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Abstract 
 

The risk matrix (RM) is a widely espoused approach to assess and analyze risks in the oil 

& gas (O&G) industry. RMs have been implemented throughout that industry and are 

extensively used in risk-management contexts. This is evidenced by numerous SPE 

papers documenting RMs as the primary risk management tool. Yet, despite this 

extensive use, the key question remains to be addressed: Does the use of RMs guide us to 

make optimal (or even better) risk-management decisions? 

 

We have reviewed 30 SPE papers as well as several risk-management standards that 

illustrate and discuss the use of RMs in a variety of risk-management contexts, including 

HSE, financial, and inspection. These papers promote the use of RMs as a “best 

practice.” Unfortunately, they do not discuss alternative methods or the pros and cons of 

using RMs. 

 

The perceived benefit of the RM is its intuitive appeal and simplicity. RMs are 

supposedly easy to construct, easy to explain, and easy to score. They even might appear 

authoritative and intellectually rigorous. Yet, the development of RMs has taken place 

completely isolated from academic research in decision making and risk management. 

This paper discusses and illustrates how RMs produce arbitrary decisions and risk-

management actions. These problems cannot be overcome because they are inherent in 

the structure of RMs. In their place, we recommend that O&G professionals rely on risk- 

and decision-analytic methods that rest on over 300 years of scientific thought and 

testing. 
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Chapter 1 – Introduction 
 

In the oil & gas (O&G) industry, risk-intensive decisions are made daily. In their attempt 

to implement a sound and effective risk-management culture, many companies use risk-

matrices (RMs)
1
 and specify this in “best practice” documents. Furthermore, RMs are 

recommended in numerous international and national standards such as ISO,
2
 NORSOK,

3
 

and API.
4
 The popularity of RMs has been attributed in part to their visually appeal 

which is claimed to improve communications.  

 

Despite these claimed advantages, we are not aware of any published scientific studies 

demonstrating that RMs improve risk-management decisions.
5
 However, several studies 

indicate the opposite, that RMs are conceptually and fundamentally flawed. For example, 

Cox et al. (2005) derived and discussed several fundamental flaws introduced through the 

qualitative scoring system that is often used in RMs. Cox (2008) provided further 

examples of these flaws and presented a set of rules that RMs must obey if they are to be 

logically consistent. Hubbard (2009) provided compelling arguments for why, in most 

cases, the use of RMs results in unclear information flow and sub-optimal risk 

management decisions.  

 

The objectives of this thesis are to:  

 summarize the known flaws of RMs; 

 identify several new problems with RMs; 

 demonstrate that a sample of SPE papers, which either demonstrate or recommend 

the use of risk matrices, include these flaws and problems; 

                                                           

1
 Sometimes called a Probability-Impact Matrix (PIM) 

2
 ISO: International Organization for Standardization, the world largest developer of voluntary International 

Standards 
3
 API: American Petroleum Institute, which establishes standards for petroleum industry activities in the 

US 
4
 NORSOK: produces standards for petroleum industry activities in Norway  

5
 Clearly, using RMs to analyze and manage risks is better than doing nothing. Indeed, any approach that 

generates some discussion of the risks in a particular activity will be helpful. 
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 summarize the current effort to fix RMs; and 

 demonstrate decision analysis (DA) as a possible alternative to RMs. 

 

Following this introduction the remainder of this thesis is organized thus. 

 Chapter 2 introduces a description of RMs, and includes a discussion about 

current practices and standards for risk management, followed by an example. 

 In chapter 3, we illustrate the flaws and dangers resulting from the use of RMs. 

 Chapter 4 describes the approaches used to fix the known flaws of RMs, including 

their limitations. 

 In chapter 5, we demonstrate and provide evidence that decision analysis is a 

better alternative to RMs. 

 Finally, in chapter 6, we provide a summary and a discussion of the earlier 

chapters and answer the question of whether the use of RMs guides us to make 

optimal (or even better) risk-management decisions. 

 

A substantial part of this thesis (Chapters 2 and 3) are drawn from the SPE paper (SPE 

166269-MS), which written for Annual Technical Conference and Exhibition (ATCE) 

2013 with the same title. This paper was written by the author of the present work, 

together with the supervisor of this thesis and another co-author (Philip Thomas, Reidar 

Bratvold and Eric Bickel). Thus, there are a number of similarities that can be noted 

between the two documents. 
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Chapter 2 – Risk Matrices: a Short Introduction 

2. Basic Knowledge of Risk Matrices 

Risk matrices (RMs) are the most popular risk-assessment/risk-management 

methodology employed across many industries, including the oil and gas (O&G) 

industry, information technology (IT) industry and many research organizations. RMs 

don’t require complicated input data, thus, making it convenient and intuitive for its 

users. In addition, RMs provide a graphical output that enables the risk analyst to easily 

communicate the risk assessment result to the stake holders and shareholders. However, 

despite the popularity of RMs, neither its accuracy nor its reliability has been rigorously 

assessed or reported in the published literature. 

2.1  Terminology 

Discussions about RMs require a brief discussion about associated terminology. If risk 

managers are to communicate effectively with each other as well as with other 

stakeholders, it is important that they use a common language. Moreover, because risk 

management draws on and interacts with so many other fields—including decision 

analysis, geoscience, engineering, economics and statistics—that share many of the same 

concepts, it would be a confusing to use different terminology for these shared concepts. 

The goal of any risk management exercise is to improve communication and 

understanding of the risk factors, and achieve clarity on optimal risk mitigation actions. 

This will be achieved only with a clear definition of the central terms used in risk 

management. These include ‘risk’, ‘uncertainty’, ‘probability’, ‘consequence’, 

‘opportunity’ and ‘outcome’. The following definitions are used in risk management and 

management science in general. The definition in this section has been drawn from work 

by Hubbard (2009), Clemen (2001) and Bratvold and Begg (2010). 

 

Risk. Within the context of RMs, ‘risk’ is defined as consequence multiplied by 

probability. Risk has a negative connotation, and by ‘risk management’ we implicitly 

mean the mitigation of downside possibilities. This notion of risk is focused on downside 

loss rather than upside gain. Probability multiplied by consequence yields the expected 

downside consequence or the expected loss. Purveyors of RMs refer to expected 
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downside consequences as ‘risk’, but we will use the more precise term ‘expected loss’ 

(EL). 

 

Uncertainty. Uncertainty is a subjective aspect of our state of knowledge. Examples of 

uncertain quantities are future events (e.g., the price of gas on a given future date) or 

current states of nature [e.g. original oil in place (OOIP) for a given well or field]. To 

quantify uncertainty, we must identify the range of states in which an uncertain quantity 

may take and associate probabilities with those states. There is no single, ‘correct’ 

uncertainty for a given event—the uncertainty represents the lack of knowledge of the 

person or people involved. 

 

Probability. A probability is a number between 0 and 1 that express our degree of belief 

that an outcome will occur. In the context of most events in risk management, a 

probability does not describe a characteristic of the physical world that we can discern 

through repeated experiments. The probability is the quantification of our belief about 

some uncertainty of a future event. In a case where our belief is driven by historical data, 

probability is frequently referred as likelihood. 

 

Consequence. A consequence is the value or score estimated for a given outcome. For 

example, if the outcome is ‘blow out’, the consequence could be estimated to be $250 

million. 

 

Outcome. An outcome is a possibility resulting from a combination of decisions and 

uncertainties. An outcome must be both clear and useful for analyses
6
. 

 

                                                           

6
Howard (2007) introduced the notion of a clairvoyant—a person who can answer any question 

accurately, including questions about the future, but who possesses no particular expertise or analytical 

capability. Using this notion, we can say a clear outcome is one that passes the clarity test: a mental 

exercise to determine whether the clairvoyant can immediately answer a question or whether the 

clairvoyant needs to know other things first. “Spot price of oil on August 24, 2022,” does not pass the test 

because it needs further specification of the classification (e.g. Brent, WTI) and it also may need the time of 

that specific day. “Technical success” needs to be defined to pass the clarity test. Terms frequently used in 

developing RMs such as ‘moderate’, ‘severe’, ‘frequent’ and ‘seldom’ do not pass the clarity test. 
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Opportunity. Opportunity is a desirable consequence of uncertainty. For example, ‘the 

oil-in-place is 30% higher than expected’. 

2.2 What is a Risk Matrix 

An RM is a graphical presentation of the likelihood, or probability, of an outcome and the 

consequence should that outcome occur. Consequences are often defined in monetary 

terms. RMs, as their name implies, tend to be focused on outcomes that could result in a 

loss, rather than gain. The purported objective of the RM is to prioritize risks and risk-

mitigation actions. 

 

Pritchard et al. (2010) gave an example of using RMs to assess the risk of a drilling 

hazard. This paper was one of three in a special issue of World Oil devoted to advances 

in drilling. Pritchard et al. (2010) note the example as a “typical industry risk assessment 

matrix.” We have adopted this example as Figure 1 and use it to explain the flaws 

inherent in RMs. 

 

 
Figure 1 — A risk matrix modified from Pritchard et al. (2010) 

The consequences and probabilities in an RM are expressed as a range. For example the 

first consequence category might be “<$100K,” the second might be “$100K–$250K,” 

and so on. The first probability range might be “<=1%,” the second might be between 1% 

and 5%, and so on. A verbal label and a score are also assigned to each range. (Some 

RMs use these instead of a quantitative range.) For example, probabilities from 10% and 

20% might be labeled as “Seldom” and assigned a score of 4. Probabilities greater than 

40% might be termed “Likely” and given a score of 6. Consequences from $5 million to 

$20 million might be termed “Severe” and given a score of 5; losses above $20 million 

might be labeled as “Catastrophic” and given a score of 6.  

 

Probability P - Rating P - Indices

> 40% 6 Likely

20% < p <= 40% 5 Occasional Severe Losses 

10% < p <= 20% 4 Seldom

5% < p <= 10% 3 Unlikely Well Control

1% < p <= 5% 2 Remote Blowout

<=1% 1 Rare

1 2 3 4 5 6

Incidental Minor Moderate Major Severe Catastrophic

<=$100K $100K - $250K $250K - $1MM $1MM - $5MM $5MM - $20MM >$20MM

Consequence Rating

Consequence Indices

Consequence Cost
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Such an RM would treat losses of $50 billion (on the scale of BP’s losses stemming from 

the Macondo blowout) or $20 million in the same way, despite their being three orders of 

magnitude distinct. Because there is no scientific method of designing the ranges used in 

an RM, many practitioners simply use the ranges specified in their company’s best 

practice documents. In fact, as we will show below, differently shaped regions can alter 

risk rankings. 

 

The cells in RMs are generally colored green, yellow, and red. Green means 

“acceptable,” yellow stands for “monitor, reduce if possible,” and red is “unacceptable, 

mitigation required.” le. Previous work has detailed the way in which the colors must be 

assigned if one seeks consistency in the ranking of risks. Most of the SPE papers we 

examined failed to assign colors in a logically consistent way. For example, some of the 

cells designated as red were “less risky” than some of the cells that were designated as 

yellow. 

