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GAME THEORETIC ANALYSIS OF TWO-PERIOD-DEPENDENT
DEGRADED MULTISTATE RELIABILITY SYSTEMS

KJELL HAUSKEN

A system of two components is analyzed as a two-period game. After period 1 the system
can be fully operational, in two states of intermediate degradation, or fail. Analogously
to changing failure rates in dependent systems analyzed with Markov analysis, unit costs
of defense and attack, and contest intensities, change in period 2. As the values of the
two intermediate states increase from zero which gives the series system, towards their
maxima which gives the parallel system, the defender becomes more advantaged, and
the attacker more disadvantaged. Simulations illustrate the players’ efforts in the two
time periods and utilities dependent on parametric changes. The defender withdraws
from defending the system when the values of both degraded states are very low. The
attacker withdraws from attacking the system when the values of both degraded states
are very high. In the benchmark case the defender prefers the one-period game and the
attacker prefers the two-period game, but if the attacker’s unit cost of attack is large for
one component, and the value of the degraded system with this component operational
is above a low value, the defender prefers the two-period game to obtain high utility
in period 2 against a weak attacker. When the values of the degraded states are above
certain low values, the players exert higher efforts in period 1 of a two-period game than
in a one-period game, as investments into the future to ensure high versus low reliability
in period 2.

Keywords: Two-period game; dependent system; defense; attack; contest success func-
tion; reliability theory; multi-state system; degraded system; intermediate functioning;
series system; parallel system.

1. Introduction

As the world becomes more complex, its reliable functioning becomes more chal-
lenging to ensure. After the September 11, 2001 attack it became more evident that
whereas one set of players works to ensure system reliability, another set of players
opposes system reliability. Unfortunately, systems analysis has a long tradition of
analyzing only one player, i.e., the defender maximizing system reliability facing
exogenously fixed factors related to technology, nature, weather, culture, etc.

From a game-theoretic point of view, the current state of affairs where the sys-
tems that surround us are analyzed mainly with nongame-theoretic tools, is highly
unsatisfying. This paper thus provides a game-theoretic analysis. A system consists
of components. Examples are roads, bridges, tunnels, power supply, telecommunica-
tions systems, water supply, political and economic institutions, businesses, schools,
hospitals, recreational facilities, and other assets.
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Components can be arranged in series, parallel, or various mixed types. For
example, a single telecommunication line may run in series through two routers,
both of which have to function for the system to function. Further, two parallel
bridges may cross a river, one of which is needed to ensure transport across the
river. A plethora of strategic considerations abound for such systems. The defender
may defend one component, the other component, or both components with some
relative emphasis, and analogously for the attacker. Further, the players can choose
their efforts in the present, or in the future dependent on the outcome of the strate-
gic interactions in the present. For example, the defender of a telecommunication
line will be intent on protecting both routers in the present since if one fails, the line
will not function in the future. Further, if one bridge is destroyed in the present,
the other bridge may get better protection in the future, but the other bridge may
also get attacked more fiercely in the future if the attacker is intent on blocking
transport across the river.

The main contribution of the paper vis-a-vis the existing literature is to provide
an understanding of how the strategic interactions in the present are linked to the
strategic interactions in the future for systems such as those described above. This is
done by analyzing a defender and an attacker in a two-period game. The first period
expresses the present and the second period expresses the future. One or several
components can fail dependent on the strategic interactions in the first period.
This in turn impacts the strategic interactions in the second period. Furthermore,
looking ahead to the second period before the game starts influences the players’
strategies in the first period.

Systems where the future states of affairs depend on the present states of affairs
are referred to as dependent systems (Ebeling, 1997). Dependent systems have a
long tradition of being analyzed using Markov analysis, which is unrelated to game
theory.a A simple definition of a stochastic process with the Markov property is

aFirst the number of system states is specified (for example, in a system with n components where
each component can operate or fail, there are 2n states). Second the reliability is determined based
on the system configuration. Third a rate diagram is designed where each node represents a state
and each branch with an arrow specifies a transition rate (failure rate) expressed with a parameter.
Fourth an equation is formulated for the probability of being in each state at time t + ∆t which
equals the probability of being in the state at time t, adding or subtracting the probabilities of
moving into or out of the state from neighboring states when accounting for the transition rates.
Fifth each equation is reformulated as a differential equation. The number of equations equals the
number of states minus 1. The probability of being in the last state equals 1 minus the sum of the
probabilities of being in the other states. Examples of systems analyzed with Markov analysis are
load sharing systems, standby systems, degraded systems, and multistate systems (Ebeling, 1997,
108ff). For example, if one component fails in a load sharing system, the failure rates increase for
the remaining components. A standby component may experience a low or zero failure rate in its
standby state, and a higher failure rate when operational (which may or may not equal the failure
rate of the originally operating component).



May 25, 2012 14:3 WSPC/0219-1989 151-IGTR 00298

that the conditional probability distribution of future states of the process depends
only upon the present state.b Markov analysis has proven highly successful applied
to reliability analysis. This paper is concerned with two limitations of Markov anal-
ysis. First, enabling each of two players to choose strategies in each of two-periods
violates the Markov property since players are free to choose future strategies that
are not conditioned on their present strategies. Generally, any theory involving
intentional action (e.g., game theory) violates the Markov property. Second, this
paper relaxes the constraint in Markov modeling where the transition rates between
different states are kept constant through time.

This paper enables players to exert efforts to impact the system reliability as
time progresses. That is, we analyze how players choose strategies through time
to impact the reliability of dependent systems. We consider a dependent system
of two independent components which can be in four states assigned four different
values, i.e., fully operational, two states of intermediate degradation, and failure.
The formulation is general enough to comprise the series system, the parallel sys-
tem, allowing arbitrary permutations of the values of the two intermediate states.
The system is analyzed for general parameter values with backward induction as a
two-period game. We determine how two players make strategic decisions through
time to impact the system reliability. Players allocate resources in the sense of sub-
stituting efforts across components and across time. Determining the nature of such
substitutions is of substantial interest, see e.g., Enders and Sandler (2003), Hausken
(2006), and Keohane and Zeckhauser (2003).

