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Abstract 

History matching is an important step in reservoir simulation study. The objective is to 

validate a reservoir model before it is used for prediction. In conventional way, people do 

history matching by manually adjusting uncertain parameters until an acceptable match is 

achieved. As a consequence, history matching becomes a delicate problem and consumes a 

lot of time. Furthermore, in several cases it is hard to obtain a match by manual process. 

In order to have a more efficient history matching process, many researchers conducted 

studies by involving a computer based program to obtain a match. The method is normally 

called assisted history matching (AHM). One of the AHM methods involves the use of 

experimental design, proxy model and optimization algorithm. The basic concept of this 

method is to use proxy model which is generated from set of experiments to replace reservoir 

simulation in the optimization process. This method has practical application in the industry. 

However, without a proper understanding, using this method to solve a history matching 

problem would be as difficult as conventional way.  

In this master thesis, an extensive study of AHM methodology is performed in order to have 

a comprehensive understanding on how the methodology solves a history matching problem. 

The methodology limitations are also identified so that proper improvements can be carried 

out. The main improvements are the introduction of average proxy error in objective function 

and the proposal of selecting response variables to become matching variables based on the 

quality of proxy model.  

This study also investigates different experimental design methods, proxy models and global 

optimization algorithms. In experimental design subject, complete CCF design and fractional 

CCF design are elaborated. Two types of proxy models e.g. kriging and second polynomial 

equation were investigated. Four optimization algorithms e.g. simulated annealing, direct 

search, global search and genetic algorithm are analyzed to select the best performance 

algorithm.  In the final stage, the improved methodology was used to solve history matching 

problem of two artificial study cases. 
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Chapter 1  

Introduction 

1.1 Study Background 

Reservoir simulation plays an important role in the petroleum industry. Its common 

applications are calculation of petroleum reserves and prediction of petroleum production. 

Since reserves and production profiles are the two most important figures in the 

petroleum business, it is important that reservoir simulation gives output with an 

acceptable degree of accuracy. To achieve an accurate prediction of both reserves and 

production profiles, the reservoir model used in the simulation must be reliable. 

The only way of obtaining a reliable reservoir model is by doing history matching. 

History matching is a tuning process of reservoir model by adjusting values of uncertain 

reservoir parameters in order to achieve a better match between simulated and 

observation data. In conventional history matching, the engineer adjusts the value of 

uncertain reservoir parameters manually by trial and error until a sufficient match is 

achieved. In most cases, history matching is a delicate, exhaustive and time consuming 

process and furthermore in some cases it is difficult to achieve an acceptable match with 

the conventional approach.  

Assisted History Matching (AHM) consists of optimization techniques which 

automatically adjust uncertain reservoir parameters until stopping criteria are achieved. 

The aim is to make history matching less time consuming and more reliable. The AHM 

procedures studied in this work involve the use of experimental design, proxy model and 

optimization algorithm as the tools for finding the matching solutions.  It is important that 

the engineer has a comprehensive understanding of the AHM methodology before they 

use it to solve history matching problem. Therefore, in this study a comprehensive 

investigation of the methodology is emphasized.  

 

1.2 Study Objectives 

This study is set to achieve the following objectives: 

a) Basic understanding of the concepts involved in the methodology 
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b) Identify limitations of the existing workflow so that some improvements can be 

carried out 

c) Investigate different types of experimental design methods, different proxy models 

and different global optimization algorithms 

The result of this study will be a comprehensive explanation of the methodology, some 

improvements of the existing workflow enabling acceleration of the matching process, the 

selection of the best proxy model and the global optimization algorithm. 

 

1.3 Thesis outlines 

This thesis report consists of six chapters. Chapter 1 includes discussion of the general 

study background, the objectives to be achieved and the outline of the thesis report. 

Underlying theory is covered in chapter 2. In this chapter, the discussion begins with the 

review of published studies in the AHM area. Then it is continued with the explanation of 

three main components in AHM methodology e.g. experimental design, proxy model and 

global optimization algorithm. 

Chapter 3 comprises detail explanation of AHM methodology used in this study. In 

addition, an assisted history matching toolbox which was developed to conduct this study 

is also explained in this chapter. 

Chapter 4 discuses about an artificial 3D reservoir model which was developed as history 

matching cases. These cases will be matched by using the proposed AHM methodology. 

This chapter also includes detail information about uncertain parameters used in history 

matching cases. 

Discussions of the results are further elaborated in chapter 5. This chapter covers a deep 

investigation of the methodology, improvements of the existing workflow and 

comparison analysis of different experimental designs, proxy models and global 

optimization algorithms. In addition, the matching process of the two study cases is also 

shown in this chapter. Summary, conclusions and possible future works will be elaborated 

in the chapter 6.  
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Chapter 2  

Underlying Theory 

2.1 Assisted History Matching 

Many papers have been published in the area of assisted history matching. Generally, 

there are two types of assisted history matching methodology. First method is called 

“direct” assisted history matching and second method is called “indirect” assisted 

history matching.  

In “direct” assisted history matching, every step in the optimization process corresponds 

to one reservoir simulation. The objective function value of every solution given at each 

step is directly evaluated by reservoir simulation. The advantage of using this approach is 

that the solutions which give minimum objective function are close to the matching 

solution, but the main disadvantage is that it needs a lot of time. Figure 2.1 is an example 

of direct AHM workflow. From that figure, it is shown that this method needs to run 

reservoir simulations simultaneously until the minimum objective function value is 

achieved.  

The main tool in direct AHM method is optimization algorithm e.g. evolutionary 

algorithm, direct search algorithm, simulated annealing, etc. Many authors have done 

researches using this approach with the main objective of developing an optimization 

algorithm which is able to minimize the objective function with minimum number of 

iterations [1, 2, 3, and 4].  