2.3 Case Example to Demonstrate the Use of Risk Matrices 

The problem context presented in Pritchard et al. (2010) is the loss of fluid while drilling 

in a particular section of a well. There is then a need to identify the possible outcomes 

and consequences arising from this event and to prioritize these risks. Three possible 

downside outcomes were identified: severe losses of drilling fluid, well control issues, 

and blowout.
7
 Once the possible outcomes were defined, Pritchard et al. (2010) specified 

their probabilities and the range of possible consequences, both of which are given in 

Table 1.
8
 Once the assessment of consequence and probability

9
 was complete, the 

outcome was plotted in the RM (see Figure 1) to determine whether the risk of an 

outcome fell into a green, yellow, or red region. Thus, well control and blowout fell in the 

yellow region, whereas severe losses was red. Hence, in the parlance of RMs, the 

                                                           

7
 The outcomes are assumed to be independent, which might not be correct. For example, a blowout 

implies loss of well control. 
8
 The probabilities in this case example are taken from Pritchard et al. (2010), and the consequences come 

from reconversion of the consequence scores into their definition as presented in Pritchard et al. (2010). 
9
 The probabilities not need sum to 1, as the events are assumed to be mutually exclusive but not 

collectively exhaustive. 
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possibility of severe losses is “riskier” than either well control or blowout and should 

therefore be prioritized over these other two concerns.  

 
Table 1 — Drilling case example 

 
 

Figure 1 indicates the score associated with each range. Pritchard et al. (2010) assumed 

that cells along a diagonal with slope of -1 have the same risk. Thus, they considered 

blowout and well control to have the same degree of risk. Poedjono et al. (2009) and 

Dethlefs & Chastain (2011) also documented the use of RMs in a drilling context, but 

they used the more common practice of multiplying the probability and consequence 

scores to obtain a “risk score” for each outcome. Table 2 shows the results of applying 

this procedure to the Pritchard et al. (2010) example. There appears to be no 

mathematical theory that would allow the multiplication of scores, a practice that seems 

to be an attempt to mimic the calculation of expected loss, in which case monetary 

consequence would be multiplied, or “risked,” by the likelihood of its occurrence. Based 

on these results, actions to mitigate severe losses will be prioritized while blowout will be 

addressed only after the other two possible outcomes have been addressed. 

 

Table 2 — Risk ranking results 

 
 

Before concluding this section, we explain how and why we slightly modified the RM 

used by Pritchard et al. (2010). First, they used a decreasing score scale rather than the 

increasing scale which is more commonly used. As we will show later, the choice 

between an ascending or descending scale in our analysis can alter the prioritization. 

Second, they did not use mutually exclusive categories. Specifically, they used categories 

Outcome Risk Score Rank

Severe Losses 20 1

Well Control 15 2

Blowout 12 3
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of $1 million to $5 million and $2 million to $20 million. This is clearly problematic for 

an outcome of, say, $3 million. Similarly, there was an overlap in their probability ranges 

of 0% to 1% and 0% to 5% which means that the ranges were not mutually exclusive.  

 

2.4 Current Practices and Standards 

RMs are considered to be versatile enough to be used to analyze and prioritize risks in 

many settings. A number of international standards support its role in risk assessment, 

and many companies consider RMs to be a “best practice.” In this section, we illustrate a 

common RM-analysis approach. We then summarize how some central risk management 

standards view the use of RMs.  

2.4.1 Common Industry Practices 

In order to use the RM for risk prioritization and communication, several steps must be 

carried out. Clare and Armstrong (2006) presented a common risk evaluation process for 

the O&G industry, where they used RMs as a risk-evaluation tool. The work process they 

used is shown in Figure 2. 

 
Figure 2 — Common workflow for analyzing risks using RMs 

Step 1 – Define Risk Criteria. This step determines the size of the RM and its number of 

colors. Although there is no technical reason for it, RMs are generally square. The most 

common size is five rows by five columns (i.e., a 5 × 5 matrix), but some companies use 

a 3 × 3 matrix, others an 8 × 8 matrix. Some companies choose to include more colors 

than the standard red, yellow, and green in their RMs.  
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Step 2 – Define Risk Events. This step identifies the risk events. For example, drilling a 

particular hole-section is the event for which we are going to identify all the possible 

downside outcomes. 

 

Step 3 – Consequence Estimation and Probability Assessment. This step estimates the 

consequence range of each outcome identified in Step 2 and assigns probabilities to each 

outcome. For example, the outcome of severe losses is registered, and the expected 

financial consequence is estimated to be from $1 million to $5 million. The chance of this 

occurring is estimated to be 40%. Using the RM in Figure 1, this equates to a probability 

score of 5 ("Occasional") and a consequence score of 4 ("Major"). 

 

Step 4 – Risk Profile. This step positions each identified downside outcome in a cell in 

the RM. 

 

Step 5 – Rank and Prioritize. This step ranks and prioritizes the outcomes according to 

their risk score. Most companies use a risk management policy where all outcomes in the 

red area are “unacceptable” and thus must be mitigated. 

 

The results of Steps 2–5 are often collectively called a “risk register,” and the information 

required is usually collected in a joint meeting with the key stakeholders from the 

operating company, service companies, partners, and others.  

 

2.4.2 Standards 

Among the standards that are commonly used in the O&G industry are API, NORSOK, 

and ISO. All of these standards recommend RMs as an element of risk management. This 

section summarizes how each of these standards supports RMs. 

 

API. API (2009) recommends RMs customarily for its risk-based inspection (RBI) 

technology. Risk-based inspection is a method to optimize inspection planning by 

generating a risk ranking for equipment and processes and, thus, prioritization for 

inspection of the right equipment at the right time. API (API RP 581) specifies how to 
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calculate the likelihoods and consequences to be used in the RMs. The specification is a 

function of the equipment that is being analyzed. The probability and consequence of a 

failure is calculated using several factors. API asserts that “Presenting the results in a risk 

matrix is an effective way of showing the distribution of risks for different components in 

a process unit without numerical values.” 

 

NORSOK. The NORSOK (2002) standards were developed by the Norwegian petroleum 

industry to “ensure adequate safety, value adding and cost effectiveness for petroleum 

industry developments and operations. Furthermore, NORSOK standards are as far as 

possible intended to replace oil company specifications and serve as references in the 

authority’s regulations.” NORSOK recommends the use of RMs for most of their risk-

analysis illustrations. The RMs used by NORSOK are less rigid than those of API-RBI, 

since the NORSOK RMs can be customized for many problem contexts (the RM 

template is not standardized). NORSOK S-012, an HSE document related to the 

construction of petroleum infrastructure, uses an RM that has three consequence axes—

occupational injury, environment, and material/production cost—with a single probability 

axis for all three consequence axes. 

 

ISO. The ISO (2009) standard influences risk management practices not only in the O&G 

industry but in many others. In ISO 31000, the RM is known as a 

Probability/Consequence Matrix. Also in ISO 31000 is a table that summarizes the 

applicability of tools used for risk assessment. ISO claims that the RM is a “strongly 

applicable” tool for risk identification and risk analysis and is “applicable” for risk 

evaluation. As with the NORSOK standard, ISO does not standardize the number of 

colors, the coloring scheme (risk acceptance determination), or the size of range for each 

category. ISO praises RMs for their convenience, ease of use, and quick results. 

However, ISO also lists limitations of RMs, including some of their inconsistencies, to 

which we now turn. 
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Chapter 3 – Risk Matrices: Flaws and Dangers 

3. Deficiencies of Risk Matrices 

Several flaws are inherent to RMs. Some of them can be corrected, while others seem 

more problematic. For example, we will show that the ranking produced by a RM 

depends upon arbitrary choices regarding its design, such as whether one chooses to use 

an increasing or decreasing scale for the scores. As we discuss these flaws, we also 

survey the SPE literature to identify the extent to which these mistakes are being made in 

practical applications. 

 

To locate SPE papers that address or demonstrate the use of RMs, we searched the 

OnePetro database using the terms “Risk Matrix” and “Risk Matrices.” This returned 527 

papers. Then, we removed 120 papers published prior to the year 2000, to make sure our 

study is focused upon current practice. We next reviewed the remaining 407 papers and 

selected those that promote the use of RMs as a “best practice” and actually demonstrate 

RMs in the paper; leaving 68 papers. We further eliminated papers that presented the 

same example. In total, we considered a set of 30 papers covering a variety of practice 

areas (e.g., HSE, hazard analysis, and inspection). We believe that this sampling of 

papers presents the current RM practice in the O&G industry. We did not find any SPE 

papers documenting the known pitfalls of using RMs. The 30 papers we consider in this 

paper are given in the Appendix. 

3.1  Known Deficiencies of Risk Matrices 

Several deficiencies of RMs have been identified by other authors. 

3.1.1 Risk Acceptance Inconsistency 

RMs are used to identify, rank, and prioritize possible outcomes so that scarce resources 

can be directed towards the most beneficial areas. Thus, RMs must reliably categorize the 

possible outcomes into green, yellow and red regions. Cox (2008) suggested we should 

conform to three axioms and one rule when designing RMs in order to ensure that the EL 

in the green region is consistently smaller than the EL in the red region. Cox (2008) also 

clarifies that the main purpose of yellow region is to separates the green region and red 
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region in the RMs; not to categorize the outcomes. He argues that the RM is inconsistent 

if the EL in the yellow region can be larger than in any of the red cells or lower than in 

any of the green cells. Nevertheless, the practice in O&G is to use the yellow region to 

denote an outcome with a medium risk.  Every single SPE paper I reviewed employs this 

practice and also violates at least one of the axioms or the rule proposed by Cox (2008) 

leading to inconsistencies in the RMs.  

 

Figure 3 shows an example RM with many outcomes. This example shows that there are 

two groups of outcomes.  The first group is the outcome with medium-high probability 

and medium-high consequence (e.g., severe losses, well control issues) and the second 

group is outcome with the low probability but very high consequence (e.g., blowout). In 

Figure 3, the first group of outcome is illustrated in the red cells while the second group 

is on the yellow cell. The numbers shown in some of the cells represent the probability, 

consequence and EL, respectively, where EL is calculated as probability multiplied by 

consequence.  This example shows the inconsistency between EL and color practice in 

RM where all outcomes in the red cells have less EL compared to the outcome in the 

yellow cell. Assuming that we wish to rank outcomes based on expected loss, we would 

prioritize the outcome in the yellow cell compared with the outcomes in the red cells 

which is the opposite of the ranking provided by the color region in RM. Clearly, using 

the RM would in this case lead us to focus our risk mitigation actions on the outcome 

does not have the highest EL. This type of structure is evident in 8 of the papers 

reviewed. 

 

 
Figure 3 — Risk acceptance inconsistency in RMs. 

