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Abstract

In recent years more attention has been paid to the chemical side of injected water used in chalk
formations to help produce hydrocarbons. It seems the brine has a tendency to react with the
formation itself if it contains the right substances, even sea water has this effect. Especially the
chalk experiences the phenomenon called water weakening which affects the rocks response to
external loading, but also its wettability.

Experiments have been performed in the laboratory at the University of Stavanger on chalk
core plugs. Essentially the cores have been exposed to a brine under high pressure and temperature
(representative reservoir conditions) a long time to reach equilibrium. Then different brines have
been injected through the core at the given conditions at fixed rates typically around 1 PV (pore
volume) per day by varying the inlet/outlet pressure. Responses such as core deformations and
outlet concentrations have been measured. SEM images were used to study composition of the
cores.

The experiments showed that results are sensitive to injection concentration of the ions Ca?™,
Mg?*t and SOE_. Rock composition changed after flooding. Especially injecting M gCls-solution
gave precipitation of a magnesium-based mineral, and flooding with seawater gave precipitation of
a sulphate based mineral. The results are believed related to dissolution/precipitation reactions
in an interplay with convection, diffusion and aqueous chemical reactions. A mathematical model
[22] has been developed that is able to replicate the outlet measurements with good accuracy. It
was developed by S. Evje, A. Hiorth, M. Madland and R. Korsnes. The same authors presented
supportive experimental data and some alterations in [23].

The focus of this thesis is to expand the original model. Especially we include the mineral
dolomite as a precipitate and we let rock properties such as porosity and permeability change with
rock composition. Some relevant experiments are also suggested to better estimate parameters
used in the model.

The water weakening effect has impact on areas such as porosity, permeability (plugging or
opening of pores), compressibility (higher rock expansion means more produced pore fluid), ten-
sile strength (can affect fracture pressure), wettability, residual saturations, water breakthrough,
recovery and subsidence.



Chapter 1

Summary

In this thesis the model developed in [22, 23] has been investigated and further developed. The
mineral dolomite was included to the minerals calcite, magnesite and anhydrite. Porosity was
included as a function of the mineral composition. Some suggestions are given to explore effects
on permeability and pressure, but under the assumptions of the model they are both eliminated
from the system and no relevant data was available for testing.

Computer simulations show that dolomite by itself and magnesite by itself as the only magnesium-
bearing mineral precipitating in the core can explain the efluents measured at the outlet. However,
to explain SEM observations the presence of both is required. Several combinations of rate pa-
rameters are possible to fit the experimental efluent data in each model (dolomite only, magnesite
only, dolomite and magnesite), but the magnesite model gave more options to determine a best
fit than the dolomite model.

The simulations predicted a steady dissolution of calcite and precipitation of the minerals
magnesite, dolomite and anhydrite when the environment suggested so. The net effect was a very
low variation in porosity (from 0.48 to 0.47), both locally and on average, even after a period of
20 days. The reason is that the dissolved minerals are replaced by precipitating minerals and the
composition changes. This conclusion is supported by the mass balance of ions where excess Ca?*
is produced while Mg?*- and SOif—ions are retained in the core compared to a simulation with
no reactions.

2 models were tested: one with constant porosity in the equations, with porosity only as a
function of the solution of mineral composition. The other where porosity varied in the equations
as well being coupled with the rest of the system. The low variation in porosity made the results
from the 2 models undistinguishable.

The model does not account for available surface area in the reactions and that would probably
improve the fit with experimental data at early times to a great extent.



Chapter 2

Reservoir rocks and geology

2.1 The geological aspect

When minerals are deposited, buried and compacted they become part of a sedimentary rock, per
definition. The deposition can occur by transport of grains, chemicals can precipitate from solution
or small organisms can leave shells and skeletons of mineral composition. During the compaction
the space between the grains is reduced since the accumulating overburden forces will force the
grains to pack into tighter configurations. In this process the volume occupied by fluids is reduced
either because they escape or because they are compacted more easily until the pore pressure
fractures an opening. Weak minerals can be ground into smaller pieces leaving a denser packing.
However, most sedimentary rocks retain a relatively large fraction of pore volume, porosity, of
many tens percent and that is why sedimentary rocks are good for storing hydrocarbons.

The burial process is also key to the formation of petroleum. When organic material is buried
in a manner that preserves it from oxidation then it will be exposed to a gradual increase in
temperature and pressure. Smaller organic molecules transform into larger complex substances.
The organic material is by definition divided into kerogen and bitumen. Kerogen is the part
insoluble in organic solvents, while bitumen (oil in solid state) is the soluble part. Such processes
begin shallow compared to the formation of petroleum. When kerogen is exposed to high pressure
and temperature over long time it turns into petroleum. The oil window is a range of temperatures
where oil generation is possible. Oil begins to form at 60 °C with optimal conditions between
100-120 °C. At temperatures higher than 180 °C' a process called cracking breaks down heavy
molecules into smaller components. Gas formation is still possible above these temperatures but
approaching 225 °C most of these processes have already happened.

Once petroleum (oil or gas) becomes mobile it will try to escape towards the surface since it
has lower density than water. If it does not escape from the source rock (where the kerogen is
being transformed) it will be destroyed as explained previously. The hydrocarbons will then follow
a migration route along pore channels in the rock until it reaches the surface and is destroyed by
bacteria or until it reaches a boundary that does not allow flow in the upward direction. This
requires that a permeable and porous formation, which we call a reservoir, intersects the migration
route and that a cap rock / trap overlays cuts off the route. Also, the seal must be in place before
the oil can escape. The seal must keep the hydrocarbons trapped for maybe millions of years
until present. Geologic activity in the crust can disturb this, but also create new possible trap
configurations. The golden zone is the temperature range where oil reservoirs are actually found.
It peaks around 90 °C but ranges from about 60 to 150 °C.



2.2 Reservoir rocks

2.2.1 Quantification

Although every rock is in some sense unique, we can quantify a rocks properties by performing
lab tests on cores and evaluate logs and thin cuttings.

e Porosity ¢ is the volume fraction of a rock that is filled with fluids such as brine, gas and oil.
High porosity indicates a high storage capacity and is given as a fraction between 0 and 1.

e Permeability k£ measures the ability a rock has to let a fluid flow as a single phase through the
rock in a given direction. Permeability generally is anisotropic (varies with direction) and
is often lower in the vertical direction. It is measured in darcy. High permeability indicates
a rock with little flow restriction in the given direction, while a low permeability indicates
narrow pore throats or complex pore channels.

e Wettability indicates the interplay between the rock and the pore fluids. When two fluids
are placed on the rock they will be divided by an interface. One fluids tendency to spread
on the rock will be given by the angle the fluid interface makes with the rock surface. If it is
much less than 90 degrees the fluid is wetting, if the angle is much more than 90 the other
fluid is wetting. If the angle is close to 90 degrees the rock is not preferentially wetted by
either fluid. Neutral wettability is preferable for high recovery.

e Mechanical properties explain how the rock deforms to different loadings. Tests can quantify
drive mechanisms such as rock expansion by pore pressure depletion and borehole stability.

e Chemical composition and the distribution of the grains can be important if the rock is
chemically reactive. It is well known that clays are especially reactive due to high surface
area compared to volume. They can work as catalysts for chemical reactions, can expand
or compress due to ion exchange and bind water. The available surface area of the common
grains is also of importance to the rate of reactions.

e Temperature and pressure at reservoir conditions is a critical factor since the behavior of
rock, fluid and chemistry can change dramatically.

2.2.2 Carbonates

Carbonates are minerals containing the C'O3 -anion in combination with different cations. In
reservoir engineering especially the carbonate minerals calcite, CaCOs, and dolomite, CaM g(COs3)a,
are of importance since limestone formations and dolomite formations respectively have these min-
erals as the major ingredient. Less known carbonates are aragonite CaCOs3 (other structure than
calcite), siderite FeCOs, magnesite M gCO3 and ankerite Ca(Fe, Mg, Mn)(COs)s.

Carbonate reservoirs are among the worlds largest. They are found worldwide and about 40%
of the world hydrocarbon production is from carbonates.

For petroleum storage only marine carbonates matter. These carbonate sediments are products
from living organisms (such as pellets), dead organisms (shells and skeletons) and precipitation
of salts. The depositional environment is mostly shallow: ramps and platforms (the limestone
reservoir Ghawar in Saudi Arabia is a good example), reefs or evaporites. However we also find
reservoirs after great depth deposition by carbonate turbidites and as remains of pelagic creatures.
Pelagic carbonates (made from ancient coccolithospheres) gives origin to chalk. The North Sea
contains the giant Ekofisk oil field which mainly consists of chalk rock.

Chalk formations are characterized by high porosity (can approach 70%, but is mostly in the
area 15 — 50%) and very low permeability (a few mD). Natural fracturing improves the effective
large scale permeability to the range of 100 md. Chalks are mostly oilwetting and have a large
reactive surface area.



Much of the focus in the text will be mostly relevant to chalk since the water weakening effect
is most severe in these rocks. However the similar chemical composition of limestones in particular
suggests that water weakening can play a role also in these formations.

Dolomites are often associated with evaporitic environments. This mineral is not formed
directly, but requires the presence of CaCO3 (either as calcite or preferably aragonite) and mag-
nesium ions. The transformation of a limestone into dolomite is called dolomitization and this
process is believed to have formed most dolomite reservoirs. Basically Ca®* is partly replaced by
Mg?* in the rock structure.

2CaCO3 + Mg*T = CaMg(CO3)s + Ca*" (2.1)

The conditions for this process to move to the right is that CaCOgs is unstable, the fluid is
oversaturated on dolomite and M g?* is supplied adequately.

2.2.3 Sandstones

Sandstones are clastic (made of grains from pre-existing rocks). We sort clastic rocks by grain
size and sandstone is on the coarse side of the scale (as opposed to claystone with much smaller
grains). Sandstones contain mostly quartz, SiO2, and feldspars (tectosilicates containing Si, O,
Na, K, Al, Ca). However, mineral precipitation from fluids can contribute to fill the pore space in
a process called cementation. Such minerals are calcite and other carbonates, quartz, clays and
zeolites.

2.3 Chemical rock-fluid equilibrium

A rock can under normal circumstances be assumed to be in equilibrium with its pore fluids,
meaning that any chemical reaction rates are negligible. The system is characterized by the local
pressure and temperature on site and the local composition of the rock and fluids.

When introducing, let us say, sea water to the system it may have a low temperature, if it
is injected there will be a pressure gradient and the composition of the sea water may be quite
different from the one in equilibrium with the rock. A front will move from the injection site
characterized by that in front the fluid is in equilibrium with the rock, while behind the front
the state is different. Moving a fluid from one PT state to another can influence the solubility
of its salts. Salt precipitation can reduce flow area in pores and pipes and should generally be
avoided. A higher temperature will increase solubility in most cases, but an important exception
is CaC O3 which behaves exactly opposite. This behaviour is called retrogade solubility. So even
if the compositions are the same a change in thermodynamical state can impose reactions.

Given 2 unequal fluids that can be treated as a single phase the ions will spread by diffusion
(driven by concentration gradients), convection (fluid flow due to pressure gradients) and chemical
reactions (working to establish a new rock-fluid equilibrium). These processes are generally very
coupled since the reactions depend on local concentrations and state, the convection depends on
pressure drop, rock permeability and fluid viscosity. Changes in fluid composition and state can al-
ter viscosity, changes in the rock mechanical properties and grain distribution change permeability
and porosity. Diffusion depends on component distribution, flow conditions and pore structure.

A model describing how the distribution of chemical substances progresses during injection
was developed in [22] and [23]. This transport model will be explained starting in chapter 5 and
reformulated during this thesis.

2.4 References

[1,2,3,4,5,6,22]



Chapter 3

Water weakening

3.1 Water weakening

In short words, water weakening means a rock loses some of its ability to resist deformation from
the surrounding forces. This change is related to reactions with a reactive brine.

To understand water weakening one should have a basic understanding of rock mechanical
theory. The sections 3.2, 3.3 and 3.4 give a summary of important concepts, relations and test
methods. They are mostly based on [6], a book recommended if a more thorough description is
needed.

In the last sections we will present some observations made on field scale and in the laboratory
that illustrate the effects.

3.2 Stress and strain

The concept of stress is defined as force divided by area.

o= (3.1)
Stress is normal if the force works perpendicular to the surface and shear if it acts parallel to the
surface. For an isotropic material stress is a tensor since a force can act in 3 directions on surfaces
normal to 3 axis. Assuming force and moment equilibrium this tensor is symmetric. The stress
tensor can be divided into a hydrostatic part (with only normal stresses nonzero and having the
value of the mean normal stress) and a deviatoric part (which is simply the remaining part of
the matrix). The hydrostatic part indicates a level of compressive or expansive load while the
deviatoric part indicates how the unequal stress distribution compares.

Given a stress tensor we can find 3 perpendicular axis corresponding to zero shear stresses
and thus all stresses are directed along the coordinate axis. These normal stresses are called
principal stresses and define the stress state along with their direction. In any direction that is not
exactly on one of the axis there will also be a shear stress, which can be expressed as a function
of the principal stress values. Note that if the principal stresses are identical the loading will be
hydrostatical seen from any angle. If 2 principal stresses are equal the plane that contains them
contains no shear stress.

In rock mechanics it is usual to use positive stress for compression and negative stress for
tension, and the principal stresses are labeled in descending order as oy, 02, 03.

Normal strain is defined as change in length divided by the original length L¢ of the unloaded
material:

Lo—L
Lo

(3.2)



It is positive for shortening and negative for extension. For small loadings, stresses and strains
are linearly related.

Given a porous sample some of the load is carried by the pore fluid, given by the pore pressure,
py times Biot’s coefficient, . The effective stress ¢’ that is carried by the rock grains is then

o =0 —apy (3.3)

The deformation results from loading the rock and relates to effective stress by Youngs modulus
E:
o' = Ee (3.4)

A load in one axial direction z causes deformation of opposite sign along the other axes x, y related
by Poissons ratio v

Ex
=_== 3.5
y=-= (35
Volumetric deformation is given by
Vo -V
ey = 0 =czt+eytes (3.6)
Vo

If a volume is hydrostatically loaded (all principal stresses equal) by the load ¢/, the volumetric
deformation is given by
o, = Key (3.7)

where K is the bulk modulus.

3.3 Tests in a triaxial cell

A cylindrical core sample is placed vertically between two axial bolts and sealed from the sur-
roundings by a thin sleeve. A confining pressure o. = o, = gy (for a cylindrical geometry we use
the coordinates 7,0, z) in the horizontal plane is provided by a confining fluid. Axial stress o, is
provided by increasing the pressure in a fluid chamber above the upper axial bolt that pushes it
down against the core sample. We must correct for friction, but in principle we know the axial
load. Small openings in the bolts allow circulation of fluid and thus a pore pressure we can vary.

Axial strain is measured by displacement of the bolt (after correcting its own deformation) and
radial strain is measured by sensors pointed towards the core surface.

In drained tests fluid can escape and the fluid carries a constant load p¢. In a standard triaxial
compression test the load is increased hydrostatically (¢, = ¢7) and the bulk modulus of the

framework Ky, (representing the porous rocks ability to resist deformation) is measured as the
slope

Ao, Aol
Kpr= Aesy  3Ae, (38)

After this hydrostatic phase has reached a certain o., the confining load is kept constant and the
axial load is increased further. The Youngs modulus of the framework is then determined as

Ey,

= Ao (3.9)

in this deviatoric phase.

3.4 Rock failure

Materials and rocks of low porosity do not fail hydrostatically until at very high pressures. However
chalk is very porous and under enough pressure the pores can collapse by local shear failure. In
the deviatoric phase we define the yield point as the effective stress that is followed by a nonlinear



stress-strain relation. The rupture stress of the rock is the stress that leads to rupture. However
once this stress has been reached a relaxation of the stress allows further displacement even at lower
stress before the sample finally ruptures. This explains why a process of incremental displacement
is preferred over incremental loading, to observe the last phase.

Chalk can also experience creep. It is a timedependent deformation that occurs under con-
stant stress and temperature. Note that the applied stress can be less than what causes plastic
deformation (permanent strain). We can divide the creep into a transient state (decreasing strain
rate), steady state (constant strain rate) and accelerating state (increasing strain rate) eventually
leading to rupture.

3.5 Lab test observations

3.5.1 Simultaneous water injection and loading

In [21] several lab experiment results are presented. In one of them chalk cores at 130 °C' are
flooded with different brines while being loaded hydrostatically. The resulting stress-strain diagram
is repeated left in Fig 3.1. It was observed that the cores got a lower yield stress (average of 6.5
MPa) when they were flooded with the sulphate containing brines than with the sulphate-deficient
ones (average of 8.5 MPa). The sulphate exposed cores also got a much higher compaction (2.5
times the strain than those not exposed to sulphate at high stress). Note also that the bulk
modulus (given by one third of the initial linear slope, as in eq. (3.8)) is less for the weakened
samples (by a factor of ca 2/3).
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Fig. 9—Stress-strain plot during the dynamic test at 130°C for different flooding fluids. Fig. 10—Compaction during the creep phase at 130°C for different flooding fluids.

Figure 3.1: Left: Stress-strain diagram for hydrostatic loading of chalk cores at 130 °C' while
flooding brine at constant rate. Right: The following creep diagram at 10 MPa compressive
stress.

When reaching 10 MPa stress this load was kept constant and the resulting creep was observed.
The creep phase results are given right in Fig 3.1. Again the sulphate-exposed cores showed a
much higher degree of compaction than the others. Flooding with a high concentration sulphate
brine (double of seawater) led to plugging of the core, probably due to precipitation of anhydrite
CaS0O;,.

An important conclusion in the paper was that the ions M¢?t, Ca?t and 5027 (in amounts
comparable to that found in seawater) can impact the mechanical behavior and wettability of
chalk.



3.5.2 Response to water injection in a loaded state

In [13] sandstone cores were cleaned using methanol and toluene, then dried. The cores were then

saturated with decane and loaded in a triaxial cell such that 22‘} = 0.25. The cores were kept at

a fixed stress state several days and no creep strain was observed. Slow injection with 3% KCl
solution in the cores resulted in immediate response either by shear failure or quite noticeable axial
and/or radial strain. Creep (continuing deformation) was also observed. This demonstrates that
water weakening can be relevant also for sandstones, but that other mechanisms may be involved.
North Sea chalk was saturated with mineral oil and loaded uniaxially with a constant loading
rate. The strain increase was approximately linear with time. After 290 hours North Sea water
was injected into the core and a rapid increase in axial strain was observed followed by creep.