In this study, we will investigate further indirect assisted history matching. This method 

consists of 3 main components: experimental design, proxy model and optimization 

algorithm. Figure 2.2 is an example of indirect AHM workflow. The basic concept of this 

method is that there is no direct involvement of reservoir simulation in the optimization 

process. The role of reservoir simulation in the optimization process is replaced by proxy 

model. Therefore, the optimization process will take significantly less time. The 

disadvantage of this method is that the optimum solution doesn’t necessarily give an 

acceptable match; consequently the process has to be repeated until an acceptable match 

is achieved.   
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Figure 2.1 Workflow of “direct” assisted history matching 

 

 

Figure 2.2 Workflow of “indirect” assisted history matching with proxy model 

Experimental design is used to generate initial experiments. The initial experiments are 

the basis of creating a proxy model. The proxy model will replace reservoir simulation in 

the optimization process. The optimization algorithm searches optimum solutions which 

give minimum objective function. However, these optimum solutions do not necessarily 

give an acceptable match and the optimization has to be repeated with an improved proxy 

model. The proxy model is improved by adding the optimum solutions to the initial 

experiments. This recursive procedure is stopped when an acceptable match is achieved. 

Related works about indirect AHM have been published in SPE paper [5, 6, 7, 8, and 9] 

where each researcher focused on different subjects of this method. Baoyan Li and F. 

Friedmann studied proxy model [9] and L. den Boer et al used experimental design 
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method to generate probabilistic of static and dynamic uncertain parameters as to obtain a 

match [8].  

 

(a)     (b)  

 

                                               (c) 

Figure 2.3 Central composite design (CCD) consists of 3 types of structure (a) circumscribed (CCC), (b) inscribed 

(CCI) and (c) face centered (CCF) 

 

2.2 Experimental Design 

Experimental design or design of experiments (DOE) is a method of collecting any 

information where variation is present. The objective is to understand the impact of each 

parameter to the observed model. DOE in its application for the history matching problem 

has been used for another purpose in addition to the previously mentioned. The 

application of DOE in history matching problem is explained as follow: 

a) Uncertain parameters screening 

Reservoir model used in the simulation study is made up by many subsurface 

parameters which are uncertain. It is not practical to include all uncertain parameters 

in the history matching process, therefore only the most sensitive uncertain 

parameters are involved.  
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In order to select the most sensitive parameters, a screening process is required. DOE 

together with the proxy model of polynomial equation are normally used as a 

screening tool. Details of the application of DOE and proxy model in screening 

process will be discussed further in chapter 3. 

b) Assisted history matching 

In assisted history matching, DOE and proxy model are used to replace the role of 

reservoir simulation in the optimization process.  

There are several published methods for designing experimental sampling. Table 1 and 2 

show different design methods and its number of experiments. The design selection 

depends on the study purposes and also the available resources. The common rule is that 

higher number of experiments will result in more accurate proxy model. 

2.2.1 Cubic Centered Face (CCF) 

CCF is one of the design structures involved in the central composite design 

(CCD). There are three types of structure in central composite design e.g. 

circumscribed (CCC), inscribed (CCI) and face centered (CCF) as shown in 

figure 2.3 [11]. From that figure, it is clearly shown that only CCF fits with the 

purpose of this study. CCD requires larger space than the specified boundaries 

while CCI explores less space than the specified boundaries.  

 

Table 2.1 Two types of CCF design and its number of experiments 

 

Table 2.2 Plackett-Burman design 
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Generally, CCF design consists of a 2
k
 full factorial (or 2

k-p
 fractional factorial 

with 1/2
p
 fraction) with nf runs, 2k axial or star runs and 1 center run with k is the 

number of parameters [10]. An example with k=5, for complete CCF design there 

are 2
5
 runs plus 10 star runs and 1 center run, therefore by total there are 43 

experiments. For the case of fractional CCF with ½ fractions the number of 

experiments is calculated as follow, 2
5-1

 = 16 runs plus 10 star runs and 1 center 

run, therefore by total there are 27 experiments.  

2.2.2 Plackett-Burman 

Plackett-Burman is another design method which is used in this study.  This 

design is two level factorials design. For studying k= N-1 variables in N runs, 

where N is the multiple of 4 e.g. N = 12, 16, 20, 24. Figure 2.4 shows the example 

of the design sampling with 11 parameters. Plackett-Burman is a dedicated design 

for fitting first order model. It is aimed to find the influence of the main effect of 

each parameter. It requires less number of experiments for large number of 

parameters involved. For the other experimental design methods are provided in 

the appendix.  

 

Figure 2.4 sampling points of Plackett-Burman design with 11 parameters 

2.3 Proxy Model 

The results from the experiments are then modeled with an empirical equation. This 

equation can be used for at least two purposes. First, the equation generated can be used 

to determine the sensitivity of each parameter and it is normally applied in parameter 
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screening process. Second, the empirical equation can also be used to replace real 

experiment/simulation in order to predict the response of non sampling points. 

In this study, there are two types of empirical equation that will be investigated e.g. 

polynomial equation and kriging equation. By the end of this study, one of the equations 

will be recommended as the proxy model in the AHM workflow. 

2.3.1 Polynomial Equation 

Equation 2.1 and 2.2 are two types of polynomial equation. Equation 2.1 is first 

order polynomial equation while equation 2.2 is second order polynomial 

equation.  
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The values of coefficient βi, βj, βkl are determined through least square method 

which minimizes the sum of the deviations between the predicted value and the 

real value [12]. Index “n” in equation 2.1 and 2.2 is the number of parameters. 

2.3.2 Ordinary Kriging Equation 

Kriging is a popular method to solve spatial prediction problem. It is commonly 

used for predicting the value of non sampling point. Equation 2.4 shows the 

kriging system where the property’s value of non sampling points (s0) is a 

weighted average of the property’s value of sampling points (si) [13]. Distance is 

used as variogram model. Details equation can be seen in appendix. 

…………………………………………… (2.3) 

For the application in AHM, some adjustments have to be made especially at the 

parameters scale. The scale of the uncertain parameters has to be normalized with 

the same maximum and minimum values as it is the in real spatial problem. 

 

2.4 Global Optimization Algorithm 

Optimization algorithm has an important role in solving history matching problem. It 

helps the engineer to find the solutions which could give an acceptable match to the 

historical data. However, sometimes, several algorithms are trapped in the local minima 

before they could find the matching solutions. Therefore, in this study, different 

)()(
1

0

^





n

i

ii sZwsZ



9 
 

algorithms are investigated to see which algorithm is able to find the matching solutions 

without being trapped in the local minima.  

