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ABSTRACT 

Recently, it has become apparent that the prediction of the Statfjord reservoir potential 

determined from the ECLIPSE simulator differs from the actual formation performance, i.e. 

simulated fluid production results are too optimistic, especially for the gas phase. Since the 

validity of the Statfjord ECLIPSE model is considered questionable, the alternative approach 

of material balance is employed to evaluate the possibility of using simplified models 

(MBAL) to assess the dynamic reservoir performance. 

It is well established that the material balance methodology is a zero dimensional model 

much simpler compared to reservoir simulation one (e.g. ECLIPSE model). Despite the 

simplicity of the material balance technique, it can develop a consistent understanding of the 

reservoir. It is believed that for the model in order to reproduce the actual reservoir behavior 

the reservoir understanding plays important role rather than the degree of complexity with 

which it was constructed. 

Prior to modeling the Statfjord formation, a quality review was done to the entire 

production/injection history, pressure depletion behavior and drainage strategy in order to 

broaden the knowledge regarding the reason of the experienced simulation/actual data 

mismatch. 

A sensitivity analysis based on the history matching procedure was conducted in terms of 

the matching variables choice, such as fluid migration and aquifer influence, and the 

uncertainty surrounding them. In the history matching process, a combination of the analytical 

non-linear regression and manual history matching methods were used to mimic the actual 

average reservoir behavior. Following the history matching procedure, the STOIIP and 

aquifer influx determined from MBAL were crosschecked with the ECLIPSE simulator’s 

results. The comparison indicated that the MBAL and ECLIPSE values for these two 

variables were very close. 

Once a representative MBAL model was established, the average reservoir pressure and 

gas production were forecasted until the field’s abandonment pressure. The MBAL gas 

production forecast was lower to the one obtained from the ECLIPSE reservoir simulator. The 

comparison of the average reservoir pressure depletion between ECLIPSE and MBAL yielded 

acceptable results. 

Summarizing, this thesis presents the application of the MBAL tool for the Statfjord 

formation to quantify the remaining reserves and reservoir pressure depletion performance. 
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1. INTRODUCTION 

Statfjord, the largest producing oil field in the Norwegian Continental Shelf, is currently 

in the late life production phase. Therefore, it is crucial to review the field in order to examine 

its remaining potential and design strategies that produce the remaining reserves in an optimal 

way. Recent analysis conducted by the field’s operator (RDP, 2011) indicates that the oil and 

gas recovery factors in the Statfjord field are approximately 66 % and 57 %, respectively. 

A simulation model for the Statfjord field was built to assist with the reservoir 

optimization and management. It is undoubtedly true that the production forecasting plays a 

vital role in reservoir optimization and management studies, especially when it turns to gas 

forecasting which also includes long-term market sales contract. Existing contractual 

obligations lead to the need of establishing accurate gas prediction forecasts. History 

matching, a complex procedure involving different disciplines, is a fundamental basement for 

making accurate forecasts. Unfortunately, the current numerical simulation model, 

particularly for the Statfjord formation, is not able to make accurate fluids production 

predictions with the discrepancy between actual and predicted gas cumulative production data 

to be enormous (0.4 GSm
3
). In other words, the model is optimistic in establishing the true 

reservoir potential. 

Consequently, a clear understanding of the reservoir performance is required in terms of 

drainage mechanisms and production data. Moreover, the accuracy of the historical data, for 

instance, initial reservoir properties, needs to be evaluated since it creates large uncertainties 

when estimating gas reserves. 

A classical approach using material balance was chosen to overcome this problem. This is 

primarily due to its simplified nature and ability to narrow down the uncertainty associated 

with the initial fluid properties, especially in a mature field. As shown in Fig. 1.1, having 

provided the PVT, pressure profile and production/injection data two unknowns, namely N 

and We, can be determined for use in the ECLIPSE simulator; in other words, no geological 

terms are involved, so that the reservoir is treated as zero-dimensional tank. However, the 

drawback of the material balance comes in the prediction procedure, as a key example is 

uniform future average pressure decline. This suggests subdividing the reservoir into several 

tanks in order to reflect the observed field geology. 
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Figure 1.1 - Contrast between material balance and numerical simulation approaches. 

The major aim of this work is to model the Statfjord formation using the material balance 

technique in the MBAL tool and establish the production forecast. Prior to examining the 

STOIIP and aquifer parameters via MBAL, a quality review of reservoir performance will be 

assessed with regards to historical drainage strategy and geology. 

1.1 Literature Review 

A considerable number of literature studies have been reviewed as part of this work and in 

the following three main areas: 

- Papers which present and discuss the Statfjord formation; 

- References introducing and applying the material balance modeling techniques; 

- Research papers presenting history matching procedures along their– challenges and 

pitfalls. 

The first group of papers aims to enable the full understanding of the Statfjord formation 

including field geology, formation characteristics, fluids production history. For instance, 

Aadland et al. (1994) discussed the long-term field development perspectives including the 

application of WAG and other EOR methods, while a detailed work was done related to the 

updip water injection (Hegre et al., 1994). In that paper Hegre et al. (1994) demonstrated that 

updip water injection enhances the field performance; the author also investigated the effects 

of gas trapping on the fluids and concluded that the field performance can be optimized via 

the upflank water injection. 

Boge et al.(2005) reported on a depressurization drainage method by illustrating all the 

stages of the new drainage strategy. 
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The second group of papers addressed how to apply the material balance concept in order 

to validate the understanding of physics of reservoir performance and reviewed the material 

balance’s strength and weaknesses. Since the first formulation (early 1930
th

) of the material 

balance technique by Schilthuis (1936), more advanced and complex models were developed 

using digital computers to allow a better performance. Miranda et al. (1975) described the 

milestones of material balance equation and proposed to use the cumulative reservoir 

withdrawals instead of original fluid in place. 

Bui et al. (2006) used the material balance analysis to determine the mature Samarang 

field’s reservoir compartmentalization. A workflow for material balance analysis was 

proposed and the effects of the relative permeability curves on the history match effectiveness 

were investigated. 

Another similar paper (Mazloom et al., 2007) compared the material balance prognosis 

results from both single- and multi-tank models against a fine grid simulation model, and 

concluded that the single tank overestimates recovery factor. The authors also concluded that 

the single-tank model was unable to capture the reservoir heterogeneities for the condensate 

field which they investigated, whereas the multi-tank model results were in an acceptable 

range when compared with the simulation results. 

Moreover, several studies have been performed on fluids migration examining the 

transmissibility parameter. For example, Vera et al. (2009) analyzed an uncertain 

transmissibility parameter using single- and multi-tank models and summarized that the multi-

tank material balance technique was an effective method for examining fluids migration. 

Some other authors (Amudo et al., 2011; Esor et al., 2004) addressed the application and 

methodology of the MBAL tool on establishing connected hydrocarbon volume in place and 

drive mechanisms. 

Garcia et al. (2007) proposed the methodology to assess the most significant parameter 

that affects material balance computation. His work showed that OOIP estimation is very 

sensitive to reservoir pressure and PVT data. 

The third group of papers pinpoints the challenges and errors of both ECLIPSE and 

MBAL simulators in history matching procedure. For example, Baker et al. (2006) provides a 

workflow for determining history matched variables in ECLIPSE simulator, while DeSorcy 

(1979) estimates the accuracy of each variable in the material balance equation. Galas (1994) 

investigated an automated history matching technique in material balance method by 

evaluating non-linear regression function and summarized that the limits of matching 

parameters should not be neglected. 
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This thesis is organized as follows: 

The second chapter gives a brief overview of the geology of the Statfjord field. Mainly 

Statfjord formation is described with regard to reservoir structure, properties, and drainage 

strategies. Ultimately, the numerical simulation model is introduced and described briefly. 

In the third chapter a case study is presented to look into why the simulation model cannot 

reproduce the actual field behavior. Various hypotheses are evaluated in an attempt to provide 

reasonable explanation for this problem. 

The material balance methodology for building a model is described in the fourth chapter 

by establishing the required workflow. 

The next chapter, chapter five, deals with the history matching procedure in the MBAL 

tool and the uncertainties in the input data. A discussion of the production forecast is 

addressed at the end of the chapter. 

Finally, conclusions reached from the results obtained in this work and future 

recommendations are summarized in the last chapter. 
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2. STATFJORD RESERVOIR DESCRIPTION 

This part will review the geology of the Statfjord field and is mainly based on The 

Statfjord Reservoir Development Plan. The study will focus on the Statfjord Fm. reservoir. 

Therefore, the Statfjord Fm. will be described in more details with respect to reservoir 

structure, properties, and drainage strategies. At the end of the chapter will give a general 

overview to simulation model in order to have an understanding of the output of further 

results. 

2.1 Field Overview 

The Statfjord Field was discovered in 1973 and started production in 1979. It produces 

from three platforms, Statfjord A (1979), Statfjord B (1982) and Statfjord C (1985). 

 

Figure 2.1 - Statfjord Unit and Tampen area (STRDP, 2005). 
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The production is from three reservoirs, the Brent group, the Statfjord formation and Cook 

formation. In 2005 the Statfjord Late Life (SFLL) project was sanctioned to include 

depressurization of the Statfjord Field (Brent Gp. and Statfjord Fm.) in order to liberate gas 

from the remaining oil. The original plan was to start the depressurization in October 2007. 

However, during 2006 it was found beneficial to prolong the pressure maintenance in the 

Brent Gp. by one year. Based on the updated plan, water and gas injection was stopped in 

2007 in the upper Statfjord Fm. In the period August (Statfjord A and Statfjord C) to 

November 2008 (Statfjord B) water and gas injection was stopped in Brent Gp. and the lower 

Statfjord Fm. 

2.2 Geological Field Description 

The Statfjord Field (oil zone) covers an area of about 26 x 5 km
2
, and is located on the 

western margin of the North Sea Rift System, on the crest of a SW – NE trending tilted fault 

block, and on the footwall of one of the major faults on the western side of the North Viking 

Graben (Fig. 2.1). 

The field can be divided in a relatively uniform Main Field fault block (with a dip of 

approximately 6-7 degrees), intersected by steep normal cross-faults (trending NW – SE) and 

an East Flank gravitational collapse zone, heavily deformed by rotational block slides along 

the main fault scarp (Fig. 2.2). 

The Main Field reservoirs consist of sandstones ranging in age from late Triassic to mid 

Jurassic. Reworked mid - upper Jurassic reservoir sandstones are found in the east flank. 

Based on production experience it was indicated that there is a limited connection throughout 

the fault F11. 

 

Figure 2.2 - Statfjord field with geological cross section (STRDP, 2007). 
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2.2.1 Reservoir Zones 

The Statfjord Main Field consists of the following 5 main reservoir levels (Fig. 2.3): 

- Lower Statfjord Fm, comprising the Raude Mbr.; 

- Upper Statfjord Fm, comprising the Eiriksson and Nansen Mbrs; 

- Cook Fm. of the Dunlin Gp; 

- Lower Brent Gp, comprising the Etive, Rannoch and Broom Fms; 

- Upper Brent Gp, comprising the Ness and Tarbert Fms. 

