
1 

 

 

 
 

FACULTY OF SOCIAL SCIENCES, 

UiS BUSINESS SCHOOL 

MASTERS THESIS 

 

STUDY PROGRAM: 

 

Master of Business Administration 

 

 

SPECIALIZATION: 

 

 Risk Management 

 

TITLE:  

 

A Survey of Risk and Ambiguity: An Application to the GARCH(1,1) Model with Exchange 

Rate Data. 

 

NORWEGIAN TITLE:  

 

En studie av risiko og usikkerhet med andvendelse i en GARCH(1,1) model med valuta data.  

 

 

Author: 

 

 

ADVISOR: 

 

     

     

     

    Mr. Lorán Chollete 

 

Student number: 

 

 

         210487 

 

Name: 

 

 

              Eduardo Villegas 

 

 

 

 

THE THESIS HAS BEEN RECEIVED IN TWO – 2 – BOUNDED COPIES 

 

 

 

Stavanger, ……/…… 2012 Sign. Adm..:…………………………… 

 



2 

 

Preface and Acknowledgements 

This thesis is submitted for the fulfillment of a 2-year master‟s program in risk 

management in the fields of business, finance and economics. It represents 30 ECTS 

credits (one semester) and was conducted on a full-time basis at the UiS Business 

School. The degree consists of a total of 120 ECTS credits. 

I would like to express special gratitude to my advisor, Mr Lorán Chollete, at the UiS 

Business School, for helpful and insightful guidance throughout. It would not be an 

understatement to say that I enjoyed his lectures in both Investments, and Market Risk 

and Financial Crisis, which in effect introduced me to many of the topics and ideas 

that form this text. I would also thank him for convincing me that professional 

statistics software was the right way forward in this project. 

Thanks is also directed to the Norwegian branch of the SAS Institute for granting 

access to their software during the duration of this thesis. Although, learning SAS 

programming has been somewhat of a carousel experience, it would have been 

difficult to carry out the formal testing without the adequate software at hand. I plan 

to expand on this experience, once I recover from this work .  

Also, many thanks to friends and family for their support and patience in listening to 

my loud and endless debates of economic theory. Hopefully, you have gained 

something too! 

 

 

June 2012 

 

 

 



3 

 

Abstract 

The assumption of normality in many risk management models is not always 

representative of the sample distribution at hand. Applying a uniform approach to a 

non-uniform population can produce biased and unreliable estimators that can have 

adverse effects to the consequences of decision-making. Since advancements in both 

research and statistical tools enable models to be more flexible than before, the 

purpose of this text is to examine to what extend this can be verified using exchange 

rate data, which is often characterized by the pronounced leptokurtosis and volatility 

that is found  in such time series. Two GARCH(1,1) models are constructed for each 

of the three exchange rates in the study; one using the normal distribution, and the 

other using Student‟s t distribution. The proxy for differences in the dynamics as 

implied by both approaches is translated in the parameter for persistence. Results 

support that a distribution with more mass in the tails is superior to the normal 

distribution for the three exchange rate returns in the study, as defined by information 

criteria. Also, the persistent parameter is different in all accounts between the two 

distribution approaches: the estimated persistence using Student‟s t distribution is 

higher for USD/NOK and USD/YEN, but lower for USD/EUR, compared to estimates 

using the normal distribution. While these findings cannot be generalized 

asymptotically, they illustrate the deviation in parameter estimation due to different 

methodological assumptions, and promote a multidisciplinary approach to problem 

solving.    

 

 

 

 

 

 



4 

 

Table of Contents 

Preface and Acknowledgements .................................................................................... 2 

Abstract .......................................................................................................................... 3 

List of Tables ................................................................................................................. 7 

List of Figures ................................................................................................................ 7 

1 Introduction ............................................................................................................ 8 

1.1 Context and Background ................................................................................. 8 

1.2 Educational Purpose ...................................................................................... 11 

1.3 Overview of this Text .................................................................................... 11 

2 Literature Review ................................................................................................. 12 

2.1 Terminology .................................................................................................. 12 

2.2 Theory ........................................................................................................... 15 

2.2.1 Management of Risk .............................................................................. 15 

2.2.2 Behavioral Choice  Description ............................................................. 16 

2.2.3 Choice and Decision Making ................................................................. 18 

3 Data ....................................................................................................................... 20 

4 Methodology (Econometric Considerations) ........................................................ 21 

4.1 The GARCH(p,q) model ............................................................................... 22 

4.2 Statistical Software ........................................................................................ 24 

4.3 Specification of the Mean Equation .............................................................. 24 

4.3.1 The Dependent variable ......................................................................... 25 



5 

 

4.3.2 Normality ............................................................................................... 26 

4.3.3 Correlograms and ACF and PACF ........................................................ 28 

4.3.4 White Noise Test .................................................................................... 28 

4.3.5 Model Adequacy .................................................................................... 29 

4.3.6 Testing for ARCH Effects ..................................................................... 30 

4.4 GARCH (1,1) Estimation .............................................................................. 31 

4.5 Likelihood Ratio Test .................................................................................... 31 

5 Empirical Results and Discussion ........................................................................ 32 

5.1 Descriptive Statistics and Normality ............................................................. 32 

5.2  Results for the Mean Equation ..................................................................... 33 

5.2.1 Visual Inspection ................................................................................... 33 

5.2.1 Formal Test of dlnok .............................................................................. 34 

5.2.2 Formal Test of dlyen .............................................................................. 37 

5.2.3 Formal Test of dleur ............................................................................... 38 

5.3 ARCH Effects ............................................................................................... 38 

5.4 GARCH(1,1) Estimates with Normally Distributed Residuals ..................... 39 

5.4.1 GARCH(1,1) estimate for dlnok (Normal Dist.) ................................... 39 

5.4.2 GARCH(1,1) Estimate for dlyen (Normal Dist.) ........................................ 40 

5.4.3 GARCH(1,1) Estimate for dleur (Normal Dist.) ......................................... 40 

5.5 GARCH(1,1) Estimates with Student t Distributed Residuals ...................... 41 

5.5.1 GARCH(1,1) Estimate for dlnok (Student‟s t Dist.) .............................. 41 



6 

 

5.5.2 GARCH(1,1) Estimate for dlyen (Student‟s t Dist.) ................................... 42 

5.5.3 GARCH(1,1) Estimate for dleur (Student‟s t Dist.) .................................... 42 

6 Conclusion ............................................................................................................ 44 

6.1 Summary and Conclusion ............................................................................. 44 

6.2 Extensions and Final Comments ................................................................... 45 

References .................................................................................................................... 46 

List of Tables ............................................................................................................... 49 

List of Figures .............................................................................................................. 58 

Apendix 1 ..................................................................................................................... 61 

Apendix 2 ..................................................................................................................... 62 

 

 

 

 

 

 

 

 

 

 

 



7 

 

List of Tables 

Table 1: Descriptive statistics ...................................................................................... 49 

Table 2: Pearson correlation matrix; dlnok, dlyen, dleur. ............................................ 49 

Table 3: dlnok for ARMA(0,0), ARMA(1,0), ARMA(0,1), and ARMA(1,1). ........... 50 

Table 4: dlnok for ARMA(2,0), ARMA(0,2), ARMA(2,2), and ARMA((2),(2)). ...... 51 

Table 5: dlyen for ARMA(0,0), ARMA(1,0), ARMA(0,1), and ARMA(1,1). ........... 52 

Table 6: dleur for ARMA(0,0), ARMA(1,0), ARMA(0,1), and ARMA(1,1). ............ 53 

Table 7: LM archtest; dlnok, dlyen, dleur. ................................................................... 53 

Table 8: GARCH(1,1); dlnok, dlyen, dleur (normal distr.). ........................................ 54 

Table 9: GARCH(1,1); dlnok, dlyen, dleur (normal distr.). ........................................ 55 

Table 10: GARCH(1,1); dlnok, dlyen, dleur (Student‟s t distr.). ................................ 56 

Table 11: GARCH(1,1); dlnok, dlyen, dleur (Student‟s t distr.). ................................ 57 

 

List of Figures 

Figure 1: USD/NOK, dlnok; ACF, PACF, distribution. .............................................. 58 

Figure 2: USD/YEN, dlyen; ACF, PACF, distribution. .............................................. 59 

Figure 3: USD/EUR, dleur, ACF, PACF, distribution. ............................................... 60 

 

 

 



8 

 

1 Introduction 

1.1 Context and Background  

Floating
1

 capital markets are believed to be efficient operators, reflecting the 

underlying economic conditions that prevail. This amplification can at best stimulate 

economic growth and prosperity in one end, and economic decline and loss in the 

other end. It seems that the increasingly integrated financial markets around the world 

can only add further to this amplification. For example, in the wake of the credit 

crunch and market turmoil that followed 2007/2008, it became apparent that 

globalisation had spread to a level were economies had become integrated to such an 

extent that a change in some financial value in one part of the world, could have a 

sudden and severe impact on another distinct financial value at another end of the 

world. With the right motivation, it seemed, markets had a great ability to move 

together in the same direction. But what was it that caused so many buyers and sellers 

to make such different valuations to what they had only recently done? Did economic 

agents not follow economic models? Or could it be that we did not have the adequate 

models to describe and guide in the given situation? Efficient market hypothesis 

(EMH) aficionados may rightly claim that the re-evaluation of market prices during 

such a short interval was ultimately due to the introduction and formation of new 

information. However, if we look beyond EMH theory and a re-calibrate the question 

to ask how economic agents could avoid being caught so surprisingly by new 

information, we may encounter theories that may vary in complexity. Assuming 

economic agents are optimisers, whilst acknowledging that a considerable part of the 

ex-ante 2007/2008 decision-making in financial markets was less than optimal, given 

the way market conditions as a whole developed, not forgetting the arguable element 

                                                 
1
 Although, floating is used to denote the exchange rate regime since the abolition of the Bretton 

Woods system, the term is also used intentionally as oppose to free (markets), to distinguish that a 

market may take a number of n (continuous) directions, but may still be subject to (government) 

intervention if sinking is occurring or believed to occur, and sinking is defined as not preferable. Free 

(markets) is thus treated more in a utopian sense. This point is maybe best seen as part of the euro 

(currency) crisis that is currently being negotiated. 
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of surprise, then a re-evaluation of risk and uncertainty perceptions, and the methods 

to process these, may be inevitable in finding suitable answers. 

The foreign exchange (FX) market is today the world‟s largest financial market, 

operating twenty-four hours a day. In a triennial report on FX activity, BIS (2010) 

reports that the global FX daily trade in April 2010 amounted to $4.0 trillion, up 20% 

from the $3.3 trillion in April 2007. Also, ECB (2008) state that international capital 

flows alone have increased faster than product trade. Although, it may seem that 

currency trading may have been less affected by the financial crisis, currency price 

movements are not without implications for policymakers and individual agents, in 

their quest for macroeconomic stability and easy access to capital markets (for the 

financing of projects). This ancient relation between risk and reward has led to growth 

in financial products that offer some form of hedge, or insurance, against future 

developments that may have an adverse effect on investments. However, even a 

complete bulletproof hedge will, more often than not, not come without some price, or 

cost if you like, that may itself vary. Hence, although this may be a question of 

weighing marginal cost against marginal gain, the introduction of uncertainty may 

require a different tool set than that in a setting with full information, as getting the 

uncertainty element wrong can have devastating consequences that may be unknown 

at the time of decision. In this regard, the anatomy is maybe best described in that a 

future event is not fully disclosed until some time, t+1, is realised. By its very nature, 

this introduces an element of uncertainty about some future prospect, since an event 

cannot be factually described until it is a real outcome in the past. Thus, for an 

investor who wishes to maximise profits it may be natural to approach uncertainty 

through some risk mitigation process. Once the investor has formalised a risk profile, 

a selection of potential investments can be considered. If transaction costs and other 

operational costs are ruled out, this selection process typically involves targeting the 

variance of an asset in order to deem weather the asset can add value or not. Variance 

or the measure of volatility if you like, is a popular proxy for risk given 

 investors care about volatility as high levels could indicate potential large 

losses or gains, and as such greater uncertainty, which again can make 

financial planning increasingly difficult (Gujarati, 2003). 
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 variance is often a key component in valuation of (risk related) securities such 

as credit or derivatives; ceteris paribus, prices for both these products may be 

relatively higher in volatile markets compared to when markets are less 

volatile (Gujarati, 2003). 

 variance is also used in other calculations relating to uncertainty, such as 

value at risk (VaR). 

