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Abstract: The article offers five hypotheses for the inverse relationship 
between risk and price in terms of first and second derivatives, establishing 
ranges of convexity, linearity, concavity. Negative price means reimbursement. 
Examples of risks are malfunction of a product or service, finite loss, severe 
injury, death, due to a variety of causes. For products with a probability of 
malfunction (risk) the relationship is empirically shown to be convex in a risk 
versus price diagram when paying for the product, and concave when enjoying 
reimbursement. This also holds for ticket prices for travel with a probability of 
death (risk), with transition from convexity to concavity for very low risk 
levels. The convexity result for probability of death stands in contrast to 
Viscusi and Zeckhauser’s (2003) finding of a linear relationship. The value of 
life is estimated to be $1.02 × 109 by comparing subjects’ willingness to pay for 
risky travel, and is estimated to be $2.08 × 109 based on subjects’ requiring 
reimbursement $108 to accept travel with death probability 4.8%. These values 
of life are larger than those usually reported in the literature. A possible reason 
may be that young students may be reluctant to place a value on life, and thus 
request an uncommonly large monetary amount to accept a small probability of 
death. 
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1 Introduction 

The relationship between risk and price is inverse. This article provides five hypotheses 
to quantify the relationship in terms of first and second derivatives, establishing ranges of 
convexity, linearity, concavity. The hypotheses are tested empirically. Examples of risks 
are malfunction of a product or service, finite loss, severe injury, death, due to a variety 
of causes. Assume that a consumer or customer pays a price for a product. A product 
guaranteed to malfunction is worth nothing, a product guaranteed to function is worth a 
certain value, but the price for intermediate probabilities of malfunction cannot be 
determined on theoretical grounds. Such prices depend on consumers’ risk attitudes. If a 
product sells for a price with a finite probability of malfunction (risk), a higher price 
gives a lower risk, and a lower price gives a higher risk. A sufficiently high price may 
eliminate the risk, but it is also possible that an infinite price does not eliminate the risk. 
Conversely, zero price may guarantee malfunction, but the consumer may also require 
negative price interpreted as reimbursement for large risks. A sufficiently high 
reimbursement may be sufficient if the product is guaranteed to malfunction, but it is also 
possible that an infinite reimbursement is not sufficient if the probability of malfunction 
is too high. This article quantifies these relationships empirically. A price can be a 
monetary amount paid by an agent, but can be any cost incurred, such as work exerted, 
inconvenience, and lost time. The article quantifies empirically how respondents make 
tradeoffs between risk, price, and re reimbursement. 



We all carry out numerous tradeoffs on an hourly basis. Some of these require our 
explicit attention and extensive deliberation. Others have gradually worked their way into 
our habitual behaviour. Some have become so deeply entrenched that we rarely think of 
them as tradeoffs, and some we carry out unconsciously. This article focuses on those 
tradeoffs that not only require our explicit attention, but deep soul-searching for how we 
reconcile incompatible extreme concerns. We are forced to choose a price for 
malfunction or finite loss, and a value for human life due to a variety of different risks. 
We have to allocate investments to curb death from a variety of causes. 

Some may perceive such tradeoffs as choices between the plague and cholera. Some 
prefer to avoid making the tradeoffs, and some prefer to let others make the tradeoffs for 
them. Society has set up procedures to make some tradeoff choices easier for us, or to 
give the appearance that we don’t have to make the tradeoffs. Ticket prices for travel 
account for deep tradeoffs between risk and safety, driven by cultural tradition, political 
choices, profit motives where market forces play a role, etc. The consumer can 
sometimes but not always choose to refuse the travel, or can choose alternate travel. 
Time, price, and other constraints affect choices. Travel insurance is often offered. 
Purchase depends on price, marketing, consumer consciousness, etc. Again it is up to the 
consumer or individual to make the ultimate tradeoff. Whether each individual makes the 
tradeoff alone, or delegates the tradeoff to someone else, inevitably someone has to make 
the tradeoff. In cases where it is hard to pin down who makes the tradeoff, one may say 
that societal development as such proceeds in a manner so that tradeoffs are implicitly 
made. 