 

Figure 2.3- Typical stratigraphy and permeability for the reservoir units of the Statfjord field 

(STRDP, 2005). 
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The Statfjord formation is a sandstone reservoir of lower Jurassic to upper Triassic age 

with oil being trapped along the crest of a rotated fault block having a dip of 6-8 degree to the 

west. The reservoir is subdivided from the top to the base into three units; the Nansen 

member, the Eiriksson member and the Raude member, and has an improving reservoir 

quality upwards within each member (Fig. 2.4). 

 

Figure 2.4 - Sequence stratigraphic framework Statfjord Formation (S-N profile) (STRDP, 

2005). 

Nansen Member 

Nansen is composed of shallow marine sandstones; it is 5-15m thick and has excellent 

reservoir properties. The base Nansen is a transgressive surface of marine erosion (Fig. 2.5). 
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Eiriksson Member 

The Eiriksson member is a 40-60m thick sequence of fluvial style is one of the highly 

amalgamated channel bodies of wide lateral extension. Eiriksson consists mostly of coastal 

plain deposits, but shows an upwards trend towards a marine environment. It consists of more 

than 80 % sandstone (Fig. 2.5). 

Raude Member 

The lower Raude is generally characterized by lower sand-rich part consisting of laterally 

amalgamated and vertically amalgamated braided stream deposits, whereas the upper parts of 

the zones are dominated by floodplain clay sandstones (Fig. 2.5). A field-wide shale layer is 

found on top of Raude and acts as a barrier between the upper and lower Statfjord (Fig. 2.4). 

The upper Raude has a high proportion of sandstones and a good productivity, while the lower 

Raude is dominated by single channel deposits with typically low productivity due to more 

restricted stratigraphic continuity and limited aquifer support. 

 

Figure 2.5 - A typical log for the Statfjord Formation (S-N profile) (STRDP, 2007). 
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Overall, the formation consists of a coarsening-upwards sequence of interbedded 

sandstones, siltstones and shales. The gross formation average thickness is 125 m. The 

boundary between the Eiriksson and Raude members is widespread shale acting as a pressure 

barrier over a significant area of the field (Fig. 2.4). 

2.3 Reservoir Description and Initial Conditions 

Table 2.1 contains typical average rock properties for the Statfjord reservoir. 

Reservoir Zone Porosity, % 
Connate water 

saturation, % 
Net/gross, % 

Horizontal 

permeability, 

mD 

Statfjord 

 

Nansen 29 11 100 5000 

Eiriksson 25 15 70 1250 

Raude 20 20 40 100 

Table 2.1–Statfjord formation reservoir properties (STRDP, 2005). 

The initial reservoir conditions for Statfjord are summarized in the Table below. 

Statfjord 

 

Datum Depth 2701      m TVD MSL 

11 

100 

5000 

Datum Pressure 404.3     Bara 

15 

70 

1250 

Datum Temperature 96.7       ºC 

20 

40 

100 

 

 

 

 

 

 

 

Oil-Water Contact North 

 

2829.9   m TVD MSL 

Oil-Water Contact Central 

centre 

2814      m TVD MSL 

Oil-Water Contact South 2806.3   m TVD MSL 

Oil Gradient 0.0655   bar/m 

Table 2.2 - Statfjord formation initial reservoir conditions (STRDP, 2005). 

 

Reservoir 

 

 

Bubble 

Point 

Pressure, 

Bar 

 

 

At Initial Reservoir Conditions 

 

Water saturation, % 

Net/gross, % 

Bo 

m
3
/Sm

3
 

Rs 

Sm
3
/Sm

3
 

Viscosity 

mPa*s 

Water 

Compres. 

Bars
-1 

Rock 

Compres.  

Bars
-1

 

Statfjord 200 1.48 156.6 0.36 4.79E-05 5E-05 

Table 2.3 - Statfjord formation - Black oil data at initial reservoir pressure (STRDP, 2005). 
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2.4 Recovery Mechanisms and Drainage Strategies 

The original reservoir development strategy of the Statfjord field is continuously being 

optimized, and has been adjusted throughout field life based on existing condition. Different 

drainage mechanisms have been invoked in the different reservoir units. Due to insufficient 

pipeline system in the first years, the produced gas was injected into the Statfjord Fm. in an up 

dip position, while the Brent reservoir was depleted until pressure maintenance by down flank 

water injection was established in 1981 for the lower Brent and 1982 for the upper Brent (Fig. 

2.6). 

 

Figure 2.6 - Illustration of the initial drainage strategy on the Statfjord field (STRDP, 2005). 

Particularly for the Statfjord formation: the upper and lower parts were initially drained by 

up-dip miscible gas injection. The oil producers were located down flank (Fig. 2.6). Since 

1996 the upper Statfjord gas injection has been supplemented with up-dip water injection, 

with the objectives being to maintain pressure and to drain the lower parts of the upper 

Statfjord formation overridden by gas. On top of that, the criterion for choosing water 

injection was the shortage of gas availability. 

In the lower Statfjord, down-dip WAG injection was done. The drainage strategy that is 

illustrated in Fig. 2.7 had been performed until 2007. Due to limited lateral continuity of the 

Raude sands, several areas of Raude remain undrained.  

The drainage strategy, which is started in 2008, is shown in Fig. 2.8. To extend the 

production life of the Statfjord field required to change drainage strategy from pressure 

maintenance to depressurization, in other words, the oil field will be turned into gas field. 
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Figure 2.7 - WAG injection in Brent Fm. and up-dip injection in Statfjord Fm. (STRDP, 

2005). 

This new strategy is called Statfjord Late Life (SFLL). The SFLL has been carried out by 

producing massive water production which will lead to depletion and consequently the gas 

will liberate from the oil and move towards the crest where it will be produced. In 2007 

pressure depletion was started for upper Statfjord and a year after in October it was started in 

Brent and lower Statfjord.
 

 

Figure 2.8 - Current SFLL drainage strategy (STRDP, 2007). 

Fig. 2.9 demonstrates the main stages of depressurization: as all injectors have been shut 

down the reservoir pressure falls below the bubble point pressure at the stage of 

depressurization start up, gas will be released from the remaining oil and migrate towards the 
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crest. Currently, most of the gas is trapped in the water flooded zone due to large amount of 

water being injected at the crest during the history. This trapped gas will expand and become 

mobile as reservoir pressure drops. During the first years of depressurization, the Statfjord 

Fm. has been providing the majority of the produced gas. The Brent Group will gradually take 

over as a main gas supplier when the reservoir pressure drops below bubble point pressure 

and gas is liberated from the oil in Brent. 

 

Figure 2.9 - Illustration of the depressurization mechanisms (STRDP, 2005). 

2.5 Reserves and Volumes In-situ 

By the end of 2011 the cumulative oil production from field was 661 MSm
3
 oil, 

corresponding to a recovery factor of 66 %. The expected remaining oil at the end of 2020 is 

estimated to be 4.7 MSm
3
 and the total expected recovery is to be increased to 66.2 % (Fig. 

2.10). 

The total rich gas production by the end of 2011 was 102 GSm
3
 (Fig. 2.11), of this 87 

GSm
3
 was exported, the rest used to fuel and flare and injection. So far the gas recovery is 57 



Late Life Field Material Balance Analysis – Statfjord Fm. Page 14 
 

%. The total gas production to the end of 2020 is estimated to be 216 GSm
3
, of this 102 GSm

3
 

rich gas are expected to be exported. The gas injection stopped in October 2007 and since 

then, gas has only been injected for regularity purposes, for instance, when the capacity is 

reduced at the gas terminal or for enhancing the oil recovery in an isolated fault blocks on the 

East Flank. Gas injection is ongoing as an IOR method in an isolated Brent block in the SFB 

area. Figs. 2.10 and 2.11 summarize the oil and gas reserves for each reservoir on the field. 

Gas injection had been subtracted from both the gas reserves and cumulative net gas 

production, but fuel and flare had been included. 

 

Figure 2.10 - Statfjord field cumulative oil production (STRDP, 2011). 

 

Figure 2.11 - Statfjord Field cumulative net gas production (STRDP, 2011). 
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2.6 The Reservoir Simulation Model 

The Statfjord reservoir FFM2005 model is currently used. The geomodel of Statfjord Fm. 

was upscaled from the original 96 layers to 46 layers in the reservoir simulation model. The 

east flank has attached to the formation was primarily presented as a volume for material 

balance purposes (Table 2.4). A layer overview of both reservoir simulation model FFM2005 

and the geomodel are shown below in Table 2.4 

A 65 x 262 x 46 simulation grid with 251341 active grid blocks was built based on RMS 

geomodel. The lateral dimensions were the same as the full field geological grid, except that 

the vertical dimensions of the simulation grid was doubled. The cell dimensions are 75 x 75 x 

3 m with the grid orientation parallel to the OWC to best reprocess the contact movement, and 

obtain flow perpendicular to grid (Table 2.5). 

Lithostratigraphy 
Lithostratigraphy 

Statfjord 

Geomodel 

FFM2005 

Dynamic Reservoir 

Simulation Model 

FFM2005 

Statfjord 

Nansen Nansen 1-4 1-2 

Eiriksson Eiriksson 5-39 3-19 

Raude 
Raude 2 40-88 20-42 

Raude 1 89-96 42-46 

Table 2.4 - Reservoir zonation and grid layer in the geomodel and simulation model (STRDP, 

2007). 

Grid characteristics 

Grid dimension 65 x 262 x 46 

Total grid cells 783 380 

Active grid cells 251 341 

Cell dimensions 75 x 75 x 3 

Table 2.5 - Simulation: Grid summary (STRDP, 2007). 

Hysteresis is introduced to trap gas in water in upflank water injection. 

There are still major challenges: 

- Vertical communication within Eiriksson and Raude; 

 In gas injectors, where the gas was injected simultaneously into Eiriksson and 

Raude Mbs., the poor Raude properties resulted in excessive gas flowing to upper reservoir. 
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- The distribution of gas between the upper and lower Statfjord; 

- Extension of shale modeled in the geomodel; 

 Gas ascends to the crest too fast in Eiriksson 

- Static model had too tight Raude Mb,thereby isolated in some areas; 

 The reason is that it was modeled stochastically with shale as background and 

sand modeled as channels. By increasing permeability the dynamic parameters improved 

significantly, but still there are areas where a history match has proven difficult to obtain. 

- Eclipse had to extrapolate PVT-properties beyond input, as a result slowing down to 

unacceptable running times. 

The historical performance of Eiriksson Mbr. is matched; however the Raude Mbr. is 

not fully matched and will be a challenge for future modeling. Overall, dynamic reservoir 

simulation model FFM2005 represents satisfactorily match of historic performance until 2007 

and afterwards overestimates the gas production where the reason of mismatch will be 

addressed in chapter 3. 
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3. PRODUCTION HISTORY AND DRAINAGE 

MECHANISMS 

A history-matched, full field reservoir model was used to obtain estimates of fluids 

production versus time. However, it was admitted that the prognosis for gas was over-

estimated and to show the enormous discrepancy between two data Fig. 3.1 opposes the 

prognosis with allocation. 

 

Figure 3.1 - Cumulative gas production and estimated volumes from wells drilled during 

2007-2011 (SFRDP, 2011). 