At this point it may be worthwhile to note that the assumption of a constant variance 

might have to be relaxed as it may be deemed inappropriate for a time series that 

demonstrates large and rapid change in volatility across periods (Enders, 2010). Since 

exchange rate data is believed to display such time varying volatility, or volatility 

clustering
2
 (Dannenburg and Jacobsen, 2003), it has been pivotal in reaching an 

applicable model that it has the ability to capture such attributes. The GARCH model 

is one such model as it is first and foremost designed to address such volatility 

clustering (Cont, 2005). Also, another feature that might be considered as a proxy for 

risk is the GARCH model‟s ability to measure persistence. This may be interesting 

since depending on an investor‟s horizon for a given investment, shocks can introduce 

a variety of changes to the underlying economic conditions, such as a change to an 

assets (cap)ability to liquidate. This is cited as an essential part of the credit crunch 

that eventually led to the financial crisis
3
.  

Relying solely on historical data as a mirror for the future has received criticism for 

being too backward looking, where qualitative data has been seen as more of a 

forward looking input (BIS, 2006). However, since both approaches mostly rely on 

computation and ultimately an estimate, one way to approach uncertainty may be to 

create confidence in the risk analysis
4
. This is likely to be of particular importance 

                                                 
2
 As per Mandelbrot (1963) volatility clustering can be explained in that “[…] large changes tend to be 

followed by large changes - of either sign - and small changes tend to be followed by small changes 

[…]”. This phenomenon is also referred to as conditional heteroscedasticity. 

3
 Please see Chollete (2011) for an informative model of the co-formation of extreme events due to 

congestion.  

4
 Please see Andersen and Häger (2011) for a discussion on objectivity, risk measurement, and creating 

confidence in the analysis process. 
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since in order to manage risk to a decent standard, it is likely to be beneficial to 

understand what is to be managed in order to apply efficient risk management tools. 

In the currency rate example, this means that understanding currency prices can be 

paramount in order to grasp the exposure that a given economic agent may be subject 

to.  

In both Engle‟s (1982) and Bollerslev‟s (1986) original papers on ARCH and 

GARCH models, respectively, normality was assumed. These authors were, however, 

not unique in doing so as applying the normality assumption seem to almost have 

been an “industry standard” in many respects. Although the framework has been 

cited as overly simplistic, its popularity can be explained by the ease of 

implementation. However, since a given distribution carries certain properties 

inherent in the methodology, applying a distribution that does not adequately mirror 

the residuals of the sample can bias the risk management process altogether as it may 

produce unreliable estimates. 

 

1.2 Educational Purpose 

As discussed earlier, decision-making under uncertainty is likely to occur given full 

information is a scarce good that may not always be fully accessible in any 

circumstance, yet a decision must be made; be it do nothing or take some new action. 

As such, this study is motivated by two main questions:  

1. How does the literature describe choice and decision under uncertainty? and 

2. How can such research be informative to risk management in a GARCH(1,1) 

framework? 

 

1.3 Overview of this Text 

This text is organized in the following way. Section 2 provides a review of the 

literature on risk and uncertainty. Section 3 describes the data that has been utilized. 
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Section 4 introduces the econometric considerations, whilst section 5 presents the 

results together with discussion. Section 6 provides the summary and conclusion. 

2 Literature Review 

This section starts by introducing the terminology that is often used in the literature to 

distinguish various definitions of uncertainty, before reviewing the theoretical 

literature on economics and uncertainty. 

 

2.1 Terminology 

unˈcertainty, n.; 

The quality of being uncertain in respect of duration, continuance, occurrence, etc.; 

liability to chance or accident. Also, the quality of being indeterminate as to 

magnitude or value; the amount of variation in a numerical result that is consistent 

with observation. (OED, 2012) 

The above is retrieved from one of the Oxford English Dictionary‟s (OED) many 

descriptions on uncertainty. In the literature, and in general for that sake, we may 

encounter a variety of perceptions and definitions associated with the term uncertainty 

to such an extent that the definition of uncertainty itself can become somewhat 

uncertain. For that reason, some sciences have a more profound need to specify and 

explain this term than do others, e.g. psychology as oppose to accounting, i.e. two 

subjects could encounter uncertainty in one way or the other, but may have a 

completely different usage and thus approach to the term. Nonetheless, although we 

might not evoke too much harm if we put forward the OED description in describing 

uncertainty, it may be useful to reach some formalisation in more detail to promote 

healthy discussion. 

We could say that everything we do not know with certainty is uncertain. If we 

rephrase this definition, we could also say that uncertainty may be present if we do 

not hold sufficient knowledge to describe or assert some phenomenon fully. The 
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inclusion of both describe and assert is intentional as it can illustrate that in some 

situations information that can reduce uncertainty may be readily available, yet not 

part of an agent‟s knowledge base, whilst in other situations information about some 

phenomenon may simply not exist (yet). The former is typically referred to as 

unacquired knowledge, and the latter to some unrealised outcome
5
. 

Contrary to what one might think in theory, absence of knowledge does not stop 

economic agents from taking decisions in the face of uncertainty. An explanation 

could be that everyday life is full of uncertain events that we may not be able to fully 

control or even hedge against. If we remind ourselves that not taking some new action 

is an action in itself, then we could also add that there must ultimately exist some 

form of motivation that triggers action. Aristotle claimed that this was happiness
6
. In 

microeconomics this is often translated into utility; a measurable but not always 

observable quantity that can indicate an individual‟s level of satisfaction. When 

uncertainty is drawn into the equation, we may describe the base of action as a 

tradeoff between risk and reward (or risk-reward tradeoff, as it is also referred to in 

the finance literature). Implicit in this description is that the values of both risk and 

reward are potential values that may or may not coincide with their true, but yet 

unknown, values in relation to some phenomenon. Although, both risk and reward 

may describe something that can have an adverse or advantageous effect on utility
7
, 

risk-reward may best be seen in conjunction with e.g. „the reward for taking risk x, 

is...‟. That is, the reward follows, or is affiliated with the risk that is assigned. And 

                                                 
5
 Please note that lack of knowledge also include lack in knowledge on how to process information, and 

not only the gathering of information. An interesting observation is that psychology studies bring this 

discussion further to include cognitive limitations to capacity and time (Bammer and Smithson, 2008). 

6
 Aristotle divided happiness into hedonia, which described pleasure, and could be short lived; and 

eudaimonia, which described satisfaction of a life well-lived. 

7
 E.g. BIS (2001) defines (operational) risk as: “the risk of direct or indirect loss resulting from 

inadequate or failed internal processes, people and systems or from external events”, while COSO 

(2004) includes in its definition on enterprise risk management (ERM): “…identify potential events 

that may affect the entity…”, implying that risk may take any nature not limited to an adverse effect 

only. Also, a reward may be defined to take the value of any real number. As such it can be utility 

increasing (+), or utility decreasing (-). 
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here is maybe where we might find a clue to Knight‟s definition of risk and 

uncertainty; the degree of ability to calculate the realization of some reward. 

Knight (1921) defines risk as some measurable quantity, while he defines uncertainty 

as some unmeasurable quantity. Again, we are back at knowledge, but this time it is 

more about knowledge of the parameters that form a methodology. Hence, in a 

Knightian world with probabilities, risk is characterised by known probabilities, and 

uncertainty is characterised by unknown probabilities. As such, while both definitions 

are ultimately unaware of the true probability
8
 (if any) of some random phenomenon, 

Knight‟s focus is more on whether there is a (mathematical) claim, or possibility, to 

form a probabilistic measure, or estimate if you like, of randomness, or not. If such an 

estimate is not able to establish confidence or consensus, then according to Ellsberg 

(1961), we might have ambiguity
9
. This notion naturally introduces the matter of 

subjectivity
10

. In fact, Frisch and Barron (1988) define ambiguity as “[...] the 

subjective experience of missing information relevant to a prediction”, which we 

could say is somewhat analogous to Knightian uncertainty. This is maybe not the 

biggest of surprises as both have been used interchangeably in the literature 

(Ghirardato
11

, 2010).     

 

                                                 
8
 This should hold even if the probability is 0 or 1, given we define probability as an (calculated) 

estimate of some unknown value. If, however, we knew the true value, randomness would no longer be 

part of our estimate, in which case an estimate could be seen as obsolete. 

9
 To the degree that Knight uses the word ambiguity in his 1921 paper, it is more in relation to 

describing confusion, as oppose to defining a specific notion for it. 

10
 But as Ellsberg also adds: “[…] it should be possible to identify „objectively‟ some situations likely to 

present high ambiguity […]”, e.g. when there is wide agreement that it should be obvious that an 

estimate may be flawed.   

11
 Contributing author to the Encyclopedia of Quantitative Finance (2010), see list of references for 

further details.  
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2.2 Theory  

The three theories that are discussed here on risk and ambiguity could be 

characterised as i) an academic student economics text, ii) a behavioural descriptive 

text, and iii) a normative text.  

2.2.1 Management of Risk  

The book where our chapter is retrieved from, Microeconomic Theory (Mas-Colell, et 

al., 1995) is often characterised as one of the more detailed and mathematical 

intensive of a variety of graduate text books that are commonly referred to in 

(economics) graduate courses. The book‟s chapter 6, Choice Under Uncertainty, is no 

exception. It offers insight into how we may manage choice under uncertainty in that 

it presents a way to systemise risky alternatives, and how to make consistent choices 

among them. 

The risky alternatives facing an economic agent are referred to as lotteries and may 

initially be simple or compound lotteries.  A central feature in preference building in 

this respect is the consequentialist premise, stating that the decision maker is 

concerned with the reduced lottery over the final outcome regardless of the lottery 

structure
12

. This means that any lottery, no matter how complex, can be represented 

by a simple lottery with the same ultimate distribution over outcomes. Thus, in 

essence a simple or reduced lottery is the list             with      for all   

and        , where    is the probability of outcome   occurring. For much of the 

text these probabilities are assumed to be objectively known, similar to probabilities 

arising from a lottery based on, as the authors put it, “the spin of an unbiased roulette 

wheel”. As such, given the assumptions of the model, if an economic agent has 

inconsistent preferences over lotteries, this will not first and foremost be due to 

ambiguity, but rather a consequence of sub-optimal information processing, according 

                                                 
12

 Although this may be true, it may be argued that a path consisting of a compound lottery, given 

substantially many lotteries, may be perceived as more treasonous compared to one that only has a few 

lotteries, or even just a simple lottery.  
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to the authors. Although ambiguity is briefly mentioned in the section that relates to 

comparison of distributions and application of stochastic dominance in order to 

address optimal choice under uncertainty, information processing seems to be a 

central aspect of the theory throughout. When ambiguity is discussed in the reminder 

of the chapter, the authors refer to subjective probability theory as a potential bridge 

to fill the gap between known and unknown probabilities, albeit adding that more 

research may be necessary to assess whether this makes for an adequate substitute. 

The theory that the Mas-Colell, et al. text presents, may receive criticism for the 

assumptions it imposes, e.g. probabilities that are objectively know, the 

consequentialist premise etc., but it could surely receive as much praise for including 

them in their presentation as well. Yes, it is not perfect (which model per definition 

is?!), and it may collide with other theories that have more relaxed assumptions, but 

the chapter appears nonetheless as informative as it introduces usable and thus 

valuable knowledge in relation to uncertainty, be it in an academic setting for 

understanding and building on knowledge, for an economic entity that may have the 

resources to pursue the methodology as part of a strategic tool box, or just for a 

private person‟s general curiosity. One may argue that this should more than make up 

for the strong assumptions that follow the theory in question, although one could also 

argue that it could have been interesting to expand the text to include other theories 

and aspects of uncertainty that have shed the light of academia. Two such alternative 

texts are discussed next.  

 

2.2.2 Behavioral Choice  Description  

Itzhak Gilboa‟s (2009) description of uncertainty is in large consistent with the 

perception of uncertainty as some unknown probability. Nonetheless, he brings 

forward an interesting discussion on asymmetric beliefs to add in understanding how 

one might deal with choice under uncertainty. The following example due to 

Schmeidler(1989) may illustrate this better: Imagine two coins   and  , where only 

the probability of   is known. Given a fair toss, the probability of either heads     or 

tails     at the end of the toss is about 50% for coin  . Then there is coin  , which we 
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know nothing about. If we have symmetric beliefs we may assign the same 

probability to coin   as for coin  . However, whilst the probability structure of coin   

is based on empirical frequency, the probability structure of coin   would be non-

verifiable as it would have been assigned by default. As such, in both theory and in 

practice the probability of     or  ‟s for coin   can be anywhere between 0 and 

100%. According to Gilboa, when people are faced with a bet that has a known 

probability of 50% against another bet with unknown probabilities, they will prefer 

the former rather than the latter alternative. Gilboa argues, as Ellseberg (1961) did, 

that this would imply that people are not necessarily (subjective) probabilistic rule 

driven expected utility maximizers when faced with unknown elements in choice. If 

they were, the author says, people‟s probabilities would have to reflect a higher 

likelihood of an outcome of   ‟s for coin   than for coin  , and a higher likelihood of 

 ‟s for coin   than for coin  . However, this would not be possible if the probabilities 

for both   ‟s and   ‟s for each coin would have to add up to 1. It is in this context that 

the author questions Bayesianism, whose foundation is that all uncertainty can be 

quantified in a probabilistic manner. This notion, however, would not be compatible 

with preferences for known versus unknown probabilities. Hence, the introduction of 

non-additive probabilities, which carry weaker assumptions compared to 

Bayesianism. 

