
Risk, production and conflict when utilities are as if 
certain 

Kjell Hausken 

Abstract: The article analyses a production and conflict model of risk, 
supplementing the common rent seeking analysis. Agents differ in attitudes toward 
risk, productive efficiencies, fighting efficiencies and resources for production 
versus fighting. A fighting decisiveness parameter determines distribution of 
utilities. Skaperdas’ (1991) analysis of conflict and risk attitudes is generalised from a 
symmetric to an asymmetric risk function, from two agents to many agents of 
two kinds, and the fraction of risk seekers is endogenised. Specific functional 
forms of the utility function and production function are used. The amount of 
fighting increases in the amount of risk aversion, contrary to received rent seeking 
theory, but consistently with much experience. Surprisingly, higher production costs 
or lower fighting costs for risk seekers cause higher utility for risk seekers, contrary to 
the received theory of higher utility to risk avoiders. We show how the first agent 
taking on risk benefits, given that the other agents remain risk averse, whereas risk 
seeking by all agents is the worst scenario. 
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1 Introduction 

Risk is much analysed, but within conflict theory it has been largely ignored. In 
classical economics with focus on production and consumption, risk is well-understood 
(Machina and Rotschild, 1992). The same goes for financial economics, e.g., 
regarding principles of diversified portfolios. In economic psychology, an agent’s 
departure from classical utility has received attention (Kahneman and Tversky, 
1979). Applying evolutionary approaches, Dekel and Scotchmer (1999) consider 
risk-taking in winner-take-all games and Robson (1996) examines risk attitudes 
assuming lottery tickets.  Hvide and Kristiansen (2003, p.74) let the strategic 
variable be the degree of risk taking rather than the amount of effort and ‘show 
that the selection efficiency of a contest may be improved’ by ‘a small number of 
contestants, and by restricting contestant quality’. McGuire et al. (1991, p.329) 
depart from the fixed-probabilities case, focusing on probability-improving outlays. 
A risk avoider tends to insure and a risk seeker tends to gamble, though such that 
‘if the good outcome is less (more) likely than’ a so-called ‘switching probability’, 
‘the expenditures represent gambling (insurance)’. 



There has been some work on risk in the rent seeking literature, which has a 
substantial focus on rent dissipation. The received theory states that rent dissipation 
decreases in the number of risk averse agents. Modelling individual preferences with 
Taylor expansion, Hillman and Katz (1984) find that rent dissipation decreases with risk 
aversion for small rents. They consider numerical examples for large rents. Konrad and 
Schlesinger (1997) find that risk aversion reduces rent-augmenting expenditures and has 
an indeterminate impact on rent-seeking expenditures. 

Analyses in the literature and in this paper consider both constant relative Arrow-Pratt 
risk aversion (CRRA) and constant absolute Arrow-Pratt risk aversion (CARA), 
introduced by Pratt (1964) and Arrow (1965). CRRA is defined such that –xu''(x) / u'(x) 
is constant, where u is the utility, x is the independent variable and ' means 
differentiation. CARA is defined such that –u''(x) / u'(x) is constant. Skaperdas and Gan 
(1995) find for CARA and a decisiveness parameter less than one1 that the less risk 
averse agent injects higher effort and has a higher probability of winning the rent. 
Wärneryd (2002) analyses a rent seeking model assuming CRRA. He finds that although 
rents are perfectly dissipated, efficiency is greater than if all agents had been risk neutral 
since risk seekers specialise in rent seeking. 

For CARA, Cornes and Hartley (2003) find that the proportion of the rent that is fully 
dissipated decreases from one for risk neutral agents towards zero for sufficiently 
risk averse agents, with more dissipation as the number of agents increases. If there are 
sufficiently many agents with less risk aversion than with more risk aversion, only the 
less risk averse will be active, and the more risk averse will not contest the rent. 

Cornes and Hartley (2003, p.4) criticise what they call an anomaly, to wit, that the 
risk averse agents spend more on rent seeking than risk neutral agents (Konrad and 
Schlesinger, 1997). They intend to abstract from this and other anomalies by studying 
CARA. Skaperdas and Gan (1995) find that under limited liability (i.e., the loser’s utility 
is independent of his effort since he goes bankrupt) the risk averse invest more in rent 
seeking, has a higher probability of winning the contest and earns a higher expected 
utility. Whether this is an anomaly or not requires further scrutiny. Skaperdas and Gan 
(1995) suggest the intuition that risk averse agents are more fearful of negative 
consequences, and put more effort into avoiding these.2 This intuition is quite plausible 
and is also supported by this article. When competing for a rent, the fear for the risk 
averse of not obtaining may induce increased effort. More generally than rent seeking, 
the fear of looming disaster may cause the risk averse to take extraordinary precautions, 
while the risk seeking may hope that the disaster passes without ruin. Hence, not 
unexpectedly, McGuire et al. (1991, p.329) find that a risk avoider tends to insure, while 
a risk seeker tends to gamble. 



There is a need to extend risk research beyond that of rent seeking. That a rent is fully 
dissipated means that the agents earn zero utilities. An exogenously given rent is realistic 
in some cases, but in other cases an endogenous rent is realistic. Rents are produced 
as well as competed for. Hausken (2005) compares rent seeking models and production 
and conflict models. That the rent is endogenised implies that it is never fully dissipated. 
The agents make a trade-off between production on one hand, and fighting for their 
production on the other hand. One such model has been offered by Skaperdas (1991). He 
considers a symmetric model and lets the two agents’ fighting efforts determine their 
respective win probabilities. 

This article fills a void in the literature by generalising Skaperdas’ (1991) model in 
various senses. First, Skaperdas (1991, p.117) considers a symmetric function ‘in order to 
isolate the effect of differential attitudes toward risk’. His main results are that ‘being 
more risk averse than one’s opponent is advantageous when conflict is inevitable’, and 
‘as the two sides become more risk averse, the amount of resources expended on conflict 
increases’ [Skaperdas, (1991), p.118]. More generally, which gives a richer set of results, 
this article lets agents differ with respect to productive efficiencies, fighting efficiencies, 
resources available for transformation (into production versus fighting) and attitudes 
toward risk. A fighting decisiveness parameter determines distribution of utilities. 