Four global optimization algorithms are selected in this study e.g. simulated annealing, 

genetic algorithm, direct search, and global search algorithm. These algorithms can be 

found in the Global Optimization Toolbox MatLab™. 

2.4.1 Simulated Annealing Algorithm 

Simulated annealing is an algorithm for solving constrained or unconstrained 

optimization problems. The basic concept of simulated annealing is a model of 

heating material and then slowly lowering the temperature to decrease defects, 

thus minimizing the system energy [14]. 

The main parameter in this algorithm is temperature. Temperature significantly 

influences the algorithm in a way such that not to get trapped in local minima. At 

the beginning of the program an initial temperature is set, then cooling rate is 

applied in order to reduce the temperature so that it can achieve a convergence.  

…………………………………….. (2.4) 

…………………… (2.5) 

Figure 2.5 shows the workflow of simulated annealing algorithm. New solution 

which is random neighboring points of current solutions is generated in order to 

compare their objective function value. If the objective function of new solution is 

smaller than current solution then this new solution becomes best solution so far. 

Nevertheless, in order to avoid to get trapped in local minima, current solution 

could still become best solution if the evaluation criterion of the probability 

function is met (equation 2.9 and 2.10). For the next iteration temperature is 

reduced by specified cooling rate.  

2.4.2 Genetic Algorithm 

Genetic algorithm is a powerful, domain independent, search technique that was 

inspired by Darwinian Theory [15]. Genetic algorithm is population based 

algorithm which means that at each iteration more than one solution are created. 

The basic concept of this algorithm is natural selection that strong individuals are 

more survive and will also inherit their strong characteristics to their offspring.  

There are two main genetic operators in this algorithm e.g. crossover and 

mutation. Crossover is a genetic operator which provides mechanism for the 

offspring to inherit characteristics of both parents. Mutation is a probabilistic 

TFObjevalueRandom / 

)()( CurSolFObjNewSolFObjFObj 
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based operator, which happen to some individuals in population. By having 

mutation, new characteristics are introduced into the population which they don’t 

inherit from their parents. Genetic algorithm scheme is shown in figure 2.8 [16]. 

 

 

Figure 2.5 Simulated annealing algorithm workflow 

2.4.3 Direct Search Algorithm 

Another global optimization algorithm is direct search algorithm. Mechanism in 

direct search algorithm is that it searches a set of points around the current points 

which gives lower value of objective function than current point. At each step, the 

algorithm searches a set of points, called a mesh, around the current point. The 

mesh is formed by adding the current point to a scalar multiple of a set of vectors 

called a pattern. If the pattern search algorithm finds a point in the mesh that 

improves the objective function at the current point, the new point becomes the 

current point at the next step of the algorithm [16]. 

Figure 2.6 shows a current solution (red dot) and the rectangle which consists of 

four possible solutions (black dot) forms a mesh network. In each step, possible 

solutions in the current mesh are evaluated. The best solution will become current 

solution for the next iteration. Also at each iteration mesh size is always updated, 

basically if the current mesh could give a better solution than the current solution 

then the mesh size will be bigger in the next iteration, but if a better solution could 

not be found in the current mesh then the mesh size is reduced in the next 

iteration. 
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Figure 2.6 Illustration of pattern search with mesh 

 

2.4.4 Global Search Algorithm 

Global search algorithm has more complex algorithm than the three previous 

algorithms. Basic concept of global search is actually local solver, different trial 

points are generated using scatter search algorithm [17], these trial points later 

becomes candidate of starting point for local solver if they are likely to improve 

the best local minimum so far [14]. Figure 2.7 [14] is a diagram on how global 

search algorithm works. Fmincon is local solver which is used in global search 

collaborated with scatter search algorithm.  

 

Figure 2.7 Global search algorithms workflow 
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Figure 2.8 Genetic algorithm 
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Chapter 3  

Methodology Description 

3.1 Methodology Workflow 

Figure 2.2 shows a general workflow of assisted history matching that is investigated in 

this study. There are at least 3 major components in the workflow. First is generation of 

experimental design, second is generation of proxy model and the last component is 

optimization process.  

3.1.1 Initial Experiments 

Initial experiments are required to build a proxy model. In AHM, common 

methods used are CCF, Box Behnken and Latin Hypercube design. Initial 

experiments play an important role in determining the quality of proxy model. 

Basically, more initial experiments would result in a better proxy model. In this 

study, two types of CCF design; fractional CCF and complete CCF are 

investigated. 

3.1.2 Proxy Model 

Proxy model replaces the role of reservoir simulation in the optimization process. 

Therefore, an accurate proxy model is required to have a good result from the 

optimization. Several methods that can be used to generate a proxy model are 

polynomial, kriging, EnKf and etc. In this study, only kriging and polynomial 

proxy model are further researched.  

Proxy model is basically built from set of empirical equations, either is kriging, 

polynomial or other types of equation. The number of empirical equations required 

to build proxy model is depends on the number of response variables and time 

steps used. As an illustration, in this study there are 12 response variables used in 

history matching process with 72 number of time steps, so there are 864 empirical 

equations required. 

3.1.3 Objective Function 

In order to find a matching solution, we need to define an objective function. 

Equation 3.1 shows the objective function used in this study. The value of 

objective function shows an average percentage of error of all matching variables 
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and time steps. The consequence of using this objective function is not to involve 

zero observation data.  
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3.1.4 Global Optimization Algorithm 

There are many available optimization algorithm but not all of them are powerful 

enough to find the most optimum solution. Some algorithms are often getting 

trapped in local minima before it could find the optimum solution. In this study, 

four algorithms that are classified as global optimization algorithm in MatLab 

Toolbox are researched further. Those algorithms are simulated annealing, direct 

search, global search and genetic algorithm.  

 

3.2 Assisted History Matching Toolbox 

In order to conduct this study, a computer program is used to run the whole workflow. 

