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Abstract 
Since a production peak in 1995 the oil production on the Gyda field has decreased. 

Water cut is increasing and reservoir pressure is decreasing. This thesis is a study of 

the artificial lift methods being evaluated to increase the production in the late life of 

the field.  

 

A thorough investigation of gas lift and Electrical Submersible Pump (ESP) theory, 

design, and production output is carried out. The theory of artificial lift selection is 

also presented. 

Based on reservoir inputs and completion design, production has been simulated in 

PROSPER for different scenarios and methods. 

The main conclusions and recommendations are as follows: 

 

• Gas lifting is a simple, well tried method where little can go wrong, while 

ESPs are a complex solution which will require a large amount of planning 

and administrative resources. 

• ESPs have a limited lifetime which increases cost later in a project. The 

expected lifetime of an ESP well on Gyda is two years. The initial cost for a 

gas lift well and ESP well will not be so different, because a lot of the wells 

need a full workover before they can be used for gas lifting. 

• Production through gas lifting is not only dependent on injection rate, but can 

be optimized through the completion design. Setting the valves deeper gives 

an increased production. 

• A new gas compressor is needed if a gas lifting campaign is to be initiated. 

• Baker Hughes Centrilift’s ESP design was verified for the start up (May 2010) 

conditions. But production can fall beneath minimum design rate after some 

years, and a new evaluation of design must be done when the pumps are 

changed at failure. 

• The production simulation of the pilot wells A-19 and A-26 shows that the 

ESP solution is superior to the gas lift. A secondary effect from the ESP 

pressure drawdown can also increase production and recovery factor for the 

field. 

• Even though ESPs seem to be the superior choice, an economical evaluation 

of the projects entire lifetime is needed. A Net Present Value analysis will give 

the different projects a comparable value, which includes the costs and 

production from start to finish. 
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1. Introduction 
The Talisman Energy Norge operated Gyda field is in its late life production. The 

water production is increasing and the reservoir pressure is decreasing. To increase 

production and extend the lifetime of the field, the operator has decided start an 

artificial lift project. Because of conditions and desired rates gas lifting and Electrical 

Submersible Pumps (ESPs) has been evaluated to be the only two alternatives. 

 

The operator is looking at either a full field (10 wells) gas lift campaign or ESPs. If the 

ESP solution would be found to be the best method, it has been decided that a pilot 

project is necessary to see how the field responds to the pumps. For this well A-19 

and A-26 has been chosen because of their production potential. 

 

The objective of this study is to make a decision supporting document, evaluating 

each of the scenarios in detail. Simulations based on the field data will give an 

indication of what rates the different solutions will give. 

 

The first part of the thesis describes the basic theory of well performance and 

physics. Second, a detailed description of gas lift and ESP methodology and design 

is given. Theory on decision making within artificial lift is also presented. 

 

The third part of the study is a practical simulation. PROSPER is chosen as the tool 

to simulate production in the pilot wells A-19 and A-26. Three models are built for 

each well presenting a “base case”, “ESP case” and “gas lift case”.  

For gas lift design the simulation tool is used, but the ESP design is provided by 

Baker Hughes Centrilift. Based on reservoir simulations a production forecast is 

made until 2019 for each scenario.  

 

The last section gives a short economical evaluation of the projects, which is an 

important part of a final decision on artificial lift method. 
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2. The Gyda field 
The Gyda field is located southwest in the North sea, 270 km from Stavanger and 43 

km northwest of Ekofisk (Fig. 2.1).   

 

 
Figure 2.1, Southern North Sea. 

 

It has been developed with a combined drilling, accommodation and processing 

facility with a steel jacket. The sea depth in the area is 66 metres. The oil is 

transported to Ekofisk via the oil pipeline from Ula and in Norpipe to Teeside. The 

gas is transported in a dedicated pipeline to Ekofisk for onward transport in Norpipe 

to Emden [23]. 

 



 
Evaluation of artificial lift methods on the Gyda field 10

 

 

 
Figure 2.2, The Gyda platform. 

 

2.1. Facts [23] 

Found: The field was discovered by exploration well 2/1-3 in 1980 

Production start: 21.06.1990 

Operator: Talisman Energy Norge AS (Since 2003) 

 
Owners: DONG E&P Norge AS 34, 00 % 

   Norske AEDC A/S 5, 00 % 
   Talisman Energy Norge AS 61, 00 % 

 

Recoverable reserves:   Remaining reserves 31.12.2008: 

38,8 million Sm3 oil     4,1 million Sm3 oil 
6,2 billion Sm3 gas    0,3 billion Sm3 gas 
1,9 million ton NGL     0,0 million ton NGL 
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2.2. Field description 
The Gyda reservoir consists of Upper Jurassic shallow marine sandstone. The trap 

combines both structural and stratigraphic elements. The field is broadly a westward 

dipping and westward thickening wedge. The reservoir lies between 3680 and 4170 

m TVDSS. The overlying Kimmeridgian aged Mandal formation provides both the 

seal and the hydrocarbon source for the Gyda Field. 

 

The sands are divided into 3 main units A-, B- and C-sand. The A-sand is in the 

bottom with a high permeability zone at the top. The permeability in the top of the A-

sand is up to 1 D while the base can be 1 mD and below. The B-sand is the middle 

sand, and in general has poor reservoir quality. The best parts of the sand have 

permeabilities around 30 mD, while most of it is around 1 mD. The C-sand on the top 

pinches out towards the crest of the field, and varies in reservoir quality. The C-sand 

is interbedded with calcite stringers and the eastern parts have poor reservoir quality, 

equivalent to the B-sand. The western parts of the C-sand have very good reservoir 

quality, up to 800 mD in places. 

 

The reservoir is cut by numerous Late Jurassic faults with variable throws. Several 

studies suggest that faults and fractures are at least initially sealing. This creates the 

opportunity for compartmentalization within the reservoir. 

 

The field is divided into three main segments: Main, South West and South. These 

segments are confirmed by differences in reservoir fluids, original oil water contacts 

(OWC) and dynamic pressure data. 

 

Of the 32 wells on Gyda, 17 are currently active. 11 are producing and 6 are 

injecting. The rest is either temporarily closed or plugged and abandoned. 
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Figure 2.3, Gyda reservoir. 
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Today Gyda is in its tail phase and experiences increasing water production (Fig. 2.4) 

and challenges in maintaining the oil production. The production licence period was 

recently extended to 2028. Several new wells are being drilled on the field. A 

compressor was installed in 2007 for a gas lift pilot. This has resulted in improved 

production from the wells. It is also considered to tie-in other deposits in the area to 

Gyda. 

 

 

 
Figure 2.4, Production history of the Gyda field. 
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3. Well performance 

Well performance is dependent on a large number of variables like pressures, 

formation properties and fluid properties. And these are again dependent on each 

other. 

Different models for the well inflow performance and the vertical lift performance will 

be described in this chapter, but first a short explanation of the different drive 

mechanisms from the reservoir will be given. 

 

3.1. Drive mechanisms 
According to Dake [3] oil production is due to the following drive mechanisms: 

• Natural water drive 

• Solution gas drive 

• Gas-cap drive 

• Compaction drive 

 

Natural water drive 

A drop in the reservoir pressure, due to the production of fluids, causes the aquifer 

water to expand and flow into the reservoir. 50% of oil recovery can be caused by 

natural water drive. 

 

Solution gas drive 

When the reservoir pressure drops below the bubble point pressure solution gas 

dissolved in oil appears as a free phase. When pressure drops further the highly 

compressible gas expands expelling the oil from porous media. 

 

Gas-cap drive 

High gas compressibility and the extended gas cap size ensure a long lasting and 

efficient field performance. Up to 35% of the original oil in place can be recovered 

under a gas-cap drive. 

 

Compaction drive 

This drive mechanism might occur during depletion when rock grains are subjected 

to stress beyond elasticity limit. It leads to a re-compaction of partially deformed or 

even destroyed rock grains that might result in gradual or abrupt reduction of the 

reservoir pore volume. 



 
Evaluation of artificial lift methods on the Gyda field 15

In order to achieve better field performance, secondary and tertiary oil recovery 

methods are often implemented. Gas lift and downhole pumps are examples of 

advanced recovery techniques (Enhanced Oil Recovery, EOR). 

 

 

3.2. Inflow performance [1], [2] 
The Inflow Performance Relationship (IPR) describes pressure drawdown as a 

function of production rate, where drawdown is defined as the difference between 

static and flowing bottom hole pressure (FBHP). 

The simplest approach to describe the inflow performance of oil wells is the use of 

the productivity index (PI) concept. It was developed using the following 

assumptions: 

• Flow is radial around the well 

• A single-phase liquid is flowing 

• Permeability distribution in the formation is homogeneous 

• The formation is fully saturated with the given liquid. 

 

The flow through a porous media is given by the Darcy equation: 

q k dp
A dl
=
μ

         (Eq. 3.1) 

Using the assumptions above it can be written as 

( )0,00708

ln
R wf

e

w

khq p p
rB
r

μ
= −

⎛ ⎞
⎜ ⎟
⎝ ⎠

       (Eq. 3.2) 

Where:  q = liquid rate, STB/d 

  k = effective permeability, mD 

  h = pay thickness, ft 

  µ = liquid viscosity, cP 

  B = liquid volume factor, bbl/STB 

  re = drainage radius of well, ft 

  rw = radius of wellbore, ft  

  pR = average reservoir pressure 

  pwf = flowing bottomhole pressure 

 

Most parameters on the right hand side are constant, which permits collecting them 

into a single coefficient called PI: 
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( )R wfq PI p p= −         (Eq. 3.3) 

This gives us:  

( )R wf

qPI
p p

=
−

        (Eq. 3.4) 

 

This equation states that liquid inflow into a well is directly proportional to the 

pressure drawdown. It will plot as a straight line on a pressure vs. rate diagram. 

 

The use of the PI concept is quite straightforward. If the average reservoir pressure 

and the PI are known, use of equation 3.3 gives the flow rate for any FBHP. The 

well’s PI can either be calculated from reservoir parameters, or measured by taking 

flow rates at various FBHPs. 

 

This works well for a single phase flow, but when producing a multiphase reservoir 

the curve will not plot as a straight line.  

As the oil approaches the well bore and the pressure drops below bubble point, gas 

comes out of solution. Thus, the free gas saturation in the vicinity of the oil steadily 

increases, which implies that the relative permeability to gas steadily increases at the 

expense of the relative permeability of oil. The greater the drawdown, the bigger this 

effect would be. Since the PI depends on the effective oil permeability, it is expected 

that it will decrease (Eq. 3.2). Figure 3.1 shows the IPR curve for this condition. 

 

 
Figure 3.1, IPR curve. 
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Vogel [9] used a numerical reservoir simulator to study the inflow of wells depleting 

solution gas drive reservoirs. He considered cases below bubble point and varied 

parameters like draw downs, fluid and rock properties. Vogel found that the 

calculated IPR curves exhibited the same general shape, which is given by the 

dimensionless equation: 
2

max

1 0,2 0,8
2
wf wf

R

P Pq
q P

⎛ ⎞
= − − ⎜ ⎟

⎝ ⎠
      (Eq. 3.5) 

 
The equation is generally accepted for other drive mechanisms as well, and is found 

to give reliable results for almost any well with a bottom hole pressure below bubble 

point of the oil. 

There are a number of other models designed for special cases e.g. horizontal wells, 

transient flow, fractured wells, non-Darcy pressure loss, high rates etc. 
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3.3. Outflow performance 
The well’s outflow performance, or Vertical Lift Performance (VLP), describes the 

bottomhole pressure as a function of flow rates. According to Golan and Whitson [1] 

the outflow performance is dependent on different factors; liquid rate, fluid type (gas-

to-liquid ratio, water cut), fluid properties and tubing size. 

