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Abstract

A game with multiple equilibria and incomplete information, which allows for reputation building, is repeated 
infinitely many times. Increasing differences in patience contribute to a greater likelihood of cooperation. As one 

player becomes sufficiently more patient than the other player, both players benefit, and both players' risk limits, 

and the conflict between the players, decrease.
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The literature has produced mixed results regarding whether players should choose conflict today to reap 
benefits tomorrow. First, the Folk theorem (Fudenberg and Maskin, 1986) is often taken to imply cooperation in 
long-term relationships, which is correct when the prisoner's dilemma is played repeatedly. Second, Hausken 
(2005) has for the battle of the sexes where player 1 values the future and player 2 is myopic, shown that player 
1 prefers conflict in the present when the future is important. Similarly, Skaperdas and Syropoulos (1996) equip 
each agent with a resource which can be allocated into production versus arms. They show that increased 
importance of the future may harm cooperation. This article considers a broad class of games with multiple 
equilibria, and introduces incomplete information which allows the players to build reputations. The objective 
of the article is to understand how the players' payoffs, risk limits, and the conflict between them are influenced 
by different emphases on the future. The players are concerned about how the conflict between them 
evolves. The notion of risk limits was essential in Zeuthen's (1930) work. He originated the principle of risk 
dominance as a dominance relation based on comparing the various players' risk limits.1
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Table 1
Two-person two-strategy game with two equilibria

I II

I a1,a2 t1,t2
II d1,d2 b1,b2

1 Subsequently Ellsberg (1961) discussed the principle related to his paradoxes. Thereafter Harsanyi (1977) analyzed Zeuthen
principle, and Harsanyi and Selten (1988:90) applied the notion of risk dominance as a criterion for equilibrium selection.
2 Table 1 encompasses games 64–69 in Rapoport and Guyer's (1966:213) ordinal taxonomy. The most well-known of these are th
Battle of the Sexes (game 68), Chicken (game 66), and game 69 with several names such as “Let George do it”, “Apology”, “Hero”, 
“Sacrificed leader”. The games 64, 65, 67 are hybrid asymmetric games.
3 In the finitely and infinitely repeated versions of the game in Table 1 the two Nash equilibria are subgame perfect. In th
infinitely repeated game the following two strategies constitute a subgame perfect equilibrium with payoff (a1,a2) in each
period: Player 1: Choose strategy I when challenged, unless strategy 2 was chosen in the past, then always choose strategy II
Player 2: Choose strategy I unless player 1 failed to choose strategy I in the past, then always choose strategy II. The
justification for the subgame perfect equilibrium with payoff (b1,b2) in each period is analogous. For these two subgame perfec
equilibria one player acquires a reputation for recalcitrance, the other for acquiescence. One problem with these two equilibria i
that the reputation is never tested. Table 1 is equivalent to the probably most well-known example of entry deterrence, viz. th
chain store game on normal form, when a1 = d1 ≥b1 ≥ t1, b2 ≥a2 = d2 ≥ t2, where player 1 is the incumbent (fight = strategy I
acquiesce = strategy II) and player 2 the entrant (stay out = strategy I, enter = strategy II). Both games have the same two Nash
equilibria, but the chain store game in its finitely repeated version has only one unique subgame perfect equilibrium (proved b
backward induction); the entrant enters and the incumbent does not fight. Kreps and Wilson (1982) and Milgrom and Robert
(1982) were first to formalize reputation effects, where a small amount of incomplete information can be sufficient to overcom
Selten's (1978) chain store paradox. As Kreps and Wilson (1982:255) point out, the second equilibrium (the entrant stays ou
and the incumbent chooses the strategy “fight if entry”) i s  “imperfect” and “not so plausible as the first. It depends o
an expectation by the entrant of the bincumbent'sN behavior that, faced with the fait accompli of entry, would b
irrational behavior for the bincumbentN.” For text book treatments see e.g. Fudenberg and Tirole (1991:369–374)
Osborne and Rubinstein (1994:105–106,239–243), Rasmusen (1989:85–118, 2001:110,129), Wilson (1985:31–33).
4 Table 1 is equivalent to the probably most well-known example of entry deterrence, viz. the chain store game on normal form, whe
a1 =d1≥b1≥t1, b2≥a2 =d2≥t2, where player 1 is the incumbent (fight = strategy I, acquiesce = strategy II) and player 2 the entrant (sta
out = strategy I, enter = strategy II). Both games have the same two Nash equilibria, but the chain store game in its finitely repeate
version has only one unique subgame perfect equilibrium (proved by backward induction); the entrant enters and the incumbent doe
not fight. Kreps and Wilson (1982) and Milgrom and Roberts (1982) were first to formalize reputation effects, where a small amount o
incomplete information can be sufficient to overcome Selten's (1978) chain store paradox. As Kreps and Wilson (1982:255) point ou
the second equilibrium (the entrant stays out and the incumbent chooses the strategy “fight if entry”) i s  “imperfect” and “not s
plausible as the first. It depends on an expectation by the entrant of the bincumbent'sN behavior that, faced with the fait accompli o
entry, would be irrational behavior for the bincumbentN.” For text book treatments see e.g. Fudenberg and Tirole (1991:369–374)
Osborne and Rubinstein (1994:105–106,239–243), Rasmusen (1989:85–118, 2001:110,129), Wilson (1985:31–33).
 