Formally, if we denote the non-additive probability by   and   and   are disjoint, 

then our non-additive measure does not need to satisfy                 . 

This means that in relation to coin   from our previous example, we may have that 

              

while 

         

Furthermore, the following properties will have to be satisfied: 

i.       ; 

ii.      implies            

iii.       . 
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According to the author, this framework may explain preference for betting on a coin 

with known probabilities, as the preference order is no more than a ranking of events. 

For a multi outcome setting with non-additive probabilities, Gilboa shows why a 

typical Riemann integral may not be sufficient, and refers to the Choquet (1954) 

integral as a possible solution for solving the problem of ambiguity that is found in 

the Riemann model. As such, Gilboa‟s presentation of decision theory provides 

insight into how choice ordering can be explained in a setting with uncertainty when 

there are violations of expected utility theory (EU). The focus on the behavioural 

aspects of the economics (of the problem) is not only gainful for those instances were 

increased accuracy can be attained, but it is also gainful in an informative manner in 

that the theoretical description has a closer „fit‟ to the behavioural phenomenon in 

question.  

 

2.2.3 Choice and Decision Making 

Manski‟s (2007) analysis of decision making and welfare maximization is largely 

based on an econometric approach to uncertainty. The setting that is examined in 

particular is one with a decision making planner with knowledge about the choice set, 

but with limited knowledge about the outcome of choice
13

. Thus, according to Manski 

the planner faces an identification problem, and hence treatment choice under 

ambiguity
14

. Manski specifies this further and adds that since the planner has partial 

knowledge of the distribution of treatment response, she may not be able to determine 

optimal treatment choice. This, therefore, may lead to a sub-optimal outcome. 

Formally, the choice set is denoted  . This is the set the decision maker must choose 

an action from with the intent to maximise an objective function:          . In 

                                                 
13

 Here we can only assume that choice reflects more than one option. If number of options in the set is 

n, then we have that 1<n. „Do-nothing‟ or applying some new innovation could be two such minimum 

options consistent with the above definition. 

14
 For productive purposes, Manski makes the explicit distinction that we see this from an ex-ante 

planner‟s perspective as opposed to from an ex-post researcher who analyse treatment choice. 
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words, this means that action is mapped into real-valued outcomes. Since the planner 

knows   and only that        , where   represents some possible objective 

functions, the planner faces a problem of choice under ambiguity. Manski offers 

further insight into the ambiguous state of nature: First, the planner should not choose 

a dominated action. If there exists a feasible action     that is equally as good as 

some other feasible action    , for all objective functions in   and strictly better for 

some functions in  , then action   is said to be dominated. Second, given we have 

two undominated actions   and  , then either they are equally as good, making the 

decision maker indifferent between them, or the decision maker is not able to order 

the two actions as either action (say action  ) may yield a better or worse outcome 

than the other action, (say action  ). The bottom line is that the decision maker is not 

able to identify which is the better choice of action. Please note that although the 

decision maker cannot order the two undominated actions, she is assumed to be an 

optimiser and she should thus not be indifferent between the two actions because 

choosing one over the other may yield vastly different outcomes. Formally, we have 

either                       or         and          such that               

and                . Manski argues that there are no unambiguously correct answers to 

the latter state as the problem itself contain an ambiguous element. Third, Manski 

describes a further definition of choice under ambiguity in that action must not only 

be undominated, but also exclusive. This means that the planner cannot order between 

a subset of equally applicable maximising actions, yet she can only apply one 

(unique) treatment
15

. Fourth, contrary to general optimisation theory, expansion of the 

choice set may decrease welfare as there may be a positive correlation between 

ambiguity and the total number of actions available in a choice set. This makes 

intuitive sense as introducing an additional action, say  , that is neither dominated nor 

dominates other actions in the initial set, may further blur the maybe already blurred 

road map of preferred action: action   might be chosen, although it may turn out that  

                                                 
15

 Choosing a combination of actions that collectively form an action is not necessarily ruled out as it 

may also be part of the choice set that the planner has knowledge about. However, it may be 

worthwhile to note that a choice that includes combined actions of other actions in the set, naturally 

expands the total choice set compared to a set of actions that do not hold combined action.  
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           . As such, expansion of the choice set may bring a welfare reducing 

characteristic. 

Although Manski‟s text does not discuss risk in a strict Knightian sense, one can still 

get the impression that applying any sufficiently strong assumptions to a dataset may 

invoke an increased likelihood of distortion of the (true) data representation: If we 

define   from above as some additional assumption introduced to the decision-making 

problem (where action could be expressed as information), then a decision that 

includes   may potentially curb the prospect of an outcome. But Manski also adds that 

decision-making with partial information may not always result in a binominal 

representation, e.g. success or no success, for all or part of a population, as the author 

shows that a solution can also be fractional and optimal at the same time. From an 

asset management perspective this is closely related to the theory of portfolio 

diversification, in that a multiple number of assets are acquired as a hedge against 

uncertainty, instead of settling with only one asset.  

 

3 Data  

The data in this text has been sourced online from the Federal Reserve Bank of St. 

Louis
16

 in its entirety, and consist of a discrete time series where the observations are 

daily New York City midday buying quotes for the period between 7th January 1975 

and 30th December 2011. The observant reader may verify that only data after the 

floating exchange rate regimes were implemented is included. The maximum possible 

observations are thus 9,292. The variables are defined as follows
17

:  

 Variable (nok): Currency pair 
   

   
, is the amount of USD for one unit of NOK. 

 Variable (yen): Currency pair 
   

   
, is the amount of USD for one unit of JPY. 

                                                 
16

 The Federal Reserve Bank of St. Louis is one of 12 regional Reserve Banks in the USA, reporting to 

the main central bank, the Board of Governors of the Federal Reserve System, or the Fed as it is also 

referred to. 

17
 Names in brackets denote how the variables are defined in SAS. 
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 Variable (eur): Currency pair 
   

   
, is the amount of USD for one unit of 

EUR
18

.  

From the above description; since all values are expressed in USD, we could for 

simplicity say that the home currency is set to USD. That is, the amount of USD that 

would have to be paid in exchange for one unit of foreign currency
19

. As such, the 

foreign currency is here represented by NOK, JPY, and EUR
20

.  

 

4 Methodology (Econometric Considerations) 

Fitting an adequate GARCH(1,1) model to the data will be a central aim of the 

methodology
21

. The following gives a short introduction to the GARCH(p,q) model, 

whose equations will be referred to throughout, before introducing econometric 

considerations that will be applied in the process.  

                                                 
18

 Please note that the Euro as we know it today was only introduced in January 1999, and thus data 

prior to this time is not available. Subsequently, there are missing values for the currency pair 
   

   
. 

19
 This text adopts the Federal Reserve Bank of New York best practice on currency pairs as per their 

Currency Pair Matrix (2005), which states that: “The numerator of the Currency Pair Fraction is 

defined as the "Numerator Currency," and the denominator of the Currency Pair Fraction is defined as 

the "Denominator Currency." Each Currency Pair Fraction is expressed as the amount of Numerator 

Currency per one unit of Denominator Currency”.   

20
 NOK=Norwegian Kroner, JPY= Japanese Yen, and EUR=European Euro. Also, USD= United States 

Dollars. 

21
 Although, there are other models that acknowledge that volatilities and correlations are not constant, 

such as the autoregressive conditional heteroscedasticity (ARCH) and the exponentially weighted 

moving average (EWMA) models, Bodie et al. (2009) note that the GARCH model is “[…] the most 

widely used model to estimate the conditional (hence time-varying) variance of stocks and stock-index 

returns […]”.  
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4.1 The GARCH(p,q) model 

The generalized ARCH (GARCH) model by Tim Bollerslev (1986) extends Robert 

Engle‟s (1982) autoregressive conditional heteroscedasticity (ARCH) model to 

incorporate lagged conditional values of the variance to explain the variance, or as 

Enders (2010) describes it: “[…] GARCH(p,q) allows for both autoregressive and 

moving-average components in the heteroscedastic variance”. Using Bollerslev‟s 

(1986) original notation, the GARCH model can be described in the following way: 

We have an initial model of interest
22

, 

      
       ,     (4.1) 

which we can write, 

         
  ,      (4.2) 

where    is the dependent variable,    is a vector of explanatory variables,   is a 

vector of unknown coefficients, and    is a real-valued discrete-time stochastic 

process. To see how the   ‟s in the GARCH (p,q) can be “innovations in a linear 

regression” as Bollerslev (1986) puts it in his 1986 paper, the GARCH defines the 

value of    conditional on some information set    at time  , as normally distributed 

with zero mean and (conditional) variance   , 

                   ,     (4.3) 

where,                           (4.4) 

          

 

   

    
         

 

   

 

 

                                                 
22

 (4.2) could for instance be and ADL(1,1):                        . (3.2) is also 

typically referred to as the mean equation. 
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and, 

      ,      , 

       ,      ,          

       ,            

Although (4.3) and (4.4) are central descriptions of the GARCH (p,q) process, the 

way in which the mean equation (4.1) is fitted will have implications for the output in 

(4.4). From (4.4) we can see that the conditional variance is allowed to depend on the 

lagged squared values of the disturbance (q), and the values of the lagged conditional 

variance itself (p). The weights that GARCH(p,q) assigns each variable are expressed 

by    and   . The values of both p and q may vary depending on the data and data 

modeller, but GARCH(p=1,q=1), or GARCH(1,1) as is the usual notation, is by far 

the more popular model. Please note that a GARCH(0,1), is simply an ARCH(1), or 

ARCH(q=1) model. Put differently, if the   ‟s equal zero then the model reduces to an 

ARCH(q) model, given there are ARCH effects present in the data set. Since we have 

that    , checking for ARCH effects is thus paramount before considering fitting a 

GARCH(p,q) model. However, before we can fit an adequate GARCH(1,1) model, 

the mean equation, (4.1), need to be modelled. 

The GARCH(1,1) model measures volatility persistence measured by the parameter   

where, 

                   (4.5) 

As   increase and approach unity, past shocks have stronger effect on the current 

variance. However, as Enders (2010) notes,   and   transfer volatility in different 

ways since   has less autoregressive persistence than   . In short,    transfer 

relatively more volatility over a shorter period, than   , which transfers volatility 

more spread over a longer period.   
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4.2 Statistical Software 

SAS 9.2 is used for calculating all estimates in tables and figures, except for LR-tests 

which are carried out using SAS 9.3. Also, since SAS has a variety of options for 

processing data, the SAS procedure that have been used in conjunction with the 

described methodology will briefly be described under each section were this is 

applicable. These descriptions will be marked with a vertical line on each side of the 

text
23

. Excel 2007 student version was used in the preliminary stages of data handling. 

 

4.3 Specification of the Mean Equation 

De Vries and Leuven (1992) describe a list of stylized facts in conjunction with 

nominal exchange rate returns. In particular, they highlight statistical aspects such as 

nonstationarity, fat tails, and volatility clusters, and advice this be seen in relation to 

unit roots and no fundamentals; where the latter two descriptions are best seen as a 

result of the no arbitrage condition
24

, e.g. a (predictive) structural model of nominal 

exchange rates, implying arbitrage opportunities by its very nature, should, given 

economic theory and technological advancements in market monitoring and trade 

execution, at best only suggest a short (instantaneous) time lasting arbitrage 

opportunity with limited scope. Hence, a structural model should arguably not be a 

better predictor than a random walk model. This point is shown empirically by Meese 

and Rogoff (1982), and Enders (2010) adds that this is also the general finding in 

relation to high frequency data and nominal exchange rates. Hence, this text will first 

and foremost apply an atheoretic Box-Jenkins (1976) methodology in the univariate 

AR(I)MA
25

 approach to model the mean equation by OLS
26

. In short this method 

                                                 

23
 Please refer to Appendix 2 for a list of programming commands used in this text. 

24
 This is similar to the efficient market hypothesis (EMH), where (stock) prices, in essence, are 

regarded as randomly generated values, making  profitable speculation difficult to integrate as part of a 

structural model (Gujarati, 2003).   

25
 As the series will be differenced at least once from the raw exchange rate levels given (3.1), I(d) may 

be obsolete. However, as there will not be any profound diagnostic checking on the raw data, it cannot 
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consists of three stages: identification, estimation, and diagnostic checking. A lot of 

the literature on exchange rate returns supports and follow this method, particularly in 

relation to forecasting. As a final note on the Box-Jenkins method, it could be 

worthwhile to remind the reader that this method is based on the principle of 

parsimony in model selection.  

