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Abstract

The North Sea contains several oil-based drill cuttings piles which have accumulated on the seabed
as a result of oil and gas production. An increased awareness of the contaminants within these piles
has grown over the years since several platforms are to be decommissioned. Possible relocation of
cuttings piles might result in release of contaminants from the drill cuttings, possibly affecting local
organisms. It has been of interest to determine rates at which contaminants, total hydrocarbon (THC)
in particular, are leaching out to the environment from these piles. This can be done by physical
analyses in the laboratory, such as shaking tests, or by mathematical models. The Norwegian Climate
and Pollution Agency (Klif) has prepared risk assessment guidelines for contaminated sediments in
coastal areas and fjords which includes diffusion calculations. The objective of this thesis is to
examine if these guidelines can be used to calculate leaching rates from oil-based drill cuttings piles
in the North Sea. Data from drill cuttings piles at Statfjord A was used as basis for the calculations in
this study. THC is the main contaminant of concern, determining the leaching rate of THC would
therefore be preferred. This was not possible however, due to the fact that THC is not included in the
guidelines. The leaching rates are thus calculated based on poly aromatic hydrocarbons (PAH), which
often represent the most toxic part of drill cuttings piles. The calculated maximum and mean PAH
leaching rates, based on equations given in Klif’s guidelines, was determined to be 41,2 kg/year and
3,40 kg/year respectively. Several factors of uncertainty with regards to these calculations, such as
extensive use of default values and the possibility that processes not included in the guidelines might
contribute to the spreading, and lack of comparison values, makes it difficult to evaluate the accuracy
of these leaching rates. However, the estimated time to drain the sediment for contaminants was
rapid for some of the PAHs, which might indicate overestimations in the calculations. The
environmental impact results show that several of the PAHs are exceeding their respective limit
values given in Klif’s guidelines. This might indicate that leaching of PAHs from the drill cuttings piles

might affect the species living in, on or possibly near the drill cuttings piles.

This study shows that there are several limitations when using Klif’s guidelines to determine leaching
rates from oil-based drill cuttings piles. Critical parameters are deficient from both the guidelines and
the drill cuttings characterization reports to be able to get reliable results. In addition, uncertainty
arises due to the fact that the guidelines are based on conditions in harbors and coastal areas and
not conditions present in the North Sea. The sum of these uncertainties indicates that the calculated
results cannot be considered reliable, and that the present guideline is not feasible to use on oil-
contaminated drill cuttings piles. However, the study might provide useful information on factors

that should be present to calculate leaching rates from oil-based drill cuttings piles.
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1 Introduction

1.1 Background

Drill cuttings are small rock fragments that are produced when the drill bit cuts into the rock
formation during drilling. The cuttings are mixed with drill fluid which contains a variety of different
chemicals to optimize the drilling, and then transported to the surface of the rig, where they are
separated from the fluid. The fluid can be used again, but the drill cuttings are considered as waste,
and have therefore traditionally been discharged to the seabed regardless of its chemical content
(Gerrard et al.,, 1999). The drilling fluid can be divided into three types, water-based (WBF),
pseudo/synthetic-based (SBF) and oil-based (OBF) drilling fluid. Oil-based drilling fluid was used and
discharged to sea until the 1990s, but after 1993 it was prohibited to discharge this type of fluid to
sea due to its negative environmental impacts (Cripps et al., 1998). Even though the drilling fluid and
cuttings are separated, some drill fluid will still adhere to the cuttings and thereby be discharged
together with the cuttings. After some time, the cuttings will eventually build up as a pile and may

cover the lower parts of the platform footings (Gerrard et al., 1999).

Oil-based drill cuttings piles have accumulated in the North Sea since production first started in the
1960’s, and an increased awareness of how to handle these piles has grown over the years. Several
platforms in the North Sea are also approaching- or have already reached their production
termination and might be decommissioned. Some of the platforms can be abandoned at their
current locations, but some might have to be removed entirely or partially. In some cases, the
cuttings piles will have to be relocated since they might act as a hindrance in the platform removal
process (Ekins et al., 2006). When drill cuttings piles are removed from their present location, the
contaminants within the pile will be whirled up in the water body and might spread out over a large
area. The contaminants will then be more available to species, and potentially pose negative impacts
on the environment in the sediment and water column. A biomarker-study on fish impact from the
oil industry have shown that haddock, which is a fish that often feeds on the seafloor, has developed
DNA-damage due to the formation of DNA adducts (Balk et al., 2011). This could be a result of
produced water discharge but also from old drill cuttings piles that has accumulated on the seafloor

over the years (Bakke et al., 2012).

The environmental impacts of oily drill cutting piles can be divided into two issues. The occurrence,
behavior and spreading of contaminants from the drill cuttings, and the effect these contaminants

might have on the species living in the sediment and in the water column (Cripps et al., 1999).



This thesis focus mostly on the first part, but impact on the biological communities will also be

addressed.

The Oslo-Paris commission (OSPAR) has set a limit value of 10 tons per year for how much oil that is
allowed to leak out form a pile if the pile is to be left in-situ (OSPAR Recommendation 2006/5, 2006).
Different models and tests can be used to find the leaching rate from drill cutting piles, but
establishing a leaching rate in tons per year can be a challenge. The Norwegian Institute for Water
Research (NIVA) and Norwegian Geotechnical Institute (NGI) has created risk assessment guidelines
for contaminated sediments in harbors and fjords on behalf of The Norwegian Climate and Pollution
Agency (Klif).These guidelines include diffusion calculations which give the leaching rate of
contaminants from the sediment in mg/m?*/year. These guidelines are well proven and used at other
contaminated sites, and it has therefore been of interest to examine if these guidelines can be used
to determine leaching rates from oil-based drill cuttings piles. This has most likely never been done
before, so this thesis is investigating if this approach is feasible. It should be mentioned that the
guidelines are normally used as a tool to determine if remediation action should be carried out or
not. This is not the case for this thesis, as the guidelines are used primarily to find the leaching rate

and possible toxic and ecological impacts.

1.2 Objectives

The objective of this study is to investigate if Klif’s risk assessment guidelines for contaminated
sediments can be used to estimate hydrocarbon leaching rates from oil-based drill cuttings piles in

the North Sea.
1.3 Scope of the study

The following topics were included in this master thesis to achieve the object of this study:

e Through literature studies, develop an understanding of:
- physical and chemical factors that affect drill cuttings piles.
- fate and transport of organic contaminants within drill cuttings piles.
- how organisms living in the surrounding area might get affected by the contaminated
drill cuttings piles.
- Klif's risk assessment guidelines for contaminated sediments
e Though calculations, investigate if the guidelines can be used to find leaching rates from oil-

based drill cuttings piles in the North Sea.



1.4 Report outline

The following chapter includes relevant background information on drill cuttings piles (2.1),
conditions in the North Sea (2.2), decommissioning activities (2.3), fate and transport of organic
contaminants (2.4) and description of Klif's guidelines (2.5). Methodology and equations relevant to
Klifs guidelines are described in chapter 3. The results are presented in chapter 4, and they are

further discussed in chapter 5, while the final conclusion of this thesis is given in chapter 6.






2. Theoretical background

2.1 Drill cuttings piles.

When a well is drilled to reach an oil or gas reservoir, small fragments of rock is produced when the
drill bit teeth cuts into the rock and deepens the hole. These fragments are usually asymmetric with a
flake structure and they can vary in size and texture, depending on the nature of the rock and the
drill bit. Drill cuttings from the North Sea oil fields generally have a composition of shale and
sandstone, and the particle sizes range from 1 um to 2 cm (Cripps et al., 1999). The chemistry and
mineralogy of the cuttings will reflect the sedimentary strata that have been penetrated by the drill

during the drilling operations (Neff, 2005).

Drill cuttings have to be removed from the well, and this is done by pumping drilling fluid inside the
drill string down the drill pipe. The fluid will exit through holes in the drill bit, suspend the cuttings

and return to the surface via the annulus (Neff, 2005), as illustrated in figure 2.1.

Drilling fiuid Drill string
flows down the /

drill string and -

then carries up

the annulus

Borehole wall
e o /

o
Drill bit
-
o
=
e
® °
) o ° .
Formation being drilled

Figure 2.1 Suspension and removal of drill cuttings from the borehole

by the drilling fluid during drilling (Melton et al., 2004).
The mud and the cuttings are separated once they come up to the rig. This is done by various
techniques such as shale shakers, sand traps, desanders, desilters, centrifuges and mud cleaners. The
mud that is separated from the cuttings is either recycled or disposed of onshore (Cripps et al.,
1999). It is always a goal to remove as much cuttings from the fluid that is economically possible,
before recirculating the fluid back to the borehole (Joel and Amajuoyu, 2009) . Figure 2.2 shows the

circulation process of the drilling mud.



Shakers

o |
Rt ¥ Mud cleaner

Centrifuge

Centrifuge
feed pump

Mud returns

Solids to discharge

Solids to discharge Catch tank

Figure 2.2 Example of circulation and treatment system for drilling mud and drill cuttings (solids)
(Melton et al., 2004)

The cuttings are normally discharged to the sea where they will accumulate at the seabed
underneath and around the platform. Usually, several wells are drilled at the same location, and drill

cuttings discharges will thus be on the same spot, eventually building up a cuttings pile (Cripps,

Westerlund et al. 1999.

If the cuttings only form a thin layer on the seabed, it will generally not be considered a pile. To be a

pile, it would have to contain a concentrated amount of cuttings in a limited area (Nesse and Hovda,

2001), as illustrated in figure 2.3.
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Figure 2.3 Accumulation of a drill cuttings pile under a platform (Land et al., 2000)



Generally, about 1000 tons of drill cuttings are produced for each well drilling (Bakke et al., 2012).
The characteristics of drill cuttings piles will be unique for each site, but they can generally be
described as “biologically impoverished, poorly sorted silts with a variable mixture of clay particles”

(Breuer et al., 2004).

Drill cuttings piles consist of drill cuttings, but also any residual mud that has adhered to the cuttings
(typically 10-15 % by weight), (Mairs et al., 1999). Size and shape of the pile will depend on the
amount of discharged cuttings, density/particle size, type of drilling mud, depth in the ocean and
how they are dispersed in the water column or the seabed by waves and currents (Nesse et al.,
1999). Generally, the height of drill cuttings piles in the Northern and Central North Sea range from 2
to 20 meters (Breuer et al., 2004). If there are several wells at the same location, the build-up of
cuttings piles can be considerable (Bell et al., 1998). The largest cuttings piles studied are more than
26 meter high, covers an area about 20 000 m” and have an estimated volume of 45 000 m* (Bakke et

al., 2012).

The discharge mode will also influence the dimensions and the constitution of the drill cuttings pile.
Three discharge modes are described in “Review of Drill Cuttings Piles in the North Sea” by Bell,
Cripps et al (1998); discharge directly onto the sea-bed, discharge from a drilling rig and discharge
from a fixed platform. The installation type will also affect the topography and position of the pile.
As for a concrete gravity base structure (GBS), the cuttings will pile up outside the storage tanks,
while for structures with an open base like steel jackets, it will concentrate right beneath the
platform (Bakke et al., 2000). Figure 2.4 shows an example of the location of the cuttings piles

discharged underneath a platform.
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Figure 2.4 Example of drill cuttings piles location relative to the platform (Cripps et al., 2000)



It can be difficult to define the extent of a cuttings pile because the edge of the pile is usually not
clearly distinct. This is due to the discharge mode explained above, and also the dynamic nature of
the marine environment. This will vary from location to location, even in the North Sea itself there

are large differences (Gerrard et al., 1999), as described in chapter 2.2.

Another factor affecting the edge of the pile is the surface of the cuttings piles. If the surface is soft,
the pile will be unstable after it has formed and easily be redistributed by bottom currents (Gerrard

et al., 1999).
2.1.1 Composition of drill cuttings.

Drill cuttings consist mainly of rock fragments and drilling mud that has adhered to the cuttings. In
addition to this, cuttings can contain a variety of other compounds such as sand and cement from
casing operations, LSA (low specific activity) scale, heavy metals, hydrogen sulfide from anaerobic
degradation, sea water and a variety of debris from construction, maintenance and remedial work

(Bakke et al., 2000)

The chemical composition of the piles will vary according to which drilling fluid that has been used,
amount of fluid that has adhered to the cuttings at the disposal time, and the geochemistry of the
formation that is being drilled (Neff, 2005). Section 2.1.1.1 explains different types of drilling fluids

used over the years and which is being used today.
2.1.1.1 Drilling fluids

Since the first exploration well was drilled in the 60’s, different kind of drilling muds with different
level of toxicity has been applied. In the early years, all drill cuttings where discharged to the seabed.
Because of this, there are several piles on the ocean floor today, containing various toxic compounds

(Breuer et al., 1999).

There are generally three types of drilling fluid, water based, oil based and synthetic based fluid. A
solid phase, usually barite, suspended in a fluid phase is the major component of the drilling fluid.
The fluid phase can be seawater, freshwater or brine (WBF) or an organic phase which is either oil-
based (OBF) or synthetic drilling fluid (SBF). The oil-based fluid may have diesel or low aromatic

mineral oil as the fluid phase, while the synthetic mud most often has an ester (Bell et al., 1998).

According to “Environmental effects of cuttings associated with non-aqueous fluids (NAFs)” by Mairs

et al (1999), oil based and synthetic based drilling fluids can be defined as follows:



“OBF: A subset of NAF that includes diesel oil based fluid and mineral oil based fluid which is defined

by having polycyclic aromatic hydrocarbon (PAH) content greater than 0.35 %”

“SBF: A subset of NAF that is produced by chemical reactions of relatively pure compounds, and can
include synthetic hydrocarbons (olefins and synthetic paraffins), esters, ethers, and acetals. SBFs have

PAH contents less than 0.001%”

Figure 2.5 illustrates the differing compounds of water based and non- aqueous based drilling fluid.

Water-based drilling fluids—chemical components, by weight (%) Non-aqueous drilling fluids—chemical components, by weight (%)
ellants/other
gguer g 1% brine
day/polymer 4% 18%

6%
]/ non-aqueous fluid

barite 46%

14%

barite
| brine/water 33%

76% \

emulsifiers
2%

Figure 2.5 Chemical components of water based and non-aqueous drilling fluids, by weight (%) (IPIECA and OGP, 2009)

Non-aqueous fluids has varied in aromatic content and toxicity over the years, such as crude oil,
diesel oil, conventional mineral oil, ester, linear paraffin and highly processed mineral oil (IPIECA and

OGP, 2009).

Drilling fluid serves several functions for the drilling operations, such as conducting the drill cuttings
away from the drill face, balancing the hydrostatic pressure, and providing physical and chemical
properties to protect the rock formation that is being drilled. A variety of different compounds are
added to the drilling mud to maintain the chemical and physical properties, and the engineer can
thus modify to suit specific conditions encountered during drilling. These compounds include
viscosifiers, emulsifiers, lubricants, wetting agents, corrosion inhibitors, surfactants, detergents,
caustic soda, salts and organic polymers (Bell et al., 1998). Table 2.1 gives an overview of different

materials added to the fluid, their composition and function.



Table 2.1 Additives in non-aqueous drilling fluid and their primary function (IPIECA and OGP, 2009, Sheahan et al., 2001,

Gerrard et al., 1999)

Chemical
function group

Function

Composition

Weighting agent

Base fluids

Primary
emulsifier

Secondary
emulsifier

Wetting agent

Viscosifiers

Rheological
modifier

Brine phase

Filtration control

Lime

Thinners

Lubricating
agent

Lost circulation
materials

Increase weight of mud, which
balance the formation pressure,
preventing a blowout

Stabilize oil-in-water emulsions

Stabilize oil-in-water emulsions

Maintain the wetting surfaces of
solids in the mud

Increase viscosity of mud to suspend
cuttings and weighting agent in mud

Concentrated inorganic salt solutions
which balance the interactions of
drilling fluid with clay and soluble
salts

Decrease fluid loss to the formation
through the filter cake on the
wellbore wall

Control pH, reducing corrosion and
also activating some emulsifiers.
Deflocculate clays to optimize
viscosity and gel strength of mud

Enhance the rate of penetration of
drill string
Block pores and fractures

Barite, ilmenite, hematite, calcium carbonate

Linear paraffins, synthetic iso-alkanes, highly
refined mineral oils, olefins

Hydrophilic and hydrophobic compounds in a
carrier fluid

— so0aps, amines, imidazolines, fatty acid
derivatives

Hydrophilic compounds with a positive end in
a carrier fluid

— polyamides, soaps, amines, imidazolines,
fatty acid derivatives

Hydrophilic compounds primarily—sulphonic
acid, amides, polyamides

Organophillic montmorillonite, attapulgite or
hectorite, synthetic polymers

—amine treated

Hydrophabic or polymeric compounds,
typically fatty acids in liquid

products or acrylate co-polymers in powder
products

Fresh water primarily with calcium chloride

Asphalt, lignite, gilsonite

Lime (Calcium hydroxide)

Liquid products may contain fatty acids.
Powder products include lignites,
lingo-sulphonate and tannins

Ester oils, asphalts, graphite cannot be
grouped into one hazard

CaCO03, graphite, walnuts shells, mica,
almost any solid plugging material available,
cross linking pills sometimes resin based

Whether water-based or non-aqueous based fluid is used depends upon several factors like the

formation to be drilled and technical requirements such as temperature, pressure and shale. Local

environmental requirements, waste disposal and economics must also be taken in consideration

when choosing the drilling fluid (IPIECA and OGP, 2009).
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During the history of drilling operation in the North Sea, WBF, OBF and SBF have been used. At first,
the only base fluid used was diesel oil, but it was replaced by mineral oils of lower toxicity in the early
80’s due to the negative impacts on the environment. In the early 90s however, it was decided that

discharge of oil-based drilling fluid was no longer permitted in the North Sea (Bell et al., 1998)

Today, both water based drilling fluids and non-aqueous drilling fluids (NAFs) are used when drilling
different sections of the same well. Generally, water based fluid is used in the upper sections of the
well, while the NAFs are used in the deeper, more technically complex portions of the drilling

operations, like horizontal drilling (Mairs et al., 1999).

The type of drilling fluid used in the drilling operation determines if the drill cuttings can be
discharged to sea or not. Discharge of cuttings with WBF will normally be permitted, but it is
assumed that some vulnerable organisms such as corals and sponges can be sensitive to cuttings
piles, and this has to be taken into consideration before the cuttings can be discharged in vulnerable
areas. Discharge of cuttings with NAFs is not allowed in the North Sea, so it is either re-injected into a

well (if a permit is given) or transported and treated onshore (Storting White Paper No 28, 2010).