The profiling between risk-price or price-reimbursement and its convex, linear or 
concave shapes brings to mind utility theory and functions. The relationship is as follows. 
Utility can be plotted as a function of risk. Ceteris paribus, utility decreases (convexly, 
linearly or concavely) when risk increases given that risk is undesirable (malfunction, 

etc.). Utility is commonly defined as benefit minus cost. A price paid is a cost, and a 
reimbursement earned is a benefit. Hence plotting price as a function of risk, as in 
this article, is the same as plotting minus utility as a function of risk, which means 
reversing the direction of the vertical axis. This article defines reimbursement as paying 
a negative price, plotted as negative values along the vertical price axis. Such 
reimbursement is equivalent to utility. 

Section 2 verbalises, illustrates, and tests five hypotheses. Section 3 concludes. 



2 Verbalising, illustrating and testing five hypotheses 

This article delegates the authority of making tradeoffs to 90 students at the 
Universities of Stavanger and Bergen, Norway, who were surveyed with five questions 
March 9–May 29, 2004.1 The questions and response are listed in the Appendix. 

We express risk 0 ≤ r ≤ 1 as a probability between zero and one of an adverse event. 
The relationships between risk r and price p can be conceived of as contracts which the 
consumer or customer signs and which specify the price to be paid, interpreted as 
reimbursement if p is negative, for all possible risks.  

The relationship between risk and price can take many forms, such as convexity, 
linearity, concavity, or combinations of these for subranges of risk and price. 
Furthermore, the forms of the relationship between risk and price differ for different risk 
activities. We now proceed, in Popper’s (1963) sense, to set up those five hypotheses for 
the relationship between risk and price that we find most plausible. The hypotheses are 
tested empirically for different risk activities applying Questions 1–5 in the Appendix. 
The results are illustrated graphically in Figures 1–4. In the hypotheses ’ means first 
derivative and ’’ means second derivative of p with respect to r. 

Hypothesis 1 p’ < 0 and p’’ > 0 when p > 0 and 0 ≤ r < 1, and p = 0 when r = 1. 

This hypothesis assumes convexly decreasing price as the risk increases, illustrated with 
the first curve in Figure 1 which expresses Malfunction e.g., of a product. Zero price 
corresponds to maximum risk r = 1. Hence the price never goes negative. When the 
adverse event is guaranteed, r = 1, the purchase is valueless and the price is zero, p = 0. 
As the adverse event becomes less likely, the price increases in an increasing manner 
reaching a finite level for r = 0 if the adverse event is removable, or an infinite level for 
r = 0 if the adverse event is not removable. An example of an adverse event which is 
100% removable for a finite price is investment in alternative technology. A house of 
wood may burn down, but a house of brick cannot burn down since brick does not burn. 
A Cobb-Douglas function uCD(r, p) = pα r(1–α), 0 ≤ α ≤ 1, exemplifies Hypothesis 1 for 
p > 0 and 0 < r < 1, limited by never reaching the axes p = 0 or r = 0 due to 
the multiplicative form. The additive form of the CES function uCES(r, p) = (apβ + 
(1 – a)rβ)1/β, β ≥ 0, 0 ≤ a ≤ 1, allows reaching the axes p = 0 or r = 0. 

Hypothesis 2 p’ < 0 and p’’ > 0 when p > 0 and 0 ≤ r < rmax < 1 and p = 0 when  
r = rmax 

