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Abstract

Every year, approximately 200 million tones of produced water are discharged into the
sea by the Norwegian oil industry. Although rapidly diluted, due to its large amount and
possible long term (chronic) effects, the environmental risk of produced water discharge
has been investigated widely. The risk prediction model called DREAM (Dose-related
Risk and Exposure Assessment Model) has been used for environmental risk assessment
of produced water discharges. Biological markers or so-called ‘biomarkers’, have been
proposed as a suitable tool for pollutant-effect-monitoring of the discharges from the
offshore industry. However, the links between environmental risk model predictions and
biomarker responses in produced water exposed animals are still not clearly defined.
Therefore, the objective of this study is to investigate the feasibility of linking these two
risk tools for the purpose of enabling prediction of environmental risk which can be

monitored.

In practice, this is done by employing the DREAM model not only to perform a general
risk assessment but also to predict the biomarker responses of produced water discharge
and then compare the results with the biomarkers responses measured in a field survey.
The link between the model and biomarker response is established using the species

sensitivity distribution (SSD) approach.

From the results, it is shown that predicting biomarker responses using the DREAM
model was feasible by applying some assumptions and simplifications. The model could
also predict a similar trend with the observation responses at different stations. In this
case, the predicted biomarker responses give about 14% higher value compared to
observation, which is related to the conservative approach (based on the maximum risk
value) applied in the model and therefore the model cannot accommodate the duration
variable in the biomarker response formation and recovery processes which may differ

in biomarkers.

Despite the remaining uncertainties and limitations, especially in relation with the
model limitations, reliability of the SSD approach and also the available field data, this
study could provide some essential basis for the study of linking the risk prediction with

risk monitoring.
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1 Introduction

1.1 Background

Produced water is water that is produced along with oil and gas and that originates from
formation and injection water. It is a complex mixture containing hydrocarbons, metals,
and potentially toxic production chemicals, (e.g. biocides, corrosion inhibitors,
dispersants, emulsion breakers, detergents and scale inhibitors). Every year,
approximately 200 million tons of produced water are discharged into the sea from the
Norwegian oil industry (OLF, 2008). Although rapidly diluted, due to its large amount
and possible long term (chronic) effects, the environmental risk of the produced water

discharge has been investigated widely.

To evaluate and estimate the environmental consequences of the discharge, the common
environmental risk assessment (ERA) procedure using the PEC/PNEC approach (EC,
2003) combined with the Environmental Impact Factor (EIF) concept (Johnsen et al.,
2000) has been adopted to establish the risk prediction model called DREAM (Dose-
related Risk and Exposure Assessment Model). The model enables the prediction of
concentration fields, biological exposure, doses and potential effects of time-variable
exposure to mixtures of chemicals. Therefore the model is much used as a basis for

management of environmental risk assessment of produced water discharges.

On the other hand, biological markers or so-called ‘biomarkers’ have been proposed as
a suitable tool for pollutant-effect-monitoring of discharges from the offshore industry.
Biomarkers can be defined as measurements carried out in body fluids, cells or tissues
that indicate, in biochemical or cellular terms, the presence or effect of contaminants
(McCarthy and Shugart, 1990). Since the biomarker responses are measured at the sub-
organismal level of organization (biochemical, physiological and histological), they are
considered as early warning signals for the presence of contaminants and, thus, suitable

for the environmental impact assessment (EIA) purpose.



However, the links between environmental risk model predictions and biomarker
responses in produced water exposed animals are still not clearly defined. Therefore, the
objective of this study is to investigate the feasibility of linking these two risk tools for
the purpose of enabling a prediction of environmental risk which subsequently can be
monitored in the field. In practice, it was done by employing the DREAM model not
only to perform risk assessment but also to predict the biomarker responses caused by a
produced water discharge and then comparing the results with biomarkers responses

measured in a field survey.

1.2 Scope of the study
To achieve the objective of this study, the following tasks were included for this master

thesis project:

e Develop an understanding of how the DREAM model works for EIF
calculations and how PEC/PNEC ratios and species sensitivity distributions
(SSDs) are utilized by the model. Corresponding to the available field data, the
environmental risk assessment of produced water using DREAM was

performed, with Ekofisk field as a study case.

e Use biomarker responses results obtained from laboratory studies in IRIS-
Biomilje in order to create simulations of predicted biomarker responses at

different distances from the platform.

e Comparison of predicted biomarker response results with actual biomarker
responses obtained from the Water Column Monitoring surveys conducted at

Ekofisk (2008).

e Assessment of the use of the near-field module in DREAM for biomarker

response predictions.

10



1.3 Report Outline

The next chapter of this report is dedicated to the description of theories relevant to the
background of this study including some concepts in ecotoxicology, description of the
DREAM (Dose-related Risk and Exposure Assessment Model) and overview of several
types of biomarkers. The methodology involving the simulation of Environmental Risk
Assessment (ERA) in DREAM and biomarker responses prediction is described in
chapter 3. The results are presented in Chapter 4 and discussed in the following chapter

with the conclusions are shown in chapter 6.
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2 Theoretical Background

2.1 Basic Concepts in Ecotoxicology
The term ecotoxicology was first introduced by Prof R. Truhaut in 1969, who defined it
as a science describing the toxic effect of various compounds on living organisms,

especially on population and communities within ecosystems (Connell et al., 1999).

In this study, it is important to have some basic understanding in ecotoxicology that will
be extensively used in the following part of this report. Some concepts in ecotoxicology
such as bioconcentration or body burden, dose-response relationship, toxicity testing,
species sensitivity distribution and environmental risk assessment (ERA) will be

discussed in this sub-chapter.

2.1.1 Body Burden

When a chemical enters a marine ecosystem, not all of this pollutant could enter the
organism and eventually cause some harmful effects, it may be partitioned between
different phases (water, sediment or biota, etc). The internal exposure concentration in
an organism is called body burden. Body burden is determined by uptake and
elimination processes of chemical in an organism which are influenced by several
factors such as temperature, ventilation rates, metabolism, type of species and also the
characteristic of the chemical (Baussant et al., 2001). For risk assessment, it is important
to estimate the body burden that may elicit a toxic response (Feijtel et al., 1997). Body
burden usually is expressed as bioconcentration factors (BCF) that is the ratio of
substance concentration in the organism to the concentration in the water at equilibrium

condition (at which the competing rates of uptake and elimination are equal).

12



At equilibrium condition, the bioconcentration factor is calculated based on:

BCF:E_:V (eq.2.1)
where C, i1s the concentration in biota and C, 1s concentration in water. These
bioconcentration factors are specific for each species and compound. The
bioconcentration factors of poly-aromatic hydrocarbons (PAH) compounds that were
calculated based on lipid weight of different samples of (Mytilus edulis) blue mussel
and cod (Scopthalamus maximus) (Baussant et al., 2001) can be found in Table A-1
(Appendix A).

2.1.2 Toxicity Test
Toxicity tests study the responses of individual organisms or groups of organisms to
chemical exposure. The test is typically performed on a population exposed to different

concentrations of a chemical under controlled conditions over a specific period of time.

In the toxicity test, the adverse effects of chemicals on the organism depend on the dose
and time of exposure. Tests that are based on lethality or survival and designed to
evaluate short-term exposure (usually 24, 48 or 96 hours) are called acute toxicity test.
The acute effects can be quantified by LCsg (the concentration that cause 50% mortality
of the test organisms) or ECsg (the concentration at which 50% of the predicted effect is
observed). On the other hand, the chronic toxicity tests that allow evaluation of
chemical stress under long term exposure at sub-lethal concentrations are commonly
quantified by NOEC (No-Observable Effect Concentration) and LOEC (Lowest
Observable Effect Concentration).

The results of the tests can be plotted on a graph that relates the chemical concentration
to the percentage of organisms in test groups exhibiting a defined response, such a is

relationship is called a concentration-response relationship (see Figure 2-1).

13
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Figure 2-1. Cummulative dose response curve with LOEC, NOEC and LD50 are indicated.
(Connell et al., 1999)

To prevent the multiplication of the toxicity test, the internationally accepted standard
testing protocols are organized by OECD (Organization for Economic Cooperation and
Development). Some tests standardized by OECD i.e. growth inhibition test of algae,
acute toxicity test of zooplankton and acute toxicity test of fish are mandatory tests for
toxicity testing of offshore chemicals in Harmonized Offshore Chemical Notification
Format or HOCNF (OSPAR, 2008). Due to the shorter time needed and therefore the
lower cost involved, single-species acute toxicity tests have become the largest part of
the toxicity studies. To estimate a safe or chronic concentration from acute tests, the

acute-to-chronic-ratio (ACR) has been evaluated (Wright and Welbourn, 2002).

In addition to the acute toxicity tests, the bioaccumulation potential and biodegradation
rate of a substance are also included guidelines in the HOCN information on chemicals

discharged from offshore installations (EC, 2003; OSPAR, 2008).