 

In general, the SAS ARIMA and AUTOREG procedures will be used to specify the 

mean equation and construct the GARCH(1,1), respectively. The ARIMA procedure 

follows the Box-Jenkins methodology closely, and it is as such a natural choice. The 

AUTOREG Procedure offers various solutions, including ARCH and GARCH 

estimation. 

  

4.3.1 The Dependent variable 

FX spot transactions grew 48% from April 2007 to April 2010, and was as such the 

main contributor to the increase in daily FX trading in that interval. Trade by financial 

institutions and reporting dealers accounted for 87% of total FX trade, leaving the 

remainder 13% for non-financial entities
27

 (BIS, 2010). This suggests that the relevant 

variable in the mean equation should be exchange rate return rather than the nominal 

exchange rate level, as a considerable amount of FX valuation seems to be motivated 

                                                                                                                                            
be concluded that they follow any random walk process. Subsequently, it cannot be concluded, at this 

stage, that the lognormal exchange rate return is stationary by default. Hence, the integrated process 

part of the ARIMA is written in parenthesis as per general findings in the literature on exchange rate 

levels that they are nonstationary. As such, it is not expected that the lognormal exchange rate return 

will have to be „differenced‟ further. However, before formal testing has been applied and analyzed, we 

cannot fully exclude that the data may have to undergo some form of transformation to satisfy 

methodological requirements.  

26
 While the GARCH regression is estimated by maximum likelihood estimation (MLE), the mean 

equation can be fitted using OLS.  

27
 The report defined non-financial entities as „non-financial end users, such as corporations and 

governments‟ (BIS, 2010). Please refer to the report for further details. 
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by capital movement. Further to this, applying the first differences of the exchange 

rate enables the series to become stationary and thus subject to standard time series 

analysis given the nominal exchange rate is a random walk process. As such, the 

dependent variable of interest is denoted as: 

               (4.6) 

where          , i.e. the natural logarithm of the spot rate   at time  , making   the 

first difference of the natural logarithm of the nominal daily exchange rate
28

. Another 

advantage with using exchange rate returns, as oppose to levels, is the unit free 

measure that can facilitate comparisons across currency pairs (e.g. performance, etc.).  

The variables for log normal return will as such be denoted as dlnok, dlyen and dleur. 

 

4.3.2 Normality 

While Bollerslev‟s (1986) original GARCH model follows Engle‟s (1982) ARCH 

model in assuming normality, the model itself is not restricted to only one 

distribution. Testing for normality is important because can assess whether a variable 

is subject to standard statistical inference, or hypothesis testing if you like, or not, 

alternatively, if other measures need to be explored. The literature describes a number 

of normality tests. In order to diagnose the degree of strength related to the normality 

assumption this text will use the Jarque-Bera (JB) test of normality where the test 

statistic   , can be described as, 

     
         

 
  

             

  
          (4.7) 

                                                 
28

 Please note that    is close to the rate of return   at time  :     
       

    
. This text uses the 

logarithmic model as this is a fairly usable method to apply when manipulating data.   
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where   is number of observations, and        denotes that that statistic    follows a 

chi-squared distribution with 2 df
29

/
30

. The null hypothesis is normality. SAS provides 

additional normality test like the Kolmogorov-Smirnov, Cramer-von Mises, and 

Anderson-Darling tests. A common factor that these test share with the JB test of 

normality is that that hypothesis is formally,  

H0: Normality   HA:  Non-normality 

If the null hypothesis cannot be rejected, then estimation is likely to perform well 

given the normality assumption. However, in the case that the null hypothesis is 

rejected, then here are a number of options that can be applied to account for non-

normal distributions. Some of these theories centre on the distributional shape in that 

they have more mass in the tails than do the standard normal distribution. Examples of 

such fat-tailed distributions are Student t or the Cauchy distributions.  

The SAS ARIMA Procedure does not have an option to the standard normal 

distribution. The SAS AUTOREG Procedure, which will be used for the GARCH 

estimation, however, offers the option to use the Student‟s t distribution in the 

MODEL statement, relating to the GARCH estimation. The command is done 

explicitly. As such the mean equation will be conducted with the normal distribution 

only, whilst the Student‟s t distribution is applicable for the GARCH estimation. Also, 

the degrees of freedom for the Student t distribution are expressed through TDFI in 

SAS, which is formally the inverse of the degrees of freedoms and is an estimated 

parameter. 

 

                                                 

29
 Skewness is formally defined as:    

          

  .  

30
 Kurtosis is fomally defined as:   

          

  . A distribution with a kurtosis value in execess of +3 is 

said to have heavy tails due to more mass in the tails compared to a normal distribution. 



28 

 

4.3.3 Correlograms and ACF and PACF31 

Without going into the architectonic or computational details of the autocorrelation 

function (ACF)
32

 and the partial autocorrelation function (PACF)
33

, these tools are 

useful in the identification part of the Box-Jenkins methodology. Because the shape 

and form of an ACF and a PACF is thought to be informative of characteristics related 

to some particular process (e.g. tentative order of AR(p) and/or MA(q) in an 

ARMA(p,q)), these tools are used as preliminary tests before further exploration and 

testing is applied. A typical stationary process exhibits an ACF (correlogram) that 

reduces to zero at a geometrical pace and remains close to zero for the reminder of the 

lags. As such, the sample ACF can act as a simple test of stationarity.  

 

The SAS ARIMA Procedure is used to run both ACF and PACF, where the values 

and (correlogram) plots are generated automatically by inducing the IDENTIFY 

statement.  

  

4.3.4 White Noise Test   

A formal test for white noise is found in Ljung-Box (1978). Because the LB statistic, 

or Q statistic, as it is also referred to
34

, is a test to ascertain whether the joint 

hypothesis (of a group of autocorrelations) is simultaneously significantly different 

                                                 
31

 The correlogram of PACF is formally referred to as a partial correlogram. 

32
 In short, an ACF value at lag k is the ratio of sample covariance (at lag k) to sample variance 

(Gujarati, 2003). 

33
 A PACF value at lag k is (on the other hand) maybe best described as the ceteris paribus (individual) 

correlation between t and a k lag, as the PACF controls or „nets‟ out the correlation of any intermediate 

lags that are less than lag k. 

34
 Not to be confused with the much similar Q statistic based on Box-Pierce (1970), or Box-Pierce Q 

statistic as it is also referred to. In short, the LB-Q statistic is believed to have more power over the BP-

Q statistic. 
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from zero, the statistic can also be used in an informative manner to ascertain whether 

the residuals of an ARMA(p,q) behave as a white noise, or not. The general idea is 

that if the LB-Q statistic(s) is not significantly different from zero, then this is a sign 

that the estimated model may „fit‟ the data well (Enders, 2010), as there may not be 

any more information in the series to model. Formally, the hypothesis is written 

H0: White Noise   HA:  No White Noise 

 

The SAS ARIMA Procedure generates the LB-Q statistic by default in the IDENTIFY 

statement. Since the LB-Q statistic follows an asymptotical chi-square distribution the 

SAS output refers to the LB-Q statistic as a chi-square statistic with the corresponding 

chi-square value and the related p-value for a group of autocorrelations. 

 

4.3.5 Model Adequacy 

Although the goodness-of-fit assessment will be conducted as results are generated, 

not forgetting the underpinning economic theory, both the Aikaike Information 

Criterion
35

 (AIC) and the Schwarz Bayesian Criterion
36

 (SBC) will play central roles 

in the selection process. The idea is that the competing model with the lowest 

information criteria is the preferred model, or as Enders (2010) points out: “as the fit 

of the model improves, the AIC and SBC will approach   ”. Some characteristics 

that may be worth mentioning is that as oppose to the   criteria, AIC and SBC have 

in common that they impose a penalty for adding more explanatory variables, which 

for some models may naturally introduce some sort of trade-off. Also, the SBC is 

thought to select the more parsimonious model over the AIC, given      since 

then         holds (please refer to the two computations that SAS utilizes as per 

below to inspect further). Finally, Enders (2010) points out that SBC has superior 

                                                 
35

 (Akaike, 1974). 

36
 (Schwarz, 1978). 
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large-sample properties, whilst AIC can perform better in small samples, comparing 

both criteria. 

The ESTIMATE statement of the SAS ARIMA Procedure generates both the AIC and 

SBC by default. This SAS procedure has the following computational description for 

each information criteria  

                   (4.8) 

“where L is the likelihood function and k is the number of free parameters, 

and 

                          (4.9)  

where n is the number of residuals that can be computed for the time series” (SAS 

OnlineDoc, version 7-1, 2008). 

 

4.3.6 Testing for ARCH Effects  

There are a number of tests that can be used to look for the presence of 

heteroscedasticity. This text uses a Lagrange multiplier (LM) approach suggested by 

Engle (1982), where the squared residuals are checked for ARCH effects. Please note 

that the test assumes white noise in the disturbances. Formally the test is expressed 

                                                

  

The SAS AUTOREG Procedure generates the LM statistic and corresponding p-value 

upon instruction in the MODEL statement.  
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4.4 GARCH (1,1) Estimation 

With today‟s sophisticated (statistical) software modelling a GARCH(p,q) process is 

likely to be less complicated than when Bollerslev concluded his 1986 paper. The 

procedure is fairly straight forward: Once the mean equation is specified, the 

GARCH(p,q) can be regressed on the information contained in the mean equation. 

Parameters are created similar to any other standard regression. Please note that since 

GARCH(p,q) introduces conditional variance this in itself may alter the original mean 

equation, since the dynamics could have been altered in that information may have 

been used differently. Also, GARCH is estimated using MLE. 

Model adequacy of the GARCH(1,1) is conducted as per 4.3.5, which is applicable 

since the SAS computation for AIC and SBC uses the log likelihood function.  

 

The SAS AUTOREG Procedure is utilised for this purpose, specifying the 

GARCH(1,1) model under the MODEL statement. As per Bollerslev (1986) this 

procedure utilises MLE by default for a GARCH(p,q) operation.  

 

4.5 Likelihood Ratio Test 

The GARCH model is estimated using MLE and it is as such appropriate to use the 

likelihood ratio (LR) test in order to test for joint significance of the GARCH 

coefficients. The LR test is somewhat analogous to the F test. In large samples the LR 

test statistic follows a chi-square distribution with equally as many degrees of 

freedom as the number of restrictions imposed by the null hypothesis. Since the 

GARCH coefficients are generated with their own individual significance values, and 

persistence is defined as per (4.5), the hypothesis is formally, 

       +              +      0 

The SAS 9.2 AUTOREG Procedure does not have this feature, and the SAS 9.3 

AUTOREG Procedure is used instead for this purpose since it offers both LR and 
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Wald tests. The test is explicitly programmed using the TEST statement. SAS 9.3 also 

has the option. Also, as Gujarati (2003) notes, the LR and Wald tests give identical 

answers, asymptotically.    

 

5 Empirical Results and Discussion 

5.1 Descriptive Statistics and Normality  

Table 1 present the descriptive statistics for the log normal return series of the three 

currency pairs (  ). Since SAS reports kurtosis as excess kurtosis, we can see from 

Table 1 that the three series have positive kurtosis, indicative of heavy tails. This is 

expected since the three series are (exchange rate) returns, which are typically 

characterized by leptokurtic distributions. As such, using a normal distribution may 

not be adequate. Also, the three series are skewed. The deviation from the normal 

distribution in kurtosis and skewness is supported by the Jarque-Bera normality test in 

that under the methodological specifications, results show 

 Reject, the null of normality in all three variables‟ residuals. 

The normality assumption is thus strongly questionable on all three accounts (  ). 

Although, these results do not deviate much from what is reported in the literature on 

(time series) return data, as stated earlier, applying the normal distribution to the data, 

given our results, could (severely) underestimate the frequency and magnitude of 

events.  

Panel (e) in Figures 1, 2, and 3, illustrate the distribution of residuals for the daily log 

returns by a red-dashed line and a histogram. Although, the distributions for all three 

variables are not abnormally different to the well-known bell-shaped normal, or 

Gaussian if you like, distribution, they are sufficiently different in form as per above, 

in that they are both taller and slimmer in body compared to the Gaussian distribution. 

The blue line is the normal distribution based on the sample mean and standard 



33 

 

deviation. The JB statistics and excess kurtosis together with the visual inspection of 

the three distributions, suggest that the Student‟s t distribution could be applicable
37

.  

Table 2 provides the measurement of co-movement between the dependent variables 

using the Pearson correlation method. Please note that the calculations are the 

pairwise computations. Statistics that might be noticeable at first glance is the relative 

high correlation between dlnok and dleur, whilst dlyen has a relative lower relation to 

both dlnok and dleur. 

 

5.2  Results for the Mean Equation 

This section relates to the analysis and model description of the mean equation. 