 

Gabor [2] divides the total pressure drop in a well into a hydrostatic component, 

friction component and an acceleration component: 

 

Hydrostatic component represents the change in potential energy due to gravitational 

force acting on the mixture: 

sin
h

dp g
dl

ρ β⎛ ⎞ =⎜ ⎟
⎝ ⎠

        (Eq. 3.6) 

Where:  ρ = density of fluid 

  β = pipe inclination angle, measured from horizontal 

  g = gravity constant 

 
Friction component stands for the irreversible pressure losses occurring in the pipe 

due to fluid friction on the pipe inner wall: 

 

21 1
2f

dp f v
dl d

ρ⎛ ⎞ =⎜ ⎟
⎝ ⎠

        (Eq. 3.7) 

Where:  f = friction factor 

  d = pipe inside diameter 

  v = fluid velocity 

 

The type of flow is determined from the Reynolds number: 

Re vdρ
μ

=          (Eq. 3.8) 

Where:  µ = fluid viscosity 

 

The boundary between flow regimes are: 

Re ≤ 2000:  Laminar flow 

2000 < Re ≤ 4000: Transition between laminar and turbulent flow 

4000 < Re:  Turbulent flow  
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For laminar flow f = 64/Re (Moody friction factor). However, finding the friction factor 

is more complicated for turbulent flow, and there are several ways to calculate the 

friction factor.  

 

 

Acceleration component represents the kinetic energy changes of the flowing mixture 

and is proportional to the changes in flow velocity. The term is often negligible: 

a

dp dvv
dl dl

ρ⎛ ⎞ = −⎜ ⎟
⎝ ⎠

        (Eq. 3.9) 

 

 
 
3.3.1. Other Effects 
Effect of liquid flow rate on pressure loss 

From the friction equation we can see that friction losses increases as liquid rate 

increases (v increases). Hydrostatic gradient also increases with increased liquid 

production. 

 

Effect of gas-to-liquid ratio on pressure loss 

Increase in gas-to-liquid ratio (GLR) results in reduction of hydrostatic gradient. On 

the other hand, increased GLR increases friction forces and has a counter effect on 

the bottomhole pressure. When contribution of the friction becomes higher than that 

of hydrostatic forces, the actual bottomhole pressure starts to increase. From a gas 

lift point of view this means that there is a limit of how much gas that beneficially can 

be injected. 

 

Effect of water cut on pressure loss 

Increased water cuts results in increased liquid density, which in turn, increases 

hydrostatic forces and the bottomhole pressure 

 

Effect of tubing size on pressure loss 

From the equation 3.7 we can see that the increased diameter of tubing reduces the 

pressure gradient due to friction. However, there is a limit to which diameter of tubing 

can be increased. If the diameter is too big the velocity of the mixture (v=q/A, A: pipe 

cross section) is not enough to lift the liquid and the well starts to load up with liquid, 

resulting in increase of hydrostatic pressure. 
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Figure 3.2, VLP curve 

 
 
3.4. Operating point 
To calculate the well production rate, the bottom-hole pressure that simultaneously 

satisfies both the IPR and VLP relations is required. By plotting the IPR and VLP in 

the same graph the producing rate can be found. The system can be described by an 

energy balance expression, simply the principle of conservation of energy over an 

incremental length element of tubing. The energy entering the system by the flowing 

fluid must equal the energy leaving the system plus the energy exchanged between 

the fluid and its surroundings. 

 

 
Figure 3.3, Operating point (intersection between IPR and VLP curves). 
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4. Multiphase flow  
Oil wells normally produce a mixture of fluids and gases to the surface while phase 

conditions usually change along the path. At higher pressures, especially at the well 

bottom, flow may be single phase. But going up in the well the continuous decrease 

of pressure causes dissolved gas to gradually escape from the flowing liquid, 

resulting in multiphase flow. Gas injection into a well is also an example of 

multiphase flow. 

 

In single phase flow we discriminate between laminar and turbulent flow. In two-

phase flow we discriminate in addition between flow regimes that are characteristic 

for the time and space distribution of gas and liquid flow. 

In horizontal flow we discriminate between the flow regimes 

• Stratified flow 

• Slug flow 

• Dispersed bubble flow 

• Annular flow 

These are shown in figure 4.1. At low velocities the gas and liquid are separated as 

in stratified flow. At high velocities gas and liquid become mixed. Slug flow is an 

example of a flow regime in between, representing both separation and mixing. Slug 

flow is consequently referred to as an intermittent flow regime [5]. 

 

 
Figure 4.1, Flow regimes in horizontal flow [5]. 
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In vertical flow we discriminate between the flow regimes 

• Slug flow 

• Churn flow 

• Dispersed bubble flow 

• Annular flow 

 

Figure 4.2 illustrates the flow 

regimes in vertical flow. The 

same comments that apply to 

horizontal flow are valid in 

vertical flow. The big difference is 

that in vertical (concurrent 

upward) flow it is not possible to 

obtain stratified flow. The 

equivalent flow regime at 

identical flowrates of gas and 

liquid is slug flow with very slow 

bullet shaped Taylor bubbles. 

 

Figure 4.2, Flow regimes in vertical flow [5]. 

 

Figure 4.3, Flow regime map for vertical flow [5]. 
 



 
Evaluation of artificial lift methods on the Gyda field 23

The superficial velocities are defined by: 

L
LS

qU
A

=          (Eq. 4.1) 

G
GS

qU
A

=          (Eq. 4.2) 

   

They are also referred to as apparent velocities or volumetric fluxes. From the 

definition we see that the volumetric flowrates and the pipe cross section A is known, 

the superficial velocities follow directly. 

The phase velocities are the real velocities of the flowing phases. They may be 

defined locally (at a certain position in the pipe cross section) or as a cross sectional 

average for the pipe. They are defined by: 

L
L

L

qu
A

=          (Eq. 4.3) 

G
G

G

qu
A

=          (Eq. 4.4) 

 

Gas and liquid in general flow with different phase velocities in pipe flow. The relative 

phase velocity or the slip velocity is defined by: 

S G Lu u u=| − |          (Eq. 4.5) 

 

The slip velocity thus has the same unit as the phase velocities. In addition the slip 

ratio is commonly used: 

G

L

uS
u

=          (Eq. 4.6) 

 

Note that the slip ratio is dimensionless. Slip effect is seen in inclined flow and is 

caused by the density difference between the gas and liquid, which in turn causes a 

velocity difference; the gas will rise through the liquid [5]. 

“Hold up” is a consequence of slip and is defined as the proportion of the pipe that is 

occupied by liquid. 

 

Multiphase flow correlations are used to predict the liquid holdup and frictional 

pressure gradient. Correlations in common consider the oil and gas lumped together 

as one equivalent fluid. They are therefore more correctly termed 2-phase flow 
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correlations. Depending on the particular correlation, flow regimes are identified and 

specialised holdup and friction gradient calculations are applied for each flow regime. 

Some of the correlations most widely accepted for oil wells are: 

 

• Duns and Ros 

• Hagedorn and Brown 

• Orkiszewski 

• Beggs and Brill 
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5. Artificial lift 
Maximizing the use of natural energy in a reservoir is critical to any production 

installation. In a naturally flowing well there is enough energy stored in the reservoir 

to flow the produced fluid to the surface. Reservoir pressure and formation gas 

provide this energy in the flowing well. When reservoir energy is too low for natural 

flow, or when the desired production rate is greater than the reservoir energy can 

deliver, it becomes necessary to put the well on some form of artificial lift. As of 2006, 

90 % of the world’s oil wells are on some form of artificial lift according to Oilfield 

Review [16]. 

 

An oil well usually flows naturally initially, that means the pressure at well bottom is 

sufficient to overcome the pressure losses in the well and flow line to the separator. 

When the criteria is no longer met due to decrease in bottom hole pressure, or 

pressure losses in the well become to great, the natural flow stops and the well dies. 

The increased pressure losses in the well can come from increased overall density 

due to decreased gas production, increased water cut or mechanical problems like 

downhole restrictions (scale etc). 

 

Artificial lift methods fall into two groups, those that use pumps and those that use 

gas [17]. 

Pump Types: 

• Beam Pump / Sucker Rod Pumps (Rod Lift) 

• Progressive Cavity Pumps (Jet /piston lift) 

• Subsurface Hydraulic Pumps 

• Electric Submersible Pumps (ESP) 

Gas Method: 

• Gas Lift  
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5.1. Artificial lift on Gyda 
Since a peak in 1995, production on Gyda has decreased (Fig. 2.4). This is due to a 

decreasing reservoir pressure and increasing water cut which comes from a large 

amount of water being injected to support the reservoir pressure. 

A jet pump was tried on well A-26 in 1995 when BP was operator of the field [12]. 

The trial was without success due to the plugging of the pump. Scale (calcium 

sulphate) was found in and above the pump. During this study a second attempt on 

investigating the use of jet pumps was done. The results showed that the solutions 

available had too little production potential and the risk of the pumps scaling up again 

was too high. 

 

In 1997 the use of ESPs was excluded from Gyda because they couldn’t withstand 

the high downhole temperatures of 160 °C. However, the use of ESPs is now up for 

debate again as pumps are made to run under tougher conditions. Technology 

developed from steam-assisted gravity drainage (SAGD) operations is planned to be 

implemented on Gyda. The SAGD equipment can withstand bottom hole 

temperatures of up to 218 °C [9]. 

 

During summer 2007 gas lift was installed on Gyda and has been a big success. The 

first well to be subject for gas lift (A-17A) increased production rate from 400-500 

bbl/d to 1100 bbl/d. This was when all available gas was injected to this single well 

(56 600 Sm3/day). The second well of interest (A-02A) died due to high water cut 

and low reservoir pressure. With gas lift Talisman Energy Norge AS (TENAS) 

succeeded getting this well back on production with initial rate of 1500 bbl/d. Today 

A-27A is also on gas lift. 

 

As the production rate is decreasing there is no doubt that TENAS should continue 

improving artificial lift on Gyda. The question is if gas lift or ESP is the best solution.  

 

A-19 and A-26 has been chosen to be a part of a pilot project for artificial lift because 

of their great potential of higher production. If the pilot project works out good, a full 

field artificial lift campaign can be realized. Later in this report production is simulated 

for different scenarios in A-19 and A-26. 
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5.2. Artificial lift selection  
To realize the maximum potential from developing any oil or gas field, the most 

economical artificial lift method must be selected. This chapter discusses some of the 

most commonly used methods for selecting an artificial lift system. In most cases, 

what has worked best or which lift method performs best in similar fields serve as 

selection criteria. Also, the equipment and services available from vendors can easily 

determine which lift method will be applied. However, when significant costs for well 

servicing and high production rates are a part of the scenario, it becomes prudent for 

the operator to consider most, if not all, of the available evaluation and selection 

methods. 

If the “best” lift method is not selected, such factors as long- term servicing costs, 

deferred production during workovers, and excessive energy costs (poor efficiency) 

can drastically reduce the net present value (NPV) of the project. 

 

5.2.1. Selection by Consideration of Depth/Rate System 
One simple selection or elimination method is the use of charts that show the range 

of depth and rate in which particular lift types can function. Charts like this are 

approximate for initial selection possibilities along with advantage/disadvantage lists 

(see next section). Particular well conditions, such as high viscosity or sand 

production, may lead to the selection of a lift method not initially indicated by the 

charts. Specific designs are recommended for specific well conditions to more 

accurately determine the rates possible from given depths [4]. 

 

5.2.2. Selection by Advantages and Disadvantages 
Table 5.1 provides a useful summary of advantages and disadvantages of the two 

alternative lifting systems on Gyda, while Table 5.2 gives an overall consideration. 

Much of the selection process can be accomplished with depth rate charts and this 

extensive set of tables of artificial lift capabilities. But very severe and special 

conditions can require further study. 

Consideration of reservoir characteristics and location are examples of what will fall 

inn to this category. If the well may be expected to decline rapidly, it would not be 

wise to choose a high volume method that will only be required for a short time. 

Another example would be if there is a lack of electric power or economically 

supplied electric power; the use of ESPs is not possible [8].  
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Table 5.1 

Advantages and disadvantages of ESP and gas lift [4] 
ESP Gas lift 

Advantage Disadvantage Advantage Disadvantage 
Can lift extremely 
high volumes. 

Only applicable with 
electric power. 

Can handle large 
volumes of solids 
with minor problems. 

Lift gas is not always 
available. 

Unobtrusive in urban 
locations 

High voltages (1000 
V) are necessary. 

Handles large 
volume in high-PI 
wells. 