2.1.3 Species Sensitivity Distribution (SSD)

Toxicity responses of different species vary due to biological differences. The variation
in sensitivity of species to a certain compound or mixture, described by a statistical or
empirical distribution of response is called species sensitivity distribution (SSD). The
main assumption in the use of SSDs in risk assessment is that the distribution based on a
selection of species (tested in laboratory experiments) is representative for all species in

the ecosystem.

14
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Figure 2-2. The basic form of an SSD curve, expressed as cumulative distribution function. The
dots are input data from toxicity tests and the line is a fitted SSD (Posthuma et al., 2002).

The SSD can be presented as a frequency distribution (cumulative normal distribution
curve or other similar curves) of NOECs (No-Observable Effect Concentrations) or
other results from toxicological tests as explained by Posthuma (2002) and Aldenberg
(2002). Toxicity data (NOEC, EC50, etc) are log transformed and fitted to a distribution
function (Figure 2-2).

Figure 2 - 2 also shows the two ways of utilizing the SSD curve: forward and inverse.
In the forward way, the distribution can be used to estimate risk at a specific
concentration that is expressed by potentially affected fraction (PAF) i.e. the percentage
of species that are exposed to concentrations above their NOEC. PAF can be used to
represent the stress to the ecosystem caused by a single chemical, or to map the total
stress on the ecosystem as a result of the concentration of several chemicals or chemical
groups. The inverse usage of the model employs the distribution for calculating
environmental quality criterion for a certain cut-off value, e.g. the 5t percentile or HCs
(i.e. the concentration that corresponds to 5% risk). The 5™ percentile of a chronic
toxicity distribution has often been chosen as the concentration which is considered

protective for most species in a biological community.
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2.1.4 Environmental Risk Assessment (ERA)

Environmental Risk Assessment (ERA) evaluates the possible occurrence of adverse
ecological effects of pollutants in a manner as quantitative as possible. For this purpose,
the main procedures of ERA consist of 4 main steps as seen in Figure 2-3 (EC, 2003;

van der Oost et al., 2003; Wright and Welbourn, 2002):

hazard identification,

exposure characterization

effect characterization,

risk characterization.

Ecological Risk Assessment

| Problem Formulation |

'

Analysis '
Entry Exposure Effects
Characterisation Characterisation | Characterisation

v

Risk Characterisation |

Risk Analysis l Risk Communication J

I Risk Management l

Figure 2-3. General Environmental Risk Assessment scheme (Wright and Welbourn, 2002).

Hazard identification is a qualitative step, either based on former knowledge of the
substance or on the fact that no knowledge exists, therefore applying precautionary

principles on a new substance.

The exposure characterization involves the method to quantify the concentration of a
discharged chemical in the environment to obtain the PEC (Predicted Environmental
Concentration). The PEC value can be calculated through measurement and also from

modeling of chemical fates in the environment.

16



Effect characterization is a process to predict the adverse effect of chemicals in
biological recipients that is represented by a Predicted No Effect Concentration (PNEC)
which indicates a concentration, below which, an unacceptable effect will most likely
not occur. When only a limited set of toxicity data is available, PNEC is calculated by
dividing the laboratory effect concentrations (LCsy, ECso, NOEC, etc) by appropriate
assessment factors. Some example of assessment factors for marine ecosystem can be
seen in Table 2-1. When sufficient data is available, PNEC value may also be derived
from SSD based on chronic NOECs by taking the 5™ percentile of the distribution (i.e.
the concentration that corresponds to 5% risk) (Aldenberg and Slob, 1993)

Table 2-1. Assessment factor scheme as used for calculating PNEC values (EC, 2003).

Available toxicity data Assessment
factors
At least one short term EC50 from each of three trophic levels (algae, crustaceans and fish) 1000
Long term NOEC representing two trophic levels ( fish and/or crustacean and/or algae) 100
Long term NOEC from at least three thropic level (fish, crustaceans and algae) 10

The next step is to compare the predicted environmental concentration (PEC) with the
threshold concentration (PNEC) and present it in the form of PEC/PNEC ratio or Risk
Characterization Ratio (RCR). This ratio will be used as a basis to evaluate the potential
risk. An RCR that exceeds 1.0 indicates that there is reason for concern (i.e. an effect is

foreseen) and thus some risk reduction measures are needed.

17



2.2 DREAM (Dose-related Risk and Exposure Assessment
Model)

2.2.1 Introduction

DREAM is a software tool designed to meet the need of rational basis in management
of environmental risk assessment associated with operational discharges of complex
mixtures. It has been developed in cooperation of several research centers (Akvaplan-
niva, Battelle, MUST, IRIS-Akvamiljo, SINTEF, TNO and the University of Oslo) and
petroleum companies operating in the Norwegian continental shelf (ConocoPhillips,

Eni, ExxonMobil, StatoilHydro, Petrobras, Shell, and Total).

Another model called a ‘chemical hazard assessment and risk and management’
(CHARM) model has also been much used. The CHARM model enables ranking of
chemicals based on their properties and uses a fixed dilution factor, assuming equal and
constant dispersion (Karman and Reerink, 1998). However, in reality, the chemical fates
follow the three-dimensional dispersion that change over time. In order to provide more
realistic dynamic risk assessment, DREAM (Dose-related Risk and Exposure

Assessment Model) was developed.

Environmental Risk Assessment with DREAM utilizes the Environmental Impact
Factor (EIF) concept which is based on PEC/PNEC approach as described by the
European Union in a Technical Guideline Document (EU-TGD) (EC, 2003). However,
DREAM-EIF applies some modifications from the EU-TGD method that accounts for
the complex mixture of chemicals in produced water and the differences in their fates

and toxicities in the marine environment (Johnsen et al., 2000).

2.2.2 Physical-chemical fate modeling

Calculation of the environmental concentration (PEC) is the basis for risk assessment.
In DREAM, PEC is calculated by modeling the fates of pollutants in the environment.
The fate module of DREAM is a dynamic three-dimensional, multiple-component

pollutant transport model.
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Governing equation
The fate model is based on the general transport equation (Reed et al.):
a e [ [
26+ V.¥c,=V. zxﬁq-fzrfcﬁzzrﬂct Eq. 2.2
F=1 F=1i=1

where C; is the concentration of the i™ chemical constituent in the release, t is time, V is

advective transport vector, V is the gradient operator and Dy is the turbulent dispersion

coefficient in k=X,y,z direction. The term r;j are process rate including:

addition of mass from continuous release

- evaporation from surface slicks

- spreading of surface slicks

- emulsification of surface slicks

- deposition from water surface onto coastline

- entrainment and dissolution into water column

- resurfacing of entrained oil

- volatilization from water column

- deposition from water column to bottom sediment, etc.
Meanwhile, the term rj; represents the degradation process in the model.

The chemical concentration, C; in the water column is calculated based on the time-and
space-variable distribution of pseudo-Lagrangian particles. There are two types of
particles, those representing dissolved substances and those representing oil droplets or
particles with non-neutral buoyancy. The latter particles are pseudo-Lagrangian in the
way that they do not move strictly with the current but may rise or settle according to

their buoyancy (Reed et al.).
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Physical-chemical Fate Processes

When pollutants enter the marine environment, they will go through physical-chemical
processes, such as advection, dispersion, volatilization, dissolution and degradation. The

processes governing the pollutants fates in DREAM are described in Figure 2-4.

Oil type Coastline

Release rates, locations, || Surents

characteristics Bathymetry
Sea state Inputs

Wind speed
Sea temperature
Sea ice coverage

k.

Advection
Spreading

— Evaporation Processes
Emulsification

Natural Dispersion

. Dissolution
Degradation

Adsorption/ Time-Stepping Loop

Desorption p
Sedimentation
l Outputs

Mass balance
Geographical distribution
Properties

Biological exposures

Figure 2-4. General layout of the DREAM model (Reed et al.)

Advection and dispersion of the entrained and dissolved hydrocarbons in the water
column, are controlled by the mean local velocity as a result of tidal, wind-driven and

wave-driven components.

Pollutants near the water surface may evaporate to the atmosphere. The rate of mass
transfer from the water column to atmosphere is calculated using the procedure outlined

by Lyman et al. (1982).

Adsorption is important in the transport and fate of pollutants in the marine environment
since it determines the extent of partitioning of a pollutant between the suspended
particulate phase and the dissolved phase and, therefore, governs toxic effects as well as
the rate of removal from water column to the sediments. The partitioning between the
particulate-adsorbed and dissolved states is calculated based on the linear equilibrium
theory. The contaminant fraction that is adsorbed to suspended particulates settles to the

bottom.
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The DREAM model also takes into account the transformation of components via
degradation transformation pathways since it is known that the degradation products

may be more soluble and toxic than the parent compounds.
Physical environments included in DREAM
The physical environment in DREAM is defined by several parameters including:
e Bathymetry (depths)
e  Wind and wave fields
e (Currents
e Sea temperature, salinity.