5.2.1 Visual Inspection 

Panel (a) in figures 1,2, and 3, show the nominal raw exchange rate levels for 

currency pairs 
   

   
, 

   

   
, and 

   

   
, respectively. The three nominal series resemble 

characteristics typical of a random walk process
38

. Also, a closer inspection of 
   

   
 

may lead to the suspicion of the series exhibiting some sort of upward “trend” such as 

a stochastic trend, since over the sample period it looks like it grows more compared 

to for instance series 
   

   
. This might suggest 

   

   
 could be a random walk with drift. 

None of the series seem to revert to a long run mean. 

Panel (b) in figures 1,2 and 3 show the graphical composition of the dependent 

variable for each currency pairs. From a visual point of view, the three series appear 

to be stationary as both the mean and variation around the mean seem to be relative 

                                                 
37

 Please note as per the methodology earlier that Student‟s t will only be utilized during the 

GARCH(1,1)  estimation since the ARIMA Procedure of SAS does not have this option. As such the 

next section relating to the mean equation is under the normality assumption. 

38
 The ACF‟s and PACF‟s of the nominal exchange rate levels have been included in Appendix 2, 

where figures A1-1, A1-2, and A1-3, strongly support the suspicion of the levels series being random 

walk, from a visual point of view that is. 
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constant. As such, there does not seem to be any structural brakes in the three series 

either. Also, although some skeewness is expected, there should not be any extreme or 

abnormal tendency either way as it looks like there may roughly be as many points 

above as below the mean. As such, the data for the three currency pairs are likely to 

form bell-shaped symmetric-like distributions similar to a normal distribution, but 

with a higher concentration around the mean and with more outliers. 

Following the Box-Jenkins methodology as per above, the (sample) ACF plot in panel 

(c), figures 1, 2, and 3, for the change in log returns for the three currency pairs, all 

show that the autocorrelations decrease rapidly an hover around zero, and may as such 

support the suspicion that the log return data for all three time series are stationary 

since these are typical properties of a white noise random process. The PACF plots in 

panels (d) figures 1, 2 and 3, have similar properties to the ACF plots, further 

strengthening the suspicion of stationarity in the three log return series. Also, since all 

three ACF‟s and PACF‟s show quadratic decay from the current observation (lag 0) 

with no obvious sufficiently large visual spikes in other autocorrelations in either 

direction (+/-), the suspicion of stationarity may extend to include a stationary process 

due an ARMA(0,0) model, or a pure random process if you like, as discussed in the 

methodology section. This would typically look like, 

             (5.1) 

However, although a visual inspection is of great help it also has clear limitations, and 

in order to describe the data with greater certitude formal testing and results are 

incorporated as part of the wider analysis.  

 

5.2.1 Formal Test of dlnok  

Although a visual inspection of the three series gave strong indication that the models 

could be pure random processes such as (5.1), the suspicion need not only be weighed 

against results from empirical data, but it could also be beneficial to gain some insight 

into the dynamics of a series since in many cases empirical data deduction will, at 
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least in the preliminary stages, not be a clear-cut binominal assessment with one 

correct answer in relations to some real phenomenon. 

As an obvious first candidate is, nonetheless, the construction of an ARMA(0,0) 

model, which is shown in the second column of Table 3. Under the (methodological) 

specifications results show: 

 Fail to reject the null hypothesis of the intercept not being significantly 

different from zero. 

 Fail to reject the null hypothesis of white noise. 

As such, these results are informative of an intercept that may not add much to the 

model, and a LB-Q statistic that indicate that the ARMA(0,0) model may „fit‟ the data 

well, although it is noted that LB-Q(48) statistic is significant at the 5% level. 

However, from an overall perspective, including the visual inspection, it may be safe 

to suggest that the ARMA(0,0) model is likely to be a white noise process. This could 

conclude the mean selection process, but since a white noise process does not 

necessarily exclude another white noise by default, other ARMA(p,q) models are 

constructed and tested to assess the overall fit of competing models. 

Additional models ARMA(1,0), ARMA(0,1), ARMA(1,1), ARMA(1,1), ARMA(2,0), 

ARMA(0,2), and ARMA((2),(2)), are constructed and presented in Table 3, column 3 

to 5; and Table 4, columns 2 to 5, respectively. As per results for ARMA(0,0), above, 

results show that all the seven models fail to reject the null of the intercept not being 

significantly different from zero: the low t-values shift between -0.23 and -0.24 and 

there are similar tendencies in the p-values. Except from ARMA(1,1), which have an 

autoregressive (AR) and moving average (MA) term that are both only significant at 

the 10% level, none of the AR or MA terms in Table 3 are significantly different from 

zero. The LB-Q statistics for the models in Table 3, show that the statistics decrease 

as we move along from columns 2 to 5. A similar pattern is somewhat more difficult 

to detect in the p-values of the LB-Q statistics. Nevertheless, in the table, ARMA(0,0) 

have always lower LB-Q p-values than ARMA (1,1); and ARMA (1,0) have always 

lower LB-Q p-values than ARMA (0,1). As such, although adding a term may lower 

the LB-Q statistic and thus possibly increase the likelihood of white noise, an opposite 
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pattern can be detected in the SBC value. The patterns in Table 4 are maybe more 

complicated and ambiguous than for the models in Table 3. However, results show 

that except for the coefficients for an AR or MA of order 2, all estimated coefficients 

are not significantly different from zero. Also, the estimates that are significantly 

different from zero are all significant at the 1% level. Moreover, since ARMA(2,0) 

and ARMA(0,2) suggest that including the second lag is significant in relation to both 

AR and MA, this is (subsequently) combined in both ARMA(2,2) and 

ARMA((2),(2)). Although, ARMA(2,2) is consistent in relation to the insignificance 

of the AR and MA of orders 1, both ARMA(2,2) and ARMA((2),(2)) have increased 

significance for inclusion of the AR and MA of orders 2, compared to ARMA(2,0) 

and ARMA(0,2) even though the coefficients for the combined AR and MA of orders 

2 are close to 1(!). The AIC values for the models in Table 4 are all higher than any 

AIC values in Table 3, slightly favouring any model with a combined AR and MA of 

order 2. For the respective four LB-Q statistics, all values in Table 4 are lower than 

those in Table 3, and all p-values in Table 4 are less significant than any other p-value 

in Table 3. Another noticeable treat may be that ARMA((2),(2)) has a slight jump for 

the first two LB-Q statistics, before „settling‟ between the LB-Q values of 

ARMA(2,0) and ARMA(0,2) on one end, and ARMA(2,2) on the other end. Also, 

ARMA(2,2), which is the preferred AIC model, has the lowest value of any of the 

eight dlnok mean equation models of Tables 3 and 4 in terms of the LB-Q(6) statistic, 

nevertheless, although it may be expected that it also has a higher p-value to any other 

comparable value in Table 3, the noteworthy part may be that it has the lowest 

comparable p-value in Table 4. These two latter observations may not mean much, but 

put in a context where a relative higher LB-Q statistic is in general associated with a 

lower p-value, these results may be informative.  

The ARMA(p,q) models with the combined AR and MA of orders 2 are the preferred 

AIC models of any of the eight dlnok models in Tables 3 and 4. Nevertheless, the 

ambiguity of comparing the two models, where eliminating the first lags increases the 

AIC value whilst lowering the SBC value is worrying, especially since the 

coefficients for the second lags are significant and close to 1. In line with the theory 

that was discussed earlier in relation to a structural model, and given Enders‟ (2010) 

discussion that it may be overoptimistic to believe that stock return data may be 
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directly influenced by an event in the past whilst an intermediate event may not, it 

would make sense to focus on the first lags. However, since none of the coefficients 

of the first lag only models are not significantly different from zero these models are 

maybe not optimal. The ARMA(0,0) on the other hand is the preferred model by the 

large-sample superior and parsimonious SBC. Out of the four models in Table 3 the 

ARMA(0,0) is also the preferred AIC model. As such, it is believed that the 

ARMA(0,0) describes the dlnok process adequately. 

Please note that the intercept is kept thus far as there may be advantages in including 

this term in running the GARCH(1,1) model.   

 

5.2.2 Formal Test of dlyen 

As with variable dlnok, an obvious first candidate for dlyen is the ARMA(0,0). Three 

more models are constructed: ARMA(1,0), ARMA(0,1), and ARMA(1,1). No 

additional models are formally presented, re. Table 4 for dlnok, as much of the same 

discussion concerning Table 4 is applicable to comparable models for dlyen. Under 

the (methodological) specifications results show: 

 Reject the null hypothesis of the intercept not being significantly different 

from zero. 

 Fail to reject the null hypothesis of white noise. 

These results are informative in that the mean value is believed to aid in explaining 

the series process at the 5% level of significance for all four models. Also, the white 

noise hypothesis cannot be rejected at the 1% level of significance for any of the 

models. The latter statistics are noteworthy, but this may have to be seen in relation to 

the ACF and PACF in Figure 2, panels (c) and (d), suggesting white noise overall. 

None of the lag coefficients of any AR or MA order are significantly different from 

zero. As such, the AIC‟s preferred, but indecisive relation to the ARMA(1,0) and 

ARMA(0,1) may be of less importance. The SBC clearly picks ARMA(0,0) over any 

other model. The overall values of the AIC and SBC combined supports this too.    
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5.2.3 Formal Test of dleur  

Four models are constructed for dleur as per Table 6: ARMA(0,0), ARMA(1,0), 

ARMA(0,1), and ARMA(1,1). As with dlyen no additional models are formally 

presented as much of the same discussion concerning Table 4 in relation to dlnok is 

applicable to comparable models for dleur. Based on the (methodological) 

specifications results show: 

 Fail to reject null hypothesis of the intercept not being significantly different 

from zero. 

 Fail to reject the null hypothesis of white noise. 

These results suggest that the mean (intercept) does not add much to the model in any 

of the four models in Table 6. While we cannot reject white noise at the 5% 

significance level for ARMA(0,0), the same applies to models ARMA(1,0), 

ARMA(0,1), and ARMA(1,1) at the 1% level of significance. As with dlyen, none of 

the dleur lag coefficients of any AR or MA order are significantly different from zero. 

This may explain that both AIC and SBC suggest ARMA(0,0) over any other model 

in the table. 

Similar to with dlnok the intercept is kept as the there may be advantages in including 

it in the GARCH(1,1) regression. 

 

5.3 ARCH Effects 

Table 7 shows the LM statistics for lags 2, 4, 8 and 12 for variables dlnok, dlyen and 

dleur. Under the (methodological) specifications results show: 

 Reject the null hypothesis of homoscedasticity in favour of the alternative 

hypothesis of heteroscedasticity. 
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This applies to all three variables since p< 0.0001 up to lag 12 for all three variables
39

. 

 

5.4 GARCH(1,1) Estimates with Normally Distributed Residuals 

5.4.1 GARCH(1,1) estimate for dlnok (Normal Dist.) 

The results from the GARCH(1,1) estimation for dlnok in the second column of Table 

8, show that that the intercept of the mean equation add little or no value to the model 

as it is not significantly different from zero. This is maybe not the biggest of surprises 

given we had similar results under the ARIMA mean specification section. The 

coefficients for the conditional variance estimate, on the other hand, are all highly 

significant. As such, a GARCH(1,1) estimate is run without the intercept term in the 

mean equation. Results are shown in the second column in of Table 9. If we compare 

both models, with and without an intercept, it may appear that the differences are 

minuscule. However, removing the intercept increase the significance of all estimated 

parameters of the conditional variance model. This is also reflected in lower AIC and 

SBC values, suggesting a GARCH(1,1) model without an intercept in the mean 

equation is a better description of the series. Formally, the GARCH(1,1) model for 

dlnok  with normally distributed residuals is, 

          (5.2) 

and 

                        
             (5.3) 

with   = 0.9958. 

  

                                                 
39

 Please note that as long as a tests may suggest ARCH effects present in the data, GARCH may also 

be considered; since the LM statistic is significant for all 12 orders this may further suggest using the 

more parsimonious GARCH model (p>0) instead of an ARCH model.  
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5.4.2 GARCH(1,1) Estimate for dlyen (Normal Dist.) 

Column three of Table 8 show the results for the GARCH(1,1) estimation for dlyen. 

As with dlnok, the GARCH(1,1) estimate show that, under the (methodological) 

specifications, both the AR and MA components of the heteroscedastic variance are 

significantly different from zero. The intercept of the mean equation, however, is only 

significant at the 10% level. Since this may be a relative high number in this respect, a 

new regression with an omitted intercept is applied to see how the AIC and SBC may 

react. The results are shown in the third column of Table 9. The new model generate  

increased t-values for all GARCH terms. Although AIC increase with 0.548, SBC 

lowers with 6.59. The increased t-values and improved SBC suggest a model without 

intercept is a better description of the time series process. Formally, the GARCH(1,1) 

model for dlyen with normally distributed residuals is, 

            (5.4) 

and 

                       
               (5.5) 

with   = 1.0003.  

