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Abstract

A new double porosity model for Naturally Fractured Reservoirs (NFRs) assuming
fractal fracture network behavior and its solution is presented. Primary porosity is
idealized as Euclidian matrix blocks (slabs

or spheres) and Secondary porosity is defined by any post-depositional geological
phenomenon such as fractures and vugs.

In order to provide a framework, the generalized radial flow model solution for well
test analysis for petroleum and geothermal systems in Laplace and Real space was
developed. Development of an appropriate wellbore storage model for fractal
reservoirs is also shown.

For this model, the dimensionless fractal fracture area parameter was developed. In
addition, interporosity skin factor between matrix blocks and fractal fracture network
is introduced. Relationship of convergence between interporosity skin under transient
transference regime and pseudosteady state transference regime is discussed. An
analytical general solution was obtained in Laplace space; besides, analytical solutions
in real space that describe the behavior of NFRs at different stages and different cases
of flow are also presented. Early, intermediate and late-time approximations are used to
obtain reservoir and fractal fracture network parameters. A synthetic example is

presented to illustrate the application of this model.
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Chapter |

Basic Concepts

The purpose of this chapter is to familiarize the reader with concepts used in
applications of fractal theory in well test analysis. Besides, new definitions are
presented in order to develop the flow model presented in this work.

Concepts related to the rock and fluid properties, such as compressibility of rock, oil,
gas, steam and water in addition to the fluid viscosity, formation volume factors and
fluids saturations are important in well test analysis. Therefore, it is it is assumed that

the reader has prior knowledge of these concepts.

Bulk Volume: It is constituted by the volume of any kind of voids and solids contained
in a rock. Considering three kinds of voids, i.e, pores, fractures and vugs, a
mathematical representation for the volume of rock is:

V, =V \ +V,s TV

fractures vugs solids

1.1

pores +
where:

V.. =Volume of pores;

pores

\Y = volume of fractures;

fractures

V = volume of solids.

solids
Prior definition is based on the components of the rock. However, bulk volume can

be defined by its shape. For instance, if the rock would have a cubic shape, volume

would be defined as:

v, =L, 1.2

where:

L = length of the base of the cubic rock;

or, if rock would be a sphere:

Vb=4—nr3, 1.3
3

where:
r =radius of the rock.
If the rock does not show a regular shape, it can be represented by the volume

between two equipotential surfaces, such region is defined as:

Alex R. Valdés-Pérez I.Basic Concepts s 1



V, =adeb3_derde_lAr, 1.4

where:

ay, =Area of a unit sphere of in d, dimensions; it is defined as:

zﬂ_de/z
ad = |.5
e

%)
where:
I'(x) =gamma function of x.
Consider the region bounded by two equipotential surfaces which have radii r and

r+ Ar. These surfaces are the projections of d,-dimensional spheres through three

dimensional space by an amount b* . For example, when d, is equal to 2, the surfaces

are finite cylinders of length b . A sphere of radius r has an area o, pt

In the realization of this thesis, it has found that, since the term Ar in eq. 1.4
represents the width between the surfaces, the cross section (area exposed to the flow)

between the two equipotential surfaces mentioned before, is given by:
Ao flow Zadebs_derde_l, 1.6

where:

b =extent of the flow region.

Porosity: It is defined as the ratio of the porous volume divided by the rock volume:

_ volume of pores

= ) 1.7
total bulk volume

When there is evidence of existence of non-intergranular pores into the rock in
addition to the intergranular pores themself (traditionally called primary porosity), e.g.,
fractures and/or vugs (secondary porosity), to distinguish and characterize such
elements becomes very important for reservoir engineering and economical purposes.

Defining the total pore volume as:

th =Vpores +Vactures +VVugs , 1.8
establishing that:

Veee = Vractures T Viugs » 1.9
therefore:

Vio =Voores T Vsee - 1.10

2+ 1.Basic Concepts Alex R. Valdés-Pérez



Dividing previous eq. by bulk volume it results:
¢l = ¢ma +¢sec ! Ill
where:

¢, =total porosity,
@, = matrix porosity (intergranular pores);
@, =Secondary porosity.

Total porosity is traditionally determinated from logs; matrix porosity can be
determinated by core analysis. Secondary porosity can be estimated with the following
model (Pulido et al., 2005):

oo = [L—-0.74¢, Jp™ . 1.12

For a good understanding of the present work, | consider necessary to introduce the
concept of unitary fracture porosity. Conceptually it represents the volumetric fraction

occupied by a single fracture related to the total rock volume. It is given by:

i \Y
b, = unitary fracture volume _ u 113

total bulk volume Viuk

On the other hand, the concept fractured bulk porosity has been used previously in
the literature. It represents the volumetric fraction of all fractures in the rock. It is
defined as:

_ fracture network volume _ Vi,

b, = _ 1.14
total bulk volume Viuk

Assuming fractures with the same characteristics all over the bulk, fracture network
volume, can be expressed as:

V=, (rV,Ar, .15
where:
n, (r)=number of fractures into fractured bulk,

V, =unitary fracture volume.

Moreover, the number of fractures into fractured bulk, also known as Site Density
can be expressed using a power-law model:
n,(r)=ar™". 1.16
Therefore, fracture network volume is expressed as:

Dﬂ)_
V, =ar "V, Ar. 1.17

Alex R. Valdés-Pérez 1.Basic Concepts* 3



Combining eq. 1.4 and eq. 1.17, porosity of the fracture network is given by:

_ d
ar®™ NV Ar  ar’ v,
P = &Ap3d, Ar d, .18
ag Fe b Ar - ayb

Geometry factor: This parameter was introduced by Chang et al. (1990); it was used to

provide a relation of the symmetry. It was defined as:

av,
¢

where:

G= \ 1.19

V, =site volume. This parameter is equivalent to the unitary fracture volume, presented

in this thesis.

In the present work, it was found that the geometry factor is equivalent to:

G:Mwd %, .20

P .

Dimension in Well Testing: The term dimension suffers from having different but
related meanings in reservoir analysis. Dimension may refer to units of measure, as in
dimensionless pressure. Dimension also arises when we discuss the three Euclidian
dimensions, since all real well tests occur in three-dimensional space. Fractal
Dimension describes how patterns fill spaces. Dimension has also been used in
reference to the symmetry of flow lines in a well test. For example, linear flow is
considered one-dimensional; cylindrical flow, two dimensional and spherical flow,

three-dimensional, see Fig. I.1.

Koer?

Cyfindrical

Spherical
Kot

A=r2-® Fractional
Dimension

Fig. 1.1. Examples of flow dimension (figure taken from Doe, 1991).
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Spatial Dimension: The geometric property that defines spatial dimension is the change

in conduit area with distance from a source point. In one-dimensional flow (linear flow)
the area of the conduit is proportional to r°. The area does not change with distance.
For cylindrical and spherical flow geometries, the areas are proportional to the r* and
r’ powers of distance, respectively. By extension of this logic, a conduit of fractional
dimension is simply a conduit whose area is proportional to a non-integer power of

distance from the source (Doe, 1991).

Fractal Permeability and Darcy’s law in fractal form: According to Poiseuille’s and
Fanning’s equations, a fluid’s velocity trough a capillary tube can be expressed as:
_ de Apy

v, = 1.21
32u AL

where:

d, =capillary tube diameter (pore, fracture of vug aperture);
u = fluid viscosity;

Ap =pressure drop within the system;

AL = length of the capillary tube.

Fluid rate is given by:
G, =V,A;; 1.22
moreover, capillary tube area is:
Ay =l - 1.23
Then, substituting capillary tube area and fluid velocity into fluid rate equation, it

becomes: Hagen Pouisuielle

dz A sy
g, =| o Pt (2] M AR 1.24
32u AL 8u AL
Expressing prior equation in terms of radial coordinates and taking limits to zero:
a0
q-u — uf puf . |25
8u or

Previous equation provides the fluid rate in a single capillary tube considering n,

parallel tubes with the same characteristics, the total fluid rate can be expressed as:

Alex R. Valdés-Pérez 1.Basic Concepts* 5



4
e Py

g=n,q,=n, 8y or 1.26

where, the number of tubes is defined as follows:

”p=%=%=nf(r), 1.27

with:

V,, =capillary tubes volume (fractured bulk volume);

V, =capillary tube volume (unitary fracture volume).

Equation 1.28 can be expressed as:

n,= Zr_fzzll 1.28

Hence, the following expression can be deduced:

npznf(r)z\;rf:%ll. .29
Equation 1.26 can be rewritten as follows:

q= arD”"er—iagrfb = a;z;j} roe a;;b . 1.30

assuming:

cZCr, 1.31

where:

©® =parameter describing the conductivity in a fractal object. Therefore, eq. 1.30 is

rewritten as:

an[Clr“@] (Dl Py, _ anC, rDﬂ,-e-l%
8u or 8u or

1.32

g=

where:
0 = 40. Itis defined as the anomaly in conductivity in a fractal object (O’Shaughnessy

and Procaccia, 1985).

Defining:
c, =a’;cl —aC;, 1.33

equation 1.32 can be expressed as, similar to Chang et al. (1990):

6+ 1.Basic Concepts Alex R. Valdés-Pérez



e~ opy,
u oor

q:CZ

1.34

On the other hand, Darcy’s law is given by (considering a variable permeability,

trough porous media):

ke (r) Op, .

\7 = )
u or
fractured bulk’s fluid rate is given by:

q=ApVs
flowing area of fractured bulk is given by:
Afb = (J{;ebz_derde B

and:

d,-1
. 21w 2

oy, =7 -
F(de 1)
2

Therefore, fractured bulk’s fluid rate is given by:

q:

u or 7 or

Comparing equations 1.34 and 1.39 it results:
a;ebz_derdekfb(r) -C rDm_G_l apfb

u Yopor

arraying:

910
—a; 0>k, (r)=C,r™ l—grfb :

then, it can be concluded that:

C Dy, —0-de-1
k (r):_ 2 r-® e
fb P .
adebZ de

Establishing the relationship:
C,=aC,,
eq. .42 becomes:

aCf Dy, -6-dg—1 * a Dg,—0-d,-1
kfb(r)= a2’ =-C, — 2q. T '
adeb adeb

On the other hand, defining:

_ [a* 2ty d. 1:_ kfb(r) 0Py, } - kfb(r)agebz_derde o,
de B .

1.35

1.36

1.37

1.38

1.39

1.40

1.41

1.42

1.43

1.44

Alex R. Valdés-Pérez
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C/ = , 1.45
bong(r)

then,

kfb(r)= akfbvbulk rDﬂ,—Q—de—l 146

according to definition:

N (rVy

Vouk =————- 1.47
¢fb
Therefore:
aky, Ny (r)\/uf Dgy—0-d, -1 aVy Ky by-0-0,1
kg(r)=— TR r =g T : .48
Ny (r)‘)‘de Dio Oy, Dio

and Dacry’s equation results in:

aVy k fb _ Dgp—0-de—1

T v pd, 4 Dp—0-de-1
g = [a; 7t ()(deb2 “ B, Py _ [a; p2-depde aVuf*kfb;d P 1.49
: Jz or : ag b pu  or
If:
p=Dy—-60-1, 1.50
then, Darcy’s law in fractal form is given by:
_aVykyr" Opy, 1.51

Dot or

Dimensionless variables: The use of dimensionless groups in well test analysis is very
common. Dimensionless variables are defined differently depending on the phase
flowing in the well and reservoir (oil and gas) and also, on the author.

The main advantages of using dimensionless variables, such as dimensionless

pressure, p,, dimensionless radius, r, and dimensionless time, t,, are:

- The use of such variables allows grouping known and unknown parameters of
the fluid and the rock system.

- They make easier the mathematical work when solving the partial differential
equations that governs the flow within the reservoir.

- The proper manipulation of dimensionless variables allows the use of the same

models for different cases, e.g., different flowing phases in the reservoir.

8+ 1.Basic Concepts Alex R. Valdés-Pérez



The Inverse Chow Pressure Group: For a dimensionless solution p,(rp.t,), the
Chow pressure group is defined by the identity:
Po __Po

=2, 1.52
apD/aIntD p'DtD
and the inverse Chow derivative of pressure group by the identity
opp /0Int, _ potp . 153

Po Po
Dimensionless storativity ratio: This parameter relates the total expansion in the
fracture network to the total expansion in the system. It is defined as:

PO . .54
9 Citp + PrmaCima

Matrix-fracture interaction parameter: This parameter is used in all the double

porosity models assuming pseudosteady-state interporous transference and in some

transient interporous transference models. It is a dimensionless parameter, defined as

the relation of permeabilities of the two media:

2
A:%, 155
fb

where:
o =shape factor that reflects the geometry of the matrix elements and controls the flow
between porous media. It has dimensions reciprocal to the area.

r,, =wellbore radius.

Dimensionless matrix hydraulic diffusivity: This parameter relates the hydraulic
diffusivity in the matrix blocks to the total hydraulic diffusivity of the system. This
parameter allows the consideration of any type of flow within the matrix (transient or

pseudosteady-state).

nmaD = M’ |56

¢maCtmakfb

Dimensionless block size:

2
Hy = oa .57

w

h,. =height of matrix blocks.

Alex R. Valdés-Pérez 1.Basic Concepts* 9



Dimensionless fracture area, A, : This parameter relates the area of fractures per unit
of matrix volume and the fracture area per unit of bulk volume. It ranges from 2 to 6,
depending on the flow dimensions of the matrix.

]
Ap = AealaVoll T;‘avbrw : 1.58

ma
where:

A, =fracture area per unit of bulk volume,
V, =bulk volume,

V,, =matrix volume.

10 - 1.Basic Concepts Alex R. Valdés-Pérez



Chapter Il

Literature Review

The purpose of this chapter is to provide a summary of the double porosity flow models
and models assuming non-fixed flow geometry (fractal models) for well test analysis
and the theories behind them.

It is important to point out that all the models presented in this chapter are expressed
in their respective dimensionless variables, i.e., dimensionless variables are different for

every model.

11.1 Double porosity models

Nature of flow in multi-porous systems obeys to the fact that flow in each porous
medium behaves differently in terms of gradient pressure from the other media. Such
behavior is known as transient interporous flow; this flow regime was studied
previously by de Swaan (1976) and Najurieta (1980). Later in 1982, three research
teams solved the problem - in different ways - of the transient interporous transference
between porous media, showing similar results.

Cinco-Ley et al. (1982) presented a flow model for double porosity systems, where
the interaction between media was modeled by a convolution. It is given in
dimensionless variables by:

"Pi(lorto) 1 Piplloto)
or? ry or,

tDapr(T) apr(rthD)
F t—T)=00———=%; 1.1
.([ 61’ (r]maD D T) w atD

- [1_a)]AfD

if slabs are assumed for matrix blocks:

F(Dap st — 7) = 4ipgp 3 &m0 7o) 1.2
n=1L

or, for spheres:

I:(77maD ! tD - T) = 4'nmaD i e_4nmaDnz”2[tD_r] ' 1.3

n=1L

In this study, Cinco-Ley et al. (1982) introduced the parameter A, which is the

dimensionless fracture area; its definition depends on the matrix block shape (slabs or
spheres) and it is useful to estimate the area of fractures per volume of rock.
The general solution for eq. 1.1, assuming an infinite reservoir and constant flow

rate at wellbore, expressed in Laplace space, evaluated at wellbore is given by:

Alex R. Valdés-Pérez Il.Literature Review s 11



o KA
" 572 [T(s Kl(\/W)

transference function is given by:
f(s)=w+[1_a)]AfDf(nmaD'S)’ “5

where, for slabs:

f(nmao,s)a/”mTaDtanh[% ns J 1.6
maD

and, for spheres:

f (7o 8) = /%Ta{coth(% ns J—z /”TD} 117
maD

Fig. 11.1 shows the pressure and derivative of pressure function of the solution given

1.4

in eq. 11.4. Storage and skin around wellbore is not considered.