Not efficient in lifting 
small fields or one-
well leases. 

Applicable offshore Impractical in 
shallow, low volume 
wells. 

Unobtrusive in urban 
locations. 

Difficult to lift 
emulsions and 
viscous crude. 

Corrosion and scale 
treatment easy to 
perform. 

Expensive to change 
equipment to match 
declining well 
capability. 

Power source can be 
remotely located. 

Gas freezing and 
hydrate problems. 

Simple to operate. Cable causes 
problems in handling 
tubulars. 

Lifting gassy wells is 
no problem. 

Cannot effectively 
produce deep wells 
to abandonment. 

Easy to install 
downhole pressure 
sensor for 
telemetering 
pressure to surface 
by cable.  

System is depth 
limited because of 
cable cost and 
inability to install 
enough power 
downhole. 

Fairly flexible-
convertible from 
continuous to 
intermittent to 
plunger lift as well 
declines. 

Some difficulty in 
analyzing properly 
without engineering 
supervision. 

Availability of 
different sizes. 

Not easily analyzable 
unless good 
engineering know-
how. 

Easy to obtain 
downhole pressure 
and gradients. 

Casing must 
withstand lift 
pressure. 

Lifting costs for high 
volumes generally 
very low 

Gas and solids 
production are 
troublesome. 

Sometimes 
serviceable with 
wireline unit. 

Safety problem with 
high pressure gas. 

Crooked holes 
present no problem. 

Lack of production 
rate flexibility. 

Crooked holes 
present no problem. 

 

 More downtime when 
problems are 
encountered 
because of the entire 
unit being downhole. 

Corrosion is not 
usually as adverse. 

 

 Casing size 
limitations. 

Applicable offshore.  

 Cannot be set below 
fluid entry without a 
shroud to route fluid 
by the motor. Shroud 
also allows corrosion 
inhibitor to protect 
outside of motor. 
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Table 5.2 

Design considerations and overall Comparisons [7] 
Consideration/System ESP Gas lift 
Capital cost details Relatively low capital cost if electric 

power available. Costs increase as 
horsepower increases. 

Well gas lift equipment cost low but 
compression cost may be high. 
Central compression system 
reduces overall cost per well. 

Downhole Equipment Requires proper cable in addition to 
motor, pumps, seals, etc. Good 
design plus good operating 
practices essential. 

Good valve design and spacing 
essential. Moderate cost for well 
equipment (valves and mandrels). 
Choice of wireline retrievable or 
conventional valves. 

Operating Efficiency Good for high-rate wells but 
decreases significantly for <1000 
bbl/day. Efficiency can vary from 
40% in a low-rate well to 60% in a 
high-rate. 

Fair. Increases for wells that require 
small injection GLRs. Low for wells 
requiring high GLRs. Typically 20%, 
but range from 5 to 30%. 

Flexibility of system Poor for fixed speed. Requires 
careful design. Variable speed drive 
provides better flexibility. 

Excellent. Gas injection rate varied 
to change rates. Tubing needs to be 
sized correctly. 

Miscellaneous 
problems 

Requires a highly reliable electric 
power system. System very 
sensitive to changes downhole or in 
fluid properties. 

A highly reliable compressor with 
95+% run time required. Gas must 
be properly dehydrated to avoid gas 
freezing. 

Operating costs Varies. If high horsepower, high 
energy costs. High pulling costs 
result from short run life especially 
in offshore operation. Repair costs 
often high. 

Well costs low. Compression cost 
varies depending on fuel cost and 
compressor maintenance. 

System reliability Varies. Excellent for ideal lift cases; 
poor for problem areas (very 
sensitive to operating temperatures 
and electric malfunctions). 

Excellent if compression system 
properly designed and maintained. 

Salvage value Fair. Some trade-in value. Poor 
open market values. 

Fair. Some market for good used 
compressors and mandrels/valves. 

System total Fairly simple to design but requires 
good rate data. System not 
forgiving. Requires excellent 
operating practices. Each well is an 
individual producer with a common 
electric system. 

An adequate volume, high 
pressure, dry, noncorrosive, and 
clean gas supply source is needed 
throughout the entire life. System 
approach needed. Low 
backpressure beneficial. Good data 
needed for valve design and 
spacing. 
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One of the factors to consider in artificial lift selection is the failure rates for the 

various systems or the individual components of the systems. Figure 5.1 shows the 

run-life of ESP systems versus their designed motor Horse Power (HP). 

 
Figure 5.1, Run life of ESP systems. The figure is based on Centrilift data. [13] 

 

It is important to note that data like this, which is based on a manufacturer’s 

experience, may be subject to overestimation. 

When planning a new well or field, one must be careful to compare too much with 

other run life studies. The run life of a system is dependent on local conditions like 

scale potential, temperature, sand production etc. 

 
 
5.2.3. Selection by Net Present Value Comparison 
A more thorough selection technique depends on the lifetime economics of the 

available artificial lift methods. The economics, in turn, depend on the failure rates of 

the system components, fuel costs, maintenance costs, inflation rates, anticipated 

revenue from produced oil and gas, and other factors that may vary from system to 

system.  
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A typical NPV formula can look like this: 

 

1

( )
(1 )

n
HC HC i

i
i

WI Q P Cost TaxNPV
k=

× − −
=

+∑      (Eq. 5.1) 

 

Where:  WI = Work Interest (Talisman Energy Norge has 61% on Gyda) 

  Q = Oil rate 

  P = Oil price 

  Cost = All costs, operational (Opex) and capital (Capex) 

  Tax = Governmental taxes 

  k = depreciation rate of the project (percent) 

   

To use the NPV comparison method, the user must have a good idea of the 

associated costs for each system. This requires that the user evaluate each system 

carefully for the particular well and be aware of the advantages and disadvantages of 

each method and any additional equipment that may be required. Because energy 

costs are part of the NPV analysis, a design for each feasible method must be 

determined before running the economic analysis to better determine the efficiency of 

a particular installation [4]. 
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6. Electric Submersible Pumps (ESPs) 
Electric Submersible Pump systems incorporate an electric motor and centrifugal 

pump unit run on a production string and connected back to the surface control 

mechanism and transformer via an electric power cable. 

 

The downhole components are suspended from the production tubing above the 

well’s perforations. In most cases the motor is located on the bottom of the work 

string. Above the motor are the seal section, the intake or gas separator, and the 

pump. The power cable is clamped to the tubing and plugs into the top of the motor. 

As the fluid comes into the well it must flow past the motor and into the pump. 

This fluid flow past the motor, aids in the cooling of the motor. The fluid then enters 

the intake and is taken into the pump. Each stage (impeller/diffuser combination) 

adds pressure or head to the fluid at a given rate. The fluid will build up enough 

pressure, as it reaches the top of the pump, to be lifted to surface and into the 

separator or flow line. 

 

 

 

The basic ESP downhole equipment is: 

  

• The power cable 

• The Pump 

• The seal chamber section 

• The motor 

• Monitoring system (optional) 

 

 

 

 

 

 

 

 

 

 
Figure 6.1, Basic ESP 
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Figure 6.2, ESP surface system. 

 

Figure 6.2 shows an example of a full ESP system. Since this study is more about 

pump performance and sizing, the surface equipment will not be described in detail. 

However the importance and complexity of this must not be forgotten in an ESP 

design. The surface controller provides power to the ESP motor and protects the 

downhole ESP components. Motor controller designs vary in complexity from the 

very simple and basic to the very sophisticated, which offers numerous options to 

enhance the methods of control, protection and monitoring of the operation. 

 

Submersible systems have a wide performance range and are one of the more 

versatile lift methods. Standard surface electric drives outputs from 150 to 150,000 
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bbl/d (24 to 24,600 m3/d) and variable speed drives add pump flexibility. High GOR 

fluids can be handled, but large gas volumes can lock up and destroy pumps. 

Corrosive fluids are handled by using special materials and coatings. Modified 

equipment and procedures allow sand and abrasive particles to be pumped without 

adverse effects. [15] 

 

6.1. Centrifugal pump  
The ESP is a multistage centrifugal pump. A cross section of a typical design is 

shown in figure 6.3. 

 

 

 

Tubing connection 

 

Housing 

 

Stages 

 

Shaft 

 

Intake ports 

 

Pump base 

 

Flange connection to  

seal chamber section 

 

 

 

 

 
Figure 6.3, the inside of a centrifugal pump. 

 

The shaft is connected to the seal-chamber section and motor. It transmits the rotary 

motion from the motor to the impellers of the pump stage. The shaft and impellers 

are keyed, and the key transmits the torque load to the impeller. 
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The stages of the pump are the components that impart a pressure rise to the fluid. A 

stage is made up of a rotating impeller and a stationary diffuser.  

 

 

 

 

 Diffuser          Impeller 

 

 

 

 

 

 

 

 

 
Figure 6.4, Shaft with the rotating impellers attached 

 

 

The stages are stacked in series to incrementally increase the pressure to that 

calculated for the desired flow rate. Figure 6.4 shows the flow path. The fluid flows 

into the impeller eye area and energy, in form of velocity, is imparted to it as it is 

centrifuged radially outward impeller passageway. Once it exits the impeller, the fluid 

makes a turn and enters the diffuser passageway. As it passes through this 

passageway, the fluid is diffused, or the velocity is converted to a pressure. It then 

repeats the process upon entering the next impeller and diffuser set. This process 

continues until the fluid passes through all stages, and the design discharge pressure 

is reached. This pressure increase is often referred to as the total developed head 

(TDH) of the pump. 

There are two styles of stages for the range of flow rates in which ESPs operate. A 

radial stage has the flow entering the impeller or diffuser parallel to the axis of the 

shaft and exiting perpendicular to the shaft. This is often referred to as a “pancake” or 

“mushroom” stage because of its flat shape. The second style is the mixed flow stage 

which has the flow exiting the impeller at an angle less than 90° to the shaft (see 

stage in fig 6.5). 

The mixed flow design handles larger flow rates than the radial and is not that 

vulnerable to free gas and particles [4].  
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A Key feature for both styles of stages is the method by which they carry their 

produced axial thrust. Usually, the pumps that are under a 6 inch diameter are built 

as “floater” stages. On these, the impellers are allowed to move axially on the pump 

shaft between the diffusers. They typically run in a down-thrust position and at high 

flow rates, they may move into up-thrust. 

To maintain the optimum flow path alignment between the impeller and its diffuser, 

the impeller is designed to maintain a down-thrust position through it’s operating 

range (figure 6.5). 

 

 
Figure 6.5, ESP operating range 

 

The manufacturers give the pump performance characteristics on the basis of 1 

stage, 1,0 SG water at 60- or 50-Hz power. A typical performance graph is shown in 

figure 6.6.  The head, brake horsepower (BHP), and efficiency of the stage are 

plotted against flow rate on the x-axis. Pump efficiency is given by: 

[ ]
( )p
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C BHP

η × ×
=

×
 

 

Where:  Q = flow rate 

  TDH = Total Head Developed 

  SG = specific gravity 

  BHP = Break horsepower  

  C = constant = 6, 75 (when Q = m3/d and TDH = m) 
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The head/flow curve shows the head or lift, measured in feet or meters, which can be 

produced by one stage. Because head is independent of the fluid SG, the pump 

produces the same head on all fluids, except those that are viscous or have free gas 

entrained. If the lift is presented in terms of pressure, there will be a specific curve for 

each fluid, dependent upon its SG.  

The highlighted area on the graph is the manufacturer’s recommended operating 

range. It shows the range in which the pump can be reliably operated. The left edge 

of the area is the minimum operating point, and the right edge is maximum operating 

point. The best efficiency point (BEP) is between these two points, and it is where the 

efficiency curve peaks. The shape of the head/flow curve and the thrust 

characteristics curve of that particular stage determines the minimum and maximum 

points. The minimum point is usually located where the head curve is still rising, prior 

to its flattening or dropping of and at an acceptable down-thrust value. The location of 

the maximum point is based on maintaining the impeller at a performance balance 

based on consideration of the thrust value, head produced and acceptable efficiency. 

