. (37)

Then eq.(27) is a solution as long as we choose σ the following way:

σ =

[ 1
m (D − mD11)1m×m + A 0

0 −D̃

]
, (38)

where the m × m matrix A obeys

Tr(A) = 0, Tr(A2) =
m − 1

m
D2. (39)

Since the solutions are only defined locally, it is not clear what the interpretation
of these solutions are or whether they can be made regular by an appropriate
identification.

4 Properties of Ricci nilsoliton Black Holes

Let us consider the Lorentzian Ricci nilsoliton black hole metric:

s.
2 = −(1 − Me−Dw)e2q1wt.

2 +
w.

2

1 − Me−Dw
+

n∑

i=2

e2qiw
(
ω

i
)2

. (40)

First we note that w = ∞ corresponds to an infinite value of the Gaussian
coordinate y; thus spatial infinity is infinitely far away. Moreover, the horizon
is located at y = y0 which corresponds to w = (1/D) lnM .
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4.1 Geodesics

For outbound null-geodesics travelling in the w-direction we get

t.
w.

=
e−q1w

1 − Me−Dw
. (41)

So by integration

t − t0 =

∫ w

w0

e−q1ww.
1 − Me−Dw

≤
∫ w

w0

e−q1ww. ≤ e−q1w0

q1
, (42)

and hence, t − t0 is bounded. This implies that light-rays reach spatial infinity
within finite coordinate time. In this way light-signals can leak through spatial
infinity. This is analogous to the Anti-de Sitter spacetime.

Consider now timelike geodesics and let pt be the canonical momentum of t:

pt =
∂L

∂ṫ
= constant. (43)

Then, by using the identity gµν ẋµẋν = −1, we get

ẇ2 = p2
t e

−2q1w − (1 − Me−Dw)
(
1 + habẋ

aẋb
)
≤ p2

t e
−2q1w − (1 − Me−Dw). (44)

Hence, for any timelike geodesic, there exists a hypersurface given by w = wmax

for which the geodesic can never pass; i.e., w(τ) ≤ wmax. The outward going
geodesics ultimately stop and start to go inwards. Any timelike geodesic will
ultimately cross the horizon at some time in the future.

4.2 The mass of the black hole

Analogous to the Ashtekar-Magnon-Das conformal mass, we can define the
’mass’ of the black hole as follows (see, e.g., [30]):

M̃ = − lim
w→∞

∮
mρmσ

(
Rµρσν − Rµρσν

)
nµξνS. . (45)

Here, the S. is the volume element of the surfaces defined by the Ricci nilsolitons;
mµ and nµ are orthonormal vectors orthogonal to S:

gµνnµnν = −1, gµνmµmν = 1, gµνmµnν = 0;

ξµ is the timelike Killing vector field ∂t; Rµρσν is the Riemann tensor of the
black hole metric; and Rµρσν is the Riemann tensor of ’background’ Einstein
solvmanifold (this will be justified later).

For the Ricci nilsoliton black holes, we get

M̃ =
1

2
M(D − 2q1)(D − q1)Vol(Nµ/Γ), (46)

where Vol(Nµ/Γ) is the volume of the compact hypersurfaces at w = 0. This
shows that the parameter M , up to a constant, can indeed be interpreted as a
’mass’ relative to the background solvmanifold.
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4.3 The asymptotic geometry

Consider the (Euclidean) spacetime close to spatial infinity, y = ∞. The extrin-
sic curvature can be approximated by

K = D + 2σe−D(y−y0) + O(e−2D(y−y0)). (47)

Hence, asymptotically, the spacetime approaches the corresponding solvmani-
fold as claimed. The solvmanifold spacetime can therefore be considered as the
background spacetime in which there is a black hole. Sufficiently far away from
the black hole, the spacetime can be approximated as a solvmanifold. These so-
lutions are therefore black hole solutions with a negative cosmological constant,
which are not (locally) asymptotically Anti-de Sitter.

In the AdS case, the isometry group acts on the conformal boundary as
conformal transformations. This is directly related to the fact that for real
hyperbolic space, which is the Euclidean version of AdS space, we have the
relation [3]

Isom(Hn) = Conf(∂H
n), (48)

where ∂H
n is the conformal boundary of H

n. The conformal boundary of H
n

can be identified as the one-point compactification of flat space, E
n−1; hence,

we can write Isom(Hn) = Conf(En−1). This relation lies as a foundation of
many works on AdS space.