1,E+02 4
] —pwD
] = tD*dpw D/dtD
1,E+01 A
g :/
5 ]
a
=
o 1,E+00 7
e ]
& ﬁ
H
a
1,E-01 4
] =001
-10
nmaD = 10
1,E-02

LEWI LEW2 LEW03 LEA LEWS LEWS LEWT LEWB  LEWS 1E40  LEW1
tD
Fig. I1.1. Log-log plot of the pressure and pressure derivative function behaviour
of the model proposed by Cinco-Ley et al. (1982), assuming slabs.

In addition, Cinco-Ley et al. (1982) developed three solutions in real space that
corresponds to the three periods of flow in double porosity media. The first flow period
is dominated by a radial flow in the facture network caused by the total expansion in the
fractures. The solution in real space for such period is given by:

Puo (tD)=ﬂln(tDj+o.80907] 1.8

[
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Second flowing period in double porosity systems is the one where the interactions

between both mediums take place. Hence, second solution in real space is:

1 1
Puolto) = In(ts ) (L~ ©]A s /immp )+ 0.2602. 1.9

Finally, in the third flowing period the double porosity system acts as a single one.

Provided solution for this flowing period is given by:
Puo (tD):%[In(tD)Jr 0.80907]. 11.10

Fig. 11.2 shows a semilog plot of the pressure behaviour neglecting storage and skin

around wellbore and the convergence of approximate solutions to the general solution.

20 -

18 ; pwD

1 - - - -Earlytimes
16 4

] - = - ‘Intermediate times -
14 A

- = = :Latetimes

" _ -10
P Nmap = 10

1,E+01 1,E+02 1,E+03 1,E+04 1,E+05 1,E+06 1,E+07 1,E+08 1,E+09 1,E+10 1,E+11
tD

Fig. 11.2. Semilog plot of the pressure behaviour and approximate solutions of the model proposed by

Cinco-Ley et al. (1982), assuming slabs.

Streltsova (1982) presented a double porosity model assuming radial flow in fracture
network and linear flow from matrix blocks to fractures. She solved this problem using
Hankel transform. Radial flow model in fracture network, presented by Streltsova
(1982) is given by:
o*Ap(r,t) +16Ap(r,t) _anp(r.t) Vi

=, 11.11
or? r or ot T
where:
Ky ARy 1112
H oz z=0
and:
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" (k.h)  2nk.h
T [;jz ke _kh 1113
i=1 /l i /l u

Solution evaluated at wellbore of eq. 11.11 presented by Streltsova (1982) in real space,

expressed in dimensionless drop of pressure is given by:

4n't H 21 nH
Ap, =1In +1In +2 —erfc) ——— |, 11.14
i [1-78”5 J [(1.78117mt)% J n;a,sn [(nmt)% J
where:
App =2%TAp. 11.15

Serra et al. (1982) presented a flow model assuming slabs as matrix blocks, in terms
of the parameters used previously by Warren et al. (1963). This model was developed
by solving two partial differential equations: one for the fracture network and other for
the matrix blocks. Partial differential equation that describes the flow in fracture

network has the shape:

62pr(rD’tD)_’_iapr(rD'tD)_iapmaD(zD :]ﬂtD):apr(rD'tD).

11.16
or? r, or 3 oz, oty
And the partial differential equation that describes linear flow in the matrix blocks is
given by:
azpmaD(ZD’tD):EapmaD(zD’tD). 11.17
oz} A ot,

Solution of eq. 11.16 coupled with eq. 11.17, assuming constant flow rate at wellbore,
infinite fracture network for eq. 11.16 on one hand, and free interaction and closed
boundary for eq. 11.17 on the other, is given by:

b
o) 3s
Kol | 1+,/——tanh| ,|[— Js
° [ 3s [ la)n
Puo(s)= : .18

[N} % o %
s%2| 14 |2 tann| | 35 K| |1+ 2O anh| |3 Js
3s Ao 3s Ao

Fig. 11.3 shows the plot of the pressure and derivative of pressure function in log-log

scale, where at intermediate times, a smooth transition in the slope of the pressure

derivate function is observed.
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Moreover, Serra et al. (1982) developed solutions for the three flowing periods for
drawdown and build-up tests. Since build-up solutions are developed from the

superposition principle, only drawdown solutions will be presented. For short times:

Puo(tp ) =1.151log(t, )+ 0.351] +s. 11.19
For intermeadiate times, real time approximation is given by:
Ao’
Puo (tp ) = 0.5756] log(t,, ) + 0.452 — log = | 11.20
and, for late times:
Puo (tp ) =1.154log(t, )+ 0.351— log(1 + o')]+ s . .21
1,E402 4
] —pwD
] = tD*dpw D/dtD
1,E401
g l,E+00;
1,E-01 A
@'=100
A'=10""
1,E-02 e e e e e ——rr
1,E+04 1,E+05 1,E+06 1,E+07 1,E+08 1,E+09 1,E+10

tb

Fig. 11.3. Log-log plot of the pressure and pressure derivative function behaviour

of the model proposed by Serra et al. (1982).
However, practice has shown that apparently pressure gradients act homogenously

in all porous media which goes against the physics and the transient transfer theory.
Such flow transfer is known as pseudosteady-state flow. Warren et al. (1963) using the
formulation similar to Barenblatt et al. (1960), developed a radial flow model for double
porosity systems; neglecting the variation regarding the angle, such model has the

shape:

62pr(rD’e’tD)_'_iapr(rD'e'tD)_wapr(rD'e'tD)+[1_w]ame(rD'tD)

, 11.22
or? ry or, oty ot,

where, matrix source term is given by:
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0 r,,t
[1_w]%ljlj):l[pr(rD’tD)_ me(rD’tD)]' “23
D

Solution of eq. 11.22 assuming infinite reservoir and constant flow rate at wellbore and

taking into account condition imposed by eq. 11.23 is given by:

)

Puo(5)= s\/sh(s)Kl(\/sh(s)) ’ 24
Where:
h(s) = ofl-wk+a 11.25

L-ols+2
Fig. 11.4 shows the log-log plot of the pressure and derivative of pressure function of

the model presented by Warren et al. (1963), where at intermediate times, an abrupt

transition in the slope of the pressure derivate function is observed.

1,E+02 4

] —pwD
] ——tD*dpw D/dtD
1,E+01 E
8
kS
a
g
o 1,E+00 4
e ]
a
2
o
1,E-01 E
0 =0.01
-8
Mmap =10
1,E-02 T T T T T — — T
1,E+03 1,E+04 1,E+05 1,E+06 1,E+07 1,E+08 1,E+09 1,E+10

tD
Fig. 11.4. Log-log plot of the pressure and pressure derivative function behaviour
of the model presented by Warren et al. (1963).

Cinco-Ley et al. (1985) showed that the apparent pseudosteady-state transference
behavior seen in tests can be attributed to a presence of interporous skin between matrix
and fracture network. Such interporous skin is produced by a film created by
mineralization or interaction between fluids in the face of the matrix blocks.
Mineralization has been observed in outcrops, where precipitation and other chemical
phenomena create a skin between different porous media. General solution for this flow
model has the same shape of eq. I1.4, except for the transference function, which is

given by:
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f(s)= Al 0]f (7,,05)

1+ M f (nmaD ! S)S
nmaD

o, 11.26

And interporous skin is defined as:
_ kmaxd
maD k h *

d"'ma

11.27

Fig. 11.5 shows the idealization of a matrix block with interporous skin between the
matrix and the fracture.

ma

Fracture

Matrix block 14
Fig. 11.5. Idealization of the interporous skin between the matrix and the fracture.

Cinco-Ley et al. (1985) showed that a high interporous skin causes the apparent

pseudosteady-state behaviour, and a relationship between interporous skin and the

interporous flow parameter used in pseudosteady-state models was found:

}, _ AfDnmaD “ 28
S maD
1,E+02 -
1,E+01 | /7 —
5 —
3
a
3
[=N
T 1E+00 4
a
a
3
(=N
——pwDSmaD =0
——pwD SmaD=0
1E01 4 pw D SmaD = 1
—  pwD SmaD=1 o =001
-8
pw D SmaD = 10 Tap =10
pw D SmaD = 10
1,E-02 . ; ; ; ; ; ; : : :
1,E+01 1,E+02 1,E+03 1,E+04 1,E+05 1,E+06 1,E+07 1,E+08 1,E+09 1,E+10 1,E+11

tD

Fig. 11.6. Log-log plot of the pressure and pressure derivative function behaviour of the model developed

by Cinco-Ley et al. (1985), for different values of interporous skin, assuming slabs.
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11.2 Fractal models

In order to understand the fractal theory applied to well test analysis, the first reference
that must be consulted is the publication of Barker in 1988. Barker presented
mathematical solutions for the diffusivity equation expressed as a Generalized Radial
Flow Model (GRF). The theory was developed for hydraulic test, but it can be used for
petroleum well testing applying some modifications. Development of GRF and its
solution for constant rate case is presented in Appendix A.

Barker (1988) developed a model where a variable parameter governing the
Euclidean dimension of flow at wellbore was introduced. Such parameter is expressed

in the present work as d,. GRF adapted for petroleum well testing, in dimensionless

variables is:
o pD(rD’tD)+ d, _1apD(rD'tD) - Py (rD'tD). 11.29
org 'y or oty

It can be verified that, whend, =1, eq. 11.29 takes the form of the diffusivity
equation for linear flow (Miller, 1962); when d, =2 GRF takes the form of the
diffusivity equation for radial flow (van Everdingen and Hurst, 1949) and, whend, =3,

it takes the form of the spherical flow model (Chatas, 1966). Main assumptions made by
Barker on this model are:
- Flow obeys Darcy’s law;
- Flow is radial into a reservoir which is homogeneous and isotropic and fills an
n-dimensional space;
- The source is an n-dimensional sphere (for example a cylinder for two
dimensional flow or a sphere for three-dimensional flow.
Although Barker developed a model assuming a fractured rock, the assumption of a
homogeneous and isotropic reservoir allows its application into non fractured media.
The constant rate solution assuming an infinite reservoir for eq. 11.29 in Laplace

space is detailed in Appendix A. Such solution is given by:

Puo(8)= , 11.30
i S%Kv—l(‘/g)
where:
de
v=1-—. 11.31
2
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Fig 11.7 shows the plot of eq. 11.30 and its derivative using Stehfest’s Algorithm
(Stehfest, 1970), when v = ; v=0 and v = —E , which correspond to the linear,

radial and spherical flows, respectively.

100 y ——pwD Spherical
i pwD' Spherical
—— pwD Radial

—— pwD' Radial

10 1 ——pwD Linear

pwD' Linear

pwp, to*dpwp/dto

0,11

0,01 T —— T R
0,01 0,1 1 10 100 1000
to

Fig. 11.7. Plot of Barker’s constant rate case solution, for v =1/2 ,v =0 and v =-1/2.

Doe (1991) presented methods for analyzing transient flow-rate data from constant-
pressure well tests, where the spatial dimension is variable. Such analysis can be applied
for the constant flow rate case.

Doe (1991) stated that, by definition of spatial dimension, the test dimension in not
limited to the range of the Euclidian dimensions, that is between 1 and 3. Conduits may
decrease in area by a power law of distance; hence their dimension is less than 1. Such a
case may be termed sublinear. Similarly, a conduit whose area changes by a power
grater than 2 has a dimension greater than 3, and may be called hyperspherical.
Examples of these conduits are shown in Fig. 11.8.
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Fig. 11.8 Sublinear and Hyperspherical Conduits (figure taken from Doe, 1991).

Fig. 11.9 shows the transient pressure responses for the geometries established by
Doe (1991).

10 4

——pwD v=0.25
——pwD' v=0.25
——pwD v=-0.25
——pwD' v=-0.25
——pwD v=-0.75
pwD' vV=-0.75

pwb, to*d pwo/dtp

0,01 4

0,001 T T T T |
0,01 0,1 1 10 100 1000

Fig. 11.9. Plot of sublinear (v =0.25 and v = —-0.25) and hyperspherical (v = —0.75) geometries.

Chang et al. (1990) presented a flow model for a fractal reservoir, with single and
double porosity. For the double porosity case, they assumed pseudo-steady state
interaction between matrix and fractures. Appendix B shows the general development

for this model. Diffusivity equation presented by Chang and Yortsos in its
dimensionless form is given by:

1 i[réj apfbD(rD’tD)J: I‘SE_D"’ [1_w]apmaD(rD,tD)+wapfbD(rD’tD)
orp oty oty

, 11.32
rDbe -1 arD
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p=D, -0-1; 11.33
D,, =mass fractal dimension of fractures;

d, = Euclidean dimension.

6 = conductivity index (spectral dimension).
Later, Olarewaju (1996) presented a model and its solution in Laplace space for a
transient interaction between matrix and fracture network. Model developed by

Olarewaju in its dimensionless form is:

o pfbD(rD’tD)+£apfbD(rD’tD)+ roel apmaD(ZD’tD)_

0" apfbD(rD’tD)
a) —_—

5 =1, , 11.34
ors I or, 3 0z, oty
where interporosity flow coefficient, A is given by:
6+2
4= Knatu " 11.35
hmakfb
and dimensionless storativity ratio:
. c

0= 11.36

¢mactma + thb
Neglecting skin and wellbore storage effects, solution in Laplace space for Olarewaju’s

model, assuming constant flow rate and infinite reservoir, is:

2
"o (MVWJ

0+2
s*2.[g(s)K Dm( Jsgts}j

6+2

Puo ()= : 11.37

0+2

where:

g(s)zw*+[1—w*|/§[1/}7]tanh[1/%—[1;0]}. 11.38

Fig. 11.37 shows the model proposed by Olarewaju (1996) with the inclusion of
storage and skin around wellbore for different values of the fractal dimension of fracture

network.
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Fig. 11.10. Log-log plot of the model proposed by Olarewaju (1996).

Flamenco et al. (2001) and Flamenco et al. (2003) presented approximated solutions
for the early and late times periods of the models presented by Chang et al. (1990). The
convergence of such solutions was tested against a numerical solution of the same
model. Fig. 11.11 shows the convergence of the analytical and semi-analytical solutions

to the numerical one, presented by these authors.

1,008
Fractal Naturally Fractured Reservoir With Matrix Participation
s=0, Cp=0, dy =1.7, ©=0.05, 1 =104 r
——9=04 !
&P —6=056 . Long Time
. 0=04 Numerical Solution
@ =02

Long Times Approx
= Short Times Approx.

Warren/Root Solution

Dimensionless Wellbore Pressure, pwo

1.E-01 1.E+00 1.E+01 1.E+02 1.E+03% 1.E+D4 1.E+05 1.E+06 1.E+Q7

Dimensionless Time, tp

Fig. 11.11. Chang et al. (1990) solution (numerical solution); short- and long-time approximations for a

fractal fractured reservoir with matrix participation (figure taken from Flamenco et al., 2003).
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In Appendix C of this thesis, a free interaction between matrix and fractures under
transient pressure conditions was developed. With this development the concept of

dimensionless fracture area, A, (Cinco-Ley and Samaniego, 1982) was introduced

into fractal reservoir theory. Moreover, with this model, it is possible to assume slabs

and spherical shape for matrix blocks. Developed diffusivity equation for this model is:

o pfbD(rD’tD) B apfbD(rD’tD) 0 tDapfbD(rD’T)
+ = -1y, Apll-of| ———F Hp tp—7)dr =
ar,§ r or, D fD[ ]E|). ot (77maD bl )
0 apfbD(rD’tD)
= o—
oty
11.39
where:
A, = dimensionless fractal fracture area, and it is defined as:
A h..V,r,’
o= fbv—b 11.40
Fluid transference functions, assuming slabs is given by:
4 0o _ImaD (2n+l)2”2[tD_f]
F(nmaD,HD,tD—T)=L”‘aDZe o : .41
HD n=1
or, if spheres as matrix blocks, fluid transference function is:
4 o _4rlmaDnZ”Z[tD_f]
F(nmaD’HD’tD_T)z nmaDZe o : 11.42
HD n=1

Solution in Laplace Space for eq. 11.39 under constant flow rate and infinite reservoir

conditions is given by:

2
Kl_ﬂ(ma/sﬂs)}

Py (8)= 0+2 5 , 11.46
s [f(s)K (ﬁ/sﬂs)j
9—;’; 0+2
where:
f(s)=Ap[l—0]F (Tap: Hp 5)- . 11.47
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Fig. 11.12. Log-log plot of the free interporous transference, developed in Appendix C.
Larsen (2013) developed a modified fractal model for small values of the
dimensionless storativity ratio by combining models presented previously by Chang et

al. (1990) and Olarewaju (1996). Such modification yields the equation in Laplace

space:

dp,~(r,,t
/;I._gi r,f pfbD(D D) :ide_Dm\/Etanh(LD\/g)ﬁfbD(rD’tD)' 11.48
rf/=0 dry, dr, 3

Detailed development of this model is shown in Appendix D.