 

Consider the game in Table 1 where a1 ≥ b1 ≥ t1, b2 ≥ a2 ≥ t2, a1 ≥ d1, b2 N d2 or a1 N d1, b2 ≥ d2.2 The
two pure strategy equilibria are (a1,a2) and (b1,b2). Row player 1 prefers (a1,a2),  and col umn player 2
prefers (b1,b2).3

In the finitely and infinitely repeated versions of the game in Table 1 the two Nash equilibria are 
subgame perfect.4 In the infinitely repeated game the following two strategies constitute a subgame
 
's

e 

e 
 
. 
 
t 
s 
e 
, 
 
y 
s 
e 
t 
n 
e 
, 

n 
y 
d 
s 
f 
t, 
o 
f 
, 



perfect equilibrium with payoff (a1,a2) in each period: Player 1: Choose strategy I when challenged,
unless strategy 2 was chosen in the past, then always choose strategy II. Player 2: Choose strategy I
unless player 1 failed to choose strategy I in the past, then always choose strategy II. The
justification for the subgame perfect equilibrium with payoff (b1,b2) in each period is analogous.
For these two subgame perfect equilibria one player acquires a reputation for recalcitrance, the other
for acquiescence. One problem with these two equilibria is that the reputation is never tested.

One way around this problem is to introduce incomplete information so that reputations can be built.5
A literature on reputation bounds has emerged, expressing the average discounted payoffs the players can 
guarantee to themselves. The first systematic treatment was presented by Fudenberg and Levine (1989, 
1992).6 Player 1 prefers the equilibrium (a1,a2), and gets t1 in the threat point, so we define a1∞ as player 
1's lower bound. Analogously, player 2 prefers the equilibrium (b1,b2), and gets t2 in the threat point, so 
we define b2∞ as player 2's lower bound. For players involved in reputation building Schmidt (1993) 
determines for infinitely repeated games with conflicting interests and simultaneous moves in each period 
the two lower bounds
5 To
likely 
will ta
6 See
7 Fo
et al. 
corres

(28). (
a1l ¼ 1−l02d
k1ðl⁎1;d2Þ
1

� �
t1 þ l02d

k1ðl⁎1;d2Þ
1 a1; b2l ¼ 1−l01d

k2ðl⁎2;d1Þ
2

� �
t2 þ l01d

k2ðl⁎2;d1Þ
2 b2; ð1Þ
expressed as average discounted payoffs, where7
k1ðl⁎1; d2Þ ¼
ð½N1� þ 1Þlnl⁎1

lnð1−e1Þ ; k2ðl⁎2; d1Þ ¼
ð½N2� þ 1Þlnl⁎2

lnð1−e2Þ ;