Second, this article generalises too many agents of two kinds and endogenises 
the fraction of risk seekers. Given that one agent has a certain risk attitude, it is of 
interest to determine optimal behaviour for other agents with other risk attitudes. Risk 
seeking behaviour is sometimes beneficial, as illustrated by Hawkes (1990), but optimal 
behaviour depends on the parameter characteristics and equilibrium strategies of all 
agents. This article analyses the multiplicity of conditions under which risk seeking and 
risk avoiding behaviour is optimal. 

Consequently, the objective of this article is quite ambitious. It extends beyond 
the common rent seeking approach, with focus on rent dissipation, to a production 
and conflict model which opens up for a rich analysis of a kind that has not been made 
earlier. The analysis generalises from symmetry to asymmetry, generalises from two 
to many agents of two kinds, and endogenises the fraction of risk seekers. The kind of 
heterogeneity is thus more general than Cornes and Hartley’s (2003) heterogeneity in 
degree of risk aversion. 

Generalisations usually come at a cost. Whereas, Skaperdas (1991) assumes 
symmetry and two agents, he uses a general utility and production function. In contrast, 
this paper uses specific functional forms of the utility function and production function. 
By using credible specific functional forms, we obtain analytical solutions, illustrated 
with simulations. In return for the sacrifice of generality, a successful specification shows 
that the minimal standard of internal consistency is satisfied. Particular functional forms 
are often illuminating. For example, Cobb-Douglas and CES production functions on one 
hand make special assumptions about the functional relations between inputs and outputs, 
but on the other hand have proved useful to enhance our understanding of production, 
growth and related phenomena. Using particular functional forms makes it possible to 
determine ranges of parameter values within which various equilibria can and cannot be 
obtained. 

It is commonly argued that expected utility theory prevents interpersonal comparison 
of utilities for agents who have different risk attitudes and prevents comparing utilities 



for the same agent under different risk attitudes.3 One reason for this argument is that any 
increasing linear transformation of the utilities does not change the risk preferences. 
Another reason is that adding a constant to von Neumann Morgenstern (1944) utility 
makes an agent better off, but does not change the risk preferences. Marschak (1950, 
p.120) presents two variations of the well-known independence axiom (Postulates IVa
and IVb) which is now considered the defining axiom for the derivation of the 
von Neumann-Morgenstern utility function, which is linear in probabilities and invariant 
to affine transformations. Marschak’s (1950, p.125) Figure 4 illustrates the linearity 
in probabilities and his equation (35.1) (p.130) states the invariance to affine 
transformations. At the end of the paper, Marschak discusses the differences in the 
derivation from the original von Neumann-Morgenstern derivation. Similarly, Arrow 
(1965) and Pratt (1964) define measures of risk aversion for von Neumann-Morgenstern 
utilities, which are invariant to affine transformations of the utility functions. 

Marschak (1950, p.120) introduced a new terminology by changing the denotation of 
‘risk attitude’ to a concave ‘as if certain’ expected utility mapping. That is, if the as if 
certain utility function is linear, the agent is ‘risk neutral’; if the as if certain utility 
function is concave, the agent is ‘risk averse’; and if the as if certain utility function is 
convex, the agent is ‘risk seeking’. Marschak’s definition has subsequently been adopted 
by Arrow (1965) and Pratt (1964) in the so-called Arrow-Pratt measures of risk aversion, 
which are applied in this article. Marschak (1950), Arrow (1965), Pratt (1964) and von 
Neumann and Morgenstern (1944) consider both ordinal and cardinal utilities. The 
literature seems often confused when they consider which. For example, von Neumann 
and Morgenstern (1944) consider cardinal utility for events (e.g., sun shining) but not for 
money, while Marschak (1950) considers cardinal utility, e.g., for money. 

Dodging interpersonal comparisons because of the arguments above is not a good 
idea. We all make such comparisons in our daily lives. Alternatives, such as introducing 
a separate reservation lottery for each risk attitude that involves the same reservation 
lottery, make the analysis in this article far more complicated and most likely unreadable. 

To allow for interpersonal utility comparison, this paper considers cardinal utilities 
and considers expected utilities ‘as if certain’, in which case risk aversion is simply the 
concavity of the utility function. This means that once the origin and scale are fixed, so 
that each agent’s minimum utility and maximum utility are fixed, and the form of the 
utility function is fixed, as in the Ramsey (1926) and von Neumann and Morgenstern 
(1944) standard gamble devices, utility in expected utility theory is not merely invariant 
up to affine transformations, but cardinal in whatever sense is wanted. This is also 
implicit in the consumer producer rent comparisons which require interpersonal cardinal 
utility. We assume CRRA and confirm with CARA in Appendix 2. 

Considering utilities as if these are certain allows for substantial insight. Friedman 
and Savage (1948) stated that under expected utility, each outcome maps into a utility 
number evaluated ‘as if certain’. That is, the outcome is mapped into the same number 
regardless of whether that outcome is sure, a bit risky or very risky. An agent may 
evaluate two risky outcomes of $10 versus $0 against a sure outcome of $7. There is no 
difference in kind between receiving $10, $0 or $7, since these are merely numbers. 
Under expected utility, probabilities play no role in how each of the outcomes $10, $0 
and $7 maps into a utility number. However, probabilities play an atemporal role in 
aggregating the mutually exclusive outcomes $10 and $0 into an expected utility. Hence, 



under expected utility, risk attitude is a utility mapping that excludes all sources of 
satisfaction related to the agent’s degree of knowledge ahead. For example, it excludes 
anticipating that a risky choice may involve the risk-based emotions and the problems of 
inter-temporal resource allocation under risk. 

Section 2 presents a basic model for two agents. Section 3 generalises too many 
agents of two kinds where the fraction of risk seekers plays a role. Section 4 concludes. 