Below are the main steps that need to be developed in the program: 

a. Generation of experimental sampling 

b. Generation of simulation input files 

c. Importing simulation results and observation data 

d. Generation of proxy model 

e. Generation of objective function 

f. Optimization 

In order to do steps from point a to e, an Excel VBA based toolbox was developed. This 

toolbox is able to generate sampling points from some design methods e.g. complete 

CCF, fractional CCF, Latin hypercube, Box Behnken and Plackett-Burman. After 

sampling points have been generated, the next step is to write simulation input file for all 

those experiments. It would be time-consuming if the simulation input file is written 

manually for every experiment. Therefore, this step is done automatically in the toolbox. 

This toolbox also contains a program to import and format simulation results and 
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observation data before they are being processed. The main part of this toolbox is to 

generate proxy model from previously entered simulation results and to create an 

objective function. This toolbox is able to build both kriging and polynomial proxy 

model. The optimization of the objective function is done in MatLab by using Global 

Optimization Toolbox.  
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Chapter 4  

Reservoir Model Description 

4.1 Reservoir Model 

In order to test methodology performance, an artificial reservoir model was developed as 

study case. Figure 4.1 shows a snapshot of the reservoir model. This model has grid 

dimension of 25 x 25 x 10 with total number of cells are 6250. There are 4 production 

wells and 3 injection wells in this model. All of the wells were operated since 1
st
 January 

2007. History matching should be done in this model with the observation data from 1
st
 

January of 2007 until 1
st
 December 2012 or 72 time steps.  

The model consists of 3 phases; oil, gas and water and no capillary pressure is introduced. 

This model is simulated in black oil simulator.  The observation data are oil rate, water 

cut, gas oil ratio and well bottom-hole pressure of all wells. In matching process, well oil 

rate is a constrained variable. Set of parameters values are used to generate observation 

data. These values are then called as true solution which will be explained later in this 

chapter. 

 

Figure 4.1 Reservoir model snapshot 

 

4.2 Uncertain Parameters 

There are 19 uncertain parameters defined in this model as shown in table 4.1. The 

uncertain parameters consist of 5 faults multiplier, multiplication factor of permeability in 
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X direction in 5 regions, porosity multiplication factor in 4 regions and 5 groups of 

multiplication factor of permeability in Z direction. Figure 4.2 shows the location of all 5 

faults. Figure 4.3 and 4.4 shows region definitions of permeability in X direction and 

porosity respectively. Table 4.2 shows how groups of permeability in Z direction are 

classified. All of the region definition, grouping of layer and fault definition were made 

without any specific reason in geological point of view. The definition of uncertain 

parameter was purely to only generate set of parameters for history matching purpose. 

 

Table 4.1 Uncertain parameters with their boundary values 

 

Figure 4.2 Fault definitions 

Fault 1

Fault  2

Fault  3

Fault 4

Fault 5
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Figure 4.3 Region definitions of multiplication factor of permeability in X direction 

 

Figure 4.4 Region definitions of porosity multiplication factor  

 

Table 4.2 Group of multiplication factor of Permeability in Z direction 

 

4.3 Selection of Uncertain Parameters 

From 19 uncertain parameters which are defined in the previous part, only at maximum 

10 uncertain parameters are involved in history matching case study. This is aimed to 

avoid a complex history matching case when all of the uncertain parameters are involved. 

However, in order to have robust case study, only the most sensitive parameters are 

selected. Therefore sensitivity study was done to select 10 parameters out of 19 uncertain 

parameters.  

The method used in sensitivity study is response surface method. Placket-Burman design 

was used to generate sample of experiments and first degree polynomial equation was 

Region 1

Region 2

Region 3

Region 5

Region 4

Region 1

Region 2

Region 3

Region 4

Region 4
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used to model the response as shown in equation 4.1. It has to be noted that the scale of 

all uncertain parameters have to be normalized so that the coefficient value of one 

parameter can be compared with the others. The response variables are cumulative 

production of oil, gas and water in both well and field level.   





n

i

iio xY
1

 ………………………………………………. (4.1)  

The basic concept of determining the most sensitive parameter in the response surface is 

by looking at the value of its coefficient in the equation. It is possible that one parameter 

has the biggest coefficient value in a particular time step but not in the other time steps at 

a particular response variable. It is also possible to find one parameter which has the 

biggest coefficient in one response variable but not in the other response variables at a 

particular time step. Therefore, to account for those variations, we need to involve all 12 

response variables (WOPT, WWPT and WGPT of all 4 production wells) in well level 

and all 3 response variables (FWPT, FOPT and FGPT) in field level. The coefficients 

value of each uncertain parameter need to be normalized by dividing it with the highest 

coefficient value within the equation. The normalized coefficients from one response 

variable now can be compared with the other response variables. The sum of those 

normalized coefficient are shown in figure 4.5. In that figure, the sum of normalized 

coefficient for different time steps is also provided. 

Selection of 10 most sensitive uncertain parameters is based on the sum of normalized 

coefficient as shown in figure 4.5. There is a consistent profile between well level and 

field level so that we can conveniently select 10 most sensitive uncertain parameters. The 

selected 10 most sensitive uncertain parameters are tabulated in table 4.3. These uncertain 

parameters will be used in history matching study case. 

 

Table 4.3 10 most sensitive uncertain parameters 
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(a)                                                                              (b) 

Figure 4.5 Sum of normalized coefficient at different time step, well level (a) and field level (b) 

 

4.4 Study Case Definition 

In this part we will formulate two history matching study cases. First case is a simple 

history matching problem. It involves only 5 uncertain parameters and the other 14 

parameters are assumed to be correctly predicted. Table 4.4 shows those 5 uncertain 

parameters and the true solution in the table is uncertain parameters value to generate 

observation data.  

Second case is a more complex history matching problem. It involves 10 uncertain 

parameters and the other 9 parameters are assumed to be correctly predicted. Table 4.5 

shows those 10 uncertain parameters and the true solution in the table is uncertain 

parameters value to generate observation data.  
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Table 4.4 Uncertain parameters of Case 1 

 

Table 4.5 Uncertain parameters of Case 2 
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Chapter 5  

Results Discussions 

This chapter consists of three main discussion topics. The first discussion is methodology 

validation which comprises comparison of several methods in experimental design, proxy 

model and global optimization algorithm. Second discussion is about the workflow 

improvements which are aimed to accelerate the matching process.  The matching results of 

the two study cases are explained in the last discussion topic.  