N1 ¼ lnð1−d2Þ þ lnða2−t2Þ−lnðb2−t2Þ
lnd2

; N2 ¼ lnð1−d1Þ þ lnðb1−t1Þ−lnða1−t1Þ
lnd1

;

e1 ¼ ð1−d2Þ2ða2−t2Þ
ðb2−t2Þ þ dð½N1�þ1Þ

2 ð1−d2Þ; e2 ¼ ð1−d1Þ2ðb1−t1Þ
ða1−t1Þ þ dð½N2�þ1Þ

1 ð1−d1Þ;

ð2Þ
where [Ni] is the integer value of Ni, and μi
0N0, μi⁎=1−μi0N0 are the probabilities of the “normal” and

“committed” (always challenges) types, respectively, of player i, i=1,2. Eq. (1) states that if the
probability μ2

0 of the normal type of player 2 is close to one, and if player 1 is very patient, then the
lower bound 01∞ for player 1 is close to his commitment payoff a1. The bound a1∞ for player 1 (w.l.o.g.)
is valid and reputation building has impact only when player 1 is sufficiently more patient than player 2.
 allow a role for reputation at least one player must have private information that persists over time, this player must be 
to take several actions in sequence, and the player must be unable to commit in advance to the sequence of actions she 
ke (Wilson, 1985; Kreps and Wilson, 1982).
 Celentani et al. (1996), Cripps et al. (1996), Sorin (1999), and Watson (1996) for subsequent treatments.
r the literature on reputation bounds treated systematically first by Fudenberg and Levine (1989, 1992), see e.g. Celentani 
(1996), Cripps et al. (1996), Sorin (1999), Watson (1996). See also Fudenberg and Levine (1989, 1992), Eq. (1) 
ponds in Schmidt's (1993) article to (30) in Theorem 3, Eq. (2) corresponds to (22), (17), (18), and Eq. (3) corresponds to 
There is a printing error in (23) which does not follow from (18) and (37)).



Fig. 1. δ
¯
1 (μ1⁎, δ2,ε1 ) and δ

¯
2(μ2⁎, δ1,ε2 ) for μ1⁎=μ2⁎=0.05 and μ1⁎=μ2⁎=0.3.

8 Eq. (1) corresponds in Schmidt's (1993) article to (30) in Theorem 3, Eq. (2) corresponds to (22), (17), (18), and Eq. (3)

corresponds to (28). (There is a printing error in (23) which does not follow from (18) and (37)).
9 Schmidt (1993:334) defines “conflicting interests” so that the commitment strategy of one player holds the other playe
down to his minmax payoff. This is satisfied when d2 N a2 or d1 N b1. See Cripps et al. (1996) for an analysis of games als
without conflicting interests, which gives weaker bounds. I thank Larry Samuelson for a discussion about this point.
¯ ¯That is (Schmidt, 1993:337), for any δ2 b 1, μ1⁎N 0, ε1 N 0, ∃δ1 (μ1⁎,δ2,ε1)b1 s . t . f o r  a n y δ1≥δ1 
(μ1⁎,δ2,ε1) t h e  average payoff of the normal type of player 1 is at least a1∞, w h e r e 8
Pd1ðl⁎1 ; d2; e1Þ ¼
a1−t1−e1
a1−t1

� �
1

k1ðl⁎1 ;d2Þ; Pd2ðl⁎2 ; d1; e2Þ ¼
b2−t2−e2
b2−t2

� �
1

k2ðl⁎2 ;d1Þ; ð3Þ
 

⁎=μ⁎illustrated in Fig. 1 when μ1 2 =0.05  and  μ1

⁎ = μ2
⁎=0.3, assuming (a1,a2) = (4,3), (b1,b2) = (3,4),

(t1,t2) = (2,2).9 The area where the bounds do not hold is substantial. [N1] jumps discretely from 0 to
1 w h e n  δ2 = 0.33, from 1 to 2 when δ2 = 0.5, from 2 to 3 when δ2 = 0.59, from 3 to 4 when δ2 = 
0.65, etc., which explain the discrete jumps in Fig. 1.