2.1.1.2 Chemical constituents in drill cuttings

The exact content in the drill cuttings pile can be difficult to identify since the piles are highly
heterogeneous, but the hydrocarbon portion of the drilling fluid is considered to be the main
contaminant of concern in the drill cuttings piles (Bakke et al., 2000). In the sediment and cuttings
around platforms in the North Sea, elevated concentrations of hydrocarbons up to 10 000 times the
background concentration has been found (Breuer et al., 2004). Hydrocarbons are compounds which
only contains hydrogen and carbon atoms, hence the name. They can be divided into two groups,
aliphatics and aromatics. The aliphatics are alkanes, alkenes and cycloalkanes while the aromatics are
those containing one or more benzene ring as part of the structure, such as poly aromatic
hydrocarbons (PAHSs). Crude oil typically contains high concentrations of aliphatic hydrocarbons while
the concentration of aromatic hydrocarbons is lower (Williams et al., 2006). Crude oil consists of
thousands of these compounds and each one can be identified individually, but they can also be

analyzed as the generic term of total hydrocarbons (THC) (Sheahan et al., 2001).

Other important contaminants of concern are PCB’s and different metals that can impact the
environment (Sheahan et al., 2001). Metals in drill cuttings piles will be a mixture of naturally
occurring metals, additives in the drilling fluid, from the platform itself (paint chips, corrosion etc.),
and from aeolian input (Breuer et al., 1999). As previously explained, the solid phase in the drilling
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fluid is usually the mineral barite. Barite is used in large amounts in drilling muds, especially when
deep wells are drilled or when geopressured strata is penetrated (Neff, 2005). Barite consists of
barium sulfate (BaSO,), and most of the barite is grounded to a small uniform size before it is used as
a weighting agent in the mud. Due to the impurities in the barites, other metals will also usually be
present. Elevated levels of chrome (Cr), copper (Cu), nickel (Ni), lead (Pb) and zink (Zn) in cuttings
piles have been found relative to the natural occurring metals (Breuer et al., 1999). Because barite is
contaminated with metals to a various extent, it is considered as the dominant source for metal
contamination in the drilling mud. Barite can also serve as a source of reducible sulfate for certain
bacteria, if the concentration of barite in the sediment is high. This will release dissolved barium into
the sediment pore water, where it can diffuse to the oxic layers of the sediment (Neff, 2005). Metals
are not addressed further in this thesis, since the focus is on hydrocarbons. But it is important to be

aware of the fact that they are an additional source of contamination from drill cuttings piles.

The fate of the chemicals in cuttings piles are controlled by various chemical reactions like
biodegradation, erosion and bioturbation (Tvedten and Tveter, 2009). These reactions are explained

further in chapter 2.4

2.1.2 Physical characteristics

Drill cuttings piles will vary greatly in their physical characteristics, depending upon several factors
such as sediment signature, types of contaminants, local hydrodynamic conditions and how the
benthic community at the current location is. It has however been proposed that cuttings piles
generally will have a water content of 20-60 %, a particle size from 10 um-2 cm and a bulk density of
1,6-2,3 g/cm-3. Cuttings piles will also show a distinct stratification throughout the pile, and maintain
a high stability over the years. The drilling fluid which has been used will influence the morphology of
the drill cuttings due to its ability to affect the particle sizes and their tendency to aggregate. The
shear strength of cuttings piles can vary greatly, ranging from almost hard cement to a more liquid

consistency (Breuer et al., 1999).

Grain size distribution in drill cuttings piles will also vary from pile to pile, but generally the piles
consist of silt and clay. It has been found that a crust has formed on the surface of some cuttings

piles, which might affect fate and transport of contaminants (Dames & Moore and TNO, 2002).
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2.2 The North Sea

This thesis focuses on drill cuttings piles located in the North Sea, and it can therefore be useful to
understand how the conditions in the North Sea are. Different factors will affect the piles, depending

on their position, as described in this chapter.
2.2.1 General description

Since the early 1960s, the North Sea has been a major resource for the oil and gas industry. The
North Sea is located on the continental shelf of northwest Europe. The water in the North Sea flows
from the Baltic Sea in the east, through the Skagerrak Strait, and into the Atlantic Ocean in the west.
The basin has a surface area of about 750 000 km” and a volume around 94 000 km?, where the

depth increases towards the Atlantic Ocean.

The climate in the North Sea is strongly affected by the inflow of oceanic water from the Atlantic
Ocean. In addition, the large-scale westerly air circulation, with its frequently low pressure system,
influences the North Sea climate. These influences change over time, thus giving the North Sea
climate characteristics large variations in wind direction and speed as well as high precipitation and

rate of cloudiness.

The discharge into the North Sea from river systems have a catchment area of around 850 000 km?,
and the annual input of fresh water into the sea from these rivers is about 300 km>. The run-off in
the North Sea however is highly variable on an annual basis, and this can affects the transport of

contaminants (Ferm and Portmann, 1993).
2.2.1.1 Activities in the North Sea

There are several activities in the North Sea. Fishing covers a large part, as well as shipping, tourism,
aquaculture, sand and gravel extraction and military activity. However, the offshore oil and gas
industry plays the major role of activities in the North Sea (Ferm and Portmann, 1993).The largest oil
developments have mainly been in the northern parts of the North Sea, while the gas deposits are

mainly exploited in the shallower southern parts (Ferm and Portmann, 1993).
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2.2.2 Seabed topography

The North Sea is relatively shallow, ranging from about 30 to 200 meters in depth, except from the
northern extremes and the Norwegian trench (about 700 meters deep). Generally, the southern part
of the North Sea is shallower than the north part, i.e. less than 100 m in the south and between 100-
200 meters in the north. Figure 2.6 shows the depth conditions in the North Sea (Ferm and

Portmann, 1993).

Figure 2.6 Water depth in the North Sea (Ferm and Portmann, 1993)

The shallow southern part of the North Sea has strong currents and waves, so the cuttings will rapidly
disperse due to the harsh environment, and the remaining materials will eventually biodegrade. In

deeper areas with relatively weak currents, like the Northern and Central North Sea, the cuttings can
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flocculate and accumulate in a pile under and around the platform for a long time (Breuer et al.,
1999).

Water stratification can impact the formation of cuttings piles. Most of the regions of the North Sea
are well mixed vertically in the winter months, but not as well in the remaining months. This is
because the solar heat increases in the spring, resulting in a thermocline over large parts of the North
Sea, especially in the deeper areas. This thermocline is a gradient that separates the lower layer from
the upper, with regards to temperature difference (Ferm and Portmann, 1993). The thermocline will
result in a major reduction of the vertical mixing of the water. Even though the movement depends
on the season, there is generally less movement in the deeper areas than the shallower parts of the
North Sea. This is because tidal- and wind induced currents and wave action is strong in the
shallower areas, thus resulting in erosion, re-suspension and dispersal of particles. These conditions
means that drill cuttings would rapidly disperse and not have the ability to settle into a pile (Gerrard
et al., 1999). The thermocline depth will increase from May to September and differ from area to
area, typically 50 meters in the northern region and 20 meters in the western Channel. During the
autumn, the thermocline will be destroyed due to storms and seasonal cooling at the surface which
mixes the upper and lower layers (Ferm and Portmann, 1993). The sediment in the North Sea

generally consists of mud, gravel and different types of sand, as illustrated in figure 2.7.

Figure 2.7 Sediment types in the North Sea (Ferm and Portmann, 1993)
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By comparing figure 2.6 and 2.7, it can be noticed that there is a connection between the depth in
the basin and the sediment type. Areas with mud and sandy mud characterize deeper areas such as
the Oyster Ground, Skagerak and the Norwegian Trench, while the shallower areas generally have

sand, coarse sand and gravel sediments (Gerrard et al., 1999).

2.2.3 Contamination

The North Sea is contaminated both naturally, via rivers, the atmosphere, directly by discharges from
land, offshore installations, dumping at sea, shipping and aquaculture. One of the major contaminant
is hydrocarbons, originating to a large degree from the offshore industry. The hydrocarbon input
from the offshore industry mainly comes from drill cuttings, produced water and accidental spills
(Ferm and Portmann, 1993). Figure 2.8 gives an overview of oil input to the Norwegian continental
shelf from cuttings, produced water and displacement water between 1984 and 2004. As the figure
shows, drill cuttings were the major contributor to hydrocarbon input between 1984 and 1991,
before discharge of oil-based drill cuttings were prohibited. Produced water has dominated the

hydrocarbon input since the early 90s.
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Figure 2.8 Discharges of oil-based drill cuttings, produced water and displacement water in the Norwegian Continental
shelf from 1984 to 2004 (Moe et al., 2006)

In addition to the anthropogenic sources, aromatic hydrocarbons of natural origin produced by
biosynthesis, natural seepage or other chemical processes may be present in the North Sea

sediment. This background concentration of natural hydrocarbons can be defined as the
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concentration that would be present if no human activity had influenced the environment. The
background concentration will not be considerably high, in comparison, the areas where offshore
installations are located, the concentration can be more than 1000 times higher than the background

concentration (Gerrard et al., 1999).

2.2.4 Regulations governing drill cuttings in the North Sea.

Regulations relevant to drill cuttings in the North Sea have changed several times over the years.
Generally, it was permitted to discharge 100 grams of oil per kilo of drill cuttings into the North Sea,
until September 1991. Then the regulations changed, so that discharge of any cuttings with oily
residue over 10 grams per kilo was prohibited. This was rather hard to manage in practice, so until
1993 a transition period, where discharge up to 60 grams per kilo, was permitted. In 1994, the
transition period ended, only allowing discharge of 1 gram of oil per kilo cuttings for exploration
drilling, which practically means that no such discharges are taking place (OLF, 2001). Today, there
are technologies which can clean the cuttings to a level below the limit for the discharge from

offshore installations (OSPAR, 2010).

In 1996-1997, a zero discharge goal for oil and environmentally hazardous substances to sea from
petroleum activities was established in Storting White Paper No. 28, Environment policy for
sustainable development. This included no discharge of chemical additives or naturally occurring

substances (Storting White Paper No 28, 2010).

OSPAR has identified limits in Recommendation 2006/5 (OSPAR Recommendation 2006/5, 2006)
regarding release of oil (THC) from drill cuttings piles to the water column. The limits state that the
potential environmental impact due to loss of hydrocarbons from cuttings piles is significant if the
leaching rate exceeds 100 tons/year. It is considered insignificant if the rate is below 10 tons/year
and the seabed area, at greater than 50 mg/kg over time, do not exceed 500 km?. This means that
the loss of hydrocarbons cannot exceed 10 tons/year for a cuttings pile to be left in-situ at the
seabed. This loss of oil is to be evaluated as direct loss to the water column, and not from processes
like erosion and biodegradation (Danielsson et al., 2005). Figure 2.9 illustrates the limits and how

each situation should be handled.
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Figure 2.9. Limits for rate of oil loss, identified by UKOOA Joint industry project (Danielsson et al., 2005)

If the drill cuttings piles are disturbed, it can be considered as secondary pollution, thus regulated
under the Pollution Control Act (Pollution Control Act, 1981). Disturbance of cuttings piles is relevant

in offshore decommissioning activities, explained in chapter 2.3.
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2.3 Platform decommissioning

Several oil and gas fields on the Norwegian continental shelf have already, or will soon, enter the last

stage of their productive lives, and might therefore be decommissioned.

Decommissioning has been defined by the UK Offshore Operators Association (UKOOA) as:
“The process which the operator of an offshore oil and gas installation goes through to plan, gain
government approval and implement the removal, disposal or re-use of a structure when it is no

longer needed for its current purpose”.

The First Ministerial meeting of the OSPAR commission established in 1998 a new binding framework
for the decommissioning of disused offshore installations (OSPAR 98/3). It was decided that: “The
dumping, and the leaving wholly or partly in place, of disused offshore installations within the

maritime area is prohibited” (Gibson, 2002).
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removal of the platform can be impossible

(Gerrard et al., 1999).

The footings can be partially left in-situ or removed completely. If they can be left partially, a decision
on where to cut, and how to handle the cuttings have to be made. The footings could be
decommissioned by removing only the cuttings immediately around them, thus avoiding major

disturbance and potential release of oil-based contamination from the cuttings into the marine
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environment. It is also possible to cut the footings at the same level as the cuttings pile, so that the
residual footings will be left in the cuttings pile. The rest of the footings would then be taken to shore

and the cuttings pile could be covered or just left in-situ (Ekins et al., 2006).

Before the right management option can be considered, the overall environmental impacts following
each solution must be properly evaluated. Fate and transport of contaminants will differ from one
management option to another. Comparison of the solutions to determine which option that gives
least negative impact to the environment should therefore be considered (Tyler et al., 2002). Fate

and transport of contaminants is discussed in chapter 2.4.
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2.4 Fate and transport of organic compounds in oil-based cuttings piles.

Several factors will affect the drill cuttings piles, therefore the leaching from a pile will normally not
be the same from year to year. Different processes like dispersion, erosion, biodegradation and
bioturbation will affect the piles, changing the content and toxicity (Kjeilen et al., 1999). Transport
and transformation of the compounds can therefore be examined to study the distribution in the
environment, and how the compounds in the piles change over time (Leeuwen, 2003). An overview
of the processes that will affect drill cuttings piles is illustrated in figure 2.11, and a more detailed

description of fate and transport of organic compounds are given in the following chapters.
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Figure 2.11 Different processes that will affect drill cuttings piles after discharge (Sabeur et al., 2002)

2.4.1 Erosion and sedimentation

Erosion and sedimentation by water is the processes where sediment is detached from its current
location, transported to other areas and then deposited due to the external forces like flowing water.
Differing factors like climate, topography and land use can influence erosion and sedimentation
(Foster and Meyer, 1977). When the sediments are contaminated, as the case with drill cuttings
piles, erosion due to currents or storm induced waves might contribute to transport these
contaminants to different areas (Tvedten and Tveter, 2009). Particles can be transported either by
the body of the moving water which carries the suspended grains along with it, or if the particles are

too large to remain suspended, they can be transported by drag force along the sea floor (Kjeilen et

21



al., 1999). When cuttings piles are disturbed by erosion forces, the exchange of pore water and solids
back to the surface will increase, eliminating the equilibrium partitioning. This results in a more rapid
release of contaminants from the sediment to the water column. Usually, the clay and silt particles
will provide the greatest transportation of particle-bound contaminants. In the context of
hydrocarbons, this is due to electrochemical charges which cause the hydrocarbons to be associated
to the finer fraction of the sediment rather than the coarser portion. Silt and clay will stay in the
water for a longer time after re-suspension than the coarser portion of the sediment, so when
hydrocarbons are spread with the particles, heavy particles sink first, eventually followed by silt and

clay particles (Nedwed et al., 2006). This is illustrated in figure 2.12.

Cuttings particle
Chemicalfoil attached

\' / P Dissolution of oillchemical

Figure 2.12 lllustration of how drill cuttings behave in the water body after discharge (Rye et al., 2006)

This can be explained by size and density properties, some dense particles carried in suspension will
be unstable and therefore fall out of suspension when the right conditions are met, due to gravity.
Particles which are smaller and less dense however, can stay in suspension for a longer time because
they are more affected by “smaller” forces like electrostatics (Kjeilen et al., 1999). The sinking
velocity will also impact the settling rate, as large particles have greater sinking velocity than smaller
particles, and will therefore sink first. Other factors that will affect the transport of drill cuttings

particles are the speed and direction of the ocean currents (Nedwed et al., 2006).

22



Bioturbation, which is translocation of sediment particles due to the activity from bottom-living
animals, can also contribute to some spreading of contaminants. When animals are eating and
stirring up the sediment, contaminated pore water could emerge up to the water column. This is
however expected to occur only at the surface and the contribution from this activity is not

considered as any considerable contribution to the total spreading (Kjeilen et al., 1999).

Dredging operations during decommissioning of offshore platforms and also trawling activities are
external forces that can disturb drill cuttings piles. When cuttings piles are removed from their
present location, transported to a surrounding area and resettled to a new location, a lot of the
cuttings will be spread out over a large area. The sedimentation process will probably be somewhat
similar to the first sedimentation process. However, the new pile will generally be lower than the
original pile, the content of the pile will cover a greater area, and some of the finer fraction in the
pile might be carried away with currents and waves to locations further away. In addition to
controlling removal, transport and sedimentation of contaminated sediment, it might also results in
the process where resettled drill cuttings material will mix with surrounding sediment and expose the
remaining cuttings to oxygen, which favors aerobic processes in the surface active layer (Dames &

Moore and N10Z, 1999).
2.4.2 Re-colonization and bioaccumulation

Sedimentation of eroded sediment could disturb the seabed and biota, due to physical burying of the
benthic communities natural habitat (Mairs et al., 1999). Erosion of cuttings piles might have an
ongoing effect on both pelagic and benthic organisms, since they can be exposed repeatedly
(Bechman et al., 2006). Heavy sedimentation could result in total destruction of the native fauna, but
this will only be the case in those areas closest to the erosion source. Areal extent, thickness and
persistence of the drill cuttings as well as the type of community that is affected and the availability
these organisms have to re-colonize, will determine the recovery time of the benthic communities
(Mairs et al., 1999). In the context of dredging operations, the resettled sediments could be a
combination of cuttings and unpolluted sediments giving a concentration that is not likely to restrict
the re-colonization of the communities (Tvedten and Tveter, 2009). Initially, those species that are
tolerant of hydrocarbons, as well as species that feed on other bacteria which metabolize the
hydrocarbons, will re-colonize first. Eventually, the hydrocarbon content in the area will decrease,
resulting in return of other species. These species will then reproduce again and as time passes, the

community will grow back to a community resembling the initial state (Mairs et al., 1999).