3.5.3 Potential candidates for magnesium precipitates

Flooding chalk cores with M gCls-brine result in water weakening, according to [16]. The flooding
showed a lower outlet concentration of Mg?T than could be explained by adsorption and ion
substitution. It was concluded that a magnesium based mineral precipitating in the core could
explain the observations. For the given experiment (0.219 M M gCl,, T=130 °C, P=8 bar, Pco2 =
1073®) simulations using EQAIlt showed that several magnesium minerals were supersaturated
given by the value of ion product ratio () over solubility constant K being greater than 1. Especially
huntite (CaM g3(CO3)4) and hydro-magnesite had large such numbers, but simpler minerals such
as dolomite and magnesite were also supersaturated (see Fig 3.2). Note that the large Q/K

Mineral ‘ Logi QK
Huntite . [ 525
Hydromagnesite 4.13
Dolomits 3.25
Brucite 2.46

| Magnesite 2.09
Artinite 0.94

Figure 3.2: Supersaturated magnesium minerals, table from [16]

ratio of huntite can be explained by its dependence on M g%t and CO?%_ concentrations. Assume
both dolomite and huntite are exactly saturated at a given state (QQ/K = 1) in separate solutions.
Doubling the concentration of Ca?*, Mg?* and of CO3~ would make (Q/K) golomite = 2'-2'-22 =
16 while (Q/K)nuntite = 2! -23-2% = 256. If precipitation leads to the initial equilibrium
concentrations the same number of moles are precipitated in each solution.

Magnesite |Calcite Dolomite |Huntite Mag + Dol | |Analysis
C 14.25 12.00 13.03 13.61 13.64 16.91
o) 56.93 47.96 52.06 54.38 54.49 49.85
Mg 28.83 0.00 13.18 20.65 21.00 20.27
Ca 0.00 40.04 21.73 11.35 10.87 11.92
Sum 100.00 100.00 100.00 100.00 100.00 98.95

Figure 3.3: Comparison of weight distribution of analysis with weight distribution of known min-
erals

In [17] a presentation of composition analysis using SEM (scanning electron microscope) showed
a weight distribution of the molecules in precipitated mineral grains that looked similar to huntite.



These numbers are here compared against the weight composition of the minerals dolomite, calcite,
magnesite and huntite in Fig 3.3. It is seen that the analysis results can be explained as the
precipitation of huntite, but a combination of the minerals magnesite and dolomite (taking the
average of their distributions) gives almost exactly the same distribution as huntite (a better
weighed average would fit even better to the analysis).

In the model [22, 23] magnesite is the only magnesium based mineral included. We expand
this by including dolomite also. It should be considered though that huntite is just as relevant
and perhaps can even be representative for the entire magnesium mineral precipitation.

3.6 Field observations

3.6.1 Valhall

In a paper [15] from 1989 rock compressibility was concluded to be an important parameter for
the high porosity chalk field Valhall causing porosity reduction, compaction of reservoir intervals
and seabed subsidence.

3.6.2 Ekofisk

A case study of the chalk field Ekofisk in the North Sea is presented in [14] from 1999. The field
started producing in 1971, water injection began in 1987. Seafloor subsidence (see left in Fig. 3.4)
increased in the 90’s and the seafloor dropped at a rate of 25 to 42 cm per year. Over the years
this resulted in several meters. In 94 the injection was increased to replace the produced reservoir
fluid volume, but the subsidence did not decrease significantly and kept a steady rate above 35
cm/y most of the 90s. The models used so far (matching historical oil rate, water injection, GOR
and water cut profiles) could not explain the observed compaction after 93, when the pressure
decline was beginning to stop by increased support. Including a water weakening mechanism to
the model gave just as good prediction of the previous parameters, but the compaction volume
was better estimated (right in Fig. 3.4).
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Figure 3.4: Observed subsidence rate (left) and history matching of compaction volume (right) at
Ekofisk



Chapter 4

Relevant minerals 1in chalk
replacement: Volumetric
considerations

4.1 Including more minerals and volumetric considerations

We want to consider what happens if calcite CaCOs3 dissolves and is replaced by another pre-
cipitating mineral. If the new mineral takes less space there should be increased porosity, while
minerals taking more space would reduce porosity. For simplicity we assume that the moles of
ions in solution are negligible to those that have precipitated. In this way we can quickly estimate
whether an increase or reduction in porosity is likely for the injected brine and which ions that
should be produced. From another point of view, given the brine and outlet composition we can
make a qualified guess of which reactions are taking place in the core. For the calculations we use
that calcite has density 2.71 g/cm?® and molar weight 100.087 g/mol so 1 mol calcite corresponds
to

1mol * 100.087g/mol
2.71(g/em3)

= 36.93cm3 (4.1)

In the original model [22, 23] only calcite, magnesite and anhydrite minerals were considered. We
evaluate some different minerals and their possible relevance to water weakening.

4.2 Magnesium-bearing minerals

4.2.1 Magnesite
Magnesite M gC'Os created from calcite can be described as
CaCOs3 + Mg*T™ = MgCOs3 + Ca** (4.2)

Magnesite has a density of ca. 3.1 g/em3 (actually between 3.0 and 3.2) and molar weight 84.314
g/mol. 1 mol of calcite would have a volume of 36.93 em? and if it was transformed into magnesite
the solid volume would be
1mol % 84.314g/mol
3.1(g/em3)

= 27.20cm3 (4.3)

a volume reduction of 26.3%. With fluid allowed to escape it is easy to see how such a process
could be relevant to water weakening. For one thing it would selfcontract the matrix and enhance
compaction, despite if the fluid held the same pressure. Second, loadcarrying grain microstructures
would be destabilized and the strength of the rock should decrease.
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4.2.2 Dolomite

As mentioned dolomite, CaM g(COs)2, is closely linked with calcite in its geological formation and
it is reasonable to think they could transform into each other chemically under the right circum-
stances. Especially the supply of magnesium ions is necessary, but the rate of this transformation
is also important (whether the reactions happen fast enough to matter). We can consider the
transformation as a net reaction of the form

2CaCO03(s) + Mg** (aq) = CaMg(COs3)a(s) + Ca®T (aq) (4.4)

Dolomite has density 2.85 g/cm?® and molar weights 184.401 g/mol respectively. 2 moles of calcite
has a volume of

2 % 36.93 = 73, 86cm3 (4.5)

while if these moles were transformed to 1 mol dolomite the volume of solid would be

1mol % 184.401g/mol
2.85(g/cm3)

=64, 70cm3 (4.6)

A complete transformation of calcite into dolomite would mean almost 12.5% reduction in rock
volume.

4.2.3 Huntite

As mentioned huntite CaMg3(CO3)4 can be a very relevant mineral for water weakening given
results from SEM measurements. Calcite-huntite transformation could go as

4CaCO3(s) + 3Mg*T (aq) = CaMgs(CO3)4(s) + 3Ca*T (4.7)

4 moles calcites has a volume of 4 * 36.93 = 147.72 em?. Huntite has density 2.87 g/cm? (from
[26]) and molar weight 353.029 g/mol so 1 mol huntite has volume
1mol * 353.029g /mol
2.87(g/cm3)

=123.01cm3 (4.8)

leading to a rock volume reduction of 16.73%.
The transformation of calcite into magnesium-bearing minerals seems to reduce the matrix
volume.

4.3 Sulphate-bearing minerals

4.3.1 Anhydrite

The last mineral used in the original model was anhydrite: CaSOy4. It should be noted that
anhydrite can bond with water to form gypsum CaSOy4 - 2H20. A net transformation of calcite
into anhydrite can be described by

CaCOs + SO~ = CaSO, + CO2~ (4.9)
Anhydrite has density 2.97 g/cm?® and molar weight 136.139 g/mol. 1 mol calcite transformed

into anhydrite would go from 36.93 cm3 solid volume to
1mol * 136.139g/mol
2.97(g/cm3)

= 45.84cm3 (4.10)

an increase of 24.1% suggesting that if this reaction is dominant we should observe a reduced
permeability and perhaps even plugging. It can be mentioned that gypsum has lower density
(2.31 —2.33 g/cm3) and higher molar weight suggesting that a partial convertion of anhydrite into
gypsum would further fill the pores by increasing the solid volume. Gypsum is however moderate
soluble while anhydrite is less soluble and thus more relevant.
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4.4 Iron-bearing minerals: ankerite and siderite

This is just for mentioning. Iron ions have not been included in the model so far, but can play a
role. Especially in the case of drilling, particles from pipes or equipment can be carried with the
flow either as grains or dissolved and affect a local region (iron has a negligible concentration in
sea water). If this is significant a skin can develop close to the well.

Siderite FeCO3 and ankerite CaFe(CO3)2 have densities 3.5 and 2.9 — 3.1 g/em? and molar
weights 115.854 and 215.941 g/mol. Following the transformations of calcite as

CaCO3 + Fe*t = FeCO3 + Ca*t (4.11)
20aC03 + Fe*t = CaFe(CO3)s + Ca*" (4.12)

we get for siderite a volume reduction of 10.4%, while for ankerite we can get somewhere between
.81% expansion and 9.4% reduction. Both cases lean toward a reduction in matrix-volume. In
other words it seems iron ions will not cause chemical damage to limestone and chalk reservoirs.
Near hole damage is likely more affected by mud particles plugging the pore throats.
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Chapter 5

Transport-reaction model

The transport model suggested in [22] considers the process of introducing a brine into a porous
rock containing an original brine in chemical equilibrium. The solution can be described by
indicating the concentration of each chemical at a given location, whether it be rock minerals,
water or dissolved substances. Specifically the unknowns we solve for are the pore concentrations
C; of components in fluid phase, the total volume concentrations of minerals p; and pressure p.
All these variables are functions of position and time (x,t). Temperature is considered constant,
as is the partial pressure of dissolved gas in water.

To solve the equations we use molar balance equations, equations for instant water equilibrium
and a charge balance. Incorporated into these equations are rate expressions for the rock/fluid
reactions and the fluid component velocities.

The application is particularly relevant for chalk reservoirs or more generally carbonate reser-
voirs and this is reflected in the considered chemical reactions.

5.1 Components

We divide all chemical components into 4 groups. They are presented by name, chemical compo-
sition and primary unknown with index used for reference in equations. Dolomite has been added
to the model see if it makes a better fit than magnesite or if both minerals should be included.

5.1.1 Solid state: minerals
e Calcite, CaCOs, p,
e Anhydrite, CaSOq, pq
e Magnesite, MgCOs, pm,
e Dolomite, CaMg(CO3)2, pa

5.1.2 Aqueous state: ions

e Calcium, Ca?*, C,,

e Magnesium, Mg>*, C,,

Sulphate, S’Oi_, Cso
Sodium, Na*, Cpq

Cloride, Cl™, Cy
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Hydron, HT, Cj

Hydroxide, OH~, C,p

Bicarbonate, HCO3 , Cheo

Carbonate, Cng, Ceo

5.1.3 Dissolved gas

e Carbon dioxide, CO2, Pocos2 (assumed given by temperature)

5.1.4 Liquid state
e Water, H;O, C,

Note that the minerals are assumed to exist only in solid phase while the other components are
assumed to be part of the water phase, either as ions, dissolved gas or water.

5.2 Reactions

5.2.1 Dissolution and precipitation of minerals
e Calcite: CaCO3 + HT = Ca®T + HCO3

e Anhydrite: CaSO, = Ca?t + SO7™,
e Magnesite: MgCOs3+ HT = Mg*>T + HCO; ,
e Dolomite: CaMg(CO3)s +2H = Ca** + Mg*t +2HCO;

These reactions between fluid and rock occur with a finite rate defined in section 5.6. We use
them to define the rate terms in the differential equations.

5.2.2 Aqueous reactions
e CO, + H,O = HCO; + H*
e HCO; = CO2™ + H*
e HbLO=H"+OH™

The reactions in the fluid phase occur at high rates compared to the mineral reactions and are
assumed to be in equilibrium. They are used as constraints, that is 3 equations to determine 3
unknowns.

5.3 Porosity and volume balance

In the former models [22, 23] a variable porosity has not been fully considered. This section will

attempt to make a physically meaningful definition of porosity as a function of the local variables.

Given all the components we can separate them into those existing in solid phase (minerals)

and those in the fluid phase (water, dissolved ions and gas). Consider a small part of the core

sample with volume V. At a given time all components have defined their total concentration
mass

pi, where i represents the given component. If we also know the molar masses, M; = and

mol ?
effective densities, w = ———25__— (by effective volume we mean the volume the component
’ effective volume
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would fill if we could isolate it from the other components), we can calculate each components
number of moles n;, mass m; and volume V;:

n; = in (51)
m; = Mp;V
M, p;V
v, = =2 (5.3)
%%}
Vi M;p;
-~ —_ = 4
v o (5.4)

Note that the last equation is the volume fraction of component i. Since the total volume is the
sum of effective volumes

V = AAx

Yovi=y e (5.5)
ZM 1 (5.6)

- (3
3

The volume fraction of solid phase is then

Vminerals _ Mipi
% = > >, (5.7)

i:minerals

and the porosity is per definition the remaining volume fraction

M;p;
= 1- _— 5.8
¢ .lei (5.8)
Eqn (5.6) can in theory be used as a constraint on the unknowns (just as the sum of saturations
should be 1 in a multiphase problem). In practice there are a few difficulties though. If we have
properly defined the chemical structure of each component then all M; can be found from tables.

(Effective) density for rocks and water is also available in the literature and it can be adjusted

for temperature and pressure using the minerals coefficient of thermal expansion (o = %),
the pressure compressibility (6 = —‘ﬂl—gp) and the deviations from the reference state. Increased

pressure and increased temperature tend to have opposite effect, and both values are typically of
low order (percents) for solid rocks and liquids and we assume the densities remain constant for
simplicity. There will be more uncertainty related to how much effective volume is occupied by the
dissolved ions and gas. Water is polar and could sometimes be pushed away by equal charges to
increase the effective volume. In just the same way it could work to shrink. The ions themselves
will perhaps occupy more effective space if they are more charged. One possibility is to assume the
atoms are so far apart due to low concentrations that their effective volume is the same, especially
the same as water, which is known with great accuracy since its density is known. We will give a
better definition of volume balance later using the water phase as a whole.

The mentioned uncertainties do not effect (5.8) since the ions are not included, but the volume
balance must be a constraint to define the porosity the way we do.

In the original model [22, 23] it was assumed that porosity was constant. Letting it vary will
increase the coupling of variables in the differential equations.

5.4 Permeability and possible hysteresis

In short words we treat local permeability as a function of local porosity. In [22, 23] it has been
assumed constant.

Chalk has narrow pore throats, but large pores, resulting in high porosity and low permeability.
When grains are forced against each other they will tend to dissolve at the contact points and
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smoothen to reduce the stress locally. Given fluid flow through the pore network and using
Bernoulli’s law it is clear that the velocity will be greater in the pore throats and the pore pressure
less. Higher velocity will drag on the grains and reduced pore pressure will increase the load carried
by the rock. These mechanisms would favor an improvement in permeability by increased porosity.
On the other hand, when the flow enters the wide pores and the pressure is larger and velocity
smaller, grains should settle and possibly precipitation would occur more easily in these regions.
Following this reasoning deposition should not effect the size of the pore throats very much. A
reduction in porosity should reduce permeability less than a cleaning effect would increase it.
This would lead to a form of hysteresis, meaning that a porosity increase, followed by a porosity
reduction to the same level would give a better permeability. We neglect any such behavior, partly
for simplification, and partly because the porosity should go mainly in one direction. The model
assumes no movement of solid particles carried by the fluid. That means particles larger than the
pore throats do not cause any plugging effect.

It should be noted that the processes described will depend on fluid velocity, its ability to
carry grains (involves viscosity), the variation in area from pore to throat, rates of dissolu-
tion/precipitation, stresses in the rock, fluid pressure and probably other factors. Since it would
be practically impossible to make accurate measurements relating such pore scale effects to per-
meability which is measured on core scale we settle for a more uncertain relation that just relates
permeability to porosity, that is k = k(¢). This can be justified by thinking of low permeability
as a region of locally low porosity. The measured permeability over the core length will depend
on the whole distribution, especially on the smallest values.

Assume we have an initial distribution of both permeability and porosity: k(z,t = 0) = ko and
¢(z,t =0) = ¢o. We assume there is a function f(-) such that

k _ 0
ko_f(%

With no hysteresis initial ¢ corresponds to initial k, so f(1) = 1. Improving one should improve
the other so f’ > 0. Both should be zero at the same time so f(0) = 0. If it is true that the
throats are attacked first then the effect should be most rapid close to the original state when the
throats are small compared to the pores. Also the effect should be less powerful when they are
comparable in size, suggesting that f” < 0.

Some suggestions are evaluated in appendix ?? with references. It is shown that depending on
the choice of formulation of f we require a correlation to fit

Flz) = {:E“ 0<zr<l1 (5.10)

) (5.9)

bzc+1—-b z>1

with
a>1; b>0; 0<c<l1 (5.11)
or a>1; bec<0 (5.12)
or we can use the correlation
e —1
= O<ax<l1
f={ et v (5.13)
be +1—be¢ z>1

with
a>0; bc<0 (5.14)

These are derived from typical permeability-porosity correlations where parameters should depend
on lithology and the mechanism of the structural changes involved.
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5.5 Molar balance

The assumptions are that moles are transported in the fluid phase with a certain velocity. The
velocity depends both on fluid velocity and diffusion. Solid components are not transported by
the flow, but accumulate or diminish locally by precipitation or dissolution.

Assume a thin cutting of a core that has crossectional area A (assumed constant with time and
position) and length Az. At position x fluid enters the volume, and at x + Az fluid leaves. During
the time At there is a change in the total content of moles of the substance due to transport and
chemical reaction. We denote porosity as ¢, component velocity in the pore space v (positive in
the x-direction), concentration of component as moles per volume fluid C' and chemical production
of moles per volume fluid per time as 7. For a component in the fluid phase we have:

(ApCv) At — (ApC0)y1az At = moles added by flow (5.15)
AAziAt = moles created by reactions inside the volume (5.16)
(AAz¢C)ipnr — (AAzgpC), = change in number of moles (5.17)
Since the accumulation is the sum of chemical generation and transport across boundaries we have
(AAzPC)tpnt — (AAzPC) = (APCv) At — (APCV) pinx At + AATTAL (5.18)

Divide by AAzAt and let both Az, At — 0

(¢C)t+At - (¢C)t o (¢CU);E — (¢C'U):E+A:E .
eC) _ _0(¢Cv) .