Bathymetry (depth) of the selected location is defined by a gridded dataset, stored in a
database. The standardized winds, wave and current fields are provided in the database
as separated input files, but it is possible for the user to utilize different files. Alternative
current, wind and wave fields can be utilized by importing selected format of file or by
defining them through the user interface of DREAM. The vertical profile of temperature

and salinity is added by the user to calculate the water density of the region.

2.2.3 Environmental Risk Assessment using DREAM

Risk assessment with DREAM uses the EIF (Environmental Impact Factor) concept. It
is basically follows the PEC/PNEC approach which is comparing the predicted
exposure concentration (PEC) and predicted environmental toxicity threshold (PNEC).
However it also applies weighing factors to account for the persistence of chemicals and
their tendency to bioaccumulate. The complete scheme of risk assessment in DREAM is

presented in Figure 2-5.

The environmental concentration (PEC) is calculated by fates modeling as described in
section 2.2.2. The calculation is done by dividing the produced water into several
chemical groups and each group represents a class of chemical with similar physical,
chemical, toxicological and biological properties. Produced water chemicals were
divided into 10 groups of naturally occurring compounds and 7 groups of additives

(Johnsen et al., 2000). Additional chemicals specific to each release are user defined
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according to the HOCNF data. These chemical groups are listed in Table B-1, Appendix
B. A more detailed list of the compounds included in each group can be found in Table

B-2, Appendix B.

Although widely used in risk assessment, the PEC/PNEC approach doesn’t give the
actual risk level. It only gives the indication whether the pollutant concentration in the
ecosystem has exceeded the threshold level or not and, therefore, the PEC/PNEC
approach is only a qualitative indication of potential risk level. To translate the
PEC/PNEC into actual risk level, species sensitivity distribution is used (Karman and
Reerink, 1998; Smit et al., 2005). When this distribution is based on long term NOECs,
PNEC corresponds with the 5™ percentile of this distribution. When insufficient, the
same distribution can be estimated from the PNEC (that is obtained by applying the
assessment factors) and an indication of the variation in sensitivity of species for this
chemical (presented by the slope of the curve). Using this distribution, a corresponding
risk value can be calculated at any given exposure concentration (refer to section 2.1.2
about species sensitivity distribution [SSD]). The same method is applied for all
components and combined to calculate the total risk representing the produced water

discharge.

The EIF concept also applies weighting to certain compounds based on biodegradability
and bioaccumulation potential (see Table B-1, B-3 and B-4, Appendix B). The EIF is
presented as total water volume for which PEC/PNEC ratio exceeds 1.0 with maximum

resolution 100mx100mx10m (100,000 m® volume).
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Figure 2-5. Process scheme of the calculation of EIF for produced water discharge (Smit et al.,
2003)

2.2.4 User defined parameters in DREAM calculations
Substances setting

The data of different groups of chemicals are combined in the release profile. Each
substance is registered with the following characteristics: viscosity, mol weight, density,
melting and boiling points, solubility, vapour pressure, octanol-water partition
coefficient, and degradation rates. For the purpose of risk assessment, acute and chronic
toxicity sensitivities for different species are also included. For the naturally occurring
components, all the data are already available in the database, while for the added
chemicals, these data can be obtained from the HOCNF (Harmonised Offshore

Chemical Notification Format) document.

23



Scenario parameters

To set up a new release scenario, some information such as location, depth and amount
of the produced water release need to be set accordingly. The duration and start time for
the simulation are also adjusted here. The physical environments such as current, wind,
temperature and salinity of the ocean are set according to the release location. DREAM

also facilitates multiple discharge points and long term simulations (stochastic).
Model setting

The model parameters affect accuracy, resolution in space and time, size of output files
and computational speed. Therefore model parameters need to be set accordingly in

order to have optimum simulation results.

2.2.5 Simulation outputs

The output from DREAM includes the concentration field of the pollutants, risk map for
the modeled area, EIF value giving the recipient water volume which RCR (PEC/PNEC
ratio) > 1.0 and also a pie chart showing the contribution to risk from different groups of
chemicals. In addition to graphical presentation, the value of environmental
concentration and risk can be extracted from the model in text-file format. An example

of the risk map is presented in Figure 2-6.

J0S'E IM0'E I'E I20'E

5 km
——

p— R

;| Risk &)

¢ | g oom - no0s
¢ 0005 - 0.01
.01 - 105
0.05-0.1
0105

56°35'N

2
g

S530°N

Water Column Risk Map: Memunur\il

|U;|3:00|

IO5E F0E FI5E I20E

Figure 2-6. Example of graphical output in DREAM
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2.3 Biomarkers

2.3.1 Introduction

The marine environment is continuously loaded with foreign chemicals (xenobiotics)
that are discharged directly or that come from land sources and via the atmosphere. The
ability of pollutants to accumulate, transform and degrade complicates the study of
pollutant exposure to marine ecosystem. The harmful effects on population become
apparent after longer periods of exposure. When they finally become clear, they may
have gone beyond the point where it can be reversed. Therefore, it is important to study
the biological markers that could reflect the early responses to adverse pollutant stress,

or early-warning signals (van der Oost et al., 2003).

Biological markers or biomarkers can be defined as any measurement in body fluids,
cells or tissues that indicate, in biochemical or cellular terms, the presence of
contaminants or the magnitude of the response (McCarthy and Shugart, 1990). In a
biomonitoring context, biomarkers can allow rapid assessment of organism health and
also they are quantifiable biochemical, physiological or histological measures that relate
in a dose-response or time-dependant manner the degree of dysfunction that the

pollutant has produced (Mayer et al., 1992)

2.3.2 Types of Biomarkers

The responses of biomarkers can be considered as exposure or effect indicators.
Biomarkers of exposure can be used to confirm and assess the exposure of species to a
particular substance and thus providing the relationship between external exposure and
internal dose. Biomarkers of effect include measurable biochemical, physiological or
other alterations within tissues or body fluids of an organism that can be associated to
external exposure of a chemical. PAH metabolites in bile is an example of a biomarker
of exposure. DNA damage and lysosomal membrane stability alteration can be regarded

as biomarkers of effect, although they can also serve as indicators of exposure.
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2.3.3 Selection of Biomarker
In selecting the appropriate and useful biomarkers for monitoring the pollutant exposure

and effects, there are several criteria to be considered (Stegeman et al., 1992):

1. The assay to quantify the biomarker should be reliable, relatively cheap and easy

to perform;

2. The biomarker response should be sensitive to pollutant and/or effects in order

to serve as an early warning system;

3. Baseline data of the biomarker should be well defined in order to distinguish

between natural variability (noise) and contaminant induced stress (signal);

4. The impacts of confounding factors to the biomarker response should be well

established;

5. The underlying mechanism of the relationship between biomarker response and

pollutant exposure (dosage and time) should be well established;

The toxicological significance of the biomarker, e.g. the relationship between its

response and the (long term) impact to the organism should be established

2.3.4 Biomarkers used in marine environmental risk assessment

The concern about possible long term ecological impact from chemical contamination
from offshore activities in the North Sea has introduced the need for monitoring tools
capable of detecting subtle biological responses of exposed populations. Biomarkers
have been proposed as suitable pollutant-effect monitoring tools for the offshore
industry. For this purpose, various biomarker responses in produced water exposed fish
and marine invertebrates have been investigated by IRIS-Biomilje. Several biomarkers
that have been studied and made available for this study by IRIS-Biomilje include PAH
metabolites as an exposure biomarker, DNA adduct formation as a biomarker of
genotoxic pollutants and lysosomal membrane stability as nonspecific defence

parameter.
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2.3.4.1 PAH Metabolites Biomarker

The exposure to certain common environmental contaminants such as poly-aromatic
hydrocarbons (PAHs) usually cannot be assessed by direct analysis for these chemicals,
because they are rapidly converted to a variety of metabolites (McCarthy and Shugart,
1990; Melancon et al., 1992). The metabolites may accumulate to high levels in certain
tissues or body fluids or bind to specific tissue macromolecules in a manner that

facilitates detection of exposure and indicates potential harmful effects.

In fish, detection of PAH metabolites in bile has been shown to be an excellent tool in
assessing recent exposure to PAHs. The determination of PAH metabolites has been
proposed as a biomarker of PAH exposure by international bodies such as OSPAR
(Oslo-Paris Commission) and ICES (International Council for the Exploration of the

Sea) (Hagger et al., 2006; ICES, 2004).

Metabolite levels in bile can be determined either by quantitative assay of selected PAH
metabolite or by analyzing the total level of PAH metabolites as fluorescent aromatic
compound (FAC) (See Figure 2-7). The quantitative assay of selected PAH metabolites
can be done using HPLC (High Perfomance Liquid Chromatography) or Gas
chromatography/mass chromatography (GC/MS), meanwhile, semi-quantitative assays
can be performed using synchronous fluorescence spectrometry (SFS), fixed

wavelength fluorescence (FF) or HPLC (Beyer and Bamber, 2004).