Contaminants within drill cuttings piles are generally particle bound, resulting in slow degradation

and leaching rates. Those organisms that feed on the particles and sediment could therefore be
23



subjected to the toxic effects in a larger degree (Breuer et al., 1999). Species living around the
contaminated area can be affected by the bioavailable pollutants through water, food and substrate,
due to uptake and retention in the tissues. This is a process called bioaccumulation, and it happens
when the uptake rate exceeds the elimination rate (Bjgrgesaeter, 2009). Bioaccumulation can further
result in biomagnification of some compounds, a concentration increase upwards in the food chain
which occurs when contaminated benthic species are being eaten by other and often larger animals
(Bakke et al., 2011). Bioaccumulation of hydrocarbons from drilling fluids has generally been
associated with PAH (Mairs et al., 1999). A study by Balk et al. published in 2011: “Exposure of fish
and bivalves to suspended particles of drilling mud: A new continuous flow exposure system”
investigated if fish are affected by oil production. Samples were taken from the Tampen-and Sleipner
areas, which both have extensive oil production and a high sedimentation rate. One of the effects
investigated in the study is the formation of DNA adducts in Haddock (Melanogrammus aeglefinus),
which is a fish that often feeds on the seafloor (Bechman et al., 2006). DNA adducts are covalently
bound addition products that forms during attack of the nucleophile sites in the DNA by electrophilic
chemical species (Sheahan et al., 2001). DNA adducts can be used as an indicator for toxic exposure
and are considered one of the best biomarkers of PAH exposure. Formation of DNA adducts may
result in several genotoxic effects such as development of cancer in following generations or even
immediate cell death. The study found elevated levels of hepatic DNA adducts in the haddocks from
the Tampen area compared to other sites. This is expected to be a possible result of discharged
produced water and accumulations of old drill cuttings piles at the seafloor. The study concludes that
there might be a general relationship between the extensive oil production in the investigated areas

and the biomarker response found in fish (Balk et al., 2011).

2.4.3 Biodegradation

Biodegradation can be defined as the decomposition of organic matter by living organisms (Bell et al.,

1998) and it is an important natural attenuation process (Williams et al., 2006).

The degradation of hydrocarbons is a natural process, performed by several different
microorganisms (MOs) in a variety of environments. Degradation of hydrocarbons is a process that
converts toxic compounds into less toxic/inert compounds to the environment. Several conditions

must be met for biodegradation to occur, the most significant factors are:

e The presence of organisms which have the necessary enzymes to biodegrade
e Environmental conditions like temperature, oxygen levels, pH, redox potential, salinity and the

presence of essential nutrients must be applicable.
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o The organisms and the chemical compounds must be present in the same environment

e The relevant chemicals must be accessible and bioavailable to the biodegrading microorganisms

Hydrocarbons are good food sources (electron donors) for biodegrading microorganisms because of
their content of high-energy electrons. In order to carry out the degradation, the MOs must also have

electron acceptors, the most common being oxygen (Williams et al., 2006).

Several different factors like microbial numbers, temperature, organic carbon content, nutrients
supply and structure of the substances will affect the biodegradation rate (Kjeilen et al., 1999). This
depends to a great deal on the concentration of the compound. If the concentration is very low,
biodegradation might not be able to occur, while if the concentration is high, the biodegradation rate
can be very rapid due to the great amount of carbon and energy sources. If the concentrations are
very high on the other hand, the toxic effects would also be greater, and could act as a reducing

agent to the degradation rates.

The presence of other compounds and the fact that crude oil contains thousands of different organic

compounds degrading at varying rates will also affect the biodegradation (Cripps et al., 1999).

Degradation can occur in both aerobic and anaerobic environments, meaning with and without
oxygen respectively, as illustrated in figure 2.11. In the aerobic layer (surface active layer) of the
cuttings piles, which would be the upper portion of the pile, biodegradation of oil is likely to occur
naturally. In the absence of oxygen however, which generally will be the conditions present
inside/deeper in the pile, degradation will normally be very slow and in some cases biodegradation
cannot even be measured .This could be due to high organic load which will result in an increased
microbial activity resulting in anoxic conditions, which does not favor biodegradation (Kjeilen et al.,
1999). Anoxic conditions occur when the biodegradation rate is greater than the rate of oxygen
diffusion into the sediment (Melton et al., 2004). As illustrated in figure 2.11, the aerobic layer on the
surface of a drill cuttings pile can be very thin, only a few millimeters to centimeters down in the drill
cuttings piles. The pile itself may also affect the anoxic conditions due to characteristics such as low
oxygen permeability and high density layers, resulting in restricted/insufficient transfer of oxygen
from the surface layers (Kjeilen et al., 1999). Since large parts of the drill cuttings piles are under
anaerobic conditions, resulting in slow biodegradation, historic contaminants which has not broken
down during the years may still be present in the piles (Breuer et al., 1999). In the event of relocation
of drill cuttings piles however, the biodegradation rate might increase due to larger oxygen access

which results in aerobic conditions (Tvedten et al., 2012).
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2.4.4 Contaminant release

Several processes can contribute to the release of contaminants from the sediment, as explained

below:

Diffusion is a physical process where concentration differences are equalized without any
contribution from currents or turbulence, i.e. equalization between sediment pore water and the
water above the sediment, which will result in a continuous chemical transport from the pore water

(high concentrations) to the water-column (low concentrations).

Advection is a diffusion process where the contaminated pore water is transported by weak currents

flowing through the sediment.

Bioturbation is the process where benthic species either resuspend the sediment, resulting in pore
water migration out to the water column, or pumps water from the sediment to the overlaying water

mass during activities like respiration or feeding.

Biodiffusion is a combination of advection and bioturbation, occurring in the upper part of the
sediment. The upper part of the sediment is estimated to be 10-28 times more intense than regular
diffusion in natural sediments. Biodiffusion will depend on the sediment conditions, if the
environment is anoxic, there will be less biological activity, resulting in decreased bioturbation thus

less biodiffusion (Bakke et al., 2011).

Diffusion processes are limited by tortuosity and molecular diffusion limits, and they can affect the
mobility and bioavailability of contaminants in the sediment (Kravitz et al., 2000). Different factors
such as contaminant combination and the age of the contaminants (due to biodegradation) will
affect the leaking capacity of organic contaminants in sediments. When the contaminants have
migrated out to the water phase, processes like dissolution, sorption (binding), desorption (release)
and presence of dissolved organic matter might affect the concentration, depending on the
contaminant type (Hansen and Andersen, 2006). Figure 2.13 illustrates the distribution between

different phases for benzo(a)pyrene.
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Figure 2.13 Distribution of benzo(a)pyrene between different phases (Hansen and Andersen, 2006)

The sorption potential will affect the leaching rate of contaminants into the water column. If the
sorption is strong i.e. strong particle-water partitioning coefficient, the release will be slow, hence for
weak sorption the release of contaminants will be faster (Werner et al., 2009). This is illustrated in
figure 2.14.
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Figure 2.14 The impact sorption has on diffusion rates (Werner
et al., 2009)

Studies have shown that after the first oil migration has occurred, the remaining oil which is left on
the particles will be tightly bound to the sediment, trapped within the pore water, resulting in a slow
biodegradation and leaching rates (Breuer et al., 1999). However, accumulated solubilized
compounds that are trapped within stagnant pore waters might be released into the water column if
the pile structures are disturbed. This could result in an increased leaching rate from sediment to the
water column. It can be difficult to determine accurate leaching rates, but they can be estimated by
physical analyses and experiments or by mathematical models (Mitchell et al., 2000). The model used

in this thesis is described in chapter 2.5.
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2.5 Klif’s guidelines for contaminated sediments.

The Norwegian Institute for Water Research (NIVA) and Norwegian Geotechnical Institute (NGI), in
cooperation with The Norwegian Climate and Pollution Agency (KIif), has prepared and audited risk
assessment guidelines as a tool to find the impact on the environment from contaminated
sediments. The risk assessment guidelines can be used by authorities, responsible polluters,
consultants, environmental managers and others, to identify the risk from polluted sediments in its
present state and to help decide whether remediation is needed or not. The guidelines are intended
to be used as an assessment for medium sized fjords-and coastal areas, including harbors, as a part
of the procedure for cleanup of contaminated sediments, so that the Norwegian government’s goal
of clean fjords and harbors along the Norwegian coast can be met (Bakke et al., 2011, Saloranta et

al., 2011).

There are three steps, or tiers, in Klif’'s guidelines. Each step increases in complexity, but will give a
better and more realistic conclusion, so that the right actions can be made with reduced
uncertainties and thereby less conservative estimates. The risk assessment is meant to be
conservative to avoid abandonment of sediments where remediation should be carried out. The

main structure of the guidelines is specified in figure 2.15.
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Figure 2.15 Main steps in Klif’sguidelines (Bakke et al., 2011)
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Tier 1 is a simple risk assessment screening to gather relevant information and compare
concentrations and toxicity of the sediment with limit values. This step only involves the ecological
risk, not the risk for human health, and it includes no real evaluation. The goal is to rapidly be able to
separate those sites which can be abandoned and those that need remediation. If some of the limit

values are exceeded, tier 2 should be implemented (Bakke et al., 2011).

Tier 2 is more complex than tier 1 and the goal is to determine whether remediation should be
carried out or not. Three types of risk are included in step two, the risk of dispersion of contaminants
(2A), the risk to human health (2B) and risk to the ecosystem (2C) (Bakke et al., 2011). This method
has been inspired by the Dutch risk assessment approach "Assessment of risk of dispersion to surface

water” by Van der Heijdt et al. (2000), (Saloranta et al., 2011).

If tier 2 indicates that remediation should be carried out or if the risk from tier 2 seems unrealistically
high, tier 3 can be implemented. The approach in tier 3 is primarily the same as for tier 2, but it is
based on detailed local measurements and analyses instead of the more conservative parameters,
thus reflect the actual situation better and have more reliable results. Noncompliance in tier 3 results

in sediment remediation planning (Bakke et al., 2011).

The risk assessment guide is mainly to be used on sediments consisting of silt and clay. Sampling for
guantitative analysis of coarser sand and gravel sediments can be difficult, and the guidelines could
therefore not be applicable. Usually, the coarser sediments will not pose a representable
environmental threat, since the contaminants normally binds to the finer particles (Bakke et al.,

2011)

Since the objective of this thesis is to see if this risk assessment guide can be used to find leaching
rates of oil from drill cuttings piles in the North Sea, the following chapters focuses on information

which is relevant to this approach.

2.5.1 Limit values

The limit values are set based on conservative assumptions on exposure pathways, bioavailability
and the chance of spreading to other parts of the ecosystem. This is to a large degree based on EUs
Technical Guidance Document on Risk Assessment (Leeuwen, 2003). Derivation of the limit values for
the compounds is explained in the background document. The limit values are based on toxicity data
for aquatic environments, and can then be recalculated to sediment concentrations using equilibrium
partitions coefficients. A classification system, separating the limit values into five different
categories according to the contaminant concentrations has been established, see figure 2.16 (Eek et

al., 2011).
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Figure 2.16 Classification of limit values used in Klif’s risk assessment guidelines (Bakke et al., 2010)

The sediment background values are recalculated from 2.5 % total organic carbon (TOC) to 1 % TOC,
to be more representative for the marine areas with a low TOC content in the sediment, as for the
Norwegian coast. For PAH, the background values for water and sediment are taken from OSPAR

Recommendation 2005a, b and represents the northern part of the North Sea.

The boundary between class Il and class Il indicates whether there are toxic effects following chronic
exposure or not, so it can be used to determine if remediation of the site is needed or the site can be
abandoned as it is. As illustrated in figure 2.16, the upper limit for class Il is the Predicted No Effect
Concentration (PNEC) with regards to chronic exposure for the compound (Bakke et al., 2007). PNEC
can be defined as “an estimate of the highest concentrations of a chemical in a particular
environmental compartment at which no adverse effects are expected”, in other words a sensitivity

estimate the ecosystem have to certain chemicals (Thatcher et al., 2004).

PNECwater calculation criteria is based on the lowest no effect concentration (NOEC) from chronic
tests, divided by an assessment factor. PNECsediment can be calculated from toxicity data for
organisms living in the sediment, or by equilibrium calculations from PNECwater. In the last case,
equilibrium partitioning coefficients is used, either between sediment and water (Kd) or between
organic sediment-carbon and water (Koc). The upper limit for class Il is the PNEC for acute exposure
(intermittent), based on short term tests of acute toxicity. The boundarys for class IlI-1V for water and
sediment are set so that they represent an increasing degree of harm to the organisms in the

sediments and water (Eek et al., 2011)

Klif's guidelines includes limit values for 8 metals, 16 PAH, and a number of different organic
compounds (Bakke et al., 2011). The limit values for 16 PAH in sediment and water are given in table

2.2 and table 2.3 respectively.
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Table 2.2 PAH limit values in sediment according to the guidelines classification system (Bakke et al., 2007)

PAH | Il | v \%
Background Good Moderate Bad Very bad
Ha/kg Ha/kg Ha/kg Hg/kg Hg/kg
Naphtalene 2 290 1000 2000 > 2000
Acenaphthylene 1,6 33 85 850 > 850
Acenaphthene 4,8 160 360 3600 > 3600
Fluorene 6,8 260 510 5100 > 5100
Phenanthrene 6,8 500 1200 2300 > 2300
Anthracene 1,2 31 100 1000 > 1000
Fluoranthene 8 170 1300 2600 > 2600
Pyrene 52 280 2800 5600 > 5600
Benzo(a)anthracene 3,6 60 90 900 > 900
Crysene 4,4 280 280 560 > 560
Benzo(b)fluoranthene 46 240 490 4900 > 4900
Benzo(k)fluoranthene 210 480 4800 > 4800
Benzo(a)pyrene 6 420 830 4200 > 4200
Indeno(1,2,3-cd)pyrene 20 47 70 700 > 700
Dibenzo(a,h)anthracene 12 590 1200 12000 > 12000
Benzo(ghi)perylene 18 21 31 310 > 310
PAH16 300 2000 6000 20000 > 20000

Table 2.3 PAH limit values for water according the guidelines classification system (Bakke et al., 2007)

PAH I I 1] v \
Background Good Moderate Bad Very bad
Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg
Naphtalene 0,00066 2,4 80 160 > 160
Acenaphthylene 0,00001 1,3 3,3 33 >33
Acenaphthene 0,000034 3,8 5,8 58 > 58
Fluorene 0,00019 2,5 5 50 > 50
Phenanthrene 0,00025 1,3 51 10 >10
Anthracene 0,11 0,36 3,6 > 3,6
Fluoranthene 0,00029 0,12 0,9 1,8 >1,8
Pyrene 0,000053 0,023 0,023 0,046 > 0,046
Benzo(a)anthracene 0,000006 0,012 0,018 0,18 >0,18
Crysene 0,07 0,07 0,14 > 0,14
Benzo(b)fluoranthene 0,000017 0,03 0,06 0,6 > 0,6
Benzo(k)fluoranthene 0,027 0,06 0,6 > 0,6
Benzo(a)pyrene 0,000005 0,05 0,1 0,5 >0,5
Indeno(1,2,3-cd)pyrene 0,000017 0,002 0,003 0,03 > 0,03
Dibenzo(a,h)anthracene 0,03 0,06 0,6 > 0,6
Benzo(ghi)perylene 0,00001 0,002 0,003 0,03 > 0,03
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Evaluation of the exceedance of limit values is done by dividing predicted environmental
concentrations (PEC), which is an estimate of the expected concentration of a chemical that will
expose the environment, on the respective PNEC value (Thatcher et al., 2004). In this case, the PEC
value will be the pore water- or sea water concentrations. The PEC/PNEC ratio for each chemical will
give an idea of the relationship between the environmental exposure and the sensitivity of the
chemical to the environment. If the PEC/PNEC ratio is greater than 1, environmental effects might be

expected (Thatcher et al., 2004).

2.5.2 Tier 2 in the risk assessment guideline.

Tier 2 in the risk assessment guidelines consists of three parts, 2A, 2B and 2C, as stated in chapter
2.5. Tier 2A is the risk of spreading, and is based on calculated contaminant transport from the
sediment to the water by biodiffusion, resuspension caused by arrivals and departures of ships, and
also uptake by organisms and spreading through the food chain, as explained more detailed in
chapter 2.4. Tier 2B is the risk for human health, based on the transport routs of contaminants to
humans i.e. consumption of fish, contact with sediment, bathing etc. 2C, deals with the risk of effects
to the ecosystem, and it is based on contaminant concentrations which organisms in the water and

sediment are exposed to, compared to relevant limit values.

An excel worksheet which includes all material data and formulas described in the guide has been
created to make the calculation process more effective. Different physical, chemical and biological
parameters are included in these calculations. The risk guidelines suggest typical default values for
some of the parameters included in the calculations, but local values should be used if possible, since

some of the default values are associated with significant uncertainty (Bakke et al., 2011).

The calculations can be used to estimate the importance of the different transport routes for

contaminants from the sediment to the ecosystem. Relevant calculations are explained in chapter 3.

Figure 2.17 shows a simplified illustration of the transport routes from the sediment to the

ecosystem.
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Figure 2.17 Relevant transport routes from the sediment to the ecosystem.
Modified from (Bakke et al., 2011)

Tier 2 also requires a sediment toxicity test for the organisms living in the sediment. This covers the
foundation to evaluate the risk for those organisms who are in contact with the sediment over a long
period of time (Bakke et al., 2011). Analytical tests are not included in the scope of this study, and

this is therefore not further discussed.

2.5.2.1 Acceptance criteria for evaluation of the spreading.

There can be different acceptance criteria to evaluate the spreading of contaminants from the
sediment. It could be a specified value i.e. flux of contaminants out of the sediment should not
exceed a given amount each year (Bakke et al., 2011). OSPAR Recommendation 2006/5 (OSPAR
Recommendation 2006/5, 2006) is one such limit value, of 10 tons of oil/year, as described in chapter

2.2.4.

Other criteria could be that the leaching should not exceed the leaching rate of a predetermined
reference sediment more than a given number of times or percent, or have loss of contamination

greater than a given limit value in the current location or the surrounding areas (Bakke et al., 2011).
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3. Methodology

3.1 Concept

The aim of this study is to investigate if Klif’s guidelines for contaminated sediment can be applied to
estimate leaching rates from oil-based drill cuttings piles in the North Sea. There has been an
increased focus on historic drill cuttings piles due to platform decommissioning, which can alter the
piles and result in increased leaching into the environment. To get a better understanding on the
impacts cuttings piles can have to the surroundings, gathering and review of information on factors
affecting oil-based drill cuttings piles, and how the piles can affect the environment has also been

investigated in this thesis.