Outlining the prediction results (Fig. A.1.1): 

- The discrepancy between the actual gas volume is 0.4 GSm
3
 and about 4 GSm

3
 remains 

to be produced; 

- Approximately 0.9 MSm
3
 for oil production; 

- Water production is high ‘deliberately’; increased water production will lead to faster 

pressure decline and faster gas liberation. 

This study was initiated due to the deficiency of gas production. Therefore, this chapter 

provides some possible explanations that may have caused a mismatch between the simulated 

and actual data. 

It is believed that the historical drainage strategy can establish first hint, therefore chapter 

starts by re-examining the historical drainage process. 

 

  

 -allocation  

- prognosis 
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Figure 3.2 – Applied drainage strategy during the production period. 

 

Figure 3.3 – Historical production performance of Statfjord formation (Prosty, 2010). 
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3.1 Overview of Reservoir Performance 

From Fig. 3.2, where the drainage strategy is displayed as a function of time, we can note 

that three different drainage strategies have applied; consequently, each had an impact on 

reservoir characteristics and future way of acting.  

Fig. 3.3 shows that the peak for oil production was in 1984 whereas for the gas production 

it lasted over the 5-year period starting from 1997. As it was mentioned in chapter 2, one of 

the reasons of gas injection was transportation issues, which was solved in September 1985 

and caused the reduction of available gas volume for injection (Fig. 3.3). 

The following highlight some important aspects concerning the gas phase in the Statfjord 

formation: 

- Injected gas that formed gas cap throughout the formation, which is currently mainly 

located in the southern part of the fault F11 where only gas has been injected historically in 

this area (Fig. 3.4); 

- There are different gas liquid contacts in the Statfjord area (Fig. A.1.2). This fact will be 

discussed in details later in this work with respect to the field geology. 

 

Figure 3.4 - Illustration of GIIP from FLOVIZ.  

1979 1995 1997 2008 2011 
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The Statfjord formation was initially developed based on the gas and water injection to 

provide pressure support. Although well configuration was designed to ensure good sweep 

efficiency and to delay breakthrough time, nowadays, well after well dies due to water 

breakthrough this has a direct impact on the gas production. 

Therefore, to extend understanding of injectors and producers’ behavior, the overview of 

wells is done (Figs. 3.5 and 3.6). This will evaluate briefly the potential location of free gas 

that has been injected in early times of drainage history. Overall, the Statfjord Fm. contributes 

52 % of potential gas and gas producers as B-17AT3, B-34and B-23C producing from the gas 

cap in the south of F11 adds 34 % of total gas production. The main gas producer at SFA is 

A-18D which has been perforated in the upper Statfjord and brings about 41 % of the 

potential total gas production at SFA. During 2009, SFA wells experienced massive water 

breakthrough. In general, it is believed that the SFA area is water flooded by upflank water 

injection. The three wells, i.e. B-23C, B-17AT3and B-34, donate 55 % of the total gas 

potential at SFB. SFB wells located in the north of F11 watered out in 2010 and at the same 

year SFC gas producers water out. Moreover, from SFC the wells as C-12DT2, C-29AT2 and 

C-40C benefit 48 % of gas potential. 

Production performance confirms that the gas locates at the crest as it was described in 

drainage strategy in chapter 2. 

Main highlights from the historical well overview: 

- Only gas was injected in the southern of fault F11; 

- Gas producers are at the crest and mainly in the upper part; 

- Low formation productivity in the lower part of the Statfjord formation. 

3.2 Where is the Gas? 

Various approaches have been put forward to solve this issue. At the end, it has been 

concluded that most likely, that the gas might be trapped during the updip water injection, 

however there are other possibilities: 

- Probability of compositional change; 

- Introducing barriers such as shale extension into the model; 

- Split factor for injectors is wrong. 

As discussed in subsection 3.1, the gas was injected as soon as production started, so that 

there is no doubt that during the miscibility process the composition of original fluid is 

changed. Unfortunately, ECLIPSE simulator model uses the initial PVT data, hence, the 

simulator does not take into account the compositional effect.  
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UPPER STATFJORD 

 

Figure 3.5 - Overview of the upper Statfjord Fm. model (Floviz). 
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LOWER STATFJORD

 

Figure 3.6 - Overview of the lower Statfjord Fm. model (Floviz). 
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Another reason for the mismatch could be allocation volumes. Some wells drilled in the 

Statfjord field penetrate through the Brent formation, upper and lower Statfjord formations 

(Figs. 3.5 and 3.6). From experience, it is said that identifying which formation contributes to 

production and/or injection could be uncertain. This uncertainty could introduce some errors 

when the split factor (derived from formation productivity) is used to calculate allocation 

volumes. 

All the listed bullets need to be investigated in the future in order to enhance simulation 

model quality. 

Since the initial task was to analyze the trapped mechanism in the Statfjord formation 

further studies will be focus on only upflank water injection drainage process. 

3.2.1 Performance of Updip Water Injection in Statfjord Formation 

The next important key aspect is to observe the upflank water injection performance. For 

this reason water flowing process will be examined. The analysis carried out responding to the 

question as how long upflank injected water stayed in the gas zone, the observation is done 

only for the upper Statfjord due to complexity of the lower Statfjord, in order to observe it 5 

downflank production wells and 4 upflank water injection wells were considered (Fig. 3.5). 

Well 

name 
WI period 

Cumulative 

Water 

Injection 

(MSm
3
) 

Upper (U) / 

Lower (L) 

Statfjord 

Classification 

A-3A 01/1996-08/2006 16.4 U+L UPFLANK 

A-38A 03/1998-05/2003 4 L DOWNFLANK 

A-2A 04/1998-06/2002 2.9 L DOWNFLANK 

A-25AT3 06/1999-05/2007 16.6 U UPFLANK 

A-8C 12/2000-06/2006 6.3 U UPFLANK 

A-38B 07/2003-08/2008 4.4 L DOWNFLANK 

B-38 09/1994-06/1997 0.48 L DOWNFLANK 

B-38A 11/1997-10/2005 5.9 L DOWNFLANK 

B-18 02/1998-08/2003 8.8 U UPFLANK 

B-1B 05/2000-03/2007 20.2 U UPFLANK 

C-1A 06/1996-02/1997 0.22 L DOWNFLANK 

C-34 12/1999-12/2001 1.6 U UPFLANK 

C-4A 05/2001-01/2003 1.4 U DOWNFLANK 

C-14A 12/2002-08/2008 7.9 L DOWNFLANK 

C-4B 07/2003-11/2004 4.2 U UPFLANK 

Table 3.1 - Water injected wells in the Statfjord Fm. (Well comments, 2011). 
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PRODUCTION WELLS 

  B-15 A-32A A-26A A-40B A-37A 

Breakthrough time Nov-99 May-00 Jun-02 Nov-01 Mar-00 

Table 3.2 - Sea water timing (Well comments, 2011). 

The interaction of the B-18 injection well to production wells as B-15, A-32A and A-26A 

is shown in Fig. 3.5. Similarly, both A-3A and A-25AT3 injection wells communicated with 

production wells such as A-40B and A-37A. Moreover, the breakthrough time is shown in 

Table 3.2. The difference between starting date of the injection (Table 3.1) and breakthrough 

time indicates when the injected water started to leave the gas zone, we can conclude that 

required time was at least one year. More details on communication paths between injector 

and producer are verified by water and gas tracers, can be found in Appendix 1 (Table A.1.1). 

Consequently, after one year water started to interact with oil and formation water (Fig. 

3.7). Since it is known from chapter 2 that the formation is inclined, hence the gravity will 

play one of the important roles in the updip water injection process as it is shown in Fig. 3.7. 

However, the impact of the gravity segregation will not be considered in this study. 

 

Figure 3.7 - Gravity segregation. 

As soon as water is injected into the gas cap it starts to trap the gas. Fig.3.8 illustrates how 

the flow of upflank water is trapping the gas and entering to original water zone. It is obvious 

that GOC lift will not cause the gas to be trapped due to the miscibility. As it was mentioned 

above all the water that has been injected remained in the gas zone for one year. 

 

Figure 3.8 - Upflank water flow conceptual cross-section. 
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When water moves through the gas zone, gas phase is partially pushed aside and partially gas 

trapped by water. Water, injected after entering the formation, occupies partly additional gas 

zone and partially moves toward the aquifer. In the next stage when the water injection has 

been stopped, redistribution of fluids has been taken place. During the redistribution of phases 

period water has gone to aquifer due to gravity while lifting GOC or GWC. The current fluid 

contact depth has been changed and is shown in Appendix 1 (Fig. A.1.2). 

Combining all the statements, we can conclude that the growth of GOC is not due to 

trapped gas and the trapping has started immediately after injection and today the liberation of 

the gas has not been started yet. Furthermore, the prognosis of trapped gas will be discussed 

using the recent estimation in full field model. 

3.2.2 Statfjord Formation: Trapped Gas and Prognosis of Liberation 

In a major advance at Statoil, Heide (2011) surveyed the subject and pointed out two main 

uncertainties in the research, i.e. uncertainty in Sgi and Land’s constant (K) in the Land’s 

correlation. After conducting a sensitivity analysis the overall response to those uncertainties 

are: 

- A high K value in the Land’s correlation will lead to low trapped gas saturation; 

- High initial gas saturation (Sgi) will result in high trapped gas saturation. 

The findings would seem to suggest that total trapped gas volume today is approximately 

4-8 GSm
3 

and the upper Statfjord contributes 90 % (Fig. 3.9). Interestingly, despite the fact 

that the water injection stopped the trapped gas volume increased. It can be reasonably 

explained, first, water injection is still segregating and, second, due to aquifer influx which 

helps to immobilize the gas at gas water contact. The author reaches the conclusion that 

higher trapped gas volume nowadays leads to more gas being liberated in the future but it 

cannot guarantee high gas production in the future because this gas will have low relative 

permeability. This phenomenon was observed for the lower Statfjord, i.e. the gas production 

is negative in Table 3.4. In addition, there is one more crucial aspect needs to be highlighted, 

as trapped gas can be an important history matching parameter for water production as well as 

for overall prognosis. According to Fig. 3.10, the trapped gas will start releasing 

approximately in 2015. 

The software program to analyze the data was FLOVIZ by filtering critical gas saturation 

(GASKR<0.01) and as a base case Land’s constant K is equal to two. It is believed that the 

trapped gas has saturation less than 0.01. 
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Figure 3.9 - Historical and future trapped gas volumes (Statfjord Fm: trapped gas, 2011). 

Time period
 Upper 

(GSm
3
) 

Lower 

(GSm
3
) 

Total 

(GSm
3
) 

Transition 

Zone (GSm
3
) 

Trapped 2011 5.9 0.8 6.7 1.2 

Trapped 2021 4.9 0.9 5.8 1.4 

Trapped 2025 4.5 0.9 5.4 1.4 

Table 3.3 – Statistical data for trapped gas volume (Statfjord Fm: trapped gas, 2011). 

