
 

 

 

 
 

Faculty of Science and Technology 
 

 
 

MASTER’S THESIS 

Study program/ Specialization: 
 

Environmental Technology/ 

Water Science 

 
Spring semester, 2013 

 

 
 

              Open 

Writer: Diba Haddadi  
………………………………………… 

(Writer’s signature) 

Faculty supervisor:  

Meret Vadla Madland   

Title of thesis: 

 

“An investigation of permeability and porosity evolution of Kansas chalk under in-situ 

conditions” 

Credits (ECTS): 30 

Key words: 

 

Permeability evolution,  
Porosity,  

Kansas Chalk,  

Compaction,  
Chemical alterations 

 
Pages: ………71………… 

 
+ Appendix: ……8…… 

 

 
 

Stavanger, June 16
th

 , 2013 

 

 

Front page for master thesis 

Faculty of Science and 

Technology 

Decision made by the Dean October 30
th 

2009 



I 

 

Table of Contents 
 

Acknowledgments ..................................................................................................................... IV 
 

Abstract ..................................................................................................................................... V 
 

1. Introduction ......................................................................................................................... 1 

 

2. Theory and Backgrounds ....................................................................................................... 4 
2.1 Carbonate Rocks .................................................................................................................. 4 
2.1.2 Chalk ................................................................................................................................. 4 
2.1.3 Chalk as Reservoir Rock ................................................................................................... 4 

2.1.4 Kansas Chalk ..................................................................................................................... 5 

2.2 Mechanical Properties of Chalk ........................................................................................... 5 

2.2.1 Stress ................................................................................................................................. 5 
Axial Stress ................................................................................................................................ 5 
Effective Stress ........................................................................................................................... 6 
2.2.2 Strain ................................................................................................................................. 6 

Axial strain ................................................................................................................................. 7 
Radial strain ................................................................................................................................ 7 

Volumetric strain ........................................................................................................................ 8 
2.2.3 Stress-Strain Relationship ................................................................................................. 8 
2.2.4 Creep ................................................................................................................................. 9 
2.2.5 Porosity .............................................................................................................................. 9 
2.2.6 Estimating the Time-dependent Porosity Evolution ....................................................... 10 
2.2.7 Permeability .................................................................................................................... 11 

2.2.8 Permeability and Porosity Relationship .......................................................................... 12 

Carman-Kozeny Model ............................................................................................................ 12 
 

3. Material and Methods of Experiment ................................................................................... 13 
3.1 Test Material ...................................................................................................................... 13 

3.1.1 Chalk ............................................................................................................................... 13 
3.1.2 Brines .............................................................................................................................. 13 
3.1.3 Confining Oil ................................................................................................................... 14 
3.2. Test Equipment ................................................................................................................. 14 
3.2.1 Equipment for saturating the core/ vacuum vessel .......................................................... 14 

3.2.2 Triaxial Cell ..................................................................................................................... 15 
3.2.3 Heating System ............................................................................................................... 16 
3.2.4 Pumps .............................................................................................................................. 16 
3.2.5 Flooding Cell ................................................................................................................... 17 

3.2.6 LVDT (Linear Variable Displacement Transducer) ....................................................... 18 
3.2.7 Chemical Testing (IC) ..................................................................................................... 18 
3.2.8 pH Meter ......................................................................................................................... 19 

3.2.9 Pycnometer ...................................................................................................................... 19 
3.2.10 Friction/auto sampler ..................................................................................................... 20 
3.3 Preparation ......................................................................................................................... 20 
3.3.1 Chalk Cores ..................................................................................................................... 20 
Drilling ..................................................................................................................................... 20 



II 

 

Shaping ..................................................................................................................................... 21 

Cutting ...................................................................................................................................... 22 
3.3.2 Saturating the Chalk to Determine the Porosity .............................................................. 23 
3.3.3 Mixing the Brine ............................................................................................................. 23 

Formation Water (FW) ............................................................................................................. 23 
Synthetic Sea Water (SSW) ..................................................................................................... 23 
3.4 Procedure of the Test .......................................................................................................... 24 
3.5 Core analyzing after the test ............................................................................................... 25 
3.5.1 Drying and weighing the core ......................................................................................... 25 

3.5.2 Measuring the Volume of the Core ................................................................................. 26 
Bulk Volume Measurement ..................................................................................................... 26 
Solid Volume Measurement by Pycnometer ............................................................................ 27 
3.6 Chemical Analysis .............................................................................................................. 28 
3.6.1 Ionic Chromatography (IC) ............................................................................................. 28 

 

4. Results .................................................................................................................................. 29 

4.1 Core Measurements before Testing .................................................................................... 29 
4.2 Flooding Test Results ......................................................................................................... 29 
4.2.1 Stress-Strain .................................................................................................................... 29 
4.2.2 Permeability-Strain .......................................................................................................... 32 

4.2.3 Creep Strain vs. Creep Time; and Permeability vs. Time ............................................... 33 
4.2.4 Porosity vs. Time ............................................................................................................. 38 
4.2.5 Permeability vs. Axial Creep Strain ................................................................................ 38 

4.2.6 Permeability vs. Porosity ................................................................................................. 40 
4.2.7 Permeability Evolution (K(t)/K0) vs. Time .................................................................... 41 

4.2.8 Permeability Evolution (K(t)/K0) vs. Volumetric Strain (εv) ......................................... 41 
4.3 Core Analyzing after Test .................................................................................................. 43 
4.3.1 Bulk Volume Measurement ............................................................................................ 43 

4.3.2 Solid Volume Measurement by Pycnometer ................................................................... 45 

4.4 Chemical Analysis .............................................................................................................. 50 
4.4.1 Ionic Chromatography (IC) ............................................................................................. 50 
 

5. Discussion ............................................................................................................................ 57 
5.1 Flooding Test ...................................................................................................................... 57 

5.1.1 Stress-Strain .................................................................................................................... 57 
5.1.2 Permeability-Strain .......................................................................................................... 57 
5.1.3 Creep Strain vs. Creep Time ........................................................................................... 57 

5.1.4 Permeability vs. Time ..................................................................................................... 58 
5.1.5 Volumetric Strain vs. Time ............................................................................................. 59 

5.1.6 Porosity vs. Time ............................................................................................................. 59 
5.1.7 Permeability vs. Axial Creep Strain ................................................................................ 61 
5.1.8 Permeability Evolution (K(t)/K0) vs. Time .................................................................... 61 

5.1.9 Permeability Evolution (K(t)/K0) vs. Volumetric Strain (εv) ......................................... 63 
5.2. Core analyzing after test .................................................................................................... 65 
5.2.1. Solid Volume Measurement by Pycnometer .................................................................. 65 
5.3. Chemical Analysis ............................................................................................................. 65 

5.3.1. Ionic Chromatography (IC) ............................................................................................ 65 
 

6. Conclusion ............................................................................................................................ 67 
 



III 

 

References ................................................................................................................................ 68 

 

Appendix .................................................................................................................................. 72 
 

 
 



IV 

 

 
 

Acknowledgments 

 
Hereby, I would like to express my gratitude towards faculty supervisor Associate Professor 

Merete Vadla Madland for her valuable supervision and also for giving me this opportunity to 

work as her student, even though I was not a student in the Petroleum Department. Her 

kindness gave me the chance to learn a lot and to know nice people. I cannot express how 

grateful I am for that. 

 

I would like to thank Dr. Reidar I. Korsnes as my co-supervisor for his excellent guidance 

and assistance throughout all stages of writing my thesis. He was helping me in every stage of 

my experimental work and I would say that everything in the lab was “Reidar-dependent”. I 

appreciate his extensive knowledge and skills in the laboratory. 

 

My special thanks are addressed to Dr. Anders Nermoen as my co-supervisor for his patience, 

support, encouragements and all inspirations he gave me in this work. He is so intelligent and 

passionate to his work which had a huge impact on my effort. I would never be able to do this 

without his supervision. 

 

I would like also to thank Tania Hildebrand Habel and Mona Minde for SEM imaging. 

 

I would like to thank my family, friends and fellow students for supporting me and motivating 

me; specially my parents whom whatever I have in my life is because of them. 

 

Finally, I owe my deepest gratitude to my husband Alireza in particular. He had always been 

beside me when I was occupied with my master education during the last two years. I would 

never be able to do this without his patience, sympathy and support. Thanks for being my love 

and my best friend. 

 

Diba Haddadi  

June 2013 ,Stavanger           

 

  

 

 

 

 

 

 

 

 

 



V 

 

Abstract 

 

Injections of brine into the chalk can leads to compaction. The chemical impacts of water 

injection on the mechanical strength of chalk have been investigating for several years. Also, 

porosity and permeability evolution resulted by compaction is a debate among scientists for 

many years. In this study we investigate the link between the observed compaction and the 

permeability evolution. The link between compaction and permeability evolution is studied 

both via theoretical modeling in combination with experimental work in laboratory. We have 

also studied the impact of different fluids (NaCl solution 1.833 M, synthetic sea water and 

distilled water) on mechanical strength of Kansas chalk under high pressure (20 MPa) and 

high temperature (130 °C). We observed that flooding SSW did not have a significant impact 

on the mechanical strength of chalk. However, injecting DW contributed to an increase in the 

creep strain of the Kansas core. In addition, chemical analysis is conducted employing Ionic 

Chromatography (IC) method. The IC results enlighten that Magnesium-bearing minerals are 

precipitating inside the core and calcium-bearing minerals produced in the effluent. However, 

we have not observed a noteworthy change in concentration of sulfate ions. We have also 

suggested the volumetric strain as 2.5 order of magnitude of the axial strain. In addition, 

permeability and porosity evolution is concluded to be affected by the chemical alterations. 

Accordingly, mechanical factors are not the only issues responsible for permeability and 

porosity evolution. 

 
KEY WORDS: Permeability evolution, Porosity, Chalk, Compaction, Chemical alteration 
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1. Introduction  

 
Carbonate rocks are important rocks in oil and gas industry. In 1985, an investigation was 

done on hundreds of the largest hydrocarbon field whole over the world. The result was that 

more than 60 % of all recoverable oil was held in carbonate reservoirs (Roehl et al. 1985). 

Another survey done more recently by Schlumberger supports this result and in addition 

claims that approximately 40 % of the world’s gas reserves are also held in carbonate 

reservoirs (Schlumberger, 2013). 

 

Chalk is a soft, porous and very fine-grained limestone type of carbonate rock in the 

sedimentary rock’s category. Chalk has maintained its biogenic origin, and thus, mainly 

consists of the mineral calcite (CaCO3), (Roehl et al. 1985). 

 

In 1984, the seabed subsidence was observed at the Ekofisk field for the first time with the 

average rate of approximately 33 cm/year as a result of compaction. The Ekofisk Field is an 

over-pressured, naturally fractured chalk reservoir, with 130 °C temperature in the Norwegian 

sector of the North Sea which began the production in 1971 and the water injection was 

started in this field in 1987 (Sylte et al. 1999). It was considered that the reduction in reservoir 

pressure was the main driving force for reservoir compaction at that time (Sulak et al. 1991). 

Therefore, the water injection was increased gradually to maintain the pressure and enhance 

recovery, and as a result stop the subsidence. However, it was observed that it had minor 

preventing effect on the subsidence rate. Finally, a so-called “water weakening” phenomenon 

was pointed out as the key mechanism for compaction in the field (Sylte et al. 1999). 

 

Since water weakening could lead to enormous costs for specifically oil companies due to 

subsidence of the platform and the loss of reservoir equipment, there is a growing interest to 

discover the causes of this effect to reduce the degree of negative consequences. Thus, 

research activities have been widely carried out on chalk behavior and its mechanical 

properties. 

 

In the last 3 decades, several mechanisms were suggested by different scientists for water 

weakening process of chalk including physical effects, physico-chemical effects and chemical 

effects (Omdal et al. under review, Newman 1983, Rhett 1990, Risnes et al. 1999, Baud et al. 