Expozure ¥

RPN
Qo) Hydrobysis O
+ zolvent
(methanol) E)dral:hon

Dlluted Hydrobysed Extracted [erivstizerd
hile sample bile =ample hile zample kile zample
FF, 5F% & HPLC-F HRLC-F GC-MS S
detection detection detection
Semi-quantitative sssas Guantitative axsays

Figure 2-7. Overview of method alternatives for detection of PAH metabolites in fish bile using
pyrene as an example contaminant (Illustration by Jonny Beyer)
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2.3.4.2 DNA Damage

Many pollutants investigated have shown to be chemical carcinogens and mutagens
with the capacity to cause various types of DNA damage. The interaction of toxicants
with DNA is demonstrated primarily by structural alterations to the DNA molecule and
can take the form of adducts, strand breakage or chemically altered bases. These lesions
may raise irreversible changes to the DNA molecule and result in the expression of
subsequent cellular responses such as chromosomal aberrations and oncogene
activation. The detection and quantification of DNA alteration and subsequent effects
may be employed as biomarkers in organisms exposed to genotoxic substances in the

environment.
DNA adducts

A DNA adduct is formed when a non-DNA chemical, e.g. carcinogenic chemical or its
metabolite, binds covalently to DNA. As an example, a model of DNA adduct
formation of benzo[a]pyrene is described in Figure 2-8. In fish, DNA adducts are most
often measured in the liver since it is the key organ for biotransformation of
xenobiotics, though other tissues can also be used for this analysis. DNA adducts can
also be formed in invertebrates following exposure to pollutants, but this occurs at much

lower intensity than in fish.

Detecting and quantifying DNA adducts are not simple tasks because analytical
techniques currently available are limited in their sensitivity or specificity. The most
sensitive assay available for measuring DNA adducts is 32P-postlabeling, but other
methods e.g. HPLC/fluorescence spectrometry and immunoassays using adduct-specific

antibodies are also available.
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Figure 2-8. Model of DNA with addcuted molecule of benzo[a]pyrene diol-epoxide

DNA strand breakage

Beside direct adduct formation, damage due to carcinogenic pollutant exposure also
include DNA strand breaks. Several methods including the alkaline unwinding assay
and the comet assay can be used to investigate the strand breaks level in organisms

exposed to pollutants.

The alkaline unwinding technique takes advantage of the characteristic that DNA strand
separation under defined conditions of pH and temperature occurs at sites of single-
strand breaks within the DNA molecule. The amount of double stranded DNA
remaining after a given period of alkaline unwinding is inversely proportional to the

number of strand breaks present at the initiation of the alkaline exposure.

The comet assay is based on the detection of DNA fragments from single cells which,
when following electrophoresis under alkaline conditions migrate away from the
nuclear core, resulting in the formation of a comet like ‘tail” when the cell preparation is
stained and viewed under UV light. The length of the tail is a measure of the number of

small DNA fragments and thus the amount of strand breaks present in the sample.
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Micronuclei

Micronuclei are chromosomal fragments or whole chromosomes that are not
incorporated into daughter nuclei during mitosis. The micronucleous test detects
micronuclei resulting from either chromosomal breakages during cell division or
chromosome loss events in anaphase damages (Kirsch-Volders et al., 2003). The
micronuclei assay has been shown to be a useful in vivo technique for genotoxicity
testing in fish, invertebrates and marine mammals (Al-Sabti and Metcalfe, 1995;

Gauthier et al., 1999; Hongell, 1996).

2.3.4.3 Lysosomal Membrane Stability

Lysosomal membrane stability is considered to be a general measure of stress (both
chemical and other) (Moore, 1985). Theoretically, membrane stability decreases in
response to stress as membrane permeability increases. The mechanism of this alteration
in membrane stability may involve direct effects of chemicals or the increased

frequency of secondary lysosomes in toxicant-stressed cells (Mayer et al., 1989).

Lysosomal membrane stability in macrophages (or white blood cells) is used as a
measure of pollutant stress in several species of invertebrates such as blue mussels,
whelks, hermit crabs and sea stars. It is also possible to carry out analysis on samples
taken from fish. A large number of pollutant effect studies using invertebrates have
included this parameter as a biomarker. It has been shown to be responsive to major
classes of environmental pollutants including heavy metals (in particular Cu), PAHs,

HCHs, PCBs and biocides such as TBT

The lysosomal stability condition is measured by means of the so-called Neutral Red
Retention Time (NRRT) assay. The assay basically quantifies the retention time of red
dye by the lysosomes of contaminant exposed mussels (Lowe and Pipe, 1994; Lowe et

al., 1995).
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3 Methodology

3.1 Concept

The motivation for this study is to establish links between environmental risk model
predictions of offshore discharges and the biological effect of produced water
contamination by using the DREAM model not only to perform risk assessment but also
to predict biomarker responses. The link is established by applying the species
sensitivity distribution (SSD) approach. As explained before, DREAM applies SSDs
based on toxicity tests to predict the possible risk (EIF) of produced water discharge.
SSDs based on biomarker responses called Biomarker Response Distribution (BRD) are

then used to simulate the possible effects measured by means of biomarker assays.

In general, there are four steps involved in order to establish the links between
environmental risk model prediction and biomarker responses. The first step is to
perform risk assessment of produced water using DREAM. Then, the SSD based on
biomarker response is built using biomarker data in produced water exposed fish and
mussels, made available by IRIS-Biomilje. This SSD based on individual biomarker is
applied to the model in order to predict the biomarker responses at different distances
from produced water discharge point. As a validation, the predicted biomarker
responses are compared to the biomarker data obtained from a field survey at Ekofisk.

These processes are illustrated in Figure 3-1.

In this project, the Ekofisk field is chosen as the study area due to the coherency with
the field measurement of biomarker responses available. This field data of biomarker
responses are obtained from the Water Column Monitoring Project (IRIS-Biomilje) and

kindly made available for this master thesis by the project clients (ConoccoPhillips).
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Figure 3-1. The complete scheme of the methodologies used in predicting biomarker
responses using DREAM.
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3.2 Ekofisk Field

Ekofisk is the oldest field complex in operation on the Norwegian continental shelf
started its production in 1971 (Figure 3-2). The sea depth in the area is about 70-75m
meters. The field is owned by several oil companies including ConoccoPhillips who are
also the operator. Ekofisk consists of several platforms, but only Ekofisk J will be
considered in the simulation since it is the main processing facility and has the largest

contribution to the total produced water discharge.
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Figure 3-2. Map of Ekofisk region (source: www.npd.no)

3.3 Risk Assessment of Produced Water using DREAM

3.3.1 Data input and scenario set up

To perform environmental risk assessment of produced water discharge using DREAM,
there are two types of information used as input: produced water discharge data and the
physical environment data. The discharge information includes the amount, location,
depth and also the concentration of different chemical compounds in the discharge.
Meanwhile, the physical environment data that are already incorporated in the DREAM

database include depth, wind and ocean current.

The discharge information for Ekofisk region used in this study are available from
ConocoPhillips. The toxicological properties needed for risk calculation (e.g.
biodegradation, logP,, and PNEC) of natural occurring compounds are standardized in
the model database, while data for added chemicals are obtained from HOCNF. The

overview of the discharge information is presented in Table 3-1.
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Table 3-1. Overview of the discharge information from Ekofisk field includes the location,
depth, amount and concentration of the naturally occurring compounds.

Position 3°13.26’ E

56° 32.8' N
Depth 39m
Discharge amount 23 688 tones/day
Natural occurring Concentration
compound (mgl/l)
BTEX 10.8000
Napthalenes 1.3063
PAH 2-3 ring 0.2791
PAH 4 ring+ 0.0066
Phenols C0-C3 6.9560
Phenols C4-C5 0.0204
Phenols C6-C9 0.0030
Aliphatic hydrocarbons 20.0000
Zinc 0.0227
Copper 0.0042
Nickel 0.0069
Lead 0.0012
Cadmium 0.0001
Mercury 0.0005

Standardized current fields and wind time series are chosen based on the region of the
release site. The standardized modeling period is 1.5 — 30.5.1990 (30 days). For

Ekofisk, the current and wind files from North Sea region are selected;
Current : May90.DIR
Wind : Ekofisk.wnd

To enable the use of the near field profile in this simulation, the temperature and salinity
profile of the region is set based on the data CTD measurement from the Water Column
Monitoring (presented in Figure C-1(b), Appendix C). It is assumed that the salinity and
temperature of the water mass don’t change so much in time and also the horizontal

variation of salinity and temperature can be ignored.