5 =~ +7 (5.20)

9(¢C)  0(¢Cv)
ot or

Fluid concentration is defined as C' =
total concentrations as

_ (5.21)

Since porosity is ¢ = % we can define

mol
pore volume °

b= mol _ bore volume mol — 6O (5.22)
total volume  total volume pore volume
Eqn (5.21) can then be written in terms of total concentrations as
dp  Opv) _ .
s = 2
BN + o 7 (5.23)

For the solid components there is only chemical contribution to the accumulation so a similar
derivation results in
9 _ .
at
Equations (5.21) and (5.24) are those originally used. We will make a small alteration by noting
that the rate terms should be related to the pore volumes, since that is where reactions take place.
In other words  means moles generated per time per pore volume from now on. To convert this
into rates per total volume again so the balance is correct, the terms are multiplied by porosity:

(5.24)

moles pore volume moles

- = - (5.25)
time - total volume total volume time - pore volume
7;tot = ¢ : fpore (526)
The molar balance equations are now
d(pC d(pC
(60) + ($Cv) = ¢r for nonsolid components (5.27)
ot ox
dp . .
i ¢r for solid components (5.28)
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5.6 Reaction rates

Assume a reaction of the form
aA+bB=cC+dD (5.29)

of chemical reactants A and B and products C and D where a, b, ¢, d are stoichiometric coefficients
that preserve molar and charge balance. The rate of the reaction is defined (see also [10, 11]) by

ldngy ldng ldnc 1ldnp (5.30)
C aVdt bVdt cVdt dVdt ’

where n is moles and V' is pore volume. The rate is positive when the reaction is shifted to the
right (A and B are consumed, C and D are produced).

We are really interested in the derivatives on the right side which is the reactions contribution
to the component rates used in the equations. For example we can say that for A

- d?’LA - dCA

= W = —dt = —ar (5.31)

TA
stating that if the reaction moves to the right (7 positive) then A is consumed by an amount of a
compared to the reaction rate.
The reaction rate is a function of the chemical activity, a; of the involved components. Activity
is directly related to fluid concentration C; by

ai = %Cj (5.32)

where ~; is the activity coefficient of component %, to be discussed later.

The rate of which the left and right side components transform can be given as ky1a%a% and
k_lagadD where k41 and k_; are positive constants, but specific for the given reaction and the
temperature of consideration. The net rate of the reaction is

i = kiia%aly — k_jalad, (5.33)

Such a formulation was made in [22].
In [23], a rate expression of the form

i = k(1 —Q)" (5.34)

was adopted from [10], only using n = 1 for simplicity. This model will also be applied here. Its
application is dissolution reactions and €2 is defined as the activity product ratio divided by the
solubility constant.

Q=Q/K (5.35)

We will show which assumptions can lead to such a model: The point of view is that the
reactions of consideration are dissolution reactions with component A being the mineral. Minerals,
water and COy are here assumed to have activity equal to 1. Gas components are normally
represented by their partial pressure in reaction rates, but it is assumed here that all gas exists
dissolved in the water phase and that this amount is given by the constant temperature.

c d
Dissolution has rate k41a% = k41 while precipitation has rate k_; alcl# The net reaction rate
B

is then 4
P = kypy — kg —C0D (5.36)
Op

Having defined the reactions the exponents are known and given the current state, so are the
activities. If we know k41 and k_; we can specify the reaction rate and thus the chemical produc-
tion/consumption of a given component due to this specific reaction. k41 and k_; are related by
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the solubility product K which can be found experimentally or perhaps even in chemistry tables.
At equilibrium the reaction rate is 0 and we define

ki1 asal
= k—+1 = —Zb L (5.37)
- B

The same value of K results from both rate formulations, but the specific values of k41 and k_;
can be different.
We then write the reaction rate as

as.a?
F= k(1 — L) (5.38)
a%K

and note that the mentioned (2 is the ratio of activity products divided by the equilibrium constant
for the reaction.

Dissolution can happen only as long as the mineral exists. Each dissolution reaction rate will
therefore be modified so that if the concentration of the mineral is 0 the reaction rate cannot be
positive, but is set to 0.

The rate expression is written as a function F' times the k1, factor. We then separate F' into 2
terms according to when it is positive or negative. When F' is positive and mineral concentration
is zero, rate is set to 0.

Fo= 1-0-(-%%) _pr_p- (5.39)
= = k)" .
i >
F* = max(0,F), F~ =max(0,—F), sgn’(z)= 1 fe=0 (5.40)
0 else
o= kylsgnT(p)FT — F7] (5.41)

5.6.1 Chemical activity

Ton activities a; are related to fluid concentrations C; as a; = v;C;. ~y; is component i’s activity
coefficient, given by the Debye-Huckel formula (see [10, 12])

A(T)Z2T,
1 ) = —J2iVI0 5.42
OglO(V) 1+G?B(T)\/E ( )
1
Iy = §§ C; 7} (5.43)

where Iy is the ionic activity and Z; are the ionic charges. a? are component specific constants

indicating the effective size of the hydrated ion measured on angstrom and can be found from
tables such as in [12]. The constants we use are

Lea = +2, ng = +2, Zso = -2, Zna = +1, Zg = -1, Zp = +1,
Zoh:_la tho:_la Zco:_2
al, =6, a?w =8, a =4, a’, =4, a =3, a) =9,

0 _ 0 _ 0 _
aop, =3.9, Q. =4, a;, =45

A(T) and B(T) are correlations of the density of water, the dielectric constant of water which
depends on temperature and temperature itself. Such relations are given in [12].
The temperature we consider is a constant 130 degrees Celsius and we have

A(T =130) = 0.6623 B(T = 130) = 0.3487 (5.44)

which were calculated in [22, 23] using the simulator EQAIlt. I, the ionic activity is evaluated
with the composition of the injected fluid and assumed constant. In total all activity coefficients
are then treated as constants for a given simulation.
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5.6.2 Reaction rates for the model

The final rate expressions for the reactions in subsection 5.2.1 become

YeaVheo M

Calcite: Te = k§[sgn™ (pe)FF — FT F,=1- 5.45
ilsgn™(pe) ] K. O (5.45)
Anhydrite: 7y = k{[sgnT(py)F, — F;] Fy=1- %Iag;o CeaCso (5.46)
m co Cm O co
Magnesite: T = k7'[sgn™ (pm) Ft — F]  Fp = 1 — LmgThco Zmg—h (5.47)
K™ Ch
2 2
. . _ YeaYmgVieo CeaCmgCheo
Dolomite:  7q = ki[sgnT(pa)F; — F;] Fs=1- Wﬁfid Cg (5.48)
5.6.3 Aqueous reactions and charge balance
The aqueous reactions in subsection 5.2.2 are instantly at equilibrium and we write
Ci = Pco2K = ancotn = YheoVhCheoCh (5.49)
QAeoQp YeoVh C(coC(h
c, = = 5.50
? Ghco Yhco Chco ( )
Cw = anaon = 1YonCrCon (5.51)
C'3 = Chco + 2C'co + Coh - Ch (552)

for 3 constants C1 (T'), C2(T), C(T) and a function C5 that are all independent of Cco, Ceo, Con, Ch.
(4 in eq (5.49) is constant based on the equilibrium constant for the reaction, K, and the assump-
tion that the partial pressure of CO5 is constant. Cy and C,, are also equilibrium constants. Eq
(5.52) is based on the charge balance

> CiZi=0= C3=2(Cea+ Crmg — Cso) + (Cna — Cet) = Cheo + 2Ceo + Con — Cr (5.53)

1:20NS

The reactions are assumed to happen so fast that changes in some concentrations will instantly
shift the concentrations Cho, Ceo, Con, Cr to fit aqueous equilibrium. In other words, at a given
temperature and time the 4 values can be calculated. We define 3 new constants based on our
knowledge of C1(T),C2(T), C\,(T) and the activity coefficients:

C, Cl o i~ _ CZ”tho _ C(coC(h C‘; Cw

YhcoYh YeoVh Chco v YhYoh

= CWCon (5.54)

Assuming a pH between 6 and 8 we follow the assumption in [22] that we can neglect Cy, in (5.52)
and get

C,  Cu

C = ( co Co —Ch= = — = C )
3 heo T Con (o + A h (5.55)
= C24C30,—(Ci+Cy)=0 (5.56)

1 = -
= (), = 5 <—Cg + \/Cg + 4(01 + Cw)) (557)
Ch CoCheo  C1Cy C

C co — ~ C'co = = Co = = -

= Cheo =5 Ch 2 LA (5:58)

These concentrations will affect the reaction rates. They change according to the transport of the
other ions requiring updated values for Cs.
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5.7 Transport equations

The following equations are the ones we need to solve in the most general case we consider.

O (@Cy) + 0 (pCiv;)) = 0 H>0 flowing water (5.59)

0 (¢Cha) + 02 (¢Cravna) = 0 Nat-ions in water (5.60)
Ot(dCe1) 4+ 02(6Cerver) = 0 Cl™-ions in water (5.61)
O(¢Cea) + 0n(¢Ceqea) = @(Fc +7g+ 7q) Ca**t-ions in water (5.62)
0t(¢Cs0) + 0x(9Csovs0) = ¢ty SO7F -ions in water (5.63)
0t(¢Cmg) + 02 (9Crmgmg) = (P + Tq) M g*"-ions in water (5.64)
Ope = —@re CaCOs-mineral (5.65)

Opg = —ory CaSO4-mineral (5.66)

Otpm = —Prm M gCOs-mineral (5.67)

Opa = —@rq CaM g(COs3)o-mineral (5.68)

As we have shown, including more reactions and minerals can easily be implemented. Including
new ions can be a little trickier. The charge balance is changed and we need another transport
equation if the ions presence is controlled by flow and rock-fluid reactions. If it is controlled by
aqueous equilibrium we get a more complicated system of algebraic equations that needs to be
solved.

5.7.1 Component velocities

In the transport equations we still need to determine each components interstitial velocity, v;. We
divide the water phase into water component [ and ion group g such that

Cy = Cna+ Cet + Ceq + Crg + Cso (5.69)

Only the ions whose concentration are determined by flow and rock-fluid reactions are involved.
The total concentration of flowing ions in the water phase is then

C=C+Cy (5.70)
The seepage velocities V; for water and V; for ions are related to the interstitial velocities as
Vi=ogu V= oy, (5.71)
so that the transport equations for water and ions take the form

O(6C)) + 0. (C1V;) = 0 Water component (5.72)
0i(9Cs) + 0:(CiVy) = oy i = na,cl, ca, so,mg (5.73)

The water phase seepage velocity V is related to the component seepage velocities by

CV =CyVy+ GV, (5.74)
and obeys Darcy’s law
k
V= ——0up (5.75)

where v is fluid phase dynamic viscosity and k is the permeability along the core. The ions move
relative to the phase speed due to diffusion with relative velocity

Ug=Vy =V (5.76)

21



According to Ficks law we have for each ion that the molar flux is proportional to the concentration
gradient.
U
Ci?g =-D09,C; i = na,cl, ca, 0, Mg (5.77)
Note that the mechanism works to create a smooth concentration profile and even the distribution
locally. The proportionality factor D is called the effective dispersion coefficient and is assumed
equal for all components. It varies with porosity and phase seepage velocity as

Frd, V \%4
D=Dpn¢+—L—=Dn¢+a— 5.78
6+ 52 = Dud+ag (579)

where constants D,,, Fr and d, are molecular diffusion coefficient, formation inhomogeneity fac-

tor and average particle diameter respectively. o = Fl;lp is called the dispersion length. More
information and references about diffusion is found in appendix C.
We update the transport equations with this information:

= 0(dC;) + 0:(Cily) = ¢y — 05(C;V) (5.80)
= O(¢C;) — 0:(D90:C;) = @iy — 0,(C;V) (5.81)

1 = na,cl,ca, so,mg

We now wish to replace the equation for the water component with an equation for the water
phase. First we add the equations for the ions

D _[0(6C:) = 0u(Dp0.C)] = D [67: = 0(CiV)] (5.82)
= Bt(cﬁz C;) — 0o (D$0, Zci) = ¢Zm - am(z C,V) (5.83)
= 0y(¢Cy) — 0:(D0.Cy) = ¢ _7i — 0x(CyV) (5.84)

The water component flux is related to V' and U, as follows
CVi =CV—-CyVy =CV-Cy(Uy+V) = (C-Cy)V-CyU, = CV-CyU, = C}V+D¢p0,C,y (5.85)

This is used in the equation for the water component

9(eC1) +0.(C1V;) = 0 (5.86)
9 (9C1) + 0:(CLV) + 0:(D99,Cy) = 0 (5.87)
0 (9C1) + 0x(Dd0,Cy) = —0,(CiV) (5.88)

Adding eqs. (5.84) and (5.88) gives
01(6Cy) — 02(Dp0:Cy) + 0(¢C1) + 0x(D$0Cy) = &Y 7 — 02(CyV) — 02(C1V) (5.89)

= 0(6C) = &Y 7= 0(CV) (5.90)

5.7.2 Volume conservation

In addition to these equations we must have volume preservation. We assume that the total water
phase has the same volume as the volume defined by the concentration C, that is the ions involved
in aqueous reactions are assumed to have negligible volume. Given molar weight M and density
w of the water phase and minerals we must have that the sum of all volume fractions equals 1:

M, M. M, M,, M,
TGO+ = pet Lyt o+ —Lpg =1 (5.91)
Wy We Wq Wm wd

Note that this equation expresses local volume conservation in space. It does not imply that the
volume is constant in time and can be used also if the crossection of the core is compressed.
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5.7.3 Updated equation system

Our system of equations then becomes

9 (¢C) + 0:(CV) = @(fc +27g + T + 274) (5.92)
Ot(¢Cha) = 02 (DPp0:Cra) = —02(CpaV) (5.93)
8t(¢ccl) - az (D¢azocl) = _8m(0clv) (594)
01(¢Cea) — 02:(D90:Cea) = P(Fc+ g +7q) — x(CeaV) (5.95)
at (¢CSO) - 6:1) (D¢8LECSO) = ¢Tq - a;n (Csov) (596)
at((bcmg) - 8x(D¢8mOmg) = Qb(rm + fd) - 8x(CmgV) (597)
Dipe = —re (5.98)
Oipg = —ory (5.99)
Otpm = —¢rm (5.100)
Oipa = —o@ry (5.101)
%gbc = 1- (Mcpc—F%pg—F%pm—l—%pd) (5.102)
Wy We wg Wi wWq
D = Dno+ a% (5.103)
Vo= —% D (5.104)
o = 1-Mep Moy M Ma, (5.105)
We Wy W wq
k = kof(i) (5.106)
b0

Equations (5.92)-(5.102) are 11 equations used to solve for the 11 unknowns C, Cyq, Cei, Cea, Cso,
Cmg; Pe; Pgs Pms Pd; P-

This is a 1-dimensional version of the model derived in [23] except we have included dolomite,
treated the reaction rates as defined per pore volume, included total volume conservation given by
eq. (5.102) and let the dispersion coefficient depend on interstitial velocity. Following the steps in
[23] similar to here a 3D model can be derived and is given in appendix A.

We note that the given system still allows us to implement and find solutions for pH, aqueous
concentrations, nonconstant densities w;(p), porosity &(pminerais), permeability k(¢), diffusion
coefficient D(¢, V) and more.
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Chapter 6

Case definitions

6.1

Case I: Constant core properties and incompressible fluid

This is a direct continuation of the model tested in [23]. We specify the assumptions and conse-
quences:

The water phase is assumed incompressible: C' is constant

W 1000 g/liter .
= Yw _ STT BT s 5 mol/lit 6.1
¢ = 3, ~ 13015 g/mol mol /liter (6.1)

In general density w increases with salinity, but so does average molar weight when heavy
ions such as sulphate and carbonate become a bigger part of the solution, so the effects on
C are assumed to cancel out.

The contribution from reactions in eq (5.92) is assumed negligible to the overall concentration
and set to 0.

Porosity ¢ is assumed constant: The left term in eq (5.92) vanishes and since C is constant

we get 0, (V) = 0, stating that V = —gamp is uniform over z although it can change with

time.
D = D,,¢ + oV can be treated as the sum of a constant part and a time-dependent part.

Permeability k is constant (with the assumptions we have used this would also follow from
constant porosity). That means the pressure gradient is constant from the definition of V.

Pressure p is eliminated since its distribution is given by Darcys law.

From this we can remove eqn 5.92 (it reduces to 0 = 0). Eq 5.102 reduces to

Mw Wy Mc M Mm Md
—¢—:¢:1—< pc+—gpg+—pm+—pd)=¢ (6.2)
Wy My, We Wy Wm, wq
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and can also be removed.

k

at (¢Cna) - 6:1) (D¢8mcna) = 6:1) (Cna;amp) (63)
0U6Ca) ~ 0.(D6D.Cu) = Du(Cu’dup) (6.4
at(¢cca) — Oz (D¢awcca) = (b(";c + 7.'9 + f'd) + 6:E(Cca§awp) (6-5)
0.(6C0) ~ 0:(DO0C.) = 7y + 0 (Croip) (6.6)
k

0e(¢Cmg) = 02(D0zCmg) = ¢(1m +74) + 0o(Cimg - Oup) (6.7)
atpc = _d)rc (68)

Oipg = —ory (6.9)

Oipm = —bim (6.10)

Otpa = —Prq (6.11)

C, ¢, k,v are constant, D,V can change with time. This case requires solving the above 9 equations
for the 9 unknowns Ciq, Cer, Ceay Csoy, Cmg, Pe» Pgs Py Pd-

The purpose of this case is to see what effect dolomite can have on the system: does it make
a better fit than magnesite or should both minerals be included to get the correct behavior?
Especially we are interested in determining a good fit for the rate constants.

Although we assume both k and ¢ constant it is interesting to see how they will behave as
functions of the resulting redistribution of components. In other words in this case we treat the
initial values as representative in the calculations and see what changes will occur.

