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Abstract 
 

A new double porosity model for Naturally Fractured Reservoirs (NFRs) assuming 

fractal fracture network behavior and its solution is presented. Primary porosity is 

idealized as Euclidian matrix blocks (slabs  

or spheres) and Secondary porosity is defined by any post-depositional geological 

phenomenon such as fractures and vugs. 

      In order to provide a framework, the generalized radial flow model solution for well 

test analysis for petroleum and geothermal systems in Laplace and Real space was 

developed. Development of an appropriate  wellbore storage  model  for fractal 

reservoirs is also shown. 

     For this model, the dimensionless fractal  fracture area  parameter was developed. In 

addition, interporosity  skin  factor between matrix blocks and fractal fracture network 

is introduced. Relationship of convergence between  interporosity  skin under transient 

transference regime and  pseudosteady  state transference regime is discussed.  An 

analytical general solution  was obtained  in Laplace  space; besides, analytical solutions 

in real space that describe the behavior of NFRs at different stages  and different cases  

of flow are also presented.  Early, intermediate and late-time approximations are used to 

obtain reservoir and fractal fracture network parameters. A synthetic example is 

presented to illustrate the application of this model. 
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Chapter I 
Basic Concepts 
 

The purpose of this chapter is to familiarize the reader with concepts used in 

applications of fractal theory in well test analysis. Besides, new definitions are 

presented in order to develop the flow model presented in this work.   

     Concepts related to the rock and fluid properties, such as compressibility of rock, oil, 

gas, steam and water in addition to the fluid viscosity, formation volume factors and 

fluids saturations are important in well test analysis. Therefore, it is it is assumed that 

the reader has prior knowledge of these concepts.  
 

Bulk Volume: It is constituted by the volume of any kind of voids and solids contained 

in a rock. Considering three kinds of voids, i.e, pores, fractures and vugs, a 

mathematical representation for the volume of rock is: 

solidsvugsfracturesporesb VVVVV  ,   I.1 

where: 

poresV volume of pores; 

fracturesV  volume of fractures; 

solidsV  volume of solids. 

     Prior definition is based on the components of the rock. However, bulk volume can 

be defined by its shape. For instance, if the rock would have a cubic shape, volume 

would be defined as: 
3LVb  ,   I.2  

where: 

L length of the base of the cubic rock; 

or, if rock would be a sphere:  

3

3
4 rVb


 ,   I.3 

where: 

r radius of the rock. 

     If the rock does not show a regular shape, it can be represented by the volume 

between two equipotential surfaces, such region is defined as: 
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rrbV ee

e

dd
db   13 ,   I.4 

where: 


ed Area of a unit sphere of in ed  dimensions; it is defined as: 










2

2 2/

e

d

d d
e

e

 ,   I.5 

where: 

   x gamma function of x . 

     Consider the region bounded by two equipotential surfaces which have radii r  and 

rr  . These surfaces are the projections of ed -dimensional spheres through three 

dimensional space by an amount edb 3 . For example, when ed  is equal to 2, the surfaces 

are finite cylinders of length b . A sphere of radius r  has an area  1e

e

d
d r . 

     In the realization of this thesis, it has found that, since the term r  in eq. I.4 

represents the width between the surfaces, the cross section (area exposed to the flow) 

between the two equipotential surfaces mentioned before, is given by: 
13

.exp
 ee

e

dd
dflow rbA  ,   I.6 

where: 

b extent of the flow region.  
 

Porosity: It is defined as the ratio of the porous volume divided by the rock volume: 

ebulk volum total
pores of volume

 .   I.7 

     When there is evidence of existence of non-intergranular pores into the rock in 

addition to the intergranular pores themself (traditionally called primary porosity), e.g., 

fractures and/or vugs (secondary porosity), to distinguish and characterize such 

elements becomes very important for reservoir engineering and economical purposes.  

     Defining the total pore volume as: 

vugsfracturesporestp VVVV  ,   I.8 

establishing that: 

vugsfractures VVV sec ,   I.9 

therefore: 

secVVV porestp  . I.10 
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     Dividing previous eq. by bulk volume it results: 

sec  mat , I.11 

where: 

t total porosity, 

ma matrix porosity (intergranular pores); 

sec secondary porosity. 

     Total porosity is traditionally determinated from logs; matrix porosity can be 

determinated by core analysis. Secondary porosity can be estimated with the following 

model (Pulido et al., 2005): 

   DPm
tt  74.01sec  . I.12 

     For a good understanding of the present work, I consider necessary to introduce the 

concept of unitary fracture porosity. Conceptually it represents the volumetric fraction 

occupied by a single fracture related to the total rock volume. It is given by: 

bulk

uf
uf V

V


ebulk volum total
 volumefractureunitary  . I.13 

     On the other hand, the concept fractured bulk porosity has been used previously in 

the literature. It represents the volumetric fraction of all fractures in the rock. It is 

defined as: 

bulk

fb
fb V

V


ebulk volum total
lumenetwork vo fracture . I.14 

     Assuming fractures with the same characteristics all over the bulk, fracture network 

volume, can be expressed as: 

  rVrnV ufffb  , I.15 

where: 

  rn f number of fractures into fractured bulk, 

ufV unitary fracture volume.  

     Moreover, the number of fractures into fractured bulk, also known as Site Density 

can be expressed using a power-law model: 

  1 fbD
f arrn . I.16 

Therefore, fracture network volume is expressed as: 

rVarV uf
D

fb
fb  1 . I.17 
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     Combining eq. I.4 and eq. I.17, porosity of the fracture network is given by: 

e

e

efb

ee

e

fb

d
d

uf
dD

dd
d

uf
D

fb b
Var

rbr
rVar













 331

1


 . I.18 

 

Geometry factor: This parameter was introduced by Chang et al. (1990); it was used to 

provide a relation of the symmetry. It was defined as: 


saVG  ,  I.19 

where: 

sV site volume. This parameter is equivalent to the unitary fracture volume, presented 

in this thesis.  

     In the present work, it was found that the geometry factor is equivalent to: 

e

ee

d
dd

flow b
r

A
G 

  3
1

.exp  . I.20 

Dimension in Well Testing: The term dimension suffers from having different but 

related meanings in reservoir analysis. Dimension may refer to units of measure, as in 

dimensionless pressure. Dimension also arises when we discuss the three Euclidian 

dimensions, since all real well tests occur in three-dimensional space. Fractal 

Dimension describes how patterns fill spaces. Dimension has also been used in 

reference to the symmetry of flow lines in a well test. For example, linear flow is 

considered one-dimensional; cylindrical flow, two dimensional and spherical flow, 

three-dimensional, see Fig. I.1. 

 
Fig. I.1. Examples of flow dimension (figure taken from Doe, 1991).  
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Spatial Dimension: The geometric property that defines spatial dimension is the change 

in conduit area with distance from a source point. In one-dimensional flow (linear flow) 

the area of the conduit is proportional to 0r . The area does not change with distance. 

For cylindrical and spherical flow geometries, the areas are proportional to the 1r  and 
2r  powers of distance, respectively. By extension of this logic, a conduit of fractional 

dimension is simply a conduit whose area is proportional to a non-integer power of 

distance from the source (Doe, 1991).  
 

Fractal Permeability and Darcy’s law in fractal form: According to Poiseuille’s and 

Fanning’s equations, a fluid’s velocity trough a capillary tube can be expressed as: 

L
pd

v ufuf
u 




32

2

 I.21 

where: 

ufd capillary tube diameter (pore, fracture of vug aperture); 

 fluid viscosity; 

p pressure drop within the system; 

L length of the capillary tube.  

     Fluid rate is given by: 

ufuu Avq 
 ;  I.22 

moreover, capillary tube area is: 
2

ufuf rA  . I.23 

Then, substituting capillary tube area and fluid velocity into fluid rate equation, it 

becomes: Hagen Pouisuielle  

 
L
pr

r
L

pd
q uf

uf
ufuf

u 
























 832

4
2

2
 . I.24 

Expressing prior equation in terms of radial coordinates and taking limits to zero: 

r
pr

q ufuf
u 






8

4
 . I.25 

Previous equation provides the fluid rate in a single capillary tube considering pn  

parallel tubes with the same characteristics, the total fluid rate can be expressed as:  
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r
pr

nqnq fbuf
pup 






8

4
 , I.26 

where, the number of tubes is defined as follows: 

   rn
V

Vrn
V
V

n f
uf

uff

uf

fb
p  , I.27 

with: 

fbV capillary tubes volume (fractured bulk volume); 

ufV capillary tube volume (unitary fracture volume).  

Equation I.28 can be expressed as: 

lr
V

n
p

fb
p

1
2

 . I.28 

Hence, the following expression can be deduced:  

 
lr

V
rnn

p

fb
fp

1
2

 . I.29 

     Equation I.26 can be rewritten as follows: 

r
p

r
ra

r
pr

arq fbDuffbufD fbfb








  1
44

1

88 



 . I.30 

assuming: 
 4

1
4 rCruf , I.31 

where: 

 parameter describing the conductivity in a fractal object. Therefore, eq. I.30 is 

rewritten as: 

 
r

p
rCa

r
p

rrCaq fbDfbD fbfb








 


111
4

1

88






 , I.32 

where: 

 4 . It is defined as the anomaly in conductivity in a fractal object (O’Shaughnessy 

and Procaccia, 1985). 

Defining:  

 1
1

2 8
aCCaC  , I.33 

equation I.32 can be expressed as, similar to Chang et al. (1990): 
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r
prCq fb

D fb









 1

2
 . I.34 

     On the other hand, Darcy’s law is given by (considering a variable permeability, 

trough porous media): 

 
r

prk
v fbfb







 ; I.35 

fractured bulk’s fluid rate is given by: 

ffbvAq   , I.36 

flowing area of fractured bulk is given by: 
ee

e

dd
dfb rbA  2 , I.37 

and: 







 








2
1

2 2
1

e

d

d d

e

e


 . I.38 

Therefore, fractured bulk’s fluid rate is given by: 

     
r

prbrk
r

prk
rbq fb

dd
dfbfbfbdd

d

ee

eee

e 
























2
2 . I.39 

     Comparing equations I.34 and I.39 it results:  

 
r

prC
rkrb fb

D
fb

dd
d

fbee

e








  1

2

2

, I.40 

arraying: 

 
r

p
rCrkrb fbD

fb
dd

d
fbee

e 


  1
2

2  , I.41 

then, it can be concluded that: 

  1
2
2 
 efb

e

e

dD
d

d
fb r

b
Crk 


. I.42 

Establishing the relationship:  
 12 aCC , I.43  

eq. I.42 becomes: 

  1
21

1
2
1 








 efb

e

e

efb

e

e

dD
d

d

dD
d

d
fb r

b
aCr

b
aCrk 


. I.44 

On the other hand, defining: 
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 rn
Vk

C
f

bulkfb
1 , I.45 

then, 

   
1

2


 efb

e

e

dD

f
d

d

bulkfb
fb r

rnb
Vak

rk 


, I.46 

according to definition: 

 
fb

uff
bulk

Vrn
V


 . I.47 

Therefore: 

   
  1
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, I.48 

and Dacry’s equation results in: 
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2 . I.49 

If: 

1  fbD , I.50 

then, Darcy’s law in fractal form is given by: 

r
prkaV

q fb

fb

fbuf









 . I.51 

Dimensionless variables: The use of dimensionless groups in well test analysis is very 

common. Dimensionless variables are defined differently depending on the phase 

flowing in the well and reservoir (oil and gas) and also, on the author.  

     The main advantages of using dimensionless variables, such as dimensionless 

pressure, Dp , dimensionless radius, Dr  and dimensionless time, Dt , are: 

- The use of such variables allows grouping known and unknown parameters of 

the fluid and the rock system.  

- They make easier the mathematical work when solving the partial differential 

equations that governs the flow within the reservoir. 

- The proper manipulation of dimensionless variables allows the use of the same 

models for different cases, e.g., different flowing phases in the reservoir.  
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The Inverse Chow Pressure Group: For a dimensionless solution  DDD trp , , the 

Chow pressure group is defined by the identity: 

DD

D

DD

D

tp
p

tp
p

'
´ln




. I.52 

and the inverse Chow derivative of pressure group by the identity  

/ lnD D D D

D D

p t p t
p p

 
 . I.53 

Dimensionless storativity ratio: This parameter relates the total expansion in the 

fracture network to the total expansion in the system. It is defined as: 

tmamatfbfb

tfbfb

cc
c






 . I.54 

Matrix-fracture interaction parameter: This parameter is used in all the double 

porosity models assuming pseudosteady-state interporous transference and in some 

transient interporous transference models. It is a dimensionless parameter, defined as 

the relation of permeabilities of the two media: 

fb

wma

k
rk 2  , I.55 

where: 

 shape factor that reflects the geometry of the matrix elements and controls the flow 

between porous media. It has dimensions reciprocal to the area.   

wr wellbore radius.  