Other relevant papers regarding this topic are the ones published by Acufia et al.
(1995) and Camacho-Velazquez et al. (2008). In addition, Cossio (2012) and Cossio et
al. (2013) presented a model that describes the behaviour of pressure within a finite

conductivity fracture into a fractal reservoir, and a semi-analytical solution for it.
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Chapter 111
Proposed Model

111.1. Flow model development

Incoming fluid mass into an object is given by:
m,, = p;q;At; 1.1
out coming fluid mass from the same object is:

M, = P, A, At+A(p,q, JAt; 1.2

oil mass contribution from the Euclidean matrix:

Mpa = Pt Ana At 1.3
Then, cumulative fluid mass into the object is:

mcum = mout _min +pfqmaAt :A(pqu )At+pfqmaAt' |“4

On the other hand, mass of fluid at a time t, is given by:

My =S¢ Pt PV ouc 1.5

atatime t,:

m, zsfpf¢fbvbulk+A(Sfpf¢fb)‘/bulk’ 1.6

and, cumulative fluid mass is given by:

Megn = My, =My = AS (P by Mo - .7
Equating eq. I11.4 and eq. 111.7 results:

Alp(y JAt+ pGuatht = AS ity Mo - 1.8

Using definition of bulk volume (eq. 1.4), eq. I11.8 becomes:

Alp A+ py GoaAt = A(S py s flg, 1o 0% % Ar] . 1.9

Arraying previous equation:

aderdel_lbs_de A(ifrqf )+pfq;a =W- 11110

Where Matrix flow rate per unit of bulk volume is defined by:

q, = ma 11.11
Vbulk

Taking the limits Ar and At to zero, and arraying, equation I11.10 becomes:

a(Pqu) de-1p3-d

o\S
2 ra, pde1p3-de ( fpf¢fb). .12
r e

ot

elofqma = ade
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Inserting Darcy’s equation in fractal form (eg.1.51) into previous equation, results:

aVv, k.r? o
0 f uf Kb P ta, rde—le—depfq;a —a,
or Qi OF ’ ’

rde'lb“ew. 11.13

Applying the derivatives in eq. 111.13:

aVy Ky, pfr/} azpfbgr’t)+pfﬁrﬁ—l apfb(r’t)+ rh apfb(r’t)apf n
Pt or or or or
1.14
os.p) o olgs)
" pde-1p3-de o pOe-1p3-de tP1) g fb
ay, Pilmna = Ay, |:¢fb ot Py ot
According to chain rule:
apf — apf apfb(r’t), “|15
o opgy(rt) or
aSfpf — aSfpf apfb(r’t) “l 16
ot opglrt) ot '
a¢fb _ a¢fb apfb(r’t) “|17

ot opg(rt) ot
Substituting eqgs. 111.15, 111.16 and I11.17 and using compressibility definitions, prior eq.

is rewritten as follows:

2 2
aVy Ky, v 0 psz(r’t)+ﬁrﬁ—1 apfb(r’t)+ (e, op(r.t) fo g =
Pl or or or

11118

OP 4, (r’t)
ot

If single phase flow is assumed, then total compressibility is defined as:

n-1y 3-n
=a,r"b ¢fbsf[cf+cfb]

Citp =Ct +Cpy, 111.19

therefore eq. 111.18 is written as:

2 2
aVy K, (b 0 pfbgr’t)+ﬁrﬁ—l apfb(r’t)+ rhc, apfb(r’t) oy it =
Dt or or or :

111.20

apfb(r’t)
ot

Neglecting quadratic gradient pressure and according to porosity of the fracture

d, ~1;-3d
=ay - D™ P, Cyy

network definition, prior equation becomes:
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n P | s Pl | ous o ous Cabott Pulrt) .21

or? or K, K ot

On the other hand, matrix flow rate per unit of bulk can be expressed as:

t
i, = - frePe [ apma(r)(VApuma)sde : .22
u 5 dr

If slab matrix blocks are assumed, area exposed to flow is defined as:

o — # ; 111.23
.. +h;
or, if cube matrix blocks are assumed:
hZ
Ay = 67”“3 ) 111.24
(hoo +h )

Substituting eq. I11.22 into I11.21, the diffusivity equation for a double porosity

fractal reservoir with transient interporosity transfer is obtained:

R (R op,(r,t Lk AL
rﬂi'ofb(2 ), g1 Pal0Y) o Ko fbjap”‘a(r)(mpuma)smdf:
or or ke o dr
, 111.25
_ roe apfb(r’t)
Mo ot
where hydraulic diffusivity coefficient in field units is defined as:
0.00026367k ,
Np=—"T" " ""-"-. 111.26
1 HCyp
In compact form, eq. 111.25 is written as:
opy(r 1)) k. A Op,, (1, t
L 90 Po(Ft)) _ Kne fbjapma(r)(mpuma)surdr:1pfb( ) 11.27
r*—or or Ko o dr N, Ot

In order to have a homogeneous partial differential equation and an easier way to
manage unknowns related to eq. 111.27, it is necessary to expressed in dimensionless

variables.

111.2 Transformation to dimensionless variables for well test analysis

In order to transform eq. 111.27 to a dimensionless expression, following dimensionless
variables has been stated:

Dimensionless radius:
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. 111.28

dimensionless time:
~ 0.00026367k

t/t w
where:
(¢Ct )1 = ¢fbctfb + ¢mactma . |||3O

For an oil-filled system, dimensionless pressure in the fracture network:

Ap, (0-03281)9 aVufkfb[pi - pfb(r’t)]

Io.tp)= 111.31
Preo(o.to) 88722 B g
And, dimensionless pressure in the matrix:
p,, (0'03281)9 avufkfb[pi - pma(r’t)]
pmaD(rD’tD = 5 : 111.32
88722 qBo:urw ¢fb
For gas reservoirs, dimensionless pressure in the fracture network:
Ap,, (0'03281)9 avy kfbAm(pfb)
P (foto) = i, 111.33
8937.2 qgugZTrw ¢fb
where:
am(p,, )= p? - p3(r.t). 111.34
and dimensionless pressure in the matrix:
( t ann (003281)9 aVuf kfbAm( pma) M 35
mal I ! = _ 1 .
Preotlo-o 8937.2  q,u ZTr," "¢y,
where:
AM(Pya )= P = Pra(ryt). 111.36

For geothermal reservoirs (steam), dimensionless pressure in the fracture network:

Op, (0-03281)9 aViy kfbAm(pfb )

Ao )= , 11.37
Puo(foito) 81361 Wi ZTr g

where:

Am(py,)= p2 - p3(r,b). 111.38

and, dimensionless pressure in the matrix:
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o5, (0.03281)" av, k ,Am(p,, )

L) = 111.39
pmaD(rD D) 81361 WuSZTrwl"ﬁ¢fb

and:

AM(p,,) = p? — P2 (r.t). 111.40

The procedures for transformation to dimensionless variables of eq. 111.25, for the
oil, gas and steam reservoirs are similar, therefore only the oil-filled reservoir is shown.

Using chain rule, first derivative of pressure in the fracture network regarding the
radius can be written as follows:

opp(r.t) _ opp(r.t) %apfbD(rD’tD)

= 111.41
or pfbD(rD’tD) dr orp

Based on dimensionless pressure definition, first derivative of pressure regarding

dimensionless pressure in fracture network is:

pu(rt) 88722 qB,ur,"dy, 111.42
MDuo(loity)  ap (003281  aVk, :

Based on the dimensionless radius definition, derivative of dimensionless radius

regarding radius is:

an _ 1 11143
dar r,

Substituting eq. 111.42 and 111.43 into eq. I11.41 results:

op fb(r’t) _ 887.22 B, 40, "By 0P o (rD’tD) 111.44
or ap, (0.03281)  aVky, or, '
Taking second derivative regarding radius of eq. 111.44:

0 pfb(r’t) _ 887.22 0B, 1r, " he 07 Py (rD’tD) 11.45
or? a, (003281)  aV,k, og |

Analogously to the first derivative of pressure in the fracture network regarding the

radius, first derivative of pressure in the fracture network regarding the time is given by:

apfb(r’t): 3 887.22 qBourwl_ﬁ¢fb 0.00026367k g, apfbD(rD’tD) 111.46
ot ap, (0.03281)°  aVky, (ge, ), par oy, '

Besides,

apma(r"[) — apma(r"[) apmaD(rD’tD), |||47

aT pmaD(rD’T) aT
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hence:

OPma(r,7) 887.22  WBty b1 | 0P (1o to)

or ap, (0.03281)°  aVky, or

111.48

Substituting 111.28, 111.44, 111.45, 111.46, 111.48 in 111.25 and arraying it, results:

2 o
a pfbD(rDstD)+£apfbD(rD’tD)_ rDGAfD[l_w]J.apmagS_rD,T) F(T]maD, HD’tD _T)dT =
0

2
orS I ory

_rD

% apfbD(rD’tD)
oty

where, dimensionless storativity ratio, o is defined as:

_ DiCupy .

ge)
dimenssionless matrix hidraulic diffusivity:

nmaD — kma(¢ct)t .

¢mactmak fb

dimensionless block size, for slabs:

r2

Hp = hWT;
and for spheres:

r2

[
= 2
dma

Hp

dimensionless fractal fracture network area, Ay :

~ AghyaVy r,’

AfD V

ma

Fluid transfer function, assuming slabs:

_ImaD (2n+l)z 7’ [tD _7"]

4 0
F(nmaD’HD’tD_T)z%ze Ho )
D n-t

or, if spheres as matrix blocks, fluid transfer function is:

_4rlmaDnZ”Z[tD _7"]

4 0
F(nmaD’HD’tD_T)Z%Ze Ho
D Nl

111.49

111.50

1151

111.52

111.53

111.54

111.55

111.56
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Chapter IV

Model solutions for well test analysis

1V.1. General Solution in Laplace space

In Chapter Il the diffusivity equation for a double porosity reservoir assuming fractal

fracture network and Euclidean matrix blocks was developed:

2 t t
a pfb;r(zrDa D)—i-fapfbDa(er, D) ]J.apmaD rD’T maD’HD’tD _T)dT —
D D D
0 apfbD(rD’ )
D atD

(AVAI
In order to have a well test analysis model for the Fractal Reservoir Model assuming
transient interporous transference between matrix and fractures, the following

conditions have been set:

initial condition for fracture network: Pup (o tp =0)=0, V.2
0 1t
inner Boundary: r/ M =1, V.3
o,
outer boundary: lim (py (rp,t5))=0. V.4

Constant rate solutions assuming finite circular reservoir and constant pressure
boundary are shown in Appendix G.

Applying Laplace transform to eq. IV.1 yields:

d’ pfbD(rDl )+ yij dpfbD(rD’ )

er rD er - rD(’AfD [1_ a)]lf(r]maD’ HD’S)SpmaD (rD’S) =

V.5
= nga)[spfbD (rD’S)_ P10 (rD ’0)]
Similar to Cinco-Ley et al. (1985), dimensionless pressure in the matrix can be

expressed as follows:

, )= pfbD(rD’ S)

pmaD (rD S ’
M If(nmaD’ HD’ S)S

V.6

1+

maD

where, for slab matrix blocks:
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'f(nmaD,HD,S)a/LmaD tanh 14/—HDS : V.7
HDS 2 nmaD

and, for spheres as matrix blocks:

F (nap Hp ) = . "na | coth 1\/HDS —2\/77”“"D : V.8
Hpys 2\ Nyap Hps

Substituting eq. 1V.6 into eq. 1V.5 results:

d2pfbD(rD’tD)+ﬁdpfbD(rD’tD)

If(nmaol Hp, 5)

0
2 15 Ap [1_ @]5 Ptwo (rD ) 5) =
dry [ dry 1+ HoSma- o If(nmaD’ HD,S)S
Nmap
= nga)[SpfbD (rD’ 5)_ P o (rD ’O)]
V.9
Applying initial condition in eq. IV.9, and arraying:
d? r.,s d r.,s
r2 pf(:DrS = )+ﬁrD pfbgr( = )—er@+2 f(S)p o (r5,5)=0. V.10
D D
Where the transference function is defined as:
A [l-wl|F JH,,s
f(S)z fD[ a’] (Umao D ) . V.11
H DSma—fbD =
14— F (7, Hp S8
maD

It can be verified that, if there is no restriction between matrix and fractures, i.e.,

Smamp = 0, prior transference function reduces to the free interaction fractal model,

showed in Appendix D.

Parameter & is established:

518 V.12
2
then:
d2 y d ]
I‘DZpfbDErDS)—i-[l—25]l‘DpfbD(rDS)—Sr09+2f(s)pfbo(ro’s)zo' V.13
dr? dr,

The following transform function has been set:
Po(rp.8)=G,(2), V.14
and the transformation variable:

2./sf(s) %2
7= r.2 . 1VV.15

0+2 °
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Applying the variable transformations, the following expression is obtained:

9°G,(2) 3G, (2)

72 2 l-2v 22 - 7°G, (z)=0, IV.16
where:
v-17F V.17
0+2
To equalize the coefficient of the first derivative to one the following expression is
proposed:
G,(2)=2"B,(2), V.18
74
where:
1-p
= stis) )™ V.19
L ' '
Eq. IV.16 is expressed in terms of function 1V.18 as:
2
22 ¢ BD(Z)+deD(Z)—[v2+22]BD(z)=O. IV.20
dz dz
Solution for eq. 1V.20 is given by:
Bo(z2)=c,1,(z)+¢c,K,(2), V.21

or, in terms of eq. 1V.18:

\

GD(Z):;[cllv(z)+c2Kv(z)], V.22

and, in terms of P, (r,,s) and ry~/s , solution is:

=2 2./sf(s) %2 2./sf(s) =2
po(rD,S)=rD2 {Clll_ﬁ[ I 2 j+c2Kl_ﬂ[ I 2 H V.23

0+2 e 0+2

Applying outer boundary condition, it can be concluded that:

c, =0, 1V.24
and, bounded solution is:
1-8 0+2
= 2./sf(s) ==
r,,s)=c,r 2 K,_ r,2 |. V.25
pD( D ) 2'D ]éf;[ 0 + 2 D J

Applying inner boundary condition it is found that:
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C,=— 1 V.26

$2 [(s) KD,,,[Z sf(s j

e 0+2

and, solution can be expressed as:

T [20ss)
) Kl—,B )

= 0+2
Po(rs.s)= A N V.27
sf(s
s¥2 [f(s)K
D”’[ 0+2 J
0+2
Solution evaluated at wellbore is:
Kl_ﬂ(ezzq/sﬂsg
=\ 0+
Puo (5)= 0+2 IV.28

6+2

s¥2. [ f(s)Kp, (Qizﬁ/sfis}J

Phenomena around wellbore such as skin at wellbore and wellbore storage, can be

incorporated as follows:

i o ) s . V.29
wa(S D We”) 1+Swe,,sCD+CD325wD(S)

A detailed description of the storage around wellbore phenomenon is described in

Appendix F.

1V.2. Approximate solutions at short times: Total Expansion in the Fracture Network

It has been shown that at early times, only the fracture expansion acts in the reservoir
(Cinco-Ley et al., 1982). It means that transference function can be approximated as:
f(S)z w, V.30

therefore, eq. 1V.1 is reduced to:

azpfbD(rD’tD) ﬁapfbD(rD’tD) 0 apfbD(rD’tD)
+ r~o—— .