2000, Heggheim et al. 2005, Madland 2005, Risnes et al. 2005, Korsnes et al. 2006a, Korsnes 

et al. 2006c, Madland et al. 2006, Fjær et al. 2008, Korsnes et al. 2008, Madland et al. 2008, 

K. et al. 2011, Madland et al. 2011, Royne et al. 2011, Zangiabadi et al. 2009, Zangiabadi et 

al. 2011, Zangiabadi et al. 2013). In 1985 scientists argued that the strength of the chalk was 

only controlled by the porosity and silica content and no chemical effect affecting the water 

weakening process (DaSilva et al., 1985). However, Risnes (2001) claimed in his study on 

high porosity outcrop chalk, that the chalk mechanical properties are highly dependent on the 

composition of the pore fluids. Meaning that the chalk saturated with water is significantly 

weaker than the dry one or the oil saturated chalk and this is exactly the phenomenon referred 

as “water weakening effect”. He mentions the possibilities of interactions between chalk and 

fluids through capillary forces and through surface physical/chemical reactions. The capillary 

forces take place when two immiscible fluids are in the pore space of the rock. However, 

other indications came out with the possibility of the forces generated by dipole-dipole 

interactions in the very narrow grain contact areas. Nevertheless, in a later experimental work 

a number of tests have been conducted with glycol and high concentration brines as saturating 

fluids. Glycol is miscible with water. However, it is very similar to oil in many features. It 
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turned out that both glycol and oil had the same effect on the chalk compared to dry chalk, but 

this weakening effect is considerably less than with water. According to this outcome, it was 

concluded that capillary effects play a minor role, if any, in chalk–fluid interactions and water 

activity is a key factor in the water weakening effect. A mechanism was proposed involving 

an additional pressure exerted on the grains by attraction of water molecules to the chalk 

surface which leads to an increase in pore pressure and thus, decreasing the cohesion of the 

chalk. Consequently pressure solution and adsorption pressure was suggested as two main 

contributing issues possible (Risnes et al. 2003, Risnes et al. 2005). Several other studies have 

been conducted to investigate the physical and the physico-chemical effects on the water 

weakening of rock (Rhett 1990, Andersen 1995, Risnes et al. 1999, Fjær et al. 2008) 

 

Finding out that the physical and physico-chemical effects have negligible impact on water 

weakening process, chemical effects received more attention during the last years (Newman 

1983, Madland et al. 2006, Zangiabadi et al. 2009, Andersen 2010, Fabricius 2010, Øvstebø 

2011, Veen 2012). 

 

Korsnes (2006a, 2006c, 2007) came up with a new proposal in which substitution was defined 

as a possible solution. In this experimental work, the temperature-dependent chemical 

interactions between chalk and the injected seawater-like brines were studied. Analyzing the 

effluent chemistry showed an increase in the total Ca
2+

 ions produced, while other ions (i.e. 

Mg
2+

) was reduced during flooding. Thus, a substitution mechanism was suggested. In 

addition, the impact of presence of SO4
2-

 was examined and based on the results; presence of 

SO4
2-

 was indicated vital for the process. However, a later study carried out by Madland et al. 

(2009) confirmed that SO4
2-

 is not a compulsory component for considerable chemical 

deformation. On the other hand, the total amount of calcium produced, was reported in an 

excess amount than that could be explained by substitution phenomenon only. In light of these 

new results, it was concluded that proposed substitution mechanism could not explain the 

water weakening of chalk exclusively. As an alternative, they suggest a 

Dissolution/precipitation mechanism for minerals in the chalk core (Madland et al. 2009) 

 

Wide investigations have been executed to study the dissolution/precipitation mechanism 

more clearly. Several studies were performed which present a chemical model of both 

aqueous chemistry and surface chemistry of a calcium carbonate rock. According to the 

results, no evidence was found to clarify these experiments could be due to changes in surface 

potential or charge. However, a dissolution process inside the core could explain both 

wettability change and water weakening of chalk (Hiorth et al. 2008, Hiorth et al. 2010). 

Flooding brine with different composition from rock fluid in equilibrium with grains mineral, 

causes a disturbance in the equilibrium due to the common ions existence. Hence, it leads to 

dissolution of some minerals (i.e. calcite, CaCO3) and precipitation of others (i.e. anhydrite, 

CaSO4) to reestablish the state of the equilibrium (Heggheim et al. 2005, Madland et al. 

2011). The effect of sulfate on mechanical strength of chalk has been examined extensively 

(Megawati et al. 2012). 

 

Following the compaction resulted from the water weakening; an evolution in permeability of 

the rock can take place. Newman (1983) claimed that injecting sea water into the chalk leads 

to a significant reduction in permeability due to the large amount of compaction. In an 

experimental study conducted by David et al. (1994), it was tried to explain how the 

compaction mechanism does influence the relation among permeability, porosity and effective 

pressure. Laboratory data show that the porosity sensitivity is relatively high when the 

permeability is reduced by a coupled mechanical and chemical compaction process in porous 
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rock. There have been several studies done in terms of porosity-permeability relation and the 

permeability and porosity evolution in rocks i.e. (Nelson 1994, Shouxiang Ma et al. 1996, 

O.Saar 1998, Bernabé et al. 2003, Ghabezloo et al. 2009). 

 

There are still numerous of studies that should be conducted to obtain a more clear vision of 

the water weakening process and its possible contributory factors. 

 

Water weakening enhances compaction of the rock; indicating that the fluid interacts with the 

rock that carries the subjected load. The question is then, which mechanisms are at play in this 

system and how does the observed compaction affect other measurable quantities important to 

the oil and gas industry (such as the permeability). 

 

In this thesis we investigate the link between the observed compaction and the permeability 

evolution. The link between compaction and permeability evolution is studied both via 

theoretical modeling in combination with core tests. We also examine the impact of different 

fluids (NaCl solution, synthetic sea water and distilled water) on the mechanical strength of 

Kansas chalk under high pressure (20 MPa) and high temperature (130 °C). 
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2. Theory and Backgrounds 

2.1 Carbonate Rocks  

Carbonate rock is a type of sedimentary rocks. In general, Sedimentary rocks form at/near the 

earth surface. Carbonate rocks are placed in the two categories, limestone and dolostone, and 

make up 10-15 % of this surface layer (Blatt et al. 1996). 

 

 

2.1.2 Chalk  

Chalks are granular materials, made of calcite skeletons produced by planktonic algae mainly 

with wholes and fractured parts in the structure. The chalk structure consists of coccolith rings 

which are built of calcite tablets and platelets of 1 μm in average. The coccolith ring 

diameters are normally around 10 μm. A mixture of the intact coccolith rings with different 

fragment size makes a porous structure with porosity up to 40 %. However, small grains make 

the porous throats narrow which leads to a low permeability. In Fig. 2.1 a typical image of a 

high porosity chalk is shown. 

 

In such high porosity chalk the nature of bonding elements is still a matter of debate. Cement 

bond between the grains is not easily seen in the scanning electron microscope (SEM) 

pictures like what is shown Fig. 2.1. However, it doesn’t mean that there are not such bonds 

within the chalk materials (Risnes 2001). 

 

 
Fig. 2.1. SEM image of Kansas chalk  

 

 

2.1.3 Chalk as Reservoir Rock 

High porosity, low permeability and soft matrix are three characteristics that interact to 

differentiate chalk’s behavior from most reservoir rocks. These properties could lead to 
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problematic challenges in different area of reservoir development such as; drilling, 

stimulation and production. Due to these challenges a need is indicated for basic information 

on the mechanical behavior of chalks (Blanton 1981). 

 

 

2.1.4 Kansas Chalk 

“In Kansas, the Greenhorn Limestone, the Fairport Chalk Member of the Carlile Shale, and 

the Smoky Hill Chalk Member of the Niobrara Chalk are composed predominantly of impure, 

weakly cemented, more or less laminated, micritic carbonate rock that is best described as 

shaly chalk” (Hattin 1975). Analysis of Kansas samples showed 99 % calcite and 1 % quartz 

which is similar to that of “clean” North Sea chalks lacking clay and chert minerals. The 

porosity of the Kansas outcrop chalk is approximately 30-40 % and the permeability of that is 

2-5 mD (Pooladi-Darvish et al. 2000, Tang et al. 2001) 
 

 

2.2 Mechanical Properties of Chalk  

2.2.1 Stress  

Stress is generally defined as average force acting over an area. Thus it is independent of the 

size and shape of the body and is defined as: 

A

F
                                                                                                                            (Eq. 2.1) 

Where σ is the stress, F is the force [N] and A is the area of the cross section [m
2
]. 

 

The SI unit for stress is Pa (Pascal) which is equal to N/m
2
. The other units which are mostly 

used in engineering calculations are bar, atmosphere, psi (= lb/sq.inch.) or dynes/cm
2
. (Fjær et 

al. 2008) During our experimental tests, A is not corrected for distortions during deformation 

for practical reasons. 
 

 

Axial Stress 

Considering a cylinder (Fig. 2.2), forces can be exerted in either axial or radial direction. 
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Fig. 2.2. Axial and radial forces exerted on the surface of a cylinder 

 

 The axial stress, σA, generally is defined as: 

2
r

F
A

A


                                                                                                                     (Eq. 2.2) 

Where FA is the axial forces exerted to the cylinder with a radius r. 

 

 

Effective Stress 

The average stress taken by the rock grains is known as effective stress, which is defined as 

the total stress exerted to the grains minus fluid pressure inside the pores of the rock (pore 

pressure) and can be shown as: 

P
P                                                                                                                                                           (Eq. 2.3) 

Where σ is the total stress, σ’ is the effective stress and Pp is the pore pressure (The fluid 

pressure inside the pores of the rock.) 

 

For more details we refer to (Fjær et al. 2008, Aadnøy et al. 2011). 

 

In our study, we have calculated the effective axial stress as following: 

  
FrictionPistonPoreConfiningA

PPPP  )(                                                       (Eq. 2.4) 

Where σA’ is the effective axial stress, Pconfining is the confining pressure, Ppore is the pore 

pressure, Ppiston is the piston pressure and Pfriction is the friction pressure caused by a friction 

force between the O-rings on the piston and the cell wall. (Ppiston – Pfriction) is assumed as 

constant and equal to 0.3 MPa in our study. And α is an area constant set as 1.365 in our 

study. 
 

 

2.2.2 Strain  

The deformation of a body which caused by a stress would be defined as Strain. Strain is a 

dimensionless parameter. There are two types of strain. The first type is Elastic, whereas the 

body can return to the original shape. While, Plastic is when the deformation would be 

irreversible.  
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Axial strain  

The axial strain is expressed by: 

0

0

0

)(
)(

L

LtL

L

L
t

A





                                                                                           (Eq. 2.5) 

Where, L0 is the initial dimension of the material [m], L(t) is the dimension of the material at 

time(t) [m] and ΔL is the difference between the L0 and L(t) [m]. 

 

Eq. 2.5 can be written as:  

L(t)= L0 ( A
 +1)                                                                                          (Eq. 2.6) 

 

Axial forces can lead to deformation of the rock as shown in Fig. 2.3. 

 

 
Fig. 2.3. Axial stress deformation due to axial force F 

 

 

Radial strain  

Just same as axial strain, the radial strain is expressed by: 

R

R
t

R


)(  =

0
D

D
 =

0

0
)(

D

DtD 
                                                                                   (Eq. 2.7) 

Where D0 is the initial diameter of the material [m], D(t) is the diameter of the material at 

time(t) [m] and ΔD is the difference between D0 and D(t) [m], 

 

 

Eq. 2.7 can be written as:  

D(t) = D0 ( R
 +1)                                                                                                          (Eq. 2.8) 
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Volumetric strain  

The volumetric strain referred to in this study is defined by the following equation: 

εv =
V

V
=

0

0
)(

V

VtV 
                                                                                                      (Eq. 2.9) 

Where V0 is the initial volume of the specimen and V(t) is the deformed volume. 

 

From the Eq. 2.9 can be written as: 

εv =

00

0

2

0

2
)())()((

LD

LDtLtD                                                                       (Eq. 2.10) 

Inserting Eq. 2.6 and Eq. 2.8 into Eq. 2.10; and assuming 0
RA

 and 0
2


RA
 give 

us: 

εv = 2εR+ εA                                                                                                                               (Eq. 2.11) 
 

 

2.2.3 Stress-Strain Relationship   

The Stress-strain relations for elastic materials are linear since a constant relationship would 

be seen between the applied stress and the strain resulted. The slope of the strain vs. stress 

curve is said to be the elastic modulus in low stresses (Fig. 2.4). However, when the stress is 

sufficiently large, the rock may enter a new phase in which the deformation will be 

permanent, while, the material is still loading resistible. At this point the material is called 

ductile (plastic) and the point of transition from elastic to ductile is known as the yield point 

(Fjær et al. 2008).  

 
Fig. 2.4. Stress – Strain relation. After the material has reached yield point, it would not return to the original 

condition.  