The leaching rates from the contaminated sediments are given as diffusion, flux from sediment to the

water column, in Klif’s guidelines. The equations used to find the fluxes are given in chapter 3.2.
3.2 Relevant equations from Klif’s risk assessment guidelines

The total flux from the sediment (Ftot) consists of flux by diffusion (Fdiff), ships (Fship) and organisms

(Forg) as illustrated in figure 3.1 (Bakke et al., 2011)

Frot
A
V- N
Forg Fam Fship
ﬁ. ﬁ l/\r
L) L) L]
. I

Figure 3.1 lllustration of the 3 fluxes from the sediment included
in step 2A (Saloranta et al., 2011).

The equations and explanations are taken from Klif’s guidelines (Bakke et al., 2011). The derivation

of the equations are given in the Background document, part B (Eek et al., 2011).
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Equation 1: Calculation of transport by biodiffusion, Fdiff.

The spreading by biodiffusion (Fdiff) is calculated using the following equation. If measured data are

not available, the default values written in the brackets can be used.

pw

n

Where:

Faiff = biodiffusion of sediment porewater (mg/m?*/year)

n = porosity (fraction of water in sediment) (0,7)

T = tortuosity (3)

a = factor for increased diffusion due to bioturbation (10)

Ds = molecular diffusion coefficient (cm?/s, specific for each compound, appendix A)

Ax = diffusion lenght (1 cm)

Cow = porewater concentration (mg/l, Cow =Csed [mg/kg]/Kd [I/kg] or measured, equation 6)

Spreading by diffusion is calculated by multiplying the molecular diffusion with a factor, a, which
takes the increased transport due to bioturbation into account, and corrects the increased diffusion

length due to the pore-geometry.
Equation 2: Calculation of sediment transport generated by ships, Fship.

Sediments located at water depths shallower than about 20 meters can be spread as a result of the
ship propellers during arrival or departure. Resuspension of these sediment particles is calculated

with the following equation:

2 X Nship X Mseq X Csed X (fsolved + fsusp)

F hin =
P Aship
Where:
Fship = spreading due to arrival and departure of ships (mg/m2/year)
2 = multiplication factor covering arrival and departure of ships
Nship = number of daily ship arrivals per year (port authorities)
Csed = contaminant concentration within the sediment area (mg/kg d.w., measured)

36



fsolved = soluble contaminant fraction in sediment, (10/Kd, specific for each compound, appendix A)

fsusp = fraction suspendable sediment (< 2um, measured)
Aship = total sediment area < 20 meters deep affected by the ship traffic (m?)
msed = mass of resuspended sediment during an arrival or departure of ship (kg) (table 3.1)

Table 3.1 Default values for msed, based on a standard lenght < 20 m depth at 120 meters. These default values must be
multiplied with the length and divided by 120 before they are applied in equation 2. Sediment type is found based on
grain size distribution (Bakke et al., 2011)

Sediment type Large harbor  Industry harbor  Small boats harbor
Silt and clay 2000 1000 150
Sand 200 100 15
Gravel and stone 20 10 1

Equation 3: Calculation of transport by organisms, Forg.

Spreading out of the sediment can also occur by benthic organisms which are eaten by fish and other
animals, resulting in a possible biomagnification of the contaminants (Bakke et al., 2011). Spreading
due to uptake by organisms and predation can be calculated using the equation below. In the

absence of measured data, the default values in the brackets can be used.

Chio % (0Cseax(1-d)— OCrep)

Forg = 0Cchio 1000

Where:

Forg = spreading due to uptake by organisms (mg/m?/year)

Chio = total concentration in benthic biota (mg/kg d.w., measured or calculated)

OCcbio = fraction organic carbon in benthic fauna (0,25 g/g d.w.)
OCsed = flux of organic carbon settling to the sediment (200 g/m*/year)
d = fraction of organic carbon not consumed (buried) in the sediment (0,47 g/g)

OCresp = respiration rate of organic carbon in the sediment (31 g/m?*/year)
Equation 4: Calculation of total flux, Ftot.

Those areas that are affected by the ship traffic (Aship) and those that are not (Ased — Aship) have to be
distinguished, so the flux and the annual transport of contaminants from the sediment have to be

calculated separately for each area.
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Total flux of a compound out of the sediment (mg/m?/year) is calculated by using equation 4:

Ftot = Fdiff + Fship + Forg

Where:

Flot = total flux from the sediment (mg/m?*/year)

Faif = flux due to biodiffusion (mg/m?*/year)

Fskip = flux due to arrival and departures of ships (mg/m?/year)
Forg = flux due to uptake by organisms (mg/m?*/year)

Equation 5: Calculation of sea water concentrations.

Average toxic sea water concentrations can be calculated if the residence time is known. In the case
where the residence time is unknown, default values can be applied, but it can vary greatly and
should be calculated based on oceanographic measurements, see chapter 3.3.2. The equation to

calculate water mass concentrations is given below:

_ (Ftot_Forg) XAsed Xt = Ftot _Forg

CSW Vsea " dsea X tr

Where:

Csw = concentration in the water mass (mg/m? = ug/!)

Ased = total sediment area (m?)

Vsea = volume of water over the sediment (m?, calculated from area and depth)
dsea = average depth in the sediment area (m, measured)

tr =residence time of water in sediment area (0,02 years = about 1 week)

Equation 6: Modification of the suggested sediment-to-water partition coefficient, Kd.

For the organic compounds, the sediment-to-water partition coefficient, Kd, is based on the fraction
of organic carbon (foc) and specific organic carbon-water partitioning coefficient (Koc) normalized to

organic carbon (Bakke et al., 2011), given in the following equation:

Kd = foc X Ko¢
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Foc can be described as the portion of the organic matter which is available to adsorb the organic
contaminants of concern. This means that if the sediment carbon content is high, more organic
chemicals might be adsorbed to the sediment and less of those compounds will therefore be
available to leach to the water column (IDEM, 2007). Koc describes the potential for movement or
mobility which is present for contaminants in the sediment and water (Mackay et al., 2006).

Appendix A shows Koc values for 16 PAHs.

The theoretical Kd-values, given in appendix A, is based on an organic carbon content (TOC) of 1 % in
the sediment (foc = 0,01). This is a very conservative value, often overestimating the contaminant
concentration in the pore water considerable. Some sites have been contaminated for a long time,
and the contaminants will then be strongly bound to the particles. In these cases, site-specific

measured Kd values should be applied.

If the TOC content increases, the Kd values will also increase, which means that the organic
contaminants will be tighter bound to the sediment (Bakke et al., 2011). Larger foc values will give
larger Kd values, which again results in weaker flux (Fdiff), cf Cpw = Csed/Kd explained in equation 1.
It might seem as a paradox that higher TOC content results in weaker leaching rates, since increasing
amounts of a substance in the sediment will yield a proportional amount of release into the pore
water. In the case of organic matter, and in particular for oil with high hydrophobicity, this will be
inversely related. The more hydrophobic organic substances contained in the sediment, the higher its
binding capacity will be. Due to this, the more of these substances that bind to the organic fraction of
the sediment, the more strongly they will be attached, thus less available to leach to the water

(Mackay et al., 2006).

Equation 7: Controlling the calculation results, temp.

It is recommended to check the probability of the calculations, and this can be determined by
estimating how much time it will take for all the contaminants to be fully drained from the sediment.
In a contaminated site, the amount of contaminants leaking out of the sediment each year should
only be a fraction of the total amount, if not the contaminants would already have leaked out. If the
calculated fluxes are considerable high, resulting in a rapid annual leaking rate, it could indicate that
an overestimation of the fluxes has been done or that the sediments are actually gaining additional

contaminants.

One can presume that the leaching occurs in the upper 10 cm of the bottom as a default value.
Default values for all the parameters except sediment concentration and total contaminant transport

from the sediment can also be applied.
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Ased*XCsed XPvv*faw

t =
emp Frot
Where:
temp  =time for all the contaminants to leak out of the bioactive layer in the sediment (year)
dsed = thickness of bioturbation depth (100 mm/m?)
I'sed = sedimentation rate (3 mm/m2/year)
Csed = sediment concentration (mg/kg d.w., measured)
pw = density of wet sediment (1,3 kg/liter)
faw = fraction dry weight of wet sediment (0,35)
Ftot = total contaminant transport out of the sediment (mg/m?*/year)

3.3 Additional equations

Equation 8: Total organic matter/total organic carbon conversion factor.

Total organic carbon (TOC) is not always given, and could then be found by converting total organic
matter (TOM) into TOC using an accepted factor of 1,724 (Howard, 1965), the equation is given

below:

TOC = 2%
1,724

However, this is based on old information and an assumption that organic matter contains 58 %
carbon. This information is also based on soil, but it can be assumed that it would be similar
conditions for sediments. This factor is associated with some uncertainty and should be used with

caution, only as a rough estimate.

Equation 9: Residence time

In order to calculate the water concentration, equation 5, the residence time must be known.
Residence time can be defined as the average time a water mass remains within aquatic systems
boundaries (Rueda et al., 2005). This could be found from respective authorities, or it can be

calculated based on volumetric flow rates, as shown below.
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|4
Tf =12
f Q
Where:
Tf =residence time (s)
v = volume of water (m°)
Q = volumetric flow-rate (m?/s)

(Rueda et al., 2005)

3.4 The excel worksheet

The excel worksheet given as assistance to the equations given in the guidelines, contains equations,
constants and default values given in the guideline. The sheet consists of several pages, divided into
four parts. Input of site specific values and relevant concentrations as well as homogeneity control
are included in part one, whereas part two includes some necessary calculations, Kd values and
overview of how much spreading that is allowed if the sediment concentrations are the same as the
limit values given in the guidelines. Part three of the worksheet includes the calculated spreading and
associated risk, while part four is an overview of the final results. In addition to this, there is a page
containing some default values for each compound, and charts representing distribution of spreading

mechanisms and distribution of exposure mechanisms (Bakke et al., 2011).

41



42



4 Results

4.1 Gathering of relevant input data

The first step to determine if the guidelines could be used to determine leaching rates from cuttings
piles was to investigate if relevant information from cuttings piles reports was available. In order to
find enough data, several drill cuttings characterization reports were examined. However, requested
information was not found in most of these reports since they are not made with the purpose to be

used as data input for Klif’s guidelines.

One major drawback in the context of drill cuttings piles is that the guidelines do not include THC.
Generally, leaching rates from drill cuttings piles are measured by finding the loss of THC as an
indicator of the oil contamination. THC would therefore be the preferred parameter to use in the
guidelines, however, oil also consists of other compounds, such as PAHs, which often represents the
most toxic part of the oil (Bjgrgesaeter, 2009). The 16 PAH classified by the U.S Environmental
Pollution Agency (EPA) (appendix A), is included in the guidelines and has therefore been used to

represent the leaching rates from oil-based drill cuttings piles in this thesis.

The leaching rates from sediment to the water column, equation 4, is calculated based on three
different fluxes, as described in chapter 3.2. Calculation of transport by biodiffusion, equation 1,
requires pore water concentrations from the contaminated area. It was not possible to find pore
water concentrations for areas contaminated with drill cuttings, but sediment concentrations were
included in the reports, and they were used together with Kd values to find the pore water
concentrations. Kd values should preferably be determined on basis of local measurements, but
such data was not found for the compounds in drill cuttings piles. Default Kd values are given in the
guidelines, but these default Kd values can be modified, using measured TOC values, as described in
equation 6. TOC values were therefore calculated based on four measured TOM values from

Statfjord A, to give more realistic Kd values. Appendix C shows the modified Kd values.

Equation 2, Calculation of sediment transport generated by ships, could not be applied in the
correlation with drill cuttings piles. This equation is based on sediments shallower than 20 meters,
and the equation is thus irrelevant for drill cuttings piles which in this case are located at a depth of

about 150 meters.

Input data for drill cuttings contamination in this thesis is taken from “Characterization of Drill
Cuttings at Statfjord-A” by Tvedten et al., 2012, hereafter referred to as the Statfjord A report. A
short introduction to Statfjord A and the drill cuttings are given below.
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4.1.1 Statfjord A

The Statfjord oil field is located in the Tampen area in the North Sea, about 200 km northwest of
Bergen and close to the United Kingdom border (Boge et al., 2005), se figure 4.1. This area is located
in the north part of the North Sea, and the seabed is therefore not as affected by currents and wind

generated water movements like the shallower areas in the south, as described in chapter 2.2.
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Figure 4.1 Location of the Statfjord fjeld (Boge et al., 2005)
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The field was discovered in 1974, the first platform called Statfjord A was installed in 1978 and
production started the following year. The platform is a large gravity based structure (BGS) made of
concrete, which is about 270 meters tall and located at an area with a water depth around 150
meters (Tvedten et al., 2012). The field has been one of the largest producing oil fields in Europe with

regards to recoverable reserves, but it is now reaching its production termination (Boge et al., 2005).

The drilling at Statfjord A has been done through the two platform legs, and discharges of drill
cuttings have resulted in accumulation of about 30 000 m*® of drill cuttings on the seabed, covering an
area of about 13 000 m”. The cuttings have accumulated in two distinct piles, of about 15 meters in
height, underneath the platform and some in the surrounding area (Tvedten et al., 2012). Figure 4.2

illustrates the location and extent of the two drill cuttings (DC) piles.
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Figure 4.2 Location and extent of the two drill cuttings (DC) piles at Statfjord A (Tvedten et al., 2012)

A rough estimate of the leaching rate of THC from the drill cuttings piles have been made in the

Statfjord A report. The leaching rate was estimated to be 0,6 tones/year (Tvedten et al., 2012).
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4.2 Input used in the calculations

Input data is provided by information from Statfjord A, with focus on the sediment area where the
cuttings piles are located. Default values were used for those parameters which are not included in

the following chapters.

4.2.1 Sediment concentrations

Sediment concentrations from 86 samples of 15 PAHs from the Statfjord-report, given in appendix B,
were used to carry out the calculations. In the Statfjord report, benzo(b)fluoranthene and
benzo(k)fluoranthene was combined into one concentration together with benzo(j)fluoranthene.
Since benzo(b)-and benzo(k)fluoranthene have relatively equal Kd values, the concentration for
benzo(b/j/k)fluoranthene from the Statfjord report was applied as benzo(b)fluoranthene, and no

concentration was applied for benzo(k)fluoranthene.

4.2.2 Total organic carbon (TOC)

As explained in chapter 3.2, Kd values can be modified if TOC values are known, by using equation 6.
In this study, one scenario was calculated using the guidelines default Kd values, based on 1 % TOC,
and one scenario was calculated using modified Kd values based on average TOC values converted
from measured TOM at Statfjord A. TOM data from Statfjord A and the respective TOC conversions

are given in table 4.1

Table 4.1 % Total organic matter (TOM) and TOC converted from TOM from 4 samples from Statfjord A (Tvedten et al.,
2012)

Sample 1 2 3 4 Average
TOM % 3,19 5,04 8,95 11,4 7,14
TOC % 1,85 2,92 5,19 6,61 4,14

Conversion of total organic matter TOC was done by the equation explained in chapter 3.3.

At the time of this study, only four TOM values were available, given in table 4.1. The full TOM

analyses were not accessed in time to incorporate them into the calculations.
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4.3 Results from the calculations

4.3.1 Mean and maximum sediment concentrations and homogeneity results

The risk assessment includes a homogeneity test for each compound, calculated on basis of the
relationship between max-and mean sediment concentrations. A homogeneity value below 2
indicates that the sediment concentrations represent the area well, and that no hotspot-
concentrations are occurring (Bakke et al., 2011). Table 4.2 shows the homogeneity results from the

sediment concentrations in the cuttings piles.

Table 4.2 Homogeneity control of sediment concentrations from Statfjord A

Measured sediment concentrations AT RS
control
Number Csed, max Csed, mean Csed, max / Csed, mean
of (mal/kg) (ma/kg) (Values larger than 2
samples might indicate
hotspots)

Compound
Naphthalene 86 22,2 1,68 163
Acenaphthylene 86 1,71 0,27 22,6
Acenaphtene 86 3,85 0,58 38,5
Fluorene 86 7,33 0,61 109
Phenanthrene 86 7,66 0,92 28,7
Anthracene 86 3,76 0,41 27,4
Fluoranthene 86 5,43 0,54 28,4
Pyrene 86 9,89 1,04 21,8
Benzo(a)anthracene 86 3,78 0,37 93,3
Chrysene 86 1,22 0,15 33,9
Benzo(b)fluoranthene 86 4,60 0,16 230
Benzo(a)pyrene 86 3,39 0,17 53,0
Indeno(1,2,3-cd)pyrene 86 0,02 0,02 1,00
Dibenzo(a,h)anthracene 86 0,02 0,02 1,00
Benzo(ghi)perylene 86 0,26 0,03 13,1

Large variations can be observed between the max-and mean concentrations for most PAHs.
Naphthalene has considerable higher sediment concentrations than the remaining PAHs, while
ideno(1,2,3-cd)pyrene and dibenzo(a,h)anthracene has the lowest. These two latter PAHs had
sediment concentrations below the detection limit for all samples, and the concentrations were

therefore set to the detection limit of 0,02 mg/kg.
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4.3.2 Calculated PAH leaching rates

PAH leaching rates were found using equation 1-4. Both maximum and mean leaching rates were

calculated, based on max and mean sediment concentrations given in table 4.2. Table 4.3 and 4.4

shows the PAH leaching rates, using modified and default Kd values respectively.

Table 4.3 Calculated max and mean PAH leaching rates, based on max and mean sediment concentrations from sediment
containing drill cuttings, using modified Kd values.