: el =1 V.31
or; I or, ot,
Establishing the following transformation function:
_[o+2]
Zp = a)(be )2 Do Pwp (rD'tD )’ V.32
and transformation variables:
STy V.33
be

and:
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2_[9+2]
_ D,
k; =Dy ty.

Eq. 31 is expressed according to egs. 1V.32 to 1V.34 as follows:

2+60 2+60

TZ Diy ﬂ-ﬁ- l_ [2be -0- 2] OZ _ w@ZlD
1 2 1 )
ot Ds, arl oK,

Similarly initial condition is given by:
Zyp (Tllo) =0;

inner boundary condition:

[6+2]

2-

lim| 7, % %% |__q,
7,0 671

and outer boundary condition:

Z,p(0,%,)=0.
Establishing the following transformation function:
Dy
ZlD _UlD(fl) 9+2 !
and:
D,
&= TlKl_ 1o+2]

Applying the transformation variables, eq. V.35 is rewritten as:

2+0 2
*p, d UlD be 0+2|dU, Dy, dUpp
& 51 =0 - & :
dg’ Dy, | d& lo+2] 2] dg,

Prior eg. can be expressed as:

[0+2] d {51_% dUlD} _ i(ungl),

Dy, d&, de; de;

transforming inner boundary condition:

[6+2] [6+2]
lim| 7, o, % m| &* o, Wi | o,
7,—0 aTl 1~>0 d§1

integrating eq. 1V.42:
0+2 2_7 dUlD

D, & Do dg, :_w(U1D§1)+A1’

it can be concluded, based on inner boundary condition:

A=0,

V.34

V.35

V.36

V.37

V.38

V.39

V.40

V.41

V.42

V.43

1V.44

1V.45
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therefore eq. 1VV.44 reduces to:

[6+2]dU,, _ —a)ﬁl%:'ldﬁl
be UlD

integrating and arraying eq. 1V.47:

81Dy

UlD = Aze_[M 1

2
ij 9+2

applying outer boundary:

0+2
Dy

Tulod§1 = AZTe_[MJ - dé =1,
0 0

hence:

Pol D Dw,
d§l=a) 9+{ +fb },9+2 d},:l.

Dy

a)9+2
- o (o), D,
{e[)fz}! (i,

Moreover, defining:

-2
}/:}/ be
o+2)

its first derivative is given by:

dy=[ = _Zdy
0+2 2

Hence, eq. V.52 becomes:

V.46

V.47

V.48

V.49

V.50

V.51

V.52

V.53

V.54
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Gamma Function for this case is defined as:

F[ Dy, J T -7 %—1(1
=|e "y dy,,
0+2) 3

hence:

1 Dy
be 6+2 i ,
- w Dy 642
0+2 o932 ®&1Dyy
Up = e .

Applying Duhamel’s principle in eq. 1V.39:

k1 Dy,
= J.UlDKl o+2dx; .
0

Substituting eq. 1V.58 in eq. IV.59:

fl
]
be 0+2 Do 0+2
0+2 2 Dp
7 0+ 0+2) “ i —Jd
1D = € Ky 0+20K, .

Establishing the following variable transformation:

2 0+2

be T,Dw
Kl = ’
0+2 y

and, taking the first derivate regarding vy :

0+2

2
dxz—a)& ﬁd
' 0+2) vy

V.55

V.56

V.57

V.58

V.59

V.60

V.61

V.62
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Substituting eqg. IV. 61 and 1V.62 in IV.60:

6+2
£
W be T Dy,
0+2)*" % L)

J.e‘ny+2 dy. V.63

Incomplete function Gamma is defined as:

I'(a,x)= Ita‘le“dt : V.64
then, eq. IV.63 becomes:
0+2
w[ Dy, JTDm_l , 2
2)° D D P
R U I —f g —b | 2|, IV.65
0+2) kK

r Dy, 0+2
0+2
therefore, solution of eq. 1VV.31 is given by:

0+2-Dy, D 042
pfbD(rD 1 ) — - j r( T - J ' V.66

Dy, 0+2 (0+2)t,

0+ 2)r(

0+2

In order to have simplified solutions relatively easy to use, two cases must be

defined. The first case is given by the condition Dy, =0 +2. If that is the case, eq. 1V.103

and evaluated in r, =1, it becomes:

0+2) | (0+2)Pty

pwo(to):—(l F[O - ] IV.67

According to incomplete gamma function convergences, prior expression can be

expressed as:

wa(tD)=—(1 E-[( 2 J V.68

0+2) ' (0+2)t,

where:
E, (x) =integral exponential.

For small arguments of the integral exponential, eq. 1VV.68 can be approximated as:

[In(ty)+2In(6 +2)—In(w) - 7], V.69

wa(tD)z (0 N 2)

where:

y =Euler’s constant.
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It can be verified that, if 6 =0, eq. 1V.69 converges to the solution presented by Cinco-
Leyet al. (1982).

On the other hand, for Dy, #6+2 long time an approximation of incomplete

gamma function is given by:

a a+l

X X

I'a,x)~I'(a)-—++—=, V.70
(@x)=T(e) a [a+1]

hence, incomplete gamma function for this problem is approximated as:

1-Pn D] DPmy
o Bo _q_org® | {Dn ) (1)2(0+ 2){1 2o £ v
0+2 "~ (0+2)t, 0+2 ro+2 Dy, P

D -1
0+2
Evaluating V.66 at ry =1, and substituting V.71 results:
r[ b —1}
0 2 2v-1  vy-1
Puo (to) = i 55 ég +2) a)D t |, V.72
(0+2)F fo b qr fo
0+2 0+2 0+2
where:
D
v=1-—"_. IV.73
0+2
A form of the recurrence formula is:
L(x-1) _ (x-1)%, V.74
r(x)
therefore, eq. 1V.72 is rewritten as:
)

t.)= + Y. V.75

wa( D) —V(Q + 2) be D
vl
0+2

1V.3. Approximate solutions at intermediate times: Interaction between porous media

a. Transient State with variable Interporous Skin
For intermediate times, the interaction between porous media takes place. For this

period, transference function can be approximated as:

-1

S H

f(s)~Apl-o] ’Lmaz(n ma_ 180 DSJ : V.76
D \/nmaD

therefore, eq. V.28 is rewritten as:
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1
1 _=
2 2 Sma\—fbD\/HDS 2 n S
S H 2 _ maD
e o) et
nmaD
(s)=

wa 1
S3/2 Af [1—6()] Mmap K 2 l_}_Sma\—fbD\/HDS 2 A [1_ ] Mmap S
° Hos ) "0l g2 S PET I H
D 0+2 Tmap D
V.77
For small arguments, Bessel function in the denominator is approximated as:
1
2 Sma—fbD HDS 2\/ 77 S
Ko, 1+ Apll-o]  [maD>
ﬁ 0"1‘2[ A nmaD HD
V.78
D D Dy
% S [H _s 2l6+2] “2[0+2] D
~ (0+2)9 2 14 ma-— fbD D AfD [1—(0] N manS r fb
2 \/Umao Hp 0+2
Substituting eq. IV.78 ineq. IV.77:
Dy 1 1 Dn
Mj Sma— /H s )2 2[0+2]
2 Apll-w] [Tmeo 14X B
— HD nmaD
Pup (S)z Dpy D 5 Dy '
0 +2)or2T| —2 4 o]
( i )9 ’ (9+2j S
. V.79
L
2 Sma—fbD HDS 2 77 DS
K 1 A.-[1- fmab =
% 9+2( " \/nmaD J fD[ w] HD

For the Dy, =0+2 case, the Bessel function in the numerator is approximated as:

1
S H.s ) ?2
2 [1_"_ ma- fbD D } \/AfD [1—60] 77|r1|aDS

’ m VnmaD D

V.80

\/nmaD D

1
1 S Hos |2
9+2[1+ oD D} \/AfD[l—a)] —’7|n_‘|aDS Tty

thus, eq. 1VV.79 can be expressed as:
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S)= -= -= = —=
Po (s) 0+2| 4 s 2 s s S S
Iv.81
Taking the natural logarithmic expansion:
|n(1+sma_fbD HDS]zsma_fbD Hos | V.82
maD maD

eq. 1V.123 becomes:

H
2 1 () 1'”(Afo[1_w] U;ao) |(9 2) 1|:SmafbD 77[)}
Puo(s)= me o ) In6+2) 1 V7o | 7|, 1V.83

0+2| 4 s 2 S S 2 Js s

inverting to Real Space:

2 |1 1 /nmao 1 H, .~
wlp)=——|=Inlty)-=In| Apl-w]| [ |+In(0+2)+ —=S,._1p.[—tp? —0.4329
pD(D) 9+2{4 (D) 5 ( fD[ ] HD] ( ) N fbD Ter D

V.84
On the other hand, if Dy #6+2, then the Bessel function in the denominator is

approximated as:

1
S H.s)?
K 2 {1+ ma- fbD D } \/AfD[l—CO] 77|:aDS

1-p
6+2 0 + 2 \/nmaD D
, V.85
1B 1B
1- -
0+ 2)@ S, . wpyHps |40+ NooS | 2978 (1-8
® 1+ Ap [1—(0] —mab_ r—=
2 \/nmaD H D 0+2
substituting eq. IV.85 in eq. IV.79:
Dy,—[0+2]H1-5] W
T 2e+2] 2[o+2
Lo (1-p Fmo | % (1, SenoiHos
(9 + 2) 0+2 F(] (AfD [1— a)] J +
= 0+2 H N7
pWD (S)z D D §7 5o - - 1
F(Q beJ g4 4lo+2] afo+2]
+
V.86

srraying, prior eg. reduces to:
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» 1-p

B -
8 e i S5
L= @
_ 0+2 Hp A map V.87
Puo (8)= p ( D, J 20+5-5 ’

(@+2)o2 T 913 g 26+2]
+

according to binomial series, eq. 1VV.87 becomes:

Dyp-[0+2]

_F@_fzj(%[l—w] \/f )

Dy -3[0+2] D -2[0+2]
D
[S 20o+2] {1 t }Smam Ho (")

Puo ( ) - 2D, -[0+2] -
r be (9+2) 92 0+2 maD
0+2
V.88
and, inverting to real space, and arraying, eg. V.88 can be expressed as:
v-1
_ ma H 3-v
v F(l ﬂZj (AfD [1_w] 77H : J Sma- D [1_V DF(ZJ
tEPuolty)=—7 |+ o2 V89

- _ 2v _
F(v)l“(g Vj 0+2 F(z Vj
2 2
It can be verified that, if S , ,, =0 this model converges to the transient

interporous transference and the solution given in Appendix D.

b. Pseudosteady-state equivalence: Severe interporous skin
Similar to Cinco et al. (1985), pseudosteady-state is achieved when a highly damaged

interface between matrix and fracture network exists. Therefore, transference function

reduces to:
A
f(s)m 0T V.90
Sma— fbD H DS

thus, eq. 1V.28 becomes:

2 AfDnmaD
1 K% 0+2\ Sy woHo
Puo(8)= , V.91
S AfDnmaD K 2 AfDnmaD
Sma—fbDHD % 9+2 Sma—fbDHD

for small arguments the Bessel function in the denominator is approximated as:
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A D
K o 2 fDnmaD ~ l 0 + 2 F[ﬁj , |V92
250+ 2\ SmanoHo ) 2| [Aotiy | (0+2

S H

ma—fbD " ' D

hence, inverting to real space:

D (t )_ 2 K 2 AfDnmaD
D\'D/— 1—
" b 1 :J:bz Tf; 0+2 Sma—fbDHD ! V.93
Zn ([ Dy AtpMmap
(8+2)9+2F
0+2 Sma—fbDHD

It can be observed that expression 1V.93 corresponds to an independent of time

value. Cinco-Ley et al. (1985) found a relationship between the interporous skin and
other parameter of the transient interporous transference model with the pseudosteady-
state’s matrix-fracture interaction parameter. Extending such concept to the present

work, it was found the following expression:

A
2= D TmaD . 1V.94
Sma— fbD H D

A simplified expression of eq. V.93, when D, =6 +2 is given by:

A
Pup (tD ) = 2 Ko 2 10/7neo , V.95
0+2 0+2\S,. wmHo

or, in terms of pseudosteady-state models’ parameters:

2 2
ty )= K A, V.96
Prolte)= 525 K 5257

prior equation can be approximated as follows:
2 1
t,)=——|IN(@+2)+=In(1)-y|. Iv.97
wa(D) 0+2|: ( ) 2 ( ) }/:‘

On the other hand, if Dy, # 60 + 2, then:

1-p
2 AfDnmaD 1 Sma— fbD H D 0+ 1_ ﬁ

Kis ~=|[0+2] [P 2 b £ | V.98
0+2 9+2 Sma—fbDHD 2 AfDnmaD 9+2

and eq. 1V.93 is reduced to:

0+42-2Dy, _

O+2) o2 r(lﬁJ .

0 (t ): 0+2) SpamwoHp | 7
e r Dy, AoMmap

0+2

In terms of pseudosteady-state models’ parameters:

V.99
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6+2-2Dy, _
(0+2) 0+2 F(l ﬁ} Dy
Do (tp) = 0+2) joa IV.100
wD \"D * *
r[ Dy, J

0+2

1V.4. Approximate solutions at late times: Single System Behavior

At late times the double porosity system acts as a single one. Therefore, the transference

function is approximated as:

f(s)=1, IV.101
and eq. V.1 is reduced to:
azpfbD(rD’tD) Jij apfbD(rD’tD)_ 0 apfbD(rD’tD) V102
2 o =T ' .
or; £ or, oty

For this case, an analogous procedure made for the early times case can be performed.

Thus, the solution for the late times case is given by:

(roto) = I (TR - IV.103

pfbD D'*D/) (9+2)1_, be 9+2 ’(9+2)ztD . .
0+2
Evaluating at wellbore:
1 Dy, 1

t,)=— -1, . IV.104

Puolto) ©+2r D, (9+2 (0+2)2tDJ
0+2

Besides, if D, =6+2, eq. IV.104 is approximated by the following expression:

pwo(tD)=ﬁ[ln(tp)+2ln(0+2)—y]- IV.105

0+2
It can be verified that, if 0 =0, eq. 1V.105 converges to the solution presented by
Cinco-Ley et al. (1982).
On the other hand, for D, # 6 + 2 the approximation is given by:

1 (@+2)""
t )= tv. IV.106
wa( D) _V(0+2)+VF[ be j D

0+2
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Chapter V
Validation and Application

In Chapter 1V a general solution in Laplace space for the model developed in this thesis

was developed. Such solution evaluated at wellbore is given by:

2
K 2 [sf(s)
ézi(mz J

s [f(s)K o, (eizﬂ/sfis}j
0+2

For computer-aided analysis, eq. V.1 is numerically inverted to real space (Stehfest,

V.1

Puo (5)

1970) in order to analyze transient pressure data that shows fractal behavior.
Fig. V.1. shows the dimensionless pressure and the dimensionless pressure

derivative function assuming free interaction between porous media, i.e., S, 4p =0
for different values of & and Dy, . Under these circumstances, it can be observed that,
for an idealized radial flow and fully connected system, ie., D, =2 and 6=0,

respectively, this model converges to the model proposed by Cinco-Ley et al. (1982).

s D) B=0.1 , Dfb=1.7 : “pwD 8=0.05 , Dfb=1.85
s nwD Cinco et al., (1982) s dpwD/dintD 8=0.1, Dfb=1.7
s ow D/ dintD B=0.05 , Dfb=1.85 dpwD/dintD Cinco et al., (1982)

100 £ 1000

. w=0.001 B——
| Nme/Ho=0.0001 1
10 / i e 100

pwD
=
5,
ah
[
o
dpwo/dintp

0‘1 : ﬁ=l:LS_//—’—-: 1

0.01 - T T T T T T T 0.1
1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
to

Fig. V.1. Pressure and pressure derivate function behavior for some values of Dy, , and 6 without

interporous skin and its convergence to the model proposed by Cinco-Ley et al., (1982).