Dimensionless matrix hydraulic diffusivity: This parameter relates the hydraulic 

diffusivity in the matrix blocks to the total hydraulic diffusivity of the system. This 

parameter allows the consideration of any type of flow within the matrix (transient or 

pseudosteady-state).  

 
fbtmama

ttma
maD kc

ck



  ; I.56 

Dimensionless block size: 

2

2

w

ma
D r

hH  ; I.57 

mah height of matrix blocks. 
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Dimensionless fracture area, fDA : This parameter relates the area of fractures per unit 

of matrix volume and the fracture area per unit of bulk volume. It ranges from 2 to 6, 

depending on the flow dimensions of the matrix.   

ma

wbmaFB
fD V

rVhAA


 , I.58 

where: 

FBA fracture area per unit of bulk volume, 

bV bulk volume, 

maV matrix volume.  
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Chapter II 
Literature Review 
 

The purpose of this chapter is to provide a summary of the double porosity flow models 

and models assuming non-fixed flow geometry (fractal models) for well test analysis 

and the theories behind them.    

     It is important to point out that all the models presented in this chapter are expressed 

in their respective dimensionless variables, i.e., dimensionless variables are different for 

every model. 

 

II.1 Double porosity models 

Nature of flow in multi-porous systems obeys to the fact that flow in each porous 

medium behaves differently in terms of gradient pressure from the other media. Such 

behavior is known as transient interporous flow; this flow regime was studied 

previously by de Swaan (1976) and Najurieta (1980). Later in 1982, three research 

teams solved the problem - in different ways - of the transient interporous transference 

between porous media, showing similar results.  

     Cinco-Ley et al. (1982) presented a flow model for double porosity systems, where 

the interaction between media was modeled by a convolution. It is given in 

dimensionless variables by: 

           
D

DDfD
t

DmaD
fD

fD
D

DDfD

DD

DDfD

t
trp

tF
p

A
r

trp
rr

trp D





















,
,1

,1,

0
2

2





 ;  II.1 

if slabs are assumed for matrix blocks: 

     





1

12 22

4,
n

tn
maDDmaD

DmaDetF   ,  II.2 

or, for spheres: 

    





1

4 22

4,
n

tn
maDDmaD

DmaDetF  .  II.3 

In this study, Cinco-Ley et al. (1982) introduced the parameter fDA , which is the 

dimensionless fracture area; its definition depends on the matrix block shape (slabs or 

spheres) and it is useful to estimate the area of fractures per volume of rock. 

     The general solution for eq. II.1, assuming an infinite reservoir and constant flow 

rate at wellbore, expressed in Laplace space, evaluated at wellbore is given by: 
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    
    ssfKsfs

ssfK
spwD

1
2

3
0   ,  II.4 

transference function is given by: 

     sfAsf maDfD ,1   ,  II.5 

where, for slabs: 

  











maD

maD
maD

s
s

sf
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2
1tanh, .  II.6 

and, for spheres: 

 
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









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


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

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s
sf maD

maD
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
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
 2

2
1coth, .  II.7 

     Fig. II.1 shows the pressure and derivative of pressure function of the solution given 

in eq. II.4. Storage and skin around wellbore is not considered. 
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Fig. II.1. Log-log plot of the pressure and pressure derivative function behaviour  

of the model proposed by Cinco-Ley et al. (1982), assuming slabs. 

     In addition, Cinco-Ley et al. (1982) developed three solutions in real space that 

corresponds to the three periods of flow in double porosity media. The first flow period 

is dominated by a radial flow in the facture network caused by the total expansion in the 

fractures. The solution in real space for such period is given by: 

  














 80907.0ln

2
1


D

DwD
t

tp .  II.8 

01.0  
1010maD  
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     Second flowing period in double porosity systems is the one where the interactions 

between both mediums take place. Hence, second solution in real space is: 

       2602.01ln
2
1ln

4
1

 maDfDDDwD Attp  .  II.9 

     Finally, in the third flowing period the double porosity system acts as a single one. 

Provided solution for this flowing period is given by: 

     80907.0ln
2
1

 DDwD ttp .   II.10 

     Fig. II.2 shows a semilog plot of the pressure behaviour neglecting storage and skin 

around wellbore and the convergence of approximate solutions to the general solution.  
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Fig. II.2. Semilog plot of the pressure behaviour and approximate solutions of the model proposed by 

Cinco-Ley et al. (1982), assuming slabs. 

     Streltsova (1982) presented a double porosity model assuming radial flow in fracture 

network and linear flow from matrix blocks to fractures. She solved this problem using 

Hankel transform. Radial flow model in fracture network, presented by Streltsova 

(1982) is given by: 

     
T
v

t
trp

r
trp

rr
trp m


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

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
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,   II.11 

where: 

0



z

mm
m z

pkv


,   II.12 

and: 

01.0  
1010 maD  
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Solution evaluated at wellbore of eq. II.11 presented by Streltsova (1982) in real space, 

expressed in dimensionless drop of pressure is given by: 
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where: 

p
q
TpD 
2 .   II.15 

     Serra et al. (1982) presented a flow model assuming slabs as matrix blocks, in terms 

of the parameters used previously by Warren et al. (1963). This model was developed 

by solving two partial differential equations: one for the fracture network and other for 

the matrix blocks. Partial differential equation that describes the flow in fracture 

network has the shape: 

       
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And the partial differential equation that describes linear flow in the matrix blocks is 

given by: 
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     Solution of eq. II.16 coupled with eq. II.17, assuming constant flow rate at wellbore, 

infinite fracture network for eq. II.16 on one hand, and free interaction and closed 

boundary for eq. II.17 on the other, is given by:  
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     Fig. II.3 shows the plot of the pressure and derivative of pressure function in log-log 

scale, where at intermediate times, a smooth transition in the slope of the pressure 

derivate function is observed. 
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     Moreover, Serra et al. (1982) developed solutions for the three flowing periods for 

drawdown and build-up tests. Since build-up solutions are developed from the 

superposition principle, only drawdown solutions will be presented. For short times:  

     sttp DDwD  351.0log151.1 .   II.19 

For intermeadiate times, real time approximation is given by: 
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3
''log452.0log5756.0  ,   II.20 

and, for late times:  

       sttp DDwD  '1log351.0log151.1  .    II.21  
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Fig. II.3. Log-log plot of the pressure and pressure derivative function behaviour  

of the model proposed by Serra et al. (1982). 

      However, practice has shown that apparently pressure gradients act homogenously 

in all porous media which goes against the physics and the transient transfer theory. 

Such flow transfer is known as pseudosteady-state flow. Warren et al. (1963) using the 

formulation similar to Barenblatt et al. (1960), developed a radial flow model for double 

porosity systems; neglecting the variation regarding the angle, such model has the 

shape: 
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where, matrix source term is given by: 

100'  
910'   



 

16 •   II.Literature Review                                                                                              Alex R. Valdés-Pérez                                                                                
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D

DDmD trptrp
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Solution of eq. II.22 assuming infinite reservoir and constant flow rate at wellbore and 

taking into account condition imposed by eq. II.23 is given by: 
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Where: 
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     Fig. II.4 shows the log-log plot of the pressure and derivative of pressure function of 

the model presented by Warren et al. (1963), where at intermediate times, an abrupt 

transition in the slope of the pressure derivate function is observed. 
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Fig. II.4. Log-log plot of the pressure and pressure derivative function behaviour  

of the model presented by Warren et al. (1963). 

     Cinco-Ley et al. (1985) showed that the apparent pseudosteady-state transference 

behavior seen in tests can be attributed to a presence of interporous skin between matrix 

and fracture network. Such interporous skin is produced by a film created by 

mineralization or interaction between fluids in the face of the matrix blocks. 

Mineralization has been observed in outcrops, where precipitation and other chemical 

phenomena create a skin between different porous media. General solution for this flow 

model has the same shape of eq. II.4, except for the transference function, which is 

given by: 

01.0  
810maD  
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And interporous skin is defined as: 
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xkS  .       II.27 

     Fig. II.5 shows the idealization of a matrix block with interporous skin between the 

matrix and the fracture.  

 
Fig. II.5. Idealization of the interporous skin between the matrix and the fracture. 

     Cinco-Ley et al. (1985) showed that a high interporous skin causes the apparent 

pseudosteady-state behaviour, and a relationship between interporous skin and the 

interporous flow parameter used in pseudosteady-state models was found: 
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Fig. II.6. Log-log plot of the pressure and pressure derivative function behaviour of the model developed 

by Cinco-Ley et al. (1985), for different values of interporous skin, assuming slabs.  
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II.2 Fractal models 

In order to understand the fractal theory applied to well test analysis, the first reference 

that must be consulted is the publication of Barker in 1988. Barker presented 

mathematical solutions for the diffusivity equation expressed as a Generalized Radial 

Flow Model (GRF). The theory was developed for hydraulic test, but it can be used for 

petroleum well testing applying some modifications. Development of GRF and its 

solution for constant rate case is presented in Appendix A.  

     Barker (1988) developed a model where a variable parameter governing the 

Euclidean dimension of flow at wellbore was introduced. Such parameter is expressed 

in the present work as ed . GRF adapted for petroleum well testing, in dimensionless 

variables is: 
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     It can be verified that, when 1ed , eq. II.29 takes the form of the diffusivity 

equation for linear flow (Miller, 1962); when 2ed  GRF takes the form of the 

diffusivity equation for radial flow (van Everdingen and Hurst, 1949) and, when 3ed , 

it takes the form of the spherical flow model (Chatas, 1966). Main assumptions made by 

Barker on this model are: 

- Flow obeys Darcy’s law; 

- Flow is radial into a reservoir which is homogeneous and isotropic and fills an 

n-dimensional space; 

- The source is an n-dimensional sphere (for example a cylinder for two 

dimensional flow or a sphere for three-dimensional flow. 

     Although Barker developed a model assuming a fractured rock, the assumption of a 

homogeneous and isotropic reservoir allows its application into non fractured media.  

     The constant rate solution assuming an infinite reservoir for eq. II.29 in Laplace 

space is detailed in Appendix A. Such solution is given by: 
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where: 
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     Fig II.7 shows the plot of eq. II.30 and its derivative using Stehfest’s Algorithm 

(Stehfest, 1970), when 
2
1

 , 0  and 
2
1

  , which correspond to the linear, 

radial and spherical flows, respectively.  
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Fig. II.7. Plot of Barker’s constant rate case solution, for 21 , 0  and 21 . 

     Doe (1991) presented methods for analyzing transient flow-rate data from constant-

pressure well tests, where the spatial dimension is variable. Such analysis can be applied 

for the constant flow rate case.  

     Doe (1991) stated that, by definition of spatial dimension, the test dimension in not 

limited to the range of the Euclidian dimensions, that is between 1 and 3. Conduits may 

decrease in area by a power law of distance; hence their dimension is less than 1. Such a 

case may be termed sublinear. Similarly, a conduit whose area changes by a power 

grater than 2 has a dimension greater than 3, and may be called hyperspherical. 

Examples of these conduits are shown in Fig. II.8.  
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Fig. II.8 Sublinear and Hyperspherical Conduits (figure taken from Doe, 1991). 

     Fig. II.9 shows the transient pressure responses for the geometries established by 

Doe (1991). 
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Fig. II.9. Plot of sublinear ( 25.0  and 25.0 ) and hyperspherical ( 75.0 ) geometries. 

     Chang et al. (1990) presented a flow model for a fractal reservoir, with single and 

double porosity. For the double porosity case, they assumed pseudo-steady state 

interaction between matrix and fractures. Appendix B shows the general development 

for this model. Diffusivity equation presented by Chang and Yortsos in its 

dimensionless form is given by: 

       
D

DDfbD

D

DDmaDDd
D

D

DDfbD
D

D
D

D
t
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r

r
trp

r
rr

fbe

fb 




















 



,,
1

,1
1  ,   II.32 

where: 
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1  fbD ;   II.33 

fbD mass fractal dimension of fractures; 

ed  Euclidean dimension. 

 conductivity index (spectral dimension). 

     Later, Olarewaju (1996) presented a model and its solution in Laplace space for a 

transient interaction between matrix and fracture network. Model developed by 

Olarewaju in its dimensionless form is: 

       
D

DDfbD
D

D

DDmaDD

D

DDfbD

DD

DDfbD

t
trp
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













 ,,
3

,, *
2

2


 



,   II.34 

where interporosity flow coefficient,   is given by: 

fbma

wma

kh
rk 212 




 ,   II.35 

and dimensionless storativity ratio: 

tfbtmama

tfb

cc
c





* .   II.36 

Neglecting skin and wellbore storage effects, solution in Laplace space for Olarewaju’s 

model, assuming constant flow rate and infinite reservoir, is: 

 
 
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
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,   II.37 

where: 

     
 










 
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 









*

* 13tanh
13

1 s
s

sg .   II.38 

     Fig. II.37 shows the model proposed by Olarewaju (1996) with the inclusion of 

storage and skin around wellbore for different values of the fractal dimension of fracture 

network.  
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Fig. II.10. Log-log plot of the model proposed by Olarewaju (1996). 

     Flamenco et al. (2001) and Flamenco et al. (2003) presented approximated solutions 

for the early and late times periods of the models presented by Chang et al. (1990). The 

convergence of such solutions was tested against a numerical solution of the same 

model. Fig. II.11 shows the convergence of the analytical and semi-analytical solutions 

to the numerical one, presented by these authors.  