For the nilsoliton black holes, we believe there is an analogous (but not iden-
tical) relation for the asymptotic geometry. Firstly, it is easy to see that the
isometries of the horospheres are preserved as y → ∞. Secondly, the derivation,
D, generates a one-parameter group of automorphisms acting on the asymp-
totic nilsolitonic geometry. This one-parameter group of automorphisms can be
viewed as a dilaton, φt, acting on the nilsolitons. This dilaton and the isometries
of the nilsolitons act transitively on the ’background’ solvmanifold. In addition
to these symmetries, the background solvmanifold may possess some additional
isometries. In the case of H

n, these additional symmetries act as ’inversions’ on
the conformal boundary E

n−1 [3].

4.3.1 Complex hyperbolic space

For a general solvmanifold, it is not known whether there exists a similar identity
as (48). However, let us consider the complex hyperbolic space, H

n
C
, where a

related relation is known to exist. Let us also, for simplicity, restrict to 2 complex
dimensions even though the following can easily be generalised to H

n
C

for any n.
For H

2
C

= SU(1, 2)/U(2) the group SU(1, 2) acts as isometries with U(2)
as an isotropy group. For H

2
C

the boundary can be considered to be the one-
point compactification of the Heisenberg group Heis3. Let us introduce the
coordinates (x, y, z) on Heis3 such that the one-forms

ω = x. + 2(yz. − zy. ), y. , z., (49)
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are the left-invariant one-forms on Heis3.
5 By considering the dual vector to

ω, ex, we see that ex ∈ g
(1)
D where g

(i)
D is the derived series of the Heisenberg

algebra. Moreover, g
(2)
D = 0 so g

(1)
D is abelian.

Consider therefore a general nilpotent Lie algebra, n, and let g
(i)
D be its

derived series. Moreover, let k be the largest number such that g
(k)
D 6= 0 and

g
(k+1)
D = 0. This implies that g

(k)
D is an abelian ideal in n and is in the center of

n. By considering a left-invariant e ∈ g
(k)
D , and using eq.(6), we note that,

〈Rµe, e〉 =
1

4

∑

kl

〈µ(ek, el), e〉2 ≥ 0, (51)

where = 0 if and only if n is Abelian. This implies, using eq.(11), that the biggest

eigenvalues for D will correspond to the the ideal g
(k)
D . Hence, the ideal g

(k)
D

will dominate the asymptotic geometry of the solvmanifold. This ideal therefore
plays an important role for the asymptotic geometry; more specifically, assume
that qn is the largest eigenvalue of D, then the conformal transformation

s.
2 7→ e−2qnws.

2, (52)

renders the limit g∂ ≡ limw→∞ e−2qnws.
2 well defined. We can therefore study

the symmetry group of the solvmanifold acting on the symmetric two-tensor g∂

which lives on the boundary.
Another possible generalisation is the following observation for complex hy-

perbolic spaces (see, e.g., [31, 32]). Define the following ’gauge’ on Heis3:

‖g‖ =
[
x2 + (y2 + z2)2

] 1

4 , where g = (x, y, z) ∈ Heis3. (53)

We define the left-invariant distance between g and g′ by

dH(g, g′) = ‖g−1g′‖. (54)

We note that this metric is not Riemannian. On the other hand, we do note
that SU(2, 1) acts conformally with respect to this metric; in fact,

Isom(H2
C) = ConfdH

(Heis3). (55)

By introducing eq.(53) we can thus manifestly generalise eq.(48) to complex hy-
perbolic spaces. The key observation is that the gauge preserves the symmetries
of Heis3 and that the dilaton acts homogeneously on the gauge.

We can speculate whether either of these paths can be followed to generalise
eq.(48) to the black hole spacetimes considered here. More work is clearly
needed here.

5The one-form ω defines a contact structure on Heis3, i.e., ω∧ (ω. )m, m ∈ N is the volume
form. A transformation f : M 7→ M is a contact transformation if

f∗
ω = λω, (50)

for a scalar function λ. The group action of SU(2, 1) will act on Heis3 as contact transfor-
mations. However, the contact structure does not generalise to all the nilpotent black hole
spacetimes.
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5 Discussion

Here we have discussed how we can construct Ricci nilsoliton black holes from
nilpotent groups. The corresponding black hole spacetimes are solutions to
Einstein’s equations with a negative cosmological constant. We have given con-
ditions for when such solutions exists and, in particular, we have shown that any
nilpotent group of dimension ≤ 6 has a corresponding Ricci nilsoliton black hole
in dimension ≤ 8. In dimensions higher than 8, there are, in each dimension,
an infinite number of locally distinct Ricci nilsoliton black hole spacetimes.

The lowest dimension where there exists a non-trivial nilpotent group is 3.
In this regard, Cadeau and Woolgar [33] seem to be the first to construct the
corresponding black hole in dimension 5. However, apart from this solution, the
nilpotent black holes seem to have gone unnoticed in the literature (they are
also pointed out by the author in [27] but in a more general context).