 

An elastic coefficient known as bulk modulus K, shows the relationship between stress and 

the volumetric strain under the hydrostatic condition. K shows how much the material resists 

hydrostatic compression and defined as: 
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K = 
V

P




                                                                                                                      (Eq. 2.12) 

Where σP is the hydrostatic stress and εv is the volumetric strain. While the inverse of K-

modulus, 1/K is defined as compressibility with unit [1/Pa]. 

 

It should be noted that under the hydrostatic condition, σP = σx = σy = σz 

We can assume that the material is isotropic under the hydrostatic stress. Thus: 

εv = 3εA                                                                                                                                  (Eq. 2.13) 

Where εA is the axial strain (Fjær et al. 2008). 

 

However, some experimental works suggest the volumetric strain as other factor of the axial 

strain rather than 3. It can be basically because the normal chalk cores used in experiments are 

not isotropic. We have compared both ideas in our results and discussed about it in our 

discussion section. 

 

2.2.4 Creep  

A time-dependent deformation that may occur in materials under constant stress is defined as 

Creep which may occur in both dry and saturated rocks. A material under a constant stress 

will normally follow two stages of creep during the time (Fig. 2.5). Transient (or primary) 

creep is the first stage where the time-dependent deformation rate decreases with time. The 

second region is called steady state (or secondary) creep in which the deformation rate is 

constant. This stage involves a permanent deformation of the material (Fjær et al. 2008). 

 

 
Fig. 2.5. Strain-time diagram for a creeping material and 2 creep stages. 

 

 

2.2.5 Porosity 

The solid grains and other cementing materials, make up the rock. However, they are just a 

part of rock structure. The space between the solid parts makes the rock a porous medium. 

Soil and rock are often heterogeneous and anisotropic (Aadnøy et al. 2011). 
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Considering the total volume (bulk volume) of an object is called VB, the volume of solid 

material (matrix volume) is called VS and the volume of void space (pore volume) is called 

VP, the bulk volume can be defined as: 

VB = VS+VP                                                                                                                  (Eq. 2.14) 

 

Porosity is defined as: 

B

P

V

V
                                                                                                                          (Eq.2.15) 

                                                                                                              

The bulk densities given are based on the dimensions and weights of the cores tested. Two 

methods of measuring porosity implemented in our study: one based on bulk density as 

compared with matrix density and the other based on helium invasion of the plugs. 

We have saturated the chalk cores with distilled water. Implementing the first method, the 

density is defined as: 

ρ = 
B

D

V

W
                                                                                                                        (Eq. 2.16) 

Where WD is the dry weight of the plug measured on the scale and VB is the bulk volume of 

the plug calculated by measuring the length and the diameter of the chalk core and defined as: 

2
)

2
(

D
LV

B
                                                                                              (Eq. 2.17) 

Where VP is the pore volume and defined as: 

DW

DW

P

WW
V



)( 
                                                                                                          (Eq. 2.18) 

And ρ DW = 1 gr/ml (Density of Distilled Water) 

 

Implementing the second method, the density is defined as: 

S

D

V

W
                                                                                                                       (Eq. 2.19) 

Where VS  is the solid volume of the core measured by the Pycnometer. In other word we can 

consider that as: 

B

S

B

SB

B

P

V

V

V

VV

V

V



 1

)(
                                                                                 (Eq. 2.20) 

 

 

2.2.6 Estimating the Time-dependent Porosity Evolution 

There would be a third option to calculate the porosity.  

 

Porosity in time (t) is defined as: 

)(

)(
)(

tV

tV
t

B

P
                                                                                                               (Eq. 2.21) 
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This equation may be written with respect to changes as: 

)(

)(
)(

0

0
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                                                                                                 (Eq. 2.22) 

 

Assuming all volumetric strain accumulated in the collapse of the pore volume due to re-

organization of the grains, we can assume that the volumetric strain of the bulk equals the 

reduction of pore volume.  

ΔVB (t) = ΔVP(t)                                                                                                         (Eq. 2.23) 

and inserting the Eq. 2.9 and Eq. 2.20  into the Eq.2.22, then: 
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                                                                                                        (Eq. 2.24) 

                                                                                      

However, during the flooding of non-equilibrium fluids, chemical fluid-rock interactions may 

occur. The effluent analysis that we perform in our test may enlighten the total effect of 

dissolution and/or precipitation process (see section 5.2). This fact can affect the solid volume 

so that VS would not be constant anymore and as a result: 

ΔVB = ΔVP+ΔVS                                                                                                                                                            (Eq. 2.25) 

 

 

And then the porosity could be written as: 
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Employing eq. 2.9 and Eq. 2.20, then: 
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which can be written also as:                                                                                                      
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                                                                                    (Eq. 2.28)                                                                                                       

 

 

2.2.7 Permeability 

Permeability is the rate at which a fluid flows through a permeable material per unit area and 

is governed by Darcy’s Law: 

P

u
K






                                                                                                                    (Eq. 2.29) 

Where K is the permeability (μm
2
  darcy), μ is the fluid dynamic viscosity (Pa.s), u is the 

fluid velocity in one direction (m/s) and ΔP is the pressure gradient in the same direction 

(N/m
3
) (Fjær et al. 2008, Aadnøy et al. 2011). 
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We can also define the permeability using Darcys Law as (Korsnes et al. 2006b): 

)(
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PA

Lq
K







                                                                                                              (Eq. 2.30) 

Where q is the fluid-pump flow rate (ml/s), μ is the fluid dynamic viscosity (Centipoise/CP), 

A is the cross section area of the core (Cm
2
) and ΔP/ΔL is the pressure gradient over the 

length L. We have used the equation above in our study. 

 

It should be noted that the fluids with the different compositions have the different viscosity. 

Accordingly, to calculate the permeability for various fluids, an online calculator so-called 

“CREWES Fluid Properties Calculator” has been used  (Crewes 2007). 

 

 

2.2.8 Permeability and Porosity Relationship 

To estimate the permeability and its relationship with the porosity we can apply several 

models. Katz and Thompson model, Johnson model and Kozeny-Carman model are some 

examples among them (O.Saar 1998). Carman-Kozeny Model is one of the most famous and 

successful models and we will use it in our study.  

 

 

Carman-Kozeny Model 

It is a model that can estimate the permeability for a porous material when the microstructural 

information is available (Dullien 1979). Based on this model, the permeability is obtained 

from following equation: 
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Where D is the grain diameter of minerals and t is the toruosity factor. 

According to this model and with the assumption that D and t would be constant in our 

experiments, we can write the evolution of permeability as: 
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Inserting the equation Eq. 2.24 into the equation Eq. 2.32 gives us: 
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                                                                                                    (Eq. 2.33) 

 

For more details we refer to (Carman 1956, Carman 1997) 
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3. Material and Methods of Experiment  

The presented tests are performed at hydrostatic stress conditions where the axial and radial 

stresses are the same. The axial and radial stresses are increased simultaneously until a pre-

defined level with the same rate. We performed three tests in our experiment. However, one 

of them failed in a very early stage. Thus we consider only the two others in our analysis. 

 

3.1 Test Material 

3.1.1 Chalk  

High porosity outcrop chalk, Kansas from Niobrara, Kansas quarry, US was used. Two of the 

drilled cores were used for the two tests that we performed, KD2-LOWER and KD2-UPPER 

for test 1 and test 2 respectively. KD stands for Kansas/ Diba. The number 2 stands for the 

number of core-bit drilled out from the chalk outcrop. LOWER and UPPER stands for the 

lower piece and upper piece of the core bit drilled out from the chalk outcrop, since each core 

bit that we drilled was a basis of two cores proper for triaxial. The properties of the cores were 

measured and calculated and the results are shown in Section 4. 

 

3.1.2 Brines 

We have used two different brine compositions during our test including: Formation Water 

(FW) and Synthetic Sea Water (SSW). The tables below (Table 3.1 and Table 3.2) show the 

detail of each brine composition and concentration of each ion contained. 

 

Salt FW (g/L) FW (mole/L) SSW (g/L) SSW (mole/L) 

NaCI 107.1 1.833 23.38 0.400 

KCI   0.75 0.010 

MgCI2.6H2O   9.05 0.045 

CaCI2.2H2O   1.91 0.013 

Na2SO4   3.41 0.024 

NaHCO3   0.17 0.002 
 

Table 3.1. The concentration of salts contained in the FW brine and SSW brine 

 

SSW Ions g/L mole/L 

HCO3- 0.12 0.0020 

CI- 18.62 0.5251 

SO42- 2.31 0.0240 

Mg2+ 1.08 0.0445 

Ca2+ 0.52 0.0130 

Na+ 10.35 0.4500 

K+ 0.39 0.0100 

Ionic Strength   0.6567 
 

Table 3.2. The concentration of ions contained in SSW 
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3.1.3 Confining Oil 

During our experiments Marcol Oil (Fig. 3.1) was used as the confining oil inside the triaxial 

cell. However, in the first test (Test-0) which was failed in the very first days after beginning, 

the Tellus Oil was used. Both of the oil is regarded as safe and not toxic. 

 

  
Fig. 3.1. Marcol Oil, used as the confining oil in the triaxial cell 

 

 

3.2. Test Equipment 

3.2.1 Equipment for saturating the core/ vacuum vessel 

In purpose to saturate the cores we have used a vacuum vessel. The vacuum system contains a 

glass container with a heavy lid on top, and a rubber ring between them assures that the 

chamber is perfectly sealed. Through the lid, there are 2 connections to the container. One 

connected to the vacuum pump (Edwards RV5) and the other one, piped to fluid container 

(Distilled Water in our tests). Both pipes can be controlled by connected valves. A pressure 

gauge indicates the pressure inside the glass container. Fig. 3.2 shows the vacuum system set-

up.  
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Fig. 3.2. The Vacuum System Set-up 

 

 

3.2.2 Triaxial Cell  

During our experimental work, we have used a triaxial cell. Fig. 3.3 shows the external view 

of the cell and Fig. 3.4 shows a cross section image of that. 6 steel bolts was installed around 

the cell for the safety reasons to keep the cell consolidate during the test. For more detail on 

Triaxial cell we refer to (Fjær et al. 2008). 

 

 
 

Fig. 3.3. An external view of the Triaxial cell 
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Fig. 3.4. A cross-section view of the Triaxial cell  

 

3.2.3 Heating System 

A Backer 1500W heating jacket was mounted around the steel cylinder of the triaxial cell to 

raise the temperature to the desired level (130 °C in our tests) and keep it constant during the 

experiment (Fig. 3.3). 

 

3.2.4 Pumps 

Three high pressure pumps are connected to the triaxial cell to control the piston pressure, 

confining pressure and the fluid circulation. In Fig. 3.5, the high pressure Gilson Pump, Model 

307 HPLC, is shown. 

 

 
Fig. 3.5. The high pressure Gilson Pump, Model 307 HPLC 
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3.2.5 Flooding Cell 
In purpose to circulate the brine in the triaxial system and through the chalk core a flooding 

cell was used. The flooding cell includes two chambers which are separated from each other 

by a piston in between. The upper chamber is connected to the water pump and the lower one 

to the triaxial cell. Distilled water pumped to the chamber make the piston press the brine in 

the lower chamber and the fluid is flooded to the chalk core in this way. The flooding rate can 

easily be controlled by the pump. Fig. 3.6 and Fig. 3.7 illustrate the flooding cell used in our 

tests. 

 

 

 
 

Fig. 3.6. The flooding cell 

 

 

 

 
 

Fig. 3.7. Principle sketch of the flooding piston cell, and how it is connected to the rest of the flooding system  
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3.2.6 LVDT (Linear Variable Displacement Transducer) 

To measure the axial deformation of the chalk core an external LVDT was installed in the cell 

(see Fig. 3.3).An external pressure on the piston was implemented by the piston pump to keep 

the LVDT on the top of the core at any time to assure that it measures the actual deformation. 

The radial strain was not measured in the presented tests. 

 

 

3.2.7 Chemical Testing (IC) 

The chemical constituents of the downstream fluids that had been flushed through the plug 

were measured by Ion Chromatography (IC). A Dionex ICS-3000 ion chromatograph was 

used in this matter (Fig. 3.9). It should be noted that, before doing the IC test all the samples 

should be diluted with distilled water (500 times) using a Gilson Gx-271 diluter (Fig. 3.8). In 

addition, after dilution, each sample was filtered manually using a syringe filter (Fig. 3.10) 

and poured in to the proper glasses for being used in the IC machine. 

 

 

        
 
            Fig. 3.8. Gilson Gx-271 diluter                                 Fig. 3.9. A Dionex ICS-3000 Ion Chromatograph                                        

 

 

 

 
 

Fig. 3.10. A syringe filter 
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3.2.8 pH Meter 

To measure the brine’s pH, a SevenEasy METTLER TOLEDO pH meter was used (Fig. 