 

 

 
Figures 6.6, Standard pump curves for head, efficiency and BHP [19]. 
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6.2. Seal Chamber section 
The component located below the lowest pump section and directly above the motor, 

in a standard ESP configuration, is the seal chamber section.  It is basically a set of 

protection chambers connected in series or in some special cases in parallel. This 

component has several functions that are critical to the operation and run life of the 

ESP system, and the motor in particular. 

 

• It protects the motor oil from beeing 

contamination by the wellbore fluid. 

• It allows for pressure equalization between 

the interior of the motor and the wellbore. 

• It also absorbs the axial thrust produced by 

the pump and dissipates the heat that the 

thrust bearing generates. 

 

 

 
Figure 6.7, Seal. 

 

Figure 6.7 shows a mechanical seal which is generally located at the top of each 

protection chamber and is used to prevent well fluid from migrating down the drive 

shaft. 

 

 
 
6.3. The Motor 
The ESP motor is a two-pole, three-phase, squirrel cage, induction design. A two-

pole design means that it runs at 3600 rpm at 60 Hz power or roughly 3500 rpm 

actual operating speed. It operates on three-phase power at voltages as low as 230 

and as high as 5000. Generally, the length and diameter determines the motors HP 

rating. Because the motor does not have a power cable running along its length, it 

can be manufactured in diameters slightly larger than the pumps and seal chamber 

sections and still fit in the same casing bores. 
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6.4. The power cable 

The ESP power cable transmits the required surface power to the ESP motor. It is a 

specially constructed three-phase power cable designed specifically for downhole 

well environments. The cable design must be small in diameter, protect from 

mechanical abuse, and impervious to physical and electrical deterioration because of 

aggressive well environments. They can be manufactured in either round or flat 

configurations (figure 6.8 and 6.9). The round design is the best conductor, but the 

flat design is often used beneath the ESP packer and along the pump and seal 

section because of the small space between ESP and casing. 

 

 
1=Armour, 2=Jacket, 3=Basic insulation, 4=Physical filler, 5=Conductor 

Figure 6.8, round design 

 
1=Armour, 2=Braid, 3=Barrier layer, 4=Jacket, 5=Conductor/insulation gas block, 6=Conductor 

Figure 6.9, flat design 
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6.5. ESP run life  
ESP run lives are dependent on numerous variables broadly characterised as; 

equipment, operation and operating environment. A combination of these factors can 

produce significant variation in ESP survival times, as presented in Figure 6.10.  

 
Figure 6.10, Factors acting on ESP run life [13] 

 
The reliability model for ESPs is described as the “bathtub” concept and uses three 

stages in the life of an ESP:  

 

• Stage one  Infant mortality  ESP fails to start at installation.  

• Stage two  In-service failures  Operational issues.  

• Stage three  Wear out   Failure due to pump wear out.  

 

The failure rates experienced in each of the three stages are not related and must be 

analysed separately.  

Stage one failures occur within 2 days or less of operation. These are therefore 

represented as a percentage of installations that are predicted to not start. A typical 

cause would be damage on installation usually when running in hole (RIH), incorrect 

electrical connection or foreign objects left in the well damaging the stages of the 

pump. 

 

Stage two failures are time independent; this is the field operation of the equipment. 

Electrical failures are common due to insufficient cooling of a unit which occurs at 
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very low flow rates, through gas locking and dead heading of the pump – all of these 

are avoidable under careful supervision. A particularly high risk time is at start up 

when the shaft can snap and undesirable operating ranges may need to be 

traversed. Pressure cycling can also cause the cabling to the pump to fail.  

 

Stage three failures are analysed less frequently with strip downs as pumps generally 

are expected to fail at this point or have been replaced as part of a proactive 

workover plan. Many of the components have a limited life, especially the seals, 

which will degrade over time [12].  

 

The factors on which the run life is dependent on are listed below: 

Design and Sizing  

Proper sizing of the ESP unit is the first factor in achieving a long run life. The unit 

must be sized to operate within the recommended flow range. Well productivity data 

must be accurate to properly size the equipment. The consequences of improper 

sizing is that the ESP will be running outside of operating range causing accelerated 

pump wear, the risk of motor burn out from excessive gas locking or very low flow 

rates. Inaccurate fluid data can lead to a pump sized for the wrong conditions.  

 

Operating Practice  

Poor operating practices are a major cause of failure for ESPs. These can be as a 

result of lack of knowledge in operating the units or an unexpected change of the 

operating environment.  

Downhole information can be used to provide a better perspective of ESP operation 

and performance. Only 2% of ESPs in the world have downhole sensors and even 

those with the data often neglect to use it to control the pumps. Detailed real time 

information concerning the pump pressures and temperatures the system is 

experiencing downhole can be used to help protect, control and optimise the 

operation of the ESP.  

 

BHT Temperature  

Bottomhole temperatures greater than 105 °C is considered a high temperature 

application for ESPs. The motor assembly will need to be checked for clearance at 

the higher temperatures. The consequence of not taking these measures will be a 

shorter component life or reduced MTTF (Mean Time To Failure).  
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Free Gas  

As ESPs are designed to pump liquids and not gas, breakout of free gas or 

alternating slugs of liquid and gas can lead to operational difficulties. As fluid velocity 

decreases past the motor, cooling will become less efficient, and the danger of the 

motor over heating and burning out increases. In the extreme, as the proportion of 

free gas increases, the pump begins to lose head and spin empty of fluid in a 

condition called gas locking.  

 

Viscosity  

High fluid viscosity can cause many problems. As the specific gravity of the fluid 

increases, so does the pump break horsepower requirement. High viscosity also 

reduces the pump’s ability to lift the fluid and its efficiency, as the viscous fluid 

produces more frictional pressure loss in the tubing causing the pump to work much 

harder. The viscosity of produced fluids may change with the application of shear by 

the pump; this may alter over a range of water cuts. Tight emulsions can be formed 

under certain conditions. 

 

Corrosion  

Corrosion from CO2 and H2S can affect the ESP unit by eroding electrical 

connections, seals and fastenings long before impeller performance is degraded. 

Appropriate material selection can avoid these issues. 

 

Sand Abrasion  

Sand production can be detrimental to ESP performance by reducing pump efficiency 

through abrasive wear to the stages. More immediate failure is due to increased 

pump shaft vibration, which in turn leads to mechanical failure of the seals and motor 

burn out due to the subsequent fluid migration.  

The most effective strategy is to eliminate or reduce sand production. Sand 

production can be managed through controlled start up and an understanding of 

sand mobilisation rates. The same sand can be produced repeatedly through the 

pump without making it surface.  

Damage to impellers and stages can be reduced by appropriate material selection 

and an abrasion resistant pump design which provides support and radial shaft 

stabilisation.  
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Foreign Material  

The production of foreign material can cause damage or failure of an ESP. Although 

rare, a foreign object can jam the pump resulting in motor burn out, more commonly 

the material will damage the impellers thus reducing the lift efficiency of the pump.  

 
Deposition  

Scale, asphaltenes, paraffin and hydrates can all deposit in ESPs. The result can be 

blocked or limited pump inflow, reduced efficiency of pump stages or locking of 

stages, with the consequences being reduced efficiency and the associated danger 

of motor burn out. 

 

Electrical Failure  

Electrical failure can happen at surface or downhole. Problems at surface such as 

overload of the controller or transformer are easier to rectify than those downhole 

that interrupt the power source and require a workover intervention to change out 

ESP. 

 

Old Age  

Even if the ESP has been operated within the design envelope and care has been 

taken operationally, the time will come where certain components reach failure point. 

The hardware, stages and bearings are usually over designed so the failure is most 

likely to come from ‘consumable’ items. Seals will degrade over time, motor oil 

deteriorates, o-rings and connections all have shelf lives and electrical components 

within the pump and downhole monitoring package will fail. However, there are many 

examples of ESPs that have exceeded run life targets of over 5 years in operation.  

 

Reliability Issues Specific to High Horse Power Units  

Higher HP units are exposed to greater risk. A higher HP unit contains more motor 

sections and is therefore physically longer than other units. Installation can lead to 

the mechanical damage of units which puts them into the infant mortality category of 

the reliability model. The longer length of the unit, the higher the risk of damage. 

Dogleg severity and deviation limits will be required to be more stringent than for the 

shorter models. Increased physical protection can be supplied by running pumps in 

an enclosed pod to provide defence against mechanical damage whilst RIH. This 

system is much easier to workover and carries much lower operational risks.  

High horsepower pumps are made up of several lower horsepower pumps run in 

series and are therefore dependant on one another. This dependency intrinsically 
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reduces the reliability of the whole system. Reliability is also reduced by the 

requirement for higher power and torque to be supplied to one motor which then 

feeds the others [12]. 

 

6.5.1 Case studies 
Beatrice (Talisman UK) [10] 

The graph below, Figure 6.11, represents the frequency of the run time of pumps 

installed in the Beatrice Field, where Talisman UK is the Operator. This data shows 

that 50% of the installed pumps (P50) run for up to 470 days without failure. The 

available data was for ESPs with a HP range between 165 and 685 HP. Most of the 

Beatrice ESPs are within two HP intervals (201-300) and (401-500). In order to 

obtain a more accurate analysis, data represented by these two ranges was used to 

determine the P50 run life instead. 

 

 
Figure 6.11, ESP run life on Beatrice. The figure shows data from two HP intervals [13]. 

 

This Beatrice data analysis covers 54 operating units which is a respectable sample 

for an individual field. On first inspection, it would seem that the reliability of the ESPs 

increases with HP, which is contrary to the model that suggests increasing motor 

complexity is related to a decrease in ESP reliability. However, the range of motor 

sizes is relatively narrow; most units in the higher HP range are less than 450 HP 

and the lower range being mainly 250 HP units. Attributing difference in the operating 

run life over this small range of HPs does not seem reasonable. The run life duration 
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is being affected by some other factors, namely the operation and operating 

environment of the pumps. 

 

Wytch Farm 

The table below, Table 6.1, represents the frequency of the run time of pumps 

installed in the Wytch Farm Field, where BP is the operator. This data shows that 

50% of the installed pumps (P50) run for up to 1000 days without failure. The 

available data was for ESPs of a motor size range between 840 HP and 1170 HP. 

The Wytch Farm data set of 27 units is smaller than the Beatrice data set, but covers 

a much wider range of motor sizes. The trend here supports the theory that as HP 

increases, reliability decreases.  

 

Table 6.1, Wytch Farm ESP run life [13] 

ESP HP 840 900 1170 

P50 Run Life, days 1216 902 859 

Average Run Life, days 1073 1108 847 

 

The Wytch Farm run lives are substantially longer than those experienced on the 

Beatrice field even though much larger horse powered motors are employed. 

 

In order to select which of the two run life results would be more suitable to represent 

the installation conditions in the Gyda field, a comparison between the properties of 

both fields against Gyda has to be done. The biggest issue compared to Wytch Farm 

and Beatrice is the temperature. The two fields have reservoir temperatures of 70 

and 80 °C, while Gyda has a reservoir temperature of 160 °C. Scale potential and 

possible sand production as a result of the high pressure drawdown imposed by the 

pumps has been identified as two main risks. 

Centrilift, which is the ESP supplier, has given an estimated lifetime of approximately 

two years with a dual ESP solution (described in next section). It must be kept in 

mind that a manufacturer’s estimate may be too optimistic, and it is important that 

TENAS performs or receive a proper analysis of the ESPs running in Gyda 

conditions before making a decision.  

 
 
 
 
 



 
Evaluation of artificial lift methods on the Gyda field 46

6.6. ESP design for Gyda 
Because of the limited lifetime of ESPs, the suggested design for Gyda is a dual 

system. This means that two separate systems are installed, one upper and one 

lower. Only one ESP system operates at the time. The other unit is held as backup 

until it either fails or is shut down voluntarily.  

Dual ESP lift systems enable cost-effective production in applications where rig 

availability may be at a premium and where the cost of workover impacts the overall 

profitability of the well. 

 

 
 

 
Figure 6.12, Dual ESP system design for Gyda. 
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The ESPs are planned to be built into shrouds. This is done to seal off the entire 

system from the casing. The casings in A-19 and A-26 where not originally designed 

to handle production and interaction with produced fluids. When increased pressure 

variation from the pumps also was added, it was decided that the sealed system was 

superior. 