This hypothesis is equal to Hypothesis 1 except that zero prize does not correspond to 
risk r = 1, but instead to a risk rmax < 1 which is less than one. This is illustrated with 



regions ABC in the second curve in Figure 1, finite loss. The finite loss may be implied 
loss such as a malfunctioning bike causing a broken leg or a malfunctioning refrigerator 
causing loss of all content, an incompetent service causing loss of customer confidence, 
convenience loss, lost time, etc. Hypothesis 2 is also illustrated with regions AB in the 
third curve in Figure 1, severe injury, and with region A in the fourth curve in Figure 1, 
Death. For Hypothesis 2 the agent finds an adverse event with risk rmax, strictly less than 
one, unacceptable, and accordingly pays nothing for rmax. An example is an offer free of 
charge of parachuting from an airplane with an unreliable parachute. Most people will not 
not accept such a free offer except when the probability of failure is very low specified as 
r = rmax. As the risk decreases below r = rmax, the agent is hypothesised to accept paying a 
positive prize for the risky activity. Cobb-Douglas and CES functions exemplify also 
Hypothesis 2 except that there now is an upper bound below 1 on the risk where the axis 
p = 0 is reached. 

Figure 1 Risk r versus price p (see online version for colours) 

The tables following Questions 1–5 in the Appendix present the risks in the top row and 
the prices in the left column. The values in the tables are percentages, except the three 
right columns which present the expected value (E), standard deviation (Std) and number 
N of respondents. 

Question 1 presents subjects with a price $100 for a product, e.g., a mobile phone, 
guaranteed to function. Paying half the price $50, they accept (on average) only a 
probability 0.24 of malfunction, referred to as risk. Paying $10, they accept 0.42 risk. If 
they get the phone for free, they accept maximum 0.65 risk. These results support 
Hypothesis 2, and not Hypothesis 1, since subjects likely account for the additional work 
and inconvenience associated with purchasing, gathering information, and adapting to a 
new phone, as illustrated in Figure 2. Linear preferences P = 100–100 R, where P is price 
and R is risk, suggests the higher risks 0, 0.5, 0.9, 1 for the four payments. Subjects 
express preferences more akin to Cobb-Douglas preferences. 

Hypothesis 3 p’ < 0 and p’’ = 0 when p > 0 and 0 ≤ r < rs ≤ 1. 



Figure 2 Probability (risk) R of malfunction (Question 1) and finite loss (Questions 2–3) versus 
price P (see online version for colours) 

This hypothesis assumes linearly decreasing price as the risk increases. An analogy with 
Hypothesis 1 is that maximum risk rs = 1 corresponds to zero price p = 0. An analogy 
with Hypothesis 2 is that maximum risk rs < 1 corresponds to zero price p = 0. Viscusi 
and Zeckhauser (2003, p.115) suggest that Hypothesis 3 is valid when rs is small. More 
specifically, they state that “for small probabilities” “the willingness to pay for the risk 
reduction should be a relatively invariant amount per unit risk reduction so that the 
willingness to pay to reach zero should be roughly double the value for reaching a 50% 
reduction”. An example of Hypothesis 3 is when a person’s willingness to pay for travel 
follows the curve p = –cr + d where c = 2 × 108 and d = 300 are positive constants. 
Assume the ticket costs p = $100 which gives the death probability r = 10–6. Using the 
formula, Hypothesis 3 applies when the person is willing to pay p = $200 to enjoy the 
50% lower death probability r = 0.5 × 10–6. 

Question 4 lets a ticket price of $100 for a travel (by plane, train, car, boat, etc.) 
correspond to a probability R = 10–6 of death, referred to as risk. Subjects are willing to 
pay more, $200, $500, $103, if they can enjoy the lower risks 0.221 R, 0.163 R, 0.121 R. 
Again, these risks at very small risk levels are convex supporting Hypothesis 2, shown in 
Figure 3. Subjects paying $900 to decrease the death probability from R to 0.121 R 
means that $900/(10–6 – 0.121 × 10–6) = $1.02 × 109 expresses the value of life. These 
results stand in contrast to Viscusi and Zeckhauser’s (2003, p.115) finding which 
supports the linearity of Hypothesis 3. Testing ticket price increases customers would ‘be 
willing to pay for screening measures that would decrease the probability of a terrorism 
attack on an airplane’, they find that the mean customer is indifferent between the (risk, 
price) points (1, 1), (0.5, 1.2495), (10–6/R, 1.3842), (10–7/R, 1.5315), (0, 1.6943), where R 
is the current risk level.2 A linear curve through the first two points reaches (0, 1.499), 
which is slightly below the fifth point.3 This suggests slight convexity. A Cobb-Douglas 
function through the first three points gives α = 0.7568 and R = 2.75 × 10–6.4 Keeping 
R = 2.75 × 10–6, a CES function through the first, second, and fourth points gives 
a = 3.54 × 10–5, β = 0.8581.5 The indifference curve crosses the vertical axis r = 0 for 