The paper answers questions such as whether players exert high efforts in the
first period to position themselves for the second period, whether they are so
weakened that they withdraw from the game, or whether they prefer the game
to last one-period or two-periods. One player, the defender, maximizes the system
reliability. The other player, the attacker, minimizes the system reliability. Each
component’s reliability depends on the relative levels of defense and attack and
on the contest intensity. Each player’s utility depends additively on the system
reliability in the two-periods, with a discount parameter varying between 0 and
1 for the second period. The unit costs of defense and attack, and the contest
intensities, vary across components, and change dependent on the system state,
analogously to failure rates changing in Markov analysis dependent on the system
state.

The need to consider complex systems which cannot be represented with com-
binations of series and parallel configuration is substantial. Simon (1969) suggests
handling complexity applying “near decomposability.” Bier (1995) apply aggrega-
tion to reduce the number of parameters in complex systems. Ebeling (1997, 90ff)
proposes decomposition or enumeration. Hausken (2010) analyzes complex systems
applying game theory. Let us consider a few examples.

bAnother definition is that of memorylessness where, conditional on the present state of the system,
its future and past are independent. See e.g., Taylor and Karlin (1998) for further definitions.
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For example, assume that a military system consists of two components which
are an army and an air force. If the army’s equipment (tanks, etc.) is destroyed
through an attack, the system becomes less operational, but not nonoperational.
The capacity for ground maneuvers is reduced, which can to some extent be com-
pensated for by the air force’s air strikes and use of helicopters. In contrast, if the
air force’s equipment (airplanes, etc.) is destroyed, the system also becomes less
operational. Air strikes cannot be conducted, but pilots can be assigned for ground
maneuvers. If both the army and air force are eliminated, the system fails. This
system is neither a series nor parallel system since none of these allow for interme-
diate degrees of operation. However, if the intermediate degrees of operation are
removed, the failure criterion “the system fails if and only if ‘army’ AND ‘air force’
fail” expresses an AND gate relative to a parallel system. Analogously, if the inter-
mediate degrees of operation are removed, the failure criterion “the system fails if
‘army’ OR ‘air force’ fail” expresses an OR gate relative to a series system.

Alternatively, envision a human with one lung or one kidney. It has proven
possible to ascend the world’s Seven Summits (including Mount Everest) and com-
plete an Ironman with one lung (Sean Swarner, Ohio). Hence a human can be
highly functional in many regards with one lung. However, reports also exist of
substantial degradation when possessing only one lung, especially during activities
requiring lung capacity. These two examples cannot be represented with combined
series/parallel configurations. The series system is fully operational if both compo-
nents are operational, and otherwise fails. The parallel system is fully operational
if at least one component is operational, and otherwise fails.

Other examples are a computer with two processors which may function par-
tially if one processor fails, a two-engine aircraft which may operate in an interme-
diate state if one engine fails, a racecar driver with two mechanics with different
competencies who may race partially successfully if one mechanic falls sick, and
a stadium with two entrances which may operate to some extent if one entrance
gets blocked (spreading entries over a longer time period). See e.g., Ebeling (1997,
117ff) for further examples in the literature on degraded systems. These examples
cannot be represented with combined series/parallel configurations. The series sys-
tem is fully operational if both components are operational, and otherwise fails.
The parallel system is fully operational if at least one component is operational,
and otherwise fails.

In this paper a model is presented which describes both a military force with
an army and an air force, a person with two lungs, and the other examples. A
system with two components is considered. If both components operate, the system
is in a successful state which is assigned a high value. If both components fail, the
system is in a failure state which is assigned a low value. The innovation of this
paper is to assign one intermediate value to the system if one component operates
and the other fails, and to assign one possibly different intermediate value to the
system if one component fails and the other operates. The system can thus be in
four states. Conventional series/parallel reliability theory describes this system as
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a series system if the two intermediate values equal the value if both components
fail, describes this system as a parallel system if the two intermediate values equal
the value if both components operate, and otherwise offers no description.

For the military force assume that if the army operates and the air force fails,
then the system value of this state is estimated (by expert opinion) to be 75% of
the system value if both the army and the air force operate. Further assume that
if the army fails and the air force operates, then the system value of this state is
estimated to be 40% of the system value if both the army and the air force operate.
These two estimates are realistic in situations where the army is more important
than the air force. Assume for the person with two lungs that if one lung operates
and the other lung fails, then the system values of these two states are estimated
to be 60% of the system value if both lungs operate. This paper shows for such
systems how a defender and an attacker should exert efforts to defend and attack
two components when accounting for the four system values.

For multi-state system reliability, see Lisnianski and Levitin (2003). For
degraded systems see Ebeling’s (1997, 117ff) Markov analysis of a system which
can be fully operational, degraded, ot failed. See Zio and Podofillini (2003) for
Monte Carlo simulation of the effects of different system performance levels on
the importance of multi-state components. Ramirez-Marquez and Coit (2005) use
Monte-Carlo simulation to approximate multi-state two-terminal reliability. Next
step is to incorporate strategic defenders and attackers into the analysis of multi-
state and degraded systems.