The negatively curved spaces seem to have an incredible rich structure, some
of which are displayed in this work. This rich structure makes the negatively
curved spaces difficult to study in general which is probably the main reason
for the lack of understanding of such spaces. However, on the same token, the
wealth of different phenomena these spaces possess is also what makes them so
interesting6. It is clear that we only have unveiled the tip of the iceberg and
that many more treasures remain to be discovered.
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A Ricci nilsolitons of low dimension

The following list contain all nilpotent Lie algebras with their critical points.
The eigenvalue type is also included. These tables are taken from [18, 19].

The notation used is best illustrated with an example. The tuple

(0, 0,
√

3[12],
√

3[13],
√

2[14] +
√

2[23])

represents the Lie algebra

[e1, e2] =
√

3e3, [e1, e3] =
√

3e4,

[e1, e4] =
√

2e5, [e2, e3] =
√

2e5.

A.1 Dimension 3

Critical point Eigenvalue type comments

N3,1 (0, 0, [12]) (1 < 2; 2, 1) Heis3

6Another application of solvmanifolds can be seen in [34].
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A.2 Dimension 4

Critical point Eigenvalue type comments

N4,1 (0, 0, [12], [13]) (1 < 2 < 3 < 4; 1, 1, 1, 1)
N4,2 (0, 0, [12], 0) (2 < 3 < 4; 2, 1, 1) Heis3 ⊕ R

A.3 Dimension 5

Critical point Eigenvalue type comments

N5,1 (0, 0, 3[12], 4[13], 3[14]) (2 < 9 < 11 < 13 < 15; 1, ..., 1)

N5,2 (0, 0,
√

3[12],
√

3[13],
√

2[14] +
√

2[23]) (1 < 2 < 3 < 4 < 5; 1, ..., 1)

N5,3 (0, 0, 0, [12],
√

2[14] +
√

2[23]) (3 < 4 < 6 < 7 < 10; 1, ..., 1)
N5,4 (0, 0, 0, 0, [12] + [34]) (1 < 2; 4, 1) Heis5
N5,5 (0, 0, 4[12], 3[13], 3[23]) (1 < 2 < 3; 2, 1, 2)
N5,6 (0, 0, 0, [12], [13]) (2 < 3 < 5; 1, 2, 2)
N5,7 (0, 0, 0, 0, [12]) (2 < 3 < 4; 2, 2, 1) Heis3 ⊕ R

2

N5,8 (0, 0, 0, [12], [14]) (1 < 2 < 3 < 4; 1, 1, 2, 1) N4,1 ⊕ R

A.4 Dimension 6

A.4.1 5 and 4 step:

Critical point Eigenvalue type

N6,1

(0, 0,
√

13[12], 4[13],√
12[14] + 2[23],

√
12[34] +

√
13[52])

(1 < 2 < 3 < 4 < 5 < 7; 1, ..., 1)

N6,2 (0, 0, [12],
q

4

3
[13], [14], [34] + [52]) (1 < 3 < 4 < 5 < 6 < 9; 1, ..., 1)

N6,3 (0, 0, 2[12],
√

6[13],
√

6[14], 2[15]) (1 < 9 < 10 < 11 < 12 < 13; 1, ..., 1)

N6,4

(0, 0,
√

22[12], 6[13],√
22[14] +

√
30[23], 5[24] +

√
30[15])

(1 < 2 < 3 < 4 < 5 < 6; 1, ..., 1)

N6,5

(0, 0,
√

7[12],
q

15

2
[13],

3[14],
q

15

2
[23] + 2[15])

(1 < 3 < 4 < 5 < 6 < 7; 1, ..., 1)

N6,6 (0, 0, [12], [13], [23], [14]) (1 < 2 < 3 < 4 < 5; 1, 1, 1, 1, 2)

N6,7

(0, 0, 2[12],
√

5[13],√
5[23], 2[14] − 2[25])

(1 < 2 < 3 < 4; 2, 1, 2, 1)

N6,8

(0, 0, 2[12],
√

5[13],√
5[23], 2[14] + 2[25])

(1 < 2 < 3 < 4; 2, 1, 2, 1)

N6,9

(0, 0, 0,

q

5

4
[12],

[14] − [23],
q

5

4
[15] + [34])

(6 < 11 < 12 < 17 < 23 < 29; 1, ..., 1)

N6,10 (0, 0, 0, [12],
q

5

3
[14], [15] + [23]) (4 < 9 < 12 < 13 < 17 < 21; 1, ..., 1)

N6,11

(0, 0,−
q

35

136
[12],

q

21

34
[12],

q

25

68
[14] −

q

15

17
[13],

q

3

4
[15] +

q

7

8
[24])