Probability P - Rating P - Indices

> 40% 6 Likely (45%, 1, 0.45) (45%, 3, 1.35) (45%, 15, 6.75) (45%, 25, 11.25)

20% < p <= 40% 5 Occasional (25%, 3, 0.75) (25%, 15, 3.75) (25%, 25, 6.25)

10% < p <= 20% 4 Seldom (15%, 15, 2.25) (15%, 25, 3.75)

5% < p <= 10% 3 Unlikely (10%, 25, 15.5)

1% < p <= 5% 2 Remote (5%, 250, 12.5)

<=1% 1 Rare

1 2 3 4 5 6

Incidental Minor Moderate Major Severe Catastrophic

<=$100K $100K - $250K $250K - $1MM $1MM - $5MM $5MM - $20MM >$20MM

Consequence Rating

Consequence Indices

Consequence  cost
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3.1.2 Range Compression 

Cox (2008) described range compression in RMs as a flaw that “assigns identical ratings 

to quantitatively very different risk.” Hubbard (2009) also focused extensively on this 

problem. 

 

Range compression is unavoidable when consequences and probabilities are converted 

into scores. The distance between risks in the RM using scores (mimicking expected-loss 

calculation) does not reflect the actual distance between risks (that is, the difference in 

their expected-loss).  

 

In our case example shown in Figure 1, blowout and well control are considered to have 

the same risk (both are yellow). However, this occurs only because of the ranges that 

were used and the arbitrary decision to have the “catastrophic” category include all 

consequences above $20 million. Figure 4 more accurately represents these outcomes. A 

blowout could be many orders of magnitude worse than a loss of well control. Yet, the 

RM does not emphasize this in a way that we think is likely to lead to high-quality risk 

mitigation actions. To the contrary, the sense that we get from Figure 1 is that a blowout 

is not significantly different (if any different) from a loss in well control—they are both 

“yellow” risks after all. Using the scoring mechanism embedded in RMs compress the 

range of outcomes and, thus, miscommunicates the relative magnitude of both 

consequences and probabilities. The failure of the RM to convey this distinction seems to 

undermine its commonly stated benefit of improved communication. This example 

demonstrates the range compression inherent in RMs, which necessarily affected all of 

the surveyed SPE papers. The next section will introduce the “Lie Factor” that we use to 

quantify the degree of range compression. 
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Figure 4 — Plot of probabilities and consequences value of the outcomes in the case example. 

3.1.3 Centering Bias 

Centering bias refers to the tendency of people to avoid extreme values or statements 

when presented with a choice. For example, if a score range is from 1 to 5, most people 

will select a value from 2 to 4. Hubbard (2009) analyzed this in the case of information 

technology projects. He found that 75% of the chosen scores were either 3 or 4. This 

further compacts the scale of RMs, exacerbating range compression. Smith et al. (2008) 

came to the same conclusions from investigating risk management in the airline industry. 

 

Is this bias also affecting risk management decisions in the O&G industry? Unfortunately 

there is no open-source O&G database that can be used to address this. However, six of 

the reviewed SPE papers presented their data in sufficient detail to investigate whether 

the centering bias seems to be occurring. Each of the six papers uses an RM with more 

than 15 outcomes. Figure 5 shows the percentage of the outcomes that fell into the 

middle consequence and probability scores. For example, paper SPE 142854 used a 5 × 5 

RM, hence the probability ratings ranged from 1 to 5. Of its 24 outcomes, 18 have a 

probability rating of 2, 3, or 4 (which we will denote as "centered"), and the remaining 6 

outcomes have a probability rating of 5. Hence, 75% of the probability scores were 

centered. 
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For the six papers combined, 77% of the probability scores were centered, which 

confirms Hubbard (2009). However, only 62% of the consequence scores were centered, 

which is less than that found in Hubbard (2009). A closer inspection shows that in four 

out of the six papers, 90% of either probability or consequence scores were centered. 

 
Figure 5 — Centering bias evidence in SPE papers. 

3.1.4 Category Definition Bias 

Budescu (2009) concluded that providing guidelines on probability values and phrases is 

not helping the probability assessments. For example, when guidelines specified that 

“very likely” should indicate a probability greater than 0.9, study participants still 

assigned probabilities in the 0.43 to 0.99 range when they encountered the phrase “very 

likely.” He argued that this creates “illusion of communication” rather than real 

communication. If a specific definition of scores or categories is not effective in helping 

experts be consistent in their communication, then using only qualitative definitions 

would likely result in even more confusion. Windschitl & Weber (1990) showed that the 

interpretation of phrases conveying a probability depends on context and personal 

preferences (e.g., perception of the consequence value). Although most research on this 

topic has focused on probability-related words, consequence-related words such as 

“severe,” “major,” or “catastrophic” would also seem likely to foster confusion and 

miscommunication. 
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We reviewed the 30 SPE papers on the scoring method used. The papers were then 

classified into qualitative, semi-qualitative, and quantitative categories.
10

 Most of the 

scores (97%) were qualitative or semi-qualitative. Yet, these papers included no 

discussion indicating that the authors are aware of Category Definition Bias or any 

suggestions for how it might be counteracted.  

 

Category Definition Bias is also clearly seen between papers. For example, SPE 142854 

considered “Improbable” as “virtually improbable and unrealistic.” In contrast, SPE 

158114 defined “Improbable” as “would require a rare combination of factors to cause an 

incident.” These definitions clearly have different meanings, which will lead to 

inconsistent risk assessments. This bias is also seen in the quantitative RMs. SPE 127254 

categorized “Frequent” as “more than 1 occurrence per year,” but SPE 162500 

categorized “Frequent” as “more than 1 occurrence in 10 years.” This clearly shows 

inconsistency between members of the same industry. Table 3 summarizes the variations 

in definitions within the same indices in some of the SPE papers surveyed. 

                                                           

10
Qualitative refers to RMs in which none of the definitions of probability and consequence categories provide 

numerical values. Quantitative refers to RMs whose definitions of all probability and consequence categories provide 

numerical values. Semi-quantitative refers to RMs in which some of the definitions of probability and consequence 

categories provide numerical values. 
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Table 3 — Category Definition Bias evidences in SPE papers. 

 

Given these gross inconsistencies, how can we accept the claim that RMs improve 

communication? As we show here, RMs that are actually being used in the industry are 

likely to foster miscommunication and misunderstanding, rather than improve it. This 

miscommunication will result in misallocation of resources and the acceptance of sub-

optimal levels of risk. 

 

3.2  Identification of New Deficiencies 

This section discusses three RM flaws that had not been previously identified. We 

demonstrate that these flaws cannot be overcome and that RMs will likely produce 

arbitrary recommendations. 

3.2.1 Ranking is Arbitrary 

Ranking Reversal.  

Lacking standards for how to use scores in RMs, two common practices have evolved: 

ascending scores or descending scores. The example in Figure 1 uses ascending scores, 

in which a higher score indicates a higher probability or more serious consequence. Using 

Paper Index Index Definition Quantitative Measures

SPE - 146845 Frequent Several times a year in one location occurence > 1/year

SPE - 127254 Frequent Expected to occur several times during lifespan of a unit occurence > 1/year

SPE - 162500 Frequent
Happens Several times per year in same location or 

operation
occurrence > 0.1/year

SPE - 123457 Frequent Has occurred in the organization in the last 12 months -

SPE - 61149 Frequent Possibility of repeated incidents -

SPE - 146845 Probable Several times per year in a company 1/year > occcurence > 0.1/year

SPE - 127254 Probable Expected to occur more than once during lifespan of a unit 1/year > occcurence > 0.03/year

SPE - 162500 Probable Happens Several times per year in specific group company 0.1/year > occcurence > 0.01/year

SPE - 123457 Probable
Has occurred in the organization in the last 5 years or has 

occurred in the industry in the last 2 years
-

SPE - 158115 Probable Not certain, but additional factor(s) likely result in incident -

SPE - 61149 Probable Possibility of isolated incident -
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descending scores, a lower score indicates a higher probability or more serious 

consequence. These practices are contrasted in Figure 6. 

 

 
Figure 6 — RMs with two different scoring systems. 

A glance at Figure 6 might give the impression that ascending or descending scores 

would produce the same risk-ranking of outcomes. However, Table 4 shows for each 

ordering, the resulting risk scores and ranking of the outcomes shown in Figure 6. Using 

ascending scores, severe losses will be prioritized for risk mitigation. However, using the 

descending scores, blowout will be prioritized for risk mitigation. 

 

Table 4 — Risk prioritization from different practices. 

 
 

The typical industry RM given in Pritchard et al. (2010) used descending ordering. 

However, both ascending and descending scoring systems have been cited in the SPE 

literature. In the 30 SPE papers surveyed, five uses the descending scoring system, and 

the rest use ascending. This behavior demonstrates that RM rankings are arbitrary; 

whether something is ranked first or last, for example, depends on whether or not one 

creates an increasing or a decreasing scale. How can a methodology that exhibits such a 

gross deficiency be considered an industry best practice? Would such a method stand up 

to scrutiny in a court of law? Imagine an engineer defending their risk management plan 

by noting it was developed using an RM, when the lawyer points out that simply 

changing the scale would have resulted in a different plan. What other best practices do 

engineers use that produces different designs simply by changing the scale or the units? 

 

Probability P - Rating Descending P - Rating Ascending P - Indices

> 40% 1 6 Likely

20% < p <= 40% 2 5 Occasional Severe Losses

10% < p <= 20% 3 4 Seldom

5% < p <= 10% 4 3 Unlikely Well Control

1% < p <= 5% 5 2 Remote Blowout

<=1% 6 1 Rare

1 2 3 4 5 6

6 5 4 3 2 1

Incidental Minor Moderate Major Severe Catastrophic

<=$100K $100K - $250K $250K - $1MM $1MM - $5MM $5MM - $20MM >$20MM

Consequence Rating Ascending

Consequence Rating Descending

Consequence Indices

Consequence Cost

Outcome Risk Score Rank Outcome Risk Score Rank

Severe Losses 20 1 Severe Losses 6 2

Well Control 15 2 Well Control 8 3

Blowout 12 3 Blowout 5 1

Ascending Descending
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Instability due to Categorization.  

RMs categorize consequence and probability values. Yet, there are no well-established 

rules for how to do the categorization. Morgan et al. (2000) recommended testing 

different categories, as no single category breakdown is suitable for every consequence 

variable and probability within a given situation.  

 

Following this recommendation, we tried to find the best categories for the RM in Figure 

1 by examining the sensitivity of the risk ranking to changes in category definitions. To 

ease this analysis, we introduced a multiplier n that determines the range for each 

category. We retained ranges for the first category for both consequence and probability. 

For the categories that are not at the endpoints of the axes, n will determine the start-

value and end-value of the range. For example, with n = 2, the second probability 

category in Figure 1 has a value range from 0.01 to 0.02 (0.01 to 0.01 × n). For the 

category at the end of the axis, n will affect only the start value of the range, which must 

not exceed 1 for probability axis and must not exceed $20 million for the consequence 

axis. Table 5 and Table 6 show the probability and consequence ranges, respectively, for 

n = 2 or n = 3. 