6.2 Case II: Variable porosity and permeability

We now let ¢ and k change simultaneously with the concentrations. In general this should be
solved by the equations (5.92-5.102). However solving this complete set of differential equations is
more complicated than Case I since we would need to include numerical pressure-gradients in the
expressions. To achieve numerical stability it is vital to use a correct numerical inclusion of this
term and this will not be pursued further. We can however simplify the solution to this problem
considerably even if the pressure gradient is nonconstant.

e Asin Case I the water phase is still assumed incompressible: C is constant and equal to 55.5
mol/liter. As shown in the last section we can remove eq (5.102).

e The contribution from reactions in eq (5.92) is assumed to exactly balance the change in
porosity caused by the dissolution/precipitation. Rock/fluid reactions are in other words
assumed not to cause any net volume changes. Mathematically we assume

O(¢C) = @(Fc + 21 + T + 274) (6.12)
which reduces eq (5.92) to
0, (CV) =0« V(t) = constant < 9,(kdyp) =0 (6.13)

Since the equation set only depends on V' which is given by a freely defined function we can
eliminate p as an unknown.

e Porosity will now vary according to mineral concentrations as defined.
e D= D¢+ aV will not just be time dependent any more but vary with porosity

e Permeability k depends on porosity.
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k

at (¢Cna) - az (D(bazcna) - az(onazamp) (614)
0(6Cu) ~ 0:(D00.Ct) = Du(Curip) (6.15)
0t(¢Cca) — 0x(D$0:Cca) = P(Fc+ 79+ 7Ta) + 31(06(1%8901)) (6.16)
0t(¢Cs0) — 0x(D$0:Cs0) = @iy + 8I(Cso§8mp) (6.17)
Oy (¢Omg) — 0, (D¢8m0mg) = Qb(fm =+ fd) + 0z (Cmggamp) (6'18)
8tpc - _(b";c (619)
dpg = —diy (6.20)
Otpm = —¢rm (6.21)
Opa = —Pra (6.22)
D = Do+ a% (6.23)
k
V(t) = 0 (6.24)
¢ = 1- Mcpc + %pg + %pm + %pd (6.25)
c Wy W wq
k = kof(i) (6.26)
b0

C,v are constant, V(t) can change with time. This case requires solving the first 9 equations
above for the 9 unknowns Clq, Cei, Cea, Cso, Cimgs Pes Pgs P> Pd, similar to case L.

6.3 Reformulating the problem

For the numerical solution of the problem it is advantageous to use either pore concentrations or
total concentrations, but not both since it increases the number of variables. We decide to solve
for total concentrations (this has an advantage that becomes apparent in a while). The equations
can be written as 2 sorts:

O(6Cy) — 0, (DP0,Ci) = ¢n+am(ci§azp) (6.27)
Doy = oty (6.28)

where 7 is for ions and j for minerals. Note that the last equation is just a special case of the first.
We replace all pore concentrations by total concentrations. Porosity and permeability can vary.

(#Ci) — 0:(D¢0,C;) = ¢ri — 0.(CiV) (6.29)
A1(6C,) — 0,(DéD, fﬂ = g — awfi V) (6.30)
D(pi) — amuwa;%) = ¢ — M%V) (6.31)

6.4 Units and dimensioning

It has been taken for granted that the units in the equations are consistent, but practically we do
not acquire measurements in these units. Working with SI units we introduce the following units
in the solution and convert all other measurements into them:

[t] =s, [D]=[Dwn]=m?/s, [k]=m? [p|= Pa, (6.32)
[V] = Pa-s, [f]=mol/m3s [C]=[p] =mol/liter, [¢]=0, (6.33)

=
I

L
|
E
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Note that concentrations are given in moles per liter. The reason is that we will not scale the
concentrations, but let the equations have the dimension of mol/liter after dimensioning.

To scale the problem we introduce positive constant reference values 7, ¢, ﬁm, ¥ and p that
can be chosen arbitrarily, but should fit the dimensions of the analysis. From this we make
dimensionless variables and parameters:

k p
= = k/ = = p/ = = 6.34
P 7 (6.34)
k=kk p=pp (6.35)
We now transform V, D and then eq. (6.31) using the dimensionless variables.

k Op 7_i<:\k’ pop’ Eﬁk’@p’ B E}’)\ ,

VS e v aw T woar w (6.36)
Vo= _kazzl? (6.37)
D = Dpo+ a% = DD\ b+ %;—Zi—fv' (6.38)
D = f% =D ¢+ %ﬁimi—;v’ =D ¢+ (b%yglv'zz);nqwgav' (6.39)
e = ugm w= % (6.40)
(i) — am(Dqsaz(%)) — i — m(%V) (6.41)
oSG = iR e

Since we can choose reference values arbitrarily we constraint D, by having
D,, = %2 (6.44)

From the definition of € in eq (6.40) we get

‘Zﬁj - % (D’ %(%)) = tor; — %(E%V’) (6.45)

In addition we choose Z = L, the length of the core (so 0 < 2/ < 1) and ¢ = 7, the timescale of
the experiment. We use 7 = 1d = 24 - 60 - 60s (one weeks test is equivalent to ¢’ = 7). In compact
form without the ‘s the system is described by normalized equations of the form
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Chapter 7

Solution procedure

7.1 Operator splitting

The solution of the equation system follows the approach used in [22, 23]. Note that the variables
in this chapter are normalized as specified in section 6.4. Let

C = (PnasPets Peas Psos Pmg) (7.1)
U = (pc;pg, Pm»pd) (7.2)
We want to solve the system of equations
2C + am(c%) = roic+o, <D¢8m(%)> (7.3)
U = 7¢iy (7.4)
and do so by splitting the system into a reaction part (convection and diffusion neglected):
0,C = 1¢ic (7.5)
oU = 1oty (7.6)
and a convection/diffusion part (reactions neglected):
0,C +8I(C%) = Oy (D(b@z(%)) (7.7)
oau = 0 (7.8)

Let T be the simulation time, Ty, the total simulation time (when the experiment is over)
and let ¢ be the time variable in the solvers, with ts, the amount of time the solver should
calculate ahead. We solve one timestep AT ahead by solving half a step (ti;?/dlf’l = AT/2)
with convection/diffusion, then use this information to solve a time step ahead (¢757¢ = AT)for

reactions and then use this information to solve half a time step ahead (tZZ?/ 4“2 — AT/2) with
convection/diffusion, so called Strang splitting. Letting the reaction solver be called S; and the

convection/diffusion solver be called D, this corresponds to
(C", U™ = [Darj2SarDar)2)(C", U™) (7.9)

We discretize the core length into grid cells with boundaries at * = 0 and 1. With I grid cells

we have grid length

1
=< (7.10)

Cell number ¢ from the left has its center value z; given as

zi=dzr/2+ (i—V)dz, i=1,..1 (7.11)
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Figure 7.1: Relation between cell number and position on x-axis.
7.2 The reaction solver
Removing the convection/diffusion terms our equation set is
O (Pna) 0 (7.12)
Ot(pa) = 0 (7.13)
O(pea) = @T(Fc+7g+7Ta) (7.14)
Ot(pso) = ¢TFy (7.15)
O(pmg) = OT(Fm + 7q) (7.16)
Ope = —@Tic (7.17)
Opg = —¢T7y (7.18)
atp1n - _¢7—7“m (719)
Otpa = —¢TTq (7.20)

This set of equations can be considered as a system of ordinary differential eqations (ODE’s).
That is a system of the form .

= J(Y) (7.21)
At any given position and time the development in the solution vector depends only on the current
state. This is a very useful property because it allows us to solve the system for each location
separately. We can reduce the number of variables in the system by recombining the equations

Ot(pna) = 0 (7.22)

Or(pa) = 0 (7.23)

0i(pg + pso) = 0 (7.24)

O(pm + pa+ pmg) = 0 (7.25)
Oi(pe = pso + pa+ pea) = 0 (7.26)
O(pso) = o7y (7.27)

O(pmg) = OT(Fm +7a) (7.28)

Opa = —¢Tiq (7.29)

Or(pea) = ¢T(Fe+7¢+7q) (7.30)
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and we see that some unknowns are easily given as the solutions of other:

pral) = P (7.31)
palt) = o, (7.32)
pe(t) = (P + pl) — pso(t) (7.33)
pm(t) = (o + PG+ Ping) = (pa(t) + pmg(t)) (7.34)
pe(t) = (02 = Pl + 93+ Po0) = (=pso(t) + pa(t) + pea(t)) (7.35)
Opso = ¢ [K{[sgnT(pg)F,” — F,]] (7.36)
Dipmg = o7 [ [sgn™ (pm) Fy = Fru] + ki [sgn™ (pa) Fy — F]] (7.37)

dipa = —¢7 [k{[sgn™(pa)F — F;]] (7.38)
Orpea = o7 [KS[sgn™ (po) B — F7 )+ k{ [sgn™ (pg)F, — Fy ]+ K [sgn™ (pa) Ff — F;(7.39)

Earlier we specified the functions F; using pore concentrations of all reaction relevant ions.
In the system above we focus on the total concentrations peq, Pso, Pmg and correct for this using
C; = p;/¢. We now show how the other ions are eliminated. C3 is calculated as

1
C3 =2(Ceq + Cmg — Cso) + (Cna — Cer) = g (2(pea + Pmg — Pso) + (Pna — pet)) (7.40)

The aqueous concentrations are then

1 ~ ~
Cy C1Cy Cu
co = A~ co = T 9 oh — 42
Cy, Ch C 2 Con Cr (7.42)

The rate functions F; can then be expressed as

ca co OC(ZC co ca COO~ ca CG.C ca
F. = 1_’7 Th h :1_7 Th 1P2:1_”Y2 1P2 (7.43)
mKe  Cp wmKe  oCj ke oC;,
_ _ /YC(Z’YSO _ _ 70&750 pCllpSO
F, =1 oo CeaCso =1 oo pe (7.44)
m co Cm O co m COO m m O m
F, = 1-1mglheoZmoheo _y  Tmodheod Pmg _ y_ JmolPmg (7 45)
K™ Ch WK™  ¢Cj Y™ ¢C;,
ca Im, 2 CcaCm Cz ca Im 2 é 2 cafFm,
Fd = 1— 7 ’72 Qtho g hco __ 1— Yea”Y g/yhgo 1P 2p 49 (746)
K C} v, K 9*C},
ca |'m 02 caMm
1 — Jeahmg™1 PeaPmg (7.47)

WK 920,

The idea is that the solver receives initial values pj),, p, P2, P201 Pings P2s P9 P, P4 and is told
how far in time t4,; to calculate the given system. In practice t,.; is the time step AT as described
in section 7.1. It can also be a longer period such as when we want to calculate an equilibrium
state (ideally diffusion (and not convection) should be included in such a case but it has not been
done).

The solution is made iteratively by dividing ts, into several time steps 6t. Given the solution
at a time ¢ these values are used to update the rate expressions and estimate the solution at ¢+ dt.

The solutions of peq, Pso, Pmg are essential to update the F; functions and Cs (C3 also depends
on pne and pg but these are constant parameters during the solution procedure). pe, pg, Pm, Pd
update the porosity ¢ if it is assumed to vary, but they are also relevant in the sgn™(-) terms.

When t4,; has been reached and the solution is within acceptable error bounds, the solver
returns the updated solution.

To solve the problem we have used the Matlab ODE solver called ode23.
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7.2.1 A test of the reaction solver
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Figure 7.2: Concentrations of Ca?", SO;~ and Mg** (mol/liter) with time (days) for Ekofisk
formation water (left), nonionic water (middle) and seawater SW1 (right)

The reaction solver is tested on 3 different fluids: nonionic water, Ekofisk formation brine and
seawater SW1 (experimental data are specified in chapter 8). We specify a fluid composition and
the surrounding rock and then observe how they change with time due to the exposure. The first 2
fluids are considered low reactive (since the minerals are "insoluble" in water and formation brine
is in equilibrium) while seawater is considered more reactive. The simulation ran 30 times to give
the state at different times ¢4,; in the interval 0 to 2 days. Remember that the internal time steps
are chosen by the Matlab ode23 routine.

The rate constants determined in [23] were used in the test (corrected for porosity and including
the dolomite constant) as given below

¢ =3.125-107% (mol/liter) /sec, kY = 0.03kS, K" = 0.09k¢, k¢ = 0.00k¢ (7.48)

As seen in Fig 7.2 the 2 less reactive brines very quickly reach an equilibrium state that would
be better captured if more points were used. On a first look they seem to be very reactive, but
when you look at the concentration scale their state changes little in absolute value. Especially
sulphate ion concentrations appear to change, but are only the result of the error limitations of
the routine. In both cases it should theoretically be 0, but is calculated to be of an order equal or
less than 10710 mol/liter.

Seawater SW1 is seen to change more in response to the rock and only after 1.5-2 days the
reactions have reached equilibrium. This shows that a reactive fluid will spend days to reach
equilibrium so using outer time steps on the order of hours seems reasonable.
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7.3 The convection/diffusion solver

o +npZ) = o, (Dqsaw(g)) (7.49)

Without reaction terms our equations take the form

V na
6tpna + 0y (pnag_) = 0O, (D(baac p_)> (751)
¢ ¢
eV
Orpet + 0apaL) = 0, (Dqﬁ@z (Lt > (752)
¢ ¢
eV
atpca + az (pca?) - 81 (D(baz > (753)
eV (P2
atpso + 6:1) (pso_) = 6:1) (D(bam ) (754)
¢ ¢
eV m
Otpmyg +am(pmg?) = 0, (quam %)) (7.55)
Ope = 0 (7.56)
Otpm = 0 (7.58)
Opa = 0 (7.59)
We see the mineral concentrations do not change with time. Since
M, M,, M,
6 = 1 + =g+ =+ —py (7.60)
Wy Wi wq
Vv
D = Dno+as— (7.61)

¢

and V can be assumed constant over the solution time ¢s, (here normally taken to be a half
timestep AT/2) both ¢ and D have constant spatial distributions during the solution. Especially
only the minerals initial distributions are required for the solver. The differential equations equa-
tions are not coupled since each equation has no parameters depending on the solution of the other
variables. This means each solution can be solved separately.

At the start we specify porosity distribution ¢o(x) and the constant Vj (both given at the time
specified in the fullscale simulation by T'). Let

J =V (7.62)

The distribution of D is then calculated as

Vo pd
Do(z) = Dpoo(x) + pe—— = Do (x) + ——
() = Dméo(a) bo(z) méo(@) do(z)
For each ion we must specify the initial concentration distribution p;(z,t = 0) = p;o(z). The
left boundary condition is given by the inlet fluid concentration Cj prine and the porosity at that
position as

(7.63)

pi(0,t) = Ci brine®0(0) (7.64)

For the right boundary condition we would use p;(00,t) = p;o(00) but since we must consider a
finite system in practice we let
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which in practice means the right boundary adopts the neighbors value. Each ion then requires
the solution of

ol t) + 0. (72 Z o, <D0(x)¢0($)8z(p($’ ”)) (7.66)

Po() Po(x)

We solve the equations simultaneously by performing the same operations to the ion vector as we
would to each ion variable.

7.3.1 Numerical solution

For simplicity we consider the equation of one ion variable

p(,t) ) p(,t)
Oip(x,t) = 0p | Do(x )0, —0:(J 7.67
o(ant) = 0. Doalan(a)on (550 ) - 0, (1571 (7.67)
We now assume we know the solution at a time ¢ in discrete points so that
pi = p(xi,tn) (7.68)

for integers 1 < ¢ < I such that TAxz = 1 and t,, = nAt. Based on this information we want to

estimate the solution at the next timestep p'*'.

We discretize the separate terms as follows

n+l_ n

Aipla,t) = % (7.69)

O (Do(x)%(x)az(ii;))) = é ((D0¢081£)i+1/2 - (Do¢oaz£)i1/2) (7.70)
plat)y L (e g,

O (J fbo(ﬂi)) = AL ((J¢O)z+1/2 (J(bo)zl/z) (7.71)

We use an explicit 3-point formulation (meaning that the solution at a point for the next time
step is based on the solution in the point and its neighbors at the previous time). In other words
all values on the right side are given at ¢". The values of interface expression must be selected
in a proper manner for numerical stability. A good starting point is to let fluxes be based on
the direction the points they come from. In this way we assume the flow is running from left to
right (since we inject at the left boundary) and so for the convective terms we use an upwind
formulation

p pi p pi-1

2, — L)i1je = 7.72

(¢0) Hp =g (¢o) 12 = g (7.72)

If we had based this flux on the values on both sides of the interface it would cause stability
problems.

The diffusive terms are somewhat simpler when it comes to stability. We need representative

values of ¢9 and Dy based on the neighboring cell values. This can be done in a number of ways:

e Arithmetic mean:

Do iv172 = 3(Do,i + Doiv1), Doi_12 = %(Do,i—1 + Do.i), (7.73)
Go,i+1/2 = 3(Do,i + o,i1),  Po.i—1/2 = %(¢O,i—1 + ¢0,i)- (7.74)
e Harmonic mean:
Dossrjs = 2B Dosajp = pid st (7.75)
nsijs = BB gy = L (7.76)
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e Geometric mean:

Do iv1/2 = /Do,iDo,i+1, Doi—1/2 = \/Do,i—1Do,i; (7.77)
Go,it1/2 = \/P0,i®0,i+1,  Po,i-1/2 = \/P0,i-100,i- (7.78)

The gradients are discretized as

i i P _ 1 pi Pi—1
P@nn =i manh BGDen =g Gr e ) @
Now let A

A= — 7.80
s (7.80)

With the notation above in mind the convection/diffusion solver takes the form

n+1 P P

i = pitA <[Do,i+1/2¢o,z'+1/2(31%)i+1/2] - [DO,i—l/2¢0,i—l/2(8m%)i—lﬂ])
p p

A J(—): —J()i- 7.81
(I L)iwrsa = I ) (751)

These equations are computed for each cell i = 1..1, but we must specify values at the boundary
interfaces. Specifically the average values of Dy and ¢ are taken as the cell value at the edges.

At the outlet the pore concentration is assumed the same at the center of the cell as at the
right boundary so we neglect diffusion there and keep the upwind flux.

At the inlet the convective flux in is naturally given by the injection fluid composition. The
left side diffusive flux is given by assuming a cell to the left with injection fluid composition.