3.11). 

 

 
 

Fig. 3.11. The SevenEasy METTLER TOLEDO pH meter 

 

 

3.2.9 Pycnometer 

To calculate the density of the solid constituents of the core, we need to measure both the 

weight and the solid volume of the chalk. In this matter we cut the core to several smaller 

pieces to be able to place them in to the pycnometer pot. A Micromeritics Gas Pycnometer 

model AccuPyc II 1340 was used to measure the actual solid volume of each piece of chalk 

after the test. The pycnometer is equipped with a gas capsule of Helium gas. Fig. 3.12 shows a 

complete pycnometer system used in our experiments. 

 

 
 

Fig. 3.12. Pycnometer 
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3.2.10 Friction/auto sampler 

In our tests, after flooding formation water (FW) through the core, we have changed the brine 

to synthetic sea water (SSW). In the first two days of flooding SSW, effluent samples was 

taken in more frequent time order than the normal sampling was done during the whole test. It 

was done to be able to see the dramatic changes in the very first stages of interaction between 

SSW and the core minerals, if any, and to follow the chemical change trend easier. For this 

purpose, two Gilson, Liquid Handler fraction sampler model 222 XL (Fig. 3.13) and model 

GX-271 (Fig. 3.14) were used in the Test-1 and Test-2 respectively. 

 

 
Fig. 3.13. Friction/auto Sampler Gilson 222 XL                         Fig. 3.14. Friction/auto Sampler Gilson GX-271 

 

 

3.3 Preparation  

3.3.1 Chalk Cores 

A chalk outcrop from the Kansas quarry was used to prepare the tested cores. Since the 

outcrop is likely non-homogen, we drilled all the sample cores from the same outcrop to be 

able to compare our results based on the same standard. In addition, the top and the bottom 

side of the drilled core was marked to make sure that the flooding direction will be the same 

for all the sample cores during the tests (vertically upward in our cases). For the test in the 

triaxial cell, chalk cores were cut in a cylindrical shape with the length of approximately 70 

mm (maximum 72 mm) and somehow the exact diameter of 37 mm. We also tried to make a 

smooth and uniform surface on the cores and avoid breaking of the edges. 

 

 

Drilling 

A number of cylindrical core with an approximate length of 200 mm were drilled out from an 

outcrop of Kansas chalk with an oversize diameter. During the drilling the chalk block was 

fasten in a basket to prevent moving and water was used as a cooling liquid. The picture 

below (Fig. 3.15) shows the drilling machine (Koenisto Norge) that we have used. 
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Fig. 3.15. The drilling machine 

 

 

After drilling we put the cores into the oven (Fig. 3.16) to dry out in 118 °C for one day to be 

ready for the next steps which are shaping and cutting. 

 

 

 
 

Fig. 3.16. The Termaks LABOGLASS oven/heating-cabined  

 

 

Shaping 

To achieve the required diameter (37 mm) in a smooth and even form we took the advantage 

of using a turning lathe machine STANKOIMPORT - Moscow USSR (Fig. 3.17). This 

process performed in 2 steps. First, we scraped the core in a roughly 38 mm diameter with a 
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fast speed. In the second step, the cores were shaved in an exact diameter of 37 mm with a 

lower speed to get a uniform surface. 

 

 
 

Fig. 3.17. The STANKOIMPORT Moscow USSR turning lathe machine 

 

 

Cutting 

Each of the core bits forms a basis for two test cores (we also keep the top and the bottom and 

the middle piece as a reference). In this matter we cut the cores in an approximate length of 70 

mm by using the Struers Discotom-5 Cutting Machine (Fig. 3.18). To avoid any damage to 

the core ends and breaking of the edges, we made the cores wet and it perfectly worked. 

 

 

 
 

Fig. 3.18. The Struers Discotom-5 Cutting Machine 
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Finishing shaping the cores, we put all of them in the oven/heating cabined again (118 °C) for 

2 more days to be completely dry and get ready for calculating the effective porosity. 

 

 

3.3.2 Saturating the Chalk to Determine the Porosity 

We have weighed each dried core (WD) and also measured the exact lengths (L) and diameters 

(D) by using a sliding caliper. Thereafter, all the cores where saturated with distilled water in 

the vacuum vessel (Fig. 3.2) and again weighed individually on the scale to measure the wet 

weight (Ww). 

 

To saturate a core we put it in a small plastic container to use less distilled water during the 

procedure. Then the plastic container was placed in to the glass chamber with the lid on the 

top. The pump was started vacuuming with three different levels, each for 10 minutes; Level 

0, level 1 and level 2 respectively. When the pressure gauge indicates the pressure of 4 10
-4  

bar, the system is ready to start flooding distilled water. After flooding DW we let the chalk to 

be in the water for some times to assure that it is saturated properly.  

 

The porosity (ϕ) was calculated by applying equations as defined in Section 2.2.5. Calculating 

the effective porosity for each individual core, gives us the possibility of choosing the best 

core for the test among existing ones which has the porosity close to the average. The core’s 

properties for the chalk cores used in our triaxial tests are listed in Table 4.1. We stored all of 

the cores in the heating cabined in 118 °C to be dry and ready for the test at any time (Fig. 

3.16). 

 

3.3.3 Mixing the Brine 

During our tests we have used same brine for both tests. Formation Water (FW) and Synthetic 

Sea Water (SSW) were flooded through the chalk cores respectively. The exact properties of 

the brines are shown in Tables 3.1 and Table 3.2. The procedure for preparing and mixing the 

brines is expressed as following:  

 

Formation Water (FW)  

1- Mix 107.1 gr NaCl into 1 Lit of distilled water. Let the solution to be properly 

dissolved for an hour. 

2- Filter the solution with a filter of 0.65 μm pore size. 

3- Measure the pH of the solution at the ambient temperature. 

4- Pour the filtered solution to a 1 Lit container and store it in the refrigerator for the next 

step which is flooding the core in a triaxial cell. 

 

Synthetic Sea Water (SSW) 

1- Mix the required salts into 1 Lit of distilled water. Let the solution to be properly 

dissolved for an hour or more. Mixing the salts should be in the following order: 

First, mix the chloride ions (Cl
-
); 23.38 gr NaCl, 0.75 gr KCl, 9.05 gr MgCl2.6H2O, 1.91 

gr CaCl2.2H2O. 

Then, mix 3.41 gr Na2SO4 very gently and slowly. 
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Finally, mix 0.17 gr NaHCO3. Consider that it should be first diluted in some distilled 

water for a better dissolution. 

2- Filter the solution with a filter of 0.65 μm pore size. 

3- Measure the pH of the solution at the ambient temperature. 

4- Pour the filtered solution to a 1 Lit container and store it in the refrigerator for the next 

step which is flooding the core in a triaxial cell. 

3.4 Procedure of the Test 

Three similar tests were performed in the laboratory. The first test (so-called “Test-0”) was 

failed in the very beginning steps (after 5 days). The reason is not very clear. Thus, we ignore 

the results from the test mentioned above since it was flooded for very short period. 

 

All the tests performed have exactly the same procedure, so that we can be able to compare 

the results properly. We defined our tests as “KD2-LOWER-FW-SSW-DW-130°C” or (KD2-

L) and “KD2-UPPER-FW-SSW-DW-130°C” or (KD2-U) for the Test-1 and the Test-2 

respectively. Each test consists of two phases. In the first phase, Hydrostatic Loading, the 

confining pressure (radial and axial stress) increased gradually to reach a pre-set level (20 

MPa in our tests). When the pressure reached 20 MPa the second phase, so-called “Creep 

Phase” will be started. The stress level will be constant from then on. During the test in both 

phases the brine is flooded with the rate of 1 pore volume per day (PV/day). The chalk core 

was sealed with a shrinking sleeve and an industrial heater was used to deform the sleeve 

layer and cover the core so that no leakage between the confining oil and the pore fluid could 

occur during flooding (Fig. 3.19). After placing the sealed core inside the cell, the steel 

cylinder was installed on the triaxial cell base. Then the confining oil (Marcol oil) was poured 

into it, so that it covered around the core. The triaxial cell was secured by installing 6 huge 

steel bolts around it (Fig. 3.3). Finally, the LVDT was mounted on the top of the cell. The 

confining pressure was built up to 0.5 MPa and the pore pressure (water pump) to maximum 

0.2 MPa. Note that the pore pressure should always be lower than the confining pressure to 

avoid any leakage through the sleeve. Distilled water was flooded through the core with the 

rate of 3 pore volume per day and the next day, flooding of the Formation Water was started. 

 

To start flooding of FW we used a pressure regulator. When it gets to 0.4 MPa, the bypass 

was opened and the pore pressure was building up. The FW flooding rate (water pump) was 

set to 2 ml/min. There should always be 0.5 MPa gap between the pore pressure and the 

confining pressure to assure no leakage will occur. When the pore pressure reaches 0.4 MPa 

the gas pressure regulator was increase to 0.7 MPa and the water droplets come out. At this 

stage the water flooding rate was decreased to 0.1 ml/min. When the pore pressure gets to 0.7 

MPa, the bypass was closed and the flooding rate decreased again to 0.05 ml/min. The heater 

turned on at this stage to reach the pre-set temperature level (130 °C) and the confining 

pressure was adjusted between 1.2 to 1.3 MPa. It is very important to open the piston valve 

during increasing of temperature. Thus the expanded oil gets out and avoids the pressure built 

up. Finally, when the temperature reaches 130 °C, the piston was started to move down gently 

to hit the core. The system was left until the next day that the hydrostatic flooding was started. 

 

To start the hydrostatic flooding, we set the rate of 0.07 ml/min and the maximum pressure of 

20 MPa for the confining pump. The confining pressure increased and reached the maximum 

level of 20 MPa and the creep phase started at this point. Afterward, the pressure is kept 

constant and the water was flooded with the rate of 1 PV/day during the whole test. 
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Flooding of formation water was continued for 3 weeks. Meanwhile, the effluent samples 

were collected almost every day for chemical testing later on. After 3 weeks, the brine was 

switched from FW to Synthetic Sea Water (SSW). During shifting FW to SSW, we flooded 

distilled water through the bypass the core. A fraction/auto sampler machine was used to take 

8 effluent samples in the first two days of flooding SSW (Fig. 3.13 and Fig. 3.14). 

Subsequently, the effluent samples were taken manually almost every day. 

 

To end up the test, we stopped flooding SSW and started flooding of distilled water for 2 or 3 

days. Flooding distilled water was done in porous to clean up the core and to avoid 

crystallization of the salts inside the core. In the end, the heating system was turned off and 

the test was completed. 

 

 
Fig. 3.19. Installing the core inside the triaxial cell 

 

 

3.5 Core analyzing after the test 

When a test was finished and cooled down to ambient temperature, the cell was dismantled 

and the chalk core tested was carefully taken out. To ensure that the weight will be measuring 

is the actual weight of the tested core; we should try not to lose any small part of the chalk 

core. The shrinking sleeve was carefully cut off and separated from the core. 

 

 

3.5.1 Drying and weighing the core 

To measure the dry weight of the tested core both the core and shrinking sleeve was placed in 

the oven for 1 day on 120 °C. The day after both the dried core and the dried shrinking sleeve 

was weighed on the scale. Then the shrinking sleeve was washed and weighed again in order 

to calculate the amount of chalk mass attaching to the sleeve. This way, we could calculate 

the total mass of dried chalk core after the test. The pictures below (Fig. 3.20 and Fig. 3.21) 

show the core so called “KD2-LOWER” after the test. 
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Fig. 3.20. Chalk core “KD2-LOWER” after the test, (the side view). Fig. 3.21. Chalk core “KD2-LOWER” after 

the test (the top view) 

 

3.5.2 Measuring the Volume of the Core 

To calculate the porosity and the density of a tested core we needed to measure both the bulk 

volume and the solid volume of the tested core. 

 

 

Bulk Volume Measurement 

To calculate the bulk volume of the tested core we needed to measure the length and the 

diameter of the core. To have a more precise measurement, the core was marked in three 

different directions, for length measurements. In addition, the core was marked in the length 

to be divided into smaller pieces and the diameter of each piece was measured. Implementing 

this method, it was considered that one whole chalk core consist of several pieces which have 

truncated cone (conical frustum) shape and then the volume of each piece was calculated and 

summed up to find out the total bulk volume of the core. Fig. 3.21 shows the core end, 

marked in three directions for length measurement. And Fig 3.22 shows the core marked for 

the diameter measurements. 