 

Figure 3.10 - Prognosis for liberation of trapped gas (Statfjord Fm: trapped gas, 2011). 
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Time period 
Upper 

(GSm
3
) 

Lower 

(GSm
3
) 

Total 

(GSm
3
) 

Liberated 2021 1 -0.2 0.8 

Liberated 2025 1.4 -0.2 1.2 

Table 3.4 - Prognosis for liberation of trapped gas (Statfjord Fm: trapped gas, 2011). 

Fig. 3.11 displays the trapped gas volume as a function of time, four major dates were 

chosen, in particular the initial production, beginning of updip water injection, end of updip 

water injection and current day. The most striking phenomenon is trapped gas located mainly 

in SFA and SFB area, however it needs to take into consideration that through the time it can 

migrate. 

The main weakness in his study is that wells are controlled on the gas rate, in other words, 

production rate is set and restricted although in future perhaps production index can increase 

due to liberation. Hence, it is not a good starting point for estimation the volume of trapped 

gas. 

 

Figure 3.11 - Illustration of trapped gas location from FLOVIZ. 

1979 1996 2008 2011 
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4. STATFJORD FORMATION MATERIAL BALANCE 

ANALYSIS 

There is no doubt; nowadays wide utilized tool in industry is the numerical simulation 

model. However existed perception cannot eliminate the use of classical analysis as material 

balance. It helps to gain understanding of dynamic performance, especially at the early stage 

of field development. Since the simulation prediction for the Statfjord Fm. was off (incorrect), 

an alternative solution like using MBAL tool was posed due to its simplicity and the rapidity. 

The chapter describes the frame in a building the MBAL model, i.e. workflow; input data 

screening; production, injection and pressure histories will be analyzed and the main uncertain 

and matching parameters will be defined. 

4.1 The Material Balance Evaluation and Methodology 

MBAL (MBAL user manual, 2011) is a simplified analytical tool to identify reservoir 

characteristics using the concept of material balance. Due to its simplified nature; MBAL is 

governed by several assumptions such as: 

- Homogenous reservoir tanks; 

- Constant tank temperature; 

- Uniform pressure and hydrocarbon saturation distributions in the tank; 

- Instantaneous transmission of pressure changes throughout the system. 

The main purpose of a material balance study is to identify the remaining reserves, most 

importantly, gas reserves, and future field performance. Furthermore, secondary objective is 

to verify and analyze the aquifer size. The detailed workflow is shown in Appendix 2 (Fig. 

A.2.1). The workflow tests matching parameters within the uncertainty range and it is 

applicable either for single or multiple tanks. 

Fig. 4.1 provides an overview of the tank model which all the calculations are based on. It 

should be stressed that water injection into gas cap is disregarded in the MBAL application. It 

is by no means certain that upflank water injection can be applied in MBAL. However, 

hysteresis function can be chosen in order to count the trapped gas effect. 
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Figure 4.1 – Schematic diagram of a material balance tank model (MBAL user manual, 2011). 

4.2 Collection and Verification of Input Data 

For building the model different data sources were used such as simulation model, Prosty 

and ‘Reservoir engineering dynamic model and forecast’ report. 

Bui et al. (2006) proposes the main steps that have to be taken for analyzing the input 

data. The recommendations are: 

- RFT data, static pressure data and fault system are the major data target for identifying 

the compartments; 

- Analysis of production, injection and pressure histories. 

The steps proceed very much in the same manner that is reported by Bui et al. (2006). Fig. 

4.2 illustrates RFT pressure distribution reported at a datum depth of 2701 m. According to 

the figure, the most striking aspect is that the RFT data is more scattered in the lower Statfjord 

formation as compared to the upper Statfjord. Therefore, the formation is divided vertically 

into two sections and laterally split into two sections due to the fault F11. 

Fig. 4.2 reveals an interesting pressure behavior. A fluctuation happened due to injection. 

The most noticeable feature is three peaks in pressure depletion trend, the same as in injection 

history during the following periods (Figs. 4.2 and 4.3): 

- 09/1984-10/1985; 

- 01/1989-05/1991; 

- 04/2002-02/2004. 

In addition, Fig.4.2 provides a clue about transmissibility being the factor for 

determination of total fluid migration from one tank to others. 
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Figure 4.2 - Pressure data for Statfjord model (RFT spreadsheet). 

 

Figure 4.3 - Historical yearly gas and water injection volumes in the Statfjord Fm. 
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At the same time communication throughout the regions were examined using the 

FLUXNUM property in the simulation model. Regions were introduced to allow controlling 

the communication over faults. There are several conclusions concerning the upper and lower 

parts of the Statfjord formation following the analysis of the RFT measurements (Fig. 4.4): 

- Regions 1 and 3 have good Eiriksson-Raude communication, whereas in region 2 the 

communication is restricted; 

- Regions 4 and 6 have limited interaction, but a well B-38 in the south of region 6 has 

shown good vertical communication, consequently, region 7 was introduced to provide 

pressure equilibrium. 

It was observed that Nansen Mbr. has no lateral barrier and through the fault F11 the 

communication is limited.  

According to all the findings, it was decided to construct a multi tank model (4 tanks; see 

Fig. 4.4) in order to capture the formation heterogeneity, however a single tank model will be 

built to make a rough estimate of all uncertain parameters. More details on pressure 

distribution for each tank with neighboring tanks are given in the Appendix 2 (Fig. A.2.2). 

The interaction of the tanks can be also analyzed with respect to the drainage performance. 

For example, water was injected in the northern part of fault F11, whereas only gas was 

injected in the southern region; however the amount of trapped gas increased during the updip 

water injection period which will be an evidence of having the communication between the 

northern and southern part of the Statfjord formation. More details on the drainage 

performance of each platform can be found in Appendix 2 (Fig. A.2.3). 

 

Figure 4.4 - FLUXNUM regions used in the Statfjord Fm. simulation model (The Statfjord 

field FFM2005 study, 2007). 
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4.2.1 General Input Data Screening 

Dake (2001) in his work explained the concept of material balance based on rock 

compaction, pressure drop across the reservoir and cumulative water influx. Therefore, 

reservoir rock and fluid properties are crucial variables in material balance calculations. 

PVT data 
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Figure 4.5 – The summary of PVT parameters in the MBAL model. 

The PVT data was retrieved from the simulation model. Remark: PVT data should be 

matched only at bubble point in the MBAL tool (Fig. 4.5). 

Reservoir fluid volume in place. 

 

Figure 4.6 - Original fluid in place (FFM2005 simulation model). 



Late Life Field Material Balance Analysis – Statfjord Fm. Page 34 
 

For the first run the reservoir fluid volumes are duplicated from the simulation model (Fig. 

4.6). 

Bui et al. (2006) states that MBAL :(a) may not decrease uncertainty range in the STOIIP 

estimation; and (b) is only able to assure that the hydrocarbon volumes and aquifer strength 

combination agrees (functions) correctly. 

Relative permeability curves 

Relative permeability data is used only for prediction calculation. In the model the relative 

permeability curve was duplicated from the simulation model as an initial estimate (Fig. 4.7). 

Relative permeability was widely investigated (Bui et al., 2006) and proposed to use the 

relative permeability linked to the observed production data. More details on this topic can be 

found in chapter 5. 

 

 

Figure 4.7 - Relative permeability curves. 
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Transmissibility 

Fluid migration from one tank to another is governed by the transmissibility parameter. 

The following equation is used in the MBAL tool to model inter-tank fluids communication: 

     ∑
   

  
    (4.1) 

where: 

Qt= Qo+ Qg+ Qw (4.2) 

 

Qt is the total downhole flow rate, 

T is the transmissibility constant, 

kri is the relative permeability, 

µi is the viscosity of phase i, 

and ∆P is the pressure difference between the two tanks. 

 

It can be seen that transmissibility is affected by relative permeability data as well, in 

other words both of them have mutual relation.  

Aquifer system 

Due to inevitable (unavoidable) uncertainties in the aquifer characteristics, it was 

proposed to apply the simulation data as a starting point. 

 
SFC SFA SFBN SFBS SUM 

UPPER 36.78 717.37 604.51 132.50 1491.17 

LOWER 184.51 750.26 952.47 373.78 2261.02 

SUM 221.30 1467.63 1556.98 506.28 3752.19 

Table 4.1 - Aquifer volumes (MSm
3
) as history matched in the FFM2005 Statfjord Fm 

reservoir simulation model (Reservoir engineering dynamic model and forecast, 2007) 

The final total aquifer size connected to the Statfjord formation reservoir was 3.75 GSm
3
, 

which is around 13.1 times larger than HCPV of the reservoir. Throughout time the aquifer 

volume has changed during the history matching effort by adjusting cross sectional area 

which is connected to the reservoir. Other properties were set constant: 

- As high side permeability was fixed at 1000 mD, the average permeability is believed to 

be in the order of 20 to 400 mD; 

- The porosity is equal to 25 percent. 
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Aquifer 

influx model 
Assumption Equation Characteristics 

Pot aquifer      VA=const We=(cw+cf)WAi(pi-p) 

Only applicable to 

small aquifer 

∆P transmitted 

immediately 

Schilthuis 

steady state 

Steady-state flow 

regime 

 

   

  
         

∆P transmitted 

immediately 

Hurst steady 

state 

Steady-state flow 

regime 

   

  
  ∑ 

  

    

 

 

    Pressure diffusivity 

was introduced 

Discretization of 

boundary pressure 

Hurst-van 

Everdingen-

Dake 

Unsteady state 

 
       ∑      

   

 

           

Fetchovich 

steady state 
   

  
    

Approximated 

method 

   

  
          Pressure diffusivity 

was introduced 

Doesn’t require 

superposition principle 

Fetchovich 

semi-steady 

state 

      
  

  
             

   

   
  

Hurst-van 

Everdingen 

modified 

Water influx rate 

for each time step 

       ∑
 

 

  

         
∫ 

 

  

   

 

 

      (     ) 

  
 

              
  

Pressure diffusivity 

and Laplace 

transformation were 

introduced 

Carter-Tracy 

Approximation to 

diffusivity eq. 

solution 

   

         (           )

  
             

 
  

            
 
  

  

Pressure diffusivity 

was introduced 

Constant water influx 

rates over each finite 

time 

Doesn’t require 

superposition principle 

Table 4.2 - Aquifer model features (MBAL User manual, 2011). 

Several aquifer models have been developed in the MBAL tool. After analyzing their 

practical application, the best fit (suit) aquifer model was ‘Hurst-van Everdingen-modified’ 

due to the quality of solving the hydraulic diffusivity equation (Table 4.2). In Marques et al. 

(2007) analysis of aquifer model, fundamental theory, and equations have been overviewed. 
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4.3 MBAL Model Results 

A systematic procedure was carried out with combination of single- and multi-tank 

models. Furthermore, the result from both models will be presented and examined. The 

models were run based on pure ECLIPSE simulator data. Two sets of graphs are illustrated in 

Figs. 4.8 and 4.9.The first set of graphs represents analytical method where the oil production 

calculation is based on input average reservoir pressure, water production, gas production, and 

water/gas injection data. While MBAL simulation method does the reverse calculation: the 

average tank pressure is computed with respect to input rates. In analytical method (Fig. 4.8), 

three lines with different colors are displayed. Red line represents when cumulative 

production is calculated as a function of aquifer influx and transmissibility, green line when 

only transmissibility data is taken into account and purple one when calculation is done 

without transmissibility data but considering the aquifer influx. If green line (production 

without aquifer) is drown on the left hand side of historical data (   ), it will assure the validity 

of PVT data otherwise it needs to be checked. 