All release information and physical environment data are set in the scenario
parameters while the produced water chemicals are combined in release profile (see
Figure 3-3).
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Figure 3-3. Overview of windows for setting-up release scenario and environmental parameters

3.3.2 Model Set up

To have an optimum computation process, there are several model parameters that have

to be adjusted. These parameters include:

e Habitat grid is the domain in which the model operates. This has to be defined

before starting the simulation.

e Concentration grid defines grid sizes at which the model computes and reports

concentration in the water column.

e Time step specifies the time interval between subsequent calculations. Smaller

time steps are required when rates of change are more rapid.

e Number of particles influences the statistical stability of the results. It is
suggested that 1000 active particles will produce stable results for 100mx100m
concentration grid and 5-minute time step (OLF, 2003).

e Lower concentration limit: the lowest concentration that will be recorded in the

output files. The lower concentration limit is set to be 10% of the lowest PNEC
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e Output interval determines at which frequency the concentration fields and risk

results are written to the output files.

The values for these model parameters used in this simulation are summarized in Table

3-2. These values are adjusted on model parameters as presented in Figure 3-4.

Table 3-2. Some model parameters used in the simulation

Model parameters

Values

Size of habitat grid

Concentration grid

Gird resolution

Time step

Number of solid and liquid particles
Number of dissolved particles
Lower concentration limit

20km x 20km x 100m
200 x 200 x 10 cells
100m x 100m x 10m
5 minutes

1000

1000

0.001 ppb

Output interval

6 hours

Biological Exposure ] Near Field Model ] Output Settings ]
Physical Fates l Sediment Model ]
Mumber of particles Mumber of cells

X Concentration
Liquid/Saild: |1000 T 200 %200 ®|10
Surface grid
Dissolved 1000 e 100 =100 #)1

Lawer concentration limit [ppb): 0,001

Depth for concentration grid (m]: Min: |0 b aw: ’1DD—
v o [ o1 oo
Output interval: ’E— m

Time step: ’5— m

Fandom seed: ‘Handomlzed ﬂ |

Surface drift rate: ’T % wind speed

Modeling ["|Expanding concentration and suface grids

i [ertical-mixing due to bottom curent
[JUsze distance to nearest neighbor as radius
[adsoibed/dissolved equilibrium in release

tdinirumm limit [pph] for calculating concentrations of water soluable
fractions in the water column,

Cancel

Figure 3-4. Overview of windows for model parameters set-up
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3.4 Constructing SSD Based on Biomarker Responses

3.4.1 Biomarker data

To build a SSD based on biomarker responses, biomarker measurements from different
marine organisms (fish, crustacean, mollusk and echinoderm) exposed to dispersed oil
obtained from laboratory studies at IRIS-Biomilje are used. Dispersed oil is used as an
approximation to produced water. The biomarkers selected for this purpose are PAH
metabolites, DNA damage, and lysosomal membrane stability. The available
biomarkers for DNA damage include DNA adducts and DNA strand breaks (measured
with alkaline unwinding and comet assay). For lysosomal membrane stability, the data

of Neutral Red Retention Time (NRRT) are available in the database.

Due to the larger dataset available, the lowest oil concentration that gives significant
biomarker response from controls or lowest observed effect concentrations (LOECs) are
selected, instead of NOECs. Since it will be used as monitoring parameter, it seems
more convenient to use the lowest concentration where the responses are actually
measured rather than the highest concentration where the responses are not measured. If
a species was tested by more than one type of oil, resulting in more than one LOEC data
per species, the geometric mean value was taken to represent the LOEC (Slooff, 1992).

These data are presented in Table 3-3.

Table 3-3. Overview of lowest observed effect concentration (LOECs) for biomarkers as total

hydrocarbon concentration indicating PAH metabolites in bile, DNA damage, oxidative stress

and lysosomal membrane stability in different marine organisms exposed to dispersed oil from
IRIS-Biomilje.

. No. of . Duration Geometric
Species Group LOECS Biomarker assay (days) mean LOEC
(ug THCIL)
PAH metabolites
Cyprinodon variegates Fish 2 Fixed Fluorescence 35-42 100
Gadus morhua Fish 3 Fixed Fluorescence 3-30 57.8
Scophthalamus maximus Fish 1 Fixed Fluorescence 30 16
DNA damage
Pandalus borealis Crustacean 2 DNA strand breaks 30-90 21.2
Mytilus edulis Mollusk 1 DNA strand breaks 210 2.8
Chlamys islandica Mollusk 1 DNA strand breaks 30 14.4
Strongylocentrotus droebachiensis Echinoderm 1 DNA strand breaks 210 4
Gadus morhua L. Fish 3 DNA adducts 24-31 46.9
Cyprinodon variegates Fish 1 DNA adducts 21 100
Scophthalamus maximus Fish 1 DNA adducts 30 413
Lysosomal membrane stability
Chlamys islandica Mollusc 1 NRRT 30 14.4
Pandalus borealis Crustacean 2 NRRT 150 9.7
Strongylocentrotus droebachiensis Echinoderm 1 NRRT 120 29

THC= Total Hydrocarbon Concentration
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3.4.2 SSD based on Biomarker response

The SSD is estimated from the biomarker LOECs data and visualized as a cumulative
normal distribution function of concentration (logarithmically transformed) and
presented in Figure 3-5. Risk is expressed as the potentially affected fraction (PAF)

which is calculated from:

i (3.1)
N +1

PAF, =

where I represents species number and N the total number of species. As a comparison,
the SSD from fitness effects are also added into the plot which shows that biomarkers
indicate more sensitive responses than the whole organism effects (e.g. growth,

reproduction, mortality) (Smit et al., 2009).
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Figure 3-5. Species sensitivity distribution (SSD) curves using normal cumulative distribution
based on LOECs from biomarker responses collected from IRIS-Biomiljg and SSD based on
NOECs from fitness parameters (Smit et al., 2009).
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3.5 Predicting Biomarker Reponses

SSDs based on biomarker response data from the previous step were used to predict the
biomarker responses in the Ekofisk region at different distances from the discharge
point. For this purpose, several assumptions were made regarding the types of the

biomarker that are used.
Assumptions:

1. Lysosomal membrane stability biomarker is considered to be a general measure
of stress, therefore the simulation is done based on exposure to all chemicals

(naturally occurring and added components) in the discharge.

2. PAH metabolites is considered to be a biomarker of exposure to PAHs and DNA
damage is considered to be a biomarker of response to PAHs. Therefore, for
these two biomarkers, the simulation is done using chemical groups of
polyaromatic hydrocarbons (PAHs) including Napthalenes, PAH 2-3 ring and
PAH 4 ring+ as inputs.

Using these assumptions, the risk assessment simulation was performed twice: for all
groups of chemicals and for poly-aromatic hydrocarbon (PAH) compunds. The results
are then transformed into biomarker response prediction using the SSDs based on
biomarker LOECs. Therefore, the predicted biomarker response resulting from the
model is in the form of potentially of affected fraction (PAF) of species in the

ecosystem.
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3.6 Comparison with biomarker responses measured from the
field survey

The predicted biomarker responses were then compared with the biomarkers measured
from the field survey at Ekofisk. The field biomarker data was obtained from the Water
Column Monitoring (WCM) project in 2008 done by IRIS-Biomilje in collaboration
with NIVA, and financed by The Norwegian Oil Industry Association (OLF).

The Water Column Monitoring (WCM) project has investigated the area influenced by
produced water discharge in the Ekofisk region since 2006. This project includes the
measurement of some core biomarkers in cod and blue mussels located at six
observation stations surrounding the discharge at 15 meters depth (see Figure 3-6 for the
location of the observation stations). Besides biological responses, the physical

environment i.e. current, temperature and salinity were also measured in the field.
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Figure 3-6. Water column monitoring project: deployment of caged cod and blue mussels (left)
and Location of 6 stations of cages (right)

For this study, the data collected from WCM includes body burden, lysosomal
membrane stability biomarker and micronuclei for mussels, PAH metabolites (both with
FF and GC/MS method) and DNA adducts for fish biomarkers. The data from the
WCM project in 2008 including the biological responses and physical environment are
presented in Appendix C. To have a better validation, wind measurement data in the
Ekofisk field from the Norwegian Meteorological Institute (Furevik et al., 2008) is also

included.
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The biomarker responses for micronuclei and lysosomal membrane stability from 6
observation stations were transformed into contour plots and bubble plots. The contour
maps, that are plotted based on the ratio of the responses in each station against the
reference value, visualize the level of response. On the other hand, the bubble plots
visualize the percentage of individuals for the same species that shows a significant
response at different stations compared to the reference value. These contour plots and
bubble plots are then overlaid with the predicted biomarker results at the corresponding

depth that is at 10-20 meter (second vertical layer).