Do,1/2 = Do,y Do,r41/2 = Do,r (7.82)
bo0.1/2 = bo,1 Po,14+1/2 = Po.1 (7.83)
P PI
(£)1/2 = Cinj (%)1+1/2 = %oz (7.84)
p
895(%)1/2 = ﬁ(ﬁl = Cinj) 890(%)1“/2 =0 (7.85)

To determine a good volume rate for the experiment we want the front to pass through the
core during the time scale of the experiment. Let @) be volume rate and ¢ be the number of pore
volumes per day injected. To let this be determined uniquely we relate it to the initial porosity

¢init -

Q=q—" (7.86)
Q is also related to Darcys law.
 kwAAP Kkl AAP KK A Oy
=TT T, I v Low (7.87)
Combining this we get
Linit Ekgot AP
et et T 7.88
¢ T v L ( )
E'op kéot% ., AP L2 D,,v Qi
oz - L - ktotT - _q(binit = ~_ = (789)
T I p 7D, kD €
k'op'
=€ = qPinit (7.90)

This simple relation is used so that ¢ is an input parameter to determine J. We will typically
consider injection rates of 1 PV /day, corresponding to ¢ = 1.
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7.3.2 Simplification: Constant porosity

With ¢ constant and equal over time and space and Vj considered constant over the solver simula-
tion time (as before) we can simplify the system and better evaluate stability. Dy will be constant

and uniform over a simulation. Let v 7
£ _ 2 (7.91)
¢ ¢

(not to be confused with the seepage velocity which is not dimensionless). Note that for constant
porosity

Vv

V=g (7.92)

so V adopts the value of number pore volumes injected per day directly. The PDE becomes
Dupl,) = DBy (pla, 1)) — VOu(pla,1)) (7.93)

With the chosen discretization we have

P?—H = pi+ADg ((awp)i+1/2 - (awp)i71/2) AV (Pz‘+1/2 - pifl/Q) (7.94)
Pi+1 — Pi Pi — Pi—1
= 7 D — — i — Pi— -
pi + A 0< Az Az > AV (pi = pi-1) (7.95)
- _ p Pl T Piy - _p,PiTpim
= pi—A <[Vpl Dy s ] = [Vpi—1 — Dy Az ]) (7.96)

with boundary conditions

p1/2 = Cinjdo Pri1/2 =PI (7.97)
0zp1/2 = nz(p1 — Cinj®) Ouprirje =0 (7.98)

used to solve for the first and last cell.
In [9] solutions to the problem

Dupla, ) + u(F(pl, 1)) = 0 (7.99)

(corresponding to f(p) = Vp and Dy = 0) are investigated and especially the upwind formulation
used above for the convection gives stable convergence if

VA<l & At<Az)V (7.100)

A test of this criterion (using At = Az/V') was performed on (7.96). Settings for the simulation
was

dz =005 ¢=03, AT=00,02,..,1.0, V=10, pinitiar=1, Cin;j =50 (7.101)

For Dy = 0 the result (left in Fig 7.3) is a function with smooth fronts indicating how far the
injected fluid has traveled, imposed by the convective flow. The initial distribution is here a flat
line. As seen the fronts are here far from vertical as expected theoretically. The smear depends
on the method used (upwind is considered relatively good) and the grid refinement (the grid is a
bit coarse). Including diffusion soon makes the solution unstable.

For Dy = 0.01 (bottom in Fig 7.3) it really diverges to unreasonable values, but for Dy = 0.001
(right in Fig 7.3) it seems okay. However for such low values of D it is little difference between
the solutions (unless one looks closely). The value of V' will typically be around 1 but simulations
show that a finer grid is required for the fronts and we need a better limitation on At for stability.
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Figure 7.3: Numerical results for convective/diffusive displacement: Concentration distribution at
times 0.0, 0.2, ..., 1.0 . Left: Dy = 0. Right: Dy = 0.001. Bottom: Dy = 0.01

7.3.3 TVD-analysis for stability

Our measure of stability will be total variation (TV). It is defined as

TV = > ol — oA (7.102)

1=—00

We seek a limitation on the time steps so that the method is total variation diminishing (TVD).

A method is TVD if
TV <TV"™ for all n (7.103)

This ensures that the solution at a later time will not oscillate or blow up.
We will now give a criterion to ensure that our method is TVD. A numerical procedure for the

solution of (7.99) can be written as
Pt = pi = Mfivry2 — ficay2]l = pi = AlF(pi, pit1) — F(pi-1, pi)] (7.104)

Notice that eq (7.96) is of exactly this form with

Pi+1 — Pi
F(pi, pi =Vp; — Dp———— 7.105
(pi, piy1) =Vp AL ( )
Define o
P )\f(pl) - (pule) + f(pz+1) (7.106)
Pi+1 — Pi
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If

N f(piv1) — fpi)

Pi+1 = Pi
the method is TVD. It will also be monotonicity preserving (MP), meaning that if the solution is
nondecreasing or -increasing at some point it will be the same at all later times. If the rightside
limit of 7.107 is replaced by 1/2 the solution at the next time step is limited by the infimum and
supremum of the previous solution (from [9]).
With our algorithm we get

| < div12 <1 (7.107)

i — i Vpir1 — Vp;
yL ) =), -\ Ve = Ve _ (7.108)
Pitr1 — Pi Pit1 = Pi
Vpi —2(Vp; — Do25E) + Vipiga
Git1/2 = A - . (7.109)
Pi+1 — Pi
v i -V i+2D Pit1—Pi
- Pit1 P 0 Aq (7.110)
Pi+1 — Pi
2Dy
— ANV 4+ 7.111
v+ (r.111)

Clearly the left inequality of (7.107) is held since Dy > 0. Our criterion becomes

2D0 ALL‘Q
AV + AI)gl e AtSVAx+2DO (7.112)
Note that for low Dy it takes the same form as 7.100. Also of importance is that for high Dy we
get small At and a large number of time steps. This criterion is also derived from the definition
in app D. If V. =0 and D is very low the time step can become larger than the simulation time.
To make sure we always finish the simulation with at least 2 steps and exactly on the simulation
time we select At as follows

steps = round(tsor / Atmaz + 1.5) At = tg1/steps (7.113)

A new simulation test was performed with the highest allowed At from (7.112). Settings for
the simulation was

dz =001, ¢=03, AT =0.0,0.33,0.67,1.0, piitiat =1, Cin; =50 (7.114)

and both Dy and V' were varied. First the case V =1 and Dy = 0 was repeated and as seen left
in Fig 7.4 the fronts are better defined with steeper edges than the case left in 7.3.

When we include diffusion the effect is clear as seen right in Fig 7.4. V = 1 still, but we
vary D over the values 0.0, 0.001, 0.01 and 0.1. The fronts move with approximately the same
velocity, but the concentration profile is smoothed out more for higher Dy. If Dy is high the front
actually changes speed because the diffusive wave out to the left travels faster than the convective
speed and has reached the left boundary. Since the algorithm tells the left side to keep a constant
value the wave is reflected at the edge and the mass is pushed ahead of the convective front. This
solution is not very physical since a physical system would let the diffusion continue.

To see the effects of diffusion only we let V' = 0 and vary Dy from 0 to 1. The solutions
are given at time 1.0 in Fig 7.5. We see that in all cases the diffusion works to average out any
differences in concentration (in this case the concentration in the core is increased because ions
travel into it by diffusion from the concentrated brine). The higher the value of Dy the more rapid
this process happens. Also this example is not entirely physical since diffusion should be allowed to
proceed out of the core. However we are mostly interested in situations where convection reduces
this error.
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Figure 7.4: Concentration distribution at times between 0.0 and 1.0 . Left: V' =1 and Dy = 0.
Right: V =1, Dy = 0,0.001,0.01,0.1 (lines with higher Dy have more dots).
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Figure 7.5: Concentration distribution at time 1.0 with V' =0 and Dy = 0, 0.001, 0.01, 0.1, 1.0
(graphs corresponding to higher D are more to the right).

7.4 Consequences of operator splitting

As seen in this chapter the splitting of the original problem into a convection/diffusion solver and
a reaction solver offers great advantages when it comes to solving the equations. But it also has
a price when we want the overall solution to converge to the solution of the initial problem. The
external numerical discretization has some key effects and we must try to keep the number of time
steps and cells as low as possible without affecting the end result to seriously.

7.4.1 Too high AT: Washout

If tyos = AT/2 is too high the flow will push out any initial fluid composition distribution and
replace it with the injection brine composition uniformly. When the reaction solver starts, the
reactions respond to the local fluid composition and therefore the result will also be a uniform
reaction. The entire core will show a uniform distribution throughout the simulation that changes
only with time. This phenomena could also be limited to a smaller portion of the core. This
means that for long time simulations it is still important to keep AT on a level that allows for
heterogeneous reactions.
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7.4.2 Too high AT: Chemical equilibrium

If the reactions are allowed to occur isolated over a long enough period they will reach equilibrium.
However we wish to capture the effects that reactions are constantly disturbed by the flow. In
other words a sample of fluid may react at one location and approach equilibrium and then be
transported further downstream the core. Since this sample is closer to equilibrium it reacts slower
and there should be less precipitation/dissolution. The choice of At decides then if the reactions
happen everywhere in the core or primarily at the inlet. Note that this dependence can also be
linked to the reaction rates and the rate constants.

7.4.3 Too low AT: Left side boundary condition

We want to permit reactions to happen near the inlet, so that the composition there changes during
the reaction procedure. However, it is expected that on an average basis the fluid composition
there is similar to the injection composition. This is a paradox since the place which will change
the injection composition most rapidly will also be constant over time.

The answer to this paradox is that we are looking a finite distance into the rock and so there
will be a change in the fluid composition. However, the reacting fluid is also being transported
away, carrying dissolved ions and the inlet position is refueled with reactive brine. It is natural to
expect that moving closer to the inlet one would always find the composition close to the injection
brine. This point is not captured if the time step is taken to short. Consider the distribution
after the reaction solver has finished. The convection/diffusion solver uses this distribution as
input and returns a new distribution after A¢/2. If the solver has not given cell 1 a composition
equal to the injection composition it will be closer to equilibrium between the injection fluid and
the rock. This effect will lead the inlet composition further away from its supposed value until it
reaches a stable value between inlet composition and equilibrium composition, depending on the
numerics. Given the spatial grid for  we should ideally keep At/2 large enough to let cell 1 reach
the injection composition. A numerical test was performed in Excel to test how long steps would
be required. First we looked at a case with low diffusion.

LES Time rhoD rhol rho2 rho2 rhod
= 0.00 0.2180|| 04600 0.0000| 0.0000 0.0000
5 o3 0.02 0.2180|| 0.4802| 00608 00067 0.0000
B \\ / 0.04 0.2180| | 0.4933] 01056 0.0313| 0.0047
£ v 0.06 0.2180|| 02017 04381 00619 00175
p \ / 0.08 0.2480|| 0.2073| 04615 0.0921| 0.0369
€ o2 0.10 0.2180|| 02109 014782 01189 0.0600
£ \ / 012 0.2180|| 02133 04901 01415 0.084D
g o 044 0.2180|| 0.2149] 0.4984| 01598 0.1070
2 \f 0.16 0.2180|| 0.2159] 0.2043| 01743 014279
£ ™  § 0.18 0.2180|| 02166 0.2084| 01854 D.1461
g 0.20 0.2180|| 0.2171| 02113 014939 0.16i4
£ e 0.22 0.2180 0.2174| 0.2433| 0.2003| 04740
a 0.24 0.2480|| 02176 0.2148| 02050 04842
° 026 0.2180|| 02177 0.2157| 02086 D.1922

o 01 0z 03 04 05

initial comp in cell 1 0.28 0.2180|| 0.2178) 0.2164| 0.2412| 014985
030 0.2180|| 0.2179| 0.2169| 02131 02033

Figure 7.6: Left: Simulation time required for solver to reach 0.218 M concentration in cell 1 (3
correct decimals). Right: solution for p{ = 0.16 and At = 0.01 (only every second step shown)

The settings were
V=1 D=0001 dz=005 py=0218 pjs,=0 pj variable ts =0.02  (7.115)

a simple system indicating injection of 0.218 M M gCl, solution (with p indicating Mg?* concen-
tration in mol/liter) into a core filled with pure water where only look at the first 4 cells. Given
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the data above (note that the simulation time t4,; = 0.02 & 0.5 % 1/24 is equivalent to a half hour)
and the stability criterium (7.112) we find the inner time step At using

steps = round(tso /Atmas + 1.5) = 2 At = ts0/steps = 0.01 (7.116)

Then for a given ts, we compute the solution in space and time and see how long it takes for cell
1 to get composition equal to the injection composition to 2 or 3 decimals. We want this time to
be less then the simulation time of the solver.

What is clear from the results left in Fig 7.6 is that cell 1 does not copy the injection solution
properly before 0.3 days have gone, although 0.25 days would cover most practical situations. For
example the equilibrium concentration of Mg** is around 0.16 mol/liter and after 0.24 days it
reaches the wanted 0.218 as seen in the table to the right in Fig 7.6 with the complete solution.
The required time well outside the typical time for the solver. Note that the values only approach
the boundary condition, but the error is minimal after a long enough period.

“ ) Time rhoQ rhol rho2 rho3 rho4

e Nﬂ""*\ 0.00 0.2180 0.1600) 000000 0.0000) 0.0000

e ‘\ / 0.01 0.2180 0.1700| 01265 0.0828 00748

:Z \ ) / 0.02 0.2180 0.1906) 0.1656| 0.1463| 0.1353
/ 0.03 0.2180 0.2023| 0.187% 0.1768| 0.1708

004| | 02180 | 02080 02007 0.1944) 0.1908
005|| 02180 | 0.2128) 02081 02045 02025
006|| 02180 02150 02123| 0.2102] 02091
007|| 02180 0.2163| 02147 02135 02128
008|| 02180 02170 02161 02154 02151
. s 1 5 2 s s s a 008|| 02180 | 0.2174) 02169 02165 02163

Initial compin cell 1 0.10| | 02180 | 02177 02174 02172] 02170

g

g

E

g

Time required to reach injection compesition (d)
-
B

Figure 7.7: Left: Simulation time required for solver to reach 0.218 M concentration in cell 1 (3
correct decimals). Right: solution for pj = 0.16 and At = 0.0011 (only every 9th step shown)

Consider now the same example with D = 1.0. An immediate numerical consequence of
increasing D is that At decreases from 0.01 to 0.0011 to keep stability, while the number of time
steps increases from 2 to 18.

The increased diffusion reduces the time to get the proper boundary data to less than 0.1 days
(see Fig 7.7) for any practical initial value in cell 1, but as we see in the table, after the simulation
time of 0.02 has ended, the difference is little.

7.4.4 Correction at the boundary

The convection/diffusion solver is of the form

A <[D0,z'+1/2¢0,z‘+1/2(3z£)i+1/2] - [DO,i—1/2¢0,i—1/2(8m%)i—l/Z])
—A (J(ﬁ)i-ﬁ-l/Q - J(ﬁ)i—1/2> (7.117)
%o b0

p 1 p p p p p
(1)1 /2 = — (T = Ciny) OS2 =0 ()12 = Cing (S)r41j2 = ¢Tll (7.118)
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and it is based on mass preservation/transport. Especially we see that when summing over all
cells and multiplying with AV = AAz we get

AZP?HA;E = AZPz‘AiU + AAt ([DO,I+1/2¢O,I+1/2(6:E£)1+1/2] - [D0,1/2¢0,1/2(8w£)1/2])

A8 () rrga = (L) (7.119)

It states that the number of moles at the next time step is equal to the previous number of moles
plus the difference of moles transported in and out by convection and diffusion at the boundaries
of the core. In this way no moles disappear since fluxes leaving a cell enter another.

We now want to alter this method to obtain the correct boundary condition on the left hand
side at the end of the simulation. We could do this by increasing the simulation time ts,; = AT/2
or perhaps refining the grid, but we treat them for now as given.

As seen in the example (especially the tables in Fig 7.6 and 7.7) cell 1 approaches the boundary
condition during the simulation. After a certain fraction of ts,; we then replace cell 1 with the
boundary condition after each iteration. Compared to the total mass this is a negligible error
when Az — 0. The remaining fraction of ¢4, is spent on smoothing out any discontinuities. This
is also a good approximation of the diffusion is of same order as the convection (D similar to V).

Note also that this procedure gives a diffusive flux from cell 2 to cell 1 that is not carried any
further, but as seen in the table, after some time the two cell values are similar and the diffusive
flux is not very significant. If we could use ts,; = AT/2 = 0.3 days the error would be very small
in first our example. Had we let it be infinite there would be no error at the boundary. Since
diffusion works to average out any deviations we must force the correct boundary condition in
place in finite time.

A test of the full simulator was performed with data corresponding to the paper [23]

V=13 D=1.058 AT =0.5hr T, = 2days (7.120)

The rate constants in (7.48) were also used. Seawater SW1 was injected into a core that had
reached equilibrium with nonionic water.

0017

00165

00161

001551

0015

Mole / lter

001H 4 00145

=~ ~Inital equillbrium ootk
= With reaction - loose boundary condition
No reactions - loose boundary condition
©No reaction - forced boundary condition
—=—With reactions - forced boundary condition

001351

00051

00131

L L L L L L L L
o o1 02 03 04 05 06 07 08 09 1 0 002 0.04 0.06 008 01 012 014 016 018 02
X

Figure 7.8: Comparison of left boundary conditions. Closer view in the right picture.

The distribution of Ca-ion concentration in the core after 2 days is given in Fig 7.8. We have
plotted 5 curves: the initial equilibrium is used as a reference, 2 curves have only convection
and diffusion taking place but one used the loose boundary condition and the other the forced.
The 2 are inseparable at the given time but might have been more distinguished before the core
was completely flooded. The 2 remaining curves include reactions also and there is a small but
noticeable difference between the 2 curves at the inlet that is reduced further out in the core.
With the forced condition the solutions with and without reactions always join at the left side.
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7.4.5 Choice of AT

As seen in the example of the reaction solver and the discussion above we should use time steps
not exceeding a few hours to capture the interplay between convection/diffusion and reactions.
We will typically use 0.5 to 2.5 hr as external time steps corresponding to AT = 0.02 — 0.10.
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Chapter 8

Experimental data

8.1 Experimental setting

The experimental data were obtained at the University of Stavanger and is also given in [22, 23].

Cores of chalk were filled with nonionic water at a temperature of 130°C, while being pres-
surized by a confining pressure. The core saturation is performed a long time so equilibrium can
be reached. Injection of a brine with given composition into the core results in disturbance of the
equilibrium and chemical reactions. Ion concentrations of Ca, So, Mg, Na and Cl are measured at
the outlet at different times after start of injection. Also this process is performed at high tem-
perature and pressure. Pressure at the inlet and outlet are adjusted to keep the flowrate constant
during the experiment. The flooding processes were kept going for several days.

The relevant core properties were

Initial porosity ¢ = 0.48
Length L=0.0"m
Bulk volume Vi, = 75ml
Pore volume  V, = 36ml
Matrix volume V,, = 39ml

Rock mass My = 100g

The initial calcite concentration can be calculated as

M 100g

L= - — 13.33mol /lit 8.1
Pe = MVy ~ 100g/mol - 0.075liter mol /liter (8:1)

However we will use eq (5.105) to calculate the initial concentration since that is used later in the
program.

We 2710
— =(1-048
M, ( ) 100.087
The values are similar indicating that the formula can be used.

All experiments use a volume rate of 1.3 pore volumes per day, which is equivalent to

pe = (1 = Ginit) = 14.08mol /liter (8.2)

q=13 J=q¢ini = 0.624 (8.3)
We assume a constant viscosity of

v=0.7cP =0.7-10"%Pa - s (8.4)
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Nonionic  |Ekofisk Seawater |Seawater (0.109M |0.218M |0.657M
water formation | [SW1 Sw2 MgCI2 MgCI2 NaCl
water

Ca (mol/liter) 00 02318 0.013 0.013 0.000 0.000 0.000
So (mol/liter) 0.0  0.0000 0.024 0.024 0.000 0.000 0.000
Mg (mol/liter) 0.0 0.0246 0.045 0.045 0.109 0.218 0.000
Na (mol/liter) 00/ 0.6849 0.450 0.050 0.000 0.000 0.657
Cl {mol/liter) 00 11975 0.525 0.125 0.218 0.436 0.657

Figure 8.1: Brines used in experiments and simulations

8.2 Fluid compositions

In the calculations we must specify an initial fluid and an injection fluid. Each composition is
identified by the fluid concentration of Ca, So, Mg, Na and Cl. The experiments available for
comparison are chalk cores saturated with nonionic water and then flooded with the 5 brines to
the right in Fig 8.1. Note that the 2 seawater brines have identical composition of Ca, So and Mg
but differ in Na and Cl. The 3 remaining injection brines are simple solutions containing only 2
of the 5 ions in each. In all simulations being compared to experiments we will use nonionic water
as initial fluid that is saturated with the rock to equilibrium before simulation starts.