In earlier research Levitin (2007) considers the optimal element separation and
protection in a complex multi-state series–parallel system, and suggests an algo-
rithm for determining the expected damage caused by a strategic attacker. Hausken
and Levitin (2009) present a minmax optimization algorithm. The defender min-
imizes the maximum damage the attacker can inflict thereafter. The defender
has multiple defense strategies which involve separation and protection of sys-
tem elements. The attacker also has multiple attack strategies against different
groups of system elements. A universal generating function technique is applied
for evaluating the losses caused by system performance reduction. Levitin and
Hausken (2009) introduce three defensive measures, i.e., providing redundancy,
protecting genuine elements, and deploying false elements and analyze the opti-
mal resource distribution among these measures in parallel and k-out of-N sys-
tems. Levitin (2009) considers optimizing defense strategies for complex multi-state
systems.

Azaiez and Bier (2007) consider the optimal resource allocation for security in
reliability systems. Bier et al. (2005) analyze the protection of series and parallel
systems with components of different values. They specify optimal defenses against
intentional threats to system reliability, focusing on the tradeoff between investment
cost and security. Bier et al. (2006) assume that a defender allocates defense to a
collection of locations while an attacker chooses a location to attack. Hausken (2008)
considers defense and attack for series and parallel reliability systems. Dighe et al.
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(2009) consider secrecy in defensive allocations as a strategy for achieving more
cost-effective attacker deterrence.

Section 2 presents the model. Section 3 solves the model. Section 4 analyzes
three special cases. Section 5 simulates the solution. Section 6 concludes.

2. The Model

Consider a system of two independent components i = A, B. A defender and an
attacker play a two-period game. In both periods both players make their strategic
choices simultaneously and independently. Before the second period both players
know the strategies chosen and the outcome of the first period. In period j, j = 1, 2,
the defender exerts effort tij at unit cost ci to defend component i, where tij is the
defender’s free choice variable. Analogously, the attacker exerts effort Tij at unit cost
Ci to attack component i, where Tij is the attacker’s free choice variable. Defense
and attack are interpreted broadly. Defense means protecting against the attack,
and maintaining and adjusting the system to prevent that it breaks down. Attacking
means attacking the system, which may get aided by natural factors (technology,
weather, temperature, humidity, etc.) to ensure that the system breaks down. We
formulate the reliability pij of component i in period j as a contest between the
defender and attacker. The most common functional form is the ratio form (Tullock,
1980)

pij =
tmi

ij

tmi

ij + T mi

ij

, (1)

where ∂pij/∂tij > 0, ∂pij/∂Tij < 0, and mi ≥ 0 is a parameter for the intensity of
the contest. Equation (1) is commonly used in the rent seeking literature where the
rent is an asset which corresponds to reliability in this paper. There is conflict over
reliability between the defender and the attacker, just as there is conflict over a rent
between contending players. See Tullock (1980) for the use of mi, Skaperdas (1996)
for an axiomatization, Nitzan (1994) for a review, Hirshleifer (1995) for illustration,
usefulness, and application, and Hausken (2005) for recent literature. At the limit,
with infinitely much defensive effort, and finite offensive effort, component i is 100%
reliable. The same result follows with finite defensive effort and zero offensive effort.
At the other limit, with infinitely much offensive effort, and finite defensive effort,
component i is 0% reliable. The same result follows with finite offensive effort and
zero defensive effort. The sensitivity of pij to tij increases as mi increases. When
mi = 0, the efforts tij and Tij have equal impact on the reliability regardless of
their size which gives 50% reliability, pij = 1/2. 0 < mi < 1 gives a disproportional
advantage of exerting less effort than one’s opponent. When mi = 1, the efforts have
proportional impact on the reliability. mi > 1 gives a disproportional advantage
of exerting more effort than one’s opponent. This is often realistic in praxis, as
evidenced by benefits from economies of scale. Finally, mi = ∞ gives a step function
where “winner-takes-all.”
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Table 1. Two component system in four states.

State Component A Component B Reliability Value

1 Operates Operates pA1pB1 s
2 Fails Operates (1 − pA1)pB1 dB

3 Operates Fails pA1(1 − pB1) dA

4 Fails Fails (1 − pA1)(1 − pB1) f

The system with two components can be in the four states shown in Table 1 in
period 1.

Each state has a probability shown in the reliability column. The four states
have values s, dB , dA, f , respectively, where s ≥ di ≥ 0 ≥ f . If component A fails
while component B operates, the system is degraded at an intermediate state with
value dB . Conversely, if component B fails while component A operates, the system
is degraded at an alternative intermediate state with value dA. If both components
fail, the value is f which is zero or negative.

The series system is expressed with s > 0 and di = f = 0, which operates only
in state 1, and fails in states 2, 3, 4. The defender’s utility is u = spA1pB1−cAtA1−
cBtB1, and the attacker’s utility is U = s(1−pA1pB1)−CATA1−CBTB1. The parallel
system is expressed with s = di >0 and f = 0 which operates in states 1, 2, 3, and
fails in state 4. The defender’s utility is u = s[1−(1−pA1)(1−pB1)]−cAtA1−cBtB1,
and the attacker’s utility is U = s(1 − pA1)(1 − pB1) − CATA1 − CBTB1. We thus
present the general reliability

p(pAj , pBj) = pAjpBj +
dB

s
(1 − pAj)pBj +

dA

s
pAj(1 − pBj)

+
f

s
(1 − pAj)(1 − pBj). (2)

The players’ first period utilities are

u1 = sp(pA1, pB1) − cAtA1 − cBtB1,
(3)

U1 = s(1 − p(pA1, pB1)) − CATA1 − CBTB1.

The players’ first period strategic choices determine both their first period utili-
ties and the system state at the start of period 2. Each time period can be short
or long, e.g., one minute, one month, one shift, one season. Components are not
repairable.c Hence the strategies the players choose for period 1 have to account
for the combinations of possibilities in which the components may operate or fail in
the two-periods. If one or both components fail in period 1, since the failed compo-
nent(s) cannot be repaired or replaced before the commencement of period 2, the
players need to assess their defense and attack in period 2 to account for which of

cThe justification for this assumption is that repairing or replacing failed components can be
complicated for economical and logistical reasons, and may require competence and time, which
we assume is impossible both during the periods and in the transition from period 1 to period 2.
Future research may model how components can be repaired.
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the four states follows after period 1. In period 2 the players also make their strate-
gic choices simultaneously and independently, knowing the outcome and choices in
period 1.