In addition to the biomarkers, the comparison was also made between the PAH body
burden data collected from observation and the predicted body burden calculated using
concentration predicted from the model. Using the equation 2.1 (section 2.1.1), the body
burden was estimated from the PAH concentration in water based on the
bioconcentration factors of PAH compounds in mussel that are available in Table A-1,
Appendix A. The PAH concentration results from the model are classified the PAH into
three different groups i.e. Naphthalene, PAH 2-3 ring and PAH 4+ ring (list of the
compounds included in these groups are available in Table B-2, Appendix B).
Therefore, the BCF values from Table A-1 must be simplified in to three corresponding
groups. This was done by taking average of different BCF values in the same group.
The bioconcentration factors are presented in mg/kg lipid weight, therefore the results
have to be translated into ug/kg wet weight, using the average lipid content of 2% of

body wet weight in mussel (Baussant et al., 2001)
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4 Results

4.1 Environmental risk assessment of produced water
discharge in Ekofisk

In the first step of this study, produced water risk assessment in Ekofisk region was
simulated in DREAM. The output of this simulation includes the concentration field

(Figure 4-1), risk map (Figure 4-2) and also the EIF value and pie chart (Figure 4-3).
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Figure 4-1.Snapshots of concentration field of produced water release during one day (day 10)
with 6 hour intervals. The arrows show the current pattern. Wind direction and magnitude are
shown in the inserted box.
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Figure 4-1 shows the snapshots of the concentration field during one day (day 10) from
fate modeling including wind and current pattern. From this picture, it is clear that the
contaminant concentration is very dynamic and its distribution follows the movement of

current and wind.

Following the concentration field, the risk to the ecosystem due to produced water
discharge is also very dynamic. Since decision makers are usually concerned about the
maximum risk to the ecosystem that might be caused by the exposure of chemicals
(“conservative approach”), then the risk summary map is based on the maximum risk
(expressed in percentage) recorded in each cell during the simulation period (Figure 4-
2). From the map, it is shown that in the area near the discharge point, there is a
significant risk to the ecosystem where the potentially affected fraction of species is

greater than 5%.
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Figure 4-2. Maximum risk in the water column due to produced water discharge in the Ekofisk
region. The insert (to the right) shows the vertical distribution along the arrow (in the figure to
the left). The red color (risk > 5%) represents PEC:PNEC (RCR) > 1.0.

Besides risk map, the model also calculates the total volume of water that subjected to
risk 5% or RCR>1.0 (EIF value). After applying weighting criteria for some groups of
chemicals (see Table B-2, Appendix B), the modified EIF value is 718, which means
that 71,800,000 m’ volume of water is subjected to risk greater than 5%. The
contribution of the compounds to the total risk is presented in the pie chart (Figure 4-3).
From the chart, it is shown that poly-aromatic hydrocarbons (PAHs) and added biocides

are the dominant contributors of the total risk to the ecosystem.
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Figure 4-3. EIF value and pie chart of the contribution of chemical groups to the total risk value.

Beside the risk due to all components of produced water discharge, risk assessment due
to poly-aromatic hydrocarbons (PAHs) only was also performed (the results are not
presented here). Then these results were transformed into the biomarker response

(potentially of affected fraction) using the species sensitivity distributions (SSDs).

4.2 Predicted Biomarker Responses

The simulation results for three types of biomarkers: PAH metabolites as a biomarker of
exposure, DNA damage as a genotoxicity marker and lysosomal membrane stability as
general marker of stress are presented in this section. Figures 4-4 to 4-6 visualize the
distribution of the fraction of species that might show responses at the biomolecular
level due to produced water exposure in Ekofisk region. The predicted biomarker

responses show high levels in the northeast and southwest direction.
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Figure 4-4. Biomarker response prediction at Ekofisk during 30 days period shown as max risk
(potentially affected fraction [PAF]) in the water column: PAH metabolites.
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Figure 4-5. Biomarker response prediction at Ekofisk during 30 days period shown as max risk
(potentially affected fraction [PAF]) in the water column: DNA damage.
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Figure 4-6. Biomarker response prediction at Ekofisk during 30 days period shown as max risk
(potentially affected fraction [PAF]) in the water column: lysosomal membrane stability.

These results also show that the high biomarker response in lysosomal membrane
stability covers wider area. This pattern is determined by the SSD curves (Figure 3-5)
used to transform the ecosystem risk into biomarker response that shows lysosomal

membrane stability as the most sensitive biomarker.

4.3 Comparison with the Field Measurement

To assess the predicted biomarker responses, the results from the simulations were
compared with field measurements. The comparison was made by plotting the field data
into contour maps and bubble plots then overlaying them with the predicted results. It
has to be remembered this comparison is done in two different units. The model (in risk
map) shows the predicted fraction of species that demonstrate alterations at their sub-
organismal level. Meanwhile, each line in the contour plot corresponds to the same level
of biomarker response (the degree of alterations) compared with reference. For
comparison with the bubble plots, it is assumed that both units are comparable, although
the bubble plots show the percentage of affected individuals for the same species at six
different stations, not a potentially affected fraction of species in an ecosystem. It is

done in this way because the availability of field data is very limited.
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Figure 4-7. Overlay of predicted biomarker response at depth 10-20 m (visualized in
risk/response map) with field biomarker measurement (in contour plot) for (a) Lysosomal
membrane stability and (b) Micronuclei. Each line corresponds to the same level of decreasing
biomarker responses as increasing distance from discharge point.

The comparison with contour plots is presented in Figure 4-7. Figure 4-8 and 4-10 show
the comparison between predicted results and the bubble plots. The values of the

validation with the bubble plots are produced in table form (Table 4-1).

Although the response maps and the contour plots are not presented in the similar unit,
the comparisons are made to observe the pattern. The contour plots in Figure 4-7 were
not given an exact scale, but each line represents the same level of response which is
decreasing with increasing distance from the discharge. The biomarker response contour
lines show an asymmetrical decreasing pattern which has the lowest response in the

southeast of the discharge.
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Figure 4-8. Comparison of predicted DNA damage biomarker responses from depth 10-20 m
(visualized in risk/response map) with measured responses (in bubble plot) of: (a) DNA adduct
and (b) micronuclei. The DNA adduct data is only available at 2 stations.
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Figure 4-9. Comparison of PAH metabolites biomarker between predicted responses from
depth 10-20 m (risk map) with measured responses (bubble plot).
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Figure 4-10. Comparison of lysosomal membrane stability biomarker between predicted
responses (risk map) with measured responses (bubble plot).



Table 4-1. The comparison of biomarker responses (in probability of affected species) from

simulations and observations, assuming that both of them are comparable

(a)Lysosomal membrane stability

L . Biomarker responses (%)
ocations :
model observation
ST1 95 93
ST2 94 80
ST3 93 71
ST4 97 73
ST5 91 67
ST6 85 73

(b)DNA damage (model) —micronuclei (observation)

Biomarker responses (%)

Locations model observation
ST1 64 80
ST2 63 55
ST3 60 45
ST4 66 85
ST5 57 65
ST6 52 35

(c)DNA damage (model) -DNA adduct (observation)

Biomarker responses (%)

Locati
ocations model observation
ST3 60 36
ST4 66 50
(d)PAH metabolites
Locations Biomarker responses g%)
model observation
ST3 40 100
ST4 55 %

Table 4-2. Average responses of lysosomal membrane stability and DNA damage biomarkers
(both observation and model)

Average biomarker Deviation =
reSPONSes (%) (Ymodel - Yobservation)/
Locations |  model | observation Yob(sg/;V)ation

ST1 80 87 -8
ST2 79 68 16
ST3 77 58 32
ST4 82 79 3
ST5 74 66 12
ST6 69 54 27

Average= 14
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Figure 4-11. Comparison of biomarker responses between model and observation,
average results of lysosomal membrane stability and DNA damage

In Figure 4-8 to 4-9, the simulation results are zoomed and then compared with the
percentage of affected individuals in the same species (presented as bubble plots). In a
brief look, the predicted response maps show some agreements with the bubble plots
pattern. The values of the predicted responses and the measured responses are presented
in tables (Table 4-1 (a)-(d)). The predicted results (PAF of species) are calculated by

taking the average of the corresponding cell of each station and its surrounding cells.

The average responses of lysosomal membrane stability and DNA damage-micronuclei
biomarkers in each corresponding station are calculated for both predicted and
observed, and the results are presented in the Table 4-2 and Figure 4-11. In Table 4-2
the deviations between the predicted and observed results were also calculated. The
deviations were defined as the percentage of the difference between the model and the
observation (not to be confused with the biomarker responses that are also expressed in
percentage). The results show that the model and the observation have the same trend. It
is also found that the model gives, in average, 14% higher response than the

observation, except at ST1 which is about 8% lower than the observation.
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Beside the biomarker response comparison, the body burden data of PAHs in mussels
from field measurement were also collected to study the internal exposure. The data
were then compared with the concentration data from the model. This is shown in
Figure 4-12. The figure shows a good comparison between the model and observation,
especially at the stations far from the discharge point (ST1, ST5 and ST6). Meanwhile

at the locations near the discharge point (ST2, ST3 and ST4), the comparison was rather

poor.
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Figure 4-12. Comparison of predicted body burden calculated using maximum concentration
from model and body burden data from observation. PAH body burden in mussels are measured
in pg/kg wet tissue.
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5 Discussion

In establishing the link between the risk prediction model (DREAM) and biological
monitoring, the DREAM model is utilized to predict the three types of biomarker
responses (i.e. lysosomal membrane stability, PAH metabolites and DNA damage) then

the results are compared with the biomarker responses from field measurement.