5.1 Methodology Validation 

The three main concepts which are introduced in the previous chapter e.g. experimental 

design, proxy model and global optimization algorithm will be studied further in this 

section.  

5.1.2 Selection of Experimental Design Method 

Initial experiments are the basis for creating a proxy model. A proxy model is 

represented as a second degree polynomial equation. For the purpose of this study, 

it is necessary to have a good proxy model. Therefore, two methods of 

experimental design are studied in order to investigate the accuracy of proxy 

model generated from each method. 

R-squared and residual errors are used as the main criteria to assess the quality of 

proxy model. The criteria can be explained as follow: 

a. R-squared 

The R squared value is a measure of how well observed outcomes are 

reproduced by the model, as the proportion of total variation of outcomes 

explained by the model. The closer the magnitude of r squared to unity then 

the more the correlation between proxy model and real simulation results. 

b. Residual error 

In addition to r squared criteria, an accurate proxy model would also have 

residual error close to zero. The equation of r squared and residual error are 

presented in equation 5.1 and 5.2. 
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Complete CCF design is used in Case 1 which results in 43 initial experiments. 

For Case 2, because it involves 10 uncertain parameters, fractional CCF design is 

employed in order to have a practical number of initial experiments (149 initial 

experiments). The proxy models were generated for 12 response variables and 72 

time steps. 

Figure 5.1 and 5.2 show the distribution of r squared and residual error of both 

cases. It is shown that r squared distribution of complete CCF design is closer to 

unity than fractional CCF design. In addition, complete CCF design would also 

generate a proxy model which has smaller residual error than fractional CCF 

design. Therefore, complete CCF design would result in a better proxy model than 

fractional CCF design. 
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(b) 

Figure 5.1 R-squared distributions of complete CCF (a) and fractional CCF (b) 

 

(a) 

 

(b) 

Figure 5.2 Residual error distributions of complete CCF (a) and fractional CCF (b) 
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5.1.3 Selection of Proxy Model 

The quality of proxy model also depends on the fitting regression model. In this 

study there are two proxy models that are investigated e.g. second degree 

polynomial equation and ordinary kriging equation. The model which results in a 

better proxy model will be used further for matching process.  

In order to select the best proxy from the two models, a comparison to the 

simulator is conducted. The true solution of the uncertain parameters in Case 1 

and Case 2 are entered into second degree polynomial equation and kriging 

equation. The profiles generated from the two equations are then compared with 

the result from simulation.  

Figure 5.3 and 5.4 shows plot of the two equations in comparison to simulation 

result. A good proxy model is indicated if it approaches the simulation result. 

From all the figures, plots of kriging show a better proxy model than second 

degree polynomial equation, even though in figure of Case 2 both kriging and 

polynomial equation have more deviation from the simulation. This deviation is 

due to the selection of the initial experiments design which is described in the 

previous part. 

 

(a) 

 

(b) 

Figure 5.3 Comparison of simulation, polynomial and kriging proxy model of Case 1, FGOR (a) and WWCT 
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(a) 

 

(b) 

Figure 5.4 Comparison of simulation, polynomial and kriging proxy model of Case 2, FGOR (a) and WWCT 

PROD1 (b) 

 

5.1.4 Selection of Global Optimization Algorithm 

Another important aspect in the assisted history matching is selection of 

optimization algorithm. Four global optimization algorithms e.g. simulated 

annealing, direct search, genetic and global search algorithm are studied in order 

to select the best algorithm.  

As explained in the previous part, none of the proxy model would result in 

identical profiles with simulation (zero residual error). Therefore before the 

optimization is performed, the proxy model should be firstly corrected. In order to 

correct the proxy model, simulation of the true solution is entered in the initial 

experiments which build the proxy model. By doing this correction, we could 
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expect that the solution generated from the optimization has to be close to the true 

solution. 

Algorithm properties 

In general, most properties of all algorithms are set as their default value in 

MatLab Global Optimization Toolbox. Below are some changes that were made in 

this study: 

a. Maximum iteration (or generations for genetic algorithm) is 1000 

b. Number of population for genetic algorithm is 50 

c. Minimum changes of objective function value is 1e-6 

Each of algorithms is given five attempts to find the true solution. In order to have 

a robust optimization process, the initial solution is set to be random. The 

summary of the optimization process are shown in Table 5.1 and 5.2. The main 

comparison parameters are the value of objective function and the optimization 

time. The best algorithm is the one which could generate smallest objective 

function in a short processing time.  

The optimization process of Case 1 can be seen in table 5.1. Global search 

algorithm gives the least value of objective function around 0.0001 but it needs 

200 second for one attempt of optimization. Direct search algorithm also generates 

a small objective function less than 0.01 but with shorter processing time (27 

seconds) than global search algorithm. The optimization process of direct search 

algorithm stopped because the changes in objective function have reached the 

minimum value. From five optimization attempts done by genetic algorithm, only 

one generates a solution which is close to the true solution. Genetic algorithm 

needs 46 seconds of optimization process before it stopped because of reaching 

the minimum change of objective function. Simulated annealing algorithm 

appears to be the worst since none of the generated solutions are close to the true 

solution. It stopped the optimization process because maximum number of 

iteration is reached. This is an indication that the convergence rate is slow.  



28 
 

 

Table 5.1 Optimization process summary of Case 1 

The optimization process of Case 2 with 10 uncertain parameters appears is more 

complex than Case 1 where only 5 uncertain parameters are involved. Table 5.2 

shows the optimization process summary of Case 2. Only direct search algorithm 

which is able to find small objective function and provide solutions which are 

close to the true solution. The optimization time required for direct search 

algorithm to find the solution is 62.2 seconds. It is longer than Case 1 due to the 

complexity of Case 2. 