  
Fig. II.11. Chang et al. (1990) solution (numerical solution); short- and long-time approximations for a 

fractal fractured reservoir with matrix participation (figure taken from Flamenco et al., 2003). 
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     In Appendix C of this thesis, a free interaction between matrix and fractures under 

transient pressure conditions was developed. With this development the concept of 

dimensionless fracture area, fDA , (Cinco-Ley and Samaniego, 1982) was introduced 

into fractal reservoir theory. Moreover, with this model, it is possible to assume slabs 

and spherical shape for matrix blocks. Developed diffusivity equation for this model is: 

         

 
D
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
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, 

   II.39 

where: 

fDA  dimensionless fractal fracture area, and it is defined as: 

ma

wbmafb
fD V

rVhA
A



 .   II.40 

     Fluid transference functions, assuming slabs is given by: 

 
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  ,   II.41 

or, if spheres as matrix blocks, fluid transference function is: 
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     Solution in Laplace Space for eq. II.39 under constant flow rate and infinite reservoir 

conditions is given by: 
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where: 

        sHFAsf DmaDfD ,,1 .   II.47 
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Fig. II.12. Log-log plot of the free interporous transference, developed in Appendix C. 
     Larsen (2013) developed a modified fractal model for small values of the 

dimensionless storativity ratio by combining models presented previously by Chang et 

al. (1990) and Olarewaju (1996). Such modification yields the equation in Laplace 

space: 

     DDfbDD
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 Detailed development of this model is shown in Appendix D.  

     Other relevant papers regarding this topic are the ones published by Acuña et al. 

(1995) and Camacho-Velázquez et al. (2008). In addition, Cossio (2012) and Cossio et 

al. (2013) presented a model that describes the behaviour of pressure within a finite 

conductivity fracture into a fractal reservoir, and a semi-analytical solution for it.    
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Chapter III 
Proposed Model 
 

III.1. Flow model development  

Incoming fluid mass into an object is given by: 

tqm ffin   ;   III.1 

out coming fluid mass from the same object is: 

  tqtqm ffffout   ;   III.2 

oil mass contribution from the Euclidean matrix: 

tqm mafma   .   III.3 
Then, cumulative fluid mass into the object is: 

  tqtqtqmmm mafffmafinoutcum    .   III.4 

     On the other hand, mass of fluid at a time 1t  is given by: 

bulkfbfft VSm 
1

,   III.5 

at a time 2t : 

  bulkfbffbulkfbfft VSVSm  
2

,   III.6 

and, cumulative fluid mass is given by: 

  bulkfbffttcum VSmmm 
12

.   III.7 

     Equating eq. III.4 and eq. III.7 results: 

    bulkfbffmafff VStqtq    .   III.8 

Using definition of bulk volume (eq. I.4), eq. III.8 becomes: 

    rbrStqtq ee

e

dd
dfbffmafff   31

 .   III.9 

Arraying previous equation: 
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1 . III.10 

Where Matrix flow rate per unit of bulk volume is defined by: 

bulk

ma
ma V

qq


 . III.11 

     Taking the limits r  and t  to zero, and arraying, equation III.10 becomes: 
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     Inserting Darcy’s equation in fractal form (eq.I.51) into previous equation, results: 
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Applying the derivatives in eq. III.13: 
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     According to chain rule: 

 
 
r

trp
trpr

fb

fb

ff









 ,

,


, III.15 

 
 
t

trp
trp

S
t

S fb

fb

ffff










 ,
,


, III.16 

 
 
t

trp
trpt

fb

fb

fbfb












 ,
,


. III.17 

Substituting eqs. III.15, III.16 and III.17 and using compressibility definitions, prior eq. 

is rewritten as follows: 
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     If single phase flow is assumed, then total compressibility is defined as: 

fbftfb ccc  , III.19 

therefore eq. III.18 is written as: 
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     Neglecting quadratic gradient pressure and according to porosity of the fracture 

network definition, prior equation becomes: 
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     On the other hand, matrix flow rate per unit of bulk can be expressed as: 
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If slab matrix blocks are assumed, area exposed to flow is defined as: 

fma
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A
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
2 ; III.23 

or, if cube matrix blocks are assumed: 
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     Substituting eq. III.22 into III.21, the diffusivity equation for a double porosity 

fractal reservoir with transient interporosity transfer is obtained: 
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where hydraulic diffusivity coefficient in field units is defined as: 
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     In compact form, eq. III.25 is written as: 
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     In order to have a homogeneous partial differential equation and an easier way to 

manage unknowns related to eq. III.27, it is necessary to expressed in dimensionless 

variables.  
 

III.2 Transformation to dimensionless variables for well test analysis 

In order to transform eq. III.27 to a dimensionless expression, following dimensionless 

variables has been stated: 

     Dimensionless radius: 
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dimensionless time: 
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, III.29 

where: 

  tmamatfbfbtt ccc   . III.30 

     For an oil-filled system, dimensionless pressure in the fracture network: 
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And, dimensionless pressure in the matrix: 
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     For gas reservoirs, dimensionless pressure in the fracture network: 
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where: 

   trpppm fbifb ,22  . III.34 

and dimensionless pressure in the matrix: 
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where: 

   trpppm maima ,22  . III.36 

     For geothermal reservoirs (steam), dimensionless pressure in the fracture network: 
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DDfbD ZTrW

pmkaV
trp fb











 181361

03281.0
, , III.37 

where: 

   trpppm fbifb ,22  . III.38 

and, dimensionless pressure in the matrix: 
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 
   

fbws

mafbufD
DDmaD ZTrW

pmkaV
trp fb











 181361

03281.0
,  , III.39 

and: 

   trpppm maima ,22  . III.40 

     The procedures for transformation to dimensionless variables of eq. III.25, for the 

oil, gas and steam reservoirs are similar, therefore only the oil-filled reservoir is shown.  

     Using chain rule, first derivative of pressure in the fracture network regarding the 

radius can be written as follows: 

   
 

 
D

DDfbDD

DDfbD

fbfb

r
trp

dr
dr

trp
trp

r
trp








 ,
,
,,

. III.41 

     Based on dimensionless pressure definition, first derivative of pressure regarding 

dimensionless pressure in fracture network is: 

 
    fbuf

fbwo

DDDfbD

fb

kaV
rqB

trp
trp

fb














 1

03281.0
22.887

,
,

. III.42 

     Based on the dimensionless radius definition, derivative of dimensionless radius 

regarding radius is: 

w

D

rdr
dr 1

 , III.43 

Substituting eq. III.42 and III.43 into eq. III.41 results: 

 
 

 
D

DDfbD

fbuf

fbwo

D

fb

r
trp

kaV
rqB

r
trp

fb







  ,

03281.0
22.887, 





 . III.44 

     Taking second derivative regarding radius of eq. III.44: 

 
 

 
2

21

2

2 ,

03281.0
22.887,

D

DDfbD

fbuf

fbwo

D

fb

r
trp

kaV
rqB

r
trp

fb







  





 . III.45 

     Analogously to the first derivative of pressure in the fracture network regarding the 

radius, first derivative of pressure in the fracture network regarding the time is given by: 

 
   

 
D

DDfbD

wtt

fb

fbuf

fbwo

D

fb

t
trp

rc
k

kaV
rqB

t
trp

fb






























 ,00026367.0

03281.0
22.887,

2

1





 



. III.46 

Besides, 

   
 

 












 DDmaD

DmaD

mama trp
rp
rprp ,

,
,, , III.47 
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hence: 

 
 

 









 



















DDmaD

fbuf

fbwo

D

ma trp
kaV

rqBrp

fb

,
03281.0

22.887, 1

. III.48 

Substituting III.28, III.44, III.45, III.46, III.48 in III.25 and arraying it, results:  

         

 
D

DDfbD
D

t

DDmaD
DmaD

fDD
D

DDfbD

DD

DDfbD

t
trp

r

dtHFrpAr
r

trp
rr

trp D





















,

,,,1
,,

0
2

2















, 

 III.49 

where, dimensionless storativity ratio,   is defined as: 

 tt

tfbfb

c
c




  ; III.50 

dimenssionless matrix hidraulic diffusivity: 

 
fbtmama

ttma
maD kc

ck



  ; III.51 

dimensionless block size, for slabs: 

2

2

ma

w
D h

rH  ; III.52 

and for spheres: 

2

2

ma

w
D d

rH  ; III.53 

dimensionless fractal fracture network area, fDA : 

ma

wbmafb
fD V

rVhA
A



 . III.54 

     Fluid transfer function, assuming slabs: 

 
   










1

12 22

4,,
n

H
tn

D

maD
DDmaD

D

DmaD

e
H

tHF



  , III.55 

or, if spheres as matrix blocks, fluid transfer function is: 

  
 










1

4 22

4,,
n

H
tn

D

maD
DDmaD

D

DmaD

e
H

tHF



 . III.56 
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Chapter IV 
Model solutions for well test analysis   
 

IV.1. General Solution in Laplace space  

In Chapter III the diffusivity equation for a double porosity reservoir assuming fractal 

fracture network and Euclidean matrix blocks was developed:  

         

 
D

DDfbD
D

t

DDmaD
DmaD

fDD
D

DDfbD

DD

DDfbD

t
trp

r

dtHFrpAr
r

trp
rr

trp D





















,

,,,1
,,

0
2

2















. 

   IV.1 

     In order to have a well test analysis model for the Fractal Reservoir Model assuming 

transient interporous transference between matrix and fractures, the following 

conditions have been set: 

initial condition for fracture network:                       00, DDfbD trp ,   IV.2 

inner Boundary:                                                        
 

1
,1






D

DfbD
D t

tp
r  ,   IV.3 

outer boundary:                                                            0,lim 
 DDDr

trp
D

.   IV.4 

     Constant rate solutions assuming finite circular reservoir and constant pressure 

boundary are shown in Appendix G.  

     Applying Laplace transform to eq. IV.1 yields: 

         

    0,,

,,,1
,,

2

2

DfbDDfbDD

DmaDDmaDfDD
D

DDfbD

DD

DDfbD

rpsrpsr

srpssHFAr
dr

trdp
rdr

trpd













.   IV.5 

Similar to Cinco-Ley et al. (1985), dimensionless pressure in the matrix can be 

expressed as follows: 

   

 ssHF
SH

srp
srp

DmaD
maD

fbDmaD

DfbD
DmaD

,,1

,
,





 ;   IV.6 

where, for slab matrix blocks: 
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  











maD

D

D

maD
DmaD

sH
sH

sHF





2
1tanh,, ,   IV.7 

and, for spheres as matrix blocks: 

 
























sH
sH

sH
sHF

D

maD

maD

D

D

maD
DmaD





 2

2
1coth,, .   IV.8 

     Substituting eq. IV.6 into eq. IV.5 results: 

       

 
 

    0,,

,
,,1

,,1
,,

2

2

DfbDDfbDD

DfbD

DmaD
maD

fbDmaD

DmaD
fDD

D

DDfbD

DD

DDfbD

rpsrpsr

srp
ssHF

SH
sHFsAr

dr
trdp

rdr
trpd























. 

   IV.9 

     Applying initial condition in eq. IV.9, and arraying: 

        0,
,, 2

2

2
2   srpsfsr

dr
srpd

r
dr

srpd
r DfbDD

D

DfbD
D

D

DfbD
D

 . IV.10 

Where the transference function is defined as: 

     

 













 ssHF
SH

sHFA
sf

DmaD
maD

fbDmaD

DmaDfD

,,1

,,1
. IV.11 

     It can be verified that, if there is no restriction between matrix and fractures, i.e., 

0 fbDmaS , prior transference function reduces to the free interaction fractal model, 

showed in Appendix D.    

     Parameter   is established: 

2
1 




 , IV.12 

then: 

          0,
,

21
, 2

2

2
2   srpsfsr

dr
srpd

r
dr

srpd
r DfbDD

D

DfbD
D

D

DfbD
D

 . IV.13 

     The following transform function has been set: 

   zGsrp DDD , , IV.14 

and the transformation variable: 

 
2

2

2
2 






 Dr
ssf

z . IV.15 
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     Applying the variable transformations, the following expression is obtained: 

        021 2
2

2
2 







 zGz
z

zGz
z

zGz D
DD  , IV.16 

where: 

2
1






v , IV.17 

    To equalize the coefficient of the first derivative to one the following expression is 

proposed: 

   zBzzG D

v

D 
 , IV.18 

where: 

  2
1

2
2 























ssf
. IV.19 

Eq. IV.16 is expressed in terms of function IV.18 as: 

      0)( 22
2

2  zBzv
dz

zdBz
dz

zBdz D
DD . IV.20 

     Solution for eq. IV.20 is given by: 

     zKczIczB vvD 21  , IV.21 

or, in terms of eq. IV.18: 

      zKczIczzG vv

v

D 21 


, IV.22 

and, in terms of  srp DD ,  and srD , solution is: 

     

















































2

2

2
12

2
2

2
11

2
1

2
2

2
2

,












 DDDDD r
ssf

Kcr
ssf

Icrsrp . IV.23 

     Applying outer boundary condition, it can be concluded that: 

01 c , IV.24 

and, bounded solution is: 

   




















2

2

2
1

2
1

2 2
2

,







 DDDD r
ssf

Krcsrp . IV.25 

      Applying inner boundary condition it is found that: 
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   
















2

2
1

2

2/3
2




ssf
Ksfs

c

fbD

, IV.26 

and, solution can be expressed as: 

 

 

   




































2
2

2
2

,

2

2/3

2
2

2
1

2
1














ssf
Ksfs

r
ssf

Kr
srp

fbD

DD

DD . IV.27 

Solution evaluated at wellbore is: 

 
 

   

























ssfKsfs

ssfK
sp

fbD

wD

2
2

2
2

2

2/3

2
1










. IV.28 

     Phenomena around wellbore such as skin at wellbore and wellbore storage, can be 

incorporated as follows: 

 
 

 spsCsCS
s

S
sp

SCsp
wDDDwell

well
wD

wellDwD 21
,,




 . IV.29 

A detailed description of the storage around wellbore phenomenon is described in 

Appendix F. 
 