The methodology of predicting biomarker response in DREAM in this study utilizes the
species sensitivity distribution curves based on biomarker’s LOECs or so-called
biomarker response distributions (BRDs). Therefore, the accuracy of the SSD curves is
essential to produce good results. The accuracy of the curves mainly relies to the
number of data and the accuracy of the data. The biomarker’s LOECs obtained from
laboratory experiments are currently only available for a few species. Another source of
uncertainty in the SSD curves is that few LOEC data collected from the experiments
were the lowest concentration tested. This means that the true LOECs could be

considerably lower than the value obtained.

Despite the remaining uncertainties, SSD curves for different biomarker responses
(Figure 3-5) show a clear pattern: the biomarker responses are more sensitive than the
whole organism effect (fitness). Lysosomal membrane stability is the most sensitive
marker compared to others. It might be because LOECs of lysosomal membrane
stability are mostly taken from exposures to invertebrates (although it can also be
measured on fish) and fish, in general, have more efficient detoxification defenses than
invertebrates. On the other hand, the PAH metabolites biomarker which is a biomarker
exposure is shown to be less sensitive than the biomarker effect, DNA damage. This is
because the PAH metabolites in bile is only available for fish (vertebrates). Meanwhile,

the DNA damage SSD is based on the exposures of both invertebrates and vertebrates.

The prediction of biomarker responses using the DREAM model is determined by how
the model works. The DREAM model enables a dynamic risk prediction and also takes
into account the different properties in a complex mixture. In the model, the predicted
risk is expressed as the potentially affected fraction of species in the ecosystem, where
the risk values above 5% have been considered to be unacceptable. Therefore, the

results of predicted biomarker response are expressed as the fraction of species in the
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ecosystem that show alterations in a certain biological marker. However, for validation
or comparison purpose, the field measurement biomarkers cannot be translated into the
same unit as the model, since the available field data only consist of two species which
are not sufficient to represent an ecosystem. The comparison was done in two possible
ways: comparing the model with pattern of the responses measured from field
(expressed in contour plots) and comparing the model with percentage of affected

individuals for the same species at six different points (presented as bubble plots).

The simulation results show a common pattern that is the high values of response
(probability affected fraction) are mainly distributed in the northeast and southwest
direction. The observation results for lysosomal membrane stability, micronuclei and
DNA adduct biomarkers show that ST4 is higher than ST3 and the south west direction
shows higher response (potentially affected fraction of species) than the north east
direction. This pattern can be explained by the current and wind distribution in the
region as the contaminant fates are highly determined by the physical environment. The
dominant current pattern in Ekofisk is distributed in northeast and southwest directions
(see Figure C-1(a), Appendix C). In addition to the current effect, the southwest side of
the discharge point is subjected to higher wind velocity (see Figure C-2, Appendix C)

which might explain higher response in that direction compared to northeast direction.

The average responses of lysosomal membrane stability and DNA damage-micronuclei
biomarkers in each corresponding station are calculated for both predicted and
observed, and the results are presented in the Table 4-2 and Figure 4-11. In Table 4-2
the deviations between the predicted and observed results were also calculated. The
average biomarker response comparison (Figure 4-11) shows that in general the model
and the observation have a similar trend. The result also shows that the model gives
about 14% higher response than the observation, except at ST1 which is 8% lower than

the observation.

The higher response of the predicted biomarkers may be due to the fact that the
response map from the model is based on the highest risk recorded for the simulation
period. Since the simulation results are based on the highest response during the 30 days
period, those prediction values must be treated carefully. It has to be remembered that
the actual exposure processes are very dynamic. One maximum response value might

not be able to adequately represent the potential biological response at one location.
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To obtain more representative predicted values in relation to the field measurement, the
comparison could instead have been based on the average values throughout the
simulation period or on the last part of it. This is not done, as it would require
modification of the standard calculation of the model output, which would be too time

demanding for this thesis project.

For the results on PAH metabolites observation, the average level of response (see
Figure C-3, Appendix C) and also the percentage of affected species (bubble plot in
Figure 4-9 or values in Table 4-1 (d)) show quite a different pattern than the other
biomarkers. The percentage affected individuals of PAH metabolites from field
measurement in ST3 is slightly higher than ST4 which is contradictive to the biomarker
prediction result. It may be due to the fact that the results from the biomarker response

prediction in Table 4-1(d) have been smoothed with the surrounding cells.

PAH metabolites biomarker is mostly used as biomarker of exposure since it can
provide information of the recent (ongoing) exposure of fish to poly-aromatic
hydrocarbons (PAHs). As mentioned earlier, the exposure of produced water in one
location is very dynamic due to the physical environment (i.e. current and wind
circulation). Therefore, the possible explanation for this condition is that around the
time when the samples were taken, the ST3 were subjected to higher concentration than

in ST4.

In general, the time variable or duration of the exposure is important in interpreting the
biomarker responses. For enzymatic biomarkers in fish, the process induction and
recovery of the responsive system might last for some days up to few weeks, whereas
some other biomarkers may require longer time (Beyer and Bamber, 2004). This is will
also be the case for PAH metabolites which will vary dynamically with the enzymatic
processes of metabolism, while DNA damage will be more accumulated and less
dynamic in its formation and recovery process as its link to metabolism process is

slightly less direct.

As for the model, although the DREAM model is able to estimate the time variable
exposure process in the biomarker response prediction, it cannot accommodate the

duration variable in the response formation and recovery processes.
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As the biomarker responses are highly determined by the level of exposure, in addition
to the biomarker response data, the body burden data of PAHs in mussels were also
collected. The result is then compared to the maximum concentration profile in 6
stations which have been transformed into the same unit as the measured values by
using the bioconcentration factors from experiments (Baussant et al., 2001) (Figure 4-
12). The figure shows a good comparison between the predicted and observed body
burden at the stations far from the discharge point (ST1, STS and ST6), meanwhile at
the locations near the discharge point (ST2, ST3 and ST4), the comparison was rather
poor. The predicted PAH body burden results are also based on the maximum
concentration recorded during the simulation, therefore, the results depend greatly to the
concentration profile. At the location near the discharge source, the concentration varies
greatly in time and ST3 and ST4 could be subjected to a very high concentration in a
very short time. Meanwhile, at the locations further from the discharge source the
concentration profiles do not have so much fluctuation compared to the area near the
discharge point, thus give more stable results and a better comparison with the
observation. This condition suggests that the internal exposure of contaminants in biota

is influenced by the dynamic concentration of the contaminants.

It has to be noted, in performing the biomarker response prediction, several assumptions
and simplifications have been applied including the time frame of the simulation. The
simulation is performed for a 30 days period based on wind and current data in May
1990, which are the standard wind and current inputs, while the field data are based on 6

weeks observation from April - May 2008.

The salinity and temperature inputs for the simulation were based on the actual field
data. This was done to study more about the vertical profile of the discharge pattern in
relation to the near-field module. The results show that the vertical density profile
(represent by salinity and temperature profile) which may cause a vertical stratification
of water mass does not give any considerable influence to the concentration profile,
since the concentration is more accumulated at the surface. This is due to the fact that
the produced water discharge usually has a quite high temperature and also includes
hydrocarbons and causing the produced water to have very low density and thus

spreading up to the surface.
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6 Conclusion

The aim of this study is to investigate the possibility of linking a risk prediction model
with biomarker responses which was done by utilizing the DREAM model to predict

biomarker responses applying the species sensitivity distribution (SSD) approach.

From the results, predicting biomarker responses using the DREAM model can be done
with some assumptions applied. It is also shown that the model could predict similar
trend with biomarker responses measured at different distance from the discharge point.
In this study, the predicted biomarker responses give about 14% higher value compared
to observation. It may be related to the fact that the model applies the conservative
approach (based on the maximum risk value) and therefore the model cannot
accommodate the duration variable in the biomarker response formation and recovery

processes which may differ in biomarkers which is also the case for the body burden.