 

 

SF_UP_S 

SF_LOW_S 

Eclipse Avg. Pres vs. Np 

MBAL:calc. Np based on field avgPres: f (We) 

MBAL:calc. Np based on field avgPres: f (We,T) 

MBAL:calc. Np based on field avgPres: f (T) 

Eclipse Avg. Pres vs. Np 
MBAL:calc. Np based on field avgPres: f (We) 

MBAL:calc. Np based on field avgPres: f (We,T) 

MBAL:calc. Np based on field avgPres: f (T) 
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Figure 4.8 - Analytical method for a four tank-model. 

 

SF_UP_N 

Eclipse Avg. Pres vs. Np 

MBAL:calc. Np based on field avgPres: f (We) 
MBAL:calc. Np based on field avgPres: f (We,T) 

MBAL:calc. Np based on field avgPres: f (T) 

SF_LOW_N 

Eclipse Avg. Pres vs. Np 

MBAL:calc. Np based on field avgPres: f (We) 
MBAL:calc. Np based on field avgPres: f (We,T) 

MBAL:calc. Np based on field avgPres: f (T) 

SF_UP_S 
Aquifer influx: 

MBAL Simulator 
Avg Pres data: 

Historical data 

MBAL Simulator 
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Figure 4.9 - Production simulation method. 

Overall, there is no a large discrepancy between calculated and field data in the single tank 

model (Fig. A.2.4), but the calculated and observed data points do not lie on top of each other 

(do not coincide), therefore non-linear regression is applied, and the result will be discussed in 

the next chapter. It is interesting to note that STOIIP turned out to be 1.4 MSm
3 

higher than 

SF_LOW_S 

SF_UP_N 

Aquifer influx: 
MBAL Simulator 

Avg Pres data: 

Historical data 

MBAL Simulator 

SF_LOW_N 
Aquifer influx: 

MBAL Simulator 

Avg Pres data: 

Historical data 

MBAL Simulator 

Aquifer influx: 

MBAL Simulator 
Avg Pres data: 

Historical data 

MBAL Simulator 
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the one obtain in the simulation work. Although, in multi-tank model the STOIIP is estimated 

to be similar to the ECLIPSE simulation data, the details will be discussed in chapter 5. 

Concerning the four tanks model, the calculation based on pure ECLIPSE model is off; 

apart from one tank namely SF_UP_N (Figs. 4.8 and 4.9). In general, production for the 

SF_UP_S and SF_LOW_S is underestimated while that of SF_LOW_N is overestimated (Fig. 

4.8). Similarly, the production simulation’s plots in Fig. 4.9 show that the calculated trend 

behaves the same way as in the analytical method. In this method water influx is shown over 

the time. The plots indicate that the matching process has to be performed. 
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5. FIELD HISTORY MATCHING AND PERFORMANCE 

PREDICTION 

The findings from the previous chapter show that the MBAL model does not reproduce 

the field behavior (performance). To overcome this problem, the strategy for history matching 

procedure is designed and the most uncertain matching parameters are selected. 

This chapter covers the main steps for the history matching procedure followed and the 

analysis conducted for the prediction process. 

5.1 History Matching Strategy for MBAL 

There is no unique strategy for performing the history match. Nevertheless, MBAL 

software offers a set of systematic instructions for performing this activity (Fig. A.2.1). 

5.1.1 Determination of the Matching Parameters 

The initial approach was to use the simulator input data and afterwards to match the 

MBAL results with the observed data by altering the most uncertain variables. The reason 

behind the building of a single-tank model was to reduce the number of uncertainties; in fact, 

the number was shortened by discarding the transmissibility parameters. This gives an 

opportunity to estimate approximately the aquifer system parameters and afterwards to apply 

them in the multi-tank model construction. 

The MBAL non-linear regression option can be used to optimize several parameters in one 

realization. However, caution needs to be taken because optimizing all uncertain parameters 

may give unrealistic results. Even uncertain parameters have their own degree of uncertainty, 

and for this reason it is crucial to determine a best set of variables. 

 

Figure 5.1 - Workflow in determining matching parameters. 

•Setup all 'Unknown' 

parameters 

'Variability' •Assign probability to unknown 

parameters  

'Hierarchy of uncertainty' 

•Inspect inter-parameter 

dependency 

'MBAL best set of 
variables'  
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As illustrated in Fig. 5.1, the determination of ‘MBAL best set of variables’ consists of 

three stages and the outcomes of each step are: 

- Variability - establish all uncertain parameters; 

- Hierarchy of uncertainty – consult with expert in order to assign the probability to each 

variable; 

- MBAL best set of variables – examine inter-parameter dependency using related 

equation.

 

Figure 5.2 - Potential unknown parameters(Dake, 2001). 

The same steps were taken to identify the best set variables for the Statfjord MBAL 

model. Having established the potential unknowns (Fig. 5.2), the next step is to fulfill the 

concept of the ‘hierarchy of uncertainty’, i.e. ranking the uncertain data by questioning 

ourselves as which data is the most or least reliable. 

DeSorcy (1979) evaluated the expected accuracy of parameters in Table 5.1. Having 

consulted with experts and estimated the uncertainty associated with parameters from the 

Statfjord formation (Table 5.1), the result of choosing the most uncertain parameters was 

following: (Fig. 5.3): 

 Transmissibility (T); 

 Relative permeability (kr); 

 Aquifer volume (Vaq); 

 Aquifer permeability (kaq). 
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Data Typical Source  
Approximate range of expected accuracy 

(%) 

Production data: 

 Oil 

 Gas 

 Water 

 

Measured 

Measured 

Measured or estimated 

 

±1-3* 

±1-3* 

±2-10* 

Temperature Measured or estimated 

from correlation 
±2-10* 

Pressure Measured ±1-4 for reservoir of high k/µ 

±5-10 for reservoir of medium k/µ* 

±10-20 for reservoir of low k/µ 

Fluid analysis data: 

 Gas solubility, 

formation volume factor, 

bubble point pressure 

Laboratory analysis of 

fluid samples 

Correlations 

±5-10* 

 

±10-30 

Interstitial water saturation Papillary pressure data 

Oil base cores 

Saturation logs 

Correlations 

±5-15 

±5-15 

±10-25 

±25-60* 

Rock compressibility 
Measured or estimated 

from correlations 

±5-10 for consolidated fm. 

±10-20 for friable fm. 

±20-50 for unconsolidated fm* 

*Data reflects the Statfjord formation. 

Table 5.1 – Source and accuracy of data used in material balance calculation (DeSorcy, 1979). 

 

Figure 5.3- Hierarchy of uncertainty. 
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Figure 5.4 – Illustration of MBAL tanks in the eclipse simulation model. 

First, the inter-tank transmissibility will be adjusted and next the aquifer parameters will 

be tuned unless the matched model will be generated. The reason for the transmissibility 

parameter being the most uncertain is that the MBAL model has some limitations; for 

example, fluids flow migration is limited to only the two neighboring tanks in both directions. 

However, it cannot skip one tank and go in direction of purple line as shown in Fig. 5.4, i.e. 

the flow moves tank by tank along white arrows and the flow cannot be cross-flowed. 

A study by Torony and Saleri (1988) on the effect of matching variables is summarized in 

Table 5.2. For example, pore volume variation leads to change pressure with time while 

relative permeability change affects matching saturation variations in time and space. In the 

study the fluid property was excluded due to accuracy of the data. Two parameters were 

chosen as the matching parameters for the MBAL model which is indicated in Table 5.2, 

consequently, aquifer volume impacts on pressure match procedure, while relative 

permeability influences on saturation match procedure in production forecasting. The 

equations with the matching variable are worth studying in order to examine inter-parameter 

dependency (see Chapter 4 for the equations of matching variables)  

Parameter Pressure match Saturation match 

Pore volume     ⁄  * 

Permeability thickness     ⁄      ⁄  

Relative permeability Not used     ⁄ &    ⁄  

Rock compressibility * Not used 

Bubble point pressure     ⁄ * * 

*Avoid changing if possible. 

Table 5.2 - Influence of key history matching parameters (Torony and Saleri, 1988). 

SF_UP_S 

SF_LOW_S 

SF_UP_N 

SF_LOW_N 
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Another difficulty with the history match procedure is that all altered parameters must 

attain values with physical meaning; in other words, altered parameters need to be within the 

range of values representing the Statfjord formation. For this reason, the workflow should 

include a feedback from the field geologist after each realization in the MBAL tool. 

5.1.2 Manual vs. Automatic History Matching 

As it was mentioned above, the MBAL can speed up the matching process via non-linear 

regression, which offers the best-fit value for a given reservoir parameter. The question then 

arises as how the best-fit value is calculated and secondly, whether to use the best-fit 

estimates or not, (i.e., if the ‘best-fit’ closely approach the correct result). 

Regarding the concern of the best-fit computation technique, the aquifer parameter 

regression is considered below as an illustration: 

1) First, the reservoir (tank) pressure (Pi
cal

)is calculated for each time step given the aquifer 

configuration parameters, 

2) The estimated value is then compared against measured data Pi
abs

 

    ∑
(  

      
   )

 

  
 

 
   (5.1) 

3) After each iteration matching parameters, (i.e. the set of matching variables that was 

selected by user to be changed) are altered to lower down    and continued until a minimumis 

found 

Turning to the second question, many attempts have been made (Marquardt, 1963; 

Tehrani, 1985) with the purpose of estimation the reliability of the ‘best-fit’ function and 

concluded that a small standard deviation is an indication how accurate and reliable the ‘best-

fit’ option.  

During the history match procedure the first run was based on pure non-linear regression 

option by selecting all matching parameters and the matching parameters lied out of the 

geological range (TablesA.2.1 and A.2.2). The recent study by Tavassoli et al. (2004) 

commented that a perfect history matched model with incorrect geological features might lead 

to bad forecast. Consequently, the main target will be to populate the model manually by 

capturing geological characteristics after that as a quality check to run the regression for each 

set of matching parameters separately (i.e. selecting only transmissibilities for all tanks, then 

aquifer volume, etc.,) to see how the values will change and do some sensitivity scenarios to 

assess the quality and degree of representativeness of the model. For that reason, a lot of 

attention paid to the geology and the reservoir itself in this work. 
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5.1.3 Manually History Matched Statfjord Model 

According to geology, the transmissibility between the tanks was ranked as shown in Fig. 

5.5 and the MBAL model was constructed according to this transmissibility ranking 

information. Note: corresponding transmissibility numbers are used in the MBAL model. 

 

Figure 5.5 - Illustration of transmissibility values for the multi-tank MBAL model. 

Before getting a reasonable matched model, many realizations have been run. During the 

history matching, STOIIP and aquifer influx data between the ECLIPSE simulator and MBAL 

was reconciled (Table 5.3). 

Table 5.3 - Comparison of MBAL and ECLIPSE simulator STOIIP and aquifer volumes. 