From the above facts, it is recommended to use direct search algorithm for the 

history matching. It appears to be the most effective algorithm able to find the true 

solution. Global search algorithm could only find the true solution in a less 

complex case even with longer optimization time. Genetic algorithm for the above 

case is often trapped in local minima since it always reaches the minimum change 

of objective function before it could find the true solution. Simulated annealing 

algorithm shows a slow convergence rate with the fact that it always reaches 

maximum number of iterations before it could find the true solution.  
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Table 5.2 Optimization process summary of Case 2 

 

5.2 Improvement of the Existing Workflow 

Previous discussion shows that the most important point in this methodology is to have an 

accurate proxy model. Once accurate proxy model has been created, direct search 

algorithm would be able to find the true solution. 

The use of kriging equation has been introduced in the previous section in order to have a 

better proxy model. In addition, complete CCF is always a recommended design if there 

is no practical issue of simulating many experiments. 

5.2.1 Selection of Response Variables 

The selection of response variable is based on the performance of the proxy 

model. Response variables which have an accurate proxy model will be selected 

as the matching variables.  

Since the quality of kriging proxy model can’t be measured from the initial 

experiments, the selection is based on second degree polynomial equation. Having 

known from the previous explanation that kriging proxy model has a better quality 

than second degree polynomial equation, the selection based on polynomial 

equation is valid. The average residual error distribution of initial experiments is 

used as the assessment criteria of proxy model. Equation 5.1 shows the formula to 

calculate average residual error.  
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Below are examples of the selection process of Case 1 and Case 2: 

a. Case 1 

At the beginning there are 12 response variables which will be used as 

matching variables. Those variables are WWCT, WGOR and WBHP of all 

four production wells with the same weighting factor. Average residual error 

is calculated for 72 time steps. Figure 5.5 shows the distribution of average 

residual error of 43 initial experiments. Most of the experiments have small 

average residual error. Therefore, all the 12 response variables could be used 

as the matching variables. 

b. Case 2 

The same 12 response variables are used in Case 2 as candidates of matching 

variables. The weighting factor of all of response variables is set to be equal 

and average residual error is calculated for 72 time steps. As shown in figure 

5.6, the average residual error is big. Therefore in Case 2, selection process is 

conducted in order to choose only those response variables which have a better 

proxy model.  After analyzing average residual error of individual response 

variable, only WBHP of production well 1 and production well 4 are selected 

as matching variables since their average residual error is small, as shown in 

figure 5.7.   

5.2.2 Modified objective function 

The selection process in the previous part is aimed to select only responses 

variables which are accurately predicted by the proxy model. However, the proxy 

model still has some errors. This error has to be reduced in order to have a better 

proxy model.  
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Figure 5.5 Average residual errors of 12 response variables of Case 1 

 

Figure 5.6 Average residual errors of 12 response variables of Case 2 

 

Figure 5.7 Residual error distributions of WBHP PROD1 and WBHP PROD4 of Case 2 

 

To improve the quality of kriging proxy model, additional experiments are 

required.  These additional experiments are supposed to be close to the matching 

solution so that the proxy model could predict accurately the response variables of 

matching solution.  
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These additional experiments are obtained from the optimization process. There 

are two options which can be used to generate additional experiments that are 

explained as follow: 

a. Optimization process without proxy error 

In this option, optimization is aimed to minimize the previously defined 

objective function. By setting different initial solution in the optimization 

process, different optimum solutions could be obtained even though there is 

always a possibility of getting identical solutions. This option has been 

introduced in the existing methodology. 

b. Optimization process with proxy error 

Knowing the proxy model still has some errors; minimizing the objective 

function might not generate solutions which are close to the matching solution. 

Therefore, a modification is required in the objective function by introducing 

average proxy error term. The modified objective function is shown in 

equation 5.2. The optimization process now can generate different solutions by 

minimizing new objective function with different inputs of average proxy 

error.  
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In real case, since the true solution is unknown, the true value of average proxy 

error is also unknown. The true average proxy error is the error of proxy model 

with respect to the true solution. Figure of average residual error distribution of 

initial experiments can be used as the basis for estimating the true average proxy 

error. From figure 5.5, the true average proxy error of Case 1 is expected to be in 

the range between 0 to 15%. From figure 5.7, the true average proxy error of Case 

2 is expected to be in the range between 0 to 16%.  
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A study is performed to determine which option reduces the true average proxy 

error most. Case 2 is selected as case study. The true average proxy error of 

WBHP PROD 1 and WBHP PROD4 from the initial experiments is 

6.2%.Optimization process is performed with and without introducing average 

proxy error in objective function. The optimization is aimed to generate 6 

solutions in each option. Table 5.3 shows values of average proxy error which 

form the input set of the objective function. 

 

Table 5.3 Average proxy errors used in the objective function 

 

Table 5.4 True average proxy error after additional experiments 

Table 5.4 shows how the true average proxy error is reduced after the additional 

experiments. It is clearly concluded that by introducing residual error in the 

objective function, the solutions generated from the optimization are able to 

improve proxy model more than if no residual error is introduced in the objective 

function. 

After all of the above analysis, the existing workflow of assisted history matching 

is modified as shown in figure 5.8. The main modifications are selection of 

matching variables, introduction of average proxy error in objective function and 

preference of using kriging proxy model and direct search algorithm in the 

optimization process.  These changes are highlighted in blue boxes.  
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Figure 5.8 New indirect assisted history matching workflow 

 

5.3 History Matching Results 

The new workflow is used to solve two history matching cases. The first case is a simple 

history matching problem with only 5 uncertain parameters involved. If the methodology 

successfully solves the first case then it will be tested with Case 2 with 10 uncertain 

parameters. Detail of both cases can be seen in chapter 4. 

5.3.1  Matching of Case 1 

To solve Case 1 complete CCF design is used to produce initial experiments. This 

design generates 43 initial experiments with 5 uncertain parameters. Both kriging 

and second polynomial proxy model are constructed from the initial experiments. 

Residual analysis of second degree polynomial proxy model is then used as the 

basis of selection of matching variables. From the previous, all of the 12 response 

variables can be used as matching variables. Those 12 matching variables are 

WBHP, WGOR and WWCT of all four production wells. The selected range of 

residual error to be applied in objective function is from 0 % to 15%. For the 

optimization process, kriging proxy model and direct search algorithm are used.  