IV.2. Approximate solutions at short times: Total Expansion in the Fracture Network 

It has been shown that at early times, only the fracture expansion acts in the reservoir 

(Cinco-Ley et al., 1982). It means that transference function can be approximated as: 

  sf , IV.30 

therefore, eq. IV.1 is reduced to: 

     
D

DDfbD
D

D

DDfbD

DD

DDfbD

t
trp

r
r

trp
rr

trp












 ,,,
2

2


  . IV.31 

     Establishing the following transformation function: 

   
 DDfbDDfbD trpDZ fb ,

2
2

1





 , IV.32 

and transformation variables: 

fbD
D

fb

r
D
1

1  , IV.33 

and: 
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 

D
D

fb tD fb

2
2

1







 . IV.34 

      Eq. 31 is expressed according to eqs. IV.32 to IV.34 as follows: 

 
1

1

1

1

21

12
1

1
222

1

22






























DD

fb

fbDDD ZZ
D

DZ fbfb . IV.35 

Similarly initial condition is given by: 

  00,11 DZ ; IV.36 

inner boundary condition: 
 

1lim
1

1

22

101






















 






DD Zfb , IV.37 

and outer boundary condition:  

  0, 11  DZ . IV.38 

     Establishing the following transformation function: 

   2
1111




 
fbD

DD UZ , IV.39 

and: 

 2
111




 
fbD

. IV.40 

Applying the transformation variables, eq. IV.35 is rewritten as: 

  




















 








1

1
1

1

1

21

12
1

1
222

1 2
2















d
dUD

d
dU

Dd
Ud DfbD

fb

DDD fbfb . IV.41 

     Prior eq. can be expressed as: 

   11
11

1

22

1
1

2 











D
DD

fb

U
d
d

d
dU

d
d

D
fb 

















, IV.42 

transforming inner boundary condition: 

   
0limlim

1

1
22

10
1

1
22

10 11



















 








 











 d
dUZ DDDD fbfb , IV.43 

integrating eq. IV.42: 

  111
1

1
22

1
2 AU

d
dU

D D
DD

fb
fb 

 
 


 

, IV.44 

it can be concluded, based on inner boundary condition: 

01 A , IV.45 
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therefore eq. IV.44 reduces to: 

 
1

12

1
1

12  
d

U
dU

D
fbD

D

D

fb





 , IV.46 

integrating and arraying eq. IV.47: 

fbD
fbD

D eAU
2

1

2

2
21



















 , IV.47 

applying outer boundary: 

1
0

1
2

2
0

11

2

1

2

 





















 deAdU

fbDfbD

D , IV.48 

hence: 




















0
1

2

2 2

1

2

1






 de

A
fbDfbD

, IV.49 

establishing the following transformation variable: 

2

1















fbD

, IV.50 

taking the first derivative: 























  d

D
d

fbfb D
fb

D
1

22
1 2

. IV.51 

Hence, eq. IV.49 can be expressed as: 

































0

1
22

2

2 2

2













de
D

A
fbfb

fb

DD

fb

D

. IV.52 

     Moreover, defining: 
2

2 2
















 fbD
, IV.53 

its first derivative is given by: 

2

2

2



 d

D
d fb













 . IV.54 

Hence, eq. IV.52 becomes: 
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






















0
2

1
2

2

2

1
2

2

2

2

2











de

D

A
fb

fb
fb

D

D
D

fb

. IV.55 

     Gamma Function for this case is defined as: 

















0

2

1
2

2
2

2



 de

D fbD
fb , IV.56 

hence: 






























2

2
2

1
2

2

2









fb

D
D

fb

D

D

A

fb
fb

; IV.57 

subsequently eq. IV.47 becomes: 

fbD
fb

fb
fb

D

fb

D
D

fb

D e
D

D

U
2

1

2

2

2

1
2

2

1

2

2






















































 . IV.58 

Applying Duhamel’s principle in eq. IV.39: 

 


1

0
12111



  dUZ
fbD

DD . IV.59 

Substituting eq. IV.58 in eq. IV.59: 

 















 
























1

1

2

1
2

0
121

2

2

1
2

2

1

2

2 





















de
D

D

Z
fb

fbD
fb

fb
fb

D
D

fb

D
D

fb

D . IV.60 

Establishing the following variable transformation: 

y
D fbDfb

2

1

2

1 2



















 , IV.61 

and, taking the first derivate regarding y : 

dy
y

D
d

fbD
fb

2

2

1
2

1 2




















 . IV.62 
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Substituting eq. IV. 61 and IV.62 in IV.60: 

































y

D
y

fb

Dfb

D dyye
D

D

Z
fb

fb

2
2

12

1

1

2

2 









.    IV.63 

     Incomplete function Gamma is defined as: 

  



x

ta dtetxa 1, ,    IV.64 

then, eq. IV.63 becomes: 





























































1

2

1
2

12

1

1 2
,1

2
2

2












 


fb

fb
D

fbfb

fb

Dfb

D

DD
D

D

Z ,    IV.65 

therefore, solution of eq. IV.31 is given by: 

 
    






























D

Dfb

fb

D
D

DDfbD t
rD

D
rtrp

fb

2

22

2
 , 1

2
2

2
,











.    IV.66 

     In order to have simplified solutions relatively easy to use, two cases must be 

defined. The first case is given by the condition 2 fbD . If that is the case, eq. IV.103 

and evaluated in 1Dr , it becomes:  

      
















D
DwD t

tp 22
,0

2
1





.    IV.67 

According to incomplete gamma function convergences, prior expression can be 

expressed as: 

      











D
iDwD t

Etp 222
1





,    IV.68 

where: 

  xEi integral exponential.  

For small arguments of the integral exponential, eq. IV.68 can be approximated as: 

          





 ln2ln2ln
2

1
DDwD ttp ,    IV.69 

where: 

 Euler’s constant.  
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It can be verified that, if 0 , eq. IV.69 converges to the solution presented by Cinco-

Ley et al. (1982).  

     On the other hand, for 2 fbD  long time an approximation of incomplete 

gamma function is given by: 

     1,
1






a
x

a
xaxa

aa

,    IV.70 

hence, incomplete gamma function for this problem is approximated as: 

 
  2

1
1

22
122

1

22

2

1
2

211
22

,1
2





























































 















fb
fbfbfb

D

D
fb

DDD

D

fb

D

Dfb tDr
D

t
rD

.    IV.71 

Evaluating IV.66 at 1Dr , and substituting IV.71 results: 

 
 

 










































































v
D

fbfb

vv

fb

fb

DwD t
DDD

D

tp

2
1

2

2

2
2

1
2 112









,    IV.72 

where: 

2
1





fbD
v .    IV.73 

     A form of the recurrence formula is: 

 
    111 


 x
x

x ,    IV.74 

therefore, eq. IV.72 is rewritten as: 

   
  v

D
fb

vv

DwD t
D

v
v

tp





















2

2
2

1 112






.    IV.75 

IV.3. Approximate solutions at intermediate times: Interaction between porous media 

a. Transient State with variable Interporous Skin 

For intermediate times, the interaction between porous media takes place. For this 

period, transference function can be approximated as: 

   
1

11
















maD

DfbDma

D

maD
fD

sHS
sH

Asf



 ,    IV.76 

therefore, eq. IV.28 is rewritten as: 
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 

 

 

 













































































































D

maD
fD

maD

DfbDma
D

D

maD
fD

maD

DfbDma

D

maD
fD

maD

DfbDma

wD

H
sA

sHS
K

H
sA

sHS
K

sH
As

sHS

sp

fb





















11
2

2

11
2

2

1

1

2
1

2

2
1

2
1

2
1

2/3

2
1

. 

          IV.77 

For small arguments, Bessel function in the denominator is approximated as: 

 

   
 

 















































































2
11

2
2

11
2

2

2222
2

2
1

2



















fb

D

D

maD
fD

D

maD

DfbDma

D

D

maD
fD

maD

DfbDma
D

D
H

sA
sHS

H
sA

sHS
K

fbfb
fb

fb

.     IV.78 

Substituting eq. IV.78 in eq. IV.77: 

 
 

 

 

 

 

 


























































































D

maD
fD

maD

DfbDma

D

D

maD

DfbDma

fb
D

D

D

maD
fD

wD

H
s

A
sHS

K

s

sHS

D
H

A
sp

fb

fb

fb

fb

























11
2

2

1

2
2

12

2
1

2
1

244
5

222
1

2

2
1

22

.     IV.79 

     For the 2 fbD  case, the Bessel function in the numerator is approximated as:  

 

 
































































































D

maD
fD

maD

DfbDma

D

maD
fD

maD

DfbDma

H
sA

sHS

H
sA

sHS
K

11
2

1ln

11
2

2

2
1

2
1

0

,    IV.80 

thus, eq. IV.79 can be expressed as: 
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   
 

 
























































ss

sH
S

ss
H

A

s
ssp maD

D
fbDma

D

maD
fD

wD







1ln

2
12ln

1ln

2
1ln

4
1

2
2 . 

    IV.81 

Taking the natural logarithmic expansion: 

maD

D
fbDma

maD

D
fbDma

sH
S

sH
S

  









1ln ,    IV.82 

eq. IV.123 becomes: 

   
 

 
























































ss

H
S

ss
H

A

s
ssp maD

D
fbDma

D

maD
fD

wD





 2
12ln

1ln

2
1ln

4
1

2
2 ,  IV.83 

inverting to Real Space: 

       

















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     On the other hand, if 2 fbD , then the Bessel function in the denominator is 

approximated as: 
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substituting eq. IV.85 in eq. IV.79: 
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    IV.86 

srraying, prior eq. reduces to: 
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according to binomial series, eq. IV.87 becomes: 
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    IV.88 

and, inverting to real space, and arraying, eq. IV.88 can be expressed as: 
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     It can be verified that, if 0 fbDmaS  this model converges to the transient 

interporous transference and the solution given in Appendix D. 
 

b. Pseudosteady-state equivalence: Severe interporous skin 

Similar to Cinco et al. (1985), pseudosteady-state is achieved when a highly damaged 

interface between matrix and fracture network exists. Therefore, transference function 

reduces to: 
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thus, eq. IV.28 becomes: 
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for small arguments the Bessel function in the denominator is approximated as: 
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hence, inverting to real space: 
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     It can be observed that expression IV.93 corresponds to an independent of time 

value. Cinco-Ley et al. (1985) found a relationship between the interporous skin and 

other parameter of the transient interporous transference model with the pseudosteady-

state’s matrix-fracture interaction parameter. Extending such concept to the present 

work, it was found the following expression:   
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     A simplified expression of eq. IV.93, when 2 fbD  is given by: 
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or, in terms of pseudosteady-state models’ parameters: 
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prior equation can be approximated as follows: 
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     On the other hand, if 2 fbD , then: 
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and eq. IV.93 is reduced to: 
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In terms of pseudosteady-state models’ parameters: 
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IV.4. Approximate solutions at late times: Single System Behavior 

At late times the double porosity system acts as a single one. Therefore, the transference 

function is approximated as: 
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and eq. IV.1 is reduced to: 
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For this case, an analogous procedure made for the early times case can be performed. 

Thus, the solution for the late times case is given by: 
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Evaluating at wellbore: 
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     Besides, if 2fbD , eq. IV.104 is approximated by the following expression: 
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It can be verified that, if 0 , eq. IV.105 converges to the solution presented by 

Cinco-Ley et al. (1982).  

     On the other hand, for 2 fbD  the approximation is given by: 
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Chapter V 
Validation and Application  
 

In Chapter IV a general solution in Laplace space for the model developed in this thesis 

was developed. Such solution evaluated at wellbore is given by: 
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. V.1 

For computer-aided analysis, eq. V.1 is numerically inverted to real space (Stehfest, 

1970) in order to analyze transient pressure data that shows fractal behavior. 

     Fig. V.1. shows the dimensionless pressure and the dimensionless pressure 

derivative function assuming free interaction between porous media, i.e., 0 fbDmaS  

for different values of    and fbD . Under these circumstances, it can be observed that, 

for an idealized radial flow and fully connected system, i.e., 2fbD  and 0 , 

respectively, this model converges to the model proposed by Cinco-Ley et al. (1982).  
 

 

Fig. V.1. Pressure and pressure derivate function behavior for some values of fbD , and   without 

interporous skin and its convergence to the model proposed by Cinco-Ley et al., (1982). 
 

     In the available literature related to transient pressure analysis of fractal reservoir it 

has been stated that for the values 2fbD  and 0  the models converges to the well-

known radial flow behavior. However, such behavior can be observed whenever the 
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condition 2 fbD  be satisfied. Fig. V.2. shows a semilog plot of the dimensionless 

pressure behavior as a function of the dimensionless time for combinations that satisfy 

the 2 fbD  condition. Hence, it can be observed that the dimensionless pressure for a 

idealized double porosity radial system perfectly connected (blue solid line) shows the 

same behavior of a double porosity spherical system poorly connected (green solid 

line).   
 

 

Fig. V.2. Semilog plot of the pressure behavior for some values of   

that satisfy the condition of 2fbD . 