 

5.4.3 GARCH(1,1) Estimate for dleur (Normal Dist.) 

The dleur GARCH(1,1) estimation results are shown in the fourth column of Table 8. 

As with the GARCH(1,1) for dlnok, and to some extent dlyen, the intercept term of 

the mean equation adds little value as it is not significantly different from zero. A new 

GARCH(1,1) model is applied without this term and the results for this model are 

shown in the fourth column of Table 9. There is little difference in the GARCH 

coefficient. Nevertheless, contrary to what has been the case for GARCH(1,1) models 

for dlnok and dlyen, where all t-values increased as a result of omitting the intercept 

term in the mean equation, the GARCH(1,1) models for dleur are not as clear cut. 

Both the intercept and MA terms of the GARCH(1,1) have a slight reduction in their 

t-values, compared to the model in Table 8. However, although the AIC increases 
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slightly, the SBC value improves substantially to suggest the GARCH(1,1) model 

without the mean intercept term is the better description of the series. Formally, the 

model with normally distributed residuals is,  

          (5.6) 

and 

                        
              (5.7) 

with   = 0.9976.  

 

5.5 GARCH(1,1) Estimates with Student t Distributed Residuals 

5.5.1 GARCH(1,1) Estimate for dlnok (Student’s t Dist.) 

The results for the GARCH(1,1) estimates with the Student t distributed residuals for 

dlnok, are similar to the estimations with the normality assumption in Table 8 in that 

the null hypothesis of the mean is rejected as it is not significantly different from zero. 

Also, the GARCH terms are all significant. The second column of 11 thus show the 

GARCH estimation without the intercept in the mean equation.  All GARCH terms 

are significant as before, and both AIC and SBC suggest using the model without the 

intercept in the mean equation just as was found for the dlnok GARCH estimation 

with the normality assumption. Formally, the GARCH(1,1) model for dlnok Student t 

distributed residuals  is, 

          (5.2) 

and 

                        
              (5.3) 

with   = 1.0002.  
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5.5.2 GARCH(1,1) Estimate for dlyen (Student’s t Dist.) 

Column three of Table 10 show the results for the GARCH(1,1) estimation with a 

Student t distribution for dlyen. The intercept of the mean equation is as usual is not 

statistically different from zero and could be suppressed. However, the intercept of the 

GARCH term,   , is also not statistically different from zero, which was not found in 

the GARCH estimates under the normality assumption. The two other GARCH terms 

are significant. In the third column of Table 11 the results of the GARCH(1,1) 

regression with Student t residuals and no intercept in the mean equation are shown. 

While    and    are significant, we cannot reject the null hypothesis of the GARCH 

intercept,   , although the significance has almost reduced with half. Both AIC and 

SBS suggest the model without the intercept is the better model. Formally, the 

GARCH(1,1) model for dlyen is, 

           (5.4) 

and 

                        
               (5.5) 

with   = 1.063.  

 

5.5.3 GARCH(1,1) Estimate for dleur (Student’s t Dist.) 

Estimation results for the dleur GARCH(1,1) with a Student t distribution are shown 

in the fourth column of Table 10. As before the intercept in the mean equation adds 

little value as it is not significantly different from zero. All GARCH terms are 

significant, although it is noted that    is only significant at the 10% level. A new 

GARCH(1,1) model is constructed without the mean equation intercept term and the 

results are shown in the fourth column of Table 11. There is little difference in the 

GARCH coefficients. Also,    remains significant at the 10% level, whilst the other 

GARCH terms are statistically significant from zero. However, the AIC and SBC 

values are both lower in the model with the intercept term present in the mean 

equation. This could raise ambiguity in that the first regression results suggest 
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„removing‟ the intercept of the mean equation, whilst the second regression results 

suggest that „removing‟ the intercept term in the mean equation does not improve the 

model. Although, AIC does not change much it is the larger increase in the SBC that 

is of particular interest in the second regression. Also, although    remains significant 

at the 10% level, as noted above, the significance level for the coefficient decreases in 

the second regression, albeit not the largest of changes. In the dlyen GARCH 

comparison between the results in Table 8 and Table 9 the decrease in the SBC value 

was ultimately the deciding factor. By the same token we should choose the dlyen 

model in Table 10 over the model in Table 11. However, looking back at the other 

results for dlyen, and for the other variables, it is difficult to assert that the model 

should have an intercept in the mean equation. But, as using the Student‟s t 

distribution should give some form of advantage in relation to accuracy given the 

heavy tails that were found in the data, the methodological specifications suggest the 

model with the mean equation
40

,  

                   (5.6) 

and 

                        
              (5.7) 

with   = 0.9971.  
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 Please note that „removing‟ the GARCH intercept,   , is not possible in the AUTOREG Procedure 

of SAS 9.2, unless the Integrated GARCH is applied explicitly. Although, it could be interesting to go 

down that route, it will not be pursued further in this study.  
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6 Conclusion 

6.1 Summary and Conclusion 

The main purpose of this study was to examine how research on risk and uncertainty 

could be informative of risk management in an applied form for highly volatile data. 

This was a particular objective given the ex post 2007/2008 economic and financial 

trauma that hit both governments and people across numerous countries.  

The log normal return of three distinct exchange rates was used to construct 

GARCH(1,1) models with two different distributions i) normally distributed residuals, 

and ii)  Student‟s t distributed residuals. While the GARCH(1,1) model was superior 

to any ARMA(p,q), rejecting the hypothesis of constant variance, the fit criteria also 

suggests that all comparable
41

 GARCH(1,1) models that were constructed using 

Student‟s t distribution were superior over the GARCH(1,1) models using the normal 

distribution. This supports the idea that assuming normality may not be optimal in 

modeling market returns, given the heavy tails that is characteristic of such data. Also, 

the difference in the estimates of the GARCH(1,1) model can naturally transfer onto 

the value of persistence, which was different for all comparable models. For example, 

using short mean-reversion as a selection criteria among the final six GARCH(1,1) 

models, would indicate that 
   

   
 is the preferred choice under the normal distribution, 

while 
   

   
 is the preferred choice under Student‟s t distribution. The differences may 

seem small, but they are nonetheless differences that can have severe implications for 

decision-making under uncertainty that is dependent on the accuracy of such estimates 

to make informative decisions. This applies as much to the human side of things as 

any algorithmic system that can generate executions in the thousands per second, 

since the basis for decision making in areas such as valuation or forecasting, can be 

flawed. Research suggests that diversification through a fractional option could be a 

solution, but as much as this may be efficient in many ways, it might not always be 

available. Also, relying too much on an overconfident dogma of a mean-variance 

framework, where market returns are assumed to be independently and normally 

                                                 

41
 I.e. Final dlnok (normal) GARCH(1,1) vs. Final dlnok (Student t) GARCH(1,1), etc. 
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distributed, can potentially in any case generate fractional solutions that are 

themselves flawed. In which case incorporating a behavioral approach to market 

returns is a possible solution. As such, although extreme events are rare and difficult 

to predict, there is no reason, with the progress and innovation that is representative of 

today‟s statistical software, that behavioural economics should not get wider 

appreciation. This could aid in creating the confidence and consensus in risk 

management that financial markets, at times, so badly need. 

6.2 Extensions and Final Comments 

While the ever extending family of ARCH and GARCH models offer features that 

would be interesting to include in an extended study, other possible extensions could 

include forecasting and a linear and non-linear measure of correlation between the 

exchange rates. Also noted is the restriction in the Box-Jenkins methodology of the 

SAS ARIMA Procedure, which did not have an option to apply the Student‟s t 

distribution, like in the GARCH estimation with the AUTOREG Procedure. A final 

observation that might be worthwhile to mention, is the evident increase in level of 

sophistication that was experienced in the brief move from SAS 9.2 to SAS 9.3, in 

conjunction with the LR statistics. Similar progress is currently underway in 

academia, challenging earlier research, and to some extent, general conviction. If 

there can be better models that describe real phenomenon better and produce more 

accurate estimates for the greater good, then future developments are promising. 
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List of Tables 

Table 1: Descriptive statistics 

 dlnok dlyen dleur 

N 9292 9292 3266 

Min -0.0681766 -0.0355715 -0.0300310 

Max 0.0644395 0.0563021 0.0462079 

Mean -0.000015994 0.000146753 0.00003257 

Median 0 0 0 

Variance 0.000045725 0.000044354 0.000043392 

Skewness -0.3096940 0.4850068 0.1175524 

Kurtosis
42
 7.2707166 4.5539417 2.0896020 

JB Normality 

Test 

20589.7507 8382.4763 598.8546 

p-value <[0.0001]*** <[0.0001]*** <[0.0001]*** 

Notes: Numbers in parentheses and square brackets are t-statistics and p-values, respectively. (*) 

Significant at 10%; (**) significant at 5%; (*) significant at 1%. All values computed using SAS 

software. 

 

 

Table 2: Pearson correlation matrix; dlnok, dlyen, dleur. 

 dlnok dlyen dleur 

dlnok 1.00000 0.034637  

  [<.0001]***  

dlyen 0.34637 1.00000  

 [<.0001]***   

dleur 0.81622 0.25739 1.00000 

 [<.0001]*** [<.0001]***  

Notes: Numbers in square brackets are p-values. (*) Significant at 10%; (**) significant at 5%; (*) 

significant at 1%. All values computed using SAS software. 

 

 

 

 

                                                 
42

 Please be advised that SAS software reports the kurtosis value as excess kurtosis as 3 is subtracted 

from the output displayed, e.g. for variable dlnok the kurtosis is reported as 7.267, which is the excess 

kurtosis, as oppose to the real sample kurtosis which is: 7.267+3 = 10.267. 
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Table 3: dlnok for ARMA(0,0), ARMA(1,0), ARMA(0,1), and ARMA(1,1). 

 p=0 

q=0 

p=1 

q=0 

p=0 

q=1 

p=1 

q=1 

  -0.0000160 -0.0000160 -0.0000160 -0.0000160 

 (-0.23) (-0.23) (-0.23) (-0.24) 

 [0.8197] [0.8177] [0.8175] [0.8122] 

AR1,1  -0.01065  0.56848 

  (-1.03)  (1.79) 

  [0.3049]  [0.0730]* 

MA1,1   0.01127 0.58542 

   (1.09) (1.88) 

   [0.2773] [0.0608]* 

AIC -66483.1 -66482.2 -66482.2 -66483 

SBC -66476 -66467.9 -66467.9 -66461.6 

LB-Q(6) 11.76 10.72 10.65 7.51 

 [0.0676]* [0.0572]* [0.0587]* [0.1115] 

LB-Q(12) 15.41 14.33 14.26 11.34 

 [0.2199] [0.2154] [0.219] [0.3319] 

LB-Q(24) 34.08 33.11 33.04 29.76 

 [0.0832]* [0.0793]* [0.0804]* [0.1244] 

LB-Q(48) 70.65 69.76 69.70 66.50 

 [0.0183]** [0.0172]** [0.0174]** [0.0256]** 

Notes: Numbers in parentheses and square brackets are t-statistics and p-values, respectively. (*) 

Significant at 10%; (**) significant at 5%; (*) significant at 1%. All values computed using SAS 

software. 
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Table 4: dlnok for ARMA(2,0), ARMA(0,2), ARMA(2,2), and ARMA((2),(2)). 

 
p=2 

q=0 

p=0 

q=2 

p=2 

q=2 

p=(2) 

q=(2) 

  -0.0000160 -0.0000160 -0.0000160 -0.0000160 

 (-0.24) (-0.24) (-0.23) (-0.23) 

 [0.8123] [0.8122] [0.8185] [0.8184] 

AR1,1 -0.01095  -0.03984  

 (-1.06)  (-1.30)  

 [0.2913]  [0.1950]  

AR1,2 -0.02812  -0.94585 -0.89162 

 (-2.71)  (-32.04) (-13.54) 

 [0.0067]***  [<.0001]*** [<.0001]*** 

MA1,1  0.01072 -0.03573  

  (1.03) (-1.05)  

  [0.3012] [0.2924]  

MA1,2  0.02744 -0.93386 -0.87688 

  (2.65) (-28.60) (-12.50) 

  [0.0082]*** [<.0001]*** [<.0001]*** 

AIC -66487.5 -66487.3 -66489.1 -66488.9 

SBC -66466.1 -66465.9 -66453.4 -66467.5 

LB-Q(6) 3.03 3.21 2.92 3.96 

 [0.5524] [0.524] [0.2319] [0.411] 

LB-Q(12) 6.79 6.96 7.87 8.44 

 [0.7455] [0.7294] [0.4463] [0.586] 