price p = 1.5560 P.6 Minimising the sum of the squared differences between a linear 
curve through (1, 1) and the four last points gives p/P = –0.61 r/R + 1.61, which crosses 
p = 0 for r = 2.63 R. The point (0, 1.61) is again below the fifth point, which suggests 
slight convexity. The upshot for the Viscusi and Zeckhauser (2003) data is that although 
slight convexity is involved, CES preferences or a linear risk versus price relationship 
more appropriately than Cobb-Douglas preferences describes the risk-price tradeoff for 
small risks. 

Hypothesis 4 p’ < 0 and p’’ < 0 when p < 0 and 0 < r ≤ 1, and p = 0 when r = 0. 

Figure 3 Probability (risk) r of death versus positive price p (see online version for colours) 

This hypothesis assumes concavely decreasing price as the risk increases, which for 
negative price means convexly increasing reimbursement as the risk increases. When the 
adverse event is guaranteed not to occur, r = 0, the agent enjoys no reimbursement, p = 0. 
As the adverse event becomes more likely, the reimbursement increases in an increasing 
manner reaching a finite level for r = 1 if the agent accepts a guaranteed adverse event, or 
an infinite level if the agent does not accept a guaranteed adverse event regardless of 
reimbursement. An example is a person’s willingness to accept hazardous waste to be 
deposited in his back yard, e.g., from a neighbouring community or someone seeking to 
get rid of the waste. When the waste is not deposited, the agent suffers no risk and enjoys 
no reimbursement, r = p = 0. As the waste increases in magnitude and degree of danger, 
the person requests convexly increasing reimbursement. If the waste is nuclear, the 
person may not accept it regardless of reimbursement. 

Hypothesis 5 p’ < 0 and p’’ < 0 when p < 0 and 0 < rmin < r ≤ 1, and p = 0 when  
r = rmin 

This hypothesis is equal to Hypothesis 4 except that zero prize (zero reimbursement) does 
not correspond to risk 0, but instead to a risk rmin which is larger than zero. The agent 
accepts the adverse event with risk rmin, strictly above zero, acceptable without 
reimbursement, but requests reimbursement for higher risks. Hypothesis 5 is illustrated 
with region D in the second curve in Figure 1, Finite loss, reaching finite reimbursement 



when r = 1. Hypothesis 5 is also illustrated with regions CD in the third curve in Figure 1, 
severe injury, and regions BCD in the fourth curve in Figure 1, death. The two latter 
curves reach infinite reimbursement for r < 1. The curves proceed quickly toward 
negative p values requesting substantial reimbursement to accept the added risk. An 
example of Hypothesis 5 is the risk of living and going about one’s daily activities. At 
zero reimbursement the risk is not zero since even living in a quiet countryside may cause 
one to get run over by a car or bicycle when walking to work, or one can fall out of bed 
while sleeping and break a leg. If one chooses a risky occupation (e.g., fighter pilot), 
work in risky environments (e.g., a war zone), and accept living in a house without 
security and no bodyguards, one may require substantial reimbursement in the form of 
high salary and low costs to accept the high risk. An example of an adverse event which 
cannot be removed regardless of price is probability of death (risk) for car driving. The 
most expensive and secure car combined with extensive driving experience and all 
imaginable precautions are not sufficient to eliminate the probability of death since 
factors outside one’s control, such as human errors by other drivers who cannot be paid 
not to drive, influence the risk. 

Question 2 assumes that a mobile phone priced at $100 gives a probability 0.1 of 
finite loss, referred to as risk. Paying more, $200, $500, $103, subjects require the lower 
risks 0.040, 0.023, 0.006 which form a convex curve as in Hypothesis 2. For payments as 
high as $103, subjects require in response to Question 3 an almost riskless phone. 
Reimbursing subjects from $0 to $103 for finite loss, subjects accept risks ranging from 
0.521 to 0.703, expressing concavity as in Hypothesis 5. The curves are convex when 
paying for a product, and concave when enjoying reimbursement. 

Question 5 decreases the ticket price below $100. Reimbursing subjects from $50 to 
$108, subjects accept risks changing concavely from 0.002 to 0.048. The mean 
respondent accepts a death probability of 4.8% when presented with more money, $108, 
than most people make in a life time. This gives a value of life $2.08 × 109.7 When 
offered less money, $107, the mean respondent accepts a death probability of 3.1% which 
gives a lower value of life $3.23 × 108. The results are shown as a concave curve 
supporting Hypothesis 5, in Figure 4. The convexity for payment and concavity for 
reimbursement in Figure 2 are mirrored by similar convexity and concavity in Figures 3 
and 4. The standard deviations are smaller than the expected values for Figures 2 and 3, 
aside from the large payment $103 in Question 2 and $500 and $103 in Question 4. The 
reverse is the case for the entire range of prices from $50 to $108 in Figure 4, where the 
standard deviations are considerable. Presenting respondents with 17 tradeoff options in 
the range from $103 to –$108, in addition to the comparison standard $100 for risk 
R = 10–6 is done to hopefully make it easier for respondents to develop a possibly 
coherent or rational view of the tradeoffs along this continuum, rather than evaluating one 
tradeoff in isolation. Observe in this regard Kunreuther et al.’s (2001, p.103) argument 
that “it appears that one needs to present comparison scenarios that are located on the 
probability scale to evoke people’s own feelings of risk”. Further, ‘fairly rich context 
information must be available for people to be able to judge differences between low 
probabilities’. This is attempted accomplished in the introduction to each question 
presented to respondents. Nevertheless, respondents exhibit considerable uncertainty 
when evaluating something as basic as reimbursement for increased probability of death, 
as illustrated by the standard deviation in the results.8, 9 



Figure 4 Probability (risk) r of death versus negative price p (reimbursement) (see online version 
for colours) 

A person’s profile is affected by the severity (probability multiplied with impact) of the 
risky outcomes. This article defines risk as a probability that an event with a certain 
impact occurs. The correlation between the decision maker’s profile and the risk severity 
scale stemming from the hypotheses is as follows. Five examples of events with specified 
impact are malfunction of a product or service, finite loss, minor injury, severe injury, 
death. A person can specify how he is indifferent between combinations of probability 
and impact for each of these events.10 In Question 1 the person pays $100 for a phone that 
malfunctions with probability 0.1, which gives severity $10. He pays $10 if the phone 
malfunctions with probability 0.42, which gives severity $4.2. In Question 2 the person 
pays $1000 for a phone that malfunctions with probability 0.006, which gives severity $6. 

For each degree of severity (probability multiplied with impact) each person can 
specify how much he is willing to pay to decrease the severity, and how much 
reimbursement he requires to accept increased severity. In Question 3 the person requires 
$1000 reimbursement if a phone malfunctions with probability 0.703. This can be 
perceived as a lottery with expected value $703 if one subtracts the inconvenience of a 
malfunctioning phone. In Question 4 the person pays $900 to decrease the death 
probability of travel from 10–6 to 0.121 × 10–6, which gives a value of life $1.02 × 109. In 
Question 5 the person requires $108 reimbursement if the death probability of travel is 
0.048 which gives a value of life $2.08 × 109. 

3 Conclusions 

The article quantifies in five hypotheses, with empirical testing, the inverse relationship 
between risk and price in terms of first and second derivatives, establishing ranges of 
convexity, linearity, concavity. Examples of risks are malfunction of a product or service, 
finite loss, severe injury, death, due to a variety of causes. Examples of price 
interpretations when price is positive are any cost incurred, such as monetary amounts 
paid, work exerted, inconvenience, lost time. Negative prices are interpreted as 



reimbursement which may be any benefit enjoyed. The article finds empirical support for 
the result that for products with a probability of malfunction (risk) the relationship is 
convex in a risk versus price diagram when paying for the product (Hypothesis 3), and 
concave when enjoying reimbursement (Hypothesis 5). This also holds for ticket prices 
for travel with a probability of death (risk), with transition from convexity to concavity 
for very low risk levels. The convexity result for probability of death stands in contrast to 
Viscusi and Zeckhauser’s (2003) finding of a linear relationship (Hypothesis 3). The 
value of life is estimated to $1.02 × 109 by comparing subjects’ willingness to pay for 
risky travel (Question 4), and is estimated to $2.08 × 109 based on subjects’ requiring 
reimbursement $108 to accept travel with death probability 4.8% (Question 5). These 
values of life are larger than those usually reported in the literature. A possible reason 
may be that young students may be reluctant to place a value on life, and thus request an 
uncommonly large monetary amount to accept a small probability of death. 
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Notes 
1 Norway is socially democratic, outside the EU, mostly Lutheran Christian, Caucasian, and its 

4.6 million population is relatively homogenous. Fifty-one subjects were asked nine additional 
personal characteristics questions. 
1 97.9% are white, 2.1% are not white 
2 93.7% are Norwegian, 6.3% are not Norwegian 
3 88% are students more than 50% of the time, 12% are students less than 50% of the time 
4 80% are 20–29 years, 12% are 30–39 years, 8% are 40–49 years 
5 84% are males, 16% are females 
6 their financial situation compared with all students at the university are much better than 

average 18%, better than average 40%, average 32%, worse than average 10%, much 
worse than average 0% 

7 with respect to psychological behaviour (e.g., gambling or stock market investment), 4% 
are very risk seeking, 30% are moderately risk seeking, 30% are risk neutral, 34% are 
moderately risk averse, 2% are very risk averse 

8 with respect to physical behaviour (e.g., ice climbing, white water kajaking, paragliding, 
martial arts (e.g., karate), boxing), the corresponding percentages are 6, 26, 38, 18, 12 



9 their preference for the 11 Norwegian political parties are Arbeiderpartiet 6%, 
Fremskrittspartiet 16%, Fridemokratene 0%, Høyre 28%, Miljøpartiet De Grønne 2%, 
Kristelig Folkeparti 6%, Norges Kommunistiske Parti 0%, Rød Valgallianse 4%, 
Senterpartiet 4%, Sosialistisk Venstreparti 12%, Venstre 2%, no preference 20%. 

2 Regarding the fifth point, although it is rational for a consumer to specify a maximum finite 
price if the risk gets reduced to zero, this event constitutes wishful thinking and cannot be 
realised in praxis. A zero tolerance principle for crime, or a zero vision for accidents (Elvik, 
1999), are other examples which are operative when interpreted as desirable objectives. Zero 
risk r = 0 is impossible since, first, hitherto unknown technology may be applied that passes 
undetected through screening measures. Second, an airplane may be subject to terrorism 
through corrupting the crew, maintenance, and service personnel and procedures. Third, an 
airplane can be shot down with a missile or some other weapon. Fourth, a mid-air (James 
Bond style) hijacking cannot be ruled out. 

3 That is, p/P = –0.499 r/R + 1.499, specifying zero risk r = 0 for price p = 1.499 P, and a price 
zero p = 0 for risk r/R = 3.004. 

4 The curve proceeds to (10–7/R, 2.9010 P), which is almost twice the price increase suggested 
by the fourth point, and further to (infinity, 0). The consumer is willing to double the risk to 
r = 2 R if the price reduces to p = 0.8003 P. 

5 Solving through the first three points gives a = –1.71 × 10–7, β = 1.14355, where negative a is 
not acceptable. a < 0 implies that all prices p impact the utility negatively while all risks r 
impact the utility positively, and conversely when a > 1. Solving through the first four points 
for general R gives a = 3.65 × 10–5, β = 0.8804, R = 3.91 × 10–6. 

6 The consumer is willing to double the risk to r = 2 R if the price reduces to p = 0.5479P, and 
accepts risk r = 3.7301 R = 1.026 × 10–5 if the price gets reduced to zero p = 0. Hence the 
consumer has to get the ticket for free to accept this risk level, and will have to get paid to 
accept higher risk levels. The CES function does not accept negative price p since imaginary 
values may follow. 

7 See Viscusi (1998) for other methods of determining the value of life, e.g. choices between 
professions offering different salaries linked to different risks, and costs of cigarette smoking 
linked to death risks. 

8 The risks 0.027, 0.016, 0.028, 0.008 accepted for the prices $50, $10, $0, –$10 are due to a 
few respondents not exhibiting economic rationality. Removing the entries in the upper right 
part of the table for Question 5 gives risk levels between 0.002 and 0.221R. The entries are 
kept to illustrate respondent uncertainty. 

9 See Kunreuther et al. (2002) for a review of “the state of the art of research on individual 
decision making in high-stakes, low probability settings”, and “a proposed agenda for future 
research” that “focuses on how the process and outcomes of high-stakes decision making 
might be improved”. 

10 For example, the person may be indifferent between breaking a finger with probability 0.01 
and breaking a foot with probability 0.0001. 

Appendix 

1 Consider the tradeoff between price and probability of malfunction (risk) for a 
product, for example a mobile phone. The price is US$100, and the phone is 
guaranteed to function for one year. You are also offered the same phone for a 
cheaper price, but with a probability of malfunction expressed with a number R 
between zero and one. As the price decreases below $100, the probability of 
malfunction increases above R = 0. For example, R = 0.1 means a 10% probability of 
malfunction during the first year. If the malfunction occurs, the phone cannot be 
repaired and becomes useless. Price changes affect probability of malfunction, and 



nothing else. For the price specified in the row in the following matrix, which 
maximum risk R of malfunction specified in the column (choose the risk closest to 
your preference) do you accept? 

Probability of malfunction
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 E Std N 

$50 1.26 - 2.51 4.96 - 14.83 1.25 8.61 20.94 23.44 22.19 0.24 0.23 81 
$10 2.64 9.12 2.58 5.22 5.16 23.35 5.16 14.28 16.87 5.22 10.38 0.42 0.27 77 

Price 
to 
pay $0 33.32 9.00 7.71 3.86 2.55 14.11 7.70 6.41 3.85 2.55 8.95 0.65 0.34 78

2 Many products have an inevitable probability of malfunction. Assume that the 
mobile phone priced at $100 gives a risk R = 0.1 of malfunction, which means a 
probability 10% of malfunction, during the first year of use. If the malfunction 
occurs, the phone cannot be repaired and becomes useless. If the price increases 
above $100, the probability of malfunction decreases below R = 0.1, thus giving a 
probability below 10% of malfunction. Your maximum phone budget is $1000. 
Given that price $100 corresponds to risk R = 0.1 of malfunction, for the price 
specified in the row in the following matrix, which maximum risk R of malfunction 
specified in the column do you accept? 

Probability of malfunction 
0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 E Std N 

$200 10.00 6.25 6.24 2.54 22.49 7.46 7.52 13.76 7.46 16.26 0.040 0.029 80 
$500 2.60 1.31 1.30 2.60 14.09 2.60 5.15 23.04 24.28 23.02 0.023 0.022 78 

Price 
to 
pay 

$103 2.64 - - - 1.32 - 2.64 1.32 23.33 68.75 0.006 0.016 77 

3 Conversely, if the price decreases below $100, the probability of malfunction 
increases above R = 0.1. Given that a price of $100 corresponds to risk R = 0.1 of 
malfunction, for the price specified in the row in the following matrix, which 
maximum probability of malfunction specified in the column (choose the ratio 
closest to your preference), do you accept? The negative prices mean that you get 
reimbursed for the malfunction. That is, the phone company compensates you if the 
phone malfunctions, acknowledging the inconvenience, lost time, etc. for you of 
malfunction. 

Probability of malfunction 

0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 E Std N 
$50 44.02 25.34 11.96 2.65 9.31 - 4.00 1.35 1.36 - 0.261 0.172 75 
$10 28.34 13.48 16.23 9.48 16.17 2.75 4.06 1.38 6.75 1.37 0.367 0.232 74 
$0 17.07 11.85 10.51 6.56 18.41 1.34 5.28 2.67 7.90 18.41 0.521 0.315 76 

–$10 15.99 10.69 13.33 9.32 13.33 7.96 2.65 4.02 6.66 16.05 0.508 0.303 75 
–$50 9.50 10.82 10.82 10.81 18.88 4.06 4.06 9.44 4.06 17.57 0.546 0.293 74 

–$100 9.44 5.38 8.07 10.81 16.25 8.12 5.44 4.07 10.81 21.63 0.607 0.296 74 
–$200 8.34 1.42 16.63 5.58 8.34 9.69 5.58 4.18 6.93 33.31 0.655 0.310 72 
–$500 9.56 5.51 5.51 8.17 10.97 4.12 6.84 5.51 9.56 34.26 0.675 0.313 73 

Price 
to 
pay 

–$103 14.86 1.38 4.05 6.74 9.49 1.37 6.74 4.06 9.48 41.83 0.703 0.327 74 



4 Consider the tradeoff between ticket price and probability of death (risk): Events 
in recent years reveal that travelling by plane, train, car, boat, crossing bridges, 
proceeding through tunnels, etc., cause death with a strictly positive probability. 
The probabilities vary considerably across modes of transportation. The 
probability of death from hijacking of a US carrier arriving to or departing from 
the US was  
7.5 per billion over the 1970–2000 period [Viscusi and Zeckhauser, (2003), 
p.109, www.air-transport.org]. Examples of risks by airplane travel are 
hijacking, bombs, bullets, biological or chemical weapons, missiles, airplane 
failure due to technical or human errors, inappropriate scanning of luggage, 
passengers, crew, corrupted maintenance or service procedures, etc. There are 
slightly above 300 traffic related deaths in Norway per year. With a population 
of around 4.6 million, this gives a probability of death of around 1 per 15000. As 
a concrete example, assume that an agency offers a ticket price of $100 for a 
travel (e.g., airplane travel) where there is a statistical probability of death of 1 
per 1 million, expressed as R = 1/106. If the entire Norwegian population of 4.6 
million makes this travel once, the expected number of deaths is 4.6. Assume 
that the agency offers a variety of ticket prices for this travel, which affect 
probability of death, and nothing else. In an uncertain world, assume that you 
cannot refuse to make this travel, and that your maximum budget is $1000. If the 
price increases above $100, the probability of death decreases to a fraction of R. 
Given that a ticket price of $100 corresponds to risk R of death, for the price 
specified in the row in the following matrix, which maximum risk specified in 
the column, where R = 1/106 (choose the ratio closest to your preference), do 
you accept? 

Probability of death 

R/2 R/3 R/4 R/7 R/10 R/102 R/103 R/104 R/105 0 E Std N 
$200 30.08 9.57 5.51 13.68 5.51 2.78 5.45 4.12 6.84 16.46 0.221R 0.209R 73 
$500 13.12 6.56 17.09 14.47 11.86 3.95 1.34 7.90 7.90 15.81 0.163R 0.168R 76 

Price 
to 
pay 

$103 13.49 1.37 5.37 18.93 8.12 6.75 1.38 4.06 14.86 25.67 0.121R 0.169R 74 

5 Conversely, if the price decreases below $100, the probability of death increases 
above R. Given that a ticket price of $100 corresponds to risk R = 1/106 of death, for 
the price specified in the row in the following matrix, which maximum risk specified 
in the column (choose the ratio closest to your preference), do you accept? The 
negative ticket prices mean that you get reimbursed for the travel, at the cost of 
accepting a higher risk R. You can get rich, but face a scenario reminiscent of 
Russian Roulette. 