If both components operate after period 1 (state 1), then the unit costs of
defense and attack remain unchanged and the players make strategic choices tA2,
tB2, TA2, and TB2. If component A fails (state 2), we assume that the unit costs
of defense and attack for component B change to cBF and CBF , and the contest
intensity changes to mBF . Analogously, if component B fails (state 3), the unit costs
of defense and attack for component A change to cAF and CAF , and the contest
intensity changes to mAF . The contest intensity is

pi2F =
tmiF

i2F

tmiF

i2F + T miF

i2F

, (4)

where ∂pij/∂tij > 0, ∂pij/∂Tij < 0, miF ≥ 0, and ti2F and Ti2F are the efforts.
If period 2 starts in state 2, the system has been degraded to dB in period 1.
The defender exerts effort tB2F to obtain high contest success for component B. In
contrast, in state 2 the attacker enjoys a guaranteed benefit s−dB from the degra-
dation and exerts effort TB2F to obtain low contest success for component B. The
reasoning if component B fails (state 3) is analogous. Finally, if both components
fail in the first period (state 4), the defender gets the failure utility f , the attacker
gets the utility s−f , and no efforts are exerted. The defender and attacker values
after period 2 are shown in Table 2.

The players’ utilities over the two-periods are

u = sp(pA1, pB1) − cAtA1 − cBtB1 + δpA1pB1(sp(pA2, pB2) − cAtA2 − cBtB2)

+ δ(1 − pA1)pB1(dBpB2F − cBF tB2F ) + δpA1(1 − pB1)(dApA2F − cAF tA2F )

+ δ(1 − pA1)(1 − pB1)(f − 0),

U = s(1 − p(pA1, pB1)) − CATA1 − CBTB1 + ∆pA1pB1(s(1 − p(pA2, pB2)) (5)

−CATA2 − CBTB2) + ∆(1 − pA1)pB1(s − dB + dB(1 − pB2F ) − CBF TB2F )

+ ∆pA1(1 − pB1)(s − dA + dA(1 − pA2F ) − CAF TA2F )

+ ∆(1 − pA1)(1 − pB1)(s − f − 0),

where δ and ∆ are time discount parameters.

Table 2. Defender and attacker values after period 2.

Defender
Reliability value after Attacker value

State Component A Component B after period 1 period 2 after period 2

1 Operates Operates p(pA1, pB1) sp(pA2, pB2) s(1 − p(pA2, pB2))
2 Fails Operates (1 − pA1)pB1 dBpB2F s − dB + dB(1 − pB2F )
3 Operates Fails pA1(1 − pB1) dApA2F s − dA + dA(1 − pA2F )
4 Fails Fails (1 − pA1)(1 − pB1) f s − f
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3. Solving the Model

The two players have four strategic choice variables in period 1, and eight strategic
choice variables in period 2. We analyze pure strategy Nash equilibria. We solve
the game with backward induction starting with period 2. Differentiating gives
∂u/∂tA2 = ∂u/∂tB2 = ∂u/∂tA2F = ∂u/∂tB2F = 0 and ∂U/∂TA2 = ∂U/∂TB2 =
∂U/∂TA2F = ∂U/∂TB2F = 0. Solving the eight equations gives

TA2 =
mA

(
CA

cA

)mA
(
dA − f + (s − dB)

(
CB

cB

)mB
)

CA

(
1 +

(
CA

cA

)mA
)2 (

1 +
(

CB

cB

)mB
) ,

TB2 =
mB

(
CB

cB

)mB
(
dB − f + (s − dA)

(
CA

cA

)mA
)

CB

(
1 +

(
CB

cB

)mB
)2 (

1 +
(

CA

cA

)mA
) ,

TA2F =
mAF dA

(
CAF

cAF

)mAF

CAF

(
1 +

(
CAF

cAF

)mAF
)2 , TB2F =

mBF dB

(
CBF

cBF

)mBF

CBF

(
1 +

(
CBF

cBF

)mBF
)2 ,

tA2 =
CA

cA
TA2, tB2 =

CB

cB
TB2, tA2F =

CAF

cAF
TA2F , tB2F =

CBF

cBF
TB2F ,

pA2 =

(
CA

cA

)mA

1 +
(

CA

cA

)mA
, pB2 =

(
CB

cB

)mB

1 +
(

CB

cB

)mB
, pA2F =

(
CAF

cAF

)mAF

1 +
(

CAF

cAF

)mAF
,

pB2F =

(
CBF

cBF

)mBF

1 +
(

CBF

cBF

)mBF
,

p(pA2, pB2) =
s
(

CA

cA

)mA
(

CB

cB

)mB

+ dB

(
CB

cB

)mB

+ dA

(
CA

cA

)mA

+ f

s
(
1 +

(
CA

cA

)mA
)(

1 +
(

CB

cB

)mB
) .

(6)

The assumption s ≥ di ≥ 0 ≥ f implies TA2 ≥ 0 and TB2 ≥ 0, and thus all the
expressions in (6) are positive. The second-order conditions are satisfied when(

mj − 1
mj + 1

)1/mj

<
Cj

cj
<

(
mj + 1
mj − 1

)1/mj

, j = A, B, AF, BF (7)

which is a range stretching from below to above Cj/cj = 1. As an example, (7)
is always satisfied with an infinitely large range for the commonly used contest
intensity mj = 1.