In the available literature related to transient pressure analysis of fractal reservoir it

has been stated that for the values Dy, =2 and 0 =0 the models converges to the well-

known radial flow behavior. However, such behavior can be observed whenever the
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condition p, =6 +2 be satisfied. Fig. V.2. shows a semilog plot of the dimensionless

pressure behavior as a function of the dimensionless time for combinations that satisfy

the p, = ¢ +2 condition. Hence, it can be observed that the dimensionless pressure for a

idealized double porosity radial system perfectly connected (blue solid line) shows the
same behavior of a double porosity spherical system poorly connected (green solid
line).

——Dfb=2 6=0 —Dfb=2.58=0.5 —Dfb=3 8=1

14

12

10 1

pwh

w=0.01
—— r]nlanHD:J.E'].D

0 - T T T T T T T T T |
1.e+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 1.E+12
to

Fig. V.2. Semilog plot of the pressure behavior for some values of 6
that satisfy the condition of p, =g +2.
Besides, dotted lines in Fig. V.2. shows the convergence of the approximated

solutions for early times:

Puolto)= 75y Inlts) +21n(0 +2)~Info) -], V.2

and for late times:

! )[In(tD)+2In(0+2)—y], V.3

Puwp (tD): (7

0+2

to the general solution for the shown cases.
Fig. V.3. shows the dimensionless pressure and the dimensionless pressure

derivative function behavior of the proposed model when p_ -2, for different

values of interporous skin and neglecting phenomena around wellbore. It can be
observed that the higher the interporous skin the deeper the “valley” shape in the
dimensionless pressure derivative function, which corresponds to the interaction

between porous media.
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Fig. V.3. Impact of interporous skin in pressure and pressure derivative function, when Dy, = 6 +2.

Fig. V.4. shows the log-log plot of the dimensionless pressure and dimensionless
pressure derivative behavior of the proposed model for different values of interporous

skin, such the condition D, =6 + 2 is fulfilled. For this case § = 0.2 was used and the

slope of the dimensionless pressure derivative function is equal to zero during the early
and late times, so “apparent radial flow” behavior is observed. In addition, during
intermediate times, the higher the interporous skin, the deeper the “valley” shape in the

dimensionless pressure derivative function.

=== 5int=0.001 pwD == Sint=0.001 dpwD/dIntD
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e
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Fig. V.4. Impact of interporous skin in pressure and pressure derivative function, for Dy, =6 + 2.
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It was also mentioned that in order to include phenomena around wellbore to the
proposed model, such as wellbore storage and skin around wellbore, eq. 1V.29 should
be used. Fig. V.5. and Fig. V.6. show the impact of these phenomena on the cases
shown previously in Fig. V.3. and Fig. V.4., respectively.

s Sint=0.001 pwD s=int=0.001 dpwD/dintD
1000 s Sint=0.1 pwD m——tint=0.1 dpwD/dintD
=——=Sint=10 pwD =====5int=10 dpwD/dIntD
100 w=0.001 nmc/Ho=0.0001
” Dm=1.7 6=0.1
E Cswelpexp(DmSwel)= 1
=
o
i D
-
a
d
1
1.e-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 L1.E+07 1.E+08
to
Fig. VV.5. Behavior of pressure and pressure derivative function,
when Dy, # 6 + 2, considering phenomena around wellbore.
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3 0.1
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8=0.2
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1.e-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08
to

Fig. V.6. Behavior of pressure and pressure derivative function,

when Dy, =6+2, considering phenomena around wellbore.
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Fig. V.7. shows the convergence of the approximate solutions at early, intermediate
and late times, eq. IV.69, eq. V.84 and eq. 1V.105, respectively to the general solution,
assuming no interporous skin. This semilog plot shows the typical behavior of a double
porosity radial system, i.e., straight lines at early and late times and another straight line
during intermediate times. However, the input values show that a flow geometry that

tends to be spherical (D, = 2.5), with non-well connected flowing traces (6 = 0.5) is

equivalent to a radial flow, well-connected behavior. This type of behavior has been

named apparent radial flow.

" General Solution
12 - === Early times Solution
= Intermediate times Solution
10 Late times Solution
o 8
a
B w=0.01
4 ﬂu.-m:_a"HFlE-lﬂ
8=0.5
2 Di=2.5
0 . i

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 1.E+12
to

Fig. V.7. Convergence from the short, intermediate and long times solutions to the general solution,

when D, =6+ 2, with no interporous skin.

Analogously, Fig. V.8. shows the convergence of the approximate solutions at early,
intermediate and late times, eq. V.75, eq. IV.89 and eq. 1V.106, respectively to the

general solution, assuming no interporous skin, when p_ =¢+2. For this case, all

approximated solutions converge to the log-log straight line portions, corresponding to
the fracture expansion, interaction between media and single system behavior.

Fig. V.8. exhibits the case shown in Fig. V.6 but this time with a relative low
interporous skin value. Except from the beginning of the approximated solution during
intermediate times, it shows the same trend of the straight line portion of the general
solution, and therefore this approximation might be useful to characterize the

interporous skin and the matrix, if the non-linear regression is possible to be performed.
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Fig. V.8. Convergence from the short, intermediate and long times solutions to the general solution,

when Dy, # 6 + 2, with no interporous skin.
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. General Solution
10 = === Early times Solution

= == - Intermediate times Solution
= = = Late times Solution

8
26
w=0.01
4 ﬂnmn;‘an=lE-10
68=0.5
Dfb=2.5
2 Sma-op=0.1
1.E+01 1.E+02 1.F+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 1.E+12

to
Fig. V.9. Convergence from the short, intermediate and long times solutions to the general solution,

when D, =6+2, with low interporous skin.

Fig. V.10. shows the case shown in Fig. V.8 with a relative low interporous skin
value. For this case the convergence of the approximated solution during intermediate
times to the general solution is observed.
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Fig. V.10. Convergence from the short, intermediate and long times solutions to the general solution,

when Dy, # 6+ 2, with low interporous skin.

Fig. V.11. and Fig. V.12. show the convergence of the approximated solutions for
severe interporous skin, i.e., pseudosteady state behavior to the general solution, for
D, =6+2 and D, =0+2, respectively. The intermediate times behavior shows a flat
slope and according to the equivalence given by eq. IV.94, the matrix-fracture

interaction parameter, for both cases is A =2x10™"" .

15 = General Solution
== == Early times Solution

e =~ =~ Intermediate times Solution
== =~ Late times Solution
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5L ) sl anha oo
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8 | T‘]n.aann=1E-1U
| 8=0.5
Dm=2.5
b Sma-bp=10
4
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Fig. V.11. Convergence from the short, intermediate and long times solutions to the general solution,

when Dy, =6+2, with severe interporous skin (pseudosteady-state).
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Fig. V.12. Convergence from the short, intermediate and long times solutions to the general solution,

when Dy, # 0+ 2, with severe interporous skin (pseudosteady-state).

Example of Application
A drawdown test was performed in Well A. The behavior of pressure and pressure
derivative function are shown in Fig. V.13. Reservoir and well data are given in Table

V.1

Table V.1. Reservoir and well data for the example.

Parameter Quantity
q [bpd] 2,000

B, [bbl@c.y/ bbl@c.s] 1.6

1, [cp] 6

ry [ft] 05

¢ [fraction] 0.01

Pressure derivative function in Fig. V.13 does not show the fractal fracture
expansion, i.e., behavior at early times. Then, analyzing late time response (see Fig.
V.14) and comparing such behavior with eq. IV. 106, it can be conclude that,
v~ 0.8362, hence, following relation between fractal parameters was deduced:

D,, =0.836260 +1.6724. Then, the methodology described by Flamenco et al. (2003)
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was applied and resulting  parameters are: 6. =0, 6, ~1.588,

((gc ) Jav, ks ) ~0.000127 and ((ge, )™ /aV, kY, ) ~0.451.
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Fig. V.13. Pressure and pressure derivative function behavior for synthetic example.

Intermediate times can be analyzed plotting t“2Ap(t) vs +/t , and comparing it with
the straight line given by eq. 1V.89. Fig. IV.14 shows the t"?Ap(t) vs -/t plot for this

example.
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500 A a

400

1 Aplt)
L3
[}
[}

200 - .

100 o

Fig. V.14. Log-log plot of the late time pressure behavior for synthetic example.
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Fig. V.15. shows the adjusting t“?Ap(t) vs -/t straight-line plot for this example.

Comparing straight line equation that fits the data with the eq. 1V.89, it can be
concluded that the transference between porous media is not free, i.e., exists an
interporous skin between matrix and fractures. On the other hand, since intermediate
times in Fig. V.13 does not show a flat behavior, it can be concluded that the

interporous transference is occurring under transient regime.
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'E_ 24 log Ap = 0.1638log At + 2.0605
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Fig. V.15. Specialized plot for intermediate times of the pressure behavior for synthetic example.
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Chapter VI

Conclusions

1. A fractal flow model that describes transient interporous behavior in double
porosity systems was developed. With this model it is possible to consider
spheres or slabs as matrix blocks.

2. A general solution in Laplace space that describes the complete transient
response of the fractal reservoirs, i.e. total expansion in fracture network,
interaction between porous media and single system behavior, was developed.

3. Approximated analytical solutions in real space to describe pressure behavior
during early, intermediate and late times were derived.

4. Solutions during intermediate times are used to characterize parameters useful
for reservoir engineering studies; such as matrix block, fractal fracture network
area per unit of bulk volume and interporous skin.

5. Main advantage of using fractal models is that these are the best suited to
represent randomness in the fracture network distribution within the reservoir.

6. Advantages of using transient interporous transference models with interporous

skin were discussed.
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Appendix A

Generalized Radial Flow Model

A.l. Flow model development

Incoming oil mass into an object is given by:

m,, = p,VAAL, Al
out coming oil mass from the same object is:

My = PVAAL + Ap, VA)AL, A2
then, cumulative oil mass into the object is:

My = Mgy — M, = A(p, VA)AL . A3

On the other hand, mass of oil at a time t, is given by:

M, = S, 0o pui » A4

at atime t,:

M, =S,0eWpuk + A(Sopo¢)\/bulk’ A5

and, cumulative oil mass is given by:

Moy =M, =My = A(Sy 000 Mo - A6
Equating eq. A.3 and A.6 results:

A, VA)AL = A(S, 0,6 Mo - AT

According to using definitions given in eq. 1.4 and eq. 1.6, and after mathematical

manipulation eq. A.7 results:

1 alr*p,) _a(S,p00)

: A8
re?*  or ot
Applying derivatives in both sides of eq. A.8:
1 d,1 8(V) d—2 | .d-1 5(/0 ) 5((15) 8(3 P )

ree ——+p,v|d, 1" +rev—— =S + — A9

rdE‘{ Po or Po [ ) ] oo ot ¢ ot
Darcy’s law states:
g konlrt) A.10
u or

Substituting Darcy’s law into eq. A.9 it results:
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or

1 kp, rdela[ap(r’t)J+rdez[d _1]6p(r,t)+rde1{ap(r,t)}6(po) _
ré? u or ) or po L or or
All

o120, L s

¢ ot S,p, ot
Using chain rule derivative of oil density regarding the radius can be written as:

op.) _ ap, p(r.t) AL
o op(rit) or '

Analogously with the porosity:
o _ o9 op(r.t)

, Al3

ot op(r,t) ot

And:

0(Sop,) _ 0(Sops) 0P Ala
ot p ot '

Substituting egs. from A.12 to A.14 and the definitions of compressibility of oil and
compressibility of the formations, into eq. A.11 it results

1 k{rdela(ap(r’t)J crocefo, -y, rc(ap(”)” .

reT u or\_ or or

: A.15
ap(r,t)
=S ¢|c, +C, | —F
o¢[ f + 0] 6t
According to the definition of total compressibility of the formation for a single fluid

(oil), eqg. A.15, the diffusivity equation of a Generalized Radial Model results:

o*plr.t), [0, 1] ap<r,t)+c0[ap<r,t)j2 _ s op(rt) Al6

+
or? r or or k ot
Neglecting the quadratic pressure gradient term the following model is given:

62p(r,t)+[de—1] op(r,t) ey op(r,t)

= . Al7
or? r or k ot
Compact form of previous equation is:
d171 a(rdel ap(l’,t)) _ ¢1Llcl'f ap(ryt) ] A18
re—or or k ot

A.2 Transformation to dimensionless variables for well test analysis

Following dimensionless variables has been state. Dimensionless radius:
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r, =—, A.19

dimensionless time:
_k

- puc, r\/\?
dimensionless pressure:

pD(rD’tD):w' A2l

_de
qB, ur,,”

Using chain rule, first derivative of pressure regarding the distance can be written as

t, t, A.20

follows:

op(r,t) __ap(r.t) dry apo(ro.to)

= A.22
or pp(rp.ty) dr — ary
The first derivative of pressure regarding dimensionless pressure is:
2-d,
ap(l‘,'[) __ qB, 41, . A23
oPp (rD ’tD) Ak
On the other hand, derivative of dimensionless radius regarding radius is:
i _ 1 A24
dar r,
hence:
ap(r’t) z_qBourwl_dE apD(rD’tD). A.25
or Ak or,
Taking second derivative regarding radius of eq. A.25:
2 —de A2
a p(i’t):_qBoﬂrw a pD(rZD’tD). A26
or Ak ors
Analogously, first derivative of pressure regarding time can ban be expressed, which
is given by:
ap(r’t) - _ qBo/lrwz_de k apD (rD ’tD ) . A27
ot Ak gucr? ot
Substituting eq. A.19, A.25, A.26 and A.27 into eq. A.17 results:
azpD(rD'tD)+de _1apD(rD'tD)=apD(rD'tD). A28

org r, or, ot,
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It can be verified that, when d, =1 GRF, eq. A.28, it takes the form of the linear flow
model; when d, =2 it converges to the radial flow model and to the spherical flow

model whend, =3.

A.3. General solution in Laplace space assuming constant rate

In order to have a well test analysis model for the Generalized Radial Flow Model, eq.

A.28, the following conditions have been set:

initial condition: Po(rp,tp =0)=0, A29

inner Boundary: M =-1, A.30
o,

outer boudary: lim (py (ry,tp))=0. A3l

Applying Laplace transform to eq. A.28 and according to initial condition, it results:

2
d pD(rDIS)+de_1dpD(rD'tD)_SpD(rD,S):0_ A.32

2
drg o dr,

The following transform function has been set:

Polrs,9)=Go2) A33
and the transformation variables:

z=r,+/s. A.34
Hence

;'é =45, A.35

Moreover, parameter v is established:

v=1- de : A.36
2
2-2v=d,. A.37
Applying the variable transformations, the following expression is obtained:
- _
229 Co\2) SDZ(Z)+[1—2v]z —aG;(Z)—ZZC_SD(z)zo. A.38
z z

Moreover, to equalize the coefficient of the first derivative to one the following
expression is proposed:
G,(z)=12"B,(2). A.39

then, eg. 31 in terms of eq. 39 is:
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2
22 ¢ IZLZ’(Z) +2 dBdDZ(Z)—[v2 +22[B, (2)=0.

Its solution is given by:
Bo(z)=c,l,(z)+¢c,K,(2),

Or, in terms of eq. A.39:
Go(z)=c,2"1,(2)+c,2K,(2),

therefore previous eq. can be expressed in terms of p,(r,,s) and rD\/E :

ED (rD , S) = C1(rD \/g)" Iv(rD \/§)+ C; (rD \/E)V KV (rD \/E)

Applying outer boundary condition, a bounded solution is obtained:

ED (rD ) S) =G, (rD \/E)V Kv (rD \/g)

A.40

A4l

A42

A43

Ad4

and, applying the inner boundary condition, a particular solution is obtained:

_ rgKv(rDﬁ)
pD(rD’S) S%Kv_l(\/g).
According to:
v=1—d—e,
2
then
2-d,
ry 2 Kﬂ(rDﬁ)
2
pD(rD’S)_ S%Kde (\/g)

A.4. Solution in real space using similarity transform

Establishing the following transformation function:

2
Z3D = (de)z_I pD(rD’tD)’

or:
2

Po (rD ’tD): (de)E_ZZZD .