 

To divert the flow between the upper and lower system, Automatic Diverter Valves 

(ADV) are placed above each pump section. The valves will be in a closed position 

when there is a pressure build-up from beneath, and will open when there is a 

pressure build up from above. This means that when the ESP is operating the valve 

will stay in a closed position and opens when the pump is turned off. Therefore the 

production flow can now be directed around or through each ESP depending on 

which one is operating. The ADV also protects the pump against solids and fluid fall-

back when it is turned off, which again increases the run life of the pump. The design 

allows for bullheading, for killing the well or scale squeezing. A schematic of the ADV 

operating is shown in figure 6.13 [22]. 

 

 
Figure 6.13, ADV operating schematic [22] 
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6.7. ESP secondary effect 
Gyda is divided into 3 main units A-, B- and C-sand (chapter Gyda field), where the 

upper A-sand has the highest permeability.  

When installing ESPs it is expected that the pumps will draw their near wellbore area 

pressure down with up to 200 bar. An effect of this will be that oil from the low 

permeability areas will migrate into the high permeability areas. Figure 6.14 shows 

how oil from the B-sand and lower A-sand migrates into the high permeability upper 

A-sand. There are large oil reserves in the low permeability zones that initially never 

would be produced, and this secondary effect can increase oil recovery significantly. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.14, ESP secondary effect. Pressure drawdown makes oil migrate into the high perm. 
zone 
 
 
This effect is not included in the production forecast later in this study, because it has 

not been accounted for in the initial reservoir model. However, it can be kept in mind 

that the result from the production forecast will be conservative and that there is a 

great possibility of a higher production because of this secondary effect. 
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7. Gas lift 
Gas lift is the process of injecting gas in the annulus between tubing and casing 

where it will enter the tubing via a gas-lift valve located in a side pocket. The gas will 

then reduce the weight of the produced fluid column, which will lower the bottomhole 

pressure. Reservoir fluid will then experience lower resistance to flow, resulting in 

increased flow rates and increased production. 

 

 
Figure 7.1, Gas lift. Gas is pumped down the annulus and into the tubing [18]. 
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Gas lift is the artificial lift method that most closely resembles the natural flow 

process. The only major requirements are a supply of pressurized injection gas. 

Normally, the lift gas is supplied from other producing wells, separated from the oil, 

run through a gas compressor and pumped in the annulus at high pressure. The gas 

from the producing well is then recovered again, recompressed and re-injected. 

However, the gas compressing process is power consuming and expensive [16]. 

 

Figure 7.1 shows a typical continuous flow gas lift installation. Other methods are: 

 

Intermittent gas lift: 

If the gas is injected in intervals it is called intermittent gas lift. This can be used in 

low producing wells where one wants to enable some liquid to build up in the bottom 

of the well before one injects a slug of gas which carries the fluid to surface [18]. 

 

Dual gas lift: 

Because of limited drilling slots on rigs, an alternative to drilling two separate wells to 

drain different reservoir sections is to have two independent tubing completions in the 

same well. If these require gas lift, the gas can be supplied from a common casing 

and injected into the different gas lift valves (GLV). Another way is to inject the gas in 

one string and produce from the other. This type of completion is called a dual gas 

lift. 

 

Self lift: 

One alternative to the process of injecting the gas from surface is to simply let it flow 

naturally from the gas reservoir located above the oil zone. This type of gas lift is 

called self lift, auto lift or natural lift. The well must penetrate both the gas cap and 

the oil zone to achieve this. A gas cap or reservoir capable of sustaining the well with 

sufficient rates for the lifetime of the well is needed for this completion. Self lift 

completions eliminate the need for surface gas compressors and other gas lift 

equipment. Such wells can be fitted with downhole flow-control valves and 

permanent monitoring equipment which qualifies the wells as intelligent wells [16]. 
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7.1. The unloading process 
After a well is completed or worked over, the fluid level in casing and tubing is usually 

at or near the surface. The gas lift pressure available to unload the well is generally 

not sufficient to unload fluid to the desired depth of gas injection. This is because the 

pressure caused by the static column of fluid in the well at the desired depth of 

injection is greater than the available gas pressure at injection depth. In this case a 

series of unloading valves is installed in the well. These valves are designed to use 

the available gas injection pressure to unload the well until the desired depth of 

injection is achieved. Figure 7.2 shows the unloading process in a continuous gas lift 

system. 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 7.2, the unloading process. 

 

The figure show a well with 3 gas lift valves, the two uppermost are called unloading 

valves, while the lowest one is called operating valve. When gas reaches the first 

unloading valve, gas is injected into the tubing, as shown in part B of Fig 7.2. The 

liquid in the tubing get aerated and the static tubing pressure at the valve depth 

decreases to a stabilized low value that corresponds to the gas liquid ratio (GLR). 

The lower valves are still open and the liquid level in the annulus continues to drop. 

 

When the liquid level in the annulus reaches the next unloading valve, gas will be 

injected through the valve. This is the most critical moment in the unloading process, 

because both unloading valves inject gas at the same time as shown in Part C. The 

upper valve has to be closed in order to move the injection point down to the 

operating valve and ensure that gas is injected at a single point only. Proper design 
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and setting of the unloading valves ensure that the shallower valve closes just after 

the next lower valve starts injecting gas, as shown by part D. 

As the middle valve continues injecting gas, the tubing pressure at that depth falls 

and the annulus fluid level continues to drop. If the unloading string is properly 

designed, the stable liquid level in the annulus will be just below the lowest valve, 

which is the operating valve. When gas reaches the operating valve, gas will be 

injected into the tubing. Then it is very important that the middle valve closes, as 

shown part F. By now the objective of the unloading process has been met and gas 

is injected through the operating valve only [2]. 

 

 
 

7.2. Gas lift performance curve 

The gas lift performance curve is a plot of the well’s liquid rate vs. the gas injection 

rate for a given surface gas injection pressure and shows the producing system’s 

response to continuous flow gas lifting (Fig. 7.3). The figure indicates that at low 

injection rate, any increase in the gas volume increases the well’s liquid output. As 

injection rates increase, the rate of liquid volume increase falls off and the maximum 

possible liquid rate is reached. After this maximum any additional gas injection 

decreases the liquid production. In this region of high gas injection rates, multiphase 

flow in the tubing is dominated by frictional effects. Consequently, bottom-hole 

pressure starts to increase and liquid inflow to the well diminishes. 

 

 
Figure 7.3, Gas lift performance curve. The figure shows the total production rate plotted 

against the rate of lift gas injected [14]. 
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7.3. Gas lift valves 
Unloading valves 

The Injection Pressure Operated (IPO) valve is the most commonly used type of 

unloading gas lift valve, and is currently used on Gyda. Other types worth mentioning 

are Production Pressure Operated (PPO) valves, balanced bellows valves, balanced 

flexible sleeve valves, and Pilot valves.  

A standard IPO valve contains a nitrogen pre-charge chamber and a flexible bellows 

assembly, which provide the closing force of the valve. The axial position of the stem 

determines if the valve is open or closed for gas injection. When injection gas 

pressure exceeds the closing force the bellows compresses, thus lifting the valve 

stem off its seat, allowing gas to be injected through the valve. The schematic of a 

conventional IPO unloading valve is shown in Fig. 7.4. The reverse flow check valve 

consists of a spring loaded dart and a seat. When the check valve is closed tubing-

pressure from below push the dart against the seat. Despite the check valve, tubing 

pressure can act on the valve stem due to pressure trapped between the port and 

check valve and unavoidable imperfection in the check valve seal.  

 
Figure 7.4, conventional unloading valve [24]. 
 

By writing the force balance for the valve stem, the conditions for opening and 

closing can be found. In the closed position nitrogen dome pressure Pd acts on the 

area of the bellows Ad and provides enough force to keep the stem against the port. 

All other forces try to open the valve, the largest force comes from the injection 

pressure Pi, which acts on the doughnut shaped area of the bellows Ad minus the 

area of the port Ap. A much smaller force comes from the production pressure Pp 
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that acts on the port area Ap of the stem tip. The valve opens when the sum of the 

opening forces exceeds the closing force: 

Pi (Ad - Ap) + Pp Ap > Pd Ad       (Eq. 7.1) 

 

Solving this equation for injection pressure Pi when forces are in equilibrium: 

 

Pi = Pd Ad/(Ad-Ap) - Pp Ap/(Ad-Ap)       (Eq. 7.2) 

 

To simplify, introducing the term R = Ap/Ad, gives the equation for the injection 

pressure necessary at valve depth to open the valve: 

 

Pi = Pd/(1-R) - Pp R/(1-R)        (Eq. 7.3) 

 

As seen from the equation (7.3), to open the valve from the closed position depends 

not only on injection pressure, but also on production pressure. If production 

pressure is constant, the valve will open when injection pressure exceeds the value 

calculated by this equation. When the valve starts to open injection pressure will act 

on the whole area of the bellows and completely lift the stem off the seat. When the 

valve is fully open a new force balance can be written. Closing force is as before from 

the dome pressure Pd, acting on the bellows area Ad. The opening force is provided 

by only injection pressure Pi acting on the bellows area Ad. The closing equation is 

therefore: 

 

Pi Ad = Pd Ad         (Eq. 7.4) 

 

Pi = Pd          (Eq. 7.5) 

 

The valve will close when injection pressure becomes lower than the dome pressure. 

A graphical presentation of the operating principle is shown in Fig. 7.5. When 

production pressure is higher than injection pressure, the valve is closed by the 

check valve, that is shown by the area above the line Pp= Pi. At injection pressures 

lower than the dome pressure, the valve will be closed, as shown by the shaded 

area. Opening of the valve occurs along the bold line where equation (7.3) is in 

equilibrium. Closing occurs where dome pressure equals injection pressure, as 

shown by the vertical line and equation (7.5). In the triangular area between the 

opening line and the closing line, the state of the valve depends on its previous state. 

This design allows for flexibility should production conditions change, such as water-
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cut increase. The disadvantage of this type of valve is that the maximum depth of 

injection is reduced for each unloading valve used, because casing pressure has to 

be reduced in order to close an unloading valve [2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5, IPO gas lift valve operating principle [2] 

 

Operating valve 

The lowest valve is often referred to as the operating valve or orifice valve. For a 

continuous gas lift system it is recommended to use a "Nozzle-Venturi valve" which 

will provide a more constant gas rate than the old “square-edged orifice”. 

 

In a conventional square edge orifice, the gas rate through the valve increases as 

differential pressure over the valve increases gradually until critical flow is achieved 

at a critical pressure ratio of about 0,55. At critical flow, supersonic velocity is 

reached in the orifice, and a further increase in differential pressure will not cause 

increased gas rate. A typical continuous gas lift installation operates in the subcritical 

range; this implies that that gas injection rate will change due to inevitable pressure 

fluctuations at valve depth. When tubing pressure at valve depth increases, the 

injected gas rate will decrease and vice versa, since the valve is in the sub critical 

range. This behaviour is opposite to the basic principle of steady continuous gas 

lifting, which is that there should be more gas injected when it is needed. 

Therefore square edge orifice valves are usually not recommended due to instability 

problems and occurrence of heading in tubing and casing. The orifice size or cross 

sectional area of the throat will have to be sized according to the gas rate to be 
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injected to achieve critical flow. A common mistake in gas lift design is to install a too 

large orifice size which would cause a lower percentage of critical flow. To prevent 

the problems associated with sub critical flow and instability, replacing the square 

edge orifice with a converging-diverging venturi nozzle as shown in Fig 7.6, will 

ensure that critical flow is achieved at a significantly lower differential pressure ratio. 

A venturi valve will achieve critical flow at as little as roughly 0,9 in differential 

pressure ratio as shown in Fig 7.7 . This means that with a venturi valve the gas 

injection rate will stay stable and independent of tubing pressure fluctuations, and 

prevent heading and instability. The disadvantage of this valve is that it is less flexible 

for future changes, since the injection rate through it is almost fixed, and that could 

possibly lead to a lower production rate if a higher production rate is achievable at 

another rate. 

 

For preventing backflow into the tubing/casing annulus, they are equipped with 

standard reverse flow check valves. 