An acceptable match is obtained after seven matching steps with 34 additional 

simulation runs. Plots of history matching are shown in figure 5.9 to figure 5.12. 

As shown in that figure, the best matching solution almost has an identical profile 
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as the observation data. The best matching solution and the true solution are 

shown in table 5.5. It is seen in that table that the best matching solution is close 

to the true solution.  

Another interesting point is shown in table 5.6. This table shows the evolution of 

the true residual error in every matching step. Initially kriging proxy model has 

14.5% true average proxy model and with the inclusion of average proxy error in 

the objective function, the true average proxy error is reduced to 2.8% in 7
th

 

matching step. The best matching solution is found at 7
th

 matching step. This 

proves the initial hypothesis that the matching solution can only be found if the 

proxy model contains small average proxy error.  

 

Table 5.5 Best matching solution and true solution of Case 1 

 

Table 5.6 Evolution of true average proxy error of Case 1 

 

Figure 5.9 Well water cut profile of Case 1 
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Figure 5.10 Well gas oil ratio profile of Case 1 

 

Figure 5.11 Well bottom hole pressure profile of Case 1 

 

Figure 5.12 Field water cut and field gas oil ratio profile of Case 1 
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5.3.2  Matching of Case 2 

Following the successful of matching process in Case 1, the methodology is 

challenged to solve a more complex case which involves 10 uncertain parameters. 

Due to the practical issue, complete CCF design can’t be used in this case. As a 

result, fractional CCF design is used with 149 initial experiments.   

From the selection of matching variables analysis, the usage of 12 matching 

variables would result a huge residual error. There are only proxy model of 

WBHP PROD1 and WBHPR PROD2 which have small residual error. Therefore 

those two variables become matching variables and oil production rate is 

constrained. From the analysis of residual error as shown in figure 5.7 the range of 

residual error is considered from 0 % to 16 %. 

Since Case 2 is more complex than Case 1, the matching process also requires 

more matching steps and more additional simulation runs. In addition, the 

matching process in this case is slightly different from Case 1. The optimization 

process initially used parameters boundary as being defined in chapter 4. But 

looking at the fact that the matching solution still has not yet been found until 15 

matching steps therefore sampling distribution analysis is conducted.  

In sampling distribution analysis is we analyze the distribution of uncertain 

parameters value of all solutions given by the optimization. The objective is to 

identify the non explored value’s range of each uncertain parameter by the 

optimization algorithm. The analysis in this study involves 100 solutions 

generated from first matching step until 15
th

 matching step. The result of the 

analysis is that there are three parameters which are not fully explored due to the 

limitation of optimization algorithm. Figure 5.13 shows the distribution of the 

value of the three parameters which are not fully explored. Figure 5.13(a) and (b) 

shows the distribution of value of x (1) and x (6), it is clearly identified that value 

less than 0.01 are not explored yet. Figure 5.13 (c) shows that values between 

1.129 and 1.5 are not fully explored. Table 5.9 shows the modification of 

parameters boundary after sampling distribution analysis.  

The revision of parameters boundary give a positive impact on the reduction of 

true average proxy error. The initial true average proxy error is 6.2%. Before the 

boundary revision the error reduction rate is only 0.09% per matching step but 

after boundary revision reduction rate is 3.86% per matching step. In conclusion, 
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sampling distribution analysis is a useful tool to evaluate the results of the 

optimization process. The true average proxy error evolution is shown in table 5.7. 

An acceptable match finally is achieved at 27
th

 matching step. There are 183 

additional simulation runs in addition to 149 initial simulation runs to obtain this 

match. Figure 5.14 to 5.17 show the history matching plots of Case 2. Table 5.8 

shows the best matching solution. It is clearly noticed that in general the matching 

quality is less than matching quality in Case 1, only WBHP PROD1 and WBHP 

PROD4 perfectly match the observation data. The involvement of only those two 

matching variables could explain this phenomenon. This selective process of 

response variables has an advantage of avoiding long matching step to reduce a 

huge initial proxy error but in the other hand it can also produce a matching 

solution which only matches with those matching variables.  

  

Table 5.7 Evolution of true average proxy error of Case 2, before boundaries revision (left) and after 

boundaries revision (right) 

 

Table 5.8 Best matching solution and true solution of Case 2 

 

Table 5.9 New parameter boundaries, modified boundaries are highlighted in green color 
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(a) 

 

(b) 

 

(c) 

Figure 5.13 Sampling distribution of parameter x1 (a), x6 (b) and x9 (c) 

 

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

10

20

30

40

50

60

F
re

q
u

en
cy

Bin

Sampling Distributions x(1)

Frequency

Cumulative %

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

10

20

30

40

50

60

F
re

q
u

en
cy

Bin

Sampling Distributions x(6)

Frequency

Cumulative %

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

10

20

30

40

50

60

70

80

F
re

q
u

e
n

c
y

Bin

Sampling Distributions x(9)

Frequency

Cumulative %



40 
 

 

Figure 5.14 Well water cut profile of Case 2  

 

Figure 5.15 Well gas oil ratio profile of Case 2 

 

Figure 5.16 Well bottom hole pressure profile of Case 2  
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Figure 5.17 Field water cut and field gas oil ratio profile of Case 2  
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Chapter 6  

Summary and Future Work 

In this thesis, an investigation of computer assisted history matching is performed. A 

comprehensive understanding of the subject is required to identify methodology limitations 

so that improvements can be introduced in order to accelerate matching process. This study 

also compares two types of proxy models e.g. kriging equation and second degree polynomial 

equation which are used in the optimization process. Different global optimization algorithms 

were also investigated in order to determine the best performance algorithm in solving history 

matching problem.  

6.1 Summary and Conclusions 

a) The quality of proxy model plays an important role in assisted history matching. 