Calculated maximum spreading

Calculated mean spreading

Ftot, max I:dif'f, max I:or‘q, max Ftot, mean I:diﬂ, mean I:orq, mean
Compound [mg/mzlyr] [mg/mzlyr] [mg/mZ/yr] [mg/m2/yr] [mg/mzlyr] [mg/mZ/yr]
Naphthalene 2,68E+03 2,62E+03 6,17E+01 2,03E+02 1,98E+02 4,68E+00
Acenaphthylene 1,02E+02 9,00E+01 1,19E+01 1,63E+01 1,44E+01 1,91E+00
Acenaphtene 1,00E+02 8,34E+01 1,67E+01 1,50E+01 1,25E+01 2,49E+00
Fluorene 1,16E+02 9,15E+01 2,44E+01 9,65E+00 7,62E+00 2,03E+00
Phenanthrene 5,84E+01 4,05E+01 1,79E+01 7,04E+00 4,89E+00 2,16E+00
Anthracene 2,30E+01 1,61E+01 6,81E+00 2,47E+00 1,74E+00 7,33E-01
Fluoranthene 1,40E+01 4,16E+00 9,84E+00 1,38E+00 4,11E-01 9,73E-01
Pyrene 4,64E+01 1,86E+01 2,78E+01 4,87E+00 1,95E+00 2,92E+00
Benzo(a)anthracene 5,50E+00 7,66E-01 4,74E+00 5,35E-01 7,44E-02 4,60E-01
Chrysene 3,90E+00 3,11E-01 3,58E+00 4,80E-01 3,84E-02 4,42E-01
Benzo(b)fluoranthene 1,08E+01 5,36E-01 1,03E+01 3,78E-01 1,88E-02 3,60E-01
Benzo(a)pyrene 7,77TE+00 3,86E-01 7,38E+00 3,79E-01 1,88E-02 3,60E-01
Indeno(1,2,3-cd)pyrene 1,62E-02 7,57E-04 1,55E-02 1,62E-02 7,57E-04 1,55E-02
Dibenzo(a,h)anthracene | 1,95E-02 9,05E-04 1,86E-02 1,95E-02 9,05E-04 1,86E-02
Benzo(ghi)perylene 4,85E-01 2,26E-02 4,62E-01 4,78E-02 2,23E-03 4,55E-02
Z15 PAH 3,17E+03 2,97E+03 2,04E+02 2,62E+02 2,42E+02 1,96E+01

Table 4.4 Calculated maximum and mean PAH leaching rates, based on max and mean sediment concentrations from
sediment containing drill cuttings, based on Klif’s default Kd values.

Calculated maximum spreading

Calculated mean spreading

Ftot, max I:diff, max I:or_q, max Ftot, mean I:diﬂ, mean Forq, mean
Compound [mg/m?yr] | [mg/m?yr] | [mg/m?yr] | [ma/m’yr] | [mg/m?yr] | [mg/m®/yr]
Naphthalene 1,11E+04 1,08E+04 2,56E+02 8,39E+02 8,20E+02 1,94E+01
Acenaphthylene 4,22E+02 3,72E+02 4,94E+01 6,76E+01 5,96E+01 7,92E+00
Acenaphtene 4,14E+02 3,45E+02 6,90E+01 6,19E+01 5,16E+01 1,03E+01
Fluorene 4,80E+02 3,79E+02 1,01E+02 4,00E+01 3,15E+01 8,42E+00
Phenanthrene 2,42E+02 1,68E+02 7,41E+01 2,92E+01 2,02E+01 8,93E+00
Anthracene 9,50E+01 6,69E+01 2,82E+01 1,02E+01 7,20E+00 3,04E+00
Fluoranthene 5,79E+01 1,72E+01 4,07E+01 5,73E+00 1,70E+00 4,03E+00
Pyrene 1,92E+02 7,69E+01 1,15E+02 2,02E+01 8,08E+00 1,21E+01
Benzo(a)anthracene 2,28E+01 3,17E+00 1,96E+01 2,21E+00 3,08E-01 1,91E+00
Chrysene 1,61E+01 1,29E+00 1,48E+01 1,99E+00 1,59E-01 1,83E+00
Benzo(b)fluoranthene 4 A7TE+01 2,22E+00 4,24E+01 1,57E+00 7,78E-02 1,49E+00
Benzo(a)pyrene 3,22E+01 1,60E+00 3,06E+01 1,57E+00 7,79E-02 1,49E+00
Indeno(1,2,3-cd)pyrene 6,71E-02 3,13E-03 6,40E-02 6,71E-02 3,13E-03 6,40E-02
Dibenzo(a,h)anthracene 8,07E-02 3,75E-03 7,69E-02 8,07E-02 3,75E-03 7,69E-02
Benzo(ghi)perylene 2,01E+00 9,37E-02 1,91E+00 1,98E-01 9,24E-03 1,89E-01
Z 15 PAH 1,31E+04 1,22E+04 8,43E+02 1,08E+03 1,00E+03 8,12E+01
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Naphthalene has by far the greatest diffusion rate for both max and mean concentrations and for the
two scenarios based on modified and default Kd values. A decreasing trend in the total leaching rates
can be observed, from naphthalene to benzo(ghi)perylene. To illustrate the leaching rate for each
PAH, maximum and mean fluxes were plotted for each PAH, and for the two scenarios. The diagram

is illustrated in figure 4.3.

Total PAH flux from sediment to water

6,00E+03
5,00E+03
—
©
© 4,00E+03
<
~ 3,00E+03
€
~~
o) 2,00E+03
€
—
x 1,00E+03
=
- 0,00E+00
©
°
= &
A\
&

B Max flux using defauld Kd values B Max flux using modified Kd values

Mean flux using defauld Kd values B Mean flux using modified Kd values

Figure 4.3 Maximum and mean PAH flux, based on max and mean sediment concentrations,
for both default and modified Kd values.

As figure 4.3 shows, naphthalene is the major diffusion contributor of the 15 PAHs with a
considerable higher leaching rate than the other PAHs. In addition, it can be noticed that the default

Kd value gives higher fluxes than the modified Kd values.

4.3.3 Spreading distribution

The total calculated spreading of PAHs from the drill cuttings is based on transport by biodiffusion
and transport by organisms only, since spreading generated by ships could not be calculated in this
context, as explained in chapter 4.1. As table 4.3 and 4.4 shows, leaching due to biodiffusion is the
major contributor to the total spreading. The spreading distribution between these two contributing

processes is shown in figure 4.4.
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As figure 4.4 shows, the small PAHs are mainly spread by biodiffusion while the heavier PAHs are

spread by organisms.

4.3.4 Time to drain the sediment

By using equation 7, time to drain the sediment for each compound can be calculated. This is given in

table 4.5 for both modified and default Kd values

Table 4.5 Time to drain the sediment for each of the 15 PAH,
for both modified and default Kd values.

Time to drain the sediment for a
given compound, temp (Yr)

Compounds Modified Kd Default Kd
Naphthalene 0,4 0,1
Acenaphthylene 0,8 0,2
Acenaphtene 1,8 0,4
Fluorene 2,9 0,7
Phenanthrene 6,0 1,4
Anthracene 7,5 1,8
Fluoranthene 17,7 4,3
Pyrene 9,7 2,3
Benzo(a)anthracene 31,3 7,5
Chrysene 14,2 3,4
Benzo(b)fluoranthene 19,4 4,7
Benzo(a)pyrene 19,9 4,8
Indeno(1,2,3-cd)pyrene 56,1 13,6
Dibenzo(a,h)anthracene 46,7 11,3
Benzo(ghi)perylene 24,5 59
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As table 4.5 shows, the sediment will be drained by the lighter PAHSs first, while the heavier PAHs will
be more persistent. It can also be observed that when using default Kd values, the time to drain the
sediment will be faster than if the modified Kd values are used. Naphthalene, which also has the
highest sediment concentration, will drain form the sediment fastes for both modified and default Kd
values. For both cases, ideno(1,2,3-cd)pyrene and dibenzo(a,h)anthracene will be most persistent in
the sediment, if they are present. These to PAHs had concentrations below detection limit, and they

have the greatest Kd values, so the leaching rate will be very slow.
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4.4 Comparisons of concentrations and leaching rates against limit values

The environmental impact from the PAHs present in the drill cuttings pile at Statfjord A was found by
comparing concentrations and diffusion rates to limit values given in the guidelines. The results from

the comparisons are given below.
4.4.1 Sediment concentrations

The sediment concentrations were compared to the limit values given in table 2.2 to get a better
understanding of their possible toxicity levels. Results are given in table 4.6, where the blue columns
shows the max and mean sediment concentrations from Statfjord A (from appendix B) and the green
column shows the limit values used in Klif’s guidelines, given in table 2.2. The yellow columns shows

the number of times the sediment PAH concentrations exceed their limit values.

Table 4.6 Measured sediment concentrations (blue columns) compared to Klif’s limit values (green column), to determine
the number of times they exceed the limit values (yellow columns).

Measured sediment
Measured sediment Conce”ziﬂcihs_t
i o compared to limi
concentrations Limit values pvalues
(mg/kg) (number of times):
Csea, Csed, mean
Compound max (Ma/kg) (mg/kg) Max Mean
Naphthalene 22,2 1,68 0,29 76,5 5,80
Acenaphthylene 1,71 0,27 0,03 51,8 8,30
Acenaphtene 3,85 0,57 0,16 24,1 3,60
Fluorene 7,33 0,61 0,26 28,2 2,35
Phenanthrene 7,66 0,92 0,50 15,3 1,85
Anthracene 3,76 0,40 0,03 121 13,1
Fluoranthene 5,43 0,54 0,17 31,9 3,16
Pyrene 9,89 1,04 0,28 35,3 3,71
Benzo(a)anthracene 3,78 0,37 0,06 63,0 6,12
Chrysene 1,22 0,15 0,28 4,36
Benzo(b)fluoranthene 4,60 0,16 0,24 19,2
Benzo(a)pyrene 3,39 0,16 0,42 8,07
Indeno(1,2,3-cd)pyrene 0,02 0,02 0,05
Dibenzo(a,h)anthracene 0,02 0,02 0,59
Benzo(ghi)perylene 0,26 0,03 0,02 12,4 1,22

Table 4.6 shows that most of the PAHs concentrations exceed the limit values, both for the
maximum-and mean concentrations. Anthracene exceeds the limit value the most followed by
naphthalene. Some of the heavy PAHs have mean concentrations that do not exceed the limit values,
and both mean and max concentrations of ideno(1,2,3-cd)pyrene and dibenzo(a,h)anthracene do not

exceed the limit values.
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4.4.2 Evaluation of the calculated leaking rate.

Since acceptance criteria for PAHs in drill cuttings piles are limited, the limit values used in Klif’s
guidelines was used to get an impression of the leaching rate extent. The leaching rates were
compared to the permitted leaching rates, which are the leaching rates based on sediment
concentrations that equals the limit values. The results based on modified and default Kd values are
given in table 4.7 and 4.8 respectively. Blue columns shows the max and mean calculated total
spreading (Ftot), while the green column shows the permitted spreading, which is the spreading that
equals the limit values given in chapter 2.5.1. The yellow columns show how many times the

calculated total spreading exceeds the permitted spreading.

Table 4.7 Total calculated spreading (blue columns) compared to permitted spreading (green column), based on
modified Kd values, to determine the number of time the calculated spreading exceeds the limit values (yellow columns).

) Fit cCOmpared to
Calculated total Spreading (Fwt) | permitted spreading
spreading (Fiot ) if Csed €quals (number of times):
the limit )
values
(mg/m?/yr)
Ftot, n%ax Ftot, méean
Compound (mg/m</ar) | (mg/m</ar) Max Mean
Naphthalene 2,68E+03 2,03E+02 1,42E+02 18,8 1,43
Acenaphthylene 1,02E+02 1,63E+01 7,38E+00 13,8 2,21
Acenaphtene 1,00E+02 1,50E+01 1,49E+01 6,71 1,00
Fluorene 1,16E+02 9,65E+00 1,42E+01 8,19
Phenanthrene 5,84E+01 7,04E+00 1,19E+01 4,90
Anthracene 2,30E+01 2,47E+00 5,98E-01 38,4 4,14
Fluoranthene 1,40E+01 1,38E+00 7,94E-01 17,6 1,74
Pyrene 4,64E+01 4,87E+00 2,83E+00 16,4 1,72
Benzo(a)anthracene 5,50E+00 5,35E-01 1,13E-01 48,9 4,75
Chrysene 3,90E+00 4,80E-01 9,77E-01 3,99
Benzo(b)fluoranthene 1,08E+01 3,78E-01 5,59E-01 19,3
Benzo(a)pyrene 7,77E+00 3,79E-01 9,55E-01 8,13
Indeno(1,2,3-cd)pyrene 1,62E-02 1,62E-02 3,74E-02
Dibenzo(a,h)anthracene 1,95E-02 1,95E-02 5,64E-01
Benzo(ghi)perylene 4,85E-01 4,78E-02 3,83E-02 12,6 1,25
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Table 4.8 Total calculated spreading (blue columns) compared to permitted spreading (green column), based on
default Kd values, to determine the number of time the calculated spreading exceeds the limit values (yellow columns).

Calculated total Spreading (Fio) peftr(r);iit%rgps?)rreei(;?ng
SfEREng (e ) It Csea €Quals | " (nymbper of times):
the limit
values
(mg/m?lyr)
Ftot, max Ftot, mean

Compound (mg/m°/ar) | (mg/m°/ar) Max Mean
Naphthalene 1,11E+04 8,39E+02 1,42E+02 78,0 5,90
Acenaphthylene 4,22E+02 6,76E+01 7,38E+00 57,2 9,16
Acenaphtene 4,14E+02 6,19E+01 1,49E+01 27,8 4,15
Fluorene 4,80E+02 4,00E+01 1,42E+01 33,9 2,82
Phenanthrene 2,42E+02 2,92E+01 1,19E+01 20,3 2,45
Anthracene 9,50E+01 1,02E+01 5,98E-01 159 17,13
Fluoranthene 5,79E+01 5,73E+00 7,94E-01 73,0 7,22
Pyrene 1,92E+02 2,02E+01 2,83E+00 67,9 7,13
Benzo(a)anthracene 2,28E+01 2,21E+00 1,13E-01 202 19,7
Chrysene 1,61E+01 1,99E+00 9,77E-01 16,5 2,04
Benzo(b)fluoranthene 4,47E+01 1,57E+00 5,59E-01 80,0 2,80
Benzo(a)pyrene 3,22E+01 1,57E+00 9,55E-01 33,7 1,64
Indeno(1,2,3-cd)pyrene 6,71E-02 6,71E-02 3,74E-02 1,79 1,79
Dibenzo(a,h)anthracene 8,07E-02 8,07E-02 5,64E-01
Benzo(ghi)perylene 2,01E+00 1,98E-01 3,83E-02 52,4 5,16

The tables show that several PAHs are exceeding their limit values. Benzo(a)anthracene is the PAH
that exceeds the limit value most, followed by anthracene. Naphthalene, which has the highest flux
by far, does not exceed as much as one might think, but it also have a much higher limit value and
lower toxicity than the other PAHSs. It is clear that there are large variations between mean and

maximum values and between modified and default Kd values.

4.4.3 Evaluation of the ecological impacts

To evaluate the extent of how the organisms living in the sediment area can be affected by the PAHs,
calculated pore water concentrations (PEC) was compared to PNECw values. Results are given in table

4.9 and 4.10 for modified and default Kd values respectively.
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modified Kd values.

Calculated pore

Calculated pore

water water
concentrations Limit v_alue _ concentrations
(PEC) for ecological risk | compared to _PNECW
PNEC,, (mg/l) (number of times):

CDV, max va, mean
Compound (mg/) (mg/l) Max Mean
Naphthalene 4,12E-01 | 3,12E-02 2,4E-03 172 13,0
Acenaphthylene 1,59E-02 | 2,54E-03 1,3E-03 12,2 1,96
Acenaphtene 1,50E-02 | 2,24E-03 3,8E-03 3,95
Fluorene 1,74E-02 | 1,45E-03 2,5E-03 6,94
Phenanthrene 8,08E-03 | 9,75E-04 1,3E-03 6,22
Anthracene 3,22E-03 | 3,47E-04 1,1E-04 29,3 3,15
Fluoranthene 9,08E-04 | 8,97E-05 1,2E-04 7,56
Pyrene 4,06E-03 | 4,26E-04 2,3E-05 176 18,5
Benzo(a)anthracene 1,82E-04 | 1,77E-05 1,2E-05 15,2 1,47
Chrysene 7,40E-05 | 9,13E-06 7,0E-05 1,06
Benzo(b)fluoranthene 1,37E-04 | 4,79E-06 3,0E-05 4,56
Benzo(a)pyrene 9,85E-05 | 4,80E-06 5,0E-05 1,97
Indeno(1,2,3-cd)pyrene | 2,06E-07 | 2,06E-07 2,0E-06
Dibenzo(a,h)anthracene | 2,48E-07 | 2,48E-07 3,0E-05
Benzo(ghi)perylene 6,16E-06 | 6,07E-07 2,0E-06 3,08

default Kd values.

Calculated pore

Calculated pore

water water
concentrations Limit v_alue _ concentrations
(PEC) for ecological risk | compared to _PNECW
PNEC,, (mg/l) (number of times):

CDV, max CDV, mean
Compound (mg/l) (mg/l) Max Mean
Naphthalene 1,71E+00 | 1,29E-01 2,4E-03 712 53,9
Acenaphthylene 6,58E-02 | 1,05E-02 1,3E-03 50,6 8,10
Acenaphtene 6,21E-02 | 9,28E-03 3,8E-03 16,3 2,44
Fluorene 7,19E-02 | 5,98E-03 2,5E-03 28,7 2,39
Phenanthrene 3,34E-02 | 4,03E-03 1,3E-03 25,7 3,10
Anthracene 1,33E-02 | 1,44E-03 1,1E-04 121 13,1
Fluoranthene 3,76E-03 | 3,71E-04 1,2E-04 31,3 3,10
Pyrene 1,68E-02 | 1,76E-03 2,3E-05 730 76,7
Benzo(a)anthracene 7,54E-04 | 7,33E-05 1,2E-05 62,8 6,11
Chrysene 3,06E-04 | 3,78E-05 7,0E-05 4,38
Benzo(b)fluoranthene 5,66E-04 | 1,98E-05 3,0E-05 18,9
Benzo(a)pyrene 4,08E-04 | 1,99E-05 5,0E-05 8,15
Indeno(1,2,3-cd)pyrene | 8,53E-07 | 8,53E-07 2,0E-06
Dibenzo(a,h)anthracene | 1,03E-06 | 1,03E-06 3,0E-05
Benzo(ghi)perylene 2,55E-05 | 2,51E-06 2,0E-06 12,7 1,26

Table 4.9 Ecological impact determined by comparing the number of times (yellow column) that calculated pore water
concentrations (blue columns) exceeds the PNECw values (green column). The pore water concentrations are based on

Table 4.10 Ecological impact determined by comparing the number of times (yellow column) that calculated pore water
concentrations (blue columns) exceeds the PNECw values (green column).The pore water concentrations are based on
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Pyrene and naphthalene shows significant ecological risk for both scenarios, with high PEC/PNEC
ratios. All PAHs except ideno(1,2,3-cd)pyrene and dibenzo(a,h)anthracene, which had concentrations
below detection limit, exceed the limit value with the maximum pore water concentrations for both
scenarios. The mean pore water concentrations shows less toxicity, but pyrene and naphthalene are

still exceeding the limit values to a large extent.