 

Table 5 — Probability range on different multiplier, n. 

 

Table 6 — Consequence range on different multiplier, n. 

 

n  = 2 n  = 3

rating probability rating probability

6 0.16 < p <= 1 6 0.81 < p <= 1

5 0.08 < p <= 0.16 5 0.27 < p <= 0.81

4 0.04 < p <= 0.08 4 0.09 < p <= 0.27

3 0.02 < p <= 0.04 3 0.03 < p <= 0.09

2 0.01 < p <= 0.02 2 0.01 < p <= 0.03

1  <= 0.01 1  <= 0.01

Equation

4

3 4

2 3

2

0.01 1

0.01 0.01

0.01 0.01

0.01 0.01

0.01 0.01

0.01

n p

n p n

n p n

n p n

p n

p

  

   

   

   

  



n  = 2 n  = 3

rating consequence (MM US$) rating consequence (MM US$)

6 1.6 < cons 6 8.1 < cons

5 0.8 < cons <= 1.6 5 2.7 < cons <= 8.1

4 0.4 < cons <= 0.8 4 0.9 < cons <= 2.7

3 0.2 < cons <= 0.4 3 0.3 < cons <= 0.9

2 0.1 < cons <= 0.2 2 0.1 < cons <= 0.3

1  <= 0.1 1  <= 0.1

Equation

4

3 4

2 3

2

100

100 100

100 100

100 100

100 100

100

n cons

n cons n

n cons n

n cons n

cons n

cons

 

   

   

   

  


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We can vary the multiplier and observe the effect on risk ranking for both ascending and 

descending scores. Since Table 1 gives the consequence value in ranges, we use the mid-

point
11

 consequence value within the range for each outcome, as shown in Table 7. 

Given a single consequence value for each outcome, the categorization instability 

analysis can be carried out. Figure 7 and Figure 8 show how the risk ranking is affected 

by change in n. 

 

Table 7 — Case for Categorization Instability Analysis. 

 

 
Figure 7 — Sensitivity of risk prioritization to probability categorization. 

 
Figure 8 — Sensitivity of risk prioritization to consequence categorization. 

                                                           

11
For the practicality of the analysis, we assume that for blowout consequence, the ratio of the range's high-

value to low-value is the same as for category 5 (high-value = 4 × low-value). Thus, the range is $20 

million to $80 million, and the middle value is $50 million. No matter which value is chosen to represent 

the high-end consequence, the instability remains and is equally severe. 

Outcome Consequence (Million US$) Probability

Severe Losses 3 40%

Well Control 12.5 10%

Blowout 50 5%



Philip Thomas – Spring 2013 Master Thesis 21 The Risk of Using Risk Matrices 

These figures indicate that except where consequence is in ascending order, the risk-

prioritization is a function of n. This is problematic since the resulting risk ranking is 

unstable in the sense that a small change in the choice of ranges can lead to a large 

change in risk prioritization. Thus, we again see that the guidance provided by RMs is 

arbitrary and hardly appears to be a beacon of clarity. 

 

For each SPE paper that used at least one quantitative scale, Table 8 shows percentage of 

the domain for categories 1 through 4, category 5 having been excluded because it was 

often unbounded. The left-hand table is for the probability, and the right-hand table is for 

the consequence. For example, the probability categories for SPE 142854, in ascending 

order, cover 0.001%, 0.1%, 0.9%, and 99% of the domain. The consequence categories 

for SPE 142854, in ascending order, cover 0.1%, 0.9%, 9%, and 90% of the domain.  

 

That categories cover different amounts of the total range is clearly a significant 

distortion. In addition to this, the size of the categories varies widely across papers. For 

example, in the papers we surveyed, category 3 on the likelihood axis spans 0.9% to 18% 

of the total range. Given that the risk ranking resulting from a RM is so sensitive to the 

choice of category range sizes, this choice should be a based on the nature of the problem 

at hand and should receive significant attention in the construction of the RM. This does 

not appear to be the case in the papers we have surveyed.  

Table 8 — Percentages of total range for each rating. 

 

Paper number Rating Percentage of range Paper number Rating Percentage of range

SPE - 127254 1 0.95% SPE - 142854 1 0.10%

SPE - 127254 2 0.02% SPE - 142854 2 0.90%

SPE - 127254 3 2.36% SPE - 142854 3 9.00%

SPE - 127254 4 96.67% SPE - 142854 4 90.00%

SPE - 142854 1 0.001% SPE - 98423 1 1.00%

SPE - 142854 2 0.10% SPE - 98424 2 4.00%

SPE - 142854 3 0.90% SPE - 98425 3 15.00%

SPE - 142854 4 99.00% SPE - 98426 4 80.00%

SPE - 98852 1 0.04%

SPE - 98852 2 1.96%

SPE - 98852 3 18.00%

SPE - 98852 4 80.00%

SPE-162500 1 0.09%

SPE-162500 2 0.90%

SPE-162500 3 9.00%

SPE-162500 4 90.00%

Frequency Consequence
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3.2.2 Relative Distance is Distorted 

Lie Factor. According to Table 7, the consequence of blowout is 4 times that of well 

control (50/12.5). However, the ratio of their scores in the RM is only 1.2 (6/5). The 

difference in how risk is portrayed in the RM versus the expected values can be 

quantified using the lie factor.  

 

The lie factor (LF) was coined by Tufte (2001, 2006) to describe graphical 

representations of data that deviate from the principle that “the representation of 

numbers, as physically measured on the surface of the graphic itself, should be directly 

proportional to the quantities represented” (Tufte, 2006). This maxim seems intuitive. 

Yet, it is difficult to apply to data that follow an exponential relationship, for example. 

Such cases often use log plots, in which the same transformation is applied to all the data. 

However, as shown below, RMs distort the information they convey at different rates 

within the same graphic. 

 

Slightly modifying Tufte’s (2006) definition, we define lie factor as 

    
   

   
 , (1) 

where, 

    
|       |

  
    and       

|       |

  
 

The LF is thus calculated as the change in value (of probability or consequence) over the 

m and m+1 categories divided by the change in score over the m and m+1 categories. In 

calculating the LF, we use the mid-point across the value and probability ranges within 

each category.  

 

From Figure 1, the score of the consequence axis at m = 3 is S = 3 and at m = 4 is S = 4. 

Using the mid-point value for each category, LF3=11.4=(|3000-625|/625)/(|4-3|/3). The 

interpretation of this is that the increase in the underlying consequence values is 11.4 

times larger than an increase in the score. 
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None of the 30 papers reviewed included enough quantitative information for the LF to 

be calculated. We define the LF for an RM as the average of the LFs for all categories. 

An alternative definition might be, the maximum LF for any category. Table 9 shows the 

result of our average LF calculation.  

 

All nine papers have an LF greater than one along at least one axis. SPE 142854, for 

example, has an LF of 96 on the consequence axis and 5,935 on the probability axis. 

 

Many proponents of RMs extol their visual appeal and resulting alignment and clarity in 

understanding and communication. However, the commonly used scoring system distorts 

the scales and removes the proportionality in the input data. How can it be argued that a 

method that distorts the information underlying an engineering decision in non-uniform 

and in uncontrolled ways is an industry best practice? The burden of proof is squarely on 

the shoulders of those who would recommend the use of such methods to prove that these 

obvious inconsistencies do not impair decision making, much less improve it, as is often 

claimed. 

 

Table 9 — Lie Factor for 9 SPE papers. 

 

 

 

  

Paper Number Lie Factor  of Consequence Lie Factor  of Probability

SPE 142854 96 5935

SPE 86838 30 -

SPE 98852 745 245

SPE 121094 5 -

SPE 74080 94 -

SPE 123861 28 113

SPE 162500 85 389

SPE 98423 16 -

IPTC - 14946 1 3

Average of each category
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Chapter 4 – Partial Fixes for Risk Matrices 

4. Partial Fixes for Risk Matrices 

Despite all the identified flaws, RMs are still regarded by the O&G industry as the best 

available tool for risk assessment and evaluation. Because they are specified in industry 

standards, RMs have often been designated a ‘best practice’, which helps account for 

their popularity and persistence. Because of this, many fixes have been proposed for 

RMs.  In this section we address sets of axioms, new definitions and new algorithms, and 

will reveal their limitations. 

4.1 Minimum Consistency Theorem 

Cox (2008) introduced three axioms and one rule to create RMs that reliably categorize 

the outcomes that has low risk into the green region and the outcomes that have high risk 

into the red region. The three axioms and one rule are the 

 weak consistency axiom; 

 between-ness axiom; 

 consistent coloring axiom; and the 

 three color only rule. 

The three axioms will be explained using the RM in Figure 9. In Figure 9, probability 

and consequence rating are treated as utility values, ranging from 0 to 1. Colors designate 

the three risk regions. The three numbered cells designate the outcomes that will be 

referred to below. 

 
Figure 9 — A 5 × 5 RM to explain the minimum consistency theorem 

probability score probability range

1 0.8 < p <= 1

2 0.6 < p <= 0.8

3 0.4 < p <= 0.6 3 (0.41, 0.61)

4 0.2 < p <= 0.4 2 (0.39, 0.59) 1 (0.21, 0.81)

5 0 <= p <= 0.2

0 <= x <= 0.2 0.2 < x <= 0.4 0.4 < x <= 0.6 0.6 < x <= 0.8 0.8 < x <= 1

1 2 3 4 5

consequence range

consequence score
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Weak Consistency. Weak consistency requires RMs to have all risks with low 

quantitative value positioned in the low qualitative risk region (green), and all risks with 

high quantitative value in the high qualitative risk region (red). For example, in Figure 9, 

the probability/consequence pair for outcome 1 is (0.21, 0.81) and for outcome 2 is (0.39, 

0.59). These yield risk values for of 0.17 and 0.23, respectively. However, outcome 1 has 

the lower risk value, even though it is located in the red region and outcome 2 is located 

in the green region. This violates the axiom of weak consistency. 

Between-ness. Between-ness requires an RM to prohibit an outcome to change from the 

green region directly to the red region due to small changes in probability and 

consequence. In Figure 9, Outcome 2 has probability/consequence values of (0.39, 0.59), 

which places it in the green region. If the probability and consequence of outcome 2 were 

increased by 0.01, outcome 2 would still be in the same cell. However, if the probability 

and consequence of outcome 2 were increased by 0.02 instead, to (0.41, 0.61), outcome 2 

would move to the cell designated as outcome 3, which is in the red region. Thus, the RM 

in Figure 9 violates the requirement for between-ness. 

Consistent Coloring. Consistent coloring requires that all cells that intersect or are below 

the ‘green’ iso-risk contour
12

 be green, and that all cells that intersect or are above the 

‘red’ iso risk contour be red. Yellow cells must either intersect neither iso-contour or 

intersect both iso-contours. The consistent coloring axiom is best explained by example. 