8.3 Activity coefficients and ionic strength

For any simulation the activity coefficients of every ion and the ionic strength of the solution
must be calculated using the theory in subsection 5.6.1. These values are set to depend only on
the temperature and the injection fluid composition. Note that brines 1, 4 and 5 in Fig 8.2 have

Injection fluid | |0 yca jyso ymg ynmn |yd v h yoh yco |y heo

w1 06515 | 01602 00987 022000 05604 0.5130) 0.7058) 0.5379) 01139 0.5604
SW2 02515 | 02247) 0.1653] 02794 06376) 06055 07429 06222 0.1805 0.6376
0.109 M MgCl2 0.3270) | 02043) 01436 02608 06156 0.5795 07319 05983 01591 0.6156
0.218 M MgCl2 0.6540) | 01600 0.0985 02198 05601 (0.5127) 07057 05376 0.1137) 0.5601
0.657 M NaCl 0.6570) | 01598 0.0982] 0219 05598 0.5123) 07055 0.5372) 01135 0.5598

Figure 8.2: Ionic strength Iy and activity coeflicients of the ions calculated in simulations with
injection of the specified brine

almost identical ionic strength and activity coefficients.
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8.4 Reaction equilibrium constants

These are assumed to depend only on temperature and are given at T = 130°C

K.=10""% K,=10""" K, =109 K;=10"%%, (8.5)
Pros =1073°, K =100 (8.6)
C,=Peoxx K, Cy=10"1"" (¢, =10"1%2 (8.7)

The units are based on (mole/liter) except Pco2 and K which also require pressure units, but C4
removes this unit from the system since C is only based on (mole/liter).

8.5 Reference values

We use
T = L=00Tm (8.8)
t = 7=1d=24-60-60 = 86400s (8.9)
~ L*  0.07
D, = —= =5.67-10"%m? 1
— = 36400 5.67-10"°m*/s (8.10)
k = 2mD =0.002-0.987-107'% = 1.974- 10~ **m? (8.11)
p = lbar =10°Pa (8.12)
kp 1.974- 10~ %m2105P
e = 2 _ o 497 (8.13)

vD,, 0.7-1073Pa-s5.67-10-%m?/s

in SI units for the calculations.
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Chapter 9

Case I. Constant core properties and
incompressible fluid

9.1 Assumptions and goals

The basic assumptions for this case are that we can treat permeability and porosity as uniform
and constant in the equation and that the velocity is uniform. In the section we will explain how
to use and actually use experimental results to determine parameters in the model. It is important
to notice that the statement of constant porosity means constant in the equations. We still want
to calculate porosity as a function of mineral concentration, but do not treat porosity as a variable.

An important technique to determine parameters is elimination. We find cases where only 1 or
a few parameters act and determine them with high accuracy. Then the parameters can be taken
as given and more complicated cases are suddenly simplified to contain less variable parameters.

We will find the components of the diffusion coefficient and evaluate whether magnesite or
dolomite is best suited to explain the observations or if both minerals should be included.

The development of the solid structure of the core is of great interest and we will see how
porosity changes and if it is reasonable to treat it as constant. Also the assumption of a uniform
velocity will be checked.

9.2 Simple pressure analysis

As mentioned in section 6.1 pressure p can be eliminated using Darcys law (V (¢) = %) and a

boundary condition (let us say the inlet pressure, piniet). The steps below are given assuming
consistent units with @ volumetric rate, A crossectional area, L the core length and V the seepage
velocity. We are especially interested in the pressure drop over the core AP(t) = Diniet — Poutict-
Q(t) is controlled externally and induces the pressure drop. The overall permeability & falls out
of this relation.

_ Q@ _ kdp _dp Qv b _/m Qv
V() = A= oI de - kA - dp = - kAdx (9.1)
t)v
p((E,t) = DPinlet — Qk(/i X (92)
vL

AP = DPinlet — p(L7 t) = Q(t) (93)

kA

An important implication of eq (9.3) is that if the injection rate is constant so is the pressure
drop. We should expect fluctuations, but if we see any notable changes with time this suggests
permeability is affected by the chemical processes.
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Such a test can indicate whether the brine is really affecting the permeability and porosity
(assuming they are connected locally). This is not pursued further, but can easily be implemented
into the algorithm.

9.3 Determination of D and «

The determination of D can be made by comparing the outlet concentrations of Na™ and Ci~ from
experiments with simulations where we select the best value of D. These ions are not participating
in the reactions and the concentration movement should only depend on the convection which is
constant and the diffusion. D is here fit to Cl™ curve from the experiments of injecting 0.109 M

Ion Concentration (outlet) on Concentration (outlet)
T

0. T T 0.
o sk ecmmmmmmmmmmmmmm o ©-----
PR e —
02t 04f “
0.351 )4

T e =
S o1sk # 2 o3 p
2 2 /
g H /
< 4 5025
g g
] H ; ——CI- (calculated) 1xD ]
§ o1 £ oz K -©-Cl- (measured)
5 / 38 {1/ & CI- (calculated) 2xD, |

) o1 ’/ - CI- (calculated) 3xD, |

| i

005 d 4 o Cl- (calculated) 10| | oab /{7
| 0 Cl- (measured) [ d
I & Ci (calculated) 20, oosk
4 o Cl- calculated) 36D,
, . . I & , . . .
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0 1500
Time (Minutes) “Time (Minutes)

Figure 9.1: Comparison of Cl~ concentrations at outlet with different values of D. Left: injection
of 0.109 M MgCls. Right: injection of 0.218 M M gCl,

MgCls and of 0.218 M M gCls. All simulations here use a time step of 1 hr. The reference value
for D in the figure 9.1 is
ref =0.6-10""m?/s (9.4)

which was used in [23].

It is seen that 2 times the reference value makes the best fit in both cases. When we compare
this to the experiment of injecting 0.657 M NaC'l seen in Fig 9.2 we see that it makes a better fit
than D=1 ref, but that it could also be higher.
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.
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o
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Figure 9.2: Comparison of CI~ and Na™ concentrations at outlet with different values of D.
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Note that we have only included simulation of CI~ for the reason that the theoretical distri-
bution of the 2 ions should be identical for NaCl injection into nonionic water. The spread in the
2 experimental curves can indicate the uncertainty in the measurements or perhaps that the ions
have a different diffusion coefficient.

We conclude then that

D 12.00
D=12-10""m?/s D' =_—=-""=2116 9.5
m°/s D, 5671 (9:5)
Assuming
D 3.5
D,, = 3.5-10"9m? D =" = _""_ —=0.061 .
3.5-107%m?/s D!, 5. = B 0.0617 (9.6)

as discussed in App C and that the porosity is equal to the initial during these short experiments
(D is fit to data mostly before 1 d =1440 min) we calculate

J
D = Do+ % (9.7)
0.48
— (D' =D, $) = (2116 — 0.0617- 048 = 1.605 .
o= (0 DL = s (0.
= uL=1.605-0.07=0.112m (9.9)

From the numbers above it is seen that the convective diffusion part is dominant in the considered
flowing case. If there is no convective flow the diffusion is purely molecular. Both these cases
are demonstrated in the test of the convection/diffusion solver for constant porosity in subsection
7.3.3.

9.4 Test of assumption: uniform V

Consider the water phase equation in consistent units

(¢>C) + 5o (CV) =0 7 (9.10)

ions

Now transform this equation into dimensionless units

d d
—7(#0) + 15~ ,( ¢w2n:8n (9.11)
) )
5 (¢0) + 55 (CeV') = ¢t > i (9.12)

ons

Our assumptions of constant porosity and incompressibility simplifies the equation and we can
solve for 0, V'

a .., T .
wons
The ion rates are given by
Tea =Tc+Tg+Td, Tso="7g, Tmg=7Tm+7d, Tna=0, rq=0 (9.14)
so that
> i = Tea + Fao + Timg + Fna + Tor = Fe + 2 + o + 27 (9.15)

ons
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If we divide eq (9.13) by V’ and use that J =V’ we get

oV v ot

Vad ~ View = G ——(Fc + 27°g + T + 27q) (9.16)

The left-hand side of eq (9.16) is the gradient of V' divided by V/, so if this number is small we get
that the variation in V over the core is negligible compared to its average value and it is reasonable
to assume it is uniform. ¢, 7, C,J are known quantities at the beginning of the simulation, while
the rate terms must be evaluated at specific points and times.

9.5 Determination of rate parameters

All that is left to determine in the model are the rate constants ke, k., kg, kq that control the
speed of the reactions and their relative importance. Note that since all the rate expressions are

of the form
7= sgn(p)F* — F~, F=k¢r(1-9Q) (9.17)

the rate constants do not express the reactions rates relative to each other in general but expresses
how fast dissolution of one mineral occurs relative to another.

All simulations for determining rate constants use a simulation time of 5 days with 48 time
steps, so that AT = 2.5 hr, unless otherwise specified. The experiments typically last more than
5 days, but a clear trend is observed long before then.

9.5.1 Magnesite model
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Figure 9.3: Left: Fitting the parameter k,, to data from 0.109 M MgCls injection when k. is
already specified to 1.3 - ref. Right: Comparing the new parameters with data from 0.218 M
M gCly injection. Ca-curves are red, Mg-curves are blue.
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Our starting point is the parameters given in the paper [23]:
k. =3.125-107° (mol/liter) /sec, k, = 0.03k., Ky, = 0.09k., kg = 0.00k, (9.18)
From this we define a reference value
ref =3.125-107° (9.19)

and express k. as a multiple of ref and the remaining constants as a multiple of k.. Since we only
consider magnesite among magnesium minerals dolomite is eliminated by keeping kg = 0.

lon Concentration (outlet)
T

0.035

— —— Ca2+ (calculated) kg = 0.03 kc
©' caz+ (measured)
—— -S04 (calculated) kg = 0.03 kc
O sS04 (measured)
Mg2+ (calculated) kg = 0.03 kc
<O Mg2+ (measured)
Mg2+ (calculated) kg = 0.04 kc
- —=— Ca2+ (calculated) kg = 0.04 kc
— = -S04 (calculated) kg = 0.04 kc
—— Mg2+ (calculated) kg = 0.045 kc (best fit)
- - Ca2+ (calculated) kg = 0.045 kc (best fit)
-5 -S04 (calculated) kg = 0.045 kc (best fit)
—=— Mg2+ (calculated) kg = 0.05 kc
- = - ca2+ (calculated) kg = 0.05 kc
— = -S04 (calculated) kg = 0.05 kc
—e=— Mg2+ (calculated) kg = 0.07 ke
- =— Ca2+ (calculated) kg = 0.07 kc
— = -S04 (calculated) kg = 0.07 ke

0.025 —

Concentration (mole/iter)

o
o
N

T

0.015

L L
) 1000 2000 3000 4000 5000 6000 7000
Time (Minutes)

10
lon Concentaion (oute) |
0
012f 1 I
1 4
= = - Caz+ (calculated) |
=@ - Ca2+ (measured) 1
o1l - - 504 (cacuated) 1 _ ]
-0~ S04 (measured) g
= Mg2+ (calculated)|
5 o i (ressred) T no | good e
B Nat (calclated) fit fit
3 Cl- (calculated) - ==
= CI- (measured) = 1 kg
] w
£ = |
8 oos( 1 E
8 201 i
004 1 | ..\‘\r
| ¥
001 !
15000
Time Minutes) 025 05 075 1 125 15 175 2 225

ke {times k_ref)

Figure 9.4: Top: Fitting the parameter k4 to data from seawater SW1 injection when k. = 1.3-ref
and k,, = 0.05- k. are already specified. Left: Comparing the new parameters (k. = 1.3ref, k., =
0.05k., ky = 0.045k.) with data from seawater SW2 injection. Right: Parameter combinations.
Ca is red, Mg blue, So purple, Na light blue and Cl green.

Choosing the parameters from the experiments goes accordingly:

We select a value for k., in this example k. = 1.3-ref. Then we run simulations with injection
of 0.109 M M gCls with different values of k,, (note that So-ions are not part of this experiment
or simulation so we can set k; = 0 or some other value without changing anything) and select
the value that fits best with the effluents of Ca- and Mg-ions (see left in Fig 9.3). We see here
that k,, = 0.05k. makes a good fit compared to the other. Higher values of k,, tends to reduce
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the amount of escaping Mg-ions. This means more of the ions are left behind in the core having
reacted and formed magnesite.

Porosity
0.484, T
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Figure 9.5: Porosity distribution after 2 days with the given number of time steps.

Next the parameters are tested for quality by comparing the simulation with experimental
data of injecting 0.218 M M gCls (see right in Fig 9.3). The fit is excellent for all involved ions
(Na, Ca, Mg). The next step is to determine the last parameter k,. We then use data from

Ca So Mg
0.02 . : .
0.0195F - 0.0175F - : ; : 4  0.0355f
n B
0.019- ) 0.0171 - B 0.035f
0.0185f 0.0165F - : : 4  0.0345-
& —s = : — & & —6
> o.o18f —_—12 & O0.016f —12 1% 0.034f —12 ,
=} ——18 S H —-—18 S —=—18
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0.016 0.014— . . 0.032 .
(¢) 0.5 2 o 0.5 1.5 2 o 0.5 2
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Figure 9.6: Effluents of Ca, So and Mg when injecting SW1 over 2 days. Parameters: k. = 1.3ref,
km = 0.05k,, ky = 0.045k.

injection of seawater SW1 which contains all 5 ions (Ca, So, Mg, Na, Cl) in measurable quantities.
As seen top in Fig 9.4 the measured Ca- and Mg- curves have not stabilized and only indicate
what they will approach. So-ions have a flat curve and it is better for direct comparison. Using
a similar approach as before different values of k4 are tested until a good match is found, in this
case kg = 0.045 - k..

o1



Finally these parameters are tested against data from seawater SW2 injection. The curves
seem to converge to approximately the same values after a long time (left in Fig 9.4).

What is clear after these comparisons is that the model seems to capture the long time behavior
quite well, but initially there is a jump in the concentrations of Ca, So and Mg followed by a slow
and steady decrease or decline. This is only partially seen in some of the simulated So-curves, but
it is clear from a lot of simulations that this transient behavior is not captured by the model.

The choice of k. may seem arbitrary and it was, although relatively close to the value ref. Ac-
tually a lot of different choices of parameters give just as good fit to the data, but as demonstrated:
when a specific value of k. has been selected the values of k,,, and k4 are uniquely determined. Sev-
eral simulation resulted in the different combinations given right in Fig 9.4 (note the logarithmic
scale on the y-axis). It was impossible to find a k,, to fit the 0.109 M M ¢gCls injection for k. equal
to 0.1 or 0.3 times ref, but higher k. values always resulted in a good fit with the experiments.
Increasing k. reduces k,, rapidly to a few percent of k., while k, shows less variation. Typical
values are then

ke = (0.5—2.0)ref, kpy = (0.03—2)ke, ky=(0.03—0.10)k, (9.20)

To test whether the solution is sound we perform a sensitivity analysis on the numerical
discretization. For the parameters k. = 1.3ref, k, = 0.05k., k; = 0.045k. we inject seawater
SW1 and vary the time step AT (by keeping the time constant to 2 days and varying the number
of steps from 12 to 96). We then observe how the porosity distribution changes (Fig 9.5).

There is a difference in the solutions with the time step (the scale of variation is very limited
though) and we see that a large time step gives a relatively flat distribution as expected. Increasing
the number of steps gives a more heterogeneous distribution and given enough steps the curves
will eventually converge to the point that cell 1 has constant reaction rates given by the injection
composition (this is correct if we also refine the grid). We see that a time step of 0.5 hr (96
steps) could be preferable, but the solution is also heterogeneous with a time step of 1 hr and this
timestep will be used. This also fits well with the time required for transporting the ions from cell
1.
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Figure 9.7: Mineral and porosity distributions after 2-10 days of injecting SW1.

When fitting the parameters we have used the flat part of the concentration-time curves re-
sulting from the simulations to compare with experimental data. It is important that these values
do not change significantly with the choice of the discretization so the same case above is tested
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by comparing effluents of Ca, So and Mg over 2 days when we use 6,12,18,24 and 48 time steps,
corresponding to time steps of 8, 4, 2.67, 2 and 1 hrs.

As seen from Fig 9.6 when the time step is coarse the curves look similar to the solution without
reactions. When it decreases the curves converge quickly: the last curve is given with twice as
many steps, but the difference between it and the one before is less than the previous pair. The
curves with 24 and 48 steps deviate with less than 0.0001 mole / liter. Even the 12 step curve
could be used which is less than 0.0004 mole / liter from the 48 step curve. Using time steps of a
few hours is therefore acceptable, but in simulations where the rate constants are higher the error
could increase.
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Figure 9.8: Top: Effluent of Ca, So, Mg comparing injection with SW1 vs SW2 and if there are
no reactions (only 3 first days shown). Bottom: Average mineral concentrations and porosity vs
time.

It is interesting to get predictions from the model and we are especially interested in how the
injection of a reactive fluid impacts the composition of the chalk rock. Continuing our case with
ke = 1.3ref, kyn = 0.05k., ky = 0.045k., we inject SW1 and observe the mineral and porosity
distribution with time (Fig 9.7). Timestep is 1 hr.

What is quite noticeable is that calcite dissolves, while magnesite and anhydrite precipitate
over the entire core. The process is most rapid near the inlet and less intense further into the
core, but magnesite and anhydrite seem to precipitate more uniformly than calcite dissolves. The
result is increased porosity at the inlet and reduced porosity further into the core. Surprisingly
there seems to be a fixed point which does not change porosity.

Even when we look at the extreme values of the porosity distribution there is little deviation
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from the initial porosity. Our assumption of a constant and uniform porosity then seems to be
good.

If we change the brine from SW1 to SW2 there is a noticeable difference in both the outlet
concentrations and the rock development (Fig 9.8). We let the simulation run over 10 days with
a time step of 1 hr.