 

   
Fig. 3.22. The cylindrical core marked to be divided into several pieces 
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Fig 3.23 shows a truncated cone with the radials of R1 and R2 and the height of H. 

 

 
Fig. 3.23. A truncated cone (conical frustum) shape 

 

The volume of a truncated cone is calculated by following equation: 
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                                                                                             (Eq. 3.1) 

The results of measurements are given in the result section. 

 

 

Solid Volume Measurement by Pycnometer 

To measure the solid volume of the tested core by the Pycnometer, the core was cut to the 

smaller pieces first, to be able to place them inside the machine (Fig. 3.24). 

 

 

 
 

Fig. 3.24. The core which is cut in to the smaller pieces 

 

All the pieces were placed in to the oven in 120 °C. We weighed each piece on the scale in 

the first step. Measuring the solid volume was done twice for each piece, once when it was 

just taken out of the oven which was very hot, and the next time, when it was cooled down. 

 

The second step is working with the pycnometer. To start, we opened the Helium gas valve. 

Then we took off the cap of the machine container. After that, the chalk piece was gently 

placed inside the container and the container was fully pushed down. We put on the cap again 

and closed the machine. To start measuring, we pressed the “Alt”, “4” and “Enter” buttons 
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respectively. It took between 20 to 30 minutes to finish each measurement. When finishing 

the process, the machine beeps and the blue light for “Active” sign will be off. To read the 

result, we press the “choice” key. The result will be shown on the monitor. We can read an 

“Average Volume amount” and the “Standard Deviation” as a result. To finish the test we 

pressed the “Clear” button and opened the machine to take out the core sample. The test was 

repeated with the same procedure and the density was calculated for each test. The average 

density of all measured pieces can be calculated as: 

Tot
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                                                                                                        (Eq. 3.2) 

 

3.6 Chemical Analysis 

3.6.1 Ionic Chromatography (IC) 

Before starting the chemical analysis using the IC machine, the samples should be diluted. To 

be able to start diluting process, we need to prime the machine/system so that we take out the 

air stocked inside the tubes. We programmed the machine to dilute our samples 500 times. 

After dilution of each sample is done, a cap should be put on the original sample to avoid any 

evaporation or dust getting into our effluent samples. From each diluted sample we prepare 

one sample proper to be placed in the IC machine (in a small IC-glass) with the following 

procedure: 

1. Clean the syringe with ~ 1 ml DW. 

2. Wet the syringe with diluted brine (~ 1 ml) 

3. Pull out remaining diluted brine with syringe. 

4. Put on the filter and wash until there is approx. 1.5 ml brine left in the syringe. 

5. Fill up IC-glass with that 1.5 ml remaining brine through the filter, put the cap on and 

write the ID number on that. 

 

Making the IC samples ready, the IC machine should be programmed to do the test. The 

“Flow Rate (Q)” for both the anions and cathions was set as 1 ml/min. The “Suppressor 

Current” was set as 45.0 mA and 50.0 mA, and finally the “Concentration” was set as 18 mM 

and 17 mM for Anions and cathions respectively. All the samples were placed in the IC 

basket in a specific order including placing the “Standard FW and SSW” in between and 

“DW” in the end. Finally we started the program and came the next day to take the results.  
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4. Results 

In this experiment we conducted two similar tests under hydrostatic conditions in a triaxial 

cell. Both of the cores which had been tested were drilled from the same block of outcrop 

Kansas chalk to ensure homogeneity. We flooded formation water (FW), synthetic sea water 

(SSW) and distilled water (DW) through the core respectively. The temperature was 

constantly 130 °C during the tests. 

 

We have performed two tests in our experimental work. In the test KD2-L, we flooded FW, 

SSW and DW for 18, 35 and 3 days respectively. Similarly, in the test KD2-U, FW, SSW and 

DW were flooded for 22, 18 and 4 days respectively through the core. The maximum 

confining pressure was set to 20 MPa for both of the tests. 

 

The main objective of this work is to study the permeability evolution, the effect of different 

brine composition flooded through the core on the porosity and compaction of the Kansas 

chalk under in-situ condition. 

 

 

4.1 Core Measurements before Testing 

Prior to starting a test, the length (L) and diameter (D) of each core was measured. Using the 

results, the bulk volume (VB) has been calculated (see Eq. 2.17). In addition, the dry weight of 

the core (WD) before saturating with distilled water, and the wet weight of the core (WW) after 

saturating the core with DW were measured. Finally, the pore volume (VP) and the effective 

porosity (ϕ) were calculated (see Eq. 2.18 and Eq. 2.15 respectively). The table below (Table 

4.1) shows the results. 

 

Sample name 

Length 

L 

[mm] 

Diameter  

D [mm] 

Bulk 

Volume  

VB [mL] 

Dry 

Weight  

WD [gr] 

Wet 

Weight  

Ww [gr] 

Pore 

Volume  

VP [mL] 

Effective 

Porosity  

Φ [%] 

Density 

ρ 

[gr/ml] 

KD2- LOWER  69.64 36.96 74.68 128.97 155.85 26.88 35.99 2.70 

KD2- UPPER 70.71 36.98 75.91 129.44 157.43 27.99 36.87 2.70 

 
Table 4.1. Core properties before flooding any fluid 

 

 

4.2 Flooding Test Results 

4.2.1 Stress-Strain 

In the first phase of our hydrostatic tests, the confining pressure was built up to a pre-set 

maximum level of 20 MPa. While the stress level was increasing, the axial strain in the core 

was logged on the LabVeiw Software. The results are shown in Fig. 4.1 and Fig. 4.2 for the 

tests KD2-L and KD2-U respectively. The images illustrate the stress-strain relationship. For 

both test, we can see a linear trend in the beginning of the curve. However, after a while, a 

deviation is visible which clarify the yield point. To be able to see the deviation more clearly, 

we have also plotted the so-called “Residue” which demonstrates the difference between the 

values on the stress-strain curve and the linear line. The term “Residue” is calculated as 

following: 
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2
)( baR                                                                                                              (Eq. 4.1) 

Where R is residue, a is the stress value in one strain level and b is the linear line value in the 

same strain level. In the area that stress-strain curve almost matches the linear line; the residue 

is close to zero. Deviating from the line trend, the residue starts to increase.  

 

As Fig. 4.1 and Fig. 4.2 display, the yield is equal to 13.5 MPa and 15 MPa; and the bulk 

modulus (K) is equal to 2.94 GPa and 2.79 GPa for the test KD2-L and KD2-U 

correspondingly. K has been calculated employing Eq. 2.12. Axial stress reaching to 20 MPa, 

the core had been compacted and shown 1.14 % and 0.87 % axial strain in test KD2-L and 

KD2-U respectively. These results are summarized in Table 4.2. 

 

 

Test  

Name 

Mechanical Properties 

Yield Point 

 [MPa] 

K-modulus 

 [GPa] 

Axial 

Strain 

 [%] 

KD2-L 13.5 2.94 1.14 

KD2-U 15.0 2.79 0.87 
 

Table 4.2. Mechanical properties of the cores 
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Fig. 4.1. The Stress-Strain Relation for the test KD2-L, The yield is 13.5 MPa and the bulk modulus (K) is 2.94 

GPa. 

 

 

 
 

Fig. 4.2. The Stress-Strain Relation for the test KD2-U, The yield is 15 MPa and the bulk modulus (K) is 2.79 

GPa. 
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4.2.2 Permeability-Strain 

We have also plotted the permeability progress while the stress was increasing employing Eq. 

2.30. It is presented in Fig. 4.3 and Fig. 4.4 for the test KD2-L and KD2-U respectively. In the 

both tests, we can see a declining trend for permeability when the axial stress and 

consequently axial strain increase. Permeability has been decreased from approx. 2 to 1.3 

milliDarcy (mD) similarly in the both tests. 

 
 

 
 

Fig. 4.3. The Stress-Strain Relation and the Permeability-Strain Relation for the test KD2-L 

 

 

 

 
 

Fig. 4.4. The Stress-Strain Relation and the Permeability-Strain Relation for the test KD2-U 
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4.2.3 Creep Strain vs. Creep Time; and Permeability vs. Time 

The second phase of the test (creep phase) starts when the stress level reaches its maximum 

level (20 MPa) and would stay constant for rest of the test interval. During the creep phase, 

the core compacts over time. However, the rate of compaction is much higher in the 

beginning and can vary based on the situation (i.e. Changes in temperature or composition of 

flooding brine, strength of the chalk, etc.). We have flooded FW through the core in the 

beginning and following that, SSW and DW were flooded. Fig. 4.5 and Fig. 4.6 illustrate the 

creep strain development during the creep time in our experiments KD2-L and KD2-U 

respectively. The axial creep strain of the core in the end of flooding each fluid has been 

given in Table 4.3 for both tests which have been measured by LVDT. The axial creep strain 

in the end of flooding each fluid varies between 2.0 % to 2.7 % for both tests. 

 

 

Test 

name 

Axial Creep Strain (εA) [%] 

FW SSW DW 

KD2-L 2.07 2.59 2.64 

KD2-U 2.17 2.46 2.53 
  

Table 4.3. The axial creep strain [%] in the end of flooding each fluid for tests KD2-L and KD2-U 

 

 

Furthermore, Table 4.4 presents the Total Axial Strain [%] during the whole tests KD2-L and 

KD2- U which is equal to 3.78 % and 3.40 % respectively. Total axial strain is the axial strain 

in the beginning phase plus the axial strain in the creep phase. This is also measured by 

LVDT during the test. 

 
 

Test 

Name 

Total Axial Strain (εA) 

[%] 

KD2-L 3.78 

KD2-U 3.40 

 
Table 4.4. The total axial strain [%] during the tests KD2-L and KD2-U 

 

 

Fig. 4.5 and Fig. 4.6 illuminate that changing the brine from FW to SSW has not affected the 

strain dramatically. However, shifting the brine from SSW to DW shows an increase in the 

strain trend. Permeability of the core has been calculated using Eq. 2.30 and plotted during the 

test period and shown in these images too. The same trend can be observed here as could be in 

Fig. 4.3 and Fig. 4.4. It means that increasing the creep strain has the inverse effect on the 

permeability and the permeability drops as the compaction grows. The initial permeability is 

approx. equal to 1.45 mD. The permeability volumes in the end of flooding each fluid have 

been given in Table 4.5 for both tests which vary between 0.3 mD to 0.7 mD.  
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Test 

name 

Permeability (K), [mD] 

FW SSW DW 

KD2-L 0.7 0.5 0.4 

KD2-U 0.6 0.4 0.3 

 
Table 4.5. The permeability [mD] in the end of flooding each fluid for tests KD2-L and KD2-U 

 

 

It should be noted that a correction on the permeability had been done due to the brine shift. 

Meaning that due to the change in the brine composition, the viscosity of the brine also 

changes. Using a fluid properties calculator (Crewes 2007), the viscosity (µ) has been 

calculated for all of our flooding fluids. Table 4.6 shows the results. 

 

Flooding Fluid Viscosity µ [cP] 

FW 0.3290 

SSW 0.2560 

DW 0.1997 

 
Table 4.6. The viscosity of flooding fluids [cP] used in the experiments 
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Fig. 4.5. Creep strain vs. Creep time for the test KD2-L 

 

 

 

 
 

Fig. 4.6. Creep strain vs. Creep time for the test KD2-U 
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We have also plotted the Log(dε/dt) vs. Log(Time) curve in Fig 4.7 and Fig. 4.8 for the tests 

KD2-L and KD2-U respectively. This shows that the strain rate is reduced as the time is 

increased throughout the test. Meaning that, the strain rate is quite higher in the beginning of 

the test and decreases over time. The pictures illustrate that the strain rate is decreasing more 

when injecting SSW and increasing significantly while DW is injected. A trend line is 

sketched for each part of the test and the equation of these trend-lines is listed in Table 4.7.  