Interestingly, the second period strategic choice variables do not depend on the
first period strategic choice variables, only on the parameters. This means that the
two-period game gives the same result as a corresponding one-period game where
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the players choose their 12 strategies simultaneously and independently. The 
intuition for this result is that the players’ strategic choices in period 2 are 
independent for the four states that are possible after period 1. For state 1 the 
strategic choice variables are tA2, t B2, T A2, T B2. For state 2 the strategic choice 
variables are tB2F and TB2F . For state 3 the strategic choice variables are tA2F 

and TA2F . For state 4 there are no strategic choice variables since the system 
fails. Hence the players do not need to know the outcome of period 1 in order to 
play period 2. However, the probabilities of the four states depend on how 
period 1 is played, so the players account for the outcome of period 2 for each of 
the four states when determining their strategies in period 1. Thus the 
expressions for tA2, t B2, T A2, T B2 are valid for a one-period system of two 
components as described in Table 1. Analogously, the expressions for 
tA2F , t B2F , T A2F , T B2F are valid for a one-period system of one target.

We rewrite (5) as

u = f(1 + δ) + q1pA1pB1 + q2pB1 + q3pA1 − cAtA1 − cBtB1,
(8)

U = (s − f)(1 + ∆) − Q1pA1pB1 − Q2pB1 − Q3pA1 − CATA1 − CBTB1,

where

q1 = s − dB − dA + f + δ{sp(pA2, pB2) − cAtA2 − cBtB2 − dBpB2F + cBF tB2F

− dApA2F + cAF tA2F + f},
q2 = dB − f + δ{dBpB2F − cBF tB2F − f},
q3 = dA − f + δ{dApA2F − cAF tA2F − f},

Q1 = s − dB − dA + f + ∆{sp(pA2, pB2) + CATA2 + CBTB2 − dBpB2F

−CBF TB2F − dApA2F − CAF TA2F + f},
Q2 = dB − f + ∆{dBpB2F + CBF TB2F − f},
Q3 = dA − f + ∆{dApA2F + CAF TA2F − f}. (9)

Solving the first-order conditions presented in (A.1) in Appendix A when mA =
mB = 1 gives

TA1 =
q3 + (q1 + q3)QB

cA(1 + QA)2(1 + QB)
, TB1 =

q2 + (q1 + q2)QA

cB(1 + QB)2(1 + QA)
,

tA1 = QATA1, tB1 = QBTB1,

pA1 =
QA

1 + QA
, pB1 =

QB

1 + QB
, (10)

u = f(1 + δ) +
q1QAQB

(1 + QA)(1 + QB)
+

q2QB

1 + QB
+

q3QA

1 + QA
− cAQATA1 − cBQBTB1,

U = (s − f)(1 + ∆) − Q1QAQB

(1 + QA)(1 + QB)
− Q2QB

1 + QB
− Q3QA

1 + QA
− CATA1 − CBTB1,
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where

QB =
QL +

√
QR1 + QR2

2cB{CA(Q1 + Q2)(q1 + q3) + cAQ2(Q1 + Q3)} ,

QL = CACBq1(q1 + q2) + CA{CB(q1 + q2) − cB(Q1 + Q2)}q3

+ cA{CBq2(Q1 + Q3) − cBQ2Q3},
QR1 = 4cBCB{CA(q1 + q2)q3 + cAq2Q3}{CA(Q1 + Q2)(q1 + q3)

+ cAQ2(Q1 + Q3)},
QR2 = [CA{CB(q1 + q2)(q1 + q3) − cB(Q1 + Q2)q3} + cA{CBq2(Q1 + Q3)

− cBQ2Q3}]2,

QA =
CA{q3 + (q1 + q3)QB}

cA{Q3 + (Q1 + Q3)QB} . (11)

Appendix A shows that the second-order conditions are always satisfied when mA =
mB = 1.

Let us finally consider boundary solutions. The interior solution above is valid
when u ≥ 0 and U ≥ 0 in (10). When u < 0 or U < 0, no pure-strategy Nash
equilibrium exists. Analyzing mixed strategy equilibria is beyond the scope of this
paper. The next sections show that u < 0 is possible, e.g., for the series system
when the defender is disadvantaged with a large unit effort cost, and that U < 0
is possible, e.g., for the parallel system when the attacker is disadvantaged with a
large unit effort cost. The case u < 0 is disastrous for the defender since it cannot
earn positive utility. We assume that the defender withdraws in this case, exerting
zero effort and earning zero utility, while the attacker exerts negligible effort earning
utility s(1+∆). Of course, if the defender knows that the attacker exerts negligible
effort, the defender can exert positive effort and earn positive utility. But, if the
attacker knows that, it can exert positive effort and earn positive utility. In the
absence of a pure-strategy Nash equilibrium exists, the assumption of withdrawal is
plausible. Analogously, for the case U < 0, we assume that the attacker withdraws
exerting zero effort and earning zero utility, while the defender exerts negligible
effort earning utility s(1 + δ).

4. Analyzing Three Special Cases

Let us consider three special benchmark cases with straightforward interpretations.
The first is the egalitarian case mi = miF = 0 causing zero efforts and thus 50%
probability of failure for each component in each period. This case illustrates how
the players’ utilities depend on the system configuration (series, parallel, etc) and
the weights assigned to period 2 expressed with δ and ∆. Cases 2 and 3 assume
δ = ∆ = 0, which makes period 2 irrelevant. Case 2 assumes that the defender and
attacker have the same unit effort cost for each component. Hence the players are
equally strong (in the sense that no one is advantaged in costs of exerting effort)
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and we determine how the efforts and utilities depend on the system configuration.
Case 3 assumes that the defender has the same unit defense cost for both compo-
nents, and that the attacker has the same unit attack cost for both components.
This case shows how differently advantaged players in terms of unit effort cost exert
different efforts and earn different utilities dependent on the system configuration.
δ > 0 and ∆ > 0 cause analytical expressions which are too voluminous to be
interpreted, but are illustrated with simulations in the next section.