Remember that the composition of SW1 and SW2 are identical in Ca, So and Mg, but not in
Na and Cl and the ionic strength and activity coefficients (which depends on ionic strength) differ
as a result. Since Na and Ca do not participate in the reactions the simulated change is a result
of the difference in ionic strength.

The solution without reactions reaches the composition of the injection fluid after about a
day and the solutions with reactions stabilize after approximately the same time, but at different
levels. Especially SW2 causes the core to retain more Ca and So, resulting in a higher degree of
anhydrite precipitation. Apart from that there is little difference in the mineral developments and
so the porosity is reduced more with SW2 than with SW1.

Although there is little change in the overall porosity (from 0.48 to about 0.47) there are
noticeable changes in the core composition and it should be possible to observe precipitated grains
of anhydrite and magnesite in a microscope.

9.5.2 Dolomite model
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Figure 9.9: Left: No possible k4 if k. is too low. Right: If k. is low kg4 will be high.

Also this model is based on selecting k. as a multiple of ref and the remaining parameters kq
and k, as multiples of k.. Note that dolomite takes the role of magnesite in this model and we
set k;, = 0. When we try to fit kg to the 0.109 M M gCl5 injection there is a problem if we start
with small k.. Let k. = 0.5ref. Then as seen left in Fig 9.9 there is no value for k; that will fit
the experimental data.

Even though k4 is varied from 0.1k, to 100k, there is little change in the curves except if kg is
low and then the curves fit even worse. This limitation on k. was also observed in the magnesite
model producing a lower bound also there.

When k. is increased to 1.0ref there is a fit for k; = 10k, (right in Fig 9.9), marking the first
k. with possible match. The procedure continues just as with magnesite. The 0.218 M M gCl,
experiment is checked and found to match the values of k., ks (Fig 9.10). In other simulations
performed the experimental data of the 0.218 M solution was always reproduced.
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Figure 9.11: Left: Fit to SO-curve with SW1. Right: Comparison with SW2.

Then k, is determined to 0.04 k. by fitting the simulated So-curve with the experimental. The
corresponding Ca- and Mg- curves do not really follow the trend in SW1. The following check
with SW2 (which had more long term data) verify that the parameters are not very good (see
Fig 9.11). Similar results was the case in other simulations so finding parameters in the dolomite
model is more constrained than in the magnesite model. However for higher values of k. it is
possible to get a good fit to all the data.

Considering the parameters

k. =1.8ref, kq=0.007k., k4= 0.025k, (9.21)
there is a good fit for all the curves, although with SW2 (left in Fig 9.13) the deviations are a bit
higher than in the magnesite example.

Right in Fig 9.13 the parameters resulting from fitting the given data are presented. For k.
between 1 and 1.6 times ref we can find parameters to fit the MgCls cases and the So-curves in
the seawater brines, but the simulated Ca- and So- curves are not close enough to call it a match.

When k. is 1.8 or 2.0 times ref also this fit is good (best for SW1) and we accept the parameters.
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Figure 9.12: Top: Effluent of Ca, So, Mg comparing injection with SW1 vs SW2 and if there are
no reactions (only 3 first days shown). Bottom: Average mineral concentrations and porosity vs
time.

Since there were possible parameter combinations for the dolomite model it can explain the
present experimental data, making dolomite a possible magnesium-based candidate mineral.

Flooding with SW1 and SW2 were performed in the dolomite case (Fig 9.12) and we see the
same trends as in the magnesite model: calcite dissolves and the outlet concentration of Ca is
greater than the one injected. The opposite is true for Mg and So which are held back in the
core to precipitate anhydrite and dolomite. The amount of each mineral changes linearly after a
very short time causing the porosity to act the same way. Also in this case there is a porosity
reduction.

Note that the Ca curves do not stabilize at the same levels as those for magnesite, while those
for Mg and So are very similar. It is because the last 2 were fitted to the same experimental data
while the Ca curve followed from the parameters and the fit with experiments is evaluated good
if it is in a certain range.
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Figure 9.13: Left: Comparison against SW2 with parameters k. = 1.8ref, kq = 0.007k,, kg =
0.025k.. Right: Evaluation of different parameters.

9.5.3 Comparison of models

The simulations show that the fit with experiments is good for both models, but more choices are
possible with magnesite and a best fit can be selected if requested. However, it is apparent that
the rate expressions used in the model do not explain the observations properly. After a day or so
the simulated effluent has stabilized its composition and there is no change after that. We have
considered especially 2 cases: one for magnesite where k. = 1.3ref, k,, = 0.05k., k; = 0.045k,
and one for dolomite where k. = 1.8ref, kq = 0.007k,, ks = 0.025k..

In both the tests we injected SW1. Top in Fig 9.14 we compare the distributions of mineral
concentrations and porosity after 10 days. There are some variations in the absolute values, but
the trends are more or less the same. Down in Fig 9.14 we have plotted the expressions for
dV/Vdx' as given in eq (9.16). It shows that the gradient is less than 8.5% of V' and since 2’ can
be no more than 1 we have that V' can not vary with more than 8.5%. Thus a constant V is a
reasonable assumption.

9.5.4 Inclusion of both minerals

Since there exist parameters that fit the experimental data when k; = 0 and when k,, = 0 we
have already found solutions to the general model.

However we also would like to have similar amounts of precipitated magnesite and dolomite to
recreate the SEM analysis discussed in subsection 3.5.3. Initially the following process was tried:

e Select a value for k. while all other constants are initially 0.

e Choose k,;, so that the simulated Mg-curve falls exactly between the experimental data and
the case if k,, = 0. In this way half the injected magnesium ions that are lost to the core
will precipitate to magnesite.

e Choose kg so that the simulated and experimental magnesium curves overlap. Then just as
many Mg-ions will have been retained in the core

e Select kg4 by fitting So curve with SW data.
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Figure 9.14: Top: distribution of minerals and porosity after 10 days. Bottom: Check of uniform
velocity assumption for magnesite and dolomite model, with SW1 and SW2.

However this process has a considerable drawback and that is to not consider the coupling of
the system. When kg was increased from 0 to its supposed value the simulation showed that the
average concentration of magnesite and dolomite were an order apart.

A more basic procedure was selected to see if we could find a typical ratio between k,, and
kq that would result in similar amounts of precipitated moles. Basically we kept k. = 1, chose
km = 0.005 and varied k4 to see how the amounts varied in an M gCly case. The average mineral
concentration as a function of time is very linear (see right in Fig 9.15) so the end values were
used for comparison.

From the results presented in Fig 9.15 the ratio k4 : k,,, = 0.1 seems very good and is supported
by simulations with other values of k,,,. Only at low values of k. does this ratio have to be changed.

The parameter determination proceeds similar to the magnesite model:

e Select a value for k. while all other constants are initially 0.

e Choose k,, with kg taking the value 0.1k,, so that the simulated Mg-curve falls on the
experimental data for 0.109 M M gCl,.

e Compare 0.218 M M gCl5 simulation with these parameters.
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Figure 9.16: Parameters that fit the experiments and give similar precipitation of dolomite and
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o Select k4 by fitting the So curve with SW1 data. Check that Mg- and Ca- curves follow the
correct trend.

e Test parameters on simulation with SW2.

Given a specific k. the resulting parameters are presented in Fig 9.16. For k. less than 0.8 it was
not possible to keep magnesite and dolomite on the same level and still fit the experimental data.
The parameter determination is illustrated for the case

ke =15ref, km=0.03k., kq=0.003k,, k,=0.035k. (9.22)

in Fig 9.17.

A simulation of injecting SW1 for several days was performed. The time step was 2 hrs. The
fluid concentrations at the outlet are given in Fig 9.18. The pH and the ions taking instant
equilibrium are included this time and are seen to change fast compared to the other ions, quickly
adapting the new environment.

The mineral and porosity concentration changes with time. As before calcite dissolves, while
the other minerals precipitate throughout the core. In this case the effect on porosity is the same, a
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Figure 9.17: a: Find k,, and kg with 0.109 M MgCl; data. b: Compare with 0.218 M MgCl,
test. c: Find k4 from SW1. d: Compare with SW2 data.

reduction, but it is most significant farthest from the inlet. Note how the average concentrations of
each mineral and also the porosity behaves as a linear function with time. Dolomite and magnesite
(and coincidentally anhydrite) precipitate moles of the same magnitude as wanted and are plotted

together.

The rates and relative gradient of V are given at different times in Fig 9.20. They all converge
to distinct curves after a few days indicating that the system has reached a steady state with
convection, diffusion and reactions. This will continue until there is a point in the core where
calcite does not exist. This should first happen at the inlet. However the model will also predict
a very low porosity at the outlet and given enough time it should reach zero.
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Chapter 10

Case 1I: Variable porosity and
permeability

10.1 Assumptions
The most important assumptions here are that the porosity now is updated in the equation system,

permeability varies locally with porosity, and the seepage velocity can be considered uniform over
the core.

10.2 Theoretical permeability calculations

We can calculate the distribution of permeability given the distribution of porosity using

z,t
k(. 1) = k() (221 (10.1
Po
From Darcys law we have
Q(t) k(l’, t) ap ktot(t) AP(t)
V)= =-——5 (@) =——"—— (10.2)
At any given time ¢ we must have
0 AP
k(x)a_i(x) = ktotT (10.3)
Numerically this is expressed as
Api AP
ki— = ktot— 10.4
Ax ot (10.4)
which can also be written as
ktor Ax
Ap; = AP — 10.5
p WL (10.5)
Since pressure drops are additive
_ kot Ax Az 1
AP = Z Ap; = Z AP ke APkor—- Z P (10.6)
Ax 1
= ktotT ; 5 1 (10.7)
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The overall permeability measured over the core is then
L
Az, k%

Note that this expression is most sensitive to the lowest values of the permeability distribution
as expected indicating that a small region of low permeability can markedly reduce the overall
permeability.

The pressure drop is simply

kipor = (10.8)

LvQ(t)
AP(t) = —m (10.9)
For the pressure distribution we can use an upwind formulation to simplify
AzvQ(t)
Ap;, = Tk (10.10)
Ap; = pi—pia (10.11)
Ap; = p1—AP (10.12)
Apr = pr—pi-1 (10.13)

With these equations it is possible to derive the pressure distribution. This discussion is not
further investigated due lack of experimental data.

10.3 Test of assumption: Uniform V

Again we are interested in testing our assumptions by evaluating if the gradient of V really is 0.
The transformed water phase equation has the form

(¢C) + i (CeV') =g > i (10.14)

ions

ot

We use that C' is constant and solve for (%CIV'

0
5V (oY 7 — at' (10.15)

ons

where
D i =t + 2 + T + 2 (10.16)

ions

Divide by V’ and use that J =V’ to get

ov oV
Vor  Vioz CJ (r6 > F—=C at/ (10.17)

ons

The expression gff is evaluated by taking the difference in porosity at step n and n — 1 and divide

by the timestep.

10.4 The reaction solver

The most important difference in the reaction solver is that the porosity used in the calculations
is not the constant initial, but is updated with the solutions of the minerals in the ode solver. A
simple test with SW1 (which is a reactive brine) as initial water moving towards equilibrium is
given with the constants from [23]:

ke =ref, km=0.09%. ky=003k, Fkq=0 (10.18)
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Figure 10.1: Variable porosity does not impact this equilibrium calculation.

It is compared against the same data with the solver using the initial porosity in the equations.

As seen in Fig 10.1 the solutions are impossible to distinguish. Only at small levels are there
any differences. The reason is that the porosity changes so little from the initial (0.0003 compared
to 0.48) that it does not impact the solution.

10.5 The convection/diffusion solver

Since the stability criterion for this solver was not really proven to be TVD we want to test
how robust it is by checking if extreme conditions are solved in a stable manner. The following
parameters were used for the simulation:

Cinitial =10 Cinj =50 d)(wemge =05 q = 1 J= Q(baverage =05 dx=0.01 (].0.].9)

0.7, 0<z<03 1, 0<z<03
=403, 03<z<0.6 D=<¢0, 03<z<0.6 (10.20)
0.5, 0b6<zx<1 1, 06<ax<l1

Both the harmonic mean and the arithmetic mean were tested for D, while ¢ used the arith-
metic mean. The simulation results after 0.5, 1.0, 1.5 and 2.0 days together with the initial
distribution are given in Fig 10.2. Note that the solution shows total concentration and not pore
concentration.

The solution with the arithmetic mean seems unphysical while the one with the harmonic mean
seems more correct. Since the jumps in ¢ and D were extreme it is assumed the algorithm will
handle smoother conditions.
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Figure 10.2: Test of the convection / diffusion solver with arithmetic mean (top) and harmonic
mean (bottom) for the diffusion coefficient D.

10.6 Full scale simulation

In the previous chapter we argued that the small change in porosity would not impact the solution,
but now we want to test if these assumptions are true and if the estimates are correct. To do this
we first performed a small test of injecting 0.109 M M gCls for 1 day, with a time step of 2 hrs.
The parameters were those from [23]:

ke =ref, km =009k, ky=003k, kq=0 (10.21)

We compare the effluent of Mg and Ca and observe the distribution in porosity after 1 day (see
Fig 10.3). For a reference scale they are compared to the solution without reactions and the
initial distribution. What is clear is that also this case is identical to its counterpart with constant
porosity, because the porosity is so close to constant during the simulation.
This also illustrates that the parameters found using the constant porosity assumption is sound.
Next we repeated the simulation of injecting SW1 for several days with the parameters

ke =1.5ref, km =0.03ke, kq=0.003k, ky=0.035k (10.22)
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Figure 10.3: Comparing constant and variable porosity models with injection of 0.109 M M gCls.

(identical to the case in the previous chapter). The timestep was 2 hrs.
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Figure 10.4: Comparison of constant and variable porosity models by considering effluents from
injecting SW1

The effluents of Ca, So, Mg, Na, Cl and pH are given in Fig 10.4 comparing with the case of
constant porosity. For scale we have included solutions without reactions (they are identical to
the case with no reactions for Na and Cl). There is a small, but noticeable difference already from
the start. The solutions make a peak value, before slowly descending towards the flat level of the
constant porosity solution. This is most clearly seen for Cl in this case. The lab data often had
such effects, but on a much larger scale. Several simulations did not reproduce anything similar
to that scale.

Since D can vary in this case we plot its distribution with time in Fig 10.5. It is seen that
the diffusion coefficient increases with time, and mostly near the outlet. The change is not very
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significant (from initial 2.115 to a maximum of 2.16 after 20 days).
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Figure 10.5: Distribution of diffusion coefficients.

Again this can be connected back to a small change in porosity. A seen in Fig 10.6 the porosity
has not changed to more than 0.47 from an initial 0.48 after 20 days. The solutions with constant
and variable porosity are very similar. When zooming in at the last 5 days of the simulation
it is possible to see some variation in the average concentrations and porosity. Looking at the
distributions on a normal scale the impression is they are not affected.

Finally we consider the rate expression and the test for uniform V. These distributions at
different times are given in Fig 10.7. When comparing this figure with Fig 9.20 we see that the
distributions do not converge, but each point seems to move with a constant speed along the y-
axis. The reason is probably the linear decrease in porosity so that although the fluid composition
is the same there is less pore volume to create minerals and so the rate drops. The values for the
relative gradient of V' are less than 0.073 a number that is less than for constant porosity, perhaps
indicating that this model is better. Since this distribution approaches 0 the assumption seems to
improve with time.
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Figure 10.6: Top: average mineral concentrations and porosity with time for variable and constant
porosity. Bottom: Mineral and porosity distributions at initial (dotted lines), 5, 10, 15 and 20
days. Solution for variable porosity is given only at 5 and 20 days with crossed points.
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Chapter 11

Discussion

We will review some of the most important assumptions made in the model and evaluate them

Na and Cl are not reactive: This is a very good assumption since their experimental effluents
match very closely with the simulated values.

Ca, Mg and So are reactive ions: The experiments and simulations indicate that they are
because the effluent is different from the injected brine.

The diffusion coefficient is the same for all ions: From the slopes of some of the curves we see
that this could be a rough assumption (see the NaCl data for example), but and it rarely
matches with the early time efHuents of ions such as Ca, Mg and So. This is believed to be
related to the next point, though.

Constant rate coefficients: This is a rough assumption. Initially there should a lot of available
surface area of calcite causing a high reaction rate, while after a period of precipitation of
other minerals the injected brine does not come into contact so easily with the calcite,
reducing the observed dissolution. This gradual precipitation on the rock surface could also
explain why the effluents are steadily decreasing or increasing in the experimental cases and
hopefully also the initial jump in effluent.

Neglecting C, in expression for charge balance: ideally this should be fixed, although finding
C}, then becomes solving a 3rd degree polynomial.

Constant and uniform porosity: For the data we have considered this is a very good assump-
tion, since the maximum estimated change in porosity is just 0.01.

Constant seepage velocity V: The simulated data suggest that V' would change no more
than 8% which is considered little enough to be constant.

Constant viscosity v: it could change with composition, but this is not considered.

Initial composition: We have assumed the entire core is composed of calcite and that every-
thing is uniform initially. It is reasonable for a core plug.
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Appendix A

General model 1n 3D

The following equations model the distribution of C, Cyq, Cer, Cea; Cso, Cmgs Pes Pgs Pms P, P With

position z,y, z and time .

2(6C) + V(CV)
9¢(¢Cra) — V(DPVChpqa)
O (¢Cet) — V(DPVCear)
9t(¢Cea) = V(DPVCea)
9(¢Cs0) — V(DPVCs,)
9 (¢Cmg) — V(DPVCinyg)
atpc
Oipy
Ot pm

Oy Pd

M, M.
260 +

Ww We

Mq m Md
Pec+ —Pg + —Pm + —pd
Wy Wm wd
D

Vv

The most significant differences from 5.7.3 are that

qﬁ(i“c + 27 + 7y + 27q)
—V(CraV)

~V(CaV)

S + g+ 74) — V(Coa V)
¢ty — V(Cyo V)

G +74) — V(Cing V)
_——

— iy

_¢Tm

—@raq

1

(Do + a%)]
kI

—7V(p - ngz)

e we use the V operator instead of a single space-derivative

e e e e e e e e
© 0N s W

i

—~
>A
o
(==}

e D and k are now in tensor form since they in general can be anisotropic. Above we have
assumed isotropic conditions, and therefore the identity matrix I has been used.

e Darcys law for V must be expressed as the gradient of the pressure potential since hydrostatic

pressure difference does not produce flow.