 

 

Log(dε/dt) vs. Log(Time) 

Test Name Trend-line Equations  

KD2-L 

FW 
y= -0.7259x-0.5636 

R
2
= 0.9695  

SSW 
y= -1.4085x+0.2686 

R
2
= 0.7436 

DW 
y= 11.068x-20.87 

R
2
= 0.9748 

KD2-U 

FW 
y= -0.439x-0.8905 

R
2
= 0.9538 

SSW 
y= -0.7599x-0.6802 

R
2
= 0.4488 

DW 
y= 1.6832x-4.4827 

R
2
= 0.646 

 
Table 4.7. The equations for trend-lines in the Log(dε/dt) vs. Log(Time) curve. 
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Fig. 4.7. Log(dε/dt) vs. Log(Time) for KD2-L test 

 

 

 

 
 

Fig. 4.8. Log(dε/dt) vs. Log(Time) for KD2-U test 
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4.2.4 Porosity vs. Time 

Porosity evolution has been plotted in Fig. 4.9 employing Eq. 2.24 and Eq. 2.13 for both tests 

KD2-L and KD2-U. We can see declining trends in the curves. The decreasing rate of 

porosity is higher in the beginning. The figure illustrates that the initial porosity varies 

between 36 to37 % and the final porosity varies between 30 to 32 %. 

 

 

 
 

Fig. 4.9. Porosity (ϕ) versus Time For the tests KD2-L and KD2-U 

 

 

4.2.5 Permeability vs. Axial Creep Strain 

Fig. 4.10 and Fig. 4.11 determine the relation between permeability and the axial creep strain. 

The interception of the trend line is equal to 1.46 and 1.45; and the slope of that is equal to -

0.37 and -0.40 for the test KD2-L and KD2-U in turn. We can see an inverse, linear-relation 

between permeability and axial creep strain.  
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Fig. 4.10. Permeability vs. Axial creep Strain for the test KD2-L 

 

 

 

 
 

Fig. 4.11. Permeability vs. Axial creep Strain for the test KD2-U 
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4.2.6 Permeability vs. Porosity 

The graphs in Fig. 4.12 and Fig. 4.13 indicate the permeability-porosity relation in our study. 

A linear direct relation can be observed in both tests. The higher is the porosity, the higher is 

the permeability.   

 

 
 

Fig. 4.12. Permeability versus Porosity for the test KD2-L 

 

 

 
 

Fig. 4.13. Permeability versus Porosity for the test KD2-U 
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4.2.7 Permeability Evolution (K(t)/K0) vs. Time 

Permeability evolution has been plotted for both tests over time using Eq. 2.13 and Eq. 2.33 

which is shown in the Fig. 4.14. A declining trend can be observed in both tests. The rate of 

reduction is expressively higher in the beginning. Obviously, the graph starts from 1 for both 

cases and it ends up to 0.3 for test KD2-L and to 0.25 for test KD2-U in the end of the tests. 

 

 

 
 

Fig. 4.14. Permeability Evolution (K(t)/K0) versus Time for the test KD2-L and KD-U 

 

 

4.2.8 Permeability Evolution (K(t)/K0) vs. Volumetric Strain (εv) 

Permeability evolution observed in our experiment has been plotted versus volumetric strain 

in Fig. 4.15 and Fig. 4.16 employing Eq. 2.13 and Eq. 2.33. An inverse linear relation can be 

seen in this term. The slope of the trend line is equal to -0.092 and -0.103 for the test KD2-L 

and KD2-U respectively. 
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Fig. 4.15. Permeability Evolution (K(t)/K0) versus Volumetric Strain (εv) for the test KD2-L 

 

 

 

 
 

Fig. 4.16. Permeability Evolution (K(t)/K0) versus Volumetric Strain (εv) for the test KD2-U 
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4.3 Core Analyzing after Test 

4.3.1 Bulk Volume Measurement  

After finishing each test, the triaxial cell was dismantled and the tested core was carefully 

taken out for core analysis. We have marked the core as shown in the Fig. 3.22 and cut it in to 

7 pieces. However, before cutting we have measured the diameter and length three times, in 

three different directions and the results are summed up in the Table 4.8 and Table 4.9 for the 

test LD2-L and KD2-U. The arrow next to these tables shows the gradient of average 

diameter of the tested core. We can see that in the inlet, middle and out let of the core the 

diameter is higher for both tested core similarly. 

 

We also have taken some images of the cross section surface of each piece; both the inlet and 

outlet sides of the core. These images illustrate that the inlet sides of the chalk pieces have 

more or less rough and coarse-grained texture. However, the outlet sides have a smooth and 

uniform texture. We have included these pictures in the appendix of this thesis. 

 

Using the measurements in table 4.8 and table 4.9, the bulk volume of the cores was 

calculated based on Eq. 3.1 and the results is presented in the table 4.10 and 4.11 For the tests 

KD2-L and KD2-U in turn. The total bulk volume for the former is equal to 69.89 cm
3
 and for 

the latter is equal to 70.88 cm
3
. We use these measurements later on to calculate the density of 

the core using Eq.3.2. 
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1 2 3

0 36.58 36.53 36.70 36.60 18.30

1 36.34 36.21 36.23 36.26 18.13

2 36.34 36.36 36.09 36.26 18.13

3 36.36 36.18 36.11 36.22 18.11

4 36.34 36.22 36.32 36.29 18.15

5 36.21 36.05 36.12 36.13 18.06

6 36.26 36.08 36.09 36.14 18.07

7 36.66 36.43 36.55 36.55 18.27

1 2 3

67.66 67.67 67.64 67.66

KD2-LOWER-FW-SSW-DW-130°C-After Testing

Line
Diameter Measurement (mm) Average Diameter  

(mm)

Average Radial

  (mm) 

Length Measurement (mm) Average Length

  (mm)

 
 

Table 4.8. The length and diameter measurements of the core KD2-L after testing 

 

 

 

1 2 3

0 36.25 36.52 36.56 36.44 18.22

1 35.97 36.16 36.03 36.05 18.03

2 35.98 36.15 35.97 36.03 18.02

3 36.02 36.15 36.05 36.07 18.04

4 36.03 36.97 36.06 36.35 18.18

5 36.12 35.99 36.00 36.04 18.02

6 36.23 36.08 36.13 36.15 18.07

7 36.75 36.58 36.69 36.67 18.34

1 2 3

68.99 68.88 68.99 68.95

Length Measurement (mm) Average Length

  (mm)

KD2-UPPER-FW-SSW-DW-130°C-After Testing

Line
Diameter Measurement (mm) Average Diameter  

(mm)

Average Radial

  (mm) 

 
 

Table 4.9. The length and diameter measurements of the core KD2-U after testing 
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Number

 of Pieces

Height 

H (mm)

Bulk Volume

 of Pieces

 VB (cm3)

Piece 1 10 10.42

Piece 2 10 10.33

Piece 3 10 10.31

Piece 4 10 10.32

Piece 5 10 10.30

Piece 6 10 10.26

Piece 7 7.66 7.94

Total 67.66 69.89

KD2-LOWER-FW-SSW-DW-130°C

 
 

Table 4.10. The bulk volume calculation of the core KD2-L 

 

 

Number

 of Pieces

Height

H (mm)

Bulk Volume

 of Pieces

VB (cm3)

Piece 1 8.95 9.24

Piece 2 10 10.20

Piece 3 10 10.21

Piece 4 10 10.30

Piece 5 10 10.29

Piece 6 10 10.23

Piece 7 10 10.41

Total 68.95 70.88

KD2-UPPER-FW-SSW-DW-130°C

 
 

Table 4.11. The bulk volume calculation of the core KD2-U 

 

 

4.3.2 Solid Volume Measurement by Pycnometer 

Implementing a pycnometer apparatus, we could measure the solid volume of chalk pieces. 

Each piece was measured twice. On the other hand, the mass of each piece was measured on 

the scale before using pycnometer. Consequently the solid density was calculated employing 

Eq. 2.19 and the results are presented in Table 4.12 and Table 4.13 for the test KD2-L and 

KD2-U sequentially. Once, we measured each piece individually. The average density value 

of P1-P7 has been calculated using Eq. 3.2 which is equal to 2.7206 gr/cm
3
 and 2.7197 gr/cm

3
 

for tests KD2-L and KD2-U respectively. The other time, all the pieces was measured 

together in pycnometer which the average volume of that is equal to 2.7125 gr/cm
3
 and 

2.7190 gr/cm
3
 for tests KD2-L and KD2-U in turn.  Finally, we took an average value of the 

both measurements which is equal to 2.7165 gr/cm
3
 and 2.7193 gr/cm

3
, the former for KD2-L 

and the later for KD2-U. 
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Number

of Pieces

Solid 

Volume

 (cm3)

Standard 

Deviation

 (cm3)

Density, 

ρ

 (gr/cm3)

Average

 Dry 

Weight

 (gr)

Average 

Solid 

Volume

 (cm3)

Average

Standard 

Deviation

 (cm3)

Average

 Dendity,

 ρAvg 

(gr/cm3)

Measurement.1 18.230 6.7358 0.0082 2.7064

Measurement.2 18.238 6.7462 0.0161 2.7034

Measurement.1 16.312 5.9746 0.0145 2.7302

Measurement.2 16.322 5.9596 0.0146 2.7388

Measurement.1 17.227 6.2959 0.0074 2.7362

Measurement.2 17.233 6.3036 0.0116 2.7338

Measurement.1 16.824 6.1560 0.0153 2.7329

Measurement.2 16.833 6.1767 0.0066 2.7252

Measurement.1 15.638 5.7672 0.0147 2.7115

Measurement.2 15.644 5.7714 0.0145 2.7106

Measurement.1 17.098 6.3237 0.0147 2.7038

Measurement.2 17.105 6.2977 0.0151 2.7161

Measurement.1 12.285 4.5275 0.0062 2.7134

Measurement.2 12.297 4.5075 0.0149 2.7281

Measurement.1 113.6 41.917 0.0037 2.7106

Measurement.2 113.7 41.870 0.0025 2.7144
Average 

of P1-P7 113.643 41.7717 2.7206

Total Average

of both 

measurements

113.64 41.8326 2.7165

12.291

All Pieces

together
113.635 41.8935

15.641

0.0031 2.7125

Piece 6 17.102 6.3107 0.0149 2.7099

Piece 7

17.230

4.5175 0.0106 2.7208

Piece 4 16.829 6.1664 0.0110 2.7291

Piece 5

2.7049

5.7693 0.0146 2.7111

Piece 2 16.317 5.9671 0.0146 2.7345

Piece 3

KD2-LOWER-FW-SSW-DW-130°C

6.2998 0.0095 2.7350

Dry Weight

 (gr)

Piece 1 18.234 6.7410 0.0122

 
 

Table 4.12. The pycnometer and mass measurements; and the density calculation results for KD2-L 
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Number

 of Pieces

Solid 

Volume

 (cm3)

Standard 

Deviation

 (cm3)

Density, ρ

 (gr/cm3)

Average

 Dry 

Weight

 (gr)

Average 

Solid 

Volume

 (cm3)

Average

Standard 

Deviation

 (cm3)

Average

 Dendity,

 ρAvg 

(gr/cm3)

Measurement.1 11.150 4.0621 0.0079 2.7449

Measurement.2 11.158 4.0464 0.0076 2.7575

Measurement.1 18.378 6.7795 0.0051 2.7108

Measurement.2 18.387 6.7722 0.0049 2.7151

Measurement.1 14.882 5.4884 0.0027 2.7115

Measurement.2 14.892 5.4789 0.0047 2.7181

Measurement.1 16.376 6.0431 0.0048 2.7099

Measurement.2 16.383 6.0512 0.0051 2.7074

Measurement.1 18.163 6.7202 0.0069 2.7027

Measurement.2 18.170 6.6778 0.0082 2.7210

Measurement.1 16.180 5.9577 0.0056 2.7158

Measurement.2 16.187 5.9584 0.0032 2.7167

Measurement.1 18.680 6.8401 0.0037 2.7310

Measurement.2 18.687 6.8359 0.0034 2.7337

Measurement.1 113.8 41.8687 0.0051 2.7185

Measurement.2 113.8 41.862 0.0156 2.7194
Average 

of P1-P7 113.837 41.8560 2.7197

Total Average

of both 

measurements

113.833 41.8606 2.7193

Dry Weight

 (gr)

Piece 1 11.154 4.0543 0.0078 2.7512

Piece 2 18.383 6.7759 0.0050 2.7129

Piece 3 14.887 5.4837 0.0037 2.7148

Piece 4 16.380 6.0472 0.0050 2.7086

Piece 5 18.167 6.6990 0.0076 2.7119

Piece 6 16.184 5.9581 0.0044 2.7162

Piece 7 18.684 6.8380 0.0036 2.7323

All Pieces

together
113.830 41.8653 0.0104 2.7190

KD2-UPPER-FW-SSW-DW-130°C

 
 

Table 4.13. The pycnometer and mass measurements; and the density calculation results for KD2-U 
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Before starting the tests, when the drilled core KD2 was cut into two cores KD2-L and KD2-

U, we kept the pieces bellow, above and in between of these cores. The solid volume of these 

pieces was measured using pycnometer and the dry weight of them also was measured on the 

scale. Accordingly, the average density was calculated employing Eq. 2.19. Table 4.14 shows 

these results which varies between 2.71 gr/cm
3
 to 2.73 gr/cm

3
. 