(1 < 2 < 3 < 4 < 5; 1, 1, 2, 1, 1)

N6,12 (0, 0, 0,
√

3[12],
√

3[14],
√

2[15] +
√

2[24]) (3 < 6 < 9 < 11 < 12; 1, ..., 1)

N6,13 (0, 0, 0,
√

3[12], 2[14],
√

3[15]) (2 < 9 < 11 < 12 < 13 < 15; 1, ..., 1)
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A.4.2 3 and 2 step:

Critical point Eigenvalue type

N6,14 (0, 0, 0,
√

3[12],
√

2[13],
√

2[14] +
√

3[35]) (2 < 3 < 4 < 5 < 6 < 8; 1, ..., 1)

N6,15 (0, 0, 0, [12], [23], [14] + [35]) (1 < 2 < 3; 3, 2, 1)

N6,16 (0, 0, 0, [12], [23], [14] − [35]) (1 < 2 < 3; 3, 2, 1)

N6,17 (0, 0, 0, 2[12],
√

3[14],
√

3[24]) (5 < 10 < 12 < 15; 2, 1, 1, 2)

N6,18

(0, 0, 0,
√

2[12],
q

1

2
[13] +

q

3

2
[42],

q

3

2
[14] +

q

1

2
[23])

(1 < 2 < 3; 2, 2, 2)

N6,19 (0, 0, 0, 2[12],
√

3[14], [13] +
√

3[42]) (5 < 6 < 11 < 12 < 16 < 17; 1, ..., 1)

N6,20 (0, 0,−[12],
√

3[12], 2[14], [24] −
√

3[23]) (1 < 2 < 3; 2, 2, 2)

N6,21 (0, 0, 0,
√

2[12], [13],
√

2[14] + [23]) (3 < 5 < 6 < 8 < 9; 1, ..., 1)

N6,22 (0, 0, 0,

q

3

4
[12],

q

3

4
[13], [24]) (5 < 6 < 9 < 11 < 15 < 16; 1, ..., 1)

N6,23 (0, 0, 0,
√

2[12], [13],
√

2[14]) (2 < 5 < 6 < 7 < 8 < 9; 1, ..., 1)

N6,24 (0, 0, 0, [12], [13], [23]) (1 < 2; 3, 3)

N6,25 (0, 0, 0, 0, 2[12],
√

3[15] +
√

3[34]) (5 < 8 < 9 < 13 < 18; 1, 1, 2, 1, 1)

N6,26 (0, 0, 0, 0, [12], [15]) (1 < 2 < 3 < 4; 1, 1, 3, 1)

N6,27 (0, 0, 0, 0,
√

2[12], [14] +
√

2[25]) (3 < 4 < 6 < 7 < 10; 1, 1, 1, 2, 1)

N6,28 (0, 0, 0, 0.[13] + [42], [14] + [23]) (1 < 2; 4, 2)

N6,29 (0, 0, 0, 0, [12], [14] + [23]) (13 < 4 < 6 < 7; 2, 2, 1, 1)

N6,30 (0, 0, 0, 0, [12], [34]) (1 < 2; 4, 2)

N6,31 (0, 0, 0, 0, [12], [13]) (2 < 3 < 4 < 5; 1, 2, 1, 2)

N6,32 (0, 0, 0, 0, 0, [12] + [34]) (3 < 4 < 6; 4, 1, 1)

N6,33 (0, 0, 0, 0, 0, [12]) (2 < 3 < 4; 2, 3, 1)

We note the following Lie algebras contain an Abelian factor:

N6,12 = N5,2 ⊕ R, N6,13 = N5,1 ⊕ R,

N6,17 = N5,5 ⊕ R, N6,26 = N4,1 ⊕ R
2,

N6,27 = N5,3 ⊕ R, N6,31 = N5,6 ⊕ R,

N6,32 = N5,4 ⊕ R, N6,33 = N3,1 ⊕ R
3. (56)

Also worth noting are the following isomorphisms:

N6,28 = Heis3,C, N6,30 = Heis3 ⊕ Heis3. (57)

As an example, consider N6,25. The components of the Ricci tensor can be
found from eq.(6):

Rµ = diag

(
−7

2
,−2,−3

2
,−3

2
,
1

2
, 3

)
, (58)

which gives

R(µ) = −5, F (µ) = 30. (59)

Since, Rµ = cµ1 + Tr(D)D, and cµ = F (µ)/R(µ), we have

Rµ = −6 · 1 +
1

2
diag(5, 8, 9, 9, 13, 18). (60)
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The eigenvalue value type is therefore given in the above table (which corrects
a typo in [19]).
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