First, inserting mi = miF = 0 into (1)–(9) gives

tij = Tij = ti2F = Ti2F = 0, pij = pi2F =
1
2
, p(pAj , pBj) =

s + dB + dA + f

4s
,

u =
s + dB + dA + f

4
+ δ

(
s + 3dB + 3dA + 5f

16

)
, (12)

U =
3s − dB − dA − f

4
+ ∆

(
15s − 3dB − 3dA − 5f

16

)
, u + U = (1 + δ + ∆)s.

The utilities are not affected by efforts in egalitarian contests, so the players choose
zero efforts which cause 50% reliability and zero deadweight loss. The utilities are
positive in both periods.

The series system, di = f = 0, causes u = s/4+ δs/16 and U = 3s/4+15∆s/16
since the defender is disadvantaged and the attacker is advantaged. As dA and
dB increase giving value to the intermediate states, the defender gets increasing
advantage and the attacker decreasing advantage. Increasing dA and dB from 0
to s gives a transition from the series system to the parallel system where u =
3s/4+7δs/16 and U = s/4+9∆s/16. In the one-period game where δ = ∆ = 0 the
players’ utilities s/4 and 3s/4 are interchanged when replacing the series system
with the parallel system. Such interchange does not occur in the two-period game
where δ = ∆ = 1. The defender gets the low utilities s/16 and 7s/16 in period 2 of
the series and parallel systems, respectively. In contrast, the attacker gets the high
utilities 15s/16 and 9s/16 in period 2 of the series and parallel systems, respectively.
The reason is the probability that one or both components fail in the transition
from period 1 to period 2, which advantages the attacker. As mi increases above
zero, the sum of u and U is less than (1 + δ + ∆)s since the players choose positive
efforts.

Second, inserting Ci = ci and δ = ∆ = 0 into (6)–(11) gives

tA1 = TA1 =
s + dA − dB − f

8cA
, tB1 = TB1 =

s + dB − dA − f

8cB
, pi1 =

1
2
,

p(pA1, pB1) =
s + dB + dA + f

4s
, (13)

u =
dB + dA + 2f

4
, U =

2s − dB − dA

4
, u + U =

s + f

2
.

The equal unit costs cause the same player efforts. With intermediate degrada-
tion levels, the players earn equal utilities u = U = (dB + dA + 2f)/4 when
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s = dB + dA + f . Equal unit effort costs for the defender and attacker implies that
an interior solution always exists in (13).

Third, inserting ci = c, Ci = C, di = d, f = 0, δ = ∆ = 0 into (6)–(11) gives

Ti1 =

(
1 − C

c

)
d + C

c s

c
(
1 + C

c

)3 , ti1 =
C

c
Ti1, pi1 = p(pA1, pB1) =

C
c

1 + C
c

,

(14)

u =

(
C
c

)2 ((
C
c − 1

)
s + 4d

)
(
1 + C

c

)3 , U =

(
3C

c + 1
)
s − 4C

c d(
1 + C

c

)3 .

The ratio C/c is preserved through the strategies, the contest successes, and the
utilities. The player with the lowest unit effort cost exerts the highest effort. The
effort increases in s. When the attacker is advantaged with C < c, the attacker
exerts higher effort to attack the challenging parallel system (d = s) compared with
attacking the series system (d = 0). The defender prefers the parallel system where
d = s, and hence u increases in d and U decreases in d. The attacker prefers the
series system where d = 0. Regarding boundary solutions, the defender withdraws
e.g., when d = 0 (series system) and the defender is disadvantaged with c > C.
The attacker withdraws e.g., when d = s (parallel system) and the attacker is
disadvantaged with C > c.

5. Simulating the Solution

Figure 1 plots the 12 efforts tA1, tB1, tA2, tB2, tA2F , tB2F , TA1, TB1, TA2, TB2,
TA2F , TB2F and two utilities u and U as functions of the value of the intermediate
degradation level dA for various dB when ci = Ci = ciF = CiF = mi = miF =
δ = ∆ = s = 1, f = 0. The titles on the vertical axis are as specified in the
legend box. The symmetry in the top two panels causes equal period 2 efforts
ti2 = Ti2 = 0.125 since dA = dB , whereas ti2F = Ti2F = di/4 increases linearly in
di. The defender is disadvantaged in a series system with dA = dB = 0 since both
components have to be defended for the system to operate. The defender withdraws
when dA = dB < 0.07 earning zero utility when the degraded system has low value.
The defender’s period 1 effort increases from 0.10 to 0.20 as dA = dB increases from
0.07 to 1. It becomes more important for the defender to protect both elements in
period 1 as dA = dB increases, in the hope that both survive until period 2. The
advantaged attacker’s period 1 effort is higher. If the attacker succeeds destroying
both components in period 1, it earns a large utility. The large period 1 efforts by
the two players reflect a finding also found in the conflict literature (Hausken, 2007),
where both players exert large efforts in the early periods of a repeated game to
reap benefits in the later periods of the game. The attacker suffers lower utility as
the value dA = dB of the degraded system increases. The division of the attacker’s
utility U with 2 is for scaling purposes.

The middle panels assume dB = 0 which disadvantages the defender more
than in the top panels. The defender withdraws earning zero utility when
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Fig. 1. Efforts and utilities as functions of dA for various dB when ci = Ci = ciF = CiF = mi =
miF = δ = ∆ = s = 1, f = 0. Top panels: dA = dB . Middle panels: dB = 0. Bottom panels:
dB = 1.

dA = dB < 0.13. The low dB causes higher efforts for component A in both peri-
ods than when dA = dB, and the efforts increase in the value of dA. The efforts
tAF = TAF increase most, and the efforts for component B decrease.