 

 

Piece Name

Solid 

Volume

(cm3)

Standard

 Deviation 

(cm3)

Density, ρ

 (gr/cm3)

Average 

Density, 

ρAvg

(gr/cm3)

Measurement.1 20.614 7.5866 0.0051 2.7172

Measurement.2 20.626 7.5731 0.0047 2.7236

Measurement.1 24.360 8.9612 0.0072 2.7184

Measurement.2 24.373 8.9317 0.0055 2.7288

Measurement.1 24.004 8.8427 0.0094 2.7146

Measurement.2 24.014 8.8238 0.0056 2.7215

KD2 Pycnometer Measurements

Dry Weight 

 (gr)

KD2-BELOW

KD2-BETWEEN

KD2-ABOVE

2.7204

2.7236

2.7180
 

 
Table 4.14. The solid volume and mass measured and the average density calculated for the pieces KD2-

BELOW, KD2-BETWEEN and KD2-ABOVE 

 

 

The bulk volume, solid volume, porosity and density of the cores KD2-L and KD2-U both 

before and after the test have been calculated using different measurement methods; and 

summed up in Table 4.15.  

 

The bulk volume (VB) was calculated according two measurements: 

Meas.1; employing Eq. 2.17 

Meas.2; employing Eq. 3.1 

 

The solid volume (VS) was calculated according two measurements: 

Meas.1; employing Eq. 2.14 and Eq. 2.17 

Meas.2; employing Eq. 2.14 and Eq. 3.1 

 

The porosity (ϕ) was calculated according four measurements: 

Meas.1; employing Eq. 2.15 and Eq. 2.17 

Meas.2; employing Eq. 2.15 and Eq. 3.1 

Meas.3; employing Eq. 2.24 

Meas.4; employing Eq. 2.28 

 

The density (ρ) was calculated according four measurements: 

Meas.1; employing Eq. 2.16 and Eq. 2.17 

Meas.2; employing Eq. 2.16 and Eq. 3.1 

Meas.3; employing Eq. 3.2 
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Table 4.15. The mechanical properties of the cores KD2-L and KD2-U both before and after the test 
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4.4 Chemical Analysis 

4.4.1 Ionic Chromatography (IC) 

During the test effluent samples were collected in the both tests KD2-L and KD2-U. 

However, effluent sample was not collected during flooding of distilled water (DW). The 

effluent samples were used for chemical analysis later on using an ionic chromatography 

machine. Implementing this method we have plotted several graphs, showing the ionic 

concentration of different components in the fluid flooded through the core. Fig. 4.17 and Fig. 

4.18 shows the concentration on all ions measured in our effluent fluid for both the tests KD2-

L and KD2-U respectively. The standard concentration of ions has been determined in these 

graphs. To be able to see all the lines more clearly, we have plotted ions Na
+
 and Cl

-
 

separately from other ions. In Fig. 4.19 and Fig. 4.20 the concentration of Na
+
 and Cl

-
 ions 

has been presented with the original concentration of each standard. Similarly, Fig. 4.21 and 

Fig. 4.22 illustrate the ion concentration of other components including Mg
2+

, SO4
2+

, Ca
2+

 and 

K
+
 and their original concentrations of standards.  

 

The figures demonstrate that all of the ions have more or less the same concentration as their 

originals during flooding of formation water (FW, which is NaCl solution 1.833 mole/l). 

While flooding synthetic sea water (SSW), the same trend can be seen except for magnesium 

and calcium. The graphs determine that during SSW injection, Ca
2+

 is produced in the 

effluent and Mg
2+

 has been lost. However, the production of Ca
2+

 and loss of Mg
2+

 decrease 

over time. Flooding FW continued for 20 days and 22 days for the tests KD2-L and KD2-U 

respectively while injecting SSW lasted for 35 and 19 days. 
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Fig. 4.17. The concentration of containing ions in the effluent samples for the test KD2-L 

 

 

 
 

Fig. 4.18. The concentration of containing ions in the effluent samples for the test KD2-U 
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Fig. 4.19. The concentration of Na
+
 and Cl

-
 ions in the effluent samples for the test KD2-L 

 

 

 
 

Fig. 4.20. The concentration of Na
+
 and Cl

- 
ions in the effluent samples for the test KD2-U 
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Fig. 4.21. The concentration of Mg
2+

, SO4
2-,

Ca
2+ 

and K
+
 ions in the effluent samples for the test KD2-L 

 

 

 
 

Fig. 4.22. The concentration of Mg
2+

, SO4
2-

,Ca
2+

 and K
+
 ions in the effluent samples for the test KD2-U 
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The accumulated production of magnesium and calcium and the total mass change have been 

plotted in the Fig. 4.23 and Fig. 4.24 for the test KD2-L and KD2-U respectively. The results 

have been summed up in Table 4.16 which sows the total mass change is equal to 0.036 gr 

and 0.030 gr for tests KD2-L and KD2-U in order. 

 

 

Accumulated

Production 

Mg2+ [gr]

Accumulated

Production 

Ca2+ [gr]

Total

Mass

Change [gr]

KD2-L -0.155 0.191 0.036

KD2-U -0.136 0.166 0.030

Test 

Name

Chemical Analysis

 
 

Table 4.16. Chemical analysis results 

 

 

The core solid volume change also has been calculated based on the total mass change in the 

effluent and the density and shown in Fig. 4.25 for both test KD2-L and KD2-L. The solid 

volume of the core decreased 0.013 and 0.009 cm
3 

during flooding FW. Starting injection of 

SSW has contributed to dramatic increase of 0.020 cm
3
 and 0.024 cm

3
 of solid volume. 

Continuing injection of SSW decreased solid volume of the core. In the end of SSW injection 

the soled volume change is equal to -0.014 and -0.012 cm
3
 in the test KD2-L and KD2-U 

respectively.  
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Fig. 4.23. The Effluent Accumulated Production of Mg
2+

 and Ca
2+

, and the Effluent Total Mass Change over 

time for the test KD2-L 

 

 

 
 

Fig. 4.24. The Effluent Accumulated Production of Mg
2+

 and Ca
2+

, and the Effluent Total Mass Change over 

Creep Time for the test KD2-U 
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Fig. 4.25. The Core Solid Volume Change over Creep Time for the tests KD2-L and KD2-U 
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5. Discussion 

In this study we have flooded formation water (FW) –which is NaCl solution 1.833 mole/l-, 

synthetic sea water (SSW) and distilled water (DW) continuously through Kansas chalk core 

for almost 2 mounts for each test. Two hydrostatic tests were completed, one on KD2-L core 

and the other one on KD2-U. The tests were held in temperature of 130 °C and the maximum 

confining pressure of 20 MPa in a triaxial cell. 

 

The objective of this survey is to study the mechanical properties of the Kansas chalk and to 

consider the permeability evolution during our experiments. 

 

5.1 Flooding Test  

Based on the flooding test results we discuss the following terms. 

 

5.1.1 Stress-Strain 

Fig. 4.1 and Fig. 4.2 show the stress strain relation. We can observe the similar relation 

between these two terms as mentioned in Fig. 2.4 before. And the yield point and K-modulus 

could be determined easily. Based on the yield point, we can say that the core KD2-U was 

stronger with the yield equal to 15 MPa than the core KD2-L with the yield equal to 13.5 

MPa. 

 

5.1.2 Permeability-Strain 

We have expected to see a declining trend in permeability while increasing the strain. Due to 

compaction of the core, permeability was predicted to decrease. Fig. 4.3 and Fig. 4.4 show 

this inverse relation between permeability and strain for the both tests similarly. 

 

5.1.3 Creep Strain vs. Creep Time  

Fig. 4.5 and Fig. 4.6 show the axial creep strain over time. Change in the strain rate has not 

been observed significantly when shifting the flooding fluid from FW to SSW in either KD2-

L or KD2-U test. However, in a hydrostatic test conducted on the Mons chalk in 130 °C, 

under 12 MPa confining pressure, a significant increase in the creep -more than 2.5 order of 

magnitude- had been observed when the flooding of SSW had been started right after flooding 

NaCl solution with the concentration of 0.657 mole/l (Abubeker 2013, Geitle 2013). In the 

same study, after some while, they had observed a dramatic increase in ΔP which can indicate 

clogging of the core. Consequently the test had been stopped. The clogging could be rooted in 

precipitating of minerals –most likely anhydrite in the chalk since a decrease in the 

concentration of sulfate ions also was observed in the effluent chemical analysis. 

 

In our experiment we have not observed any clogging. On the other hand, almost no change in 

the concentration of sulfate ions was seen. One of the differences between our experiment and 

Abubeker (2013) and Geitle (2013) experiment, was the concentration of the formation water 

(FW). However, we do not consider this as the reason of unlike behavior of the chalk facing 

SSW after flooding FW because no specific change in the concentration of ions had been 

observed in the effluent during flooding of FW in either of experiments.  
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The chalk type can be one of the reasons of this huge difference. The Kansas chalk is a 

stronger chalk comparing the Mons chalk. The carbonate content or the specific surface area 

of the chalk could contribute to this unlike behavior. 

 

In a study conducted by Megawati et al. (2012) on the different types of chalk, the specific 

surface area of the Kansas chalk is reported as 2.95 m
2
/gr and the carbonate content is 

reported as 97.20 %. In the same study, the effect of sulfate on the chalk mechanics has been 

established. However, in our experiment we observed fairly minor effect –if any of sulfate 

ions on the mechanical strength of the chalk which is in not the same as experimental 

observations in several other studies (Heggheim et al. 2005, Korsnes 2007, Megawati et al. 

2012). 

 

Considering the axial creep strain when the distilled water (DW) flooding is started in our 

tests, demonstrates an increase in the both test KD2-L and KD2-U. The similar upsurge has 

been observed in an experimental study conducted by Korsnes et al. (2006a) on Stevens Klint 

chalk and Sutarjana (2008) on Kansas chalk. However, in the study done by Abubeker (2013) 

and Geitle (2013) on the Mons chalk, we can see that the strain rate has been continued 

similarly as it had been when flooding the SSW and DW injection did not have particular 

effect in this matter. 

 

Finally, we compare the total axial strain value calculated based on two different 

measurements; Meas. 1 using Eq. 2.5 and Meas. 2 employing data from LVDT 

measurements. This comparison has been summed up in Table 5.1. Table 5.1 confirms that 

the total axial strain calculated based on Meas. 1 is higher for the both tests KD2-L and KD2-

U. It gives the sense that the core was more squeezed when it was inside the triaxial cell than 

when it was taken out. We debate that the reason can be elastic rebound of the chalk core 

when it is taken out of the triaxial cell. Meaning that, the axial strain of the core was partially 

elastic which lead to recover the length change when the pressure is omitted of the core after 

the test. 

 

Meas.1 Meas.2

KD2-L 2.84 3.78

KD2-U 2.49 3.40

Test Name
Total Axial Strain (ε A ) [%]

 
 

Table 5.1. The total axial strain (εA) [%] for the tests KD2-L and KD2-U; Meas. 1 is based on the core length 

value before and after the test and Meas. 2 based on the LVDT measurements. 

 

 

5.1.4 Permeability vs. Time 

The permeability development over time is presented in Fig. 4.5 and Fig. 4.6. We argue the 

correction which had been done in the permeability calculation as the viscosity used in this 

calculation for each fluid injected through the core was taken from an online fluid properties 

calculator (Crewes 2007) in which we could only calculate the viscosity of the sodium 

chloride solutions (NaCl) with the different concentrations. Thus, using this calculator to 

obtain the viscosity of SSW including different ions could lead to some errors and the result is 

not very precise. Since the ion interactions has been ignored by implementing this method. 
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5.1.5 Volumetric Strain vs. Time  

The volumetric strain has been calculated according to Eq. 2.15. In this equation volumetric 

strain is regarded as 3 order of magnitude of the axial strain based on several assumptions. 

However, according our observation and measurements of axial creep strain and the bulk 

volume of the core before and after the test; and also based on the calculations we propose a 

new factor of 2.5 instead of 3 in the Eq. 2.15. This new factor gives us the volumetric strain 

value more close to the practical experiment for the both test KD2-L and KD2-U. 
 