Given a plot of probability and consequence with uniform
13

 categories along both axes, 

The RM can be designed by (1) choosing the risk acceptance according to our preference, 

(2) creating the iso-risk contour using the selected risk acceptance, (3) and color each cell 

according to which iso-contour line(s) it intersects. However, this coloring process will 

not be perfect, since the iso-risk contour is concave and therefore will not be presented 

perfectly by the vertical and horizontal lines that make up grid in RMs. Also, the 

remaining two axioms would also need to be fulfilled. 

                                                           

12
 Iso-risk contour line is the continuous line that describes an equal risk along the probability and 

consequence axis. It is built by a set of consequence and probability value that yield the same risk. 
13

Uniform means that each category along the probability axis and the consequence axis uses the same-

sized range, as shown in Figure 9. 



Philip Thomas – Spring 2013 Master Thesis 26 The Risk of Using Risk Matrices 

Three Color Only Rule. Cox (2008) argued that RM with too many colors gives spurious 

resolution and therefore, it is not possible to have an RM with more than three colors that 

follows the three axioms. An RM that has more than three colors will have 

inconsistencies between the color that denotes a medium-low risk, and the color that 

denotes the highest risk. The derivation of this rule is outside the scope of this thesis, but 

Cox (2008) present the scientific proof of three color only rule. 

Corollary of Minimum Consistency Theorem. The following corollary to the minimum 

consistency theorem is valuable for RM design. Given a uniform interval of probability 

and consequence in terms of its utility value, regardless of the size of the RM, the top-

most right cell must be red, and the top-most left cell and the bottom right cell must be 

green. This causes the 3 × 3 RM to have only one possible coloring configuration. For a 4 

× 4 RM, even though several color configurations are possible, only one useful
14

 color 

configuration exists. Both coloring configurations are shown in Figure 10 and 11 For 5 × 

5 RMs, many color configurations are possible, depending on the objectives and the risk 

acceptance criteria, but they still need to adhere to the minimum consistency theorem. 

 

Figure 10 — A 3 × 3 RM with color configuration mandated by the corollary to Cox’s axioms 

 

Figure 11 — A 4 × 4 RM with color configuration mandated by the corollary to Cox’s axioms 

                                                           

14
Useful RM is defined as an RM that is able to differentiate between an outcome with low risk (green) and 

an outcome with high risk (red) (keeping in mind that the risk for the yellow region is unknown). 
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Mathematical Notation. The set of equations that expresses the three axioms depends on 

the chosen RM size. This thesis will present the mathematical notation for RMs up to 5 × 

5, since the notation for RMs larger than 5 × 5 will be similar to that for a 5 × 5 RM. 

The set of equations for 3 × 3 RMs and 4 × 4 RMs is shown in Eq. 2. 
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For an RM to be useful, the number of yellow cells, Ny has to be minimized under the 

condition that the green iso-risk contour line with risk equal to x has less risk than the red 

iso-risk contour line with risk equal to y. Furthermore, no red cells may share a border 

with a green cell. 

This set of equations can be satisfied by only one coloring configuration for 3 × 3 RMs 

and one for 4 × 4 RMs. This means that the risk acceptance is predetermined and does 

not provide any latitude for a preference of the decision maker. 

For 5 × 5 RMs the set of equations is shown in Eq. 3. 
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The numbers of yellow, green and red cells, Ng, Ny and Nr, are defined by choosing the 

iso-risk contour line under the condition that every possible green iso-risk contour line 
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with risk x  has less risk value than the chosen red iso-risk contour line with risk y , which 

yields the maximum distinction
15

. 

Discussion of the Method. The minimum consistency theorem with the three axioms and 

one rule do indeed increase the consistency among RMs. However, this theorem does not 

take into account our preference by constraining the coloring options in our RMs. The 

inability to designate the top left cell or bottom right cell as red reduces the flexibility in 

defining our preference. This makes RMs that are built using minimum consistency 

theorem too rigid for a proper risk assessment. 

4.2 Risk Aversion Coefficient 

The definition of risk as a product of probability and consequences is seen by some RM 

practitioners as incomplete. Therefore, some RM practitioners have extended the 

conventional definition of risk to include a risk aversion coefficient, n, with 1 ≤ n ≤ to 2, 

as shown in Eq. 4.  

nrisk probability consequence  , (4) 

The risk aversion coefficient allows greater weight to be placed on the consequence, as 

the coefficient approaches 2. A comparison between the conventional definition of risk 

and the augmented definition of Eq. 4 is shown in Figure 12. This figure shows that the 

augmented definition of risk increases the number of red cells by shifting the iso-risk 

contour line to the left (shown by the movement from the green line to the red line). 

                                                           

15
The definition of maximum distinction is depends on the objective of the RM itself: sometimes we want 

to differentiate certain outcomes rather than obtain the maximum number of differences between the 

outcomes. 
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Figure 12 — Comparison of risk definitions 

This augmented definition can be analyzed using the Arrow-Pratt measure of absolute 

risk aversion, defined as: 
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, (5) 

where '( )R c  is the first derivative of the risk definition, and ''( )R c  is the second 

derivative of the risk definition. Using this equation on both the conventional risk 

definition and the augmented definition of risk will indicate whether Eq. 4 is a valid 

function. 

For the conventional risk definition, 
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and for the augmented risk definition, 
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Because 1 2n   then 2 1( ) ( )A R A R , hence Eq. 4 will always be more risk averse than 

the conventional risk definition (Eq. 1). Therefore, Eq. 4 is a valid definition of risk 

aversion. 

However, when we apply Eq. 4 to RMs, it increases their inconsistent coloring. This 

effect is illustrated in Figure 13 where outcome A is positioned in a red cell and outcome 

B positioned in a green cell. Risk values A and B can be calculated by multiplying the 

middle values in their respective probability and consequence ranges using Eq. 4. As n 

increases, an increase in the difference between the risk values A and B will be taken as 

indicating an increase in inconsistency in the RM, and a decrease in the difference would 

indicate a decrease in inconsistency. 

 
Figure 13 — An RM to illustrate risk aversion coefficient effect on risk inconsistency 
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Figure 14 — Risk value difference of risk A and risk B with varying risk aversion coefficient 

Figure 14 shows that increasing the risk aversion coefficient increased the absolute value 

of the difference between the risk of outcome A and that of outcome B, thus, indicates 

that the risk aversion coefficient increases the inconsistency of an RM. 

Discussion of the Method. At first glance, the risk aversion coefficient as defined in this 

section seems logical. However, applying this definition to an RM violated Eq. 4, and 

hence, produced larger inconsistencies for RMs. 

4.3 Cost Function Minimization 

The minimization of cost function is adapted from Huber et al. (2008), as a means to 

optimally design RMs. It uses an algorithm that was developed to minimize the cost 

function in binary RMs, which have only two risk regions, ‘low’ and ‘high’, as shown in 

Figure 15. 

 
Figure 15 — A binary RM 

Figure 16 illustrates how the cost function is perceived in binary RM. The process starts with the 

uncolored cell which being cut by an iso-risk contour line, resulting in two coloring possibilities 

for the cell: it is either green (low risk) or yellow (high risk). If we choose yellow as the color of 

the cell, the bottom left corner of the cell will incur the biggest cost. If we color the cell green, the 

top right corner of the cell will incur the biggest cost. Learning from this, cost can be intuitively 
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explained as a function of probability, p, consequence, c, and decision, d of which color is used 

for the cell (           ). 

 

Figure 16 — Iso-risk contour line cut the cell in an RM, giving the cell two coloring choices 

There are two views to describe the cost of the cells; it can be described as ‘minimax’ 

view or ‘expected cost’ view. These two views have two different cost functions. Both of 

them calculate the difference of Rcell, the risk value of the chosen RM color which equals 

to the risk values of iso-risk contour line and Rp,c is the risk with probability p, and 

consequence, c in the cell that should designated the opposite color of the cell. 

Minimax View. Eq. 10 shows the cost function for minimax view that describes cost as 

the worst cost that can happen in a cell. Thus, the objective here is to minimize the 

maximum cost of categorization in the cell. Hence, it’s called minimax. 

  
2

,( , , ) max cell p cCost p c d R R  
  

. (6) 

Expected Cost View. The expected cost view describes cost function as the total cost of 

the cell when the whole cell is categorized into one color, thus, integration of the 

difference between risks over the cell is needed. In Figure 16, if the cell is colored green, 

then we have to integrate the difference of a risk above the iso-risk line curve to the top 

right edge of the cell (R1 = risk of the cell and R2 = maximum risk that can be described 

by the category of the cell), and if the cell is colored yellow, we have to integrate over 

from the bottom left edge of the cell, to the iso-risk line curve (R1 = minimum risk that 

can be described on the cell to R2 = risk value that described by the cell). The equation of 

expected cost view is described in Eq. 7. 
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Since only two color possibilities exist for the cell (owing to binary RMs), both views 

decoupled the choosing breakpoint (categorization) issue and coloring option issue, 

which makes it easier. Therefore, the goal is to determine the categorization for the set of 

probability ranges and consequence ranges that incur the minimum cost, but this depends 

on how the cost is viewed. 

There are two algorithms for this minimization. The first algorithm is called a strip-sweep 

algorithm, which moves the categorization of the cell to incur the minimum risk. The 

second method is called a zig-zag algorithm, which cuts the iso-risk contour line into 

segmented probability and consequence categories. 

Strip-Sweep Algorithm. The strip-sweep algorithm moves the boundary in the category 

to achieve the minimum cost. Figure 17 represents how the strip-sweep algorithm works. 

Imagine there is one big cell that passes through by the iso-risk contour line and slices 

this big cell into two cells which have to be designated by two different colors. The 

adjustment can be done by choosing where to cut the cells (moving y2 upwards or 

downwards) which determine the size of the two cells. The color assignment to these two 

cells is done with the objective of minimizing the cost of the big cell. 

On the left side of the picture, the cell above y2 has no cost at all since it is fully placed 

above the iso-risk contour line. Thus, the cell can be described using a single color. 

However, on the same picture, the cost incurred in the bottom cell is large, owing to the 

iso-contour line that cuts right at the center of the cell. Thus, we need to find the 

boundary of the probability that gives the minimum sum of the cost for these two cells. In 

Figure 17, it achieved by pulling the y2 boundary slightly downwards (right side of the 

picture). 
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Figure 17 — A picture illustrating the strip-sweep algorithm 

Zig-Zag Algorithm. The zig-zag algorithm works similarly to the bisection method for 

moment matching. In Figure 18, imagine we can draw a line that cuts and categorizes the 

iso-risk contour line. The algorithm start this cutting line from the top left of the figure, 

moving downward until it cut the iso-risk contour line, then move to the right until equal 

areas is achieved, then repeat. The goal is to find a set of range for probability axis (y) 

and consequence axis (x) that minimizes the cost. This algorithm will produce sets of 

equations which can be optimized numerically. This makes it implementation highly 

convenient. 