Besides:

_ d
T3 =—Ip,

d

e

and:

A.45

A.46

A47

A48

A.49

A50
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22

K, =d, tg. A51
Applying a analogous procedure as the one showed in Chapter 1V, the following

approximation in real space was obtained:

r2-d d, r?
pD(rD’tD)z_iD d r ?—1,ﬁ . A.52
()2

*k*k
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Appendix B
Pressure Transient Analysis of Fractal Reservoirs assuming Pseudo-Steady

State Interporosity Transfer

In this appendix, the development of the Fractal Reservoir Model proposed by Chang et
al., (1990) is demonstrated. For this demonstration is very important to keep in mind the

definition of the Geometry Factor given by eq. 1.20.

B.1. Model development

Incoming oil mass into an object is given by:

Miy = Pl AL, B.1
out coming oil mass from the same object is:

Moy = PoboAt +A(p, 0, AL, B.2
oil mass contribution from the Euclidean matrix:

Mpa = PodmaAl, B.3
then, cumulative oil mass into the object is:

Meym = Moye =My + poqmaAt = A(poqo )At + poqmaAt : B.4

On the other hand, mass of oil at a time t, is given by:

M, = S,000 %V ouk s B.5
atatime t,:
My, = S0P Vour + A(Sopo¢fb )‘/bulk’ B.6
and, cumulative oil mass is given by:
My =My, =M, = A(Sopoqﬁfb )\/bu,k. B.7

Equating eq. B.4 and B.7 results:
A(pyGy JAL + oy At = A(Sopo¢fb )‘/bulk : B8
According to the definition of bulk volume, eg. B.8 becomes:
A(Poo )AL+ PyTaAl = A(Sypufhp Jerg, T 0% % AT ] B.9
arraying previous equation:

1 AP, P _ ASopeds)

ag r 7 Ar TN | AL 510

Matrix flow rate per unit of bulk is defined:

Alex R. Valdés-Pérez AppendixB ¢ 67



%m=£hi- B.11
Vbulk

Taking the limits Ar and At to zero, and arraying eg. B.10 becomes:

a(Poqo) pde-1p3-de pde-p3-de a(sopo¢fb).

—To%es 4 = B.12
or ade Polma ade ot
Inserting Darcy’s equation in fractal form into previous equation, it results:
2 ) aVufkfbr'B apfb +a, rde_lbs_depoq;a = a, rde1p3-de a(sopo¢fb). B.13
or Pt OF ¢ ¢ ot
Besides, matrix flow rate due to expansion effects is given by:
P
Ona = ¢mactmavbulk ? ! B.14
hence, matrix flow rate per unit of bulk is:
q;a = qma =¢mactma apma ' Bls
Vbulk at
Based on matrix flow rate per unit of bulk, eq. B.13 is rewritten as:
av, k,r’ o olS
a ] ut Ko™ OP gy ta, rde_lbs_depo¢mactma OPra —a, pde1p-de ( opo¢fb), B.16
or Pt OF ¢ ot ¢ ot
applying the derivatives in eq. B.16:
VK, oo’ o’ psz + Bpor’ Py Lrf Py, Op, +
DL or ror or or
B.17
13 op 13- a(S P ) a(¢fb)
" rde 1b3 d, C ma _ rde lb3 de oo} 4 §
ade po¢ma tma at ade ¢fb at opo at
According to chain rule:
0
apo _ apo P , B.18
or  0Opg oOr
0
aSopo _ aSopo P , B.19
ot op, Ot
0 O¢y, O
Do _ $w Py , B.20
ot opg, ot

substituting egs. B.18, B.19 and B.20 into B.17, and using the definitions of

compressibility of oil and fractured formation, B.17 is rewritten as follows:
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Vi Kpwp, (b 3Py N PrP opg, +rfe [apfbjz]i_

Pl or’ r or or
, B.21
N N R e
assuming single phase flow, total compressibility is defined as:
Citn =Co T Cty» B.22

and neglecting quadratic gradient pressure and according to definition of fracture
network porosity, prior equation becomes:

0 [ aVy Kl Py,
or\  ¢pu Or

_ 0
j+ g 170, Coa ag:‘a —ar’™ ™V, c,, gtfb . B.23

B.2. Transformation to dimensionless variables

Following dimensionless variables has been state. Dimensionless radius:

(=t B.24

dimensionless time:

k
t, = b t, B.25

3-d, .de—Dyy
¢ /JC r2+9 1+ adeb r-w ¢mact
foH Mo fw

ma

aVuf thb

dimensionless pressure in the fracture network:

_ aVufkfb[Pi - pfb(r’t)]

P oo (I ’tD) - , B.26
Q/lrwl ﬁ¢fb
similarly, for pressure within the matrix:
aVv  k . r,t
pmaD(rD,tD)= uf fb[pl pma( )] . 827

1—
qur,, ﬂ¢fb
Using chain rule, first derivative of pressure in the fracture network regarding the

distance can be written as follows:

apfb(r’t)_ opp(r.t) %apfbD(rD’tD) B.28

ar - pfbD(rD’tD) dr arD

Based on dimensionless pressure definition, pressure as a function of radius and time

is expressed as:
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Q#rwl_ﬂ(b b

av_ k., P oo (rD’tD)’ B.29

pfb(r’t): pi —

which first derivative regarding dimensionless pressure in fracture network is:

op(rit) _ qur, " gy, B.30

OP o0 (rD’tD)_ av, kg,

Based on the dimensionless radius definition, derivative of dimensionless radius

regarding radius is:

ap _ 1 B.31
dar r,
then, eq. B.28 becomes:
op, (r,t r b OPup (Mot
pfb( )Z_Qﬂw Do pfbD(D D). B.32
or av,ky, ory
Taking second derivative regarding radius of eq. B.32:
azpfb(r’t)__q/lrw_ﬁ_l¢fb 0" Prup (o to) B.33
or? av, k,, or? ' '
Moreover, first derivative of pressure regarding time can ban be expressed:
apfb(r’t): 0P (r.t) diapfbD(rD’tD) B34
at pfbD (rD’tD) dt atD
substituting:
apfb(r’t) _ qrwl'ﬂ apfbD(rD ’tD)
ot - a b3—derde—be¢ C ot ' B.35
D
aVqutfbrﬁw 1+ de w ma ~tma
aVuf thb
Analogously, for the derivative of pressure within matrix regarding to time:
1-p
apmgf:r’t) — _ qrwbs_d D apmalgSrD ’tD) . 836
a r, "¢..C
aVuf thbrviw 14 d, w ¢ma tma D
aVuf thb
Substituting eq. B.24, B.32, B.33, B.35 and B.36 into eq. B.28 results:
Dl =1 ﬂ rDﬂ M = rgE_Dﬂ’ I:]__a)ps]apmaD(rD ’tD)+a)ps apfbD(rD’tD) , B.37
ry® " or ory oty ot,
where:

o, =storage coefficient is defined as follows:
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aVuf thb B ) 38

., = .
ps 3-d, . de—Dpy
aVuf thb + ade b ) rw ¢mactma

On the other hand, flow rate from matrix to fracture network per unit bulk volume is

given by the expression:

v
I A ALY B.39
Vbulk Vbulk
Area of matrix exposed to flow can be defined as:
alD, —1| VAr
= Pw 1], re, B.40
ma. 2
r
velocity of oil coming out from matrix can be expressed using Darcy’s law:
k ~ Fma
V,, = M{bep} _ B.41
H | me

Based on eq. B.39, B.40 and the definition of bulk volume, flow rate from matrix to
fracture network per unit bulk volume can be expressed as follows:

w1 K " Mma
G =7yt Ko | P07 Pne B.42
H Ima—f

where:

l.._¢ =average distance between the matrix and the fractal fracture network;

7, is a constant defined by:

Tl = adebs_de 1 B43
and,
D',=Dy —d,. B.44

Besides, distance between the matrix and the fracture network can be represented as:

oo ¢ =70 ", B.45
where:

z, =alp, -1] [D,, - 2] arv,, B.46
and:

D", =Dy —3. B.47

Hence, eq. B.42 is rewritten as follows:
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Uma :%[pfb - pma]’
u

where shape factor o, is given by:

,r D' —D"pp-1

7,
Equating B.11 and B.48 results:
OPra _ 0K

A gt PPl

Expressing prior eqg. in dimensionless variables:

0 r,,t A
pmaggDD): @ [pfbD(rD’tD)_ pmaD(rD’tD)]'
D 'o

An alternative way to present prior equation is:
apmaD(rD’tD) — A’

® [pfbD(rD ’tD )_ Prman (rD ’tD )]’

oty [1 — O JrD
where:
2+0-® 3-d, .de Dy
) Tl Ka®C oy b7, 1)
)L — — 1'w ma¢fb tfb 1+ de w m
1- a)ps 72¢mactmakfb aVuf Cif
and:

®=D",+1-D',,.

B.48

B.49

B.50

B.51

B.52

B.53

B.54

*k*k
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Appendix C
Pressure Transient Analysis of Fractal Reservoirs with Transient

Interporous Transference (Olarewaju, 1996)

C.1. Model development

The procedure for the development of this model is the same as describe in for Chang et
al.’s model (1990) in Appendix B, until eq. B.13, which is given by:

2 ) aVufkfbr'B OPg ta, rde_lbs_depoq;a —a, pde 13- a(sopo¢fb). c1
or Pt OF ¢ ¢ ot
After applying the derivatives in eq. C.1, it results:
aVy Ky, porﬂ o° pfbgr’t)+poﬁrﬂ—l apfb(r’t)+rﬂ apfb(r’t)% "
Pt or or or or
C.2
13— * 13- 5(5 P, ) a(¢fb)
+ rde lb3 de — rde lb3 de oMo +S
ade poqma ade ¢fb ot 0Po ot
According to chain rule:
0
op, _ P, P , Cc3
or  opg oOr
aSopo _ aSopo apfb , CA4
ot op, ot
0
Do :a¢fb P , C5
ot oOp, ot

substituting, eq. C.3, C.4, C.5 and, using the definitions of oil and formation

compressibility, eq. C.2 becomes:

2
aVy Ky, (b azpfbgr’t)+ﬁrﬂ—l apfb(r’t)+ ric, apfb(r’t) Fa, rplg =
Dt or or or :

C.6

apfb(r’t)
ot

Assuming single phase flow, and according to the total compressibility definition,

do-14.3-0,
=a, b ¢beo[Co + Cfb]

eg. C.6 is written as:
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Pl or? or or

apfb(r’t)
ot

Neglecting quadratic gradient pressure, prior equation becomes:

_ dy-1p3d
=aqyr- b”™ ¢ Cip

Dl . 0 rﬂ p(r.t) ~ KnaAp t apfb(r)(VApuma)surdT Ziapfb(r’t).
r-*"or or K, o dr Ny Ot
where:

X k L op (7
qma =—— Abe. pfb( )(VApuma)surdT !

u o dr

Ay, = exposed to flow area which is defined as:

L.

Ay = ;
fb hma
n s = hydraulic diffusivity coefficient is defined as:

_ K
P HCy,

Mo

and pressure gradient is given by:

4kmarv(\./?+z(¢ct )t (2n+1)”z[tD_r]

2
¢mactmak fb hma

M

3
VA ==
( puma )SLIT h e

ma n

I
UN

C.2. Dimensionless variables transformation

Following dimensionless variables are established. Dimensionless radius:

dimensionless position at the matrix:

2
2z

ma

ZD
Dimensionless time:

t. = Lt
i (¢Ct)1urv3+9

where:

(¢Ct )t = ¢betfb + ¢maCtma .

2
aV kg, [rﬂ azpfb(r’t)+ﬁrﬂ—l apfb(r’t)+rﬂco[apfb(r’t)j }-’-aderde_lbs_deq;a

C.7

C8

C9

C.10

cl1l

C.12

C.13

C.14

C.15

C.16
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Dimensionless pressure in the fracture network:

aVKe|Pplr,t)—p,
pfbD(rD’tD)z f fb[ ﬂi_(ﬂ ) ] ; C.17
qur, " by,

similarly, for pressure within the matrix:

aVy Ky, [pma(r’t)_ P ]
Q/lrwl_ﬂ¢fb

pmaD(rD’tD)z C.18

Using chain rule, first derivative of pressure in the fracture network regarding the

distance can be written as follows:
opp(r.t) _ opp(r.t) dry P o (o o)

= C.19
ar p fbD (rD ’tD ) dr arD
Applying the derivatives, C.19 becomes:
P (1t Py 0 t
pfb(r ) _ aur, Dio pfbD(rD D). C.20
or aV kg, or,
The second derivative regarding radius of eq. C.20 is given by:
azpfb(r’t) _ qur, "¢y, azpfbD(rD’tD) c.o1
or? av, kg or’
Analogously, first derivative of pressure regarding time is:
apfb(r’t) _ qur, "¢y, Ky apfbD(rD’tD) C.22
ot aV,ky | (4 )t pr oy
And,
1-p
apfb(r’T) _ | amty D1 apfbD(rD’tD). C.23
ot av, Kk, ot

Substituting C.13, C.20, C.21, C.22, C.23 in C.30 and arraying, the following

expression is obtained:

2 D
ors o or, K 0 ot

az pfbD (rD,tD)+ ﬁ apfbD(rD,tD) r , kmaAfbrW9+2 t apfbD (rD,tD)(vApuma)surdT —

—'D

9{¢fbctfb :| apfbD (rD ’tD)
(¢c,), oty

C.24

Considering strata as matrix blocks, eq. C.12, then:

Alex R. Valdés-Pérez Appendix C+ 75



A2n+)7?[tp—1]

0? pfbD(rD’ ) ﬁapfbD(rD’ ) T gfee]

org rD or, 3

J'apfbD 'n: o ie

0 n=1L

% OP oo (rD ; tD)

= rD

Ay
where interporosity flow coefficient is defined as:
0+2
P 12k,..1,, ;
hmakfb

dimensionless storativity ratio:

_ ¢fb thb

(ge.),

C.3. General solution in Laplace space assuming constant rate

dr =

, C.25

C.26

C.27

In order to have a well test analysis model for the Fractal Reservoir Model assuming

free interaction transference between matrix and fractures, the following conditions

have been set:

Initial condition for fracture network: Puo (5.t =0)=0,
0 1t
inner boundary: r/ M —
o,
outer boundary: lim (py (ry,t5))=0.

Applying Laplace transform to eq. C.57 and according to

becomes:

r2 dzpfbD(rD’S dpfbD(rD’S)

) .
D erg +[1_25]ro dr. —Shp ’ 2f( )pfbD( ):0_
where:

A 3s|l-w
f(s)=w+[1— 35l o] tanh[ [/l ]j
and:
5=1"F
2

Establishing the following transform function:
Po (rD , 5): Go (Z)’

and the transformation variable:

C.28

C.29

C.30

initial condition, it

C3l

C.32

C.33

C.34
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2./sf(s) 92
z= Iy ?
0+2

a transformation of variables takes places. Using definitions given by eq. C.34 and eq.