 

5.1.6 Porosity vs. Time 

According Eq. 2.13 and Eq. 2.24 the porosity progress has been plotted over time in Fig 4.9 

for both tests KD2-L and KD2-U. This way, only the mechanical effects have been taken into 

account (Meas. 1). However, considering the chemical effect, the mass change and the solid 

volume change during flooding of the fluids; and employing Eq. 2.27, we have plotted the 

new graph for the porosity. As follows, both mechanical and chemical effects have been made 

allowance for (Meas. 2). Fig. 5.1 and Fig. 5.2 illustrate the porosity change over time 

implementing both mentioned measurements above. As shown in Fig. 5.1 porosity measured 

implementing both methods is almost 34.4 % in the beginning and after around 48 days of 

creeping, is almost 31.3 % in test KD2-L. Similarly in Fig. 5.2, porosity measured 

implementing both methods is around 35.2 % in the beginning and after around 37 days of 

creeping, is almost 32.1 % in test KD2-U. However, to show the difference between the two 

porosity values calculated for each test, we have also plotted the “Difference” value 
(ϕ(mech+chem) - ϕ(mech)) on the secondary axis in Fig. 5.1 and Fig. 5.2. The figures illustrate 

that the difference value has exactly the inverse trend as the solid volume change had (see Fig. 

4.25). This is what we expected. We believe that if we had continued the test for a longer 

period of time, we could observe a bigger gap between ϕ(mech) and ϕ(mech+chem) over time. The 

reason is that the strain rate would decrease over time but the dissolution rate of minerals 

inside the core would be more-or-less constant. 

Fig. 5.1 and Fig. 5.2 show that ϕ(mech+chem) is almost 0.020 % and 0.017 % higher than ϕ(mech) 

for test KD2-L and KD2-U respectively.  

 

Similarly, porosity of the core after the test was calculated for both tests KD2-L and KD2-U 

employing Eq. 2.24 and Eq. 2.28. The results are given in Table 4.15 called as Meas. 3 and 

Meas. 4. We can see that porosity is higher considering both chemical and mechanical effects 

(Meas. 4) comparing Meas. 3 which considers only the mechanical effects. This was 

completely expected since the tested core was lighter (having less dry weight) after the test 

comparing before the test (see Table 4.15); meaning that a chemical alteration occurred inside 

the core. 

 

In addition, for the test KD2-U we have calculated porosity after testing using Eq. 2.15 and 

Eq. 2.17 which is called Meas.1 in Table 4.15. Also, we have calculated porosity after testing 

using Eq. 2.15 and Eq. 3.1 which is called Meas.2 in Table 4.15. We got two values: 32.31 % 

and 32.38 % for each calculation respectively. We can see that porosity calculated considering 

both the mechanical and chemical effect (Meas. 4) which is 32.57 % is more close to these 

two values than the porosity calculated considering only the mechanical effect (Meas. 3) 

which is equal to 31.68 %. 
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Fig. 5.1. The porosity change over time considering only the mechanical effect (ϕmech) in Meas.1 and 

considering both chemical and mechanical effects (ϕmech+chem) in Meas.2 for the test KD2-L 

 

 

 
 

Fig. 5.2. The porosity change over time considering only the mechanical effect (ϕmech) in Meas.1 and 

considering both chemical and mechanical effects (ϕmech+chem) in Meas.2 for the test KD2-U 
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5.1.7 Permeability vs. Axial Creep Strain  

Fig 4.10 and Fig. 4.11 shows the permeability-axial creep strain relation for the test KD2-L 

and KD2-U respectively. We can see that there is a linear and inverse relation between these 

two factors. Furthermore, the equations for the trend lines are quite similar for the test KD2-L 

and KD2-U. Thus, we argue that we can probably use these equations to predict the 

permeability of the chalk, having the axial creep strain value. The trend line equation for both 

tests is given in Table 5.2 probably be used in future studies. 

 

 

Permeability Vs. Axial creep strain 

Test Name Trend-Line Equation  

KD2-L 
y= -0.3724x+1.4563 

R
2
=0.9842 

KD2-U 
y= -0.4005x+1.4485 

R
2
=0.9389 

 

Table 5.2. The trend line equations of the permeability vs. axial creep strain graph for the Tests KD2-L and 

KD2-U 

 
 

5.1.8 Permeability Evolution (K(t)/K0) vs. Time 

The permeability evolution detected over time has been presented in Fig. 4.14 for both test 

KD2-L and KD2-U. Applying Eq. 2.33, we have made two predictions for permeability 

evolution over time.  

Prediction-1: Considering AV
 2  

Prediction-2: Considering AV
 3  

 

Fig. 5.3 and Fig. 5.4 show the permeability evolution observed in our study and also the 

permeability evolution regarding the prediction-1 and prediction-2 for tests KD2-L and KD2-

U in sequence. These pictures reveal that the observed K(t)/K0 over time does not match our 

predicted models very well and both Prediction-1 and Prediction-2 show over-estimation. 

However, the prediction-1 has a smaller difference. We discuss this fact that one of the 

possible reasons could be the assumptions that we made to simplify the Carman-Kozeny 

model (Carman 1956, Dullien 1979) (See Section 2.2.8). We assumed grain diameter (D) and 

toruosity factor (t) in Eq. 2.31 to be constant during the flooding. This assumption can be 

argued based on this difference between our experimental observation and the models. The 

“Residue” also is plotted in Fig. 5.3 and Fig. 5.4 as defined in Eq. 4.1to see the gap between 

the predicted models and the observed permeability evolution over time. 
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Fig. 5.3. Permeability evolution observed over time and permeability evolution models regarding the 

prediction-1 and prediction-2 for the test KD2-L 

 

 

 
 

Fig. 5.4. Permeability evolution observed over time and permeability evolution models regarding the 

prediction-1 and prediction-2 for the test KD2-U 
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5.1.9 Permeability Evolution (K(t)/K0) vs. Volumetric Strain (εv) 

Fig. 4.15 and Fig 4.16 show the permeability evolution versus volumetric strain. We have also 

plotted the permeability evolution based on the prediction-2 vs. volumetric strain in Fig. 5.5 

and Fig. 5.6, the former for the test KD2-L and the latter for the test KD2-U. These pictures 

show under-estimation for prediction-2 in the beginning and over-estimation in the end of the 

curves. The equations of all the trend lines are given in Table 5.3 probably be useful for future 

studies. 

 

Permeability evolution observed vs. volumetric strain  

Test Name Trend-Line Equation  

KD2-L 

Observed 
y= -9.1903x+1.0782 

R
2
= 0.9842 

Prediction-2 
y= -5.7426x+0.9639 

R
2
= 0.9972 

KD2-U 

Observed 
y= -10.335x+1.1214 

R
2
= 0.9389 

Prediction-2 
y= -5.9016x+0.9824 

R
2
= 0.9975 

 
Table 5.3. The trend line equations for the permeability evolution observed and permeability evolution based on 

the prediction-2 vs. volumetric strain for the tests KD2-L and KD2-U 
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Fig. 5.5. Permeability evolution (K(t)/K0) observed vs. volumetric strain (εV) and permeability 

evolution model regarding the prediction-1for the test KD2-L 

 

 

 
 

Fig. 5.6. Permeability evolution (K(t)/K0) observed vs. volumetric strain (εV) and permeability 

evolution model regarding the prediction-1for the test KD2-U 
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5.2. Core analyzing after test 

5.2.1. Solid Volume Measurement by Pycnometer  

Considering Table 4.12 and Table 4.13, we have taken an average of so-called “Total 

Average of both measurements” in these two tables which gives us an approx. average density 

of the whole KD2 core after testing which is equal to 2.7179 gr/cm
3
. Considering Table 4.14, 

we have taken an average of density of all “KD2-BELOW”, “KD2-BETWEEN” and “KD2-

ABOVE” pieces which is equal to 2.7207 gr/cm
3
 and this is an approx. average density of the 

whole KD2 core before testing. Now we can compare the density (ρ) of the KD2 core drilled-

out from a Kansas outcrop before and after the test. The results are summed up in Table 5.4. 

According this table, the density of the core has been decreased after the test. The result can 

be that the precipitated mineral may have lower density than the dissolved ones which we 

consider it unlikely. We can also argue that according to the chemical analysis, Mg
2+

 ions 

precipitate in the core and Ca
2+

 ions dissolved to the fluid. Thus the question is what 

mechanism is behind this chemical alteration. 

 
Drilled Core Density ρ [gr/cm3]

KD2-BEFORE TESTING 2.721

KD2-AFTER TESTING 2.717  
 

Table 5.4. The average density of the drilled core KD2 before and after the test 

  

 

5.3. Chemical Analysis 

5.3.1. Ionic Chromatography (IC) 

The chemical analysis conducted implementing IC method indicates that flooding formation 

water (FW) containing Na
+
 and Cl

-
 ions through the core did not have a significant effect on 

the effluent concentration of ions (see Fig. 4.17 and Fig. 4.18). This is in agreement with the 

several previous studies (Andersen et al. 2012, Veen 2012, Abubeker 2013, Geitle 2013). 

Meaning that, no specific chemistry is between this ions and the rock surface. Therefore, it is 

reasonable to assume that the formation water is in the chemical equilibrium with the chalk 

under present condition.  

 

However, flooding SSW leads to production of Ca
2+

 ions and loss of Mg
2+

 ions on one hand, 

and no significant change in the concentration of Na
+
, Cl

-
 and K

+
 ions on the other hand 

which is in agreement with several previous studies (Andersen et al. 2012, Abubeker 2013, 

Geitle 2013). It can be as a result of precipitating magnesium-bearing minerals and dissolving 

of calcium-bearing minerals. Generally speaking, subjecting the chalk to fluid not in chemical 

equilibrium with that; induces dissolution/precipitation which causes mechanical failure.  

 

It should be noted that no substantial change was observed in the concentration of sulfate ions 

in the effluent, which is in conflict with the results of several previous studies conducted in 

the similar approach (Heggheim et al. 2005, Tweheyo et al. 2006, Andersen et al. 2012, 

Abubeker 2013, Geitle 2013). Possibly, it means that no sulfate-bearing mineral was 

precipitating in our Kansas chalk. 
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Considering Fig. 4.23 and Fig. 4.24, the accumulated mass of magnesium in the effluent is 

decreasing and the accumulating mass of calcium is increasing during flooding of SSW. 

However, the total mass change in the effluent increases over time. Meaning that, the core is 

losing mass over time. We can see that the overall trend of solid volume change also matches 

with the total accumulated mass trend (see Fig 4.25). 

 

Regarding the dry weight of the core before and after the test, the core KD2-L and KD2-U 

have been 0.40 gr and 0.34 gr lighter respectively (see Table 4.15). However, the chemical 

analysis shows that the total mass change was 0.036 gr and 0.030 gr for the tests KD2-L and 

KD2-U in turn (see Table 4.16). This difference can be explained by a number of reasons. The 

first reason is that we did not take any effluent sample when the flooding fluid was shifted 

from SSW to DW. As a result of this fact, the chemical analysis does not include that period 

of test time. However, during flooding distilled water (DW) a relatively large amount of 

minerals may have been dissolved and washed out the core. Specifically because, a significant 

increase in the axial creep strain was observed while injecting DW. The second reason could 

be the fact that we have just considered the calcium and the magnesium ions in our IC 

calculations. Thus other ions (i.e. SO4
2-

, K
+
, CO3

2-
, Na

+
, Cl

-
 and etc.) have not been taken into 

account. Finally, the systematic errors in measurements and IC analysis are absolutely 

inevitable.   
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6. Conclusion  

We performed hydrostatic tests on chalk from quarries of Kansas under in-situ conditions. We 

studied the link between compaction and permeability evolution both via theoretical modeling 

and experimental testing.  

 

The testing results show that Kansas chalk is a relatively strong chalk and injecting synthetic 

sea water did not have a huge effect on its creep strain. In addition, we have not observed a 

great change in concentration of sulfate ions in effluent comparing the injected fluid. This can 

be as a result that minor amount –if any-, of sulfate-bearing minerals i.e. anhydrite; have been 

precipitated inside the core. This possibility can be rooted in the carbonate content or specific 

surface area of the chalk. 

 

Based on our analysis, we proposed the volumetric strain as 2.5 order of magnitude of the 

axial strain. In addition, permeability evolution is concluded to be affected by the change in 

the grains size and minerals density. We have also concluded that chemical alterations impact 

the porosity evolution linked to compaction. It means that mechanical factors are not the only 

issues responsible for porosity evolution. 
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