Fig. 5.6 presents MBAL analytical (left four figures) and MBAL simulation (right four 

figures) matching plots. MBAL analytical results obtained by calculating cumulative oil 

production based on given average tank pressure, injection and production data excluding the 

oil phase. The details of the computation for two methods are given in subchapter 4.3. After 

matching manually, non-linear regression method was applied for each type of matching 

variable separately; as a result, it improved the matching quality and lied within the geological 

range. Two tanks’ trends, namely SF_UP_S and SF_LOW_S, do not coincide with the 

observed data. A possible explanation can be that the observed data points are few and a 

trendline connects two points by using linear extrapolation. 

Parameter Model SF_UP_N SF_LOW_N SF_UP_S SF_LOW_S 

Aquifer size (Mm
3
) 

ECLIPSE 1358.67 1887.24 132.50 373.78 

MBAL 1359 1886 133.5 387 

STOIIP (MSm
3
) 

ECLIPSE 103.52 52.25 27.80 10.33 

MBAL 103.5 52 27.75 10.31 

 
 

1 Bad: 
T=33.6 

4 Bad: T=35 

3 Restricted: T=1397 

2 Good: T=5608 

1 

2 

3 

4 

Transmissibility, 

(cPm3/d/bar) 

SF_UP_S 

SF_LOW_S 

SF_UP_N 

SF_LOW_N 
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Figure 5.6 - History matched model: MBAL analytical and MBAL simulation plots. 

Eclipse Avg. Pres vs. Np 

MBAL:calc. Np vs. actual avgPres: f (We) 

MBAL:calc. Np vs. actual avgPres: f (We,T) 
MBAL:calc.Np vs. actual avgPres: f (T) 

Aquifer influx: 
MBAL Simulator 

Avg Pres data: 

Historical data 

MBAL Simulator 

SF_UP_S 

SF_LOW_S Eclipse Avg. Pres vs. Np 

MBAL:calc. Np vs. actual avgPres: f (We) 

MBAL:calc. Np vs. actual avgPres: f (We,T) 
MBAL:calc.Np vs. actual avgPres: f (T) 

Aquifer influx: 
MBAL Simulator 

Avg Pres data: 

Historical data 

MBAL Simulator 

SF_UP_N 

Eclipse Avg. Pres vs. Np 
MBAL:calc. Np vs. actual avgPres: f (We) 

MBAL:calc. Np vs. actual avgPres: f (We,T) 

MBAL:calc.Np vs. actual avgPres: f (T) 

Aquifer influx: 

MBAL Simulator 

Avg Pres data: 
Historical data 

MBAL Simulator 

SF_LOW_N Eclipse Avg. Pres vs. Np 

MBAL:calc. Np vs. actual avgPres: f (We) 

MBAL:calc. Np vs. actual avgPres: f (We,T) 
MBAL:calc.Np vs. actual avgPres: f (T) 

Aquifer influx: 

MBAL Simulator 
Avg Pres data: 

Historical data 

MBAL Simulator 
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Figure 5.7 – Reservoir energy map – Drive mechanisms vs. time. 

SF_UP_S 

SF_LOW_S 

SF_UP_N 

SF_LOW_N 

STATFJORD 
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 SF_UP_S SF_LOW_S SF_UP_N SF_LOW_N 

PORV (MRm
3
) 485.3 1182.2 925 1836 

Aquifer volume (MSm
3
) 133.5 387 1359 1886 

Production start date 11/1982 6/1990 11/1979 10/1981 

Cumulative volume of produced 

oil/PORV (MSm
3
/MRm

3
) 0.05 0.003 0.09 0.01 

Cumulative volume of produced 

gas/PORV (MSm
3
/MRm

3
) 31.9 1.2 57.7 8.5 

Cumulative volume of produced 

water/PORV (MSm
3
/MRm

3
) 0.02 0.002 0.02 0.005 

Time duration of gas injection 
12/1982-

6/2007 

10/1993-

4/2002 

6/1980-

10/2007 

11/1980-

5/2004 

Cumulative volume of injected 

gas/PORV (MSm
3
/MRm

3
) 

28.3 0.71 59.1 5.8 

Water injection duration - 
9/1994-

6/1997 

1/1996-

2/2009 

5/1991-

7/2008 

Cumulative volume of injected 

water/PORV (MSm
3
/MRm

3
) 

- 0.00041 0.8151 0.01387 

Table 5.4 – The main highlights from the field history (Prosty, 2010). 

MBAL tool offers to assess the drive mechanisms of the formation. Overall, Fig. 5.7 

reflects the historical drive mechanism. The comparison is made between two data such as 

MBAL calculated and field data. According to Fig. 5.7, the most striking feature is no water 

injection applied in SF_UP_S tank, in fact, as field history reveals water was never injected 

into that area and a second enormous quantity of gas was injected (Table 5.4) which can be 

confirmed from the MBAL energy map as well. Similar to injection behavior, the second 

large amount of gas was produced from this tank. Significant water and gas volumes were 

injected into and produced from SF_UP_N, which also can be observed from Table 5.4. The 

least amount of gas was injected into the tank SF_LOW_S, similarly, the same pattern can be 

established from the field data. Moreover, the productivity of SF_LOW_S tank was the lowest 

among four tanks. Water influx is more noticeable in the lower parts, especially, in 

SF_LOW_S is more dominant. Taken as a whole all the tanks reflects the actual field data 

which sustains (validates) the model representativeness. 

Overall, the history matching (Fig. 5.6) can be considered good enough for doing the 

sensitivity analysis and to run prediction despite a point-to-point match was not established. 

More concentration was given on the latest data because it is a starting point for forecast. 
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5.2 Sensitivity Analysis 

 As outlined in chapter 4 the single tank was built in order to estimate aquifer parameters 

such as aquifer volume and permeability. According to the single-tank result, the multi-tank 

model was built to capture the Statfjord formation geology. Sensitivity analysis on aquifer 

parameter was not captured since it has a certain impact on the model. 

Overall, six different scenarios is run to see the impact of each parameter, pressure 

behavior of each scenario is compared with base case model and at the end the most sensible 

parameter will be determined and described starting from the most affected parameter, the 

observation are given in the Table 5.5. 

In fact, the model is affected by transmissibility parameter. The model was run without 

transmissibility as a separate tank with given aquifer parameters in order to see the strength of 

each tank. As a result, two tanks SF_UP_N and SF_LOW_N have large potential energy. 

Large two transmissibilities (Fig. 5.5) that were linked with these tanks were reduced 4 times, 

consequently, as it was expected two low potential tanks (SF_UP_S and SF_LOW_S) were 

underestimated whereas SF_LOW_N tank’s result was overestimated. Low strength tanks’ 

transmissibilities (Fig. 5.5) does not affect to the computation’s result. Another interesting 

fact, that if the all transmissibility constants are changed to the same magnitude, the results 

will not be affected. 

The next concern is related to interdependency of two parameters, namely, aquifer influx 

(We) and transmissibility constant (T) parameters. From the equation of ‘Hurst-van 

Everdingen modified’ model pressure change is proportional to aquifer influx volume (Table 

4.2) while from eq. 4.1 two variables as delta P and transmissibility constant are inversely 

proportional. However, two variables cannot be correlated because it depends on the tank 

strength. Therefore, we cannot correlate the transmissibility constant with the aquifer influx. It 

is undoubtedly true that two variables have an influence (link) to each other. 

The following parameter to consider is aquifer permeability. Generally speaking, it has no 

impact on the model when the permeability was raised, but when it is halved, the calculated 

trend was lower than actual trend, except SF_LOW_S tank. For detailed review on this topic, 

see Table 5.5. 
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Scenarios SF_UP_S SF_LOW_S SF_UP_N SF_LOW_N 

TRANSMISSIBILITY*2 

- No change 

- Cum. aquifer influx trend 

identical 

- No change 

- Cum. aquifer influx trend 

identical 

- No change 

- Cum. aquifer influx trend 

identical 

- No change 

- Cum. aquifer influx trend 

identical 

TRANSMISSIBILITY/2 

- No change 

- Cum. aquifer influx trend 

identical 

- No change 

- Cum. aquifer influx trend 

identical 

- No change 

- Cum. aquifer influx trend 

identical 

- No change 

- Cum. aquifer influx trend 

identical 

LARGE TRANS: 

SFUPN^SFLOWN/4 

SFUPN^SFUPS/4 

- Underestimation (2004-

2012) 

- Cum. aquifer influx trend 

identical 

- Underestimation (2004-

2012) 

- Cum. aquifer influx trend 

identical 

- No change 

- Cum. aquifer influx trend 

identical 

- Overestimation (2004-

2012) 

- Cum. aquifer influx trend 

identical 

SMALL TRANS: 

SFUPS^SFLOWS*4 

SFLOWS^SFLOWN*4 

- No change 

- Cum. aquifer influx trend 

identical 

- No change 

- Cum. aquifer influx trend 

identical 

- No change 

- Cum. aquifer influx trend 

identical 

- No change 

- Cum. aquifer influx trend 

identical 

PERMEABILITY OF 

AQUIFER*2 

- No change 

- Cum. aquifer influx trend 

identical 

- No change 

- Cum. aquifer influx trend 

identical 

- No change 

- Cum. aquifer influx trend 

identical 

- No change 

- Cum. aquifer influx trend 

identical 

PERMEABILITY OF 

AQUIFER/2 

Underestimation (2007-

2012) 

- Cum. aquifer influx 

decreased slightly 

 

- No change 

- Cum. aquifer influx trend 

identical  

Underestimation (2005-

2012) 

- Cum. aquifer influx 

decreased slightly 

 

Underestimation (2007-

2012) 

- Cum. aquifer influx 

decreased slightly 

 

Table 5.5 - Observations from sensitivity analysis. 
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5.3 Model Calibration: History and Prediction 

In the prediction set up section two options are available in the MBAL tool: 

- Profile from production schedule (no wells); 

- Production profile using well models. 

In the first mode the targets are set by the user, i.e. production profile has to be established 

whereas for the second the prediction is based on individual well performance which is 

introduced into the system. 

In our model the wells have not been introduced and target rates with respect of each 

region are retrieved from the simulation model. 

The methodology of sensitivity analysis is to implement two scenarios on the prediction 

profiles: 

- Rate cut-off: the target rates from the simulation model; 

- Date cut-off: keeping in mind the last future cumulative values and accelerate the 

production activity. 

At the end, the cumulative gas production until an abandonment reservoir pressure will be 

examined and compared with ECLIPSE simulation prediction data. 

5.3.1 Relative Permeability Data 

Prior to run the prediction the relative permeability data needs to be examined since fluid 

behavior is governed by relative permeability curve. It can be done by matching fw and fg , so 

that a set of Corey function parameters should be able to recreate the fractional flows 

observed in the history. A set sequence of computation is shown in Fig. 5.8. 