To find the ecological impact to the species living in the surrounding water, sea water concentrations
can be compared to PNEC values. Sea water concentrations was not included in the Statfjord A
report, but an attempt to calculate them were conducted, where area and depth of the cuttings piles
was used to find the residence time, given in equation 9. The results, presented in appendix D, are
not considered reliable due to uncertainty with regards to the calculated residence time, and are

therefore not applied.
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5 Discussion

Input from drill cuttings at Statfjord A was used to investigate if Klif’s guidelines for contaminated
sediment could be used to determine leaching rates of oil from drill cuttings piles. The results from

this study are discussed below.

5.1 Fate and transport of contaminants in drill cuttings piles.

Different physical and chemical processes might affect drill cuttings piles and result in alteration of
the fate and transport of the contaminants within the piles. Biodegradation of oil-components are
mainly slow within the pile, where oxygen levels are low, and higher at the surface with better
availability and surplus of oxygen. Contaminants in the anaerobic layer can thus stay in the piles for
many years without being biodegraded. Historic drill cuttings piles are therefore expected to have
low biodegradation rates, since the available oxygen has been utilized over the years, and transport
in the sediment is slow (Breuer et al., 1999). Contaminants in the pore water can leak out to the
overlaying water by biodiffusion (Bakke et al., 2011), and this process can potentially be a major
contributor of contaminant spreading from drill cuttings piles. Erosion/sedimentation due to natural
processes like currents and waves or anthropogenic activities such as dredging or trawling activities
can possibly impact the cuttings piles to a large extent. Erosion due to platform decommissioning
might play a large role in spreading contaminants to new locations, if the cuttings piles would have to
be relocated (Dames & Moore and NIOZ, 1999). Therefore, to let cuttings piles remain as undisturbed

as possible and left at its present location is an option which could reduce the leaching potential.

In addition to these factors, additional processes, not included in the guidelines, may affect
contaminant release from the sediment. Qil has lower density than water, and convection, which is a
density and gravity dependent transport of lighter liquid upwards, might occur if oil is present in a
liquid form (Webster et al., 1996). This process is not included in the transport processes represented
by the different equations in Klif’s guidelines. Thus, it is outside the scope of this thesis to bring this
into the calculations. This means that the results is based on an assumption that no other release
mechanisms contribute significantly to releases of oil from cuttings piles than those covered in the
guidelines. It has been found no literature that may clarify to which extent this assumption holds
true, and it can therefore here only be regarded as adding to the uncertainty associated with the

calculations.
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5.2 Limitations with regards to relevant data

Several limitations were encountered during the process to determine if Klif's guidelines for
contaminated sediments could be used on drill cuttings piles. Relevant parameters were difficult to
obtain to be able to conduct the calculations with regards to drill cuttings piles. Drill cuttings piles
characterization reports do not include specific information meant to be used in the guidelines, so
some of the parameters had to be calculated or modified, increasing the uncertainty. Uncertainty is
also associated with the extensive use of default values that had to be applied since site-specific data
was unavailable. These default values are meant to be used on sediments in harbors and fjords, so to

accept them as representative values for the conditions in the North Sea adds to the uncertainty.

The most basic challenge was the fact that THC could not be applied, since it was not included in the
guidelines. An attempt to calculate the leaching rate of THC based on equation 1 was conducted, but
Kd and Ds values for THC was difficult to obtain. Kd and Ds values can be found based on octanol-
water partitioning coefficient, Kow, literature values and molecular weight (Schwarzenbach et al.,
2003), but these values where only found for each hydrocarbon compound and not for THC as a
whole. Values for THC were needed because the drill cuttings characterization reports generally

include sediment concentrations for THC as a group and not for each individual compound.

5.3 Evaluation of the calculated results.

5.3.1 Spreading distribution.

The spreading mechanisms included in Klif’s guidelines are spreading due to biodiffusion, spreading
generated by ships and spreading due to transport by organisms, as explained in chapter 2.5.
Spreading generated by ships, equation 2, could not be calculated since the equation only applies for
depths at 20 meters or shallower, and the cuttings piles are located at a depth of 150 meters. Ships
would generally not have any impact on the cuttings piles, due to the depth, but other processes
could cause the sediment to be whirled up. Natural erosion processes like currents and waves could
cause the drill cuttings piles surface to erode and spread to other areas. Human activities such as
trawling and other fishing activities could also affect cuttings piles. Possible relocation of cuttings
piles during decommissioning seems to be the potentially greatest erosion contributor, and should
therefore be taken into account (Nedwed et al., 2006). However, potential calculated oil release due
to relocation of drill cuttings piles has not been included in the scope of this study since it is not
included in Klifs guidelines.
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Spreading due to fish and predation which might have eaten PAH contaminated benthic organisms,
equation 3, was calculated based on sediment concentrations, given in appendix B, and default
values. The results from this spreading might be associated with uncertainty due to the extensive use
of default values. Uncertainty also arises due to the fact that Klif’s guidelines have not taken
metabolism and biotransformation into account. Although benthic organisms are exposed to- and
may accumulate PAHs, it do not necessary mean that they are transferred to higher levels, because
fish generally have high ability to biotransform and excrete PAHs (Suede et al., 1994). The
importance of spreading due to transport by organisms could therefore possibly be considerable

overestimated.

Spreading due to biodiffusion, equation 1, is the major contributor to the total spreading, and this
parameter was calculated based on sediment concentrations from Statfjord A. Several default values
were applied to calculate the biodiffusion rate, adding to the uncertainty. Figure 4.4 in chapter 4.3.3
illustrates the spreading distribution between biodiffusion and transport by organisms. It can be
observed that the small PAHs are mainly dominated by biodiffusion while the spreading of the larger
PAHs mainly originates from transport by organisms. This is consistent with the theory explained in
chapter 5.3.1, which states that the small PAHs will be affected by diffusion in a larger extent than
the heavier PAH, due to the properties which affect how tight the PAHs are bound to the sediment,

and thus how available they are to leak out to the water.

5.3.2 Calculated PAH leaching rates

The mean and max leaching rates of 15 PAHs was calculated based on equation 1, given in chapter
3.3. Results are given in table 4.3 and 4.4, and a summary of the mean and max leaching rates (based
on mean and max sediment concentrations), in kg/year, for both modified and default Kd values is
given in table 5.1. An area of 13 000 m?, given in section 4.1.1, was used to convert the units from

mg/m2/year to kg/year.

Table 5.1 Mean and max leaching rates (based on mean and max sediment concentrations
from Statfjord A) for £ 15 PAHs in kg/year based on both modified and default Kd values.

Scenario Ftot (kg/yr) Fdiff (kg/yr) Forg (kg/yr)
Max Mean | Max Mean | Max Mean

Modified Kd | 41,2 3,40 |386 3,15 | 265 0,25
Defaultkd | 170 14,0 | 159 13,0 | 11,0 1,06
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Table 5.1 shows that the total maximum and mean PAH leaching rates from the drill cuttings at
Statfjord A was calculated to be 41,2 kg/year and 3,40 kg/year respectively, using modified Kd values.
The maximum leaching rates based on both modified and default Kd values are high compared to the
mean leaching rates, however, the mean leaching rates should be hold as most representative for
the contaminated area (Bakke et al., 2011). It can also be observed from table 5.1 that the leaching
rates based on default Kd values are considerable higher than those based on modified Kd values,
this is further discussed in chapter 5.6., and that the leaching rates from transport by organisms are
low compared to leaching due to biodiffusion, which is consistent with the theory explained in

chapter 5.1.

From table 4.3 and 4.4 a decreasing leaching rate trend were observed from naphthalene to
benzo(ghi)perylene, for both maximum and mean values. This might be connected to the decreasing
trend that also applies for the molecular weight and Kd values, see appendix A. Naphthalene is the
smallest of the 15 PAHs while benzo(ghi)perylene is the largest molecule, see appendix A. This will
influence their chemical properties and thus their behavior in the environment. Small Kd values
means that the compound is less bound to the sediment and will therefore leak out of the sediment
in a greater degree than those compounds with greater Kd values, as previously illustrated in figure
2.14. Those compounds with a greater Kd value, will be tighter bound to the sediment, and thus have
a slower leaking rate. To compare, naphthalene has a Kd value of 13 I/kg, while ideno(1,2,3-

cd)pyrene has a Kd value of 23442 |/kg with 1 % TOC.

It is difficult to determine whether the total leaching rates are representing the actual conditions,
since several factors in the calculations are associated with high uncertainty. The lack of basis to
compare the calculated leaching rates to PAH leaching rates from other drill cuttings piles makes it
difficult to evaluate the realism of these rates, since most leaching rate reports from drill cuttings
piles are focused on THC and not PAH (Dames & Moore and TNO, 2002). It can be concluded though
that the PAH leaching rates, based on both modified and default Kd values, are minor compared to
the roughly estimated THC leaching rate of 0,6 tons/year from the Statfjord report, see chapter
4.1.1. However, the average total amount of PAH loading in the drill cuttings piles at Statfjord A is
found to be only 0,42 tons compared to 584 tons of THC loading (Tvedten et al., 2012), so the PAH

contribution will obviously be small compared to THC.

If compared to other areas, the Statfjord area has been one of the largest producing fields in the
Norwegian continental shelf over the years (Boge et al., 2005), and the amount of PAH in the piles
can therefore be expected to be somewhat higher compared to installations with less production and

thus less discharge of drill cuttings.
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5.4 Control of the calculations using calculated time to drain the sediments.

As described in chapter 3.2, equation 7 can be used to investigate if the calculated leaching rates
seem probable or not. The amount of contaminants leaching out of the bioactive layer in the
sediment each year should only be a fraction of the total amount, if not the contaminants would
already have leached out. If the calculated leaching rates are high, it could imply that the results
might not be reliable (Bakke et al., 2011). The estimated time to drain the sediment, given in table
4.5, varies from one PAH to another, and a pattern was observed, where the lightest PAHs drain out
first while the more heavy PAHs stay longer in the sediment. This correlates to the theory illustrated
in figure 2.14, where the lighter PAHs (smaller Kd) will have faster diffusion rates due to their
chemical properties, while the more heavy PAHs (greater Kd) will be more persistent in the sediment.
The PAHs that will remain in the sediment for the longest period, according to table 4.5, is
ideno(1,2,3-cd)pyrene and dibenzo(a,h) anthracene. However, these compounds had concentration
below detection limit, and the results governing these two PAHs are therefore associated with

uncertainty.

When analyzing the results from table 4.5, the rapid drainage time for some of the lighter PAHs is
noteworthy. Naphthalene for instance, will be fully drained from the sediment in 146 days based on
the modified Kd values and 36,5 days based on the default Kd values. Several of the remaining PAHs
also show rapid drainage times. Equation 7, which is used to calculate the time to drain the
sediment, is based on the upper 10 cm of the sediment (Bakke et al., 2011). Table B.1 shows that
sediment concentrations are still detected in the upper portion of the cuttings surface, and it is thus
unlikely that some of the PAHs would be fully drained from the sediment in less than one year. These
rapid drainage times might indicate that the calculated leaching rates cannot be considered reliable,

due to possible overestimation in the calculations.

However, other processes could influence the time to drain the sediment. The sediments might gain
additional contaminants from different sources. In the context of drill cuttings piles, contaminant
input could originate from produced water where the chemical constituents have settled on the
sediment (Bakke et al., 2012). Another explanation could be that contaminants from deeper areas of
the pile migrate up to the surface layer due to processes like diffusion and convection, as explained
in chapter 5.1. In addition to this, contaminants which have leaked out to the water could have
undergone sedimentation and settled on the surface of the pile due to chemical and physical
properties. The probability and extent of these possible contributions is difficult to determine

however, and should therefore only be regarded as factors adding to the uncertainty.
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5.5 Evaluation of possible environmental impacts

Since the leaching rates of THC could not be calculated, as explained in chapter 4.1, the calculated
leaching rates could not be compared to OSPARS threshold (10 tons/year) on the amount of oil that
is allowed to leak out of drill cuttings piles each year. Comparison with Klif’s limit values where
therefor conducted to get a better understanding of the possible impacts the PAH content of the drill

cuttings might pose to the environment.

5.5.1 Toxicity of the sediment concentrations

The sediment concentrations were compared to the limit values given in Klif’s guidelines, see chapter
2.5.1, to get a better understanding of their possible toxicity levels. Results are given in table 4.6, and
it can be observed that most of the PAHs sediment concentrations exceed the limit values, both for

maximum-and mean concentrations.

Anthracene is the compound that exceeds the limit value most for both scenarios. The limit value for
this PAH is low compared to the other PAHs, so low concentrations could still exceed the limit value.
Ideno(1,2,3-cd)pyrene and dibenzo(a,h)anthracene had sediment concentrations below the

detection limit of 0,02 mg/kg, and did not exceed the limit values.

There is a large difference in maximum and mean concentrations for most of the PAHs, and as stated
in chapter 4.3.1, the samples show signs of poor homogeneity and the possibility of concentration
hotspots. Since most of the PAHs exceed their limit values both for maximum and mean

concentrations, the PAHs might pose negative impacts on the local sediment organisms.

5.5.2 Calculated leaching rates compared to permitted leaching rates

Since acceptance criteria for PAHs in drill cuttings piles are limited, the limit values used in Klif’s risk
assessment guidelines was used to get an impression of the leaching rate extent. The leaching rates
were compared to how many times they exceed the permitted leaching rates which are the leaching

rates that equal Klif’s limit values, see table 4.7 and 4.8 .

Most of the PAHs exceed the limit values for the total leaching rate when compared to Klif's limit
values. As one might expect, there are more and greater exceedance of limit values with the default
Kd values than with the modified Kd values. This illustrates the importance of site specific measured
data. Benzo(a)anthracene is the PAH that exceeds the limit value most, followed by anthracene.

Naphthalene, which has the highest leaching rate by far, does not exceed as much as one might
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think, but it also have a much higher limit value and low toxicity compared the other PAHs (Mumtaz
and George, 1995) In table 4.8, it can be observed that ideno(1.2.3-cd)pyrene exceeds the limit
values, but this is associated with uncertainty due to the fact that the concentration for this PAH was

under the detection limit.

Although several of the PAHs leaching rates exceed the limit values, it must be kept in mind that this
is based on drill cuttings piles in the North Sea, and not contaminated sediment in a harbor of fjord.
The acceptance criteria are different for those two scenarios and even though the PAHs might
exceed the acceptance criteria for harbors and fjords, it does not mean that it will be the same for
conditions in the North Sea. The calculated leaching rates are also associated with high uncertainty,
and the actual exceedance would probably not be similar to these results if the calculations were

based on local measurements.

It is also a question if all processes of importance are included in the leaching calculations, as
explained in section 5.1. The contribution from spreading due to organisms, Forg, might be
overestimated and add to the total leaching rate in a unlikely matter, but this might be a minor
difference since the calculated rate of Forg is small compared to biodiffusion, see table 5.1. In
addition, the possibility that all contributing migration processes might not have been included in the

total spreading calculations can add to the uncertainty.

5.3.3 Possible ecological impacts, based on PEC/PNEC ratios.

To evaluate the extent of how the organisms living in the sediment area can be affected by the PAHs,
calculated pore water concentrations (PEC) was compared to limit values from Klif’s guidelines given

in table 2.3 (PNECw), as described in section 2.5.1.

Results are given in table 4.9 and 4.10 for modified and default Kd values respectively. Five of the
mean pore water concentrations exceeds the PNEC values using modified Kd values, while 10 pore
water concentrations exceeds the PNEC values based on the default Kd values. This confirms that the

default Kd values are conservative, and might overestimate the results.

Pyrene and naphthalene shows significant ecological risk for both scenarios. When based on
modified Kd values, maximum pore water concentrations exceeds the PNEC values 176 and 172
times for pyrene and naphthalene respectively. All PAHs except ideno(1,2,3-cd)pyrene and
dibenzo(a,h)anthracene, which had concentrations below detection limit, exceed the limit value with
the maximum pore water concentrations for both scenarios. The mean pore water concentrations
shows less exceedance of limit values, but also here pyrene and naphthalene are exceeding the limit

values to a large extent. This means that especially pyrene and naphthalene could affect the
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sediment living organisms. Pyrene is considered one of the more toxic PAH (Mumtaz and George,
1995), and this high pore water concentration might cause toxic effects, as described with the DNA-

adducts in chapter 2.4.2, in organisms living in, on or possibly near the cuttings piles.

The heavy PAHs can cause negative effects to organisms even when they are present in the
environment at very low concentrations, but the results from this assessment shows that the most
heavy PAHs does not exceed the limit values as much as the smaller PAHs, the only exception being
benzo(ghi)perylene. However, the heavy PAHs might be more persistent, resulting in bottom
dwelling organisms being exposed to the PAHSs for a potentially long period. It should also be kept in
mind, that this is only the PAH content of the pile, different metals, and other organic contaminants
are also usually present in drill cuttings piles potentially adding to the toxicity. The potentially toxic

effects are likely to be limited only to the area where the drill cuttings are located.

PEC/PNEC ratio could also be applied on sea water concentrations to investigate the possible effects
on the species living in the overlaying water. However, sea water concentrations were not measured
and included in the Statfjord A report. They could be calculated using equation 5, but considerable
uncertainty was associated with the residence time needed to calculate the sea water
concentrations. The default residence time of 0,02 years is based on conditions in harbors and fjords,
and would therefore not represent the conditions in the North Sea. The North Sea is an open system
with different properties governing the fate and transport of contaminants than the conditions
present in harbors or fjords. Residence time could be calculated using equation 9, and an attempt to
calculate the residence time was conducted, given in appendix D. However, there was too high
uncertainty associated with the values, for them to be used. Area and depths are usually applied for
entire harbors and not just one spot in particular. Harbors and coastal areas are usually not as deep
as the North Sea where the drill cuttings at Statfjord A are located, but the contaminated areas are
generally larger. Using the area covered by drill cuttings of 13 000 m?, and a water depth of 150
meters, see table D.1 (Tvedten et al., 2012) would therefore possibly give unreliable results. Table
D.2 and D.3 shows that all of the calculated sea water concentrations are low, and that no PAH
exceeded the PNEC value for either modified or default Kd values. Based on the leaching rates, and
the generally high exceedance of respective limit values for both concentrations and leaching rates,
one might have expected exceedance of the limit values for at least some of the PAHs sea water
concentrations. This was not the case based on the attempt to calculate the sea water

concentrations given in appendix D.