LB-Q(24) 24.48 24.67 20.88 22.99 

 [0.3223] [0.313] [0.4042] [0.4021] 

LB-Q(48) 61.08 61.28 54.15 59.36 

 [0.0675]* [0.0653]* [0.1405] [0.0892]* 

Notes: Numbers in parentheses and square brackets are t-statistics and p-values, respectively. (*) 

Significant at 10%; (**) significant at 5%; (*) significant at 1%. All values are computed using SAS 

software. 
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Table 5: dlyen for ARMA(0,0), ARMA(1,0), ARMA(0,1), and ARMA(1,1). 

 p=0 

q=0 

p=1 

q=0 

p=0 

q=1 

p=1 

q=1 

  0.0001468 0.0001468 0.0001468 0.0001468 

 (2.12) (2.09) (2.09) (2.08) 

 [0.0337]** [0.0365]** [0.0364]** [0.0377]** 

AR1,1  0.01559  0.29838 

  (1.50)  (0.48) 

  [0.1329]  [0.6293] 

MA1,1   -0.01542 0.28272 

   (-1.49) (0.46) 

   [0.1374] [0.6489] 

AIC -66766 -66766.2 -66766.2 -66764.5 

SBC -66758.8 -66751.9 -66751.9 -66743 

LB-Q(6) 2.81 0.55 0.57 0.31 

 [0.832] [0.9903] [0.9893] [0.9893] 

LB-Q(12) 22.89 20.19 20.23 19.79 

 [0.0287]** [0.0428]** [0.0423]** [0.0313]** 

LB-Q(24) 37.03 34.36 34.39 34.02 

 [0.0435]** [0.0602]* [0.0597]* [0.049]** 

LB-Q(48) 73.04 69.93 69.97 69.54 

 [0.0114]** [0.0166]** [0.0165]** [0.0141]** 

Notes: Numbers in parentheses and square brackets are t-statistics and p-values, respectively. (*) 

Significant at 10%; (**) significant at 5%; (*) significant at 1%. All values are computed using SAS 

software. 
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Table 6: dleur for ARMA(0,0), ARMA(1,0), ARMA(0,1), and ARMA(1,1). 

 p=0 

q=0 

p=1 

q=0 

p=0 

q=1 

p=1 

q=1 

  0.00003236 0.00003232 0.00003232 0.00003231 

 (0.28) (0.28) (0.28) (0.28) 

 [0.7789] [0.7824] [0.7825] [0.7822] 

AR1,1  0.01498  -0.26624 

  (0.86)  (-0.28) 

  [0.3921]  [0.7784] 

MA1,1   -0.01549 -0.28374 

   (-0.89) (-0.30) 

   [0.3761] [0.7631] 

AIC -23538.2 -23536.9 -23537 -23535.3 

SBC -23532.1 -23524.8 -23524.8 -23517 

LB-Q(6) 11.81 11.43 11.42 11.08 

 [0.0663]* [0.0435]** [0.0437]** [0.0257]** 

LB-Q(12) 17.96 17.55 17.53 17.12 

 [0.117] [0.0925]* [0.0931]* [0.0717]* 

LB-Q(24) 25.58 25.12 25.10 24.67 

 [0.375] [0.3441] [0.3453] [0.3132] 

LB-Q(48) 47.68 47.46 47.44 46.98 

 [0.4857] [0.4539] [0.4546] [0.4322] 

Notes: Numbers in parentheses and square brackets are t-statistics and p-values, respectively. (*) 

Significant at 10%; (**) significant at 5%; (*) significant at 1%. All values are computed using SAS 

software. 

 

 

Table 7: LM archtest; dlnok, dlyen, dleur. 

 dlnok dlyen dleur 

LM ARCH 1-2 268.5815 355.7360 75.3465 

 [<.0001]*** [<.0001]*** [<.0001]*** 

LM ARCH 1-4 342.8571 388.9588 111.8198 

 [<.0001]*** [<.0001]*** [<.0001]*** 

LM ARCH 1-8 464.6498 492.1478 174.4662 

 [<.0001]*** [<.0001]*** [<.0001]*** 

LM ARCH 1-12 576.8735 541.7186 227.4305 

 [<.0001]*** [<.0001]*** [<.0001]*** 

Notes: Numbers in square brackets are p-values. (*) Significant at 10%; (**) significant at 5%; (*) 

significant at 1%. All values are computed using SAS software. 
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Table 8: GARCH(1,1); dlnok, dlyen, dleur (normal distr.). 

 dlnok dlyen dleur 

  -0.000009416 0.0000877 0.000150 

 (-0.17) (1.65) (1.51) 

 [0.8637] [0.0999]* [0.1317] 

   0.00000031845 0.000000093053 0.0000001868 

 (16.05) (8.99) (2.30) 

 [<.0001]*** [<.0001]*** [0.0213]** 

   0.0658 0.0436 0.0285 

 (33.73) (27.88) (7.89) 

 [<.0001]*** [<.0001]*** [<.0001]*** 

   0.9300 0.9567 0.9691 

 (589.88) (27.88) (261.37) 

 [<.0001]*** [<.0001]*** [<.0001]*** 

AIC -68645.352 -68228.6 -23881.017 

SBC -68616.804 -68200.052 -23856.652 

JB Normality 6493.1718 5119.2215 60.4823 

 [<.0001]*** [<.0001]*** [<.0001]*** 

  0.9958 1.0003 0.9976 

LR 0 2168.3 1468.6 348.81 

 [<.0001]*** [<.0001]*** [<.0001]*** 

Notes: Numbers in parentheses and square brackets are t-statistics and p-values, respectively. (*) 

Significant at 10%; (**) significant at 5%; (*) significant at 1%. All values are computed using SAS 

software. 
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Table 9: GARCH(1,1); dlnok, dlyen, dleur (normal distr.). 

 dlnok dlyen dleur 

  - - - 

    

    

   0.00000031855 0.000000094756 0.0000001906 

 (16.07) (9.15) (2.29) 

 [<.0001]*** [<.0001]*** [0.0220]** 

   0.0658 0.0440 0.0283 

 (33.76) (27.96) (7.85) 

 [<.0001]*** [<.0001]*** [<.0001]*** 

   0.9300 0.9563 0.9693 

 (591.99) (27.96) (261.74) 

 [<.0001]*** [<.0001]*** [<.0001]*** 

AIC -68647.322 -68228.052 -23880.883 

SBC -68625.911 -68206.642 -23862.609 

JB Normality 6505.5406 5240.4649 60.4823 

 [<.0001]*** [<.0001]*** [<.0001]*** 

  0.9958 1.0003 0.9976 

LR 2168.3 1470.6 346.75 

 [<.0001]*** [<.0001]*** [<.0001]*** 

Notes: Numbers in parentheses and square brackets are t-statistics and p-values, respectively. (*) 

Significant at 10%; (**) significant at 5%; (*) significant at 1%. All values are computed using SAS 

software. 
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Table 10: GARCH(1,1); dlnok, dlyen, dleur (Student’s t distr.). 

 dlnok dlyen dleur 

  0.0000125 -0.000029 0.000147 

 (0.25) (-0.60) (1.47) 

 [0.7999] [0.5452] [0.1420] 

   0.00000024088 0.000000010537 0.00000014405 

 (4.58) (0.83) (1.90) 

 [<.0001]*** [0.4060] [0.0569]* 

   0.0856 0.0537 0.0302 

 (13.76) (12.45) (5.79) 

 [<.0001]*** [<.0001]*** [<.0001]*** 

   0.9164 0.9527 0.9669 

 (170.85) (291.88) (170.79) 

 [<.0001]*** [<.0001]*** [<.0001]*** 

TDFI 0.1804 0.2369 0.0920 

 (17.72) (20.36) (5.28) 

 [<.0001]*** [<.0001]*** [<.0001]*** 

AIC -79946.596 -79855.751 -27658.594 

SBC -79910.911 -79827.203 -27658.576 

JB Normality  9671.9777 6798.6034 60.5072 

 [<.0001]*** [<.0001]*** [<.0001]*** 

  1.002 1.0064 0.9971 

LR 1293.1 1123.4 230.64 

 [<.0001]*** [<.0001]*** [<.0001]*** 

Notes: Numbers in parentheses and square brackets are t-statistics and p-values, respectively. TDFI is 

the inverse of the estimated degrees of freedom for Student t. (*) Significant at 10%; (**) significant at 

5%; (*) significant at 1%. All values are computed using SAS software.  
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Table 11: GARCH(1,1); dlnok, dlyen, dleur (Student’s t distr.). 

 dlnok dlyen dleur 

  - - - 

    

    

   0.00000024073 0.000000016887 0.00000014627 

 (4.58) (1.24) (1.91) 

 [<.0001]*** [0.2163] [0.0564]* 

   0.0856 0.0541 0.0300 

 (13.76) (12.39) (5.76) 

 [<.0001]*** [<.0001]*** [<.0001]*** 

   0.9164 0.9522 0.9671 

 (170.88) (286.82) (170.98) 

 [<.0001]*** [<.0001]*** [<.0001]*** 

TDFI 0.1803 0.2365 0.0918 

 (17.72) (20.32) (5.31) 

 [<.0001]*** [<.0001]*** [<.0001]*** 

AIC -79948.530 -79855.449 -27658.480 

SBC -79919.982 -79834.038 -27634.115 

JB Normality 9657.9477 6527.8794 60.4823 

 [<.0001]*** [<.0001]*** [<.0001]*** 

  1.002 1.0063 0.9971 

LR 1293.7 1123.2 228.75 

 [<.0001]*** [<.0001]*** [<.0001]*** 

Notes: Numbers in parentheses and square brackets are t-statistics and p-values, respectively. TDFI is 

the inverse of the estimated degrees of freedom for Student t. (*) Significant at 10%; (**) significant at 

5%; (*) significant at 1%. All values are computed using SAS software.  
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List of Figures 

Figure 1: USD/NOK, dlnok; ACF, PACF, distribution.  

  

Panel (a)      Panel (b) 

  

  

Panel (c)      Panel (d) 

 

 

Panel (e)        
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Figure 2: USD/YEN, dlyen; ACF, PACF, distribution.    

   

 

  

Panel (a)      Panel (b) 

 

  

Panel (c)      Panel (d) 

 

 

Panel (e)        
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Figure 3: USD/EUR, dleur, ACF, PACF, distribution. 

  

Panel (a)      Panel (b) 

 

  

Panel (c)      Panel (d) 

 

 

Panel (e)        
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Apendix 1 

Figure A1-1: ACF nok and PACF nok. 

  

Panel (a)      Panel (b) 

Figure A1-2: ACF yen and PACF yen. 

  

Panel (a)      Panel (b) 

Figure A1-3: ACF eur and PACF eur. 

  

Panel (a)      Panel (b) 
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Apendix 2 

Table A2-1: For the interested reader. This is about 1/3 of the amount of SAS 

programming commands that were used to generate the results manually. Further 

programming is available upon request. SAS 9.2 was used for all results in its entirety, 

except for the LR tests which were conducted using SAS 9.3. 