It was recommended (MBAL User manual, 2011) that the late WC data needs to be 

excluded since it does not represent the original fractional flow. The reason behind is that the 

late data usually is affected by water breakthroughs and other EOR methods. However, the 

data points from the history were too scattered in order to be regressed. As a result, the 

relative permeability data, normalized at reservoir scale in the ECLIPSE simulation model, is 

used. Plots of the fractional flow versus saturation for each tank are given in Fig. A.2.6.Three 

features are plotted in the graph: 

- Water breakthrough- green line; 

- Data points, where the calculation is linked to the history production and PVT data; 

- Theoretical curve, where the calculation is based on the PVT and relative permeability 

input data, blue solid line. 
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Figure 5.8 - Water fractional flow matching procedure (MBAL user manual, 2011). 

Similarly, Bui et al. (2006) advocates that the relative permeability data needs to be 

conditioned to the field production data. Two graphs, such as the relative permeability from 

core data and conditioned to the production history, revealed substantial different trend. 

Therefore, the applicability of this method is questionable. 

5.3.2 Prediction Results 

The prognosis is run until December 2030. As it was mentioned the rates are retrieved 

from the ECLIPSE simulation model to see the response from the reservoir pressure. 

Moreover, the similarities and differences of simulation and material balance prognosis will 

be examined thereafter. 

MBAL data will be considered up to abandonment pressure, at which an amount of 

production is insufficient economically to continue the operation. 

Fig. 5.9 displays the historical and future pressure behavior for four tanks. 
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Figure 5.9 - Historical and future reservoir pressure profiles. 
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Figure 5.10 - Rate cut-off: gas prognosis. 

The raised question was whether or not the MBAL determine the formation future 

behavior, particularly for the gas production, with regard to material balance concept. Thus, 

further analysis is addressed only to the gas phase. 

Future prognosis is done only for the upper part of the formation due to low inflow 

performance of the lower formation. 

Table 5.6 – Abandonment reservoir pressure (ECLIPSE simulator, 2012). 

Table 5.7 – Comparison of cumulative gas production for the ECLIPSE and MBAL. 

 SF_UP_S SF_LOW_S SF_UP_N SF_LOW_N 

Abandonment Pressure(Bar) 152.4 161 145.2 165.8 

Parameters Model SF_UP_S SF_LOW_S SF_UP_N SF_LOW_N 

Abandonment 

date 

ECLIPSE_2030 1/12/2030 1/2/2012 1/12/2030 1/2/2012 

MBAL_2030 1/12/2021 1/2/2012 1/4/2025 1/2/2012 

MBAL_2020 1/11/2015 1/2/2012 1/3/2017 1/2/2012 

Cumulative oil 

(MSm
3
) 

ECLIPSE_2030 23.72 3.67 81.29 25.56 

MBAL_2030 23.64 3.67 81.26 25.56 

MBAL_2020 23.57 3.67 81.22 25.56 

Cumulative gas 

(MSm
3
) 

 

ECLIPSE_2030 16770 1475.28 56141 15644.8 

MBAL_2030 16627.8 1475.28 55716.8 15644.8 

MBAL_2020 16689 1475.28 55617.4 15644.8 
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Table 5.7 compares the data on gas cumulative production and reveals that the MBAL 

total future gas production is reduced compared to ECLIPSE simulator because the average 

reservoir behavior was different for the MBAL model and cumulative volume is taken until 

abandonment pressure value. According to ECLIPSE simulator, forecast of the remaining 

produced gas amount is 4 GSm
3
, while MBAL calculates as 3.4 GSm

3
, so the total amount of 

future gas production is reduced to 0.6 GSm
3
. The details on the average pressure depletion 

are discussed in subchapter 5.4. 

MBAL tool predicted that the gas phase is in the south of fault F11 similar to ECLIPSE 

simulator. The overview of initial and forecasted saturation data (Table 5.7, MBAL_2030) is 

illustrated in Fig. 5.11. As it was mentioned previously, there was no gas cap, and then it was 

created due to gas injection. The most of the oil phase has been extracted for all tanks. The 

saturation distribution looked alike for the MBAL_2020 model where the production 

performance accelerated. The most watered out regions are the lower part of Statfjord Fm. 

and north part of F11. 

Figure 5.11 – Saturation distribution for MBAL_2030. 

The conclusion can be underlined from the production prediction result in MBAL tool that 

the total gas production is reduced to 0.6 GSm
3
as shown in Table 5.7. 

5.4 Material Balance vs. Simulation Average Pressure 

This subsection compares the average reservoir pressure versus time profile computed 

from ECLIPSE and MBAL models against the measured pressure at datum depth (2701 m) 

calculated from DHPG surveys during the turn-around (T/A). The turn-around pressure points 
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(T/A) reflect the average reservoir pressure because the wells are closed for longer period. 

The average pressure calculations for both models (MBAL_2030 and MBAL_2020) were 

based on the target fluid rates retrieved from ECLIPSE simulation model as mentioned in 

subsection 5.3. 

Fig. 5.12 reveals the predicted pressure behavior, but SF_UP_N and SF_LOW_N tanks 

have been included also the history to show the representativeness of the models against 

datum pressure during turn-around. 

The MBAL results reflect the theory underlined this model, such as, for example. any 

pressure change is instantaneous and uniform throughout the tank. This implies that the 

MBAL reservoir pressure depletion associated with fluid production dropped slightly faster 

compared to ECLIPSE one. Fig. 5.12 compares the future pressure depletion from ECLIPSE 

and MBAL. The most noticeable features are: 

1. The prognosis (MBAL and ECLIPSE simulator results) for SF_UP_S tank matched 

perfectly until 01/2014 and then the discrepancy has started between the data. It is interesting 

that pressure trend almost levels off between 2013 and 2015 in ECLIPSE simulator data; 

2. Comparably, slightly large change has happened in results with SF_LOW_N tank while 

for both SF_UP_N and SF_LOW_S MBAL pressure prognosis looked alike to ECLIPSE 

simulator. 
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Figure 5.12 – Reservoir pressure prognosis. 

It has been always a challenge to get a representative average reservoir pressure depletion 

behavior for the lower Statfjord as it is shown in Fig. 5.12.The measured average pressure 
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data in the lower part of the formation is erratic due to the complex geology, so that the well 

location affects it substantially. The last turn-around was done June 2011 for the lower part, 

unfortunately there was not any DHPG for the southern lower part. For the upper part the 

recent (June 2012) measurements included, however the measured pressure has to be updated 

at the end of turn-around because the pressure has not stabilized yet, there is still a slight 

increase for the SF_UP_N. Overall, MBAL pressure trend seems to be in agreement with 

measured pressure point, except SF_LOW_N. 

Since there is no future prognosis for the lower part the priority is given to the upper part. 

As Fig. 5.12 reveals the upper part prediction is within acceptable range. However, the 

attempt is done to explain what can cause the disagreement between ECLIPSE and MBAL in 

SF_LOW_N tank. 

The first remarkable aspect that the starting point of prediction procedure is different, 

despite the input pressure points were used the same for both ECLIPSE and MBAL tools, in 

other word the average reservoir pressures for the MBAL are not from ECLIPSE model. 

Consequently, in MBAL the rate of pressure depletion is faster. Besides ECLIPSE model is 

not fully matched for the lower part, therefore it is questionable whether the result reliable or 

not. 

It is worthwhile noting that the gas liberation has occurred approximately at the same 

period of time in 2013 for the three tanks, except SF_LOW_S tank because of bad connection. 

Whereas in ECLIPSE the upper part of Statfjord formation gas starts to liberate approximately 

in 2013 the same as for the MBAL, but for lower part of Statfjord is 2018. 
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CONCLUSIONS 

Multi- and single-tank MBAL models were constructed for the Statfjord formation, based 

on the same reservoir input parameters data used in the ECLIPSE full-field simulation model. 

The only exception is the production/injection rates which were extracted from the Prosty 

production data-base and the average reservoir pressures obtained from RFT measurements. 

The quality assurance of STOIIP and aquifer influx is analyzed and concluded that there is 

no significant variation in the results between the ECLIPSE and MBAL models. 

As the future gas production performance is the main target of the work, the history 

matching procedure is crucial. Therefore, the workflow for the history matching procedure 

was established to minimize the errors and pitfalls. It is important to note that geological 

variations in the Statfjord formation were considered when choosing the values for the 

uncertain parameters used in the history matching and non-linear regression method was 

applied after each realization. The main advantage of using the MBAL model instead of the 

ECLIPSE model was that historical gas production volume from the former does not have 

discrepancy between simulated and observed volumes while the later has a difference of ca. 

0.4 GSm
3
 (Fig. A.1.1). 

The single-tank MBAL model cannot project reservoir behavior as accurate as the multi-

tank model; however, it is able to provide rough estimates of the aquifer size. 

The sensitivity analysis suggests that the MBAL model results are not influenced by 

increasing all transmissibility constants to the same magnitude at once. Generally speaking, 

the transmissibility affects the pressure response of each tank in the model. The aquifer 

permeability parameter is the least sensitive parameter; the reason is that the aquifer size 

connected to the Statfjord formation is around 13.1 times larger than the HCPV of the 

Statfjord formation reservoir. 

The material balance model is effective at history matching the production performance 

but has substantial drawbacks when it comes to field predictions. As an illustration, in relative 

permeability matching procedure, conditioning the relative permeability curves only to 

production data is not the best approach. This is because production data might be influenced 

by the applied EOR methods and other factors such as field geology, reservoir 

heterogeneities, well completion, etc. 

The prediction results from the MBAL model show that the future cumulative gas 

production is reduced compared to ECLIPSE and the potential of remaining gas is assessed to 

be in the south part of the upper Statfjord, which is similar to the ECLIPSE predictions. The 
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pressure depletion behavior is more or less similar without marginal differences except for the 

SF_LOW_N tank. 

One of the limitations of the MBAL tool is that it cannot be used for the estimation of 

trapped gas. The reason is that the MBAL tool is not able to deal with the task, in other words, 

it is out of the MBAL’s scope, and the work (issue) was analyzed from ECLIPSE simulator’s 

results. Another limitation concerns the allocation data because it might be one of the reasons 

of ECLIPSE simulator mismatch. 

Taken together the MBAL tool would seem to bring insights into reservoir 

characterization and practical in running different scenarios in spite of its simplicity it is able 

to predict similar pressure depletion trends as the ECLIPSE simulator. Moreover, it will allow 

us to spend less time on each realization, for example, we might run the MBAL model with 

different PVT data, to see the changes in the model. 

Recommendations for Further Work 

Further studies are required to account for the fluid misallocation on the reservoir future 

performance. As the claim concerned about the allocated rates being wrong due to wells that 

were perforated in several formations, for example, the wells were perforated in the Brent and 

Statfjord or the lower and upper part of the Statfjord formation. The reservoir allocation tool 

(part of IPM software) can be used to solve the issue. 

As it is known from the history of production performance, the gas was injected as soon as 

the fluid production started. Due to miscibility process between two different phase contact 

the original fluid composition was changed. However, the ECLIPSE simulator uses the initial 

PVT data throughout the simulated field history and future performance. Therefore, further 

work is needed to be done to enhance the simulation quality. 