It might have been possible to find a general residence time for the area in the North Sea where

Statfjord A is located, but such values were not obtained.
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5.6 Reliability of the calculated results

Overall, several factors of uncertainty are present with regards to the results. Parameters such as Kd
and TOC, were not obtained from drill cuttings characterization reports, and therefore had to be
modified, increasing the uncertainty. Site-specific measured Kd values would have given more
reliable results than modified Kd values. This can be illustrated by a PAH contaminated site in
Kristiansand where it was found that the total diffusion of PAH from the sediment to water was 300-
800 times higher when using theoretical Kd values instead of the measured Kd values (Ruus et al.,
2005). This was also the case at a PAH contaminated site in Ransfjorden, where the total diffusion
rates were found to be 360-1500 kg/years using default Kd values, and 0,3-1,5 kg/year when using
the measured Kd values. Both sites also found that the flux was dominated by different PAHs when
using measured Kd values compared to the default Kd values. For the site in Ransfjorden,
naphthalene was the dominating PAH when using default Kd values, but when the measured Kd
values were applied, fluorine, phenanthrene, anthracene, fluoranthene and pyrene dominated the
flux (Helland and Uriansrud, 2006). This illustrates the high uncertainty associated with the results
when site-specific measured Kd values are not available. The modified Kd values used in this thesis,
given in appendix C, are not as remarkably different from the default Kd values, as they might be if

the Kd values were based on site-spesific measurements.

The four converted TOC values given in table 4.1 originate from TOM values measured at Statfjord A.
These four TOM values were the only available TOM values present at the time of this study and the
full TOM analyses were not accessed in time to incorporate them into the calculations. TOC should
be based on all available data to represent the actual conditions properly. And the fact that the
calculations are based on only four of the samples adds to the total uncertainty. The TOM/TOC

conversion method might be unreliable, as it is an old method based on soils and not sediments.

The homogeneity test, given in table 4.2 showed great variance in the mean and max sediment
concentrations. Especially benzo(b)fluoranthene and naphthalene have high values. The high
benzo(b)fluoranthene value could be affected by the fact that it consists of concentrations from
three compounds and not one, as described in chapter 4.2.1. The high difference in max-and mean
concentrations might indicate that some of the concentrations can be abnormally high compared to
the larger whole. However, data from drill cuttings piles are often heterogeneous in the chemical
content (Breuer et al., 2004), thus getting homogeneous data might be difficult to obtain. The
guidelines do not require the homogeneity test to be met, but it can be used to get an idea of the
possibility that some of the concentrations might be “hot-spots” and distinguish themselves from the

other concentrations, resulting in high maximum concentrations compared to mean concentrations.
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The reliability of the calculated leaching rates, given in table 4.3 and 4.4, might be associated with
uncertainty, since they are based on extensive use of default values meant for conditions in harbors
and coastal areas. The results shows great variance when using modified and default Kd values for
instance. If site-specific measured Kd values could have been applied instead of the modified Kd
values, the uncertainty would have decreased. The leaching rates would probably be reduced if such
Kd values were utilized, as shown in the two examples from Kristiansand and Ransfjorden explained
above. The uncertainty governing the leaching rates can also be confirmed by the rapid calculated

time to drain the sediment for PAHs, given in table 4.5.

Erosion due to currents and waves have not been included in the guidelines, only erosion due to
ships, which does not apply for drill cuttings located at a depth of 150 meters. In addition, there is a
possibility that migration routes not included in Klif’s guidelines, such as convection, might
contribute to the total spreading of contaminants, as described in chapter 5.1. The fact that there
might be forces acting upon the migration and spreading of contaminants in cuttings piles not
included in the equations contributes to these uncertainties. The contribution by spreading due to
organisms might also be unreliable, as metabolism and biotransformation of contaminants is not
included in the guidelines, explained in chapter 5.1. The guidelines are set to be conservative, but

this contribution could have possible effects on the total calculated spreading with regards to PAHs.

The calculations of possible toxicity and ecological impacts, given in chapter 4.4 showed that the
PAHs from drill cuttings at Statfjord A might pose negative impacts on the species living in, at or
possibly near the drill cuttings. The reliability of these calculations is difficult to evaluate, since they
are based on several default- and modified values. However, since PAHs are considered to be the
most toxic part of the oil (Bjgrgesaeter, 2009), negative impacts on species might be expected,

although these effects are presumably mostly limited to the actual drill cuttings area.
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6 Conclusion

The objective of this study is to investigate if Klif's risk assessment guidelines for contaminated
sediment can be applied to estimate leaching rates of hydrocarbons from oil-based drill cuttings
piles. Factors affecting oil-based drill cuttings piles and impacts cuttings piles can have on the

environment have also been included in this study.

Several limitations govern the use of Klif’s guidelines to determine leaching rates from oil-based drill
cuttings piles. A major concern is that THC is not included in the guidelines, and loss of oil can
therefore not be calculated and compared to the OSPAR threshold of 10 tons of oil/year. Several
parameters which should be present, in order to exclude as many of the default values given in the
guideline as possible, were deficient from drill cuttings characterization reports. Some of the
parameters such as Kd- and TOC can be modified, but great uncertainty is still associated with these
values. The lack of erosion, metabolism and biotransformation of contaminants in organisms, and
possible convective oil releases (dependent on the form of oil present in the drill cuttings piles) in the

guidelines might also contribute to uncertainty, but this is not discussed in any detail in this thesis.

Leaching rates based on biodiffusion and transport by organisms were calculated for 15 PAHs from
Statfjord A, and the maximum and mean leaching rates was found to be 41,2 kg/year and 3,40
kg/year respectively, based on modified Kd values. The maximum and mean leaching rates were
calculated to be 170 kg/year and 14,0 kg/year if the default Kd values were used. This large
difference in leaching rates based on modified and default Kd values implies that the default values
might overestimate the results. It is difficult to evaluate the reliability of the results due to the
associated level of uncertainty connected to the equations, and the lack of available comparison
values from similar analyses. However, the calculated time to drain the sediment of PAHs was
considerable rapid for some of the lighter PAHs, which might indicate overestimations of the

calculations.

With regards to the calculated environmental impact from PAHs present in the cuttings piles, it can
be concluded that the leaching from the sediment might result in possible negative impacts to
species living in, on or possibly near the drill cuttings piles. However, it is important to keep in mind
that great uncertainty is associated with the calculated values which where compared to Klif’s limit
values, and this will add uncertainty to the exceedance results and following possible environmental

impacts.
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The results from this study show that there are several limitations when using the risk assessment
guidelines to determine leaching rates from oil-based drill cuttings piles. Critical factors are deficient
from both the guidelines and from drill cuttings characterization reports to be able to get reliable
results and the guidelines are based on conditions in harbors and fjords and not conditions in the
North Sea. This results in large uncertainties with regards to the calculated results. The sum of all the
uncertainties indicates that the present guideline is not feasible to use in the context to determine

leaching rates from oil-contaminated drill cuttings piles.

Modifications could be conducted to possibly get more reliable results if the guidelines where to be

used to find leaching rates from drill cuttings in the future:

Physical analyses could be implemented with the purpose to gather relevant local

information needed to get reliable results.

e Attempt to include THC in the guidelines, so that total loss of oil could be calculated and

compared to OSPARS threshold value of 10 tons/year.

e Include erosion generated by factors governing depths where cuttings piles are located such
as currents and waves, and possibly incorporate erosion due to anthropogenic activities such

as relocation of cuttings piles or trawling activities.

o Include default values based on conditions governing drill cuttings piles rather than

sediments in harbors and fjords.

e Evaluate the possibility to include oil release mechanisms not included in the present
guidelines, such as convection, that might contribute to the total spreading rates. And to
consider how metabolism and biotransformation of certain chemicals might affect the

spreading due to transport by organisms.
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Appendix A: Chemical and physical properties for EPAs 16 PAHs

Table A.1 Overview of physical and chemical data for 16 PAH (Bakke et al., 2011)

Compound Ds Kq sed (I/kg) log Kow Koc Molecular
(cm?/s) 1% TOC weight (g/mole)
Naphthalene 8,61E-06 13 3,33 1250 128,2
Acenaphthylene 7,69E-06 26 4,00 2570 150,2
Acenaphthene 7,55E-06 62 4,20 6166 154,2
Fluorene 7,16E-06 102 4,32 10233 166,2
Phenanthrene 6,81E-06 229 4,57 22909 178,2
Anthracene 6,81E-06 282 4,68 28184 178,2
Fluoranthen 6,22E-06 1445 5,23 144544 202,4
Pyrene 6,22E-06 589 5,13 58884 202,4
Benzo(a)anthracene 5,71E-06 5012 591 501187 228,3
Chrysene 5,71E-06 3981 5,81 398107 228,3
Benzo(b)fluoranthene 5,32E-06 8128 6,11 812831 252,3
Benzo(k)fluoranthene 5,32E-06 7943 6,11 794328 252,3
Benzo(a)pyrene 5,32E-06 8317 6,13 831764 252,3
Indeno(1,2,3-cd)pyrene 4,99E-06 23442 6,87 2344229 276,3
Dibenzo(a,h)anthracene 4,96E-06 19498 6,75 1949845 278,4
Benzo(ghi)perylene 4,99E-06 10233 6,22 1023293 276,3
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Figure A.1 The chemical structure of EPAs 16 PAHs (Anyakora et al., 2005)
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Appendix B: PAH sediment concentration from Statfjord A

Table B. Sediment PAH concentrations (mg/kg dry sediment) analysed from grab samples (G), large gravity corer (LC) and
short corer (SC)with the aid of ROV, from the drill cuttings at Statfjord A (Tvedten et al., 2012)

G10 G16

0-1 13 36 01 13 3-6 +6 +6 cm
Component cm cm cm  samleprgve | cm cm cm Bulka Bulkb
Naphthalene 3.50 0.154 <0.02 <0.02| 0.088 <0.02 <0.02 0.137 <0.02
Acenaphthylene 0.049 <0.02 <0.02 <0.02| <0.02 <0.02 <0.02 0.547 <0.02
Acenaphthene 0.253 0.033 <0.02 <0.02| <0.02 <0.02 <0.02 0.190 <0.02
Fluorene 0.188 0.038 0.071 0.022 | <0.02 <0.02 <0.02 0.304 <0.02
Phenanthren 158 0.158 0.042 0.024| 0.146 0.057 0.042 0.574 0.022
Anthracene 0.137 0.033 0.027 <0.02| 0.023 0.023 0.021 0.528 <0.02
Fluoranthene 1.04 0.030 0.020 <0.02| 0.077 0.029 0.076 1.09 <0.02
Pyrene 0.979 0.078 0.067 0.048| 0.088 0.115 0.135 5.67 0.025
Benzo(a)anthracene 0.905 0.065 <0.02 <0.02| 0.023 0.020 <0.02 1.28 <0.02
Chrysene 0.652 0.025 <0.02 <0.02| 0.031 0.027 <0.02 1.50 <0.02
benzo(b/j/k)fluoranthene 0.745 <0.02 <0.02 <0.02| <0.02 <0.02 <0.02 0.251 <0.02
Benzo(a)pyrene 0.376 <0.02 <0.02 <0.02| <0.02 <0.02 <0.02 0.179 <0.02
Dibenzo(a,h)anthracene <0.02 <0.02 <0.02 <0.02| <0.02 <0.02 <0.02 <0.02 <0.02
Indeno(1.2.3-cd)pyrene <0.02 <0.02 <0.02 <0.02| <0.02 <0.02 <0.02 <0.02 <0.02
Benzo(ghi)perylene <0.02 <0.02 <0.02 <0.02| <0.02 <0.02 <0.02 0.065 <0.02

G15 G22

Component 0-1cm 1-3cm 3-6cm +6Bulk | 0-1cm  1-3cm  3-6cm  +6 Bulk
Naphthalene 0.021 0.032 0.083 <0.02| 0.420 0.079 0.057 <0.02
Acenaphthylene <0.02 <0.02 <0.02 <0.02| <0.02 0.116 0.114 <0.02
Acenaphthene <0.02 <0.02 <0.02 <0.02| 0.056 0.062 0.062 <0.02
Fluorene <0.02 <0.02 <0.02 <0.02| 0.060 0.162 0.138 <0.02
Phenanthren 0.039 0.054 0.059 0.039| 0.292 0506 0.362 0.042
Anthracene <0.02 <0.02 <0.02 <0.02 0.068 0.166 0.205 <0.02
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Fluoranthene 0.054 0.158  0.026 0.033| 0.188 0.228  0.362 0.048
Pyrene 0.054 0.176 0.085 0.105 0.324 1.07 1.24 0.181
Benzo(a)anthracene 0.021 0.353 0.026 <0.02| 0.196 0.427 0.481 <0.02
Chrysene 0.032 0.443 0.078 <0.02| 0.268 0.609  0.653 <0.02
benzo(b/j/k)fluoranthene <0.02 0.241 <0.02 <0.02| 0.104 0.128 0.133 <0.02
Benzo(a)pyrene <0.02 0.248 <0.02 <0.02| 0.084 0.091 0.114 <0.02
Dibenzo(a,h)anthracene <0.02 <0.02 <0.02 <0.02| <0.02 <0.02 <0.02 <0.02
Indeno(1.2.3-cd)pyrene <0.02 <0.02 <0.02 <0.02| <0.02 <0.02 <0.02 <0.02
Benzo(ghi)perylene <0.02 <0.02 <0.02 <0.02| <0.02 <0.02 <0.02 <0.02
G21 G14
Component 0-lcm 1-3cm 3-6cm +6Bulk | 0-1cm  1-3cm  3-6cm
Naphthalene 0.488 0.097 0.068 0.048| 0.083 0.046 0.071
Acenaphthylene 0.027 0.030 0.032 0.173| 0.022 0.043 0.123
Acenaphthene 0.048 0.036  0.037 0.070| 0.116  0.040  0.057
Fluorene 0.043 0.054 0.047 0.140| 0.044 0.069 0.166
Phenanthren 0.397 0230 0.116 0.423| 0560 0.082 0.644
Anthracene 0.059 0.115 0.026 0.074| 0.161 0.063 0.152
Fluoranthene 0.091 0.236 0.210 0.670| 0987 0.340 0.455
Pyrene 0.199 0.466 0.515 1.31 1.12 0.775 1.54
Benzo(a)anthracene 0.263 0.218 0.326 0.530| 0.904 0.393 0.616
Chrysene 0.333 0.290 0.420 0.725 122 0544 0.838
benzo(b/j/k)fluoranthene 0.172 0.091 0.163 0.166 1.22 0129 0.081
Benzo(a)pyrene 0.204 0.091 0.110 0.121| 0.455 0.086 0.133
Dibenzo(a,h)anthracene <0.02 <0.02 <0.02 <0.02| <0.02 <0.02 <0.02
Indeno(1.2.3-cd)pyrene <0.02 <0.02 <0.02 <0.02| <0.02 <0.02 <0.02
Benzo(ghi)perylene 0.021 <0.02 <0.02 <0.02| 0.261 <0.02 <0.02
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Gl1

G26

Component 0-lcm 1-3cm 3-6cm +6Bulk | 0-1cm  1-3cm  3-6cm
Naphthalene <0.02 0.023  <0.02 <0.02 0.022 0.115 <0.02
Acenaphthylene <0.02 <0.02 <0.02 <0.02| <0.02 <0.02 0.031
Acenaphthene <0.02 <0.02 <0.02 <0.02| <0.02 <0.02 <0.02
Fluorene <0.02 <0.02 <0.02 <0.02| <0.02 <0.02 <0.02
Phenanthren <0.02 0.027 0.024 <0.02| <0.02 0.047 0.107
Anthracene <0.02 <0.02 <0.02 <0.02| <0.02 0.023 <0.02
Fluoranthene <0.02 <0.02 0.027 <0.02| <0.02 <0.02 0.040
Pyrene <0.02 0.023 0.071 <0.02 0.039 0.062 0.328
Benzo(a)anthracene <0.02 <0.02 <0.02 <0.02| <0.02 <0.02 0.040
Chrysene <0.02 <0.02 <0.02 <0.02| <0.02 0.026 0.034
benzo(b/j/k)fluoranthene <0.02 <0.02 <0.02 <0.02| <0.02 <0.02 <0.02
Benzo(a)pyrene <0.02 <0.02 <0.02 <0.02| <0.02 <0.02 <0.02
Dibenzo(a,h)anthracene <0.02 <0.02 <0.02 <0.02| <0.02 <0.02 <0.02
Indeno(1.2.3-cd)pyrene <0.02 <0.02 <0.02 <0.02| <0.02 <0.02 <0.02
Benzo(ghi)perylene <0.02 <0.02 <0.02 <0.02| <0.02 <0.02 <0.02