Despite the remaining uncertainties and limitations, this study could provide some
general backgrounds for the study of linking the risk prediction with the monitoring.
From this study it can also be concluded that the results in biomarker responses
prediction is determined by three factors: the reliability of the SSD approach, the model
limitations (how the model works) and also the available field data for validation.
Therefore, in future, there are several improvements that could be applied for studies

related to this topic:

e The accuracy of the curves mainly relies on the number of data and their
accuracy. In this study, the SSD curves are mainly constructed based on LOECs
from few species. Including LOEC data from more species that represent more
diverse taxonomy is one way to increase the reliability of the SSD curves. Some
LOEC data from the experiments used in this study are actually the lowest
concentration tested, which makes them to be rather imprecise data. Therefore,
improvement in the accuracy/quality of the LOEC data is also important in

improving the accuracy of the SSD curves.
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e So far, the simulation results selected from the model are based on the maximum
risk, since the risk summary results are based on maximum exposure during the
simulation. It would be interesting to compare the observed results with the

average summary results from the model.

e [t is also suggested to perform the simulation in the same time frame with the

observation to increase the consistency between the prediction and observation.

e In this study, the results (predicted affected fraction of species) from the model
are compared with the percentage of affected individuals in the same species
from observation, due to the limited observation data available. Therefore,
increasing the species number from observation would make it possible to make

the validation/comparison in exactly the same unit.
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Appendix A

Table A-1. Lipid base bioconcentration factors (BCF) in sample tissues and devices
(SPMD=semi-permeable membrane device) of blue mussel (Mytilus edulis) and cod

(Scopthalamus maximus) (Bausssant,
2001).
BCF lipid weight (>10%)
Scophthalmus
Compound log K_* SPMD Mytilus edulis maximus
Naphthalene 334 1.86 133 1.78
Cl-naphthalenes 388 449 276 417
Acenaphthene 3.95 5.56 0.54 0.55
Acenaphtylene 41 15.84 14 .46 533
C2-naphthalenes 437 8.95 830 522
Fluorene 421 6.12 5.09 331
C3-naphthalenes 486 12.84 15.98 2.18
Phenanthrene 457 16.55 14.66 1.03
Anthracene 4.58 — — 1.72
Dibenzothiophene 438 32.19 21.15 321
Cl-phenanthrenes 5.1 19.26 23.39 0.16
C1-dibenzothiophenes — 37.29 3343 026
Fluoranthene 5.1 — — 0
Pyrene 51 6.53 33.43 0
C2-phenanthrenes — 18.79 26.48 0.02
C2-dibenzothiophenes — 35.28 37.66 0.03
Benzo[a]anthracene 5.67 — — 0
Chrysene 571 436 20.76 0
Cl-chrysenes — 3.24 10.69 —
Benzo[b]fluoranthene 6.4 — — —
Benzo[k]fluoranthene 6.5 — — —
Benzo[a]pyrene 6.3 — — —
C2-chrysenes — 5.35 9.75 —
Indeno[1,2,3, ¢, d]pyrene 6.92 — — —
Benzo[g, h,i]lperylene 7 — — —
Dhbenzo[a, i]anthracene 6.71 — —

Benzo[b +k]fluoranthene
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Appendix B

Table B-1. Produced water compound groups representing naturally occurring components and

man-added components with their PNEC values and weighing factors (OLF, 2003)

Group Main group Representative PNEC values (ppb) Weighing factor
compound
1 BTEX Benzene 17 1
2 Napthalenes Napthalene 2,1 1
3 PAH 2-3 ring Phenanthrene 0,15 1
4 PAH 4 ring+ Benzo[a]pyrene 0,05 2
5 Phenols C0-C3 Phenol 10 1
6 Phenols C4-C5 Pentylphenol 0,36 1
7 Phenols C6-C9 Nonyphenol 0,04 2
8 Aliphatic Hepthane 40.4 2
hydrocarbons
9 Metals 1
Zinc 0,46 1
Copper 0,02 1
Nickel 1,22 1
10 Metals 2
Lead 0,182 1
Cadmium 0,028 1
Mercury 0,008 1
11 Corrosion inhibitor HOCNF specific data see Table A-4
12 Biocide HOCNF specific data see Table A-4
13 Scale inhibitor HOCNF specific data see Table A-4
14 Anti foam HOCNF specific data see Table A-4
15 Emulsion breaker HOCNF specific data see Table A-4
16 Flocculant HOCNF specific data see Table A-4
17 H,S scavanger HOCNF specific data see Table A-4

Table B-2. List of the compounds included in groups of naturally occurring components of

produced water (OLF, 2003)

Main groups Compounds
Naphthalene ¢ Naphthalene
e C1- Naphthalene
e C2-Naphthalene
e (C3- Naphthalene
PAH 2-3 ring Compounds on the EPA 16 PAH list with 2-3 rings, other than
Naphthalenes:
e Acenaphthylene
e Acenaphthene
e Fluorene
e Phenanthrene, including C1-C3 alkylhomologues
e Anthracene
e Dibenzothiphenes, including C1-C3 alkylhomologues
PAH 4+ ring Compounds on the EPA 16 PAH list with 4 rings or more
e Fluoranthene
e Pyrene
e Chrysene
e Benzo(a)anthracene
e Benzo(b)fluoranthene
e Benzo(k)fluoranthene
e Benzo(a)pyrene
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Indeno(123,cd)pyrene
Dibenzo(ah)anthracene
Benzo(ghi)perylene

Phenol C0-C3

Phenols C1-C3 alkylhomologues:

Phenol
C1-Phenols
o o-cresol
o m-cresol
o p-cresol
C2-Phenols
o 2,5-Xylenol
3,5-Xylenol
2,4-Xylenol
4-Ethylphenol
other C2-phenol alkylhomologues defined by analytical
method
C3-Phenols
2-n-Prophylphenol
2.3.5-Trimethylphenol
4-n- Prophylphenol
2.4.6-Trimethylphenol
other C3-phenol alkylhomologues defined by analytical
method

O o0O0O0

o

©Oo0oO0Oo

Phenol C4-C5

C4-C5 alkylphenol homologues:

C4-Phenols
0 4-tert-Butylphenol
0 4-iso-Propyl-3-Methylphenol
0 4-n- Butylphenol
o other C4-phenol alkylhomologues defined by analytical
method
C5-Phenols
0 2-tert-Butyl-4-Methylphenol
0 4-tert-Butyl-4-Methylphenol
0 4-n-Pentylphenol
o other C4-phenol alkylhomologues defined by analytical
method

Phenol C6+

Sum C6-Phenols

0 2,6,-Di-iso-Propylphenol

0 2,5,-Di-iso-Propylphenol

0 4-n-Pentylphenol

0 2-tert-Butyl-4-Ethylphenol

0 6-tert-Butyl-2,4-Dimethylphenol
Sum C7-Phenols

0 4-n-Hepthylphenol
Sum C8-Phenols
2,4,-Di-sec- Butylphenol
4-tert-Octylphenol
4-n-Pentylphenol
2,6-Di-tert- Butylphenol
2,6-Di-tert-Butyl-4-Methylphenol
4-n-Octylphenol
Sum C9-Phenols
2-Methyl-4-tertt-Octylphenol
4-n-Nonylphenol
4,6-Di-tert-Butyl-2-Methylphenol
2,6-Dimethyl-4-(1,1-Dimethylpropyl)phenol
4-(1-ethyl-1-methylpropyl)-2-methylphenol

O O0OO0OO0O0O0

O 0OO0OO0O0
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Table B-3. Standard biodegradation rates for produced water compounds (Johnsen et al.,

2000)
. Biodegradation rate

Group Main group v, life (days)

1 BTEX 0,5

2 Napthalenes 1,5

3 PAH 2-3 ring 17

4 PAH 4 ring+ 350

5 Phenols C0-C3 1,2

6 Phenols C4-C5 10

7 Phenols C6-C9

8 Aliphatic hydrocarbons 60

9 Metals 1 No degradation

10 Metals 2 No degradation

11-n  Poduction chemicals HOCNEF (BOD 28d) specific data

Table B-4. Weighing criteria in EIF based on bioaccumulation and biodegradation

potential (Johnsen et al., 2000)

Biodegradation

Bioaccumulation (log P,y)

(BOD, 28 days test) <3 3-5 >5
>60% 1 1 1
20-60% 1 2 2
<20% 2 2 4
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Appendix C

C.1. Physical Environment Data
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Figure C- 1. Physical environment data from WCM 2008: (a) Ocean current distribution;

(b) Salinity and Temperature Profile
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Figure C-2. Wind rose for in-situ observation during 8.5 year period at Ekofisk from

Norwegian Meteorological Institute: www.met.no (Furevik et al., 2008)
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C.2. Biomarker responses from Water Column Monitoring 2008
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Figure C-3. PAH metabolites biomarker data from cod are only available from 2 stations (ST3

and ST4). PAH metabolites is measured in ng metabolites/ g bile. The data presentation is
divided into three groups of polyaromatic hydrocarbons (PAHs) in accordance with the EIF
concept; (a)Napthalenes, (b)PAH 2-3ring, (¢)PAH 4ring+ (Sundt et al., 2008)
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Figure C-4. Lysosomal membrane stability biomarker from mussels in 6 stations, REF is
reference value and PRE EXP is condition before experiment. Lysosomal membrane stability is
measured in Neutral Red Retention Time (NRRT) assay (Sundt et al., 2008).
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Figure C- 5. Micronuclei biomarker from mussels in 6 stations, REF is reference value and PRE
EXP is condition before experiment (Sundt et al., 2008).
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Figure C-6. DNA adduct responses from fish in 2 stations, REF is reference value and PRE
EXP is condition before experiment. DNA adduct response is measured in nmol adduct/mol
normal nucleous (Sundt et al., 2008)
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C.3.

Body Burd
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