 

Figure 18 — A picture of a zig-zag algorithm 
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Discussion of the method. Even though minimization of the cost function seems a 

promising to fix for RMs, the results of this algorithm has not been encouraging for the 

following reasons. First, these algorithms are difficult to implement when we deal with 

an RM that has more than two colors. Minimization algorithm on binary RMs deal only 

with one cost function, thus, there are no interaction between two differing cost functions. 

However, when an RM is not binary, the change of range in probability or consequence 

leads to the interaction between two or more differing cost functions, making numerical 

solution imprecise. 

Second, if only a binary RM is needed, or assumes the interaction between two or more 

differing cost functions is handled well, a zero cost is practically impossible to achieve, 

except there is infinite number of categories. 

Cost minimization is numerically extensive, yet still gives inexact result. Considering the 

effort needed to implement these algorithms and the imprecise results of the algorithms, 

this is not an optimal solution to be implemented to get a consistent, yet useful, RM. 

4.4 Summary of the (Partial) Solutions 

RMs are prone to conceptual errors and flaws, and since RMs are common in many 

industries, many researchers and academics have tried to find solutions to fix the 

conceptual errors and flaws already noted. However, despite the numerous and extensive 

efforts made, the results of these fixes are not promising. 

The minimum consistency theorem gives a set of axioms and a rule, adding constraints in 

addition to our preferences, which makes the resulting RMs too rigid to describe our 

preference. 

Risk aversion coefficients are indeed analytically correct in describing aversion towards 

high consequence events, yet fail to fix RMs owing to categorization within RMs: indeed, 

they can increase inconsistency within RMs. 

Cost functions are numerically extensive and require huge investments for 

implementation while still failing to produce promising results. 
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Solutions for RMs are not easily formulated, thus, the use of solutions other than RMs is 

recommended. There exists another method that is as practical as RMs, which gives us 

clarity to view the problems, hence, become a good basis for risk management exercises. 

we will introduce one of these solutions in the next chapter. 
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Chapter 5 – Alternative Solutions: Decision 
Analysis 

5. Decision Analysis  

Ron Howard, one of the founding-fathers of decision science, coined the term ‘decision 

analysis (DA)’ as a “systematic procedure for transforming opaque decision problems 

into transparent decision problems by a sequence of transparent steps” in Howard (1966). 

Since DA requires us to think probabilistically, it captures the essence of risk 

management. Hence, it makes DA suitable as an alternative for RMs. In addition to 

consistency, DA provides sets of thoughtful academically developed tools that are 

practical enough to be used in the real world. In this section we will solve the case 

example using DA to illustrate that unlike RMs, the analysis resulting from DA brings 

clarity to help the decision maker. 

5.1 Principles of Decision Analysis — In a Glance 

The goals of employing DA are to achieve clarity of the problem and to guide us towards 

making good decisions. A ‘good decision’ is defined as “an action we take that is 

logically consistent with our objectives, the alternatives we perceive, the information we 

have, and the preferences we feel”. Since we live in an uncertain world, making a good 

decision doesn’t always lead to a good outcome, but it definitely increases the chance of 

good outcome. 

 

There are numerous important principles of DA, but only the ones that are most relevant 

for this thesis that will be discussed. High level model of decision-making methodology 

as described by Bratvold and Beggs (2010) is the model that is used throughout this 

thesis (shown in Figure 19). Consideration of using the model is because its 

implementation which supports the common O&G risk management practices where the 

risk analysts report the result of the analysis to their immediate supervisor. The model 

mainly consists of three steps. 
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Step 1 - Structuring / Framing. This step ensures the right people are treating the right 

problem and from the right perspective. Decision hierarchy and value tree diagrams are 

often used in this step. 

Step 2 - Modeling / Evaluating. This step builds models which incorporate all the main 

elements of the decision problems and solve it. This step is very important to create 

understanding and insights of the analyst. The model is also used to communicate 

quantitative results to the shareholders. Decision trees and influence diagrams will be 

used to model the case example.  

Steps 3 - Assessing and Deciding. This step makes sure that the models built in step two 

is robust. This is done by testing them and making different sets of scenarios from the 

models. Sensitivity analysis is incorporated into this step and Monte Carlo simulation is 

used to get the effect of value distribution for the case example risk assessments.    

 

 

Figure 19 — High level modeling methodology 

5.2  Solving the Case Example with Decision Analysis 

Let’s recall our example in section 2.3: 

- to evaluate the risk of possible outcomes if there has been fluid loss in a hole in 

section 4; 
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- there are three possible outcomes identified by the expert with their associated 

consequences and probabilities; 

- the goal is to do the risk prioritization, thus, a risk ranking. From there, the 

mitigation plan that optimally allocates our resources based on the risk 

prioritization result can be created. 

5.2.1 Framing 

As described previously, the objective of framing is to make sure we are dealing with the 

right problem with the right people from the right perspective. There are three important 

decision elements that are considered when framing every decision case: objectives, 

alternatives and information. This thesis only discusses the framing parts briefly and 

limited to that are particular to the case examples. For further information see work by 

Bratvold and Beggs (2010). 

Pritchard et al. (2010) used a frame that had an objective to minimize the drilling risk by 

making risk prioritization. Since the resources for risk mitigation are limited, they wanted 

to rank the identified risks and mitigate the most ‘important’ risk. Using this risk ranking 

result, they would like to develop a mitigation plan that enables them to make a good 

decision for the drilling operation. For the sake of justifiable comparison between RM 

and DA, This thesis will assume a similar frame for solving the case example with DA. 

While for the case of choosing between two mitigation plans, different frame for DA will 

be introduced.  

There is a significant difference of how RM and DA view the risk tolerance. In RM, the 

risk tolerance is denotes by its coloring practice. However, in DA, the concept of risk 

tolerance is more into its utility of the value. And as shown by Leach (2010), in O&G 

industry, the best results are achieved using risk neutral attitude. Risk neutral assumption 

will leads to the decision making that are based on the highest/lowest expected monetary 

value. In the case of risk management, the decision with lowest sum of the expected loss 

and implementation cost will be chosen. This thesis assumes risk neutrality as a risk 

attitude to complete all remaining calculations.  
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5.2.2 Modeling 

In this thesis, decision trees and influence diagram is used to model the problems. 

Decision trees provide good structures to calculate the expected downside consequence. 

In addition, using an RM as it is completed by Pritchard et al. (2010) would restrict us to 

model any dependence between outcomes, since an RM has a built in assumption of 

independence. By using DA, the dependence can be modeled using the conditional 

probabilities. However, dependence in the models will make a decision tree grow fast and 

become decision forest, which could be difficult to build.  

This decision forest problem can be alleviated with an influence diagram, which 

compresses the information that a decision tree provides while present the inter-

dependency between variables.  

This section will start with an independent model to lay the basic structure to solve the 

problem. Next, the independent model is expanded by taking into account the dependence 

between outcomes.  

Independent Model 

Figure 20 shows a decision tree with no dependence taken into account. It shows a clear 

structure for risk prioritization. Square nodes represent the decision that will be taken: 

circle nodes represent the uncertainty of the outcome with its associated probability. 

Thus, the risk or expected loss is calculated by the product of probability and 

consequence which can be ranked for the risk prioritization purposes. Figure 20 shows 

the decision tree analysis using the values as expressed as the single most likely value for 

each consequence as used in section 3.2.1. The number and in this step have no meaning. 

It is intended purely to give a proper structure for the problem solving exercise. 
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Figure 20 — A decision tree for the case example (no dependence was taken into account) 

Dependence Model 

In many cases, however, not taking dependence into account is perilous. Dependence 

gives a holistic view about the problems which leads to the right perspective to prioritize 

risks. For example, when severe losses happen, it will obviously increase the chance of 

both well control and blowout. As noted previously, dependence is not easy to model 

using decision trees as it will soon grow to become a decision forest. For example, if 

there are three outcomes that are inter-dependent and each outcome has two 

consequences and probabilities, then there will be eight end points (consequences
outcome

 = 

2
3
) for each branch, and since each branch modeled each outcome, there will be 24 end-

points (consequences
outcomes

 × outcomes) on the decision tree. An influence diagram is 

needed to compress this information. 
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Figure 21 — An influence diagram with severe losses as the conditional outcome 

 

Figure 22 — An influence diagram with well control as the conditional outcome 

 

Figure 23 — An influence diagram with blowout as the conditional outcome 
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Since each outcome is interdependent, each conditional outcome we choose to mitigate 

has two possible representative structures. Hence, there are six (  
 ) possible influence 

diagrams to represent dependence in our example. For example, when severe losses 

happened, then the next possible outcome is well control or blowout. The best way to 

choose between these two structures is to get the most logic influence diagram according 

to the SME. The three influence diagrams that the SME chose is shown above. An 

influence diagram in Figure 21 will become the branch to calculate the risk for severe 

losses, influence diagram in Figure 22 will become the branch to calculate the risk for 

well control and Figure 23 will become the branch to calculate the risk for blowout. 

Arrows in this case refer to the dependencies between each risk (dependence is not equal 

to causality). Further information is documented in work by Howard and Matheson 

(2005). 

The influence diagram then can be converted into decision trees. However, structure of 

the decision tree resulting from the conversion process has to be modified to give the 

right structure. In this case, the branch of the tree after the blowout occurs will be omitted 

since after the blowout has happened, the well will be shut down and be killed, thus, 

leaving no chance of severe losses or well control to happen. 

 
Figure 24 — A decision tree that includes dependence 
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After the modification, the decision trees becoming structure as shown in Figure 24. This 

model assumes that the dependence affects only the probability of the outcome while the 

consequence stays the same. The list in in Figure 24 shows the conditional probability of 

the outcome with ‘B’ denotes blowout, ‘S’ denotes severe losses and ‘W’ denotes well 

control. Henceforth, P(B|S’W) means the probability of blowout given severe losses do 

not happen and well control issues happened (shown in Figure 24 as 10%). The 

probability and consequence value in this step is arbitrary since our goal is just to get the 

right model for our problem. 

The numbers will be taken care in the next step by doing sensitivity analysis that can 

capture the whole risk distribution, encapsulating a full range of consequence and 

probability values. 

5.2.3  Assessing and Deciding 

To assess the model, we used Monte Carlo simulation (MCS) to capture the wide 

distribution of risk values. MCS uses a random number generator and the associated 

distribution of probability and consequence to capture the risk values. Figure 25 shows 

the proposed framework to calculate the risks distribution of the outcomes with 10000 

iterations. 

 
Figure 25 — A Monte Carlo simulation framework for our case example 
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Figure 25 shows the probability and the consequence that treated as a disjointed variable. 

This means there are two types of uncertainties: first, the probability that either the 

outcome is going to happen/not happen; second, if the outcome has happened, the 

probability distribution has to be used to describe the range of consequences in monetary 

value that might happen. To avoid the double counting of the first uncertainty, we have to 

use the bounded
16

 distribution such as there is no consequences distribution that contains 

0. Figure 26 shows the influence diagram of how MCS is implemented for the case 

example. 