) C.35

C.35 the following expression is obtained:

. _
zZ&g(Zh[l—zv]z aGD(Z)—zZGD(z)=0, C.36
oz oz
where:
v=178 C.37
0+2
To equalize the coefficient of the first derivative to one the following expression is
proposed:
G,(z)="2 B, (2), C.38
74
where:
ﬂ
Sf S 0+2
= : C.39
4 [ 0+2 j
Applying the transformations given by eq. C.38 and C.39, eq. C.36 can be written as:
2
22 ¢ BD(Z)+deD(Z)—[v2+22]BD(z)=O. C.40
dz dz

Solution of eqg. 40 is given by:
By (2)=cl,(2)+¢,K,(2), c.41

or, in terms of eq. C.38:

\

GD(Z):lZ//[Cllv(z)+C2Kv(Z)]’ C.42

and, in terms of P, (r,,s) and ry+/s , the solution is:

% 2./sf (s 9—;2 2./sf (s 9—;2
pD(I‘D,S)=I‘D Cl'% WI‘D +C2K% WI‘D . C43
Applying outer boundary condition, it can be deduced that:
c,=0, C.44
hence bounded solution is:
1-8 6+2
== 2./sf(s) ==
r,,s)=c,r 2 K,_ r,2 |. C.45
Pt )=’ Ko, 500
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Applying the inner boundary condition it is concluded that:

c. = 1
2
2./sf(s
s¥2 [f(s)K
;’;[ 0+2 j

Then, particular solution is given by:

=8 2. Isf 9+2
rp? Ky, TS rp?
042 0+2
pD(rD’S): 2 Isf (s .
s¥2 [f(s)K
D”’[ 0+2 j

0+2

Hence, dimensionless pressure at wellbore is:

2
KH(MJSHS)J

6+2

s¥2 [f(s)K by (szJsﬂsjj
2ol 0+
0+2

Puo (5)

C.46

C.47

C.48

*k*k
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Appendix D
Pressure Transient Analysis of Fractal Reservoirs assuming Free

Interaction Interporosity Transfer

D.1. Model development

The development of this model follows the same steps as shown in Appendix B, unitl

eg. B.13, given by:

g \ Mapfb _,_aderde—lbs—depoq;a _ aderdd—lbs-de M D.1
or Ppu O ot
Applying the derivatives in eq. D.1:
aVy Ky, P B azpfb(r’t)+p ﬁrﬂ—l apfb(r’t)+rﬂ apfb(r’t)% +
TR or? ° or o or
D.2
fb ™ —ib * b —ib a Sopo a( )
#0107 07, = o, 1707 {m, (at Lis.p, -
According to chain rule:
0p, _ Op, P D3
o op, or '
aSopo _ aSopo apfb D.4
ot op, ot '
0y, _ 0P, Py D5
ot op, ot '

Substituting eq. D.3, eg. D.4 and eq. D.5 in eq. D.2 and using the definitions of oil and

formation compressibility, eq. D.2 becomes:

aVy Ky, v azpfb(r’t)+ﬁrﬂ_1 apfb(r’t)+ rﬂco[apfb(r,t)jz}+aDmrD”’_1b3_D”’ . _

T, or? or or Fne
op g, (r,t
=op, 1070709, S, [co + cfb] pﬂ:;[ )

D.6
Assuming single phase flow, and according to the total compressibility definition,

eg. D.6 is written as:
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aVy Ky, v o pfb(r’t)+ﬁrﬂ_1 apfb(r’t)+ rﬂco[apfb(r,t)jz}+aDmrD”’_1b3_D”’ .

Pl or? or or Oma =
4 A, (r,t)
D -1,.3-D fo\" 1
=qa rom b fb c., — "7
Dy, ¢fb tfb ot
D.7
Neglecting quadratic gradient pressure, prior equation becomes:
(b azpfbgr’t)+ﬁrﬁ-1 apfb(r’t)+ rDm—qu;a _ (Dot CinPrlt apfb(r’t). D.8
or or Kep Kep ot
Where:
k A, Lop.(r
Upe=——" P )(VApuma)surdr. D.9
w5 dr
If slab matrix blocks are assumed, area exposed to flow is defined as:
m =—44433447; D.10
.. +h;
or, if cube matrix blocks are assumed:
6h?
Ap=r—"+" D.11
(ho +h; )
Substituting eq. D.9 into D.8:
op,,(r,t k A, L0 op(r,t
Dl - g b Pu(rt) _ KnaPp J‘ pfb(T)(VApuma)surdT _ 1 Pl ), D.12
r-° " or or Ky, o dr g Ot
where hydraulic diffusivity coefficient is defined as:
k
Ny =—— . D.13
P LiCu
D.2. Transformation to dimensionless variables
Following dimensionless variables has been state. Dimensionless radius:
r
o ::}i:’ D.14
dimensionless time:
kfb
t,=—~—--t, D.15
v (ge )

where:
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(¢Ct )1 = @Cit + PraCima - D.16

Dimensionless pressure in the fracture network:

aVufkfb[pi - pfb(r’t)]

oitp)= : D.17
Pruo(foto) g
similarly, for pressure within the matrix:
av . k.|p. — r,t
pmaD(rD ,tD) — uf fb[pl pma( )] ) D18

1-p
HE, By,
Using chain rule, first derivative of pressure in the fracture network regarding the

distance can be written as follows:
P w(rt) _ P w(rt) dry, P o (1o to)

= — D.19
ar pfbD (rD’tD) dr arD
Applying the derivatives, eq. D.19 becomes:
O (r t 7 R
Py(r.t) __aur, B Pl D). D.20
or aVky, orp
Taking second derivative of eqg. D.20 regarding radius, it results:

0 pfb(r’t) _ aur, "y, 0° pfbD(rD’tD) D21
or? av, kg, or? ' '
Moreover, first derivative of pressure regarding time can ban be expressed:

apfb(r’t) _|_ aur, " oy, Ky P o (1 ’tD) D.22
ot aVyky, (¢Ct )t pry’ o,

and,

Py (r’T) _ qur, " b, 0P o (rD ’tD). D.23
ot aV K, ot

Substituting D.14, D.20, D.21, D.22, and D.23 in D.12, it becomes:

0? r,t OPap (oo 2 0P (I,
pfbD(zD D)+£ Puo (o ) r? ]J' pfbD D T) F(7,.0.Hyt, —7)d7 =

orS 1 or,
_ 0 apfbD(rD’tD)
= o——————=
oty
D.24

where, dimensionless storativity ratio, o is defined as:
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_ DCiy .

(ge),

dimenssionless matrix hidraulic diffusivity:

~ kpalgc),

77maLD - '
¢mactmak fb

block size ratio:

r2

— W .
2 1
hma

Hp

dimensionless fracture area, A :

_ AphyaVy r,

AfD V

ma

Fluid transfer function, assuming slabs:

4 ©
F(nmaD’HD’tD_T): ZmaDze
D n=l

or, if spheres as matrix blocks, fluid transfer function is:

4 o
F(nmaD’HD’tD_T)z Z'maDZe
D n=1

D.3. General solution in Laplace space assuming constant rate

"lmaD (2n+1)2”2[tD _T]

_4rlmaDnZ”Z[tD _7"]

D.25

D.26

D.27

D.28

D.29

D.30

In order to have a well test analysis model for the Fractal Reservoir Model assuming

free interaction transfer between matrix and fractures, the following conditions have

been set:

Initial condition for fracture network:

inner Boundary:

outer boundary:

Applying Laplace transform to eq. D.24 yields:

dzpfbD(rD’tD)+ﬁdpfbD(rD’tD)
dr? r, dr,

= nga)[SpfbD (rD , 5) ~ Pwo (rD ’O)]

where, for slab matrix blocks:

pfbD(rD’tD ZO)ZO’

(5 P oL to)

"m(po(ro’to))zo-

- ngAfD [1_ a)]lf(nmaD, Hop, S)SpfbD (rD ) 5) =

D.31

D.32

D.33

D.34
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F(nmaD,HD,S)a/nmaDtanh[l,/HDsJ, D.35
HDS 2 nmaD

And, for spheres as matrix blocks:

F (nap Hp ) = . "na | coth 1\/HDS —2\/77”‘aD : D.36
Hpys 2\ Nyap Hps

Applying initial condition in eq. D.34, and arraying:

ng dzpfbD(rD’S)+ﬁr dpfbD(rD’S)

ar? o g o (8)Pao(fo.9)=0. D37
where:
f(s)= AfD [1_a)]lf(77maD’ HD,S)+a). D.38
Parameter & is established:
5=1"F D.39
2
then:
d? , d ,
r2 £ Pen'lo.5) ErD °) +[1-26]r, o (o) sty £(5)Pp (rp,8)=0. D.40
dr] dr,

The following transform function has been set:

pD(rD’S):GD(Z)’ D.41
and the transformation variable:
2./sf(s) %2
= e . D.42
0+2

Using definitions given by eq. D.40 and eq. D.41 the following expression is obtained:

- _
22&'2(2)+[1—2v]zM—22GD(2)=0. D.43
0z 0z
where,
v=178 D.44
0+2
To equalize the coefficient of the first derivative to one the following expression is
proposed:
GD (Z):L Bo (Z)’ D.45
74
where:
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-5

(2 sf(s 0+2
L '

D.46

Applying the transformations given by eq. C.45 and C.46, eq. C.43 can be written as:

2
,2d [ZLZ’(Z)+degz(Z)‘[V2+22]BD(Z):O'

Its solution is given by:
BD(Z)ZClIV(Z)+C2KV(Z)’

or, in terms of eq. D.85:

\

GD (Z): lZ//[Cllv(Z)+ Csz(Z)]’

and, in terms of P, (r,,s) and r,+/s, solution is:

(ro ) s 2./sf(s) &2
Pollp,S :rDZ Clll—/} rD2 +C2K1—/3
9:2 0+2

6+2

Applying outer boundary condition, it can be deduced that:

c, =0,

And, bounded solution is:

1-8 0+2
== 2./sf(s) ==
pD(rD’S):CZrDZ Kl—ﬁ[ p? J

0+2

60+2

Applying the inner boundary condition it is concluded that:

Polloss)= 1
> WK;’;[ 0+2 j
at wellbore:
st )
Puole)=—— 2207

) s3’meDm(0i2 sf (s)j

6+2

D.47

D.48

D.49

D.50

D.51

D.52

D.53

D.54

D.55
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D.4. Approximate solutions at short times: Total Expansion in the Fracture Network

At short times, only the fracture network is acting:
f(s)= o, D.56
Therefore, eq. D.24 is reduced to:

azpfbD(rD’tD) ﬂapfbD(rD’tD) 0 apfbD(rD’tD)
+ — o O——.

2 =Tp D.57
orgs o org oty
Establishing the following transformation function:
_[o+2]
Zyp zw(be)z Do pfbD(rD’tD)’ D.58
or:
y [o+2]
pfbD(rD'tD)za) l(be)be 2Z4D- D.59
besides:
ry =t pPe D.60
[)ﬁ
and:
5 [0+2]
Kk, =Dy "ty D.61

The procedure to obtain this approximate solution is analogous to the one shown in

section 1V.4 of Chapter 4 in the main text. Therefore, the founded approximate solution

is given by:
0+2-D 0+2
I o [)fb or,
r,t,)=— D r -1, D . D.62
pfbD( D D) (0+2)r D, [0+2 (0"‘2)2'[0}
0+2

In order to have simplified solutions relatively easy to use, two cases must be

defined. The first case is given by the conditionD, =60+2. If that is the case and

evaluated in ry =1, eq. D.62 becomes:

Puolto)=—¢ : )F(O,( - } D.63

0+2 0+ 2ty

According to incomplete gamma function convergences, prior expression can be

expressed as:

wa(tD)=—( : )Ei[( 2 J D.64

0+2 0 +2)t,
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where:
E,(x) =integral exponential.
For small arguments of the integral exponential, eq. D.64 can be approximated as:

1

(9+2)[|n(to)+2|n(9+2)—|n(a>)—y], D.65

Pup (tD ) =

where:

y =Euler’s constant.

On the other hand, for Dy, # 6 + 2 the following approximation was used, based on

the incomplete gamma function definition:

a a+l

r@myuiw—ii+£+ﬂ, D.66

hence, incomplete gamma function for this problem is approximated as:
Dy D Dy
¥ l_T 2l1-—2 T_l Dy
F be _1 a)ng 2 :F be _1 _ 1 0+2 (0+2) { 9+2}a)9 2 t:;ﬁ D67
0+2 r

(6+2)t, 0+2 o+ Do 4
0+2

Substituting D.67 in eq. D.62 and evaluating in r, =1:

r[ fo —1}
2 2v-1  y-1
0+ (0+2)" 0™ . D.68

wa(tD)z - D |’
D D D
(9+2)F[ fb J { fb _1}1{ fb J
0+2 0+2 0+2

where:

_ Dy,
v=1- , D.69
0+2

Recurrence formula of gamma function can be written as:

L(x-1) _ (x—1)*. D.70

r(x)

Therefore, eq. D.68 is rewritten as:

1 (e+2) e

Puo (o) = —v(0+2)+ vl"[ Dy, j

ty. D.71

0+2
It can be verified that, if there is no anomaly in conductivity in fractal object, i.e., 6 =0
and a homogeneous reservoir is assumed, i.e., @ =1, prior equations converges to the

generalized radial flow model solution, given in Appendix A.
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D.5. Approximate solutions at intermediate times: Interaction between porous media

For intermediate times, the interaction between porous media takes place. For this

period, transference function can be approximated as:

f(s)xApll-a] |Tme D.72
Hps

Therefore, eq. D.55 is rewritten as:

2 r]ma S
Kl—ﬁ \/Afo[l_w] e
1 72| 042 I Ho ). D.73
1
2 2 nmaDS
2| A gl [Mmeo KDm(\/AfD[l—w] ]
[ olt-o] H,s s\ 012 Hp

For small arguments, Bessel function in the denominator is approximated as:

Do __DPw_
0+2 2[0+2] D
K%[ Lo pebe "ﬁwsl”(m)gz[&o[l-w] et | N e )

Pup (S) =

0+2 0+2 D 2 b 0+2
D.74
Substituting eq. D.74 ineq. D.73:
Dp 1
2[6+2] 2
2(AfD -] ’7|_f|"aD J
2 man S
Puo (8)= =L Klﬁ{e\/Ath_w] ’H] D.75
2__b_ +2 Hp
4 4[0+2] 0+2

D D
(6 +2)02 1“[9“’}5

+2

For the Dy, =60 +2 case, the Bessel function in the numerator is approximated as:

2 Nap S 1 Nap S
K A 1 w ~ I A 1 w y D.76
0[0 2\/ fD[ ] IID } [n[e 2\/ fD[ ] IID 4

thus, eq. D.75 can be expressed as:

In(AfD[l—w] ’ED]
1 o ), In@+2) 7| D.77

_ 2 “1lin(s) 1
0+2| 4 s 2 S S S

Puo (5)

Inverting to Real Space:

Pup (tD) : {

1 1 mal
-3la In(t,, )_E In(AfD - o] ’LD} In(6 + 2)—0.4329}. D.78

4 D
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On the other hand, if Dy #6+2, then the Bessel function in the denominator is

approximated as:

1
2 Sma—fbD\/HDS E 77 DS
K 1 Apll- ma
p 9+2[ + m } \/ oll-o] H,
_1B

0+2
= 2[6+2]
- (9+ 2)9+2 [AfD [1—(0] nmaDSJ F(l_ﬁJ
2 \ Hp 0+2

substituting eq. D.79 in eq. D.75:

Dy -[0+2]-[1-8]

1-B-Dy, _ a 2[6+2]
(O0+2) o2 T 1-5 Apll-o] Mnao
0+2 Hp

Pup (S) = D 5 Dy 1-8
r b 574[9+2]+4[9+2]
0+2

since:
Dy =p+60+1,

then
B-1

2510 D 2045-8
(9 + 2) or2 T| — 1 |g 40+2]
0+2

Pup (S) =

Inverting to real space:

Dyp—[0+2]

0+2
F(l_ﬂj (AfD[l_w] ; TJ 1 Dg
0+2 D t2 2lo+2].
D

Puo (tD )= 2Dy, —[6+2]
F( D, )T(g Dy, ) (9+2) 0+2

0+2) 2 20+2]

D.6. Approximate solutions at large times: Single System Behavior

At short times, only the fracture network is acting:
f(s)~1,
and eq. D.24 is reduced to:

82pfbD(rD’tD)+£apfbD(rD’tD): [0 apfbD(rD’tD)
or? r, o, P oty

D.79

D.80

D.81

D.82

D.83

D.84

D.85

Applying an analogous procedure as shown in section D.4, the following solution was

developed:
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0+2-Dygy

D 6+2
pfbD(rD’tD): B rD j r( : ' rD J . D86

D, 6+2 " (0+2),

0+ 2)r(

0+2

In order to have simplified solutions relatively easy to use, two cases must be

defined. The first case is given by the conditionDy =6+2. If that is the case, eq. D.86

and evaluated in r, =1, it becomes:

wa(tD)=—( : F[O,( . J D.87

0+2) 0 +2)t,

According to incomplete gamma function convergences, prior expression can be

expressed as:

wa(tD)=—(l E-[ . J D.88

0+2) ' (0+2)t,

where:

E,(x) =integral exponential.