The bottom panels assume dB = 1 which disadvantages the attacker maximally
in the parallel system when dA = dB = 1. The defender always earns positive
utility. The high dB causes higher efforts for component B, and lower efforts for
component A, than in the middle panels.

The last two curves marked with × and + in the rightmost panels are the
defender and attacker utilities when period 2 is discounted to have no value, δ =
∆ = 0. This effectively means that period 1 is the last period and the period 1 efforts
in the rightmost panels can be read off from the period 2 efforts in the leftmost
panels, ti1 = ti2 and Ti1 = Ti2. Equation (6) does not depend on δ and ∆ and hence
the period 2 efforts remain unchanged as δ and ∆ decrease from 1 to 0. In all the
panels the defender prefers to discount period 2 to δ = ∆ = 0, while the attacker
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does not. The reason, as expressed in Sec. 4, is the positive probability that one or
both components fail in the transition from period 1 to period 2, which advantages
the attacker. In the top panels the defender’s period 1 efforts 0.125 when δ = ∆ = 0
are lower than when δ = ∆ = 1 when dA = dB > 0.25. When dA = dB > 0.25, the
degraded system is valuable for the defender which exerts high efforts in period 1
when period 2 is important. Such efforts are costly causing low defender utility in
the two-period game. When dA = dB < 0.25, the defender exerts higher efforts in
the one-period game to win the game. In the middle panels the logic is the same for
component A, but for component B where dB = 0 the defender exerts higher efforts
in the one-period game to win the game. In the bottom panels where dB = 1 the
defender exerts higher efforts in period 1 in the two-period game with δ = ∆ = 1
since period 2 is important.

Figure 2 assumes the same parameter values as in Fig. 1 but makes the attacker
disadvantaged with triple unit cost CA = CAF = 3 of attacking component A.

Fig. 2. Efforts and utilities as functions of dA for various dB when ci = CB = ciF =CBF =
mi = miF = δ = ∆ = s = 1, CA = CAF = 3, f = 0. Top panels: dA = dB . Middle panels: dB = 0.
Bottom panels: dB = 1.
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The attacker thus exerts lower efforts for component A, earns lower utility. The
defender never withdraws. The efforts for component A are constant or decrease,
and the efforts for component B decrease. The attacker substitutes into attacking
component B more than in Fig. 1 when dA is small, but as dA increases, even
that becomes costly and exerting efforts into the important component A becomes
essential. In the top panels the attacker withdraws when dA = dB > 0.97. In
the middle panels the attacker is more advantaged and does not withdraw. In the
bottom panels with dB = 1 it becomes especially important to exert high efforts
tB1 and TB1 for the valuable component B in period 1, and particularly when dA

is low. The disadvantaged attacker withdraws when dA > 0.97.
The attacker prefers the two-period game over the one-period game in all panels.

The defender prefers the two-period game when dA is above a certain low value.

Fig. 3. Efforts and utilities as functions of dA for various dB when ci = Ci = CiF = mi =
miF = δ = ∆ = s = 1, cAF = cBF = 3, f = 0. Top panels: dA = dB . Middle panels: dB = 0.
Bottom panels: dB = 1.
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The reason, in contrast to Fig. 1, is the high unit attack cost CA = CAF = 3
which disadvantages the attacker in period 2 in the contest over component A. The
defender then prefers to engage in the contest also in period 2 to reap the benefits
against a weak attacker.

Figure 3 assumes the same parameter values as in Fig. 1 except assumes triple
unit costs cAF = cBF = 3 of defending a sole component in period 2 given that
the other component failed in period 1. This assumption is analogous to Ebeling’s
(1997, 111ff) assumption of increased failure rate for one remaining component in
a load sharing system provided that the other component has failed. In the top
panels the defender withdraws when dA = dB < 0.08. In the middle panels the
especially disadvantaged defender withdraws when dA = dB < 0.16 and earns low
utility. In the bottom panels the defender does not withdraw.

The attacker prefers the two-period game over the one-period game in all panels.
In contrast, the defender prefers the one-period game over the two-period game in
all panels, and with a clearer margin than in Figs. 1 and 2. The reason is the high
unit defense cost cAF = cBF = 3 of defending one sole remaining component in
period 2 provided that the other component failed in period 1.

6. Conclusion

The paper analyzes how players choose strategies through time to impact the relia-
bility of dependent systems. The system has two independent components, each of
which can operate or fail. The system can be in four states, i.e., fully operational,
two states of intermediate degradation, and failure. Special cases are the series sys-
tem where the two degraded states have zero value, the parallel system where the
two degraded states have the same value as the fully operational state, and various
intermediately degraded systems. Each component is protected by a defender which
maximizes its reliability subtracting the defense costs, and attacked by an attacker
which maximizes its unreliability subtracting the attack costs. Each component’s
reliability depends on the relative levels of defense and attack and on the contest
intensity. Each player’s utility depends additively on the system reliability in two
time periods, with a time discount parameter for the second period. The unit costs
of effort and the contest intensities vary across players and components, and change
dependent on the system state. Such parameter changes are analogous to changes in
failure rates when dependent systems are analyzed with Markov analysis (Ebeling,
1997, 108ff). The two-period game is analyzed with backward induction.

Each player makes one effort decision for each component in period 1, and hence
four decisions are made in period 1. In period 2 four effort decisions are made if
the system is fully operational after period 1. If the system fails after period 1,
it remains in the failed state in period 2. If one component fails in period 1, unit
costs of defense and attack, and the contest intensity, change in period 2 and both
players make one effort decision for the other component in period 2. Hence eight
effort decisions are made in period 2.
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The attacker prefers the series system which fails if one component fails, and the
defender prefers the parallel system since the successful operation of one compo-
nent is sufficient. We show how the defender withdraws from defending the system
when the values of both degraded states are very low, and how the attacker with-
draws from attacking the system when the values of both degraded states are very
high.