 
 
 
 
 
 
 
 
 
 

Figure 7.6, cross section of square edge orifice and venturi valve [2]. 

 
 
 
 
 
 
 
 
 

Fig 7.7, Gas passage characteristics comparison [2]. 
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7.4. Gas lift completion procedure 
The tubing is fitted with a sidepocket mandrel, where the sidepocket can have a gas-

lift valve, a chemical-injection valve or similar. The gas-lift valve can either be 

preinstalled or it can be placed in the sidepocket by means of wireline. If it is not 

preinstalled the sidepocket will contain a dummy valve which isolates the tubing from 

the annulus. Setting and pulling a gas-lift valve is normally done by slickline. But if 

the well has a deviation of over 65 degrees, an electrical wireline in combination with 

a well tractor is used. In both cases, a kickover-tool (KOT) is run in the well.  

 

The KOT is lowered into the hole and 

a location finger will locate an 

orientation groove in the sidepocket 

mandrel. It is important to be careful in 

the transition between pup joint and 

sidepocket as the location finger can 

get stuck and one can risk trigging the 

KOT prematurely. Pulling on the 

wireline with a predetermined force will 

orient the KOT in the right direction. 

Pulling further will shear a pin in the 

tool allowing the arm with the valve to 

kick over. It can then be lowered into 

the empty sidepocket if the well is 

vertical or pushed by a stroker tool if it 

is deviated. One should then pressure 

up the tubing or bleed down the 

annulus to make sure that the valve is 

properly latched into the sidepocket. 

Hopefully, the pressure difference will 

be sufficient to push the valve in place.  

 

 

Fig 7.8, Valve installation with KOT. [24] 
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When the valve is latched into the sidepocket one can pull on the wireline with a 

predetermined force or activate the stroker and another pin will shear, freeing the 

running tool from the gas-lift valve. Further pulling on wireline or activation of stroker 

will shear another pin in the KOT. The tool string can then be pulled out of the well. 

Figure 7.8 shows the running process. The sequence of pulling a valve is identical, 

with a pulling tool replacing the running tool [24]. 
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8. PROSPER 
PROSPER is the industry standard single well performance design and optimization 

software, it can model most types of well completions and artificial lifting methods. 

PROSPER is used by major operators worldwide. The software allow building of well 

models with the ability to address all variables such as well configuration, fluid 

characteristics (PVT), multiphase VLP correlations and various IPR models. Tuning 

of the models is possible by matching real field production data, the benefit of 

matching is the ability to model different scenarios with increased accuracy. 

 

 

 
Figure 8.1, PROSPER front display. 

 

Calculation of VLP using multiphase flow correlations with evaluation of VLP 

variables is the major application of the PROSPER software. Sensitivity analysis on 

future changes of parameters that affect VLP and IPR are easily assessed.  
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The artificial lifting methods available are: 

• Electric Submersible Pump - ESP 

• Gas Lift 

• Hydraulic Pumps - HSP 

• Progressive Cavity Pumps - PCP 

• Jet Pumps 

• Sucker Rod Pumps 

• Multiphase Pumps 

• Injection of diluents 

• Gas lift with coiled tubing 

 

A full range of well types can be modelled in PROSPER including gas, oil, water, 

condensate and steam. Different configurations such as angled, multi-layer and 

multi-laterals can also be modelled. A full range of IPR models can be used in 

Prosper including: PI entry, Vogel, Composite, Fetkovich, Jones, horizontal well 

model plus several others. Various completion configurations such as gravel pack, 

open, cased and perforated hole are also available. [21] 
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8.1. Basic theory of PROSPER 
To predict pressure and temperature changes from the reservoir, along the wellbore 

and flow line tubular it is necessary to accurately predict fluid properties as a function 

of pressure and temperature.  

The Black Oil PVT model is used for the vast majority of applications. 

Different applications can be chosen for The Black Oil model in PROSPER. It can be 

tuned to a retrograde condensate model, dry and wet gas model, or an oil and water 

model. The oil and water model which is used for this study, takes the surface 

production of oil and associated gas together with the water cut to determine the well 

mass flow rate. PVT correlations are used to find the amount of gas at each pressure 

and temperature. Bo, Bg and Bw are evaluated at each calculation step to find the 

phase densities.  

When both basic fluid data and some PVT laboratory measurements are available, 

the program can modify the Black Oil model correlations to best-fit the measured 

data using a non-linear regression technique. When detailed PVT laboratory data is 

provided, it can be entered in table format. 

The second option is the Compositional model. This is used when a full 

Equation of State (EOS) description of the fluid is available and all the PVT can be 

obtained from a Peng-Robinson or a Soave Redlich Kwong description of the fluid 

phase behavior. The EOS method relies on empirical correlations for predicting 

density, viscosity etc. and should only be used for specific specialized applications. 

 

VLP correlations describe various methods of calculating pressure losses in inclined 

pipes. While the basic form of the pressure loss equation is the same for all 

correlations, the treatment of multiphase friction and gas/liquid slip (holdup) varies 

considerably. The various VLP correlations were designed around specific sets of lab 

data. They can therefore be expected to perform best for field conditions that 

approximate the experimental conditions.  

There is no universal rule for selecting the best correlation for a given well. The 

correlation must be selected on the basis of flow regimes and closeness of fit to 

measured pressure data. In making a selection the purpose of analysis should be 

considered. A slug flow correlation that closely matches current production may not 

be applicable if, for example, the GOR is expected to increase greatly in the future. 

 

The IPR describes pressure drawdown as a function of production rate. The 

drawdown is a complex function of pressure drawdown, fluid PVT properties, 

formation permeability (absolute and relative), effective overburden etc. For practical 
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engineering purpose, a number of IPR models have been developed and 

implemented within PROSPER. For this study the PI Entry model (described in 

section 3.2.) is used [6]. 

 

 
8.2. Building a base model for A-19 and A-26 
The first step when modelling a new well in PROSPER is to fill out a system 

summary like figure 8.2 shows. The Black Oil model, with the oil and water option 

describing the fluid, is used for both A-19 and A-26. It is also here the choice of 

artificial lift method is made, which allows us to fill in information and design a system 

at a later stage. 

 

 
Figure 8.2, System summary. 
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8.2.1. PVT 
The next step is to fill in the PVT data. First the basic data for the Black Oil model for 

the well is entered (table 8.1). Second, PVT test data is entered and matched to the 

Black Oil correlations.  

 

The correlations are mathematical best fits to sets of lab measurements. They 

represent the PVT behaviour of average hydrocarbons. Each individual fluid sample 

will behave similarly on average, but not exactly as predicted by the correlation. By 

comparing the values predicted by the correlation and measure lab data, adjustment 

factors for the correlation can be found that minimise the overall difference. 

PROSPER uses a non-linear regression to do this by applying a multiplier 

(Parameter 1) and a shift (Parameter 2) to each correlation. Figure 8.3 shows how 

the software matches the data. Parameter 1 should be close to one and Parameter 2 

close to zero. Standard deviation represents the overall closeness to fit and should 

be as small as possible. 

 

 
Figure 8.3, PVT correlations. 
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Table 8.1, General PVT input for A-19 and A-26 

Input parameters A-19 and A-26 

Solution GOR, Sm3/Sm3 159,4 

Oil Gravity, kg/m3 804,2 

Gas Gravity, kg/m3 1,07864 

Water salinity, ppm 172995 

Mole percent H2S 0 

Mole percent CO2 1,77 

Mole percent N2 0,868 

 

 

 

 

8.2.2. IPR 
When the PVT data has been properly matched, one can start making the IPR curve. 

As mentioned in the well performance chapter there are a lot of models for making 

the IPR. The most used model for Gyda wells are the simple “PI entry”. This model is 

based on equation 3.4 which generates a straight line above the bubble point. The 

Vogel empirical solution (Eq. 3.5) is used below bubble point. The Productivity index 

entered is used to calculate the IPR. The IPR rates are always given as liquid rates. 

Hence the PI refers to liquid rate. 

 

The data in table 8.2 and 8.3, which is entered into the IPR section, is based on an 

Eclipse reservoir simulation made by the TENAS reservoir department. The reservoir 

simulation covers a “base case”, where no artificial lift method is installed, and an 

“ESP case”. There has not been made a prediction for a “gas lift case” yet, but it is 

assumed that a gas lift installation would lower the static BHP with 20 bar compared 

to the “base case”. “Base case” water cut is also assumed for the gas lift. 

The water cut is lower for the “ESP case”. ESPs will drastically draw down the 

pressure in near wellbore area. This makes the oil expand, thus less water is 

produced. 

 

The GOR is approximately the same for both the simulated scenarios, so the same 

GOR is assumed also for gas lift. Because A-26 is currently dead, there is no “base 

case” simulation for production and hence no prediction of GOR or water cut. 
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However, since it is assumed that the GOR is independent of lift method, the same 

GOR as for ESP production is assumed. The “base case” water cut is based on the 

latest well test. 

 

All the base simulations (PROSPER) in this study are based on the predicted 

reservoir conditions for May 2010 which is the planned finish of artificial lift 

installation in A-19 and A-26. 

 
Table 8.2, IPR input for A-19 

IPR data for A-19, predictions for May 2010 

Reservoir pressure, barg 400 

Reservoir temperature, °C 155 

Water cut, % 53, 44 for ESP 

Total GOR, Sm3/Sm3 140 

PI, Sm3/d/bar 6 

 

 
Table 8.3, IPR input for A-26 

IPR data for A-26, predictions for May 2010 

Reservoir pressure, barg 400 

Reservoir temperature, °C 155 

Water cut, % 86, 81 for ESP 

Total GOR, Sm3/Sm3 160 

PI, Sm3/d/bar 9 
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8.2.3. Equipment 
For PROSPER to be able to calculate the pressure and temperature profile along the 

well, completion, survey and temperature data is needed.  

For A-19 and A-26 the following survey data is entered: 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.4, survey data for A-19. The well path is plotted to the right. 
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Figure 8.5, survey data for A-26. The well path is plotted to the right. 

 

 

For implementation of gas lift or ESP in the two wells a full workover is necessary. 

ESPs are a part of the tubing, and the wells does not contain side pockets so that 

gas lift valves can be installed by wireline. However, the geometry of the production 

tubing would look very much the same as for the old wells. Therefore the current well 

completion is used for the PROSPER simulations. Inner and outer diameter of 

casings, tubings and liners are put into the model. Inner diameter of restrictions like 

the downhole safety valve is also accounted for. A tubing and casing inside 

roughness of 0,0006 inch is used. Figure 8.6 and 8.7 shows the current completion 

schematics of the two wells. 
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Figure 8.6, Completion schematic of A-19 
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Figure 8.7, Completion schematic of A-26 
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For both wells the temperature profile in table 8.4 is used. Default values for heat 

capacities are entered. 
 

Table 8.4, Temperature profile 

Position Temperature 

Wellhead 10 °C 

Seabed 6 °C 

Top perforation 155 °C 

 

 

8.2.4. Results 
Given these input parameters PROSPER gives a production profile, with no artificial 

lift, for A-19 and A-26 in may 2010. A-19 has an oil production of 2381 bbl/d and A-26 

produces 234 bbl/d of oil. The reason why we see a production in A-26 could be that 

there is enough pressure support from injectors and in 2010 A-26 actually can 

produce. However, the well must be considered as dead because it doesn’t take 

more than a small change, which is well within the margins of error, in water cut or 

reservoir pressure for there to be no production point again (figure 8.10). Figures 8.8 

and 8.9 show the production point in May 2010, which is the intersection between the 

VLP and IPR curve. 

 

 
Figure 8.8, production point of A-19 in May 2010 
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Figure 8.9, production point of A-26 in May 2010 

 

 

 
Figure 8.10, A-26 with no intersection between IPR and VLP (situation today) 
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9. Gas lift design 
When performing a gas lift design, the best compromise between a number of 

objectives are sought: 

• Find optimum production and lift gas injection rates. 

• Inject gas as deep as possible. 

• Determine depth and number of unloading valves. Check if design has 

sufficient flexibility to handle current and future well conditions (increased 

WC, declining reservoir pressure and PI etc) 

• Produce at stable conditions without "heading" and avoiding pressure surges 

that could result in multipoint injection and cause pressure fluctuations large 

enough to be disruptive to surface facilities. 