The current study’s result can be enhanced by generating integrated system model in 

GAP, i.e. MBAL can be initialized in GAP. So that, material balance production prediction 

computation can be performed by GAP where the model is already have been built with all 

the Statfjord wells. 
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NOMENCLATURE 

  : Chi Square 

∆P: Pressure difference between two tanks [bar] 

µi: Viscosity of phase i [cp] 

Bg: Gas formation Volume Factor [m
3
/Sm

3
] 

Bo: Oil formation Volume Factor [m
3
/Sm

3
] 

Bw: Water formation Volume Factor [m
3
/Sm

3
] 

ca: Circa 

cf: Pore Compressibility [1/bar] 

cw: Water Compressibility [1/bar] 

DHPG: Downhole Pressure Gauge 

EOR: Enhanced Oil Recovery 

F&F: Fuel and Flare 

FFM2005: Full Field Model 2005 

fg: Gas Fractional Flow [-] 

FVF: Formation Volume Factor [m
3
/Sm

3
] 

fw: Water Fractional Flow [-] 

GIIP: Gas Initial In Place [MSm
3
] 

GOC: Gas Oil Contact [m] 

GWC: Gas Water Contact [m] 

HCPV: Hydrocarbon Pore Volume 

IOR: Improved Oil Recovery 

K: Land’s Constant [-] 

kaq: Aquifer Permeability [mD] 

kri: Relative Permeability [-] 

m: Gas Cap Fraction. 

MBAL: Material Balance 

MT-MBAL: Multi-tank MBAL 

N: Stock Tank Oil In Place [MSm
3
] 

Np: Cumulative Oil Recovery [MSm
3
] 

OOIP: Original Oil In Place [MSm
3
] 

OWIP: Original Water In Place [MSm
3
] 

PETEX: Petroleum Expert 



Late Life Field Material Balance Analysis – Statfjord Fm. Page 66 
 

PVT: Pressure, volume, temperature 

QT: Total Downhole flow rate [m
3
/day] 

Rd: Reservoir radius/aquifer outer radius [-] 

RFT: Repeat Formation Tester 

RMS: Reservoir Management Software 

Rp: Cumulative Gas-Oil Ratio [Sm3/Sm3] 

Rs: Solution Gas-Oil Ratio [Sm3/Sm3] 

Scw: Connate Water Saturation [-] 

SF_LOW_N: North area of the lower Statfjord from F11 fault 

SF_LOW_S: South area of the lower Statfjord from F11 fault 

SF_UP_N: North area of the upper Statfjord from F11 fault 

SF_UP_S: South area of the upper Statfjord from F11 fault 

SFA: Statfjord A Platform 

SFB: Statfjord B Platform 

SFC: Statfjord C Platform 

SFLL: Statfjord Late Life 

Sgi: Initial Gas Saturation [-] 

ST-MBAL: Single-tank MBAL 

STOIIP: Stock Tank Oil Initially In Place [MSm
3
] 

STRDP: Statfjord Reservoir Development Plan 

T/A: Turn-Around 

T: Transmissibility Constant [cP*m
3
/day/bar] 

tD: Dimensionless Time 

Va: Aquifer Volume [MSm
3
] 

WC: Water Cut [%] 

We: Cumulative Water Influx [MSm
3
] 

Wp: Cumulative Water Produced [MSm
3
] 

σ: Standard error 
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APPENDIX 

Appendix 1 

ΔGas 0.4 GSm
3

 

ΔOil 7 MSm
3
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ΔWater 5 MSm
3
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Injection stopped 
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Figure A.1.1 – ECLIPSE historical and prediction simulator data. 

 

Figure A.1.2 - Fluid contact and production information in 2003 (Well comments, 2011).
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Injection well Tracer inj. date Formation Tracer Obs. well Formation Breakthrough date # days 
Distance 

from inj. (m) 

Velocity 

(m/d) 

A08C 27/11/2002 Eiriksson HTO 

A02A Dunlin/LB Not detected   1317   

A12 Raude/Eiriksson 20/09/2003 297 1561 5.26 

A17A Eiriksson/Raude 7/7/2003 222 471 2.12 

C8A Eiriksson/Nansen/Ness Not detected       

B01B 4/11/2003 Nansen/Eiriksson 2.4.5-TFBA 

B15A Ra1/Ei MF Not detected   1770   

B17 Et EFB 10/5/2006 918 620 0.68 

B2C Eiriksson Not detected   876   

B21B Raude/Eiriksson Not detected   544   

B38A Raude/Eiriksson/Cook 5/1/2007 1158 1030   

B18 7/3/2003 Eiriksson 3.4 DFBA 

A26BT2 Eiriksson/Nansen/Cook/Rannoch 12.04.2005 767 1950 2.54 

B15A Ra1/Ei MF 5/10/2005 943 940 1 

B17 Et EFB Not detected   1545   

B21B Raude/Eiriksson 18/03/2007 1472 1099   

B38A Raude/Eiriksson/Cook Not detected       

C04A 23/09/2002 US 2.6 DFBA 

C15A Eiriksson 11/6/2003 261 1870 7.16 

C19C Raude/Eiriksson Not detected   32840   

C29 Eiriksson Not detected   2740   

C04B 4/4/2003 US 4-FBA 

C15A Eiriksson 19/08/2004 503 1365 2.71 

C29 Eiriksson 16/06/2004 439 1120 2.55 

C31A Eiriksson 13/03/2005 2313 1060 0.46 

C8A Eiriksson/Nansen/Ness Not detected   1560   

A38B 11/10/2003 Raude 2.6DFBA 

A13B Raude Not detected   2159   

A15CT4 Raude/Eiriksson/Rannoch Not detected   1738   

A29AT2 Raude Not detected   822   

C14A 4/4/2003 Raude 3.4DFBA 

C11B Raude Not detected   1525   

C19C Raude/Eiriksson Not detected   875   

C29 Eiriksson 15/12/2004 621 205   

Table A.1.1 - Statfjord – water tracer detection and flow velocities (SFRDP, 2007).
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Injection 

well 

Tracer inj. 

date 
Formation Tracer Obs. well 

Breakthrough 

date 
# days 

Distance 

from inj. 

(m) 

Velocity 

(m/d) 

C04A 3/3/2003 Eiriksson PFD/PDEC 

C15AT2 21/06/2003 110 1870 17 

C29T4 Not detected   2740   

C31A Not detected   4386   

C04B 1/4/2005 RwB7Ra/Ei PDMCB 

C8AT2 Background   1560   

C15AT2 14/01/2006 288 1365 4.7 

C17 Not detected   570   

C31A Background   1060   

C32A 19/09/2005 171 770 4.5 

C37A 15/07/2005 105 1230 11.7 

C13 23.09.2002 Eiriksson 
1.3-

PDMCH 

C15AT2 14/08/2003 325 2070 6.4 

C29T4 9/9/2003 350 1350   

C8AT2 10/10/2003 380 1035 2.7 

C31A 12/6/2005 993 1240 1.2 

C19C Background   950   

C11B 17/07/2004 663 566 0.9 

C12BT2 Not detected   475   

C41A Background   435   

C38CT2 Background       

C14A 20/12/2003 Raude PMCH 

C19C Background   875   

C11B Background   1525   

C29T4 Not detected       

C29AT2 Background   1900   

C38CT2 Background   2950   

C41A Background   1790   

Table A.1.2 - Statfjord – gas tracer detection and flow velocities (SFRDP, 2007). 
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Appendix 2 

 

Figure A.2.1 - Workflow diagram for MBAL. 
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Figure A.2.2 - Pressure data for each tank together with connecting tanks (RFT measurement 

spreadsheet). 
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Figure A.2.3 - History production/injection performance (Prosty, 2010). 
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Figure A.2.4 – Single-tank model results. 
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Figure A.2.5 – Pure non-linear regression (exc. perm.) based history matched MBAL model.

Eclipse Avg. Pres vs. Np 

MBAL:calc. Np vs. actual avgPres: f (We) 

MBAL:calc. Np vs. actual avgPres: f (We,T) 
MBAL:calc.Np vs. actual avgPres: f (T) 

Aquifer influx: 
MBAL Simulator 

Avg Pres data: 

Historical data 

MBAL Simulator 

SF_UP_S 

SF_LOW_S Eclipse Avg. Pres vs. Np 
MBAL:calc. Np vs. actual avgPres: f (We) 

MBAL:calc. Np vs. actual avgPres: f (We,T) 

MBAL:calc.Np vs. actual avgPres: f (T) 

Aquifer influx: 

MBAL Simulator 
Avg Pres data: 

Historical data 

MBAL Simulator 

SF_UP_N 

Eclipse Avg. Pres vs. Np 
MBAL:calc. Np vs. actual avgPres: f (We) 

MBAL:calc. Np vs. actual avgPres: f (We,T) 

MBAL:calc.Np vs. actual avgPres: f (T) 

Aquifer influx: 

MBAL Simulator 

Avg Pres data: 
Historical data 

MBAL Simulator 

SF_LOW_N Eclipse Avg. Pres vs. Np 
MBAL:calc. Np vs. actual avgPres: f (We) 

MBAL:calc. Np vs. actual avgPres: f (We,T) 
MBAL:calc.Np vs. actual avgPres: f (T) 

Aquifer influx: 

MBAL Simulator 
Avg Pres data: 

Historical data 

MBAL Simulator 



Late Life Field Material Balance Analysis – Statfjord Fm. Page 78 
 

Parameters Model STATFJORD SF_UP_S SF_LOW_S SF_UP_N SF_LOW_N 

Aquifer volume 

(MSm
3
) 

ECLIPSE 
 

132 374 1359 1887 

ST-MBAL 3750 
    

MT-MBAL (regression) 
 

452.36 38.3 3337.4 1042.7 

MT-MBAL (reg. exc. perm) 
 

56.45 760.342 1038.4 1887 

MT-MBAL 
 

133.5 387 1359 1886 

Aquifer perm. 

(mD) 

ECLIPSE 
 

100 100 100 100 

ST-MBAL 95 
    

MT-MBAL (regression) 
 

7.8 0.07 115.6 8.7 

MT-MBAL (reg. exc. perm) 
 

95 120 100 120 

MT-MBAL 
 

118 110 90 70 

STOIIP  (MSm
3
) 

ECLIPSE 
 

27.8 10.33 103.52 52.25 

ST-MBAL 193.9 
    

MT-MBAL (regression) 
 

27.75 10.3125 103.5 52.5 

MT-MBAL (reg. exc. perm) 
 

27.8 10.33 103.52 52.25 

MT-MBAL 
 

27.75 10.3125 103.52 52 

Table A.2.1 - Different MBAL model input data. Note: Other reservoir parameters are presented in ‘Statfjord reservoir description’ part. 

Table A.2.2 – Different MBAL model input data.

 
Model 

SF_UP_S^SF_LOW

_S 

SF_UP_N^SF_LOW_

N 

SF_UP_S^SF_UP_

N 

SF_LOW_S^SF_LOW_

N 

Transmissibility 

(CPM
3
/D/B) 

ECLIPSE 136 260 14 4 

MT-MBAL (regression) 120.2 2527.6 567.5 62.5 

MT-MBAL (exc. perm) 2.44 4771 1539 10.9 

MT-MBAL 33.56 5607.89 1396.72 34.86 
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Figure A.2.6 - Fractional flow vs. saturation. 
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Figure A.2.7 – MBAL prediction results. 