The paper analyzes the impact of letting the values of the two intermediate
states vary between zero and the value of the fully operational state. As the val-
ues of the two intermediate states increase from zero, the defender becomes more
advantaged, and the attacker more disadvantaged. We present simulations to illus-
trate the players’ efforts in the two-periods and utilities dependent on paramet-
ric changes, and in particular changes in the values of the intermediate states,
assuming that these are equal, or that one value is zero and the other varies, or
that one value equals the value of the fully operational state while the other value
varies.

The time duration of each time period can be short or long as dictated by the
nature of the system and the manner in which failures occur dependent on the
players’ efforts. Since components may fail in period 1, with positive probability
period 2 starts with one or both components failed. Hence in the benchmark case
the defender prefers the one-period game while the attacker prefers the two-period
game. However, if the attacker’s unit cost of attack is large for one component,
and the value of the degraded system with this component operational is above a
low value, the defender prefers the two-period game. The defender then benefits in
period 2 against a weak attacker.

When the values of the degraded states are above certain low values, the players
exert higher efforts in period 1 of a two-period game than in a one-period game (or
a game where period 2 is discounted to have no value). The reason is that the high
efforts exerted in period 1 are investments into the future, to ensure either high (for
the defender) or low (for the attacker) reliability in period 2. Similar results are
found in the conflict literature (Hausken 2007) where one player’s ability to dictate
its preferred solution early in a repeated game, may benefit later in the game. If
the defender through high efforts ensures that one or both components survive as
operational into period 2, positive reliability may also be enjoyed in period 2.

This paper has been concerned with two limitations of Markov analysis. First,
we have enabled players to choose efforts strategically, which violates the Markov
property. Second, we have relaxed the constraint in Markov modeling where the
transition rates between different states are kept constant through time. Future
research may relax another constraint by allowing changing the number of states
and the definition of “Failure” and “Success” of the system as time progresses.
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Appendix A: First- and Second-Order Conditions

Differentiating the utilities in (8) with respect to the first period strategic choice
variables gives

∂u

∂tA1
=

mAtmA−1
A1 T mA

A1 ((q1 + q3)tmB

B1 + q3T
mB

B1 )
(tmA

A1 + T mA

A1 )2(tmB

B1 + T mB

B1 )
− cA = 0,

∂u

∂tB1
=

mBtmB−1
B1 T mB

B1 ((q1 + q2)tmA

A1 + q2T
mA

A1 )
(tmB

B1 + T mB

B1 )2(tmA

A1 + T mA

A1 )
− cB = 0,

(A.1)
∂U

∂TA1
=

mAT mA−1
A1 tmA

A1 ((Q1 + Q3)tmB

B1 + Q3T
mB

B1 )
(tmA

A1 + T mA

A1 )2(tmB

B1 + T mB

B1 )
− CA = 0,

∂U

∂TB1
=

mBT mB−1
B1 tmB

B1 ((Q1 + Q2)tmA

A1 + Q2T
mA

A1 )
(tmB

B1 + T mB

B1 )2(tmA

A1 + T mA

A1 )
− CB = 0.

The second-order conditions inserting mA = mB = 1 are

∂2u

∂t2A1

= −2c2
A(1 + QA)(1 + QB)
q3 + (q1 + q3)QB

,

(A.2)
∂2u

∂t2A2

= −2c2
B(1 + QA)(1 + QB)
q2 + (q1 + q2)QA

,

which are satisfied as negative for two reasons. First, it follows from tA1 = QATA1

and tB1 = QBTB1 in (10) that QA ≥ 0 and QB ≥ 0. Second, requiring TA1 ≥ 0 and
TB1 ≥ 0 in (10) implies q3+(q1+q3)QB ≥ 0 and q2+(q1+q2)QA ≥ 0, which in turn
is consistent with QA ≥ 0 in the last expression in (11) when Q3+(Q1+Q3)QB ≥ 0.

Notation

tij Defender’s effort to protect component i in period j, i = A, B, j = 1, 2
tA2F Defender’s period 2 effort to protect component A when component B

fails in period 1
tB2F Defender’s period 2 effort to protect component B when component A

fails in period 1
Tij Attacker’s effort to attack component i in period j

TA2F Attacker’s period 2 effort to attack component A when component B
fails in period 1

TB2F Attacker’s period 2 effort to attack component B when component A
fails in period 1
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ci Defender’s unit cost of effort for component i

cAF Defender’s period 2 unit cost of effort for component A when
component B fails in period 1

cBF Defender’s period 2 unit cost of effort for component B when
component A fails in period 1

Ci Attacker’s unit cost of effort for component i

CAF Attacker’s period 2 unit cost of effort for component A when
component B fails in period 1

CBF Attacker’s period 2 unit cost of effort for component B when
component A fails in period 1

pij Reliability of component i in period j

pA2F Reliability of component A in period 2 when component B fails in
period 1

pB2F Reliability of component B in period 2 when component A fails in
period 1

p(pAj , pBj) Reliability of system with two components with reliabilities pAj and
pBj in period j

mi Attacker–defender contest intensity for component i

mAF Attacker–defender contest intensity for component A in period 2
when component B fails in period 1

mBF Attacker–defender contest intensity for component B in period 2
when component A fails in period 1

s Value of system where both components operate
dA Value of degraded system where component A operates and

component B fails
dB Value of degraded system where component B operates and

component A fails
f Value of system where both components fail
δ Defender’s time discount parameter for period 2
∆ Attacker’s time discount parameter for period 2
u Defender’s utility
U Attacker’s utility.