 
Figure 26 — A Monte Carlo simulation model for the case example 

To get a better view of a relative magnitude for each risk, rank function is incorporated 

which allows the calculation of expected rank for each risk. This idea is very similar to a 

counting approach to get the probability value. Figure 27 shows the workflow involved 

to include the rank function in MCS. It starts with generation of risks distribution using 

MCS, then the rank function is used to generate the distribution of the ranks, then we 

convert the frequency values of those ranks into the probability. This probability and rank 

values then can be converted into the expected rank value to prioritize our risks using 

Eq.8. The closer the expected rank value is to 1, the more it has to be prioritized. 

                                                           

16
 Bounded here means contain minimum and maximum value. In our case, the most important thing is the 

minimum > 0 to avoid double counting of the “not happened” outcome. 
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By using this approach the relative magnitude of risk is scalable from one risk to another, 

thus, giving us the appropriate comparison between each risk. From this the prioritization 

can be appropriately conducted. Another advantage of this method is that it is easy to 

implement for numerous risks; making this method a suitable alternative for RMs. 

 
Figure 27 — Workflow for risk ranking using rank function and Monte Carlo simulation 

Assessing—Independent Model 

SME’s judgment is needed to codify the input data for MCS. The input data will 

determine the type of distribution and range of values associated with each case. To solve 

the case example, we use a PERT distribution as input data in probability and 

consequence as elicited from the SME. Table 10 shows the input data for the non-

dependence case as elicited from the SME taken from Pritchard et al. (2010), with the 

assumption of blowout consequence values the same as in section 3.2.1. 

Table 10 — Non-dependence case, SME’s judgment 

 

MCS is using this input data to produce the risks distribution for each outcome. The risks 

distribution for each outcome and their metrics such as the minimum, mean, maximum is 

Distribution type min mode max

P(S) PERT 0.05 0.4 0.45

P(W) PERT 0.05 0.1 0.3

P(B) PERT 0.00001 0.05 0.07

Consequence Severe Losses PERT 1 3 5

Consequence Well Control PERT 5 12.5 20

Consequence Blow Out PERT 20 50 80
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shown in Figure 28, 29 and 30. If it is decided to prioritize based on the risk mean 

values, then the blowout becomes the first priority since it gives the highest mean risk 

value for our operations. It then follows that well control becomes second priority, and 

severe losses become the last priority. Since the shape of each resulting distribution is log 

normal due to central limit theorem, using only the mean values could lead us astray. The 

better way of doing the prioritization is by using the distribution of rank function.  

 
Figure 28 — Severe losses risk distribution - non dependence model 

 
Figure 29 — Well control risk distribution - non dependence model 

 
Figure 30 — Blowout risk distribution - non dependence model 
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Figure 31 shows the results of MCS which incorporate the rank function and conversion 

of the frequency into the probability for each outcome. It shows blowout has a 99.07% 

chance if becoming the first priority, a 0.77% chance of becoming the second priority, 

and a 0.16% of becoming the third priority. These values then can be converted into 

expected rank value for each outcome using Eq. 8 as shown in Table 11. 

 

Figure 31 — Rank distribution for each risk – non dependence model. 

Table 11 — Expected rank values for the case example – non dependence model 

 

Keep in mind that these results do not include dependence in the model. As noted 

previously, dependence is of great importance, and must be accounted for. Thus, a 

dependence model is needed before the decision is made. 

Assessing and Deciding—Dependent Model 

The dependence model needs considerably greater input data for us to run a Monte Carlo 

simulation. Table 12 lists all the input data that are used to run the MCS for the 

dependence model. These input data come from SME’s judgment.  

Expected Rank

Severe Losses 2.68

Well Control 2.31

Blow Out 1.01
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Table 12 — A Monte Carlo simulation input data for dependence model 

 

One question that might arise from the SME’s judgment concerning the value of 

P(B|SW), which is smaller than the value of P(B|W). It stems from the fact that if well 

control issues happen because of the severe losses, it is easier to control since the source 

of a problem is known. Further, if well control issues is happened without any severe 

losses occurring, it might become more difficult to prevent, thus, more likely to become a 

blowout.  

To get the risks distribution for each outcome, the MCS is incorporated into the decision 

trees in Figure 24. It yields the risks distribution for each outcome as shown in Figure 

32, 33 and 34.  

 
Figure 32 — Severe losses risk distribution - dependence model 

 Distribution Type Min Most Likely Max

P(S) PERT 0.01 0.4 0.45

P(S|B') PERT 0.01 0.4 0.45

P(S|B'W') PERT 0.01 0.4 0.45

P(S|B'W) PERT 0.01 0.4 0.45

P(W) PERT 0.01 0.1 0.2

P(W|S) PERT 0.01 0.1 0.25

P(W|S') PERT 0.01 0.1 0.2

P(W|S'B') PERT 0.01 0.1 0.2

P(W|SB') PERT 0.01 0.1 0.25

P(B) PERT 0.0001 0.05 0.07

P(B|SW) PERT 0.01 0.1 0.5

P(B|S'W') PERT 0.0001 0.05 0.07

P(B|S'W) PERT 0.01 0.3 0.5

P(B|W) PERT 0.01 0.3 0.5

P(B|W') PERT 0.0001 0.05 0.07

P(B|SW') PERT 0.0005 0.05 0.07

Consequence Severe Losses PERT 1 3 5

Consequence Well Control PERT 5 12.5 20

Consequence Blowout PERT 20 50 80

* a l l  consequence va lue in Mi l l ion USD



Philip Thomas – Spring 2013 Master Thesis 50 The Risk of Using Risk Matrices 

 
Figure 33 — Well control risk distribution - dependence model 

 
Figure 34 — Blowout risk distribution - dependence model 

When we include dependence, the result is very different from the non-dependence 

model. Figure 35 shows that well control has the biggest chance of becoming first 

priority. This prioritization is aligned with what we observe, since well control always 

happens before blowout. Even though severe losses is increasing the chance of well 

control issues, there are many other different ways to experience well control issues, such 

as encountering the abnormal pressure zones or problems in pressure control equipment. 

Further, if we resolve these issues through good well control mitigation, we will never 

reach blowout, which gives large consequences compared with the other two risks. 
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Figure 35 —- Rank distribution for each risk – dependence model. 

As shown in Table 13, the expected rank value confirmed the previous finding. It is 

clearly seen that the well control is the prioritized outcome, but since the rank is very 

close with the severe losses, it could be concluded that in order to get maximum risk 

reduction, the mitigation plan has to be directed to reduce risks from both outcomes. 

Table 13 — Expected rank values for the case example – dependence model 

 

5.3  Choosing between Mitigation Plans 

The result from risk ranking is then used as a basis to create a mitigation plan that is 

geared towards the prioritized risk. Using the risk ranking results enables the SME to 

identify two possible mitigation plans. The first mitigation plan proposed is ‘pressure-

while drilling (PWD)’ technique, which allows the control of the bottom-hole pressure in 

real time manner, leading to a decrease in the chance of the three outcomes. The second 

mitigation plan is to ‘use better pressure control equipment (PCE)’ in addition to the 

PWD techniques. This second mitigation plan will lead to the reduction of the most likely 

value in well control issues and blowout probabilities. This is possible because the PCE 

has a better equipment grade and better control at the surface, which further increases the 

safety of the well. 

 

The caveat for the PWD + PCE is its cost, which is much higher than PWD only. Here, 

SME’s estimation is being used again, in this context to quantify the residual probabilities 

Rank Expected Value

Severe Losses 1.688

Well Control 1.6804

Blowout 2.6316
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after the mitigation has been implemented. It is common to have a reduced probability of 

the outcome happening when the mitigation is in place, although it has no effect in 

altering the consequences. A comparison of both mitigation plans is given in Table 14 

and 15. 

 Pressure-while drilling (PWD) 

Table 14 — Pressure-while drilling: SME’s estimation 

 

 Pressure-While Drilling + better Pressure Control Equipment (PWD + PCE) 

Table 15 — Pressure-while drilling + better PCE:  SME’s estimation 

 

Given these probability and consequence values from SME, DA or RMs can be used to 

decide which mitigation plan is the best. Obviously, the most effective mitigation plan 

should achieve the minimum risk at minimum cost. This will be the objective of our 

analysis. 

 

Cost of PWD : 0.5 Million USD Distribution Type Min Most Likely Max

P(S) PERT 0.005 0.2 0.225

P(S|B'W) PERT 0.005 0.2 0.225

P(W) PERT 0.001 0.01 0.02

P(W|S) PERT 0.001 0.01 0.025

P(B) PERT 0.002 0.01 0.1

P(B|SW) PERT 0.00002 0.01 0.015

P(B|W) PERT 0.00002 0.01 0.015

P(B|SW') PERT 0.002 0.02 0.05

Consequence Severe Losses PERT 1 3 5

Consequence Well Control PERT 5 12.5 20

Consequence Blowout PERT 20 50 80

* a l l  consequence va lue in Mi l l ion USD

Cost of PWD + PCE : 0.75 Million USD Distribution Type Min Most Likely Max

P(S) PERT 0.005 0.2 0.225

P(S|B'W) PERT 0.005 0.2 0.225

P(W) PERT 0.0001 0.005 0.02

P(W|S) PERT 0.0001 0.005 0.025

P(B) PERT 0.002 0.005 0.1

P(B|SW) PERT 0.00002 0.005 0.015

P(B|W) PERT 0.00002 0.005 0.015

P(B|SW') PERT 0.002 0.01 0.05

Consequence Severe Losses PERT 1 3 5

Consequence Well Control PERT 5 12.5 20

Consequence Blowout PERT 20 50 80

* a l l  consequence va lue in Mi l l ion USD
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In this thesis, the analysis to choose between these mitigation plans will be conducted 

using RMs and DA. The resulting analysis can then be compared to determine which one 

gives greater clarity to the decision-making process. 

5.3.1 Mitigation Plan Analysis with Risk Matrices 

In RMs, to choose between mitigation plans, the risk score reductions that would result 

from implementation of each plan have to be calculated. Just like in the example case, all 

the values that are used for the analysis in the RM are the most likely or middle value. 

Before the risk score reduction for each mitigation plan can be calculated, the RM has to 

be used to identify whether there is an outcome in the red region of the RM. If an 

outcome in the red region exists, the mitigation plan will be automatically disqualified. 

Using the RM for our case example, we can see that both mitigation plans have outcomes 

within green or yellow region (as shown in Figure 36), which means they both qualify 

for inclusion in the next step. 

 
Figure 36 — An RM for both mitigation plans (both of them produced the same RM) 

The next step is to calculate the risk score reduction for each plan. The risk score 

reduction can be calculated by measuring the difference in risk scores from before and 

after implementation of the mitigation plan. The cost per unit risk score reduction then 

can be calculated by dividing the cost of mitigation plan with the total risk reduction from 

all outcomes. The result of the analysis is shown in Table 16. 
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Table 16 — Comparison of between mitigation plans in the RM 

 

The results in Table 16 show that the mitigation plan with minimum cost is PWD only, 

and the calculated risk score reduction shows that the PWD + better PCE has no benefit 

in terms of additional safety. That is, better PCE perceived as no additional value in terms 

of safety. This result from the RM analysis should be compared with results from the 

decision analysis method. 