Optimization algorithm is able to find the matching solution only if the proxy model 

accurately predicts reservoir simulation responses.  

b) Proxy model is initially built from a set of initial sample of experiments. The quality 

of this initial proxy model depends on the sampling method. This study shows that 

complete CCF design could generate a better proxy model than fractional CCF 

design.  

c) Different types of proxy model have different degree of accuracy in predicting 

reservoir simulation. Kriging proxy model is able to predict reservoir simulation 

more accurately than second degree polynomial equation.  

d) The initial proxy model always has some error. This error must be minimized so that 

the optimization algorithm is able to find a good match. This error can be reduced by 

adding more experiments in the population which build the proxy model. The 

additional experiments have to be located close to the matching or true solution so 

that kriging proxy model can predict the response in that location more accurate. 

These additional experiments are generated from the preceding optimization process. 

This study proves that the inclusion of average proxy error in the objective function 

is able to generate solutions which more improve the quality of proxy model. 

e) Different values of average proxy error are inputted in the objective function in order 

to have different solutions from the optimization. These values can be obtained from 
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average residual error analysis of secondary polynomial proxy model of initial 

experiments.  

f) From the investigation of different global optimization algorithms for the two cases, 

it is concluded that direct search algorithm give the best performance in finding a 

matching solution. Simulated annealing algorithm has slow convergence rate 

therefore the maximum iteration is reached before it could find the matching 

solution. Genetic algorithm is often trapped in the local minima. While global search 

algorithm needs a longer time to find the matching solution. 

g) Case 1 can be easily matched with only 7 matching steps and 34 additional reservoir 

simulations in addition to the 43 initial experiments. The matching quality is almost 

perfect. This is because of several reasons: first, the initial residual error is quite 

small since complete CCF design is used to generate the initial experiments. Second, 

all of the 12 response variables are included as matching variables.  

h) Case 2 is more difficult to solve. There were 27 matching steps with 183 additional 

simulations required to find an acceptable match. The matching quality is less than in 

Case1. This is first because fractional CCF was used instead of complete CCF so that 

the initial proxy model is not so accurate. Second, because the average quality of the 

initial proxy model is bad, therefore we could only select response variables which 

are accurately predicted by the proxy model.  

i) Direct search algorithm in Case 2 could not explore all values of uncertain 

parameters so that the reduction rate of residual error is slow. To overcome this 

problem, sampling distribution analysis was conducted to redefine parameter 

boundaries to force direct search algorithm to explore unexplored zones. Reduction 

rate of residual error is significantly increased after the revision of boundary.  

 

6.2 Future Work 

a) Only two types of CCF design methods were investigated in this study. It will be 

useful to investigate other design methods such as Box Behnken and Latin 

Hypercube design. 

b) Proxy model used in this study are second degree polynomial and ordinary kriging 

equation. It will be of interest to study other types of proxy model such as universal 

kriging, neural networks and Ensemble Kalman Filter.  

c) A further improvement of direct search algorithm is also required so that it can 

explore all values of the uncertain parameters. 
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d) In this study, the methodology was used to solve an artificial history matching 

model. It will be of interest to use the same methodology to solve real history 

matching problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 
 

Appendix 

A.1  Experimental design 

a)  Box-Behnken 

The design is formed by combining 2
k
 factorials with incomplete block designs is 

shown in figure 2.1 point (d). Box-Behnken is a spherical design with all points 

lying on a sphere with radius 2
0.5

. In addition, Box-Behnken design doesn’t 

contain any points at vertices of the cubic region created by the upper and lower 

limits for each variable [11]. Figure a.1 shows sample of Box-Behnken design 

with three parameters.       

 

                                            (c) 

Figure a.1 Box Behnken Design 

 

b) Latin Hypercube 

Latin hypercube is a sampling method which produces the samples which are 

evenly distributed over the range of input parameters. Unlike the previous design 

methods where the number of experiments is fixed for specific number of 

parameters, in Latin hypercube the number of experiments can be determined by 

the users. The main concept behind Latin hypercube sampling is that there has to 

be only one sample in each row and column in case of two parameters and for n 

dimensions problems, there is only one sample in each axis hyper-plane 

containing it 
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Figure a.2 example of Latin hypercube design for two parameters with 5 sample points 

The main advantageous of this design is that the number of experiments doesn’t 

depend on the number of variables, so that this design is suitable for a problem 

which involves many variables. Figure a.2 shows one example of Latin hypercube 

design of two parameters with 5 sample points. 

 

A.2  Kriging Proxy Model  

The values of weighting factor of all the sampling points are determined with the 

following equations: 

……………………………………………………. (2) 

………………………………….. (3) 

…………….. (4) 

………………. (5) 

Based on the equations above, weighting factor is a function of two semi variogram 

functions: first is semi variogram of non-sampling point and sampling points and 

second, semi variogram between the sampling points.  
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Nomenclatures 

AHM  = Assisted History Matching 

DOE  = Design of Experiment 

CCD  = Central Composite Design 

CCF  = Cubic Centered Face 

CCI  = Cubic Centered Inscribed 

CCC  = Cubic Centered Circumscribed 

Y  = Response variables of polynomial equation 

β  = Parameters coefficient in polynomial equation 

n  = Number of parameters 

Z  = Response variables of kriging equation 

s0  = Point of interest / un-sampled point 

si  = Sampled point i 

wi  = Weighting factor of sampled point si 

Fobj  = Objective function 

T  = Temperature 

NewSol = New solution 

CurSol  = Current solution 

p  = Number of time steps 

k  = number of matching variables 

VBA  = Visual Basic Application 

WWPT = Well water production total 

WOPT  = Well oil production total 

WGPT  = Well gas production total 

FOPT  = Field oil production total 

FWPT  = Field water production total 

FGPT  = Field gas production total 

R
2
  = R squared 

RS  = Residual error 

ycalc  = Value of observe variables calculated from proxy model 

ysim  = Value of response variables obtained from simulation 

yobs  = Observation data 
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j   = Average residual error of experiment j (%) 

p   = Average proxy error 

Wi  = Weighting factor of matching variable i 

TolFun  = Minimum changes of objective function  

MaxIter = Maximum number of iterations 

W   = Matrix vector of weighting factor (kriging formula) 

   = Semi variogram 

si-sj  = Distance between sampled point i and point j 

s0-sj  = Distance between unsampled point  and sampled point j 
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