All else (rates, aqueous concentrations, etc) can be considered the same as defined in chapter 5.
Note especially that the same simplifying assumptions apply.
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Appendix B

Basis for £ — ¢-correlations

B.1 Correlations based on direct estimation

In [24] several correlations are evaluated to predict overall permeability k from different parameters.
One correlation including only porosity ¢ is

logk = a¢ +b < k = 101" = 10° % 10%? = gge? (B.1)

It had a low average of correlation coefficients (R2,,. ~ 0.3) for the different sets and ¢ is therefore

not a very good predictor by itself. This was expected since many permeabilities can correspond
to the same porosity.
By using a variable called effective porosity ¢. there was a clear relation to overall permeability
given by
logk = alog(d.) + b e k= 10218(@)Fb — 10bpa = g ¢bo (B.2)

giving very good agreement between estimated and measured permeability (R? ~ 0.9). ¢, is given
by

Ck(b(l - Swr)
(1= (1 = Suwr))* +ck
where S, is irreducible water saturation and ¢ is efficiency of pore structure modified by irre-

ducible water saturation. The input parameters are really formation resistivity factor F', ¢ and
Swr- Assuming ¢ is high (good assumption for chalk) and S, is low we get

Ck¢(1 - Swr) ~ Ck(b ~ % o
(1 _¢(1 _Swr))2+ck - (1 _¢)2+Ck - Ck N

showing that the correlation

¢e:

(B.3)

¢e:

(B.4)

k= ag¢® (B.5)

might be good. Especially if the porosity is uniform such a correlation should give a good estimate.

B.2 Correlations based on changes in structure

In this case we consider a porous rock that has its properties changed heterogeneously by chemical
reactions. We are especially interested in chalks reaction to seawater or similar injection fluids,
but in lack of such data we consider acid cleaning of porous rocks. Although these reactions
are more violent and can create new channels, the operation is per definition below the fracture
pressure and should work by expanding the pores the acid flows through. The correlations differ
from another in absolute values, but we are primarily interested in the type of correlations that
can be applied to the chemical cleaning.
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In [25] the following suggestions (left side) are used by Fogler and coauthors:

k ¢ b
—=F(2)Y & k=a B.6
= =P : (B.6)
kﬁ:eﬁ(aﬁiz) & k=ae" (B.7)
0

A good reason for only using porosity as a variable is that we can consider the pore throats as
a region of locally low porosity. When a distribution of permeability k& was assumed (given by a
relation such as above) an overall permeability k; could be calculated and in [25] the experimental
results were in reasonable agreement with prediction.

[18] also mentions a k — ¢ relation as k = c¢®/s? where c is Kozeny’s constant (found by Kozeny
to be 0.22-0.24 for porous materials) and s is grain surface area per bulk volume. For a given
rock it would seem all we needed to determine was a representative value of s, however we do not
know how how this value will change when chemical reactions alter the microstructure itself and
assuming it to be constant here seems unreliable.

B.3 Comparison

The 2 methods above differ between a direct correlation of overall permeability with overall poros-
ity and that of treating both porosity and permeability as nonuniform and giving overall estimates
based on these distributions. It is believed that the last method is the best and most relevant for
this application.

B.4 Correlations between local permeability and local poros-
ity
As described in section 5.4 we require a correlation f(-) such that k/ko = f(¢/¢o) which fits
fy=1 f0)=0 f'>0 f"<0 (B.8)

B.4.1 Suggestion I: f = az’+ ¢

Going through the requirements we can restrict the values of a, b and c.

f(0) = ¢=0 (B.9)
f1) = a=1 (B.10)
o= b t>0-0>0 (B.11)
"= bb-1)2"2<0-b-1<0 (B.12)

A possible relation that fits the requirements is then
fx)y=2b0<b<1 (B.13)

Note that this correlation would be unphysical since a doubling of the porosity would not even
double the permeability.
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B.4.2 Suggestion II: f = ae®® + ¢

f(0) = a+c=0—c=—-a (B.14)
1
f(y = aeb+c:aeb_a:a(eb_1):1—>a:eb_l(B.15)
beb® b
_ br _

I = abe =5 >O—>eb_1>0 (B.16)

"o 2 bx __ bebw . b
7= ab’e” =b— 1<O—>b<0$1nce - 1>O (B.17)

6_ e_
b<0—el<l—oel—1<0 (B.18)
e —1>b—b>0 (B.19)

The last implication is true since the two expressions have equal value and derivative at b = 0 and
the derivative of the left expression is increasing to the right and decreasing to the left, while the

left side has constant slope. Since the only possible value for b then is 0 we get f = 65:11 leaving
little room for experimental fitting.
B.4.3 Suggestion III: Stepwise smooth f
We assume a function of the form
f = fifz)for0<ax<1and f= faox) for x > 1 (B.20)
Both f; = a;z% + ¢ or both f; = a;e”® +¢; (B.21)

The reason for ([?]) is that the processes of cleaning (increased porosity) and filling (decreasing
porosity) have or should at least be permitted to have different effects on permeability. ([?]) is
used so that equal behavior can be reflected in equal functions. We modify our requirements
accordingly:

e f(0)=0— f1(0)=0

o f(1)=1— fi(1) = fo(1) =1

o f'>0—fl,f3>0

o f/ <0 if cleaning widens pore throats effective

e fi' > 0 if grain deposition fills the pores to a higher degree than plugging pore throats

As shown the first 3 requirements on f; gives a function of the form z® with b; > 0. The last
requirement is that f; = by(b; — 1)z%1~2 > 0 which leads to b; > 1. Regarding fo = a2 + co
we have

f2(1) = azt+ca=1 (B.22)
fé = a:2b2$b2_1 >0 — asby >0 (B23)
7 = agba(by — 12272 <0 = by < 1 (B.24)

The total expression for f is then

@ 0 1
br¢+1-0 x>1
with
a>1;0>00<c<1 (B.26)
ora>1l;bc<0 (B.27)
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With the other functional form f;(z) = a;e’® + ¢; we get

f1(0) ai+c1 =0 (B.28)
1
f1(1) ae? —a; =1 —a; = pr— (B.29)
fi a1b1e"® >0 — ayby >0 (B.30)
{I alb%eblw >0— ﬁ,bl >0—b; >0 (B31)
f2(1) aze” +cy =1 (B.32)
] agb2e?® > 0 — agby > 0 (B.33)
é/ agbgebﬂ <0— as, by <0 (B34)
In this case f is
el 0<z<l
_ ) e z (B.35)
be +1—0be® x>1
with
a>0;b,c<0 (B.36)

Note that either of these formulas require determination of 3 parameters and need sufficient
measurements of permeability and porosity from both a cleaning process and a deposition process.
The formula should be used to describe the local permeability since the porosity distribution can
develop heterogeneously. One could also simplify by applying it to the minimum porosity since
this is what effectively determines the flow resistance.

A more complex approach that includes hysteresis effects between porosity and permeability
would be to look at a differential of the form

dk = T+(¢7 k)d¢ 7d¢ >0
r—(¢,k)do ,dp <0

where r; and r_ are positive functions describing the rate of change of permeability if porosity
increases or decreases. As seen the rates should depend on the instant porosity and permeability.

(B.37)

B.4.4 Selected correlation

Since pressure data is not available for the given experimental data and no attempt has been
made to produce such results we can rather guess a correlation and show how this would affect
the overall permeability and pressure response.

B.4.5 Suggested experimental investigation of relation between k and ¢

We want to find out how the permeability of a core of chalk will be affected by a change in
its porosity. The porosity alteration is made by exposing the core to a chemically reactive fluid
(for example M gCls-solution). This involves keeping a constant temperature and pressure since
different states will result in different reaction behavior.

e First measure initial porosity and permeability

e The fluid should be pumped through the core at a slow rate since newly deposited grains
may be removed by the flow. Density and viscosity of the fluid can be measured separately
or be computed and the permeability can be calculated by measuring the pressure drop and
length over the core and knowing the volume rate:

kA AP

__rAAl B.
q o Ax (B.38)
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e The porosity can be measured by weighing the wet core after the permeability test, dry it
and then weigh the dry core.

e The injection can proceed and when a significant increase/decrease in the pressure drop over
the core has been reached a new measurement can be performed.
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Appendix C

The effective diffusion coefficient D

C.1 Definition of D

Given an imaginary surface drawn through a fluid phase. If there is a concentration gradient over
the surface there will be a diffusive flux across the surface given by Ficks first law [10, 7]:

Diffusive flux = —Diffusion coefficient - Concentration gradient (C.1)
oC

Cv = -D-— C.2

v B (C.2)

C' is concentration, D which is the proportionality constant is defined as the diffusion coefficient
and v is the induced component velocity across the surface.

C.2 Experimental determination of D

Given 2 fluids of same phase but unequal concentration C' of a substance we can consider a
displacement process. Experiments conducted with constant interstitial velocity v and constant
effective diffusion coefficient D can analytically be shown to obey the differential equation

oC oC 02C

If we take constant porosity and no chemical reactions in the transport equations for our model
we get the same

0(6C0) ~ (DO0CE) = 6+ 0u(Cidp) (C4)

$0,(Ci) — D$O2(C;) = —0,(C;V) (C.5)

$0(C;) = —$vd,(C;) + DI (Cy) (C.6)
04(Ci) = —v0,(C;) + DOZ(C;) (C.7)

The differential equation above with initial conditions C'(x,0) = 0 for all # > 0 and boundary
conditions C(0,t) =1, C(oco,t) = 0 for ¢t > 0 has the analytical solution

Clat) = % {1 —erf (%)] (C.8)

for normalized concentration C' and erf(-) is the error-function. By comparing the profile at the
outlet with the error function we can estimate D for a certain porosity and interstitial velocity.
The procedure is explained in better detail in [7].
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Some important assumptions in the derivation of this solution and thus estimation of D are
that the fluid is one-phase (which holds for different brines), but also equal densities and mobilities.
The density assumption typically concerns gravity override (this is negligible when the densities
are as close as they are) and mobility ratio effectively means viscosity ratio (since the fluids are
single phase). High salinity can increase viscosity. If the displacing fluid is less viscous it can finger
through and increase the dispersion. It is assumed such effects are negligible by using a constant
viscosity v.

C.3 Correlations for D

According to [7] the effective dispersion coefficient D can be written as the sum of an apparent
molecular diffusion component D,,, and a convective-dispersive component D, 4

D = Dyo + Deg (C.9)

The D,,, is a correction of the molecular diffusion coefficient D,,, due to the porous paths the ions
travel to move a horizontal distance depending on formation (resistivity) factor Fr and porosity
¢. D.q depends on interstitial velocity v, the formation inhomogeneity factor F7 and the average
particle diameter d,,. Viscous fingering depends on the presence of a pressure drop and should be
related to the convective part, but we assume a constant viscosity and ideal behavior.
The Perkins-Johnston correlation states that
D,, vFid,

D==" 4

st (C.10)

The formation factor Fg is defined as the resistivity measured over a core saturated with a given
fluid, divided by the resistivity of the fluid itself. According to [8] Fr can be correlated to porosity
and lithology by an expression of the form

FR = a(bm (C.ll)
Especially for chalk and tight formations the relation is given by

1
¢

To determine useful values for the other parameters we consider the literature.

Fr = (C.12)

e A study of the North Sea chalk field Gorm in [18] discusses Gorms formation properties. Over
the depth of 6989 to 7330 feet the porosity varies between 23 — 43%, permeability between
0.1 — 4.6 mD and average particle diameter varies from 1.0 to 3.0 um for the different zones.

e In [19] a carbonate system is considered where several models are compared to optimize slug
size to displace oil. It is assumed Fyd, = 0.0036 m, D,, for oil/solvent is 2% 107% m?/s and
D, for gas/solvent is 1% 10~7 m?/s.

e [20] describes an immiscible displacement, but mentions that the homogeneity factor particle
diameter product for sandstone typically has a value in the range Frd, = 0.001 — 0.006 m.
Also D, is ca 1072 m2/s for liquids and 107 m?/s for gases.

[10] provides the Robinson-Stokes formula for the tracer molecular coefficient D 4 of species A
(which is interpreted as the molecular diffusion coefficient):

_ RT)Y

Dy =_—"—"4
AT Py

(C.13)

where R is the gas constant, F' is the Faraday constant, z4 is the ionic charge, T" is absolute
temperature and \% is the equivalent limiting conductance of the ion. A table of values for D,
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is given in [10] at 3 different temperatures: 0, 18 and 25 degrees Celsius. The data seems to be
linear, meaning that also A% is constant over that range. Extrapolating these data to 130 degrees
(see Fig C.1) we get different values, but the average (we have assumed one coefficient for all ions
in the model) is approximately 35-10~5cm? /s = 3.5-1079m?/s. This value is similar to that used
in the other sources, the uncertainty is only the validity of the stated assumptions.

Molecular diffusion wvs temperature
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Figure C.1: Extrapolated data of tracer molecular coefficients.

We are mostly looking for typical values and their appropriate magnitude. For a given sample of
core data these values should be found more accurately as described above. With no experimental
information we would settle with D,,, = 3.5-107? mg/s and Frd, = 0.004 m. These values are
assumed constant although chemical alterations may suggest otherwise. The resulting correlation
is then V Frd

I%p

D= Dp¢+ 5 2
When we estimate this correlation more closely we will measure the initial porosity ¢, the molecular
diffusion coefficient is assumed D,,, = 3.5 - 1079m? /s, V is determined by the injection rate and
the overall diffusion coefficient D is adjusted to fit experimental data. Then % which will also
be called a can be determined directly.

In the numerical programming low values of ¢ will increase D greatly and may cause numerical
instabilities. In practice we could therefore give a lower limit to the value of ¢ in the denominator.

(C.14)
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Appendix D

TVD-analysis

D.1 The convection/diffusion solver for constant porosity

From subsection 7.3.2 we derived a numerical expression for the convection/diffusion solver:

ntl o (Vo — D PHL TPy oy, o p P PicL D.1
P Pi ([ Pi 0 Az ] [le 0 Az ] ( )
From this we can express the neighbor cell as
o S L p PR P P =
Pty = pit1— A ([sz+1 Do——+- | =[Vpi— Do Ao ]) (D.2)
Taking the difference we get
n n Pi+2 — Pi Pi+1 — Pi
P =P = pig —pi— A <[sz'+1 - Do%] —[Vpi— DOHAT])
Pi+1 — Pi Pi — Pi—1
M [Vpi — Do————] = [Vpi-1 — Dy—————— D.
+([P o~ [Vpi OA:z:]> (D.3)
Dy Do
= i — s A— i — s 1 -V —2\—
(pit2 = pit1)] Aw]+(ﬂ+1 pi)l Ax]
Dy
i — Pi—1)[AV + A— D4
Hpi = p) AV + 452 (D.4)
Assume first that
o -2 v sy (D.5)
Az' Ax — '
Then
ot = it <
Dy Dy Dy
[piv2 = pitil(A5) + lpivr = pil (L= AV = 20720) + |pi = pica|[AV + A=) (D-6)
From the definition we have
TV = N i = e A TV = Y ol — pf|An (D.7)
so summing eq (D.6) over all i we get
Dy Dy Dy
TV < TVPAZS) + TV = AV = 20" 2) + TV AV + A== D.
< TVIORY) + TV D) ETVIOV ALY (D)
= TV" (D.9)
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Note that eq (D.5) is the same as the criterion (7.112).
Our next assumption is

Do Do
1-AV -22—|=—-1-AV-=-2x—)>0 D.10
| 2] =~ 20) 2 (.10)

Then

ot =t <
Dy Dy Do
[piv2 = pistil(AL) = lpir = pil (L= AV = 20720) + |pi = pia AV + A=) (D-11)
D D D
TV < TVPA) =TV (1 = AV — 22222 + TV™ = D.12
1% < TV (/\A:v) V(1 -V )\A:v)+ 1% (/\V+)\A$) ( )
_ n DO DO DO
= TV [)\A:z: 1+)\V+2)\Ax+)\V+AA3:] (D.13)
Dy
= TV"-1+4\— +2)\V D.14
[—1+ 4052 +2)V] (D.14)
For the variation to remain bounded we require
—1+4)\&+2)\V<1 (D.15)
Az - '
Dy
—24+4A— +2\V <0 D.16
+ Azx + - ( )
Dy
—(1=AV-22—)<0 D.1
( ) < (D.17)

When we compare this with eq (D.10) we see that only one value of At is useful. This same value
is the upper limit of the interval given by (D.5). In conclusion we have that the method is TVD if

Dy
— — > .
L= AV =2\ >0 (D.18)

D.2 The convection/diffusion solver for variable porosity

When porosity can vary our convection/diffusion solver looks like

A R <[Do,z‘+1/2¢o,i+1/2(3z£)i+1/2] - [DO,i—1/2¢0,i—1/2(am%)i—lﬂ])
A (J(ﬁ)i+1/2 - J(£>i—1/2> (D.19)
%o %o
A Pit1 Pi Pi Pi—1 )
= pi+-—|[Do, i ——)] = [Do,i- i -
pit AT ([ 0,i+1/2%0, H/Q(gbo,iﬂ ¢01i)] [Do,i—1/20, 1/2(@5071_ ¢01i71)]
Pi Pi—1
-\ _ D.20
(sbo,i ¢>o,1-1) (D-20)
Taking differences we get
Pﬁrll - P?H = Pit1 — Pi
A Pi+2 Pi+1 Pit1 Di
| [Do,i i+l - — [Do,i+0.5%0,i+0. -
+A:c <[ 0,i+1.590,i+1 5(¢07i+2 doint )] — [Do,i+0.5%0,i+0 5(¢07i+1 d0s )]
A Pi+1 Pi Pi Pi—1
— = | [Do,i i+0. - = [Do,i—0.5%0,i—0. -
Az <[ 04+0.500,i40 5(¢0,z‘+1 ®0,i )1 = Doi—osb0.i-0 5(¢0,i ®0,i—1 )
Pi+1 Pi Pi Pi—1
2\ - — — D.21
<(¢o,z‘+1 ¢0,i) (¢0,i ®0,i—1 )) ( )

85



Now let
Dy = m?X(Dg,i) ¢ = mfbx@g,i) by = mz.in(cﬁ&i) (D.22)

Assume for simplicity that we can replace D and ¢ by DJ and @7 in the factors and ¢, in the
denominators. This transfers all the variation to the variation in p, but enhances it if the porosity
distribution is nonuniform. Then

P =T = b=
+a (1070 (22 - 222ty o2 - 2o
~ s (1DFer (B2t - £ - e (2 - 2ty
\J ((P(;_Zl _ Gf_g) _ (g_g _ %)) (D.23)
= pit1—pi
A (s ] = s = )
229 s = = i i)
=52 (s =l = = i) (D.24)
= Gz - DL,
T (pis1 — pi)l1 — A% 2 (; )
T (ps - pu)[A% + A%] (D.25)

Note that eq (D.25) has exactly the same form as eq (D.4) and following a similar analysis as
in section D.1 the resulting stability criterion becomes

+ ot — A2
PN ) O V. L (D.26)
g | Drgy JAz +2D{ ¢
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