• Optimize in terms of revenue by accounting for cost of produced water 

disposal and lift gas compression. 

 

The biggest obstacle for performing proper gas lift on Gyda is the capacity of the 

compressor. It currently gives 56 600 Sm3/day with an injection pressure of 165 bar. 

There is much more gas available, but for a full scale gas lift campaign a bigger 

compressor has to be purchased. 

For this study, full capacity of 56 600 Sm3/day is assigned to each well. This is 

assumed to be a realistic scenario for a full scale gas lift campaign, with a proper 

compressor. 

 

Studies done by TENAS has shown that the older Gyda casings, like the ones in A-

19 and A-26, which was drilled in the early nineties, can not handle the pressure from 

gas lift injection lower than 2600 m TVD. This implies that maximum injection depths 

in these wells will be at 2830 and 2650 m MD. 

 

When designing a gas lift system with more than one well, one should optimize the 

allocation of available gas, so that the total production is maximized. The developers 

of PROSPER has made a software for this (GAP), but this is not the scope of this 

study and has not been done. 
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9.1. Modelling A-19 and A-26 with gas lift 
When modelling a gas lift well a number of parameters have to be entered into the 

system. Figure 9.1 shows the gas lift design menu. The gas available for lifting has 

the following characteristics: 

 
Table 9.1, Lift gas data 

Gas lift gas gravity, sp. gravity 0,784 

Mole percent H2S, % 0 

Mole percent CO2, % 2,76 

Mole percent N2, % 0,98 

 

 

 
Figure 9.1, gas lift design menu. 

 

The operating injection pressure is set to 165 bar. Desired dP across valves, 10 bar, 

is entered to ensure well and gas injection system stability. Minimum spacing 

between valves is set to 60 m. Sea water is assumed as the load fluid before gas lift 

start, which result in a static gradient of 0,1 bar/m. Also maximum injection depth for 

each well is set. 
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The most used valve type by TENAS is the casing sensitive, which is also chosen 

here.  Valve settings is chosen to “Pvc = Gas Pressure”. Then PROSPER sets valve 

dome pressure to balance casing pressure at depth. Unloading valves will close 

when the casing pressure drops below this value. 

For this study a “Camco BK Normal” valve is chosen from the PROSPER database. 

The software calculates which port sizes that will generate optimal production. A 

valve from another manufacturer would maybe require different port sizes, but 

PROSPER still calculates the same optimal production. Therefore the choice of type 

is not that important as long as it is casing sensitive. 

 

Now PROSPER is able to calculate a gas lift performance curve. Figure 9.2 and 9.3 

show the curves for A-19 and A-26 with the May 2010 conditions (table 8.2 and 8.3). 

 

 

 

 
Figure 9.2, Gas lift performance curve for A-19 
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Figure 9.3, Gas lift performance curve for A-26 

 
 
 
The performance curves give us a plot of oil produced versus the gas injected. The 

injection gas rate that gives the highest production rate can be found, although that 

might not be the optimum point of injection in terms of revenue. That point is where 

the incremental additional cost of compressing gas equals the incremental revenue 

of the additional oil produced. The economic optimum gas injection rate is often 

found to the left of the maximum production rate in such a curve. When looking at the 

curves it is clear that none of the wells will reach maximum production with an 

injection rate of 56 600 Sm3/day. A-26 is producing in a steeper part of its curve, but 

an increased injection in this well might not increase the total production. A-19 

produces larger oil volumes, so even if we inject more gas into A-26, and get a larger 

percentual increase of out of this well, A-19 will give more oil with the same gas 

injected. This shows the importance of a full system analysis. 

Looking at the curve from A-19 one can see that it starts from approximately 2380 

bbl/day. This coincides with the result from the base model where A-19 produced 

2381 bbl/day with natural flow. The same goes for A-26. 
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9.2. Positioning of valves 
Valve spacing is not affected by the choice of unloading method (casing or tubing 

sensitive), but of whether the well IPR is used for calculating the unloading rate or 

not. When designing the valve system PROSPER can be set to check whether the 

solution rate is achievable with respect to the IPR. IF necessary the design rate is 

reduced and the spacing calculation is repeated. Figures 9.4 and 9.5 shows the 

result of valve spacing design for A-19 and A-26. 

 

 
Figure 9.4, valve spacing for A-19 
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Figure 9.5, valve spacing for A-26 

 

 

The valve spacing calculations is done in the following way: 

For the tubing, with the designed injected gas rate, a pressure traverse is calculated 

from the surface and downwards using the gas lifted flowing gradient (blue line). A 

similar plot is made for the casing pressure (right red line). 

The injection depth (orifice valve) is the depth at which the flowing tubing pressure 

equals the casing pressure gradient less the designed pressure loss across the 

orifice. However, injection depth is often limited by well design, for example by a 

production packer or weak casings like on Gyda. 

The shallowest unloading valve is placed at the depth that balances the tubing load 

fluid pressure (left red line) with the casing pressure at that depth.  Further unloading 

valves are placed by traversing down like this between the casing and gas lifted 

tubing pressure gradient lines. 
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Valves are placed ever deeper until the inter valve spacing equals a pre-set 

minimum, or the maximum injection depth has been reached. 

Once the first design is complete, the software can re-calculate the flowing tubing 

gradient using the current operating valve depth. This was not necessary for A-19 

and A-26 because both wells were able to inject at the pre set maximum injection 

depth. 

 

 

9.3. Results 
The result from the gas lift design is given in table 9.2: 

 
Table 9.2, Results from gas lift design 

Result / Well A-19 A-26 

Depth unloading valve, m MD 1828 1714 

Unloading valve port size, 64ths inch 12 14 

Depth operating valve, m MD 2830 2650 

Operating valve port size, 64ths inch 14 14 

Oil rate with gas lift, bbl/day 2988 948 

Oil rate without gas lift, bbl/day 2381 234 

 

 

The results show that both wells get a significant increase in production from gas 

injection. Both wells only needed one unloading valve. This is a combination of the 

operating valve setting depth, gas lift injection pressure and load fluid density. For 

example if the wells did not have a depth constrain and was displaced to a 800 

kg/m3 fluid instead of seawater when starting the injection, the operating valve could 

be set deeper and we would see an increased production. This will be discussed in 

the next section. 
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9.4. Sensitivities of injection depth 
To see the effect of injection depth a sensitivity analysis was run on this. PROSPER 

allows the injection depth to be a variable, and calculates production for each depth 

entered. Table 9.3 shows at which depths the analysis was run and the 

corresponding results. 

 
Table 9.3, injection depth analysis on A-19 and A-26 

A-19 A-26 

100 m MD 2392 bbl/day 100 m MD 309 bbl/day 

500 m MD 2435 bbl/day 500 m MD 492 bbl/day 

1200 m MD 2597 bbl/day 1200 m MD 721 bbl/day 

2000 m MD 2810 bbl/day 2000 m MD 876 bbl/day 

2830 m MD 2988 bbl/day 2650 m MD 948 bbl/day 

3000 m MD 3021 bbl/day 3000 m MD 979 bbl/day 

4000 m MD 3178 bbl/day 3850 m MD 1033 bbl/day 

 

 

 
Figure 9.6, injection depth analysis on A-19. The figure shows how the VLP curve is moved 

as a function of injection depth. 
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Figure 9.7, injection depth analysis on A-26. The figure shows how the VLP curve is moved 

as a function of injection depth. 

 

The results show that a deeper setting depth of the operating valve gives an 

increased production. However, the results also show that the effect off moving the 

valve to the bottom of the 9 5/8” casing, at approximately 3000 m MD in both wells, 

has a minimal effect (See completion drawings). There is a bigger effect of moving 

the valves down to the bottom of the tubing inside the 7” liner (4000 m and 3850 m 

MD), which gives 190 and 85 bbl/day more. This has not been done on Gyda but has 

been tried with success on another TENAS installation, Varg. This could be a 

possibility for newer Gyda wells with more solid casings than A-19 and A-26. 
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10. ESP design 
Compared to the gas lift part of this study, an ESP system is not designed in 

PROSPER. A study and design done by Baker Hughes Centrilift has provided the 

system data given in table 10.1. Upper and lower systems are the same in both 

wells.  

 

Table 10.1, ESP system data [19] 

Equipment A-19 and A-26 

Pump Centrilift 562 P110 

Operating range 7000 – 13200 bbl/day (60Hz)

Motor Centrilift 562 450 HP 

Cable Grade 1 copper 

# Stages 84 for A-19, 60 for A-26 

 

The 562 (Figure 10.1) series is designed for use in 7 inch wells 

where large production volumes are required and in 9 5/8 inch 

casings when space is limited. The outside diameter of the 

pump housing is 5,62 inches, but the pump is capable of 

operating in 7 inch wells when the casing weight is 26 lbs/ft or 

lower. All pump models in this series have a 1 3/16 inch shaft, 

which allows for a maximum horsepower rating of 1250 at 60 

Hz. The 562 series comes standard with carbon steel metallurgy 

but certain configurations can be supplied in corrosion resistant 

alloys or with optional “Monel coating” when installed in 

corrosive environments. 

As described in chapter 6.6. it is planned for a dual ESP and 

sealed shrouds solution. The units will be put inside the 9 5/8” 

casing as close to the 7” liner as possible. For this study they 

are set at a depth of 3050 m MD. The pump is planned to be 

operated in the range between 50 and 60 Hz . 

        Figure 10.1, Centrilift 562 P110 [19] 
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10.1. Modelling A-19 and A-26 with ESP 

Coefficients (appendix) for head and horsepower received by Centrilift is put into the 

PROSPER database. With these coefficients the software calculates pump curves so 

that one can simulate for any condition (Figure 10.2). 

 

 
Figure 10.2, pump curves for the Centrilift 562 P110 

 
 
From the figure we see that the minimum operating range, running at 60 Hz, is 7000 

bbl/day and maximum is 13 200 bbl/day. The perfect operating point is at the best 

efficiency line. This is where the efficiency curve for the pump peaks (see section 

6.1.). 

 

There are two options when modelling an ESP well. One is to enter the design menu 

and let PROSPER design the ESP scenario, and choose a pump from the options 

that the software suggests. The second option is to enter the pump data directly 

when type of pump and motor is already decided, like in this case. 

 

The data is put into the menu in figure 10.3. Pump, motor and cable are selected 

from the database. 
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Figure 10.3, ESP input in PROSPER (A-19 as an example) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Evaluation of artificial lift methods on the Gyda field 84

10.2. Results 
Given the May 2010 conditions and ESP data PROSPER calculates production in the 

ESP wells: 

 
Table 10.2, Results from ESP simulation 

Result / Well A-19 A-26 

Oil rate with ESP, bbl/day 4619 1584 

Total liquid rate ESP, bbl/day 8248 8405 

Oil rate with gas lift, bbl/day 2988 948 

Oil rate without artificial lift, bbl/day 2381 234 

 

The wells show a significant increase in production compared both to the gas lift case 

and base case.  

Both wells have a total liquid rate which lies well within the operating range of the 

pump, between the minimum and best efficiency line. This means that there is still a 

good capacity for handling more fluid. 

 

 
Figure 10.4, A-19 ESP system 
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For pumps in PROSPER e.g. ESPs, system analysis is conducted at the pump 

discharge (outlet of pump). Figure 10.4 has the following explanation: 

The green curve is the IPR pressures referred to the bottom of the well.  

The blue curve is the pump discharge pressure. This is the pump intake pressure 

corrected for dP added by pump.  

The red curve is VLP from top of well to pump discharge (and not bottom of well).  

The solution rate is obtained by the intersection of pump discharge pressure and the 

VLP.  
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11. Production forecast 
Based on an Eclipse reservoir simulation a sensitivity analysis is made on water cut 

and reservoir pressure using PROSPER. PI and GOR are assumed constant. For 

other assumptions on water cut and GOR see section 8.2.2. 