     Besides, dotted lines in Fig. V.2. shows the convergence of the approximated 

solutions for early times: 

          
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and for late times: 
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


 2ln2ln
2

1
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to the general solution for the shown cases.  

     Fig. V.3. shows the dimensionless pressure and the dimensionless pressure 

derivative function behavior of the proposed model when 2 fbD , for different 

values of interporous skin and neglecting phenomena around wellbore. It can be 

observed that the higher the interporous skin the deeper the “valley” shape in the 

dimensionless pressure derivative function, which corresponds to the interaction 

between porous media.  
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Fig. V.3. Impact of interporous skin in pressure and pressure derivative function, when 2 fbD . 
 

     Fig. V.4. shows the log-log plot of the dimensionless pressure and dimensionless 

pressure derivative behavior of the proposed model for different values of interporous 

skin, such the condition 2 fbD  is fulfilled. For this case 2.0  was used and the 

slope of the dimensionless pressure derivative function is equal to zero during the early 

and late times, so “apparent radial flow” behavior is observed. In addition, during 

intermediate times, the higher the interporous skin, the deeper the “valley” shape in the 

dimensionless pressure derivative function. 

 

 

Fig. V.4. Impact of interporous skin in pressure and pressure derivative function, for 2fbD . 
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     It was also mentioned that in order to include phenomena around wellbore to the 

proposed model, such as wellbore storage and skin around wellbore, eq. IV.29 should 

be used. Fig. V.5. and Fig. V.6. show the impact of these phenomena on the cases 

shown previously in Fig. V.3. and Fig. V.4., respectively.  

 

Fig. V.5. Behavior of pressure and pressure derivative function,  

when 2 fbD , considering phenomena around wellbore. 

 

 

Fig. V.6. Behavior of pressure and pressure derivative function,  

when 2 fbD , considering phenomena around wellbore. 
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     Fig. V.7. shows the convergence of the approximate solutions at early, intermediate 

and late times, eq. IV.69, eq. IV.84 and eq. IV.105, respectively to the general solution, 

assuming no interporous skin. This semilog plot shows the typical behavior of a double 

porosity radial system, i.e., straight lines at early and late times and another straight line 

during intermediate times. However, the input values show that a flow geometry that 

tends to be spherical  5.2fbD , with non-well connected flowing traces  5.0  is 

equivalent to a radial flow, well-connected behavior. This type of behavior has been 

named apparent radial flow.   

 

Fig. V.7. Convergence from the short, intermediate and long times solutions to the general solution, 

when 2 fbD , with no interporous skin. 

 

     Analogously, Fig. V.8. shows the convergence of the approximate solutions at early, 

intermediate and late times, eq. IV.75, eq. IV.89 and eq. IV.106, respectively to the 

general solution, assuming no interporous skin, when 2 fbD . For this case, all 

approximated solutions converge to the log-log straight line portions, corresponding to 

the fracture expansion, interaction between media and single system behavior. 

     Fig. V.8. exhibits the case shown in Fig. V.6 but this time with a relative low 

interporous skin value. Except from the beginning of the approximated solution during 

intermediate times, it shows the same trend of the straight line portion of the general 

solution, and therefore this approximation might be useful to characterize the 

interporous skin and the matrix, if the non-linear regression is possible to be performed.   
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Fig. V.8. Convergence from the short, intermediate and long times solutions to the general solution, 

when 2fbD , with no interporous skin. 

 

 

 

Fig. V.9. Convergence from the short, intermediate and long times solutions to the general solution,  

when 2 fbD , with low interporous skin. 

 

     Fig. V.10. shows the case shown in Fig. V.8 with a relative low interporous skin 

value. For this case the convergence of the approximated solution during intermediate 

times to the general solution is observed.  
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Fig. V.10. Convergence from the short, intermediate and long times solutions to the general solution, 

when 2 fbD , with low interporous skin. 
 

     Fig. V.11. and Fig. V.12. show the convergence of the approximated solutions for 

severe interporous skin, i.e., pseudosteady state behavior to the general solution, for 

2fbD  and 2fbD , respectively. The intermediate times behavior shows a flat 

slope and according to the equivalence given by eq. IV.94, the matrix-fracture 

interaction parameter, for both cases is 11102   . 

 

 

Fig. V.11. Convergence from the short, intermediate and long times solutions to the general solution, 

when 2 fbD , with  severe interporous skin (pseudosteady-state). 
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Fig. V.12. Convergence from the short, intermediate and long times solutions to the general solution, 

when 2 fbD , with severe interporous skin (pseudosteady-state).  

 

Example of Application 

A drawdown test was performed in Well A. The behavior of pressure and pressure 

derivative function are shown in Fig. V.13. Reservoir and well data are given in Table 

V.1.   

Table V.1. Reservoir and well data for the example. 

Parameter Quantity  

q    [bpd] 2,000 

oB  [bbl@c.y/ bbl@c.s] 1.6 

o  [cp] 6 

wr   [ft] 0.5 

fb  [fraction] 0.01 

 

     Pressure derivative function in Fig. V.13 does not show the fractal fracture 

expansion, i.e., behavior at early times. Then, analyzing late time response (see Fig. 

V.14) and comparing such behavior with eq. IV. 106, it can be conclude that, 

8362.0v , hence, following relation between fractal parameters was deduced: 

6724.18362.0  fbD . Then, the methodology described by Flamenco et al. (2003) 
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was applied and resulting parameters are: 0min  , 588.1max  , 

   000127.0
min

 1  v
fbuf

v
tt kaVc  and    451.0

max

 1  v
fbuf

v
tt kaVc . 

 
Fig. V.13. Pressure and pressure derivative function behavior for synthetic example. 

     Intermediate times can be analyzed plotting  tpt v 2  vs t , and comparing it with 

the straight line given by eq. IV.89. Fig. IV.14 shows the  tpt v 2  vs t   plot for this 

example. 

 
Fig. V.14. Log-log plot of the late time pressure  behavior for synthetic example. 
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     Fig. V.15. shows the adjusting  tpt v 2  vs t  straight-line plot for this example. 

Comparing straight line equation that fits the data with the eq. IV.89, it can be 

concluded that the transference between porous media is not free, i.e., exists an 

interporous skin between matrix and fractures. On the other hand, since intermediate 

times in Fig. V.13 does not show a flat behavior, it can be concluded that the 

interporous transference is occurring under transient regime.    

 
Fig. V.15. Specialized plot for intermediate times of the pressure behavior for synthetic example. 
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Chapter VI 
Conclusions 
 

1. A fractal flow model that describes transient interporous behavior in double 

porosity systems was developed. With this model it is possible to consider 

spheres or slabs as matrix blocks. 

2. A general solution in Laplace space that describes the complete transient 

response of the fractal reservoirs, i.e. total expansion in fracture network, 

interaction between porous media and single system behavior, was developed.    

3. Approximated analytical solutions in real space to describe pressure behavior 

during early, intermediate and late times were derived.  

4. Solutions during intermediate times are used to characterize parameters useful 

for reservoir engineering studies; such as matrix block, fractal fracture network 

area per unit of bulk volume and interporous skin. 

5. Main advantage of using fractal models is that these are the best suited to 

represent randomness in the fracture network distribution within the reservoir.  

6. Advantages of using transient interporous transference models with interporous 

skin were discussed.   
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Appendix A 
Generalized Radial Flow Model 
 

A.1. Flow model development 

Incoming oil mass into an object is given by: 

tAvm oin 
 , A.1 

out coming oil mass from the same object is: 

  tAvtAvm ooout 


 , A.2 

then, cumulative oil mass into the object is: 

  tAvmmm oinoutcum 
 . A.3 

     On the other hand, mass of oil at a time 1t  is given by: 

bulkoot VSm 
1

, A.4 

at a time 2t : 

  bulkoobulkoot VSVSm  
2

, A.5 

and, cumulative oil mass is given by: 

  bulkoottcum VSmmm 
12

. A.6 

     Equating eq. A.3 and A.6 results: 

    bulkooo VStAv    . A.7 

     According to using definitions given in eq. I.4 and eq. I.6, and after mathematical 

manipulation eq. A.7 results: 

   
t

S
r

vr
r

ooo
d

d

e

e 





 



 1

1

1 .    A.8 

Applying derivatives in both sides of eq. A.8: 

         
t

S
t

S
r

vrrdv
r
vr

r
oo

oo
odd

eoo
d

d
eee

e 

















 










 


121

1 11 .    A.9 

     Darcy’s law states: 

 
r

trpkv





,


 .  A.10 

     Substituting Darcy’s law into eq. A.9 it results:      
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         
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11

,,1,1 1
21

1

.  A.11 

Using chain rule derivative of oil density regarding the radius can be written as: 

 
 

 
r

trp
trpr

oo










 ,
,

 ,  A.12 

Analogously with the porosity: 

 
 
t

trp
trpt 







 ,

,
 ,  A.13 

And: 

   
t
p

p
S

t
S oooo










 
.  A.14 

     Substituting eqs. from A.12 to A.14 and the definitions of compressibility of oil and 

compressibility of the formations, into eq. A.11 it results 

       
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     According to the definition of total compressibility of the formation for a single fluid 

(oil), eq. A.15, the diffusivity equation of a Generalized Radial Model results:  

         
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     Neglecting the quadratic pressure gradient term the following model is given:  

       
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trp tfe











 ,,1,

2

2 
.  A.17 

     Compact form of previous equation is: 
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A.2 Transformation to dimensionless variables for well test analysis 

Following dimensionless variables has been state. Dimensionless radius: 
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w
D r

rr  ,  A.19 

dimensionless time: 

t
rc

kt
wt

D 2
 ,  A.20 

dimensionless pressure: 

    
ed

wo

i
DDD rqB

trppAktrp 
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 2

,,


.  A.21 

     Using chain rule, first derivative of pressure regarding the distance can be written as 

follows: 

   
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     The first derivative of pressure regarding dimensionless pressure is: 
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  Ak

rqB
trp
trp ed
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

 2

,
,  .  A.23 

On the other hand, derivative of dimensionless radius regarding radius is: 

w

D

rdr
dr 1

 ,  A.24 

hence: 
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     Taking second derivative regarding radius of eq. A.25: 
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     Analogously, first derivative of pressure regarding time can ban be expressed, which 

is given by: 
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     Substituting eq. A.19, A.25, A.26 and A.27 into eq. A.17 results: 
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It can be verified that, when 1ed  GRF, eq. A.28, it takes the form of the linear flow 

model; when 2ed  it converges to the radial flow model and to the spherical flow 

model when 3ed . 
 

A.3. General solution in Laplace space assuming constant rate 

In order to have a well test analysis model for the Generalized Radial Flow Model, eq. 

A.28, the following conditions have been set: 

initial condition:                       00, DDD trp ,  A.29 

inner Boundary:                       
1

,1





D

DD

t
tp ,  A.30 

outer boudary:                           0,lim 
 DDDr

trp
D

.  A.31 

     Applying Laplace transform to eq. A.28 and according to initial condition, it results:  

      0,,1,
2

2




 srps
dr

trpd
r

d
dr

srpd
DD

D

DDD

D

e

D

DD .  A.32 

     The following transform function has been set: 

   zGsrp DDD , ,  A.33 

and the transformation variables: 

srz D .  A.34 

Hence: 

s
dr
dz

D

 .  A.35 

Moreover, parameter   is established: 

2
1 ed

v  .  A.36 

edv  22 .  A.37 

    Applying the variable transformations, the following expression is obtained: 

        021 2
2

2
2 







 zGz
z

zGzv
z

zGz D
DD .  A.38 

    Moreover, to equalize the coefficient of the first derivative to one the following 

expression is proposed: 

   zBzzG D
v

D  .  A.39 

then, eq. 31 in terms of eq. 39 is: 
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      0)( 22
2

2  zBzv
dz

zdBz
dz

zBdz D
DD .  A.40 

Its solution is given by: 

     zKczIczB vvD 21  ,  A.41 

Or, in terms of eq. A.39: 

     zKzczIzczG v
v

v
v

D 21  ,  A.42 

therefore previous eq. can be expressed in terms of  srp DD ,  and srD : 

         srKsrcsrIsrcsrp Dv

v

DDv

v

DDD 21,  .  A.43 

     Applying outer boundary condition, a bounded solution is obtained:  

     srKsrcsrp Dv

v

DDD 2,  .  A.44 

and, applying the inner boundary condition, a particular solution is obtained: 

   
 sKs

srKrsrp
v

Dv
v

D
DD

1
2

3,


 .  A.45 

     According to: 

2
1 ed

v  ,  A.46 

then: 

 
 

 sKs

srKr
srp

e

e

e

d

Dd

d

D

DD

2

2
3

2
2

2
2

,




 .  A.47 

 

A.4. Solution in real space using similarity transform 

Establishing the following transformation function: 

   DDDdeD trpdZ e ,
22

3
 ,     A.48 

or: 

    DdeDDD Zdtrp e 2
22

,  .  A.49 

Besides: 

ed
D

e

r
d
1

3  ,  A.50 

and: 
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D
d

e td e

2
2

3



 .  A.51 

     Applying a analogous procedure as the one showed in Chapter IV, the following 

approximation in real space was obtained:  

  




















D

De

e

d
D

DDD t
rd

d
rtrp

e

4
 , 1

2
2

2
,

22

.  A.52 

*** 
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Appendix B 
Pressure Transient Analysis of Fractal Reservoirs assuming Pseudo-Steady 

State Interporosity Transfer 
 

In this appendix, the development of the Fractal Reservoir Model proposed by Chang et 

al., (1990) is demonstrated. For this demonstration is very important to keep in mind the 

definition of the Geometry Factor given by eq. I.20.  
 