G8 G5

Component 0-lcm 1-3cm 3-6cm  Rest | 0-lcm 1-3cm  3-6cm 6-17cm
Naphthalene 0.2 025 0.394 0.639 0.70 0.15  0.497 0.8
Acenaphthylene 1.1 041 1.453 1.205 0.99 025 0.714 1.3
Acenaphthene 14 0.98 2370 1529 3.09 1.16  1.783 3.2
Fluorene 0.8 013 2.058 1.103 3.54 7.33  2.460 5.0
Phenanthren 0.4 0.08 0.180 0.426 0.33 0.13 0.034 0.2
Anthracene 0.1 0.09 0139 0.392 0.30 0.13  0.040 0.0
Fluoranthene 0.1 010 0.075 0.072 0.25 0.04  0.069 0.0
Pyrene 0.2 0.17 0.105 0.089 0.19 0.04  0.069 0.1
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Benzo(a)anthracene 0.2 0.04 0.041 <0.02| <0.02 <0.02 <0.02 <0.02
Chrysene 0.2 0.08 0.041 0.034 <0.02 <0.02 <0.02 <0.02
benzo(b/j/k)fluoranthene 0.1 0.02 0.023 0.030| <0.02 <0.02 <0.02 <0.02
Benzo(a)pyrene <0.02 0.05 0139 0.068| <0.02 <0.02 <0.02 <0.02
Dibenzo(a,h)anthracene <0.02 <0.02 <0.02 <0.02| <0.02 <0.02 <0.02 <0.02
Indeno(1.2.3-cd)pyrene <0.02 <0.02 <0.02 <0.02| <0.02 <002 <0.02 <0.02
Benzo(ghi)perylene <0.02 <0.02 <0.02 <0.02| <0.02 <0.02 <0.02 <0.02
G20 G4
Component 0-lcm 1-3cm 3-6cm  Rest | 0-1cm 1-3cm  3-6cm Rest
Naphthalene 0.137 0.136 0.115 0.473 1.60 0.584  0.401 0.655
Acenaphthylene 0.267 0.224 0.263  0.204 0.353 0.336  0.435 0.263
Acenaphthene 0.059 0.117 0.109 0.085 0.037 0.135 0.139 0.181
Fluorene 0.052 0.029 <0.02 0.031 0.079 0.057  0.053 0.049
Phenanthren 0.150 0.141 0.099 0.816 0.189 0.122 0.201 0.700
Anthracene 0.183 0.180 0.102 0.642 0.171 0.153  0.096 0.613
Fluoranthene 0.431 0.375 0.408 0.519 0.274 0.257 0.354 0.655
Pyrene 0.835 0.862 0.796 1.05 0.597 0.445  0.822 1.77
Benzo(a)anthracene 0.444 0.380 0.411 0.465 0.968 0.571 0.865 0.729
Chrysene 0.202 0.170 0.211  0.196 0.469 0.257  0.349 0.268
benzo(b/j/k)fluoranthene 0.059 0.088 0.086 0.065 0.104 0.092 0.201 0.091
Benzo(a)pyrene 0.196 0.132 0.128 0.181 0.469 0.209 0.282 0.243
Dibenzo(a,h)anthracene <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02
Indeno(1.2.3-cd)pyrene <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02
Benzo(ghi)perylene <0.02 <0.02 <0.02 <0.02 0.067 0.052 0.024 <0.02
G9
Component 0-lcm 1-3cm 3-6cm  Bulk
Naphthalene <0.02 <0.02 <0.02 <0.02
Acenaphthylene <0.02 <0.02 <0.02 <0.02
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Acenaphthene <0.02 <0.02 <0.02 <0.02

Fluorene <0.02 <0.02 <0.02 <0.02

Phenanthren <0.02 0.088 0.060 0.023

Anthracene <0.02 0.044 <0.02 <0.02

Fluoranthene <0.02 0.022 0.087 0.044

Pyrene <0.02 0.052 0.141 0.084

Benzo(a)anthracene <0.02 <0.02 <0.02 <0.02

Chrysene <0.02 <0.02 <0.02 <0.02

benzo(b/j/k)fluoranthene <0.02 <0.02 <0.02 <0.02

Benzo(a)pyrene <0.02 <0.02 <0.02 <0.02

Dibenzo(a,h)anthracene <0.02 <0.02 <0.02 <0.02

Indeno(1.2.3-cd)pyrene <0.02 <0.02 <0.02 <0.02

Benzo(ghi)perylene <0.02 <0.02 <0.02 <0.02

LC2

Component 0-20cm 20-40cm 40-80cm 80-100cm  100-120cm  120-140 cm
Naphthalene 8.15 7.84 8.41 4.88 1.42 3.91
Acenaphthylene 0.025 0.038 0.028 0.027 0.057 0.022
Acenaphthene 0.908 0.924 0.774 0.563 0.917 0.577
Fluorene 1.48 0.466 0.603 0.480 0.870 0.230
Phenanthren 4.23 3.68 2.81 2.24 2.27 1.33
Anthracene 0.297 0.455 0.367 0.241 0.451 0.396
Fluoranthene <0.02 <0.02 <0.02 <0.02 <0.02 <0.02
Pyrene 0.829 0.504 0.195 0.282 0.543 <0.02
Benzo(a)anthracene 0.022 <0.02 <0.02 <0.02 <0.02 <0.02
Chrysene <0.02 <0.02 <0.02 <0.02 <0.02 <0.02
benzo(b/j/k)fluoranthene 0.140 1.38 4.60 1.47 <0.02 <0.02
Benzo(a)pyrene 0.227 0.929 1.22 3.39 <0.02 <0.02
Dibenzo(a,h)anthracene <0.02 <0.02 <0.02 <0.02 <0.02 <0.02
Indeno(1.2.3-cd)pyrene <0.02 <0.02 <0.02 <0.02 <0.02 <0.02
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Benzo(ghi)perylene <0.02 <0.02 <0.02 <0.02 <0.02 <0.02
LC5
Component 0-8cm 8-97cm  97-115cm  115-165cm  165-240 cm
Naphthalene 1.83 7.95 175 22.2 18.1
Acenaphthylene 111 0.045 0.808 0.183 0.123
Acenaphthene 1.93 1.68 3.68 3.85 3.05
Fluorene 4.25 0.704 3.99 1.88 2.83
Phenanthren 0.671 3.60 7.66 5.12 7.13
Anthracene 0.233 0.609 0.982 1.97 0.672
Fluoranthene <0.02 <0.02 <0.02 <0.02 <0.02
Pyrene 0.124 7.70 1.88 9.89 <0.02
Benzo(a)anthracene <0.02 <0.02 <0.02 <0.02 <0.02
Chrysene <0.02 <0.02 <0.02 <0.02 <0.02
benzo(b/j/k)fluoranthene <0.02 <0.02 <0.02 <0.02 0.140
Benzo(a)pyrene <0.02 <0.02 <0.02 <0.02 <0.02
Dibenzo(a,h)anthracene <0.02 <0.02 <0.02 <0.02 <0.02
Indeno(1.2.3-cd)pyrene <0.02 <0.02 <0.02 <0.02 <0.02
Benzo(ghi)perylene <0.02 <0.02 <0.02 <0.02 <0.02
LC6
Component 0-10cm 10-20cm 20-30cm  30-40cm  40-50 cm
Naphthalene 0.076 0.063 0.148 0.035 0.050
Acenaphthylene 0.092 0.099 0.475 0.079 0.053
Acenaphthene 0.060 0.091 0.769 0.171 0.109
Fluorene 0.029 0.045 0.935 0.107 0.049
Phenanthren 0.251 0.971 2.57 0.674 0.186
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Anthracene 0.083 0.971 3.49 1.15 0.299
Fluoranthene 0.479 0.635 1.27 0.407 0.592
Pyrene 0.914 1.57 251 0.462 0.320
Benzo(a)anthracene <0.02 <0.02 <0.02 <0.02 <0.02
Chrysene 0.054 0.037 <0.02 <0.02 <0.02
benzo(b/j/k)fluoranthene 0.029 0.024 <0.02 <0.02 <0.02
Benzo(a)pyrene 0.032 0.059 <0.02 <0.02 <0.02
Dibenzo(a,h)anthracene <0.02 <0.02 <0.02 <0.02 <0.02
Indeno(1.2.3-cd)pyrene <0.02 <0.02 <0.02 <0.02 <0.02
Benzo(ghi)perylene <0.02 <0.02 <0.02 <0.02 <0.02
SC1 SC2 SC5
Component 0-2cm  2-19cm | 0-8cm | 0-2cm  2-21cm
Naphthalene 0.641 0.552 1.10 0.173 0.322
Acenaphthylene 0.201 0.639| 0.070| 0.048 0.564
Acenaphthene 0.685 0.602| 0.246| 0.143 0.838
Fluorene 0.247 0.196| 0.428| 0.068 0.250
Phenanthren 0.832 2.03| 0.974| 0.245 1.90
Anthracene 1.00 0.835| 0.147| 0.136 1.19
Fluoranthene 0.667 1.55 1.08| 0.194 3.85
Pyrene 0.756 1.60| 0.249| 0.476 3.79
Benzo(a)anthracene <0.02 <0.02| <0.02| 0.762 2.72
Chrysene 0.022 0.024| <0.02| 0.109 0.370
benzo(b/j/k)fluoranthene 0.032 0.060| <0.02| 0.031 0.027
Benzo(a)pyrene 0.043 0.073| 0.064| 0.102 0.154
Dibenzo(a,h)anthracene <0.02 <0.02| <0.02| <0.02 <0.02
Indeno(1.2.3-cd)pyrene <0.02 <0.02| <0.02| <0.02 <0.02
Benzo(ghi)perylene <0.02 <0.02| <0.02| <0.02 <0.02
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SC7 SC10 SC11

Component 0-5cm 5-8cm | 0-5cm  5-23cm | 0-5cm 5-9cm

Naphthalene 0.065 0.252 0.452 1.17 1.85 10.6
Acenaphthylene 0.086 1.17| 0.659 1.29| 0.292 1.71
Acenaphthene 0.056 0.623| 0.519 1.77| 0.385 2.53

Fluorene 0.035 1.25 1.88 1.83| 0949 0.384

Phenanthren 0.282 1.29 0.683 0.306 191 1.07
Anthracene 0.137 2.74 0.201 0.267 0.915 1.64

Fluoranthene 0.489 5.43| 0.066 0.064 2,53  0.605

Pyrene 1.13 477 0.098 0.047 2.21 2.04

Benzo(a)anthracene 1.12 249| <0.02 <0.02| 0.983 0.518

Chrysene 0.223 0.250| <0.02 <0.02 0.091 <0.02
benzo(b/j/k)fluoranthene <0.02 0.137| <0.02 <0.02| 0.130 0.070

Benzo(a)pyrene 0.067 0.113| 0.024 0.028| 0.125  0.333
Dibenzo(a,h)anthracene <0.02 <0.02| <0.02 <0.02| <0.02 <0.02
Indeno(1.2.3-cd)pyrene <0.02 <0.02| <0.02 <0.02| <0.02 <0.02

Benzo(ghi)perylene <0.02 <0.02| <0.02 <0.02| <0.02 <0.02

SC15 SC16 SC17 SC19

Component 0-2cm 2-7cm | 0-3cm  3-12cm | 0-2cm  2-17cm | 0-5cm  5-16cm
Naphthalene 0.116  0.153| 0.706 0.214| 0.083 0.155| <0.02 <0.02
Acenaphthylene 0.039 0.151| 0.098 1.19| 0.080 0.084 <0.02 <0.02
Acenaphthene 0.039 0.200| 0.052 1.26| 0.067 0.087 <0.02 <0.02
Fluorene 0.026 0.311| 0.101 1.03| 0.067 0.035| <0.02 <0.02
Phenanthren 0.223 1.389| 0.621 5.07| 0.224 0.287 0.036 0.031
Anthracene 0.042 0.842| 0.110 3.76| 0.090 0.074| <0.02 <0.02
Fluoranthene 0.223 3.23| 0.391 412| 0.282 0.303 0.107 0.148
Pyrene 0.213 0.582| 0.508 7.81| 0.647 0.555 0.071 0.033
Benzo(a)anthracene 0.265 0.752| 0.758 1.43| 0.343 0.348 <0.02 <0.02
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Chrysene 0.035 0.165| 0.144 0.631| 0.083 0.132| <0.02 <0.02
benzo(b/j/k)fluoranthene <0.02 <0.02| <0.02 <0.02| 0.032 0.026 <0.02 <0.02
Benzo(a)pyrene 0.090 0.265| 0.251 0.201| 0.032 0.100 <0.02 <0.02
Dibenzo(a,h)anthracene <0.02 <0.02| <0.02 <0.02| <0.02 <0.02 <0.02 <0.02
Indeno(1.2.3-cd)pyrene <0.02 <0.02| <0.02 <0.02| <0.02 <0.02| <0.02 <0.02
Benzo(ghi)perylene <0.02 <0.02| 0.043 <0.02| <0.02 <0.02 <0.02 <0.02
SC27 SC28 SC29 SC36
Component 0-4cm 4-6cm 0-6 cm 0-5cm 0-4cm 4-9cm
Naphthalene 0.093 0.090 <0.02 0.048 0.060 0.094
Acenaphthylene 0.140 0.116 0.026 0.072 0.071 0.026
Acenaphthene 0.140 0.060 <0.02 0.070 0.060 <0.02
Fluorene 0.061 <0.02 0.029 0.041 0.021 <0.02
Phenanthren 0.695 0.645 0.104 0.590 0.217 0.221
Anthracene 0.625 0.520 0.057 0.235 0.036 0.059
Fluoranthene 0.985 1.20 0.070 0.585 0.310 0.375
Pyrene 2.31 1.79 0.761 2.76 0.441 0.395
Benzo(a)anthracene 0.855 0.650 0.169 0.892 0.648 0.294
Chrysene 0.169 0.139 0.052 0.043 0.078 0.061
benzo(b/j/k)fluoranthene <0.02 <0.02 <0.02 0.197 0.153 <0.02
Benzo(a)pyrene 0.471 0.151 <0.02 0.168 0.075 0.064
Dibenzo(a,h)anthracene <0.02 <0.02 <0.02 <0.02 <0.02 <0.02
Indeno(1.2.3-cd)pyrene <0.02 <0.02 <0.02 <0.02 <0.02 <0.02
Benzo(ghi)perylene 0.044 <0.02 <0.02 0.072 <0.02 <0.02
SC37 SC42 SC51

Component 0-8cm 8-20cm | 0-3cm | 0-1cm  1-7.5cm

Naphthalene 1.98 9.14| 0.067| 0.086 0.070

Acenaphthylene 0.466 1.53| <0.02| 0.047 0.340

Acenaphthene 1.03 1.99| <0.02| 0.037 0.136
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Fluorene

Phenanthren
Anthracene
Fluoranthene

Pyrene
Benzo(a)anthracene
Chrysene
benzo(b/j/k)fluoranthene
Benzo(a)pyrene
Dibenzo(a,h)anthracene
Indeno(1.2.3-cd)pyrene

Benzo(ghi)perylene

0.153

1.48

0.369

0.611

1.10

0.837

0.130

0.127

0.150

<0.02

<0.02

0.023

0.915

1.99

2.24

3.65

4.46

3.78

0.384

0.067

0.510

<0.02

<0.02

<0.02

<0.02

0.104

0.024

0.091

0.146

0.115

<0.02

0.055

<0.02

<0.02

<0.02

0.022

0.023

0.243

0.047

0.186

0.365

0.306

0.073

<0.02

0.286

<0.02

<0.02

0.083

0.112

0.390

0.556

1.55

4.44

0.607

0.254

0.088

0.131

<0.02

<0.02

<0.02
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Appendix C: Modified Kd values.

Table C.1 Modified Kd values, based on the average TOC content
measured in the drill cuttings at Statfjord A

Compound

Ka sed (I’kg) modified to applied

%TOC
Naphthalene 54
Acenaphthylene 108
Acenaphtene 257
Fluorene 422
Phenanthrene 948
Anthracene 1167
Fluoranthene 5982
Pyrene 2438
Benzo(a)anthracene 20750
Chrysene 16481
Benzo(b)fluoranthene 33650
Benzo(a)pyrene 34432
Indeno(1,2,3-cd)pyrene 97050
Dibenzo(a,h)anthracene 80722
Benzo(ghi)perylene 42365
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Appendix D: Calculation of sea water concentrations.

Area, depth and current speed near the contaminated area at Statfjord A is given in table D.1.

Table D.1 Physical parameters from the cuttings piles at Statfjord A (Tvedten et al., 2012)

Parameter Value
Area (m°) 13 000
Depth (m) 150

Average current speed (m/s) 0,13

Residence time for the water in the drill cuttings area was found by current speed and volume
information. The mean seabed currents at Statfjord A are measured to be around 8-17 cm/s (Tvedten
et al., 2012), which is relatively moderate. By multiplying the average value of 13 cm/s by the
contaminated area, the flow rate was found to be 1690 m*/s. The residence time was then found to

be 3,65 x 10 years, using equation 9.

TableD.2 Calculated seawater concentrations (PEC) compared to PNECw based on modified Kd values.

Calculated sea Calculated sea
water Wa';[fartions
i Limit value concen
Conc(e;érca)tmns for ecological risk [ compared to PNEQW
PNEC,, (mg/l) (number of times):
C C

Compound (mgl) (mgll) | Max Mean
Naphthalene 6,28E-07 4,75E-08 2,40E-03
Acenaphthylene 2,16E-08 | 3,46E-09 1,30E-03
Acenaphtene 2,00E-08 2,99E-09 3,80E-03
Fluorene 2,20E-08 1,83E-09 2,50E-03
Phenanthrene 9,72E-09 1,17E-09 1,30E-03
Anthracene 3,88E-09 4,17E-10 1,10E-04
Fluoranthene 9,98E-10 9,86E-11 1,20E-04
Pyrene 4,46E-09 4,68E-10 2,30E-05
Benzo(a)anthracene 1,84E-10 1,79E-11 1,20E-05
Chrysene 7,47E-11 9,21E-12 7,00E-05
Benzo(b)fluoranthene 1,29E-10 4,51E-12 3,00E-05
Benzo(a)pyrene 9,26E-11 4,52E-12 5,00E-05
Indeno(1,2,3-cd)pyrene 1,82E-13 1,82E-13 2,00E-06
Dibenzo(a,h)anthracene 2,17E-13 2,17E-13 3,00E-05
Benzo(ghi)perylene 5,43E-12 5,35E-13 2,00E-06
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Table D.3 Calculated seawater concentrations compared to PNECw based on default Kd values.

Calculated sea

Calculated sea
water

Wa:ert. Limit value concentrations
Conc(e;ErCa) 'ONS | for ecological risk |compared to PNEC,,
PNEC, (mg/l) (number of times):
C C
Compound (mg%ix EFV%Q;;F)an Max N
Naphthalene 2,60E-06 1,97E-07 2,40E-03
Acenaphthylene 8,94E-08 1,43E-08 1,30E-03
Acenaphtene 8,29E-08 1,24E-08 3,80E-03
Fluorene 9,09E-08 7,57E-09 2,50E-03
Phenanthrene 4,03E-08 4,86E-09 1,30E-03
Anthracene 1,60E-08 1,73E-09 1,10E-04
Fluoranthene 4,13E-09 4,08E-10 1,20E-04
Pyrene 1,85E-08 1,94E-09 2,30E-05
Benzo(a)anthracene 7,61E-10 7,39E-11 1,20E-05
Chrysene 3,09E-10 3,81E-11 7,00E-05
Benzo(b)fluoranthene 5,32E-10 1,87E-11 3,00E-05
Benzo(a)pyrene 3,83E-10 1,87E-11 5,00E-05
Indeno(1,2,3-cd)pyrene 7,52E-13 7,52E-13 2,00E-06
Dibenzo(a,h)anthracene 8,99E-13 8,99E-13 3,00E-05
Benzo(ghi)perylene 2,25E-11 2,22E-12 2,00E-06
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