 
Exact reservoir pressure is difficult to estimate. The reservoir simulation gives flowing 

and static BHP, however this is only valid for the nearby wellbore area. The pressure 

that PROSPER need is the pressure far out in the reservoir pushing the fluid into the 

low pressure area near the wellbore created by the artificial lift. This pressure 

difference is what makes the drawdown. 

The initial reservoir pressures in 2010 are based on well tests and reservoir 

simulation of the “base case” where there is no artificial lift. Both wells are set to 400 

bar, which is a conservative estimate.  

Field simulations show that the ESPs will draw down the average pressure of the 

field with 50 bar, and this is what the reservoir pressure prediction is based on, not 

the BHP.  Table 11.2 shows how the reservoir pressure decrease. The reason why 

the reservoir pressure will not decrease to BHP is that there is pressure support from 

two injectors A-9 and A-28. This can also be seen from the constant reservoir 

pressure in the A-19 “base case”. 

The gas lift is assumed to draw down the reservoir pressure 10 percent of what the 

ESPs does (see table 11.3). 

 

The “secondary effect” of ESPs described in chapter 6.7 is not accounted for in the 

reservoir simulation this study is based on. Therefore the oil production forecast of 

the ESP wells will be conservative if this effect is valid. 

 
 

 
 
 
 
 
 
 
 
 



 
Evaluation of artificial lift methods on the Gyda field 87

11.1. Well A-19 
Table 11.1, 11.2 and 11.3 show the result from the sensitivity analysis done from 

2010, which is installation date, to 2019. Figure 11.1 shows the production forecast 

comparing the base case, gas lift and ESP 

 
Table 11.1 

A-19 ”base case” 

Parameter/year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

GOR 140 140 140 140 140 140 140 140 140 140

WC 53 55 60 65 67 70 71 72 74 75

Pres 400 400 400 400 400 400 400 400 400 400

Qo, bbl/d 2381 2200 1764 1342 1176 939 865 789 636 562

 

 
Table 11.2 

A-19 ”ESP case” 

Parameter/year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

GOR 140 140 140 140 140 140 140 140 140 140

WC 44 48 55 60 63 67 71 73 76 78

Pres 400 375 360 355 355 355 355 355 355 355

Qo, bbl/d 4619 3929 3179 2717 2469 2140 1894 1732 1494 1260

Tot. liquid, bbl/d 8247 7555 7065 6791 6673 6483 6315 6187 5973 5729

 

 
Table 11.3 

  A-19 ”gas lift case” 

Parameter/year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

GOR 140 140 140 140 140 140 140 140 140 140

WC 53 55 60 65 67 70 71 72 74 75

Pres 400 398 395 395 395 395 395 395 395 395

Qo, bbl/d 2988 2807 2389 2022 1880 1672 1605 1537 1406 1341
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A-19 Prediction
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Figure 11.1, Production forecast for A-19. Production for the base case and the two artificial 

lift methods are plotted from start date to 2019. 

 

 

The result of the production forecast show that the ESP solution gives a superior 

production rate compared to gas lift and the “base case”. From figure 11.1 it is 

observed that the gas lift production rate crosses the ESP production rate in 2019. 

This is a result of the initially higher water cut now being lower than in the ESP case. 

The gas lift scenario also does not see the same reservoir pressure loss as the 

pump. 

 

The total liquid rate falls beneath 7000 bbl/day after 2012 in the “ESP case”. This is 

below the minimum operating range of the pumps running at 60 Hz. When this 

happens, the pumps have to be run at a lower frequency (Fig.10.2). 

When both the pumps fail, there should be a new analysis with the current conditions 

to see if another pump design would fit better. After running some years one would 

also learn more about the rates and how the reservoir responds to the pumps. 
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11.2. Well A-26 
Table 11.4 and 11.5 show the result from the sensitivity analysis done from May 

2010, which is installation date, to 2019. Figure 11.2 shows the production forecast. 

There is no “base case” scenario because A-26 is considered as dead. 

 
Table 11.4 

A-26 ”ESP case” 

Parameter/year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

GOR 160 160 160 160 160 160 160 160 160 160

WC 81 84 85 87 88 90 91 92 93 93

Pres 400 375 360 355 355 355 355 355 355 355

Qo, bbl/d 1598 1130 939 741 663 516 448 382 320 320

Tot. liquid, bbl/d 8410 7063 6260 5700 5524 5162 4976 4773 4571 4571

 

 
Table 11.5 

A-26 ”gas lift case” 

Parameter/year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

GOR 160 160 160 160 160 160 160 160 160 160

WC 86 88 89 90 91 91 92 92 93 93

Pres 400 398 395 395 395 395 395 395 395 395

Qo, bbl/d 948 787 703 631 561 561 493 493 426 426
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Figure 11.2, production forecast for A-26. Production for the base case and the two artificial 
lift methods are plotted from start date to 2019. 
 
 
The results show that also in A-26 ESP give the largest production. However, gas lift 

shows a higher production rate already in 2015. Although the difference in production 

is not as impressive in A-19, one can still see from figure 11.2 that the area under the 

ESP curve is much larger than for the gas lift curve. 

There is a small “base case” production included in 2010. The well dies with a small 

change in water cut and reservoir pressure. 

The total liquid rate falls beneath 7 000 bbl/d after only two years. If the rate follows 

this prediction the pump has to be run at lower frequency or changed. 

The reservoir pressure used is conservative, and a pressure of 450 bar instead of 

400 bar is realistic. This would give a liquid rate of over 10 000 bbl/day. This shows 

that pumps is not necessarily oversized, but has to handle a wide range of scenarios 

and production rates.  

 

The reliability of the production forecast is dependent of the reservoir pressure, and 

mostly the water cut. A small change in water cut gives a large change in oil 

production. The reservoir pressure is conservatively estimated, and the water cut 

trend is based on reliable reservoir simulations. In A-19 there has not been a major 

water break-through yet, and the timing of this breakthrough involves some 

uncertainty. However, the same reservoir data source is used for the different 

scenarios, so the comparison of the two artificial lift methods should be valid. 
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12. Economical evaluation 
Before making a final decision a thorough economical analysis has to be done. As 

described in section 5.2.3, it is the profitability of a project that has to be the final 

decision criteria. TENAS is still in the evaluation phase, and a full economical 

analysis giving the NPV of the projects is not available yet. The NPV will give the 

value of a project through its entire lifetime taking capital costs, operating costs, 

depreciation and revenues into account. 

However, the initial costs of the scenarios are analysed and can give a good 

indication of the project magnitude. Table 12.1 shows the capital cost e.g. the cost 

until end of installation of each project. This involves cost of procurement, 

construction, engineering, administration and operational cost during installation (rig 

rate etc.). The numbers do not include company costs such as company personnel, 

helicopter, catering etc. 

 
Table 12.1, capital cost of projects. 

Project Total cost (1000 NOK) 

ESP pilot, A-19 and A26 284 000 

ESP full field project, 10 wells 1 420 000 

Full field gas lift project 709 000 

 

There has not been made any economical estimate on gas lift just for A-19 and A-26. 

The plan is either full field or nothing. The ESP full field project estimate is the pilot 

project times five. This is done so simple because it is too early to say what a full field 

project would imply. Ten wells producing with ESPs would need a new water 

handling facility etc. Thus a full field ESP project can be more expensive. 

 

The relatively high expenses of full field gas lift project are caused by a new 

compressor having to be purchased, and a lot of the wells would need a full workover 

due to missing sidepockets.   

  

The biggest cost for gas lift is at installation, while ESPs carries great operational 

expenses due to their limited lifetime. A workover for two wells with ESPs is 

estimated to 60 days. This means that an ESP solution has a great cost attached 

every two years. The operational costs are estimated to about 75% of the total costs 

of a pump change out. The loss of production during this time also needs to be 

accounted for.  
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The cumulative oil production can be multiplied with a factor of (1 - 2/24), where 2 is 

the downtime and 24 is the expected lifetime in months. Compared, the cost of a gas 

lift valve change out by wireline is minor. This operation will only take a day or two. 
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13. Conclusions 
Through consideration of the production profile, desired rate and advantages / 

disadvantages TENAS has decided for gas lift and ESP to be the most suitable 

artificial lift methods on Gyda. 

 

Gas lifting is a simple, well tried method and has been proved efficient on Gyda 

before. Installation and change of gas lift valves is done by wireline, but since the A-

19 and A-26 do not contain sidepockets, a full workover is required at first time 

installation.  

There is a positive effect of setting the valves deeper. When the compressor outlet 

pressure is limited, the fluid density in the well is important. The valves can be set 

deeper with a less dense fluid, and this can also make the difference in number of 

unloading valves needed. 

A new compressor has to be purchased to reach the injection rates used in this 

study. This will be one of the biggest costs of an artificial lift campaign based on gas 

lift. 

 

Implementation of ESPs carries greater risk because of the complexity of the 

equipment and limited lifetime. When ESPs fail this require a full workover, which is 

costly mainly because of the required rig operation compared to a wireline operation. 

However, there are design choices and running procedures that will extend the 

lifetime. SAGD technology is used to cope with the high reservoir temperatures on 

Gyda. Monitoring production and the pump during operation is crucial to achieve 

extended lifetime. Sand production and scale is two of the biggest risks.  

Expected lifetime of the dual ESP design on Gyda is 2 years. 

 

Both gas lift and ESP give a large increase in production compared to the base case, 

but ESP is superior to gas lift in both A-19 and A-26. It is reason to believe that the 

same difference would be seen in a full field artificial lift campaign. In this study the 

so called “ESP secondary effect” is not accounted for, this can increase production 

as well as the recovery factor for the field.  So from a production point of view the 

ESPs is by far the best choice.  

The difference in oil production between ESP and gas lift is largest in A-19. Both 

wells show basically the same total liquid production initially. However, as water cut 

increases and reservoir pressure decreases in both wells, A-26 can not follow A-19’s 

production trend with ESPs. The reason seems to be the lower number of stages in 
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A-26, this shows that a re-evaluation of the design is needed when it is time for 

changing the pumps. 

 

The water cut behaviour is the biggest factor for change in the oil production. To date 

A-19 has not seen any significant water breakthrough, but this is expected to happen 

soon. A water breakthrough is accounted for in the simulations done in this study. 

With lower water cut, A-19 will produce at a larger rate than predicted. 

 

Since ESPs have never been run on Gyda before it is difficult to tell how the reservoir 

will react. Reservoir pressure and water cut is difficult to predict and the pumps must 

be able to handle a wide range of fluid ranges and properties. Baker Hughes 

Centrilift’s design seems to be valid for the conditions predicted for May 2010, where 

production lies to the left of the best efficiency point (Figure 10.2). At this point they 

have extra capacity, and can also run at a lower rate. 

According to the production forecast done in this study, there is a possibility for the 

pumps to fall beneath their production design limit in both A-26 and A-19 after some 

years. This again shows the importance of a re-evaluation of the design when a 

pump fail.  

 

Comparing cost and production potential of the artificial lift methods, ESPs are the 

best choice. The pilot project with A-19 and A-26 would return invested capital in less 

than a year due to it’s high production potential compared to the base case. 

But before a final decision is made an economical analysis of each project’s lifetime 

should be carried out. The ESP projects will generate higher costs later in life than 

the gas lift project. A NPV evaluation will account for all costs and depreciation of 

each project. 
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Abbreviations (alphabetically) 

ADV Automatic Diverter Valve 

BEP Best Efficiency Point 

BHP Break Horsepower 

EOR Enhanced Oil Recovery 

EOS Equation of State 

ESP Electrical Submersible Pump 

FBHP Flowing Bottom Hole Pressure 

GLR Gas-to-Liquid Ratio 

GLV Gas Lift Valve 

GOR Gas oil Ratio 

HP Horse Power 

IPO Injection Pressure Operated 

IPR Inflow Performance Relationship 

KOT Kickover-tool 

MD Measured Depth 

MTTF Mean Time To failure 

NPV Net Present Value 

OWC Oil Water Contact 

PI Productivity Index 

PPO Pressure Operated Valves 

RIH Running In Hole 

SAGD Steam Assisted Gravity Drainage 

SG Specific Gravity 

TENAS Talisman Energy Norge AS 

TVD True Vertical Depth 

VLP Vertical Lift Performance 

WC Water Cut 

 

 

 

 

    