B.1. Model development  

Incoming oil mass into an object is given by: 

tqm ooin   ,  B.1 

out coming oil mass from the same object is: 

  tqtqm ooooout   ,  B.2 

oil mass contribution from the Euclidean matrix: 

tqm maoma   ,  B.3 
then, cumulative oil mass into the object is: 

  tqtqtqmmm maooomaoinoutcum    .  B.4 

     On the other hand, mass of oil at a time 1t  is given by: 

bulkfboot VSm 
1

,  B.5 

at a time 2t : 

  bulkfboobulkfboot VSVSm  
2

,  B.6 

and, cumulative oil mass is given by: 

  bulkfboottcum VSmmm 
12

.  B.7 

     Equating eq. B.4 and B.7 results: 

    bulkfboomaooo VStqtq    .  B.8 

According to the definition of bulk volume, eq. B.8 becomes: 

    rbrStqtq ee

e

dd
dfboomaooo   31  ,  B.9 

arraying previous equation: 

   
t

S
V

q
r
q

br
fboo

bulk

maooo
dd

d
ee

e















31
1 .   B.10 

     Matrix flow rate per unit of bulk is defined: 
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bulk

ma
ma V

qq


 .   B.11 

Taking the limits r  and t  to zero, and arraying eq. B.10 becomes: 

   
t

S
brqbr

r
q fboodd

dmao
dd

d
oo ee

e

ee

e 





  
 3131 .   B.12 

     Inserting Darcy’s equation in fractal form into previous equation, it results: 

 
t

S
brqbr

r
prkaV

r
fboodd

dmao
dd

d
fb

fb

fbuf
o

ee

e

ee

e 

















  







3131 .   B.13 

     Besides, matrix flow rate due to expansion effects is given by: 

t
pVcq ma

bulktmamama 


  ,   B.14 

hence, matrix flow rate per unit of bulk is: 

t
p

c
V
q

q ma
tmama

bulk

ma
ma 


  .   B.15 

     Based on matrix flow rate per unit of bulk, eq. B.13 is rewritten as:  

 
t

S
br

t
pcbr

r
prkaV

r
fboodd

d
ma

tmamao
dd

d
fb

fb

fbuf
o

ee

e

ee

e 





















  







3131 ,   B.16 

applying the derivatives in eq. B.16: 

   



















































t
S

t
Sbr

t
pcbr

rr
p

r
r

p
r
r

r
p

r
kaV

fb
oo

oo
fb

dd
d

ma
tmamao

dd
d

ofbfbofb
o

fb

fbuf

ee

e

ee

e












3131

2

2

.   B.17 

     According to chain rule: 

r
p

pr
fb

fb

oo










  ,   B.18 

t
p

p
S

t
S fb

fb

oooo











  ,   B.19 

t
p

pt
fb

fb

fbfb












 
,   B.20 

substituting eqs. B.18, B.19 and B.20 into B.17, and using the definitions of 

compressibility of oil and fractured formation, B.17 is rewritten as follows: 
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 
t

p
ccSbr

t
pcbr

r
p

cr
r

p
r
r

r
p

r
kaV

fb
fbooofb

dd
d

ma
tmamao

dd
d

fb
o

fbfb

fb

ofbuf

ee

e

ee

e 







































 



 




3131

2

2

2

,   B.21 

assuming single phase flow, total compressibility is defined as: 

fbotfb ccc  ,   B.22 

and neglecting quadratic gradient pressure and according to definition of fracture 

network porosity, prior equation becomes: 

t
p

cVar
t

pcbr
r

prkaV
r

fb
tfbuf

Dma
tmama

dd
d

fb

fb

fbuf fbee

e 





















  131 





.   B.23 

 

B.2. Transformation to dimensionless variables 

Following dimensionless variables has been state. Dimensionless radius: 

w
D r

rr  ,   B.24 

dimensionless time: 

t

caV
crb

rc

k
t

tfbuf

tmama
Dd

w
d

d
wtfbfb

fb
D fbee

e

















 
 

3
2 1

,   B.25 

dimensionless pressure in the fracture network: 

    
fbw

fbifbuf
DDfbD rq

trppkaV
trp

 


 1

,
, ,   B.26 

similarly, for pressure within the matrix: 

    
fbw

maifbuf
DDmaD rq

trppkaV
trp

 


 1

,
,  .   B.27 

     Using chain rule, first derivative of pressure in the fracture network regarding the 

distance can be written as follows: 

   
 

 
D

DDfbDD

DDfbD

fbfb

r
trp

dr
dr

trp
trp

r
trp








 ,
,
,,

.   B.28 

     Based on dimensionless pressure definition, pressure as a function of radius and time 

is expressed as: 
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   DDfbD
fbuf

fbw
ifb trp

kaV
rq

ptrp ,,
1  

 ,   B.29 

which first derivative regarding dimensionless pressure in fracture network is: 

 
  fbuf

fbw

DDfbD

fb

kaV
rq

trp
trp  




 1

,
,

.   B.30 

     Based on the dimensionless radius definition, derivative of dimensionless radius 

regarding radius is: 

w

D

rdr
dr 1

 ,   B.31 

then, eq. B.28 becomes:  

   
D

DDfbD

fbuf

fbwfb

r
trp

kaV
rq

r
trp








  ,,  

.   B.32 

     Taking second derivative regarding radius of eq. B.32: 

   
2

21

2

2 ,,

D

DDfbD

fbuf

fbwfb

r
trp

kaV
rq

r
trp








   

.   B.33 

     Moreover, first derivative of pressure regarding time can ban be expressed: 

   
 

 
D

DDfbDD

DDfbD

fbfb

t
trp

dt
dt

trp
trp

t
trp








 ,
,
,,

,   B.34 

substituting: 

   
D

DDfbD

tfbuf

tmama
Dd

w
d

d
wtfbuf

wfb

t
trp

caV
crb

rcaV

qr
t

trp
fbee

e

























 ,

1

,
3

2

1





.   B.35 

     Analogously, for the derivative of pressure within matrix regarding to time: 

   
D

DDmaD

tfbuf

tmama
Dd

w
d

d
wtfbuf

wma

t
trp

caV
crb

rcaV

qr
t

trp
fbee

e

























 ,

1

,
3

2

1





.   B.36 

     Substituting eq. B.24, B.32, B.33, B.35 and B.36 into eq. B.28 results: 

       
D

DDfbD
ps

D

DDmaD
ps

Dd
D

D

DDfbD
D

D
D

D t
trp

t
trpr

r
trp

r
rr

fbe

fb 



















 



,,1
,1

1  ,     B.37 

where: 

ps storage coefficient is defined as follows: 
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tmama
Dd

w
d

dtfbuf

tfbuf
ps crbcaV

caV
fbee

e


 


3
.   B.38 

     On the other hand, flow rate from matrix to fracture network per unit bulk volume is 

given by the expression: 

bulk

mafma

bulk

ma
ma V

vA
V
q

q   .   B.39 

Area of matrix exposed to flow can be defined as: 

 
fbDuffb

fma r
r

rVDa
A 2

1 
 ,   B.40 

velocity of oil coming out from matrix can be expressed using Darcy’s law: 








 


ma

mafbma
ma l

ppk
v


.   B.41 

     Based on eq. B.39, B.40 and the definition of bulk volume, flow rate from matrix to 

fracture network per unit bulk volume can be expressed as follows: 











 






fma

mafbmaD
ma l

ppkrq fb


 1'

1 ,   B.42 

where: 

 fmal average distance between the matrix and the fractal fracture network; 

     1  is a constant defined by: 

 
e

e

d
d

uffb

b
VDa




 31

1


 ,   B.43 

and, 

efbfb dDD ' .   B.44 

     Besides, distance between the matrix and the fracture network can be represented as: 
fbD

fma rl ''
2 ,   B.45 

where: 

    uffbfb rVDDa  212 ,   B.46 

and: 

3''  fbfb DD .   B.47 

Hence, eq. B.42 is rewritten as follows: 
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 mafb
ma

ma ppkq 




,   B.48 

where shape factor  , is given by: 

2

1'''
1








fbfb DDr .   B.49 

     Equating B.11 and B.48 results: 

 mafb
tmama

mama pp
c
k

t
p








.   B.50 

Expressing prior eq. in dimensionless variables: 

      DDmaDDDfbD
DD

DDmaD trptrp
rt

trp
,,',







 .   B.51 

An alternative way to present prior equation is: 

 
      DDmaDDDfbD

DpsD

DDmaD trptrp
rt

trp ,,
1

,









 ,   B.52 

where: 



















tfbuf

tmama
Dd

w
d

d

fbtmama

tfbfbmaw

ps caV
crb

kc
ckr fbee

e








 3

2

2
1 1

1
' ,   B.53 

and: 

fbfb DD '1''  .   B.54 
 

     *** 
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Appendix C 
Pressure Transient Analysis of Fractal Reservoirs with Transient 

Interporous Transference (Olarewaju, 1996) 
 

C.1. Model development  

The procedure for the development of this model is the same as describe in for Chang et 

al.’s model (1990) in Appendix B, until eq. B.13, which is given by: 

 
t

S
brqbr

r
prkaV

r
fboodd

dmao
dd

d
fb

fb

fbuf
o

ee

e

ee

e 

















  







3131 .     C.1 

After applying the derivatives in eq. C.1, it results: 

     

   


















































t
S

t
Sbrqbr

rr
trp

r
r

trp
r

r
trp

r
kaV

fb
oo

oo
fb

dd
dmao

dd
d

ofbfb
o

fb
o

fb

fbuf

ee

e

ee

e









3131

1
2

2 ,,,

.     C.2 

According to chain rule: 

r
p

pr
fb

fb

oo










 

,     C.3 

t
p

p
S

t
S fb

fb

oooo











 
,     C.4 

t
p

pt
fb

fb

fbfb












 
,     C.5 

substituting, eq. C.3, C.4, C.5 and, using the definitions of oil and formation 

compressibility, eq. C.2 becomes: 

     

   
t

trp
ccSbr

qbr
r

trp
cr

r
trp

r
r

trp
r

kaV

fb
fboofb

dd
d

ma
dd

d
fb

o
fbfb

fb

fbuf

ee

e

ee

e











































,

,,,

31

31
2

1
2

2








.      C.6 

     Assuming single phase flow, and according to the total compressibility definition, 

eq. C.6 is written as: 
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Neglecting quadratic gradient pressure, prior equation becomes: 
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where: 
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d
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t
fb

fb
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ma 

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0

,     C.9 

fbA  exposed to flow area which is defined as: 

ma
fb h

A 1
 ;   C.10 

fb hydraulic diffusivity coefficient is defined as: 

tfbfb

fb
fb c

k


  ,   C.11 

and pressure gradient is given by: 
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

.   C.12 

 

C.2. Dimensionless variables transformation  

Following dimensionless variables are established. Dimensionless radius: 

w
D r

rr  ,   C.13 

dimensionless position at the matrix: 

ma
D h

zz 2
 .   C.14 

Dimensionless time: 

  t
rc

k
t

wtt

fb
D   2 ,   C.15 

where: 

  tmamatfbfbtt ccc   .   C.16 
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Dimensionless pressure in the fracture network: 

    
fbw

ifbfbuf
DDfbD rq

ptrpkaV
trp

 


 1

,
, ,   C.17 

similarly, for pressure within the matrix: 
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fbw
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DDmaD rq

ptrpkaV
trp

 


 1

,
,  .   C.18 

     Using chain rule, first derivative of pressure in the fracture network regarding the 

distance can be written as follows: 

   
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,,
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     Applying the derivatives, C.19 becomes: 
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     The second derivative regarding radius of eq. C.20 is given by: 
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     Analogously, first derivative of pressure regarding time is: 
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And, 
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Substituting C.13, C.20, C.21, C.22, C.23 in C.30 and arraying, the following 

expression is obtained: 
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   C.24 

Considering strata as matrix blocks, eq. C.12, then: 
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where interporosity flow coefficient is defined as: 

fbma

wma

kh
rk 212 




 ;   C.26 

dimensionless storativity ratio: 

 tt

tfbfb

c
c




  .   C.27 

 

C.3. General solution in Laplace space assuming constant rate 

In order to have a well test analysis model for the Fractal Reservoir Model assuming 

free interaction transference between matrix and fractures, the following conditions 

have been set: 

Initial condition for fracture network:                  00, DDfbD trp ,   C.28 

inner boundary:                                                  
 

1
,1






D

DfbD
D t

tp
r  ,   C.29 

outer boundary:                                                     0,lim 
 DDDr

trp
D

.   C.30 

     Applying Laplace transform to eq. C.57 and according to initial condition, it 

becomes: 
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where: 
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2
1 




 .   C.33 

     Establishing the following transform function: 

   zGsrp DDD , ,   C.34 

and the transformation variable: 
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z ,   C.35 

a transformation of variables takes places. Using definitions given by eq. C.34 and eq. 