 

proc import out=fx 

datafile="C:\Users\Eduardo\Desktop\UiS MOA\4th semester\FX" 

dbms=Excel 

replace; 

getnames=yes; 

run; 

proc print; 

run; 

 

data fx; 

set fx; 

label  

  nok="Raw level USD/NOK" 

  yen="Raw level USD/JPY"  

  eur="Raw level USD/EUR" 

  dlnok="Log return USD/NOK" 

  dlyen="Log return USD/JPY"  

  dleur="Log return USD/EUR"; 

run; 

 

proc contents data=fx; 

run; 

 

proc means data=fx; 

var dlnok dlyen dleur; 

run; 

proc corr data=fx; 

var dlnok dlyen dleur; 

run; 

ods graphics on; 

 

proc arima data=fx plots(only)=(series(acf pacf series) 

residual(normal smooth)); 

identify var=dlnok stationarity=(ADF) nlag=48; 

estimate; 

run; 

 

ods graphics off; 

 

proc arima data=fx; 

identify var=nok stationarity=(ADF) nlag=48; 

estimate; 

run; 

 

proc arima data=fx; 

identify var=dleur stationarity=(ADF) nlag=48; 

estimate q=1; 
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run; 

 

proc arima data=fx; 

identify var=dleur stationarity=(ADF) nlag=48; 

estimate p=1 q=1; 

run; 

 

proc arima data=fx; 

identify var=dleur stationarity=(ADF) nlag=48; 

estimate p=(2) q=(2); 

run; 

 

proc arima data=fx; 

identify var=dlyen stationarity=(ADF) nlag=48; 

estimate; 

run; 

 

ods graphics on; 

proc arima data=fx; 

identify var=dleur stationarity=(ADF) nlag=42; 

estimate; 

run; 

ods graphics off; 

 

proc autoreg data=fx; 

model dlnok=/archtest garch=(p=1,q=1) noint normal dwprob method=ml 

noint maxiter=1000; 

run; 

ods graphics off; 

 

proc arima data=fx; 

identify var=nok stationarity=(rw); 

estimate; 

run; 

 

ODS GRAPHICS on; 

 

proc autoreg data=fx; 

model dlnok=/archtest dwprob dw=48 garch=(p=1,q=1); 

run; 

 

ODS GRAPHICS off; 

 

proc autoreg data=fx; 

model dlnok=/ normal garch=(p=1,q=1); 

run; 

 

proc arima data=fx; 

identify var=nok; 

estimate p=1; 

run; 

identify var=nok; 

 

ods graphics on; 

proc univariate data =fx normal; 

  var dlnok; 

  histogram /normal kernel; 

run; 

 

PROC UNIVARIATE DATA=FX NORMAL PLOT;  
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VAR pdlnok;  

QQPLOT pdlnok /NORMAL(MU=EST SIGMA=EST COLOR=RED L=1);  

RUN; 

PROC UNIVARIATE DATA=FX NORMAL PLOTS;  

histogram; 

VAR pdlnok;  

RUN; 

 

title 'Series distributions'; 

ods graphics off; 

proc univariate data=fx noprint; 

   histogram dlnok / kernel(c = 0.25 

                             l = 1 20 2 34 

                             noprint); 

run; 

 

ODS GRAPHICS ON; 

PROC CAPABILITY DATA=fx NORMALTEST VARDEF=N;  

VAR dlnok;  

QQPLOT dlnok /NORMAL(MU=EST SIGMA=EST COLOR=RED L=1);  

PPPLOT dlnok /NORMAL(MU=EST SIGMA=EST COLOR=RED L=1);  

HISTOGRAM /NORMAL(COLOR=MAROON W=4) CFILL=BLUE CFRAME=LIGR KERNEL;  

INSET MEAN STD /CFILL=BLANK FORMAT=5.2 ;  

RUN; 

ODS GRAPHICS OFF; 

 

PROC MIXED DATA=FX METHOD=REML; 

MODEL pdlnok=/ S DDFM=SATTERTH CL INTERCEPT; 

RUN; 

 

data b; 

set a; 

mse=r-dlnok; 

MSE2=mse*mse; 

run; 

 

goptions reset=all; 

proc gplot data=b; 

plot mse2*time; 

run; 

quit; 

 

proc arima data=fx ; 

identify var=dlnok stationarity=(ADF) nlag=48; 

estimate  p=3 q=3 maxiter=400; 

run; 

ods graphics on; 

proc gplot data=fx; 

plot dlnok * date = 1 /; 

run; 

ods graphics off; 

 

ODS GRAPHICS ON; 

PROC SGPLOT; 

HISTOGRAM dlnok/showbins; 

density dlnok; 

density dlnok/type=kernel; 

title'Distribution of dlnok'; 

run; 

ODS GRAPHICS off; 
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ODS GRAPHICS ON; 

PROC REG DATA = fx PLOTS(maxpoints=10000) = (DIAGNOSTICS FITPLOT); 

MODEL dlnok = ; 

TITLE 'Results of Regression Analysis'; 

RUN; 

ODS GRAPHICS off; 

 

proc reg data=fx; 

model dlnok=/; 

run; 

 

proc ttest data=fx; 

var dlnok; 

run; 

 

DATA fx; 

dlnok= TINV(0.95,9); 

proc print; 

RUN; 

 

proc autoreg data=fx; 

model dlnok=/ normal; 

run; 

 

proc arima data=fx; 

identify var=nok; 

run; 

 

proc autoreg data=fx; 

model dlnok=/garch=(q=1,p=1); 

output predicted=a; 

run; 

 

proc gplot data=fx; 

symbol1 v=dot i=join; 

symbol2 v=none i=r; 

plot x*date=1 x *date= 2/overlay; 

run; 

 

proc autoreg data=fx; 

model x=date/nlag=2 archtest dwprob; 

output out=r r=xresid; 

run; 

 

ods html body='trend.htm'; 

proc autoreg data=fx; 

model x=date/ archtest dwprob; 

output out=r r=xresid; 

run; 

ods html close; 

 

data fx; 

set fx; 

xlag1=lag(x); 

xlag2=lag(xlag1); 

run; 

proc autoreg data=fx; 

model x=/garch=(q=1,p=1); 

run; 
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ods rtf file='temp.rtf'; 

   proc print data=sashelp.class; 

   run; 

   ods rtf close; 

 

ods rtf style=journal; 

proc autoreg data=fx; 

model x=date/ archtest dwprob; 

output out=r r=xresid; 

run; 

ods rtf close; 

 

data fx2; 

set fx2; 

x=log(x) 

y=log(y) 

z=log(z); 

run; 

 

ods graphics on; 

 

ods graphics on;   

 

title'Heteroscedastic Autocorrelated Time Series'; 

 

goptions reset=all; 

symbol1 i=rlclm; 

proc gplot data=a; 

plot1 r*time; 

run; 

quit; 

ods graphics off; 

 

ods graphics on; 

proc autoreg data=fx; 

   model dlnok =/ garch=(p=1,q=1) method=ml; 

 output out=a predicted=p residual=r ucl=u lcl=l alphacli=.01;       

run; 

 

ods graphics off; 

 

run; 

ods graphics off; 

proc arima data=fx; 

identify var=dlnok nlag=2000 outcov=data2; 

run; 

 

ods graphics on; 

PROC GPLOT DATA =data2; 

PLOT partcorr *lag / VREF =0; 

SYMBOL1 C=RED V=DOT H =0.5 I= JOIN; 

title2 'Autocorrelation Function dlnok'; 

RUN; 

ods graphics off; 

 

ods graphics on; 

proc autoreg data=fx; 

model dlnok=/archtest garch=(p=1,q=1) noint normal dwprob method=ml 

maxiter=1000; 

run; 
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ods graphics off; 

 

ods graphics on; 

proc autoreg data=fx; 

model dlnok=/archtest garch=(p=1,q=1, type=integ, noint)normal dwprob 

method=ml noint maxiter=1000; 

run; 

 

ods graphics off; 

 

data b; 

set a; 

mse=r-dlnok; 

MSE2=mse*mse; 

run; 

 

goptions reset=all; 

proc gplot data=b; 

plot mse2*time; 

run; 

quit; 

 

proc arima data=fx ; 

identify var=dlnok stationarity=(ADF) nlag=48; 

estimate  p=3 q=3 maxiter=400; 

run; 

ods graphics on; 

proc gplot data=fx; 

plot dlnok * date = 1 /; 

run; 

ods graphics off; 

 

ODS GRAPHICS ON; 

PROC SGPLOT; 

HISTOGRAM dlnok/showbins; 

density dlnok; 

density dlnok/type=kernel; 

title'Distribution of dlnok'; 

run; 

ODS GRAPHICS off; 

 

ODS GRAPHICS ON; 

PROC REG DATA = fx PLOTS(maxpoints=10000) = (DIAGNOSTICS FITPLOT); 

MODEL dlnok = ; 

TITLE 'Results of Regression Analysis'; 

RUN; 

ODS GRAPHICS off; 

 

proc arima data=fx; 

identify var=nok stationarity=(rw); 

estimate; 

run; 

ODS GRAPHICS on; 

 

proc autoreg data=fx; 

model dlnok=/archtest dwprob dw=48 garch=(p=1,q=1); 

run; 

 

ODS GRAPHICS off; 

proc arima data=fx; 
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identify var=nok; 

estimate p=1; 

run; 

identify var=nok; 

 

ods graphics on; 

proc univariate data =fx normal; 

  var dlnok; 

  histogram /normal kernel; 

run; 

 

PROC UNIVARIATE DATA=FX NORMAL PLOT;  

VAR pdlnok;  

QQPLOT pdlnok /NORMAL(MU=EST SIGMA=EST COLOR=RED L=1);  

RUN; 

PROC UNIVARIATE DATA=FX NORMAL PLOTS;  

histogram; 

VAR pdlnok;  

RUN; 

 

title 'Series distributions'; 

ods graphics off; 

proc univariate data=fx noprint; 

   histogram dlnok / kernel(c = 0.25 

                             l = 1 20 2 34 

                             noprint); 

run; 

 

ODS GRAPHICS ON; 

PROC CAPABILITY DATA=fx NORMALTEST VARDEF=N;  

VAR dlnok;  

QQPLOT dlnok /NORMAL(MU=EST SIGMA=EST COLOR=RED L=1);  

PPPLOT dlnok /NORMAL(MU=EST SIGMA=EST COLOR=RED L=1);  

HISTOGRAM /NORMAL(COLOR=MAROON W=4) CFILL=BLUE CFRAME=LIGR KERNEL;  

INSET MEAN STD /CFILL=BLANK FORMAT=5.2 ;  

RUN; 

ODS GRAPHICS OFF; 

 

PROC MIXED DATA=FX METHOD=REML; 

MODEL pdlnok=/ S DDFM=SATTERTH CL INTERCEPT; 

RUN; 

 

proc ttest data=fx; 

var dlnok; 

run; 

DATA fx; 

dlnok= TINV(0.95,9); 

proc print; 

RUN; 

 

proc autoreg data=fx; 

model dlnok=/garch=(q=1,p=1); 

output predicted=a; 

run; 

 

proc gplot data=fx; 

symbol1 v=dot i=join; 

symbol2 v=none i=r; 

plot x*date=1 x *date= 2/overlay; 

run; 
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proc autoreg data=fx; 

model x=date/nlag=2 archtest dwprob; 

output out=r r=xresid; 

run; 

 

ods html body='trend.htm'; 

proc autoreg data=fx; 

model x=date/ archtest dwprob; 

output out=r r=xresid; 

run; 

ods html close; 

 

data fx; 

set fx; 

xlag1=lag(x);da 

xlag2=lag(xlag1); 

run; 

proc autoreg data=fx; 

model x=/garch=(q=1,p=1); 

run; 

ods rtf file='temp.rtf'; 

   proc print data=sashelp.class; 

   run; 

   ods rtf close; 

 

ods rtf style=journal; 

proc autoreg data=fx; 

model x=date/ archtest dwprob; 

output out=r r=xresid; 

run; 

ods rtf close; 

 

data fx2; 

set fx2; 

x=log(x) 

y=log(y) 

z=log(z); 

run; 

  

data fx2; 

set fx2; 

label  x="USD/NOK" 

  y="USD/JPY"  

  z="USD/EUR" 

  lnx="ln(USD/NOK)" 

  lny="ln(USD/JPY)"  

  lnz="ln(USD/EUR)"; 

run; 

 

proc contents data=fx2; 

run; 

 

NORMALITY PLOT and TESTS: 

 

PROC UNIVARIATE DATA=FX NORMAL PLOT;  

VAR dlNOK;  

QQPLOT dlNOK /NORMAL(MU=EST SIGMA=EST COLOR=RED L=1);  

RUN; 

ods rtf style=journal; 
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PROC CAPABILITY DATA=fx NORMAL;  

VAR dleur;  

QQPLOT dleur /NORMAL(MU=EST SIGMA=EST COLOR=RED L=1);  

PPPLOT dleur /NORMAL(MU=EST SIGMA=EST COLOR=RED L=1);  

HISTOGRAM /NORMAL(COLOR=MAROON W=4) CFILL  = BLUE CFRAME = LIGR;  

INSET MEAN STD /CFILL=BLANK FORMAT=5.2 ;  

RUN; 

ods rtf close; 

 

proc autoreg data=fx; 

model dleur=/ normal; 

run; 

 

proc arima data=fx; 

identify var=nok; 

run; 

 

ods rtf style=journal; 

proc autoreg data=fx; 

model x=date/ archtest dwprob; 

output out=r r=xresid; 

run; 

ods rtf close; 

 

proc arima data=fx; 

identify var=nok(1); 

run; 

 

proc autoreg data=fx; 

model dlnok=/ garch=(p=1,q=1)noint dist=t maxiter=1000; 

test _ah_1+_gh_1=0/ type=LR; 

run; 

 

proc autoreg data=fx; 

model dlnok=/ garch=(p=1,q=1) dist=n maxiter=1000; 

test _ah_1+_gh_1=0/ type=LR; 

run; 

 

proc autoreg data=fx; 

model dlnok=/ garch=(p=1,q=1)noint dist=n maxiter=1000; 

test _ah_1+_gh_1=0/ type=LR; 

run; 

 

proc autoreg data=fx; 

model dlnok=/ garch=(p=1,q=1)noint dist=t maxiter=1000; 

test _ah_1+_gh_1=0/ type=LR; 

run; 

 

proc autoreg data=fx; 

model dlyen=/ garch=(p=1,q=1)noint dist=t maxiter=1000; 

test _ah_1+_gh_1=0/ type=LR; 

run; 