I
For small arguments of the integral exponential, eq. D.88 can be approximated as:

1
(0+2)

Pun (tp) = [In(t, )+ 2In(6 +2)-7], D.89

where:

y =Euler’s constant.
On the other hand, for Dy, # 6 + 2 incomplete gamma function can be expressed as:

a a+l

I(a,x)~ F(a)—);+[:+1] . D.90

Hence, incomplete gamma function for this problem is approximated as:

Dy D
+ l‘T 21— Dyy
F[ Dy, _1 rD@ 2 j:r[ D, _]J_[ 1 j 6+2 (04_2){ 9+2} tlD_ﬁ. D.o1
I

0+2 T (0+2)t, 0+2 52 Dy,

P -1
0+2
Substituting D.91in eq. D.86 and evaluating inry =1:
D
r[e fb2 _:IJ 9 2 2v-1
+
wa(tD)z D ) ( - ) D ty |, D.92
(0+2) " b o_alr] "
0+2 0+2 0+2

where:
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be
v=1l-——. D.93
0+2

Recurrence formula states can be expressed as:

F(x-1) _ (x-1)*, D.94

r(x)

Therefore, eq. D.92 is rewritten as:

1 @+2"
ty )= t D.95
wa(D) _V(0+2)+VF be D
0+2

D.7. Convergence to Cinco-Ley and Samaniego (1982)

This model satisfies the D, =6+2 condition, due to the fractal dimension of fracture
network, D, , converges to the Euclidian radial dimension (be = 2) and the anomaly

in conductivity in fractal object, 9, is zero. Therefore, for early times, D.65 reduces to:

Puo to)= 2 In(t, )+ 21n(2)- In(0) - 7], D.96

where:

y =0.5772156649, D.97

Arraying:
1 ty

Pyo(to)="|In| -2 |+0.8091|. D.98
2 10

Analogously, for intermediate times eq. D.78 reduces to:

Pup (tD)z1In(tD)—1In(AfD[l—a)] ’“w}o.zsoz- D.99

4 2 Hp

And, for late times, eq. D.89 becomes:

Puo (tD):;[In(tD)Jr 0.8091]. D.100

Summary:
A double porosity flow model assuming a fractal reservoir and transient interporosity
transference was developed. Diffusivity equation describing such flow on its

dimensionless form is given by eq. D.24:
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2 t t 2
0" P (I, D)_i_ﬁapfbD(rD’ D)_rDGAfD[l_w]J'apfbD(rD’T)F(

JHo, to—7)dr =
arDz rD arD : 07 maD D'*D )

Dew apfbD(rD’tD)
ot

The solution in Laplace Space for the previous equation, assuming infinite reservoir

and constant flow rate at wellbore is given by eq. D.54:

T [20ss)
o Kl—,B o

where transference function is defined by eq. D.38:
f(s)= AfD[l_a)]lf(nmaD’ HD’S)+a)'
The analytical solution when the fracture network is under expansion (short times) is

given by eq. D.62:

0+2-D 0+2
r K D or
pfbD(rD’tD)z_ > jr[ o : J

Dy, 0+2 ,(0+2)2tD

6+ 2)r[

0+2
It was shown that two approximations can be obtained, depending on the values of D,

and 6. If, D4, =6+2 the approximation is given by eq. D.65:

pwoan):@[mapmm(e+z)—|n<w>—y].

The convergence to Cinco-Ley et al.’s model (1982) is based on this case. It results

when @ =0, and consequently D, = 2. The result of this case is depicted in eq. D.98:

Puo (to) = ;{In(t"j + 0.8091} .

[

On the other hand, if Dy, # 6+ 2 the approximated solution for short times is given by

eq. D.71:
1 (0+2e
Puo (tp) = + ty .
o) ~v(6+2) vr[ bej P
0+2
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For the interaction period two approximations can be obtained, depending on the
values of D, and 6. If, Dy =6+2 the approximation is given by eq. D.174:

Pup (tD) : {

1 1 mal
=52 aMto)—5 "{Am [i-] ’LD} In(6 + 2)—0.4329}.

4 D
Again, the convergence to Cinco-Ley et al.’s model (1982) results when& =0, and

consequently D, =2. The result of this case is given by eq. D.99:

1 1 mal
Puo (tD)=4In(tD)—2In(AfD - o] ’LD} 0.2602-

D

On the other hand, the Dy, = 0 + 2 case is given by eq. D.83:
Dyp—[0+2]
0+2
F(l_ﬂj (AfD[l_w] ; TJ 1 Dg
0+2 D t2 2lo+2].
D

Puo (tD )= 2Dy, —[0+2]
F( D, )T(g Dy, ) (9+2) 0+2

0+2) 2 20+2]

The analytical solution for the single system behavior (late times) is given by eq.
D.86:

0+2-D 9+2
o " D r
pfbD(rD’tD)z_ > jr( T : J

0+ 2r Dy, 6+2 " (0+2),
0+2

Analogously to the previous cases, if Dy, =6+2 the approximation is given by eq. D.89:

pwnan):(Qiz)nnaD)um(eu)—ﬂ.

The convergence to Cinco-Ley et al.’s model (1982) is based on this case. It results

when 6 =0, and consequently D, = 2. The result of this case is depicted in eq. D.100:
Puo (tp )= ;[In(tD)Jr 0.8091].

On the other hand, if Dy, # 6+ 2 the approximated solution for short times is given by

eq. D.95:
1 (0+2 e,
Puo (ts) = + ty.
o) ~v(6+2) vr[ bej P
0+2

*k*k
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Appendix E
Modified Transient Matrix-Response Model (Larsen, 2013)

The approach from Appendix C can be recast in a different form which comes closer to
the Pseudosteady-state (PSS) model and has a similar late-time behavior, which
Olarewaju’s model (1996) does not. To this end, note that in a direct comparison of
standard PSS and transient Euclidean slab models with flow equations, from Warren
and Root (1963):

K 10 0Py Py op

B Rl I =¢.C. —+¢d C ma_ E.l
L r ar ar ¢fb tfb at ¢ma tma at

on the other hand, from Serra et al. (1982):

k 0 0

Snl0f Po) 4 o, P _Kna [(OPra ) E.2
prorl or ot uh\ oz ),,

we can get from the PSS model to the transient model by replacing the “storage term”
in the matrix by the “flux term” from the matrix. With the same approach we should be
able to modify the PSS model proposed by Chang et al. (1990) combining it with the
model proposed by Olarewaju (1996):

0 0
5 a[rs prp oo £ P E3
ry " orp org oty 3 0z,

Following Laplace transformation and steps similar to those in Appendices C and D,

the following equation can be derived:

1 d( ;9% A 4D
—r = ws+ = rl " /as tanh(L, /as , E.4
(2 dr, [ D dr. j { 3D ( D )}pfbD
where:
Lo = 3[1_“’], E5
A
then, for small values of @, we can ignore the first term incide the brackets and it is
reduced to:
1 d( ,9m ) A 4o
—Ir =20 Jas tanh(Ly /oS Jp g - E.6
r;- er[ ° dr, j 3° ( P )p“’D

*k*k
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Appendix F
Wellbore Storage for Fractal Models

F. 1. Wellbore Storage

Total flow rate is given by:
q=0uw (t)+ Qs (t)’
where:

0, (t) =rate in wellbore,
and:

qy (t)= sandface rate.
Multiplying F.1 by B;:

0B, =0, (t)B, + 0y (t)B, .
Rate in wellbore is given by:

dp,, (t
Qub (t)Bo =-24c,V., Pu ( )

Storage coefficient is defined as:
C=c,V

wh !

substituting storage coefficient in F.3 results:

dp. . (t
qB, = —24C P )+ q, (t)B, .

On the other hand, sandface rate is given by the equation:

Ay (t)B, = @bk [r”‘e‘l apfbj .
U or ) _

Therefore, substituting prior equation into F.5:

dp, (t) N anbs_nkfb [rn—e—l Py, j

qB, =-24C
dt u or

Dimensionless time is defined as:
t —Lt
D — + '
(g, ) uar2™?

where:

(¢Ct )1 = ¢fbctfb + ¢mactma '

F.1

F.2

F.3

F.4

F.5

F.6

F.7

F.8

F.9
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Besides, dimensionless pressure in the fracture network is given by:

aV, ki [Pi = Po(r1)]
Pl tp) = — fqbul‘wl_ﬁ¢ffz :

Hence, using dimensionless variables definitions:

apfb(r’t): 3 qBourwl_ﬁ¢fb { K :|apfbD(rD’tD)
ot av, Ky, (¢Ct )t 7 oty ,
and,
op fb(r’t) __ qBo/lrw_ﬁ(bfb OP 1o (rD ’tD)
or av, k., or '

Substituting F.11 and F.12 in F.7, it becomes:

1=24C

aVuf (¢Ct )t atD aVuf

According to the fractal fracture network porosity definition:

or,

D¢, —n:
ar’"'V,

anb3_n

P =

Eq. F.13 becomes:

— 244,,C OPup (tD)_[rﬁ P o (rD’tD )j
aVuf (¢Ct )t erfb atD ? a rD rp=1

Dimensionless wellbore storage for fractal reservoirs is defined as:

B 24¢,C
? aVuf (¢CI )t erfb .
Hence:
r,f M - CD apL(tD) -1,
or, - oty

F. 2. Wellbore Storage in Damaged Zone

Wellbore Storage in the entire damaged zone in a fractal reservoir is given by:

CSWe“ — C + aVuf (¢Ct )t rwe o _ aVuf (¢Ct )t rW o ,
24¢fb 24¢fb

Where:

r. = effective wellbore radius, it is defined as:

L 0P (ty) Bl e b [r ot apfbD(rD,tD)j
. .
rp=1

F.10

F.11

F.12

F.13

F.14

F.15

F.16

F.17

F.18
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ro—r Sl F.19

we w

Substituting effective wellbore radius definition in F.18, the following expression

results:
av, r,or "
Coy =C+ uf (¢Ct)t w [e—Dﬂ,s I _1]. 20
244y,
According to dimensionless wellbore storage for fractal reservoirs definition:
24¢,.C
yo G 5 F.21
aVuf (¢Ct )t rw
eg. F.20 becomes:
24 .
. 5 Coun =Cp +e€ *™ -1, F.22
aVuf (¢Ct )t rw
Dimensionless Wellbore Storage in the damaged zone in a fractal reservoir is defined
as:
_ 24¢4,Cye F 23
SwellD Dy, ' .
aVuf (mt )t rw
substituting prior definition in F.22:
Con€ "™ =[Cp —1"*"" +1. F.24
**k*k
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Appendix G

Constant Rate Solutions with Boundary Effects

In Chapter Il the development of a dimensionless diffusivity equation for a double
porosity fractal reservoir was shown. It is given by:

azpfbD(rD’tD)+£apfbD(rD’ ]J'apmaD rD’T
or? r or, o

maD’ ’ T)dT_

,G.1
0 apfbD(rD’tD)
=l 0—
A,
and its general solution in Laplace space and approximate solutions in real space,
assuming an inifite reservoir, was shown in Chapter 1V.
This appendix shows the solutions of the fractal model when it is affected by radial
boundary effects, i.e., constant pressure and closed reservoirs. For both cases the initial

condition is the same as the one used in the infinite fractal reservoir, i.e.:

pfbD(rD’tD ZO)ZO’ G.2
hence general solution for eq. G.1 in Laplace space, considering initial condition given
byeq. G.2 is:
-8
Po(fo.8)=1o? | el (a(s)rs )+ K, (a(s)rs )| G3
+2 6+2
where
2./sf(s

S)= , G.4

g( ) 0+2

function f(s) is given by:

f (s) _ Ap [1— a)]lf(nmaD Ho, s)

H,S _
1+ D~ ma-fbD F(?]

maD

+w, G.5

H,.s)s

maD ?

E=——. G.6
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G.1. Constant rate solution of a fractal reservoir model assuming transient interporosity

Transference and constant pressure boundary

When a reservoir is affected by a large aquifer or a cap gas, it is subjected to an outer

constant pressure boundary. Such case is stated and solve as follows:

0 1t
inner Boundary: rl M =-1, G.7

oty
outer boundary: po(Lptp)=0. G.8
Applying outer boundary condition, G.8:

=8

Pol(Lo.8)=Le [l (0(6)5 )+ ek, (05|, G.9
0+2 0+2
hence:
C3|ﬂ(g(S)LE)+C4Kﬂ(g(S)LE)=O. G.10
0+2 0+2
and:
Koy (0(s)Ls)
C=—C, : G.11
: (o)L

Applying the derivative regarding r, ineq. G.3, it can be verified that:
d 1 ﬂ & & ﬂ & &
LA Cylp 2 {g(s)erD Iﬂ_l(g(s)r.; )} +Cylp ? {9(3)‘% Kﬂ_l(g(s)rD )} : G.12

er 6+2 6+2

Applying inner boundary condition:

g Pollo =13)_ c{g@)eu 1<g<s))}+c{g<s>sm-ﬂ l(g(s»] 613

P er R G2
therefore:
1
¢l (9(s))+c,K,, (g(s)=- : G.14
oot Yt sg(s)e
Substituting eq. G.11 into G.14:
K S)LE
—C, ;Z(g( )gD) Il—ﬂ (g(s))+C4Kl—ﬂ (g(s)):_ ! ) G.15
Il_ﬂig(s)LDi L L sg(s)e

6+2

hence:
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‘ Koy (066 )1y (9(5)
Sg S)e K B g S 6+2 9+§
(s) i( (s)) i, (g6
6+2
therefore:
. Kis(0(s)Ls)
C, = 0+2 : G.17
: Ky 065y (96)] 1uplols)Ls)
sg(s)g K, (g(s))— 6+2 9+§ 0+2
ol 1, (g(s)Ls)
0+2
Pressure at wellbore is given by:
Puo(5) =031, (a(s)rs J+c,K ., (a(s)rs ). G.18

6+2 6+2

where constants ¢, and c, are given by eqgs. G.17 and G.16, respectively.

G.2. Constant Rate Solution of a closed Fractal Reservoir Model assuming Transient

Interporosity Transference

When one is dealing with a closed reservoir e.g., an impermeable fault, such case has to

be stated as follows:
5 P o (1’tD )

inner boundary: r =-1, G.19
a,
outer boundary: apD(aLDtD) =0. G.20
rD

Applying the derivative regarding r, ineq. G.3:

olfos)or, " gt ) o | lebri, (o). G

er 6+2 6+2

Applying inner boundary condition in eq. G.21:

rgdpo“oﬂ’s)=c{g@)eul-ﬂ_l(g(s»}+c{g<s)e}<l.ﬂ_l<g<s»}, 622

er 0+2 0+2
therefore:
1
c.l,, (g(s)+c.K,_, (gl(s))=—F—. G.23
i( (s)+¢ i( (s) O

Applying outer boundary condition to eq. G.21:
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0+2 0+2
G.24
hence:
Kip (9(5)L5)
C, =—C, 2 : G.25
B P (IO
0+2
Substituting c, into eq. G.23 results:
1
Co =— G.26
6 Koy (96)5 1, (9(s)
sg(s)e| Koy (g(s)-—* Y5
%4 Iﬂ_l(g(s) D)
0+2
and:
Kip (g(S)LgD)
C, = 0+2 : G.27
: Ky (965 )1 (9(5) o)
sg(s)e| Ky, (9(s))-—** N, (o)
%4 Iﬂ_l(g(s) D) %"1 i
6+2
Pressure at wellbore is given by:
Pup (S) = CSIﬂ(g (S)ng )+ CeKﬂ(g (S)I‘S), G.28
6+2 6+2
where constants ¢, and c, are given by eqgs. G.27 and G.26, respectively.
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