2 A production and conflict model with risk for two agents 

2.1 Assumptions of the model 

Consider two agents 1 and 2. As formulated by Hirshleifer (1995, p.30) and Skaperdas 
and Syropoulos (1997, p.102), agent i has a resource Ri transformable into two kinds of 
efforts. The first is productive effort Ei designed to generate production from resources 
currently controlled. The second is fighting effort Fi designed to acquire the production 
of others or repel others as they attempt to do the same. With unit conversion costs ai and 
bi of transforming Ri into Ei and Fi, this gives Ri = aiEi + biFi. Assume a production 
function where agent i produces (Ri – biFi) / ai, which means that production increases 

linearly with effort. Both agents produce 
2

1
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such that the joint production is readily available to be fought for by both agents, which 
mathematically means that it is placed in a common pool. The agents fight with each 
other with decisiveness m > 0. Agent i gets a ratio 1 1 2( ) ,m m mF F F+  known as the contest 
success function (Tullock, 1980; Skaperdas, 1996) of the total production. Considering 
CRRA, agent i’s expected utility is:4 
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where αi is the risk parameter. αi < 0 means risk seeking, αi = 0 means risk neutrality and 
αi > 0 means risk avoidance. 1( , ) 1i

i iU x x αα −= ≤  ensures that equation (2.1) describes 
agent i’s attitude toward risk.5 We consider the utility in equation (2.1) ‘as if it is certain’, 
which allows for interpersonal utility comparison. 

Contest success functions can either be interpreted as the probability that production 
is kept by an agent, as in equation (2.1) where the ratio 1 1 2( )m m mF F F+  expresses 

probability and is outside the utility index ( )12
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proportion of production is kept by an agent, as in equation (A12) in Appendix 3 
where the ratio 1 1 2( )m m mF F F+ is inside the utility index. These two interpretations are 
equivalent under risk neutrality αi = 0, but are generally different. This section and the 
generalisation to n agents of two kinds in the next section consider the first interpretation. 
Appendix 3 considers the second interpretation. 



2.2 Analysis of the model 

Calculating the two FOCs ∂U1 / ∂F1 = 0 and ∂U2 / ∂F2 = 0, and solving with respect to F1 
and F2 give the necessary conditions for optimality and an interior solution: 
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The second order condition for agent 1 is always satisfied: 
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The second order condition for agent 2 is found by permuting the indices in 
equation (2.3). If agent i chooses zero fighting Fi = 0, he earns zero utility according to 
equation (2.1) since his entire production gets lost to the other agent, even if the other 
agent only fights minusculely. Hence, each agent chooses strictly positive fighting. 
Conversely, if both agents fight maximally, F1 = R1 / b1 and F2 = R2 / b2, there is 
no production to fight for and both utilities are zero. Consequently, each agent faces 
a trade-off. In an interior equilibrium, both agents choose an intermediate amount of 
fighting. This also occurs when both agents are resource constrained with low R1 and R2, 
which causes F1 and F2 to be correspondingly lower, as expressed in equation (2.2). 
Inserting equation (2.2) into the utility U1 in equation (2.1) gives: 
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where U2 is found by permuting the indices. An interior solution exists when 
0 ≤ Fi ≤ Ri / bi. Otherwise, a corner solution exists, analysed later in this section. 

Appendix 1 confirms the results in this section when applying the difference or logit 
formula, rather than the ratio formula in equation (2.1). Propositions 1–3 also hold for the 
difference or logit formula, with a slight rewording of Proposition 3 in Appendix 1. 
Appendix 2 finds results with CARA utilities which largely confirm the results with 
CRRA utilities and finds no results with CARA utilities which qualitatively contradict the 
results with CRRA utilities. 

Two agents with equal risk attitudes α1 = α2 and cost parameters a1 / b1 = a2 / b2 fight 
equally hard, F1 = F2. The resources R1 and R2 have no influence on the ratio F1 / F2, 
since the joint production is placed in a common pool which both agents fight for. 

Proposition 1: When two agents with the same risk attitude become more risk avoiding 
(αi increases), their expenditures F1 and F2 on fighting increase. 

Proof: Inserting α1 = α2 into equation (2.2) and differentiating gives ∂F1 / ∂α1 > 0 and 
∂F2 / ∂α2 > 0. Skaperdas (1991, p.118) finds the same result. 

Proposition 2: (a) With equal cost parameters a1 / b1 = a2 / b2, a risk seeker fights less 

than a risk avoider. (b) If 1 2 1
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a1 of production and low unit cost b1 of fighting, agent 1 fights more than agent 2. 
(c) Increasing decisiveness of fighting gives lower discrepancy in fighting between the 
risk seeker and the risk avoider. 

Proof: (a) Agent 1 is more risk seeking than agent 2 when α1 < α2 which 
implies (1 – α2) / (1 – α1) < 1. Hence, F1 / F2 < 1 according to equation (2.2) when 
a1 / b1 = a2 / b2, (b) when the inequality is satisfied, F1 / F2 > 1 in equation (2.2), 
(c) increasing m implies decreasing the exponent 1 / (m + 1) in equation (2.2). Hence, 

1 2/ 1.
m
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As an example, if α1 = –0.5 and α2 = 0.5, the inequality in Proposition 2(b) simplifies to 
a1 / b1 > 3a2 / b2. In this case, the risk seeker must have a three times higher a1 / b1 ratio in 
order to fight more than the risk avoider. 

Proposition 3: A risk seeker becoming increasingly risk seeking earns a lower utility Ui 
and a risk avoider becoming increasingly risk avoiding earns a higher utility Ui. 



Proof: The exponent (1 – αi) is positive and increases for a risk seeker becoming 
increasingly risk seeking. Aside from R1 / a1 + R2 / a2, the numerator in equation (2.4) is 
less than one due to the presence of m twice. Raising a number less than one to a positive 
number that increases gives a decreasing number. Furthermore, the denominator in 
equation (2.4) increases when α1 increases. The opposite argument applies for the risk 
avoider. An advantage for the risk avoider is also found by Skaperdas (1991).6 

Inserting R1 = R2 = R, a1 = a2 = a, b1 = b2 = b, α1 = α2 = α into equations (2.1) to (2.4) 
gives the symmetric solution: 
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Hence, the average utility of a risk seeker with risk parameter –α and a risk avoider with 
risk parameter α is always higher than or equal to the utility of a risk neutral agent with 
risk parameter 0, where the agents have otherwise equal parameters. Wärneryd (2002, 
p.344) similarly finds that when agents with differential risk attitudes ‘can either earn 
a certain income or enter a risky rent-seeking contest’, ‘all types’ will be present and 
‘efficiency is greater than if everybody had been risk neutral, since risk lovers specialise 
in rent seeking’. 

Let us consider the corner solutions. The solution in equation (2.2) cannot be 
negative. Zero fighting causes zero utility according to equation (2.1), so each agent will 
choose a strictly positive fighting effort. However, the upper fighting constraint Ri / bi in 
equation (2.2) can be binding for an agent with a low resource and high unit conversion 
cost of fighting. Assume that the parameters in equation (2.2) are such that F2 = R2 / b2  
is binding. (The analysis when F1 = R1 / b1 is binding is analogous.). Inserting into 
equation (2.1) and determining the FOC ∂U1 / ∂F1 = 0 for agent 1 gives: 
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Solving the FOC when m = 1 gives: 
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This expression is quite intractable so let us insert b1 = b2 and R1 = kR2, where k > 0 is a 
positive constant, which gives: 
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where the inequality expresses the conditions on the parameters in equation (2.2) for 
agent 2 to be at his resource constraint for the corner solution. Increasing k on the left 
hand side, which means increasing the resource of agent 1, is a straightforward way of 
generating a corner solution. Differentiating F1 with respect to α1 gives: 
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Proposition 4: Assuming m = 1 and b1 = b2, if agent 2 is at his corner solution 
F2 = R2 / b2, agent 1’s expenditure F1 on fighting decreases when he becomes more 
risk seeking (α1 decreases), and increases when he becomes more risk avoiding (α1 
increases), consistently with Proposition 1 for the interior solution. 

Proof: Follows from the positive derivative ∂F1 / ∂α1 > 0 in equation (2.10). 

An analogue of Proposition 2 does not apply for the corner solution. The reason is that 
one agent, say agent 2, can be at his resource constraint F2 = R2 / b2 determined by the 
parameters in equation (2.2) regardless of his risk attitude. Comparing the amount of 
fighting for two agents with different risk attitudes is thus less interesting for the corner 
solution. 

When a1 = a2 and α1 = α2, the inequality in equation (2.9) simplifies to α1 ≥ (3 – k) /2. 
When k = 1, 2, 3, 4, 5, the inequality becomes α1 ≥ 1, α1 ≥ 1 / 2, α1 ≥ 0, α1 ≥ –1 / 2, 
α1 ≥ –1 respectively, and when k > 5, the inequality is always satisfied. 

The utilities U1 and U2 are space consuming to set up for the corner solution, but are 
illustrated in Figure 1 for k = 3 and k = 6 as functions of α1 when m = b1 = b2 = a1 = a2 = 
R2 = 1, α2 = α1, R1 = kR2. 

The plot for k = 3 confines attention to α1 ≥ 0 where the corner solution exists. 
In accordance with Proposition 4, F1 increases in α1. In partial accordance with 
Proposition 3 for the interior solution, U1 and U2 decrease in α1 except U1 when α1 is 
close to one. The author has confirmed that the curves for F1, U1, U2 are similar for other 
values of k. 

Proceeding to the general case of asymmetries, the risk avoider for most 
parameter combinations earns higher utility, but two noteworthy exceptions are when 
the risk seeker’s cost a1 of production varies and the risk avoider’s cost b2 of 
fighting varies. With parameters R1 = R2 = b1 = b2 = m = 1, α1 = –0.5, a2 = α2 = 0.5, 
Figure 2 allows a1 to vary. 



Figure 1 Corner solution: F1, U1, U2 as functions of α1 when k = 3 and k = 6, R1 = kR2 

Figure 2 Variables as functions of a1 

A corner solution with agent 2 at the resource constraint F2 = R2 / b2 = 1 occurs when 
a1 < 0.17. A corner solution with agent 1 at the resource constraint F1 = R1 / b1 = 1 occurs 
when a1 > 4.76. As the risk seeker 1’s cost a1 of production increases above a2 = 0.5, 
he searches for a more appropriate utilisation of his resources than transformation 
into production. Accordingly, he increases his fighting F1, considerably, while the risk 
avoider reduces his fighting F2 moderately. The total production thus decreases, but 
the risk seeker’s increased fighting F1 gives him a larger ratio of it. That is, the risk 
seeker’s utility U1 decreases more slowly in a1 than the risk avoider’s utility U2. Although 
increasing a1 decreases both agents’ utilities, risk seeker 1 compensates for his 
disadvantageous high a1 by fighting harder, which gives him a utility advantage relative 



to that of the risk avoider 2. That is, a risk seeker 1 disadvantaged by a sufficiently high 
cost a1 of production earns a higher utility than a risk avoider with a low cost a2 of 
production. This result is quite surprising. If a risk seeker is concerned about increasing 
the relative difference between his utility and the utility of the risk avoider, he may do so 
by increasing his cost a1 of production, assuming that either he or someone else can alter 
system parameters. A higher cost a1 of production, however, causes lower utilities U1 and 
U2 for both agents. The average utility (U1 + U2) / 2 decreases in a1. Hence, increasing 
cost of production has a welfare reducing effect. For comparative purposes, F and U 
according to equation (2.5) are plotted for two risk neutral agents where α = 0. 

Figure 3 sets a1 = a2 = 1, b1 = 0.5 and allows b2 to vary. 
A corner solution with agent 2 at the resource constraint F2 = R2 / b2 = 1 / b2 occurs 

when b2 > 4.17. A corner solution with agent 1 at the resource constraint F1 = R1 / b1 = 2 
does not occur. As the risk avoider 2’s cost b2 of fighting increases, his fighting F2 
decreases considerably and his utility U2 decreases moderately. Agent 1’s need to fight 
diminishes and F1 decreases moderately. The net effect is that risk seeker 1’s utility U1 
increases moderately. Agent 1, thus, benefits from agent 2’s misfortune. The utilities U1 
and U2 cross each other at b2 = 2.15. The risk avoider 2 must have a considerable cost 
disadvantage b2 of fighting for the risk seeker to earn a higher utility. As a comparison, 
equal parameters b1 = b2 = 0.5 gives a distinct advantage to the risk avoider, as the 
conventional literature specifies. The average utility (U1 + U2) / 2 decreases in b2. 
Increasing cost of fighting also has a welfare reducing effect. 

Figure 3 Variables as functions of b2 

The impact of altered risk attitudes is easily seen from Figures 2 and 3 using 
1( , ) 1.i

i iU x x αα −= ≤  An increasingly risk seeking risk seeker applying a more negative 
αi earns a lower utility Ui and an increasingly risk averse risk avoider applying a more 
positive αi earns a higher utility Ui. This gives downward versus upward shifts of 
the utilities U1 and U2 in all figures in this article. Let us consider six similarities and 
differences between Figures 2 and 3. Four of these are intuitive and two are more 
unexpected. First, increasing the cost a1 of production gives a disadvantage to risk 



seeker 1 and increasing the cost b2 of fighting gives a disadvantage to the risk avoider 2. 
Both results are intuitive since a change of a parameter in a disadvantageous direction 
causes a disadvantage to the agent associated with the parameter. Second, increasing a1 
causes fighting F1 to increase, since agent 1 finds an alternative to costly production, 
which is fighting, and increasing b2 causes fighting F2 to decrease, since agent 2 prefers 
to avoid costly fighting. Third, increasing a1 causes the total production to decrease, 
while increasing b2 causes the total production to remain unchanged. Fourth, increasing 
a1 or b2 has the welfare reducing effect of reducing the average utility (U1 + U2) / 2. 

The unexpected and more subtle results follow from interaction with the agent whose 
parameter remains unchanged. That is, changing a1 has impact on agent 2 and changing 
b2 has impact on agent 1. Hence, fifth, increasing a1 causes F1 to increase, but indirectly 
causes F2 to decrease. This gives a larger ratio of the production to agent 1, though both 
U1 and U2 decrease in a1 since the total production decreases in a1. The manner in which 
agent 1 is disadvantaged by a large cost a1 of production gets more than compensated 
by a large equilibrium fighting effort F1, giving agent 1 a larger share of the production 
than agent 2. Sixth, increasing b2 causes F2 to decrease, but indirectly causes F1 to 
decrease too, though more moderately. That F1 decreases is somewhat unexpected. The 
explanation is that risk seeker 1 ‘cashes in’ on facing a less fierce opponent. Since the 
risk avoider 2 fights so leniently (since the cost b2 is high), there is no need for agent 1 to 
fight fiercely and agent 1 decreases F1. This causes risk seeker 1’s utility U1 to actually 
increase in b2, while the risk avoider 2’s utility U2 more naturally decreases in U2.  
U for a risk neutral agent decreases in Figure 2 since the total production decreases in 
a1, while U is constant in Figure 3 where the total production does not depend on b2.  
(U1 + U2) / 2 > U accordingly decreases in Figure 2 and increases in Figure 3 as specified 
by equation (2.6). 

3 Generalising the model to n agents of two kinds 

3.1 Assumptions of the model 

First, this section generalises to n agents of two kinds, with nR identical agents with risk 
attitude αR and nS identical agents with risk attitude αS, where nR + nS = n. Without loss of 
generality, we assume –1 ≤ αR ≤ αS ≤1, and hence, the nR agents are more risk seeking 
than the nS agents. Second, we generalise so that the fraction nR / n of the first kind 
of agents plays a role. For expositional convenience, we refer to the nR agents as risk 
seekers and the nS agents as risk avoiding. Endogenising the fraction of risk seekers by 
accounting for the relative numbers of risk seekers and risk avoiders impacts the 
behaviour of both kinds of agents. It is often beneficial to be the first agent to take on 
risk, given that the other agents remain risk avoiding. We introduce boost factors to 
account for this. Assume that n risk seekers is the worst case scenario and that if all 
agents are risk avoiding, then it is beneficial to be the first risk seeker. Wärneryd (2002, 
p.347) similarly assumes in a rent seeking model that “the probability of getting a
positive payoff from the risky activity declines in the total population proportion of 
agents who enter the activity”. Introducing a fighting benefit for risk seeker i is 
accomplished by multiplying his fighting effort FiR with the scaling or boost parameter 
cF. Similarly, introducing a production benefit for risk seeker i is accomplished by 
multiplying his production with the parameter cP. Assume that cF and cP are proportional 



to n and inverse proportional to nR. Hence, a lone risk seeker nR = 1 boosts his fighting 
and production considerably when there are many agents. This is often witnessed in 
praxis where the benefit of being a lone risk seeker may be significant when surrounded 
by sufficiently many risk avoiders. UiR is the utility of risk seeker i, i = 1, … , nR. 
Analogously, UiS and FiS are the utility and fighting effort of risk avoider i, i = 1, … , nS. 
aR and aS are unit costs of production, and bR and bS are unit costs of fighting. 
Generalising equation (2.1) by multiplying the two occurrences of FiR with cF and 
multiplying the production with cP, gives: 
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3.2 Analysis of the model 

Calculating the two FOCs ∂UiR / ∂FiR = 0 and ∂UiS / ∂FiS = 0, and solving with respect to 
FiR = FR and FiS = FS, where identical risk seekers behave equivalently in equilibrium and 
identical risk avoiders behave equivalently in equilibrium, gives the FOCs and interior 
solution: 
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Both FOCs apply when 0 < nR, nS < n. When nR = n, only the first FOC applies for n  
risk seekers. When nR = 0, only the second FOC applies for n risk avoiders. Solving 
equation (3.2) gives: 
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For n equivalent agents with equal risk parameter α, inserting RR = RS = R, aR = aS = a,  
bR = bS = b, αR = αS = α, nR = n, nS = 0, cF = cP = 1 into equations (3.1) to (3.3) gives the 
fighting effort and utility: 
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for the interior solution which is equivalent to equation (2.5) when n = 2. With many 
agents, as n increases, fighting F asymptotically reaches the resource constraint R / b. 
This is consistent with rent dissipation increasing in the number of agents in the rent 
seeking literature. A similar logic applies for nR risk seekers and nS risk avoiders, where 
fighting FR and FS approach the resource constraints RR / bR and RS / bS. 

Proposition 5: When n agents with the same risk attitude become more risk avoiding 
(α increases), their expenditures F on fighting increase. 

Proof: Differentiating equation (3.4) gives ∂F / ∂α > 0. 

The solutions in this section are equivalent to the solutions in the previous section 
when n = 2 and nR = nS = cF = cP = 1. We illustrate the solutions in this section with 
simulations. To increase realism in accordance with Wärneryd’s (2002, p.347) 
observation discussed above and avoid the often unrealistic scenario that the agents’ 
fighting quickly reaches the resource constraint, we hereafter assume boost parameters 
cF = cP = n / (5nR). The idea is that when there are few risk seekers, the advantage 
of being the first risk seekers can be substantial. With parameters as in Section 2, 
RR = RS = bR = bS = m = 1, αR = –0.5, aR = aS = αS = 0.5, and n = 100 agents, Figure 4 
illustrates as nR varies. 

Multiplication of utilities with 20 is for scaling purposes. With few risk seekers nR, 
these engage in low degree of fighting, high degree of production and enjoy a high utility 
UR, which decreases in nR and crosses below US when nR = 33. Risk avoiders produce 
nothing when nR is low. Risk seekers produce nothing when nR is high. The utility of risk 
seekers decreases in nR, as for Wärneryd (2002), and the utility of risk avoiders is 
U shaped. n = 100 risk neutral agents (α = 0) each invests fighting F = 0.99 according to 
equation (3.4), with utility 20U = 0.4. It is preferable to be a risk seeker if nR ≤ 29 since 
the utility is above 20U = 0.4. It is preferable to be risk neutral if 29 < nR < 76 since 
20U = 0.4 is the highest utility. It is preferable to be risk avoiding when nR ≥ 76. The 
‘beat the crowd’ logic is that it is preferable to be among the few who are either risk 
seeking or risk avoiding. 

Table 1 considers the utilities (left part) and fighting (right part) for one agent against 
99 agents with the same parameter values. Agent 1 in the row can choose between 
risk attitude αS = 0.5 and αR = –0.5, like choosing a profession, while agents 2–99 in 
the column also can choose between risk attitude αS = 0.5 and αR = –0.5, where all 
these 99 agents are assumed to make the same choice. We, thus, get a 2 × 2 matrix. 



One hundred risk seekers earn utilities 0.01 and 100 risk avoiders earn utilities 0.0046. 
However, a lone risk seeker boosts his utility to 8.81. 

Figure 4 Variables as functions of nR when n = 100 

Table 1 RR = RS = bR = bS = m = 1, αR = –0.5, aR = aS = αS = 0.5, and n = 100 agents,  
cF = cP = n / (5nR) 

Agents 2–100 Agents 2–100 
Utilities

αS = 0.5 αR = –0.5 
Fighting 

αS = 0.5 αR = –0.5 

αS = 0.5 0.01,  
0.01 

0.026,  
0.0054 

αS = 0.5 0.995, 
0.995 

1,  
0.659 

Agent 1 

αR = –0.5 8.81,  
0.047 

0.0046, 
0.0046 

Agent 1 

αR = –0.5 0.382, 
1 

0.985,  
0.985 

Figure 5 assumes nR = 40 risk seekers and lets production cost aR vary, with all other 
parameters as before. 

Risk seekers take care of all production when aR is low, and conversely when aR is 
high since production costs are too high. Both UR and US decrease in aR, but UR decreases 
more due to the higher cost aR of production for risk seekers. Contrary to Figure 2 where 
a risk seeker earns a higher utility than a risk avoider if he is disadvantaged by a higher 
cost a1 > a2 of production, regardless how disadvantaged he is by a1, in Figure 5, the risk 
seeker no longer earns a higher utility if he is too disadvantaged. The risk seekers’ boost 
factors eventually become disadvantageous. That is, large boost factors for the risk 
seekers are not sufficient to compensate for large aR, which causes low utility UR. The 
utilities UR and US cross at aR = 0.35, and for higher aR, the risk avoiders earn the highest 
utility. Decreasing aR below aR = 0.35, risk seekers earn higher utility, contrary to 
Figure 2. 

Figure 6 sets aR = aS = bR = 1, nR = 40 and lets fighting cost bS to vary for the risk 
avoiders. 



Figure 5 Variables as functions of aR when n = 100, nR = 40 

Figure 6 Variables as functions of bS when n = 100, nR = 40 

Multiplication of FR with 0.5 is for scaling purposes. The risk seekers’ fighting FR 
decreases negligibly, while the risk avoiders’ fighting FS decreases along its maximum 
border constraint FS = RS / bS. The utilities UR and US have a form similar to Figure 3, 
crossing at bS = 1.42. The reason Figure 6 with bS dependence is similar to Figure 3 with 
b2 dependence, while Figure 5 with aR dependence is not similar to Figure 2 with 
a1 dependence, is the sharply decreasing fighting FS for risk avoiders in Figure 6 
which eventually becomes considerably smaller than FR, contrary to Figure 5 where 
FR and FS are similar. As before, the impact of altered risk attitudes is seen using 

1( , ) 1.i
i iU x x αα −= ≤  The utility UR for an increasingly risk seeking risk seeker gets a 

downward shift (given that the number of risk seekers is fixed at nR = 40) and the utility 



US for an increasingly risk avoiding risk avoider gets an upward shift. This is in 
accordance with Proposition 3 for two agents where increasing risk aversion causes 
higher utility. 

Wärneryd (2002, p.347) lets each agent choose whether or not to participate in a risky 
rent seeking contest, with threshold levels pertaining to an upper number of prizes. When 
production is endogenised, assume that agents choose among the attitudes risk seeking 
versus risk avoiding similarly to choosing among occupations and that each agent makes 
a choice that gives the highest utility. In equilibrium, the utilities are equal, UR = US and 
the number nR of risk seekers is adjusted accordingly, where 0 ≤ nR ≤ n. 

As an alternative to a fixed fraction nR / n of risk seekers, let us endogenise 
the fraction nR / n by setting UR = US. Utilities and parameters are then no longer 
given for each agent. Instead, similarly to choosing between occupations, agents choose 
freely between risk seeking and risk avoiding behaviour, taking on the utilities and 
parameters associated with either risk seeking or risk avoidance. In equilibrium, nR / n 
gets endogenously adjusted so that all agents earn equal utilities. With the same 
parameter assumptions as in Figures 2–4, it is straightforward to show that as aR increases 
above aR = 0.35, to the disadvantage of the nR = 40 risk seekers, nR decreases to fewer 
than nR = 40 risk seekers. The risk seekers suffer from their increased production cost 
and fewer agents choose to become risk seekers. Conversely, when aR decreases below 
aR = 0.35, there will be more than nR = 40 risk seekers. Similarly, increasing bS above the 
crossing point bS = 1.42 gives a relative advantage to the risk seekers over the risk 
avoiders, causing nR to increase to bring UR down to US. The risk seekers benefit from the 
increased fighting cost of risk avoiders and more agents choose to become risk seekers. 
Conversely, nR decreases as bS decreases. Consequently, both unit costs of production and 
unit costs of fighting affect the relative numbers of risk seekers and risk avoiders. 

4 Conclusions 

The article fills a void in the literature. The literature on risk in rent seeking is 
supplemented with the analysis of a production and conflict model. One such has been 
offered by Skaperdas (1991). This article generalises in three ways. First, we generalise 
from a symmetric to an asymmetric risk function. Second, we generalise from two agents 
to many agents of two kinds. Third, we endogenise the fraction of risk seekers, and 
let this fraction be influential. Specific functional forms of the utility function and 
production function are used. 

Section 2 equips each agent with a resource transformable into production and 
fighting. Agents differ with respect to resources, productive and fighting efficiencies 
and attitudes toward risk. A fighting decisiveness parameter determines distribution of 
utilities. Utilities are determined by a contest success function accounting for attitudes 
toward risk. The amount of fighting increases in the amount of risk aversion, contrary to 
received rent seeking theory where rent dissipation decreases with risk aversion (Hillman 
and Katz, 1984), but consistently with much experience. In the literature, the risk avoider 
typically earns the highest utility. 

This article demonstrates two noteworthy exceptions. The first occurs when the risk 
seeker’s cost of production increases, causing him to fight considerably harder than the 
risk avoider. The total production for the two agents’ decreases, but the risk seeker enjoys 
a larger ratio of it, and surprisingly, earns a higher utility than the risk avoider. The 



second exception occurs when the risk avoider’s cost of fighting increases, which causes 
his fighting to decrease considerably. The risk seeker ‘cashes in’ on facing a less fierce 
opponent. The risk seeker’s fighting decreases moderately and he enjoys the highest ratio 
of the increased production. These two results jointly benefit a risk seeker with low 
production capacity facing a risk avoider with low fighting capacity. 

Section 3 presents a model with many agents of two kinds. It is beneficial to be the 
first risk seeker if all other agents are risk avoiders. The worst case scenario is that all 
agents are risk seekers. The utility to risk seekers decreases in the fraction of risk seekers, 
analogously to Wärneryd’s (2002) analysis and the utility of risk avoiders is U shaped. 
The utility of risk seekers also decrease in the cost of production for risk seekers and 
eventually becomes lower than the utility of risk avoiders, contrary to Section 2. As the 
cost of fighting for risk avoiders increases, such fighting decreases compared with the 
fighting of risk seekers, causing results similar to those of Section 2. When agents can 
choose freely between risk seeking and risk avoiding behaviour, the fraction of risk 
seekers decreases in the cost of production for risk seekers and increases in the cost of 
fighting for risk avoiders. 
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Notes 

1 A decisiveness parameter m ≤ 1 less than gives disproportional advantage of injecting less 
effort than the other agent, while m > 1 gives disproportional advantage of injecting more 
effort than the other agent. 

2 Without limited liability, there are no clear results. When the prize is shared as a function of 
effort, Skaperdas and Gan (1995) find that the outcome is independent of the agents’ risk 
aversion. 

3 See Harsanyi (1987) regarding interpersonal utility comparison. 
4 Equation (2.1) means placing the total production in a common pool for capture. The author 

has analysed the model where each agent defends his own production and appropriates the 
other agent’s production. The results are qualitatively similar in many respects, though the 
FOCs are more complicated to discuss, with no analytical solutions. 

5 Assuming 1( , ) ,i
i i iU U x x αα −= =  a risk avoider prefers the certain alternative over the 

uncertain alternative; i.e., Ui(x, αi) > Ui(x, 0) when αi > 0. A risk seeker prefers the reverse; 
i.e., Ui(x, αi) < Ui(x, 0) when αi < 0. 

6 He assumes utilities π1 = pU(C) and π2 = (1 – p) k(U(C)), where C(1 – y1, 1 – y2) is symmetric, 
yi is quantity of arms, p is win probability and k(U(C)) is increasing and strictly concave. 



Appendix 1 

Difference or logit formula 

Applying the difference or logit formula rather than ratio formula in equation (2.1) gives: 
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where k > 0 is a parameter. The two FOCs imply: 
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Proposition A1: A risk seeker becoming increasingly risk seeking earns a lower utility Ui 
and a risk avoider becoming increasingly risk avoiding earns a higher utility Ui. 

Proof: The exponent –αi is positive and increases for a risk seeker becoming increasingly 
risk seeking. Raising a number less than one to a positive number that increases gives a 
decreasing number. The opposite argument applies for the risk avoider. 

The author has confirmed that the simulations are qualitatively similar when using the 
difference or logit formula rather than the ratio formula. 

Appendix 2 

Constant absolute risk aversion 

Considering CARA and applying the ratio formula, equation (2.1) becomes: 
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where αi is the coefficient of absolute risk aversion. As αi increases, agent i becomes 
more risk averse. The two FOCs imply: 
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F2 is positive when α2 < 0 which means risk seeking and we must thus also have α1 < 0 
to ensure F1 positive. Hence, equations (A4) to (A5) are valid only when both agents are 
risk seeking or risk neutral. 

Proposition A2: For two risk seeking agents, the results in equation (A5) for CARA are 
qualitatively similar to the results in equation (2.2) for CRRA. 

Proof: Assuming CARA and that agent 2 is risk seeking (α2 < 0), as agent 1 gets more 
risk seeking (α1 < 0 gets more negative), the ratio a1b2α2 / a2b1α1  in equation (A5) 
decreases, just as the ratio a1b2(1 – α2) / a2b1(1 – α1) in equation (2.2) decreases. Hence, 
F1 decreases in both cases, causing consistency between CARA and CRRA for two risk 
seeking agents. 

Since the CARA in equation (A4) confirms the CRRA results only for risk seeking, let us 
add a constant C to specify the utility as: 
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The two FOCs become: 
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Equation (A7) is analytically solvable only when α1 = α2 = α, with solution: 
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where ProductLog[z] gives the principal solution for w in z = wew. 



Evidently, the constant C can be adjusted so that F2 is positive within the entire range 
–1 ≤  α ≤  1, which allows for risk seeking, risk aversion and risk neutrality. Hence,
equations (A6) to (A9) are valid for all equivalent risk attitudes for the two agents. 

Proposition A3: For two agents with equivalent risk attitudes α1 = α2 = α, which 
may be risk seeking, risk aversion or risk neutrality, the fighting effort ratio 
F1 / F2 = (a1b2 / a2b1)1/(m+1) in equation (A8) for CARA is equivalent to the ratio in 
equation (2.2) for CRRA. 

Proof: Follows from comparing equation (A8) with equation (2.2). 

As a further example of CARA, let us place the entire fighting ratio 1 2/ ( )m m m
iF F F+ into 

the exponent, which gives: 
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The two FOCs imply: 
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where risk attitude plays no role for fighting efforts, but does play a role for the utilities. 

Proposition A4: Assuming the CARA utility in equation (A10), a risk seeker becoming 
increasingly risk seeking earns a lower utility Ui and a risk avoider becoming 
increasingly risk avoiding earns a higher utility Ui, which confirms the result for CRRA 
utility in Proposition 3. 

Proof: Follows from equation (A11). 

Appendix 3 

The ratio inside the utility index 

When the contest success function is interpreted as what proportion of production is kept 
by an agent, agent i’s expected utility is: 



1
1 1 1 2 2 2

1 21 2
1, 1 1, 1, 2,

im
i

i im m
F R b F R b FU i

a aF F

α

α
−

⎡ ⎤⎛ ⎞− −
= + ≤ − ≤ ≤ =⎢ ⎥⎜ ⎟

+⎢ ⎥⎝ ⎠⎣ ⎦
 (A12) 

Calculating the FOCs ∂U1 / ∂F1 = 0, ∂U2 / ∂F2 = 0 and solving with respect to F1 and F2 
gives: 
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Inserting equation (A13) into equation (A12) gives: 
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Propositions 1–3 become: 

Proposition A5: F1 and F2 do not depend on risk attitudes. 

Proof: Follows from equation (A13). 

Proposition A6: (a) With equal cost parameters a1 / b1 = a2 / b2, a risk seeker and 
risk avoider fight equally much, F1 = F2. (b) If a1 / b1 > a2 / b2, which occurs when agent 
1 has high unit cost a1 of production and low unit cost b1 of fighting, agent 1 fights more 
than agent 2. (c) Increasing decisiveness of fighting gives lower discrepancy in fighting 
between the risk seeker and the risk avoider. 

Proof: (a) Follows from equation (A13). (b) to (c) Equivalent to the proof of 
Proposition 2. 

Proposition A7: A risk seeker becoming increasingly risk seeking earns a lower utility Ui 
and a risk avoider becoming increasingly risk avoiding earns a higher utility Ui. 

Proof: Follows from the proof of Proposition 3. 

Inserting R1 = R2 = R, a1 = a2 = a, b1 = b2 = b, α1 = α2 = α into equations (A12) to (A13) 
gives: 
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Equivalent to the paragraph after equations (2.5) to (2.6), the average utility of a risk 
seeker with risk parameter –α and a risk avoider with risk parameter α is always higher 
than or equal to the utility of a risk neutral agent with risk parameter 0, where the agents 
have otherwise equal parameters. 

Contrary to equation (2.2), in equation (A13), the agents’ expenditures F1 and F2 on 
fighting are independent of the agents’ risk attitudes α1 and α2. When α1 = α2, F1 / F2 in 
equation (A13) and equation (2.2) are the same. α1 = α2 < 0 causes F2 to be larger in 
equation (A13) than in equation (2.2), while α1 = α2 > 0 causes F2 to be smaller in 
equation (A13) than in equation (2.2). This implies that Propositions A5 and A6(a) differ 
from Propositions 1 and 2(a), while Propositions A6(b) to (c) and A7 are equivalent to 
Propositions 2(b) to (c) and 3. 

Notation 

Ri Agent i’s resource 

Ei Agent i’s productive effort 

Fi Agent i’s fighting effort 

ai Agent i’s unit cost of production 

bi Agent i’s unit cost of fighting 

m Decisiveness of fighting 

αi Agent i’s risk parameter 

Ui Agent i’s expected utility 

n Number of agents, n = nR + nS 

nR Number of risk seekers 

nS Number of risk avoiders 

RR Risk seeker’s resource 

RS Risk avoider’s resource 

FiR Risk seeker i’s fighting effort 

FiS Risk avoider i’s fighting effort 

aR Risk seeker’s unit cost of production 

aS Risk avoider’s unit cost of production 

bR Risk seeker’s unit cost of fighting 

bS Risk avoider’s unit cost of fighting 

αR Risk seeker’s risk parameter 

αS Risk avoider’s risk parameter 

cP Production boost parameter 

cF Fighting boost parameter 

UiR Risk seeker i’s expected utility 

UiS Risk avoider i’s expected utility 