When the bound a1∞(b2∞) is valid for player 1 (2), the associated payoff to player 2 (1) compatible with
(1) is
a2l ¼ 1−l02d
k1ðl⁎1 ;d2Þ
1

� �
t2 þ l02d

k1ðl⁎1 ;d2Þ
1 a2; b1l ¼ 1−l01d

k2ðl⁎2 ;d1Þ
2

� �
t1 þ l01d

k2ðl⁎2 ;d1Þ
2 b1: ð4Þ
illustrated in Fig. 2 for δ2=0.2. That is, when μ1⁎=μ2⁎=0.3 and δ2=0.2, player 1's discount factor must
be above δ_1(0.3, 0.2, ε1)=0.861519 for the reputation bound a1∞ to be valid. The reputation bound a1∞
increases from a1∞=3.44 when δ1=0.861519 to a1∞=3.90 when δ1=1, which means that player 1
benefits from getting more patient. Player 2's associated payoff a2∞ is determined from Eq. (4), and
increases from a2∞=2.72 to a2∞=2.95 in the same interval. In other words, as δ1 becomes sufficiently
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Fig. 2. The bound a1∞ and payoff a2∞ as functions of δ1≥δ_1 (0.3,0.2,ε1)=0.861519.
larger than δ2, player 1 can increase his lower bound a1∞ toward his most preferred payoff a1, which
also increases player 2's payoff toward a2∞. Let us formulate this as a property.

Property 1. As one player becomes sufficiently more patient than the other player, both players benefit.

Let us define player 1's risk limit as r1 =(a1 − b1) / (a1 − t1) in the static game in Table 1, which 
reaches its minimum at r1 = 0 when player 1 is indifferent between the two equilibria, and reaches its 
maximum at r1 = 1 when player 1 is indifferent between the threat point and the non-preferred 
equilibrium. In the infinitely repeated game player 1 can guarantee a1∞ rather than b1 to himself. We thus 
define player 1's risk limit in the infinitely repeated game by replacing player 1's least preferred 
equilibrium payoff b1 with a1∞. Player 1 strives toward the payoff a1, and as the difference between a1 
and a1∞ decreases, player 1's risk limit decreases. We analogously define player 2's risk limit as r2 =(b2 − 
a2) /  (b2 − t2) in the static game, replacing a2 with a2∞ in the repeated game. Hence when player 1's lower 
bound a1∞ is valid, we define the risk limits and conflict measure
r11l ¼ a1−a1l
a1−t1

¼ 1−l02d
k1ðl⁎1;d2Þ
1 ; r21l ¼ b2−a2l

b2−t2
¼ 1−

ða2−t2Þl02dk1ðl
⁎
1;d2Þ

1

b2−t2
;

cr1l ¼ r11lr21l; d1zPd1ðl⁎1; d2; e1Þ
ð5Þ
Defining conflict as the product of the players' risk limits has not been done earlier in the literature, but 
Axelrod (1970) has defined conflict in a static game such as Table 1 as
c ¼ ða1−b1Þðb2−a2Þ
ða1−t1Þðb2−t2Þ ð6Þ
which happens to equal the product r1r2. In a two-dimensional utility diagram for the two players,
Axelrod defines conflict as the relation of the small rectangle (a1−b1)(b2−a2) of conflictful behavior to



the large rectangle (a1 − t1)(b2 − t2) of joint demand. Axelrod (1970:57) refers to the small rectangle a

10 It is the jointly infeasible expectation of an additional gain in case of a conflict.

Fig. 3. The risk limits and conflict measure when δ1≥δ
¯
1 (0.3,0.2,ε1)=0.861519.

compounded gains are large enough then conflictful and not “cooperative” behavior is the equilibrium
s 

“the proportion of the joint demand area which is infeasible,”10 and to the large rectangle as the area of 
joint demand spanned out by the threat point (t1,t2) and the outmost point determined by the best payoff 
(a1,b2) each player can possibly obtain under his most favorable circumstances.

When player 2's lower bound b2∞ is valid, we