C.35 the following expression is obtained:  
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    To equalize the coefficient of the first derivative to one the following expression is 

proposed: 
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     Applying the transformations given by eq. C.38 and C.39, eq. C.36 can be written as: 
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Solution of eq. 40 is given by: 
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or, in terms of eq. C.38: 
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and, in terms of  srp DD ,  and srD , the solution is: 
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     Applying outer boundary condition, it can be deduced that: 
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hence bounded solution is: 
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      Applying the inner boundary condition it is concluded that: 
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Then, particular solution is given by: 
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Hence, dimensionless pressure at wellbore is: 
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*** 
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Appendix D 
Pressure Transient Analysis of Fractal Reservoirs assuming Free 

Interaction Interporosity Transfer 

 

D.1. Model development  

The development of this model follows the same steps as shown in Appendix B, unitl 

eq. B.13, given by: 

 
t

S
brqbr

r
prkaV

r
fboodd

dmao
dd

d
fb

fb

fbuf
o

ed

e

ee

e 



















  







3131 .    D.1 

Applying the derivatives in eq. D.1: 
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     According to chain rule: 
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Substituting eq. D.3, eq. D.4 and eq. D.5 in eq. D.2 and using the definitions of oil and 

formation compressibility, eq. D.2 becomes: 
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    D.6 

     Assuming single phase flow, and according to the total compressibility definition, 

eq. D.6 is written as: 
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    D.7 

Neglecting quadratic gradient pressure, prior equation  becomes: 

     
t

trp
k

c
rq

k
r

r
trp

r
r

trp
r fb

fb

fbtfbD
ma

fb

Dfbfb fbfb













  ,,, 111
2

2 
  .    D.8 

Where: 
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If slab matrix blocks are assumed, area exposed to flow is defined as: 
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or, if cube matrix blocks are assumed: 
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     Substituting eq. D.9 into D.8: 
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where hydraulic diffusivity coefficient is defined as: 
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D.2. Transformation to dimensionless variables 

Following dimensionless variables has been state. Dimensionless radius: 

w
D r

rr  ,  D.14 

dimensionless time: 
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k
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where: 
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  tmamatfbfbtt ccc   .  D.16 

Dimensionless pressure in the fracture network: 
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similarly, for pressure within the matrix: 

    
fbw

maifbuf
DDmaD rq

trppkaV
trp

 


 1

,
,  .  D.18 

     Using chain rule, first derivative of pressure in the fracture network regarding the 

distance can be written as follows: 
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     Applying the derivatives, eq. D.19 becomes: 
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     Taking second derivative of eq. D.20 regarding radius, it results: 
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     Moreover, first derivative of pressure regarding time can ban be expressed: 

 
 

 
D

DDfbD

wtt

fb

fbuf

fbwfb

t
trp

rc
k

kaV
rq

t
trp































 ,,
2

1








.  D.22 

and, 

   




 








 
DDfbD

fbuf

fbwfb trp
kaV

rqrp ,, 1

.  D.23 

Substituting D.14, D.20, D.21, D.22, and D.23 in D.12, it becomes: 

 

         

 
D

DDfbD
D

t

DDmaD
DfbD

fDD
D

DDfbD

DD

DDfbD

t
trp

r

dtHF
rp

Ar
r

trp
rr

trp D





















,

,,
,

1
,,

0
2

2















, 

  D.24 

where, dimensionless storativity ratio,   is defined as: 
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 tt

tfbfb

c
c




  ;  D.25 

dimenssionless matrix hidraulic diffusivity: 

 
fbtmama

ttma
maD kc

ck



  ;  D.26 

block size ratio: 

2

2

ma

w
D h

rH  ;  D.27 

dimensionless fracture area, fDA : 

ma

wbmafb
fD V

rVhA
A



 .  D.28 

Fluid transfer function, assuming slabs: 

 
   










1

12 22

4,,
n

H
tn

D

maD
DDmaD

D

DmaD

e
H

tHF


  ,  D.29 

or, if spheres as matrix blocks, fluid transfer function is: 

  
 










1

4 22

4,,
n

H
tn

D

maD
DDmaD

D

DmaD

e
H

tHF



 .  D.30 

 

D.3. General solution in Laplace space assuming constant rate 

In order to have a well test analysis model for the Fractal Reservoir Model assuming 

free interaction transfer between matrix and fractures, the following conditions have 

been set: 

Initial condition for fracture network:                       00, DDfbD trp ,  D.31 

inner Boundary:                                                       
 

1
,1






D

DfbD
D t

tp
r  ,  D.32 

outer boundary:                                                           0,lim 
 DDDr

trp
D

.   D.33 

     Applying Laplace transform to eq. D.24 yields: 

         

    0,,

,,,1
,,

2

2

DfbDDfbDD

DfbDDmaDfDD
D

DDfbD

DD

DDfbD

rpsrpsr

srpssHFAr
dr

trdp
rdr

trpd













,  D.34 

where, for slab matrix blocks: 
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  











maD

D

D

maD
DmaD

sH
sH

sHF





2
1tanh,, ,  D.35 

And, for spheres as matrix blocks: 

 
























sH
sH

sH
sHF

D

maD

maD

D

D

maD
DmaD





 2

2
1coth,, .  D.36 

Applying initial condition in eq. D.34, and arraying: 

        0,
,, 2

2

2
2   srpsfsr

dr
srpd

r
dr

srpd
r DfbDD

D

DfbD
D

D

DfbD
D

 ,  D.37 

where: 

        sHFAsf DmaDfD ,,1 .  D.38 

     Parameter   is established: 

2
1 




 .  D.39 

then: 

          0,
,

21
, 2

2

2
2   srpsfsr

dr
srpd

r
dr

srpd
r DfbDD

D

DfbD
D

D

DfbD
D

 .  D.40 

     The following transform function has been set: 

   zGsrp DDD , ,  D.41 

and the transformation variable: 

 
2

2

2
2 






 Dr
ssf

z .  D.42 

Using definitions given by eq. D.40 and eq. D.41 the following expression is obtained:  

        021 2
2

2
2 







 zGz
z

zGz
z

zGz D
DD  .  D.43 

where,  

2
1






v .  D.44 

    To equalize the coefficient of the first derivative to one the following expression is 

proposed: 

   zBzzG D

v

D 
 ,  D.45 

where: 
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  2
1

2
2 























ssf
.  D.46 

     Applying the transformations given by eq. C.45 and C.46, eq. C.43 can be written as: 

      0)( 22
2

2  zBzv
dz

zdBz
dz

zBdz D
DD .  D.47 

Its solution is given by: 

     zKczIczB vvD 21  ,  D.48 

or, in terms of eq. D.85: 

      zKczIczzG vv

v

D 21 


,  D.49 

and, in terms of  srp DD ,  and srD , solution is: 

     

















































2

2

2
12

2
2

2
11

2
1

2
2

2
2

,












 DDDDD r
ssf

Kcr
ssf

Icrsrp .  D.50 

     Applying outer boundary condition, it can be deduced that: 

01 c ,  D.51 

And, bounded solution is: 

   




















2

2

2
1

2
1

2 2
2

,







 DDDD r
ssf

Krcsrp .  D.52 

      Applying the inner boundary condition it is concluded that: 

   
















2

2
1

2

2/3
2




ssf
Ksfs

c

fbD

,     D.53 

then, particular solution is given by: 

 

 

   




































2
2

2
2

,

2

2/3

2
2

2
1

2
1














ssf
Ksfs

r
ssf

Kr
srp

fbD

DD

DD ,     D.54 

at wellbore: 

 
 

   

























ssfKsfs

ssfK
sp

fbD

wD

2
2

2
2

2

2/3

2
1










.     D.55 
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D.4. Approximate solutions at short times: Total Expansion in the Fracture Network 

At short times, only the fracture network is acting: 

  sf ,     D.56 

Therefore, eq. D.24 is reduced to: 

     
D

DDfbD
D

D

DDfbD

DD

DDfbD

t
trp

r
r

trp
rr

trp












 ,,,
2

2


  .     D.57 

     Establishing the following transformation function: 

   
 DDfbDDfbD trpDZ fb ,

22
4





 ,     D.58 

or: 

    
DDfbDDfbD ZDtrp fb 4

2
2

1, 





 .     D.59 

besides: 

fbD
D

fb

r
D
1

4  ,     D.60 

and: 
 

D
D

fb tD fb

2
2

4







 .     D.61 

     The procedure to obtain this approximate solution is analogous to the one shown in 

section IV.4 of Chapter 4 in the main text. Therefore, the founded approximate solution 

is given by: 

 
    






























D

Dfb

fb

D
D

DDfbD t
rD

D
rtrp

fb

2

22

2
 , 1

2
2

2
,











.     D.62 

     In order to have simplified solutions relatively easy to use, two cases must be 

defined. The first case is given by the condition 2 fbD . If that is the case and 

evaluated in 1Dr  , eq. D.62 becomes:  

      
















D
DwD t

tp 22
,0

2
1





.     D.63 

According to incomplete gamma function convergences, prior expression can be 

expressed as: 

      











D
iDwD t

Etp 222
1





,     D.64 



 

86  •  Appendix D                                                                                                           Alex R. Valdés-Pérez 

where: 

  xEi integral exponential.  

For small arguments of the integral exponential, eq. D.64 can be approximated as: 

          





 ln2ln2ln
2

1
DDwD ttp ,     D.65 

where: 

 Euler’s constant.  

     On the other hand, for 2 fbD  the following approximation was used, based on 

the incomplete gamma function definition: 

     1,
1






a
x

a
xaxa

aa

,     D.66 

hence, incomplete gamma function for this problem is approximated as: 

 
  2

1
1

22
122

1

22

2

1
2

211
22

,1
2





























































 















fb
fbfbfb

D

D
fb

DDD

D

fb

D

Dfb tDr
D

t
rD

.     D.67 

Substituting D.67 in eq. D.62 and evaluating in 1Dr : 

 
 

 










































































v
D

fbfb

vv

fb

fb

DwD t
DDD

D

tp

2
1

2

2

2
2

1
2 112









,     D.68 

where: 

2
1





fbD
v ,     D.69 

Recurrence formula of gamma function can be written as: 

 
    111 


 x
x

x .     D.70 

Therefore, eq. D.68 is rewritten as: 

   
  v

D
fb

vv

DwD t
D

v
v

tp





















2

2
2

1 112






.     D.71 

It can be verified that, if there is no anomaly in conductivity in fractal object, i.e., 0  

and a homogeneous reservoir is assumed, i.e., 1 , prior equations converges to the 

generalized radial flow model solution, given in Appendix A.  
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D.5. Approximate solutions at intermediate times: Interaction between porous media 

For intermediate times, the interaction between porous media takes place. For this 

period, transference function can be approximated as: 

   
sH

Asf
D

maD
fD


 1 ,     D.72 

Therefore, eq. D.55 is rewritten as: 

 

 

 

 





















































D

maD
fDD

D

maD
fD

D

maD
fD

wD

H
s

AK

H
s

AK

sH
As

sp

fb



















1
2

2

1
2

2

1

1

2

2
1

2
1

2/3

.         D.73 

For small arguments, Bessel function in the denominator is approximated as: 

     
 

















































2

1
2
21

2
2 222

2














fb

D

D

maD
fD

D

D

maD
fDD

D
H

s
A

H
s

AK

fb
fb

fb
.       

      D.74 

Substituting eq. D.74 in eq. D.73: 

 
 

 

   

 




















































D

maD
fDD

fb
D

D

D

maD
fD

wD H
s

AK

s
D

H
A

sp
fb

fb

fb




















1
2

2

2
2

12

2
1

244
5

2

2
1

22

.      D.75 

     For the 2 fbD  case, the Bessel function in the numerator is approximated as:  

   
























































 D

maD
fD

D

maD
fD H

sA
H

sAK 1
2

1ln1
2

2
0 ,     D.76 

thus, eq. D.75 can be expressed as: 

   
 

 









































sss

H
A

s
ssp D

maD
fD

wD






2ln

1ln

2
1ln

4
1

2
2 .     D.77 

Inverting to Real Space: 
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     On the other hand, if 2 fbD , then the Bessel function in the denominator is 

approximated as: 

 

   
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
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
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



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D

maD
fD
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s
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H
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substituting eq. D.79 in eq. D.75: 

 
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since: 

1 fbD ,     D.81 

then 
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Inverting to real space: 
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D.6. Approximate solutions at large times: Single System Behavior 

At short times, only the fracture network is acting: 

  1sf ,     D.84  

and eq. D.24 is reduced to: 

     
D

DDfbD
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DDfbD

DD
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t
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r
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trp












 ,,,
2

2
 .     D.85 

Applying an analogous procedure as shown in section D.4, the following solution was 

developed: 
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     In order to have simplified solutions relatively easy to use, two cases must be 

defined. The first case is given by the condition 2 fbD . If that is the case, eq. D.86 

and evaluated in 1Dr , it becomes:  

      
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
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







D
DwD t
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2
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
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According to incomplete gamma function convergences, prior expression can be 

expressed as: 

      
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






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D
iDwD t

Etp 22
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2
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
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where: 

  xEi integral exponential.  

For small arguments of the integral exponential, eq. D.88 can be approximated as: 

        





 2ln2ln
2

1
DDwD ttp ,     D.89 

where: 

 Euler’s constant.  

     On the other hand, for 2 fbD  incomplete gamma function can be expressed as: 

     1,
1
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

a
x
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Hence, incomplete gamma function for this problem is approximated as: 
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Substituting D.91in eq. D.86 and evaluating in 1Dr : 
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where: 
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

fbD
v .     D.93 

Recurrence formula states can be expressed as: 

 
    111 


 x
x

x ,     D.94 

Therefore, eq. D.92 is rewritten as: 
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D.7. Convergence to Cinco-Ley and Samaniego (1982)  

This model satisfies the 2 fbD  condition, due to the fractal dimension of fracture 

network, fbD , converges to the Euclidian radial dimension  2fbD  and the anomaly 

in conductivity in fractal object,  , is zero. Therefore, for early times, D.65 reduces to: 

          ln2ln2ln
2
1

DDwD ttp ,     D.96 

where: 

5772156649.0 ,     D.97 

Arraying: 
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     Analogously, for intermediate times eq. D.78 reduces to: 
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2
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
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





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D

maD
fDDDwD H

Attp


 .     D.99 

And, for late times, eq. D.89 becomes: 

    8091.0ln
2
1

 DDwD ttp .   D.100 

 

Summary: 

A double porosity flow model assuming a fractal reservoir and transient interporosity 

transference was developed. Diffusivity equation describing such flow on its 

dimensionless form is given by eq. D.24: 
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     The solution in Laplace Space for the previous equation, assuming infinite reservoir 

and constant flow rate at wellbore is given by eq. D.54: 
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DD ,  

where transference function is defined by eq. D.38: 

        sHFAsf DmaDfD ,,1 .  

     The analytical solution when the fracture network is under expansion (short times) is 

given by eq. D.62: 
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. 

It was shown that two approximations can be obtained, depending on the values of fbD  

and  . If, 2 fbD  the approximation is given by eq. D.65: 

          





 ln2ln2ln
2

1
DDwD ttp . 

The convergence to Cinco-Ley et al.’s model (1982) is based on this case. It results 

when 0 , and consequently 2fbD . The result of this case is depicted in eq. D.98: 

  
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
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

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2
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
D
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ttp .   

On the other hand, if 2 fbD  the approximated solution for short times is given by 

eq. D.71:  
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D
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     For the interaction period two approximations can be obtained, depending on the 

values of fbD  and  . If, 2 fbD  the approximation is given by eq. D.174: 
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Again, the convergence to Cinco-Ley et al.’s model (1982) results when 0 , and 

consequently 2fbD . The result of this case is given by eq. D.99: 
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On the other hand, the 2 fbD  case is given by eq. D.83: 
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     The analytical solution for the single system behavior (late times) is given by eq. 

D.86: 
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Analogously to the previous cases, if 2 fbD  the approximation is given by eq. D.89: 

        
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


 2ln2ln
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1
DDwD ttp . 

The convergence to Cinco-Ley et al.’s model (1982) is based on this case. It results 

when 0 , and consequently 2fbD . The result of this case is depicted in eq. D.100: 

    8091.0ln
2
1

 DDwD ttp .   

On the other hand, if 2 fbD  the approximated solution for short times is given by 

eq. D.95:  

   
  v

D
fb

vv

DwD t
D

v
v

tp





















2

2
2

1 112






.   

*** 
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Appendix E 
Modified Transient Matrix-Response Model (Larsen, 2013) 
 

The approach from Appendix C can be recast in a different form which comes closer to 

the Pseudosteady-state (PSS) model and has a similar late-time behavior, which 

Olarewaju’s model (1996) does not. To this end, note that in a direct comparison of 

standard PSS and transient Euclidean slab models with flow equations, from Warren 

and Root (1963): 
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on the other hand, from Serra et al. (1982): 
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 we can get from the PSS model to the transient model by replacing the “storage term” 

in the matrix by the “flux term” from the matrix. With the same approach we should be 

able to modify the PSS model proposed by Chang et al. (1990) combining it with the 

model proposed by Olarewaju (1996): 
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     Following Laplace transformation and steps similar to those in Appendices C and D, 

the following equation can be derived: 

  fbDD
Dd

D
D

fbD
D

DD

psLsrs
dr
pd

r
dr
d

r
fbe





 







 




 tanh
3

1 ,  E.4 

where: 

 

 


132

DL ,  E.5 

then, for small values of  , we can ignore the first term incide the brackets and it is 

reduced to: 

  fbDD
Dd

D
D

fbD
D

DD

psLsr
dr
pd

r
dr
d

r
fbe 

 tanh
3

1 











.  E.6 

 

*** 
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Appendix F 
Wellbore Storage for Fractal Models 
 

F. 1. Wellbore Storage 

Total flow rate is given by: 

   tqtqq sfwb  ,  F.1 

where: 

 tqwb rate in wellbore, 

and: 

 tqsf sandface rate. 

Multiplying F.1 by oB : 

    osfowbo BtqBtqqB  .  F.2 

Rate in wellbore is given by: 

   
dt

tdp
VcBtq wf

wbwbowb 24 .  F.3 

Storage coefficient is defined as: 

wbwbVcC  ,  F.4 

substituting storage coefficient in F.3 results:  

    osf
wf

o Btq
dt

tdp
CqB  24 .  F.5 

On the other hand, sandface rate is given by the equation: 

 
wrr

fbnfb
n

n
osf r

p
r

kb
Btq

















 1

3





.  F.6 

Therefore, substituting prior equation into F.5: 

 

wrr

fbnfb
n

nwf
o r

p
r

kb
dt

tdp
CqB

















 1

3

24 




.  F.7 

     Dimensionless time is defined as: 

  t
rc

k
t

wtt

fb
D   2 ,  F.8 

where: 

  tmamatfbfbtt ccc   .  F.9 
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Besides, dimensionless pressure in the fracture network is given by: 

    
fbw

fbifbuf
DDfbD rq

trppkaV
trp

 


 1

,
, .   F.10 

Hence, using dimensionless variables definitions: 

 
 

 
D

DDfbD

wtt

fb

fbuf

fbwofb

t
trp

rc
k

kaV
rqB

t
trp































 ,,
2

1








,   F.11 

and, 

   
D

DDfbD

fbuf

fbwofb

r
trp

kaV
rqB

r
trp








  ,,  

.   F.12 

Substituting F.11 and F.12 in F.7, it becomes: 

 
   

1

1
3 ,

241






















D

fbfb

rD

DDfbDn
D

uf

n
n

Dn
wfb

D

DwD

ttuf

fb
D

w

r
trp

r
aV

br
t

tp
caV

r
C 




.   F.13 

According to the fractal fracture network porosity definition: 

n
n

uf
nD

fb b
Var fb





 3
 ,   F.14 

Eq. F.13 becomes: 

 
   

1

,24
1



















D

fb
rD

DDfbD
D

D

DwD
D

wttuf

fb

r
trp

r
t

tp
rcaV

C 




.   F.15 

Dimensionless wellbore storage for fractal reservoirs is defined as: 

  fbD
wttuf

fb
D rcaV

C
C



24
 .   F.16 

Hence: 

   
1

,

1


















 D

DwD
D

rD

DDfbD
D t

tpC
r

trp
r

D

 .   F.17 

 

F. 2. Wellbore Storage in Damaged Zone 

Wellbore Storage in the entire damaged zone in a fractal reservoir is given by: 

   
fb

D
wttuf

fb

D
wettuf

Swell

fbfb rcaVrcaV
CC







2424
 ,   F.18 

Where: 

wer  effective wellbore radius, it is defined as: 



 

Alex R. Valdés-Pérez                                                                                                             Appendix F •  97 

Swell
wwe err  .   F.19 

Substituting effective wellbore radius definition in F.18, the following expression 

results: 

   1
24

  SwellD

fb

D
wttuf

Swell
fb

fb

e
rcaV

CC



.   F.20 

According to dimensionless wellbore storage for fractal reservoirs definition: 

  fbD
wttuf

fb
D rcaV

C
C



24
 ,   F.21 

eq. F.20 becomes: 

 
1

24
  SwellD

DSwellD
wttuf

fb fb

fb
eCC

rcaV 


.   F.22 

Dimensionless Wellbore Storage in the damaged zone in a fractal reservoir is defined 

as:  

  fbD
wttuf

Swellfb
SwellD rcaV

C
C



24
 ,   F.23 

substituting prior definition in F.22: 

  11  SwellD
D

SwellD
SwellD

fbfb eCeC .   F.24 

*** 
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Appendix G 
Constant Rate Solutions with Boundary Effects 
 

In Chapter III the development of a dimensionless diffusivity equation for a double 

porosity fractal reservoir was shown. It is given by: 

         

 
D

DDfbD
D

t

DDmaD
DmaD

fDD
D

DDfbD

DD

DDfbD

t
trp

r

dtHFrpAr
r

trp
rr

trp D





















,

,,,1
,,

0
2

2















, G.1 

and its general solution in Laplace space and approximate solutions in real space, 

assuming an inifite reservoir, was shown in Chapter IV. 

     This appendix shows the solutions of the fractal model when it is affected by radial 

boundary effects, i.e., constant pressure and closed reservoirs. For both cases the initial 

condition is the same as the one used in the infinite fractal reservoir, i.e.: 

  00, DDfbD trp , G.2 

hence general solution for eq. G.1 in Laplace space, considering initial condition given 

by eq. G.2 is: 

       




























DDDDD rsgKcrsgIcrsrp
2

14
2

13
2

1

, . G.3 

where: 

   
2

2





ssf
sg , G.4 

function  sf  is given by: 

     

 













 ssHF
SH

sHFA
sf

DmaD
maD

fbDmaD

DmaDfD

,,1

,,1
, G.5 

and: 

2
2


 . G.6 
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G.1. Constant rate solution of a fractal reservoir model assuming transient interporosity 

Transference and constant pressure boundary 

When a reservoir is affected by a large aquifer or a cap gas, it is subjected to an outer 

constant pressure boundary. Such case is stated and solve as follows: 

inner Boundary:                                                   
 

1
,1






D

DfbD
D t

tp
r  , G.7 

outer boundary:                                                     0, DDD tLp . G.8 

     Applying outer boundary condition, G.8: 

       




























DDDDD LsgKcLsgIcLsLp
2

14
2

13
2

1

, , G.9 

hence: 

      0
2

14
2

13 














 DD LsgKcLsgIc .  G.10 

and: 

  
  









D

D

LsgI

LsgK
cc

2
1

2
1

43







 .  G.11 

     Applying the derivative regarding Dr  in eq. G.3, it can be verified that: 

           













































 DDDDDD
D

DD rsgKrsgrcrsgIrsgrc
dr

srpd
1

2
1

2
1

41
2

1
2

1

3
, .  G.12 

    Applying inner boundary condition: 

           


























 sgKsgcsgIsgc

dr
srpdr

D

DD
D 1

2
141

2
13

,1







  ,  G.13 

therefore: 

       



 ssg

sgKcsgIc 1
1

2
141

2
13 







 .  G.14 

Substituting eq. G.11 into G.14: 

  
          













ssg
sgKcsgI

LsgI

LsgK
c

D

D 1
1

2
14

1
2

1

2
1

2
1

4 
































,  G.15 

hence: 
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    
     

   































 















D

D

LsgI

sgILsgK
sgKssg

c

2
1

1
2

1
2

1

1
2

1

4
1 ,  G.16 

therefore: 

    
     

  

  
  

























D

D

D

D LsgI

LsgK

LsgI

sgILsgK
sgKssg

c

2
1

2
1

2
1

1
2

1
2

1

1
2

1

3
1







































 .  G.17 

     Pressure at wellbore is given by: 

       






 DDwD rsgKcrsgIcsp

2
14

2
13





  ,  G.18 

where constants 3c  and 4c  are given by eqs. G.17 and G.16, respectively.  
 

G.2. Constant Rate Solution of a closed Fractal Reservoir Model assuming Transient 

Interporosity Transference 

When one is dealing with a closed reservoir e.g., an impermeable fault, such case has to 

be stated as follows:  

inner boundary:                                                   
 

1
,1






D

DfbD
D t

tp
r  ,  G.19 

outer boundary:                                                     0,





D

DDD

r
tLp .  G.20 

     Applying the derivative regarding Dr  in eq. G.3: 

           













































 DDDDDD
D

DD rsgKrsgrcrsgIrsgrc
dr

srpd
1

2
1

2
1

61
2

1
2

1

5
, .  G.21  

Applying inner boundary condition in eq. G.21: 

           


























 sgKsgcsgIsgc

dr
srpdr

D

DD
D 1

2
161

2
15

,1







  ,  G.22 

therefore: 

       



 ssg

sgKcsgIc 1
1

2
161

2
15 







 .  G.23 

Applying outer boundary condition to eq. G.21: 
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            0,
1

2
1

2
1

61
2

1
2

1

5 













































 DDDDDD
D

DD LsgKLsgLcLsgILsgLc
dr

sLpd , 

  G.24 

hence: 

  
  









D

D

LsgI

LsgK
cc

1
2

1

1
2

1

65









 .  G.25 

Substituting 5c  into eq. G.23 results: 

    
     

   

































 















D

D

LsgI

sgILsgK
sgKssg

c

1
2

1

1
2

11
2

1

1
2

1

6
1 ,  G.26 

and: 

  

    
     

     























 D
D

D

D

LsgI
LsgI

sgILsgK
sgKssg

LsgK
c

1
2

1

1
2

1

1
2

1
1

2
1

1
2

1

1
2

1

5











































 .  G.27 

Pressure at wellbore is given by: 

       






 DDwD rsgKcrsgIcsp

2
16

2
15





  ,  G.28 

where constants 5c  and 6c  are given by eqs. G.27 and G.26, respectively.  

 

*** 