5.3.2 Mitigation Plan Analysis with Decision Analysis 

To analyze the risk mitigation plan using DA, the analysis has to be done with the same 

framework as provided in Figure 19. In this case, we don’t need to generate the 

alternatives since they are given (‘PWD’ or ‘PWD + better PCE’). The objectives are cost 

and safety: our preference is to minimize risk to be as low as possible, but with minimum 

cost and risk neutral assumption for the risk attitude. 

 

The structure used to perform the analysis for the two mitigation plans is shown in 

Figure 37 where there are two branches, separating out from the decision node. One of 

them represents PWD and another represents PWD + better PCE. By calculating the 

expected loss + cost for each branch, we can work out the expected value. The smallest 

expected value between two decision branches represents the one that will incur the 

minimum downside risk. 

 

However, an uncertainty analysis has to be incorporated into the model. For this, a Monte 

Carlo simulation was used. The Monte Carlo simulation gives a holistic view between 

two alternatives, and thus, we can choose accordingly. 

Before Mitigation After Mitigation

Risk Score Risk Score

Severe Losses 20 16 -4

Well Control 15 5 -10

Blowout 12 6 -6

Severe Losses 20 16 -4

Well Control 15 5 -10

Blowout 12 6 -6

0.5

0.75 0.0375

PWD Only

PWD + Better PCE

Risk Score 

Reduction
(Cost MM US$ / 1 unit 

risk reduction score)

0.025

Outcome
Cost

(MM US$)
Mitigation Plan
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Figure 37 — A decision tree for ‘PWD’ and ‘PWD + better PCE’ 

 

 
Figure 38 — PWD + PCE branch (the PWD only branch will have the same form) 

Figure 38 shows a structure that is different from the prioritization case. In the 

prioritization case, the outcomes are prioritized by the expected loss for each outcome. In 

the mitigation case, it is needed to assume that the events presented are not collectively 

exhaustive but mutually exclusive. Therefore, the probability of all outcomes needed to 

sum to one by introducing a new outcome called ‘nothing happened’. Thus, the fluid 

0.548% 2.16E-06

30.99558335 44.45909211

0.1888% Chance

8.989834867 13.63336657

99.452% 0.0392%

0 13.46350876

20.8553% Chance

3.723673893 4.952340379

1.4913% 0.3104%

30.99558335 35.46925725

99.8112% Chance

0 4.935923153

98.5087% 20.5055%

0 4.473673893

1 Chance

0.75 1.857971201

0.5742% 0.0033%

30.99558335 40.73541822

0.5769% Chance

8.989834867 10.60532145

18.5702% 0.1065%

3.723673893 13.46350876

99.4258% Chance

0 10.43133024

81.4298% 0.4671%

0 9.739834867

0.5636% 0.5636%

30.99558335 31.74558335

78.0041% 78.0041%

0 0.75

PWD + PCE

Severe Losses

Well Control

Blowout

No Blowout

No Well Control

Blowout

No Blowout

Well Control

Blowout

No Blowout

Severe Losses

No Severe Losses

Blowout

Nothing Happened
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losses may lead to four possible outcomes: severe losses, blowout and well control or 

nothing happened. 

MCS is then incorporated into Figure 37. The results are Figure 39 which shows the 

distribution of expected consequences for PWD + better PCE and Figure 40 which 

shows the distribution of expected consequences for PWD only. From here, a comparison 

between the two mitigation plans can be made. The results of the distributions are in 

favor towards PWD + better PCE since it achieved lower maximum, mean and standard 

deviations compared to PWD only.  

 

Figure 39 — Distribution of expected loss for PWD + better PCE 

 

Figure 40 — Distribution of expected loss for PWD only 
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Figure 41 — Numbers chosen as an optimal solution in a MCS for both plans 

Figure 41 shows that the PWD + better PCE is chosen as optimal solution in 5070 out of 

10,000 iterations. This confirms the previous finding where PWD + better PCE is a better 

alternative than PWD only.  

5.3 Comparison of RM and DA in Choosing Risk Mitigation Plan 

The analysis using DA shows that PWD + better PCE is a better alternative than PWD 

only, whereas the analysis by RM shows that PWD only is a better alternative. This 

contrast in the decision is caused by the RM that is inherently flawed. Specifically for this 

case example, it is the range compression bias which obscured RM decision making 

process. The RM assigned the same score to very different probability/consequence 

values. Thus, the decision suggested by the RM leads us to the possibility of choosing an 

inferior alternative. This issue can be alleviated with DA method that doesn’t compress 

the actual values into arbitrary scores and won’t introduce arbitrary risk acceptance or 

coloring which leads to confusion. 

5.4  Discussion  

This thesis has presented a method with DA principles as an alternative for RMs. Unlike 

RMs, DA brings clarity about the problems under investigation with minimal (if any) 

conceptual biases or errors. Instead of presenting a deterministic view of a problem(s), 

DA provides a holistic view that allows for good risk prioritization. 
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Furthermore, DA gives us the ability to model the problems with more realistic features, 

such as dependence and sensitivity analysis. These realistic features cannot be included in 

RMs since they rely on a grid- and category-based assessment. 

Many people find it challenging, at least initially, to deal with good decision making 

requirements. For many, it is difficult to be clear about their preferences, objectives, 

alternatives, and to become a probability assessor.  

Using RMs gives the impression of scientific and intellectual rigor, without dealing with 

good decision making requirements. Instead because of their inherent flaws and errors 

they could lead us to inferior decisions. The only way to consistently making a good 

decision is to work through what is perceived to be the hard part of good decision making 

requirements.  

The DA method is a tool that requires us to have a good decision making requirements. 

Using it for the first time may not always be easy, but the more experience we gain in 

using it, the easier it becomes to implement, until we see they are just as convenient as 

RMs. Furthermore, the DA method is easily scalable to the problems with more 

variables/risks. It’s a tool that requires practice in using it, but certainly is better than 

RMs. 
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Chapter 6 – Discussion and Conclusions 
 

Risk matrices (RMs) are among the most commonly used tools for risk prioritization and 

management in the O&G industry. RMs are recommended by several influential 

standardization bodies, and our literature search found more than 100 papers in the 

OnePetro database that document the application of RMs in a risk-management context. 

However, we are not aware of any published empirical evidence showing that they 

actually help in managing risk or improve decision outcomes.  

 

In this thesis, we have illustrated and discussed inherent flaws in RMs and their potential 

impact on risk prioritization and mitigation. Inherent dangers such as risk acceptance 

inconsistency, range compression, centering bias, and category definition bias were 

introduced and discussed by Cox et al. (2005), Cox (2008), Hubbard (2009) and Smith et 

al. (2009). We addressed several previously undocumented RM flaws: ranking reversal, 

instability resulting from categorization differences, and the lie factor. These flaws 

cannot be corrected and are inherent to the design and use of RMs. The ranking produced 

by RMs was shown to be unduly influenced by their design, which is ultimately arbitrary. 

No guidance exists regarding these design parameters because there is very little to say. 

A tool that produces arbitrary recommendations in an area as important as risk 

management in O&G should not be considered an industry best practice.  

 

There are undoubtedly O&G professionals who recognize and understand the inherent 

inaccuracy of RMs and take steps to avoid these dangers, to the extent this is even 

possible. However, we suspect that this does not apply to the majority of O&G 

professionals who develop or use RMs, based on the literature review and extensive data 

gathering conducted for this paper.  

 

We hope that this thesis increases awareness of the inherent flaws in RMs and that risk 

professionals in the O&G industry are prompted to move away from RMs and use more 

consistent risk-management approaches. 
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It may be true that using RMs to analyze and manage risks is better than doing nothing 

(even that may be debatable). Indeed, any approach that generates some discussion of the 

risks in a particular activity will be helpful. The fact that these flaws have not been raised 

before is evidence of the fact that RMs obscure rather than enlighten communication. 

Instead of RMs, the O&G industry should rely on risk- and decision-analytic procedures 

that rest on over three-hundred years of scientific development and understanding. 

 

This thesis has illustrated a decision analysis procedure that can act as a guide in solving 

risk management issues. Decision analysis-based methods provide clarity and can be 

appropriately implemented in O&G the industry. It may seem harder initially to 

implement than RMs since DA requires the users to deal with good decision making 

requirements such as defining preferences and objectives, generating alternatives, seeking 

more information, assessing probabilities. However, once the user is accustomed to these 

procedures, they will notice that the results from DAs are much clearer and cleaner in 

practice than RMs. 
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Appendix: 30 Selected SPE Papers and Their Flaws 
 

Table 17 — 30 SPE papers and (some of) their inherent flaws. 

 

Corrosion 2000 2000 Reynold, John T. y y Not available Ascending

SPE 61149 2000 Piper and Carlon y y Not available Descending

SPE 66516 2001 Berg, F.R. y y Not available Ascending

SPE 73892 2002 Mcculloch. y y Not available -

SPE 73897 2002 Smith et al. y y y Ascending

SPE 74080 2002 Zainuddin et al. y y y Descending

SPE 85299 2003 Coakley et al. y y Not available Ascending

SPE 86838 2004 Theriau et al. y y Not available Descending

SPE 98566 2006 Campbell and Tate y y Not available Ascending

SPE 98852 2006 Alkendi y y Not available Ascending

SPE 98679 2006 Clare and Armstrong y y Not available Ascending

SPE 98423 2006 Valeur and Clowers y y Not available Ascending

SPE 108279 2007 Poedjono et al. y y Not available Ascending

SPE 108853 2007 Mcdermott y y Not available Ascending

SPE 105319 2007 Samad et al. y y Not available Ascending

OTC 18912 2007 Truchon et al. y y y Descending

SPE 111549 2008 Kinsella et al. y y Not available Ascending

SPE 121094 2009 Poedjono et al. y y Not available Ascending

SPE 123457 2009 Lee y y Not available Ascending

SPE 123861 2009 Leistad and Bradley y no Not available Ascending

SPE 111769 2009 Jones and Bruney y y Not available Descending

SPE 137630 2010 Samad et al. y y Not available Ascending

SPE 127254 2010 Neves Da Silva et al. y y Not available Ascending

IPTC 14434 2011 Al-Mitin et al. y y Not available Ascending

IPTC 14946 2011 Areeniyom y y Not available Ascending

SPE 142854 2011 Dethlefs and Chastain y y y Ascending

SPE 146845 2011 Petrone et al. y y y Ascending

SPE 158114 2012 Bower-White y y Not available Ascending

SPE 162500 2012 Bensahraoui and Macwan y y y Ascending

SPE 161547 2012 Duguay et al. y y Not available Ascending

Paper Year Author(s) Risk acceptance Inconsistency Category definition bias Centering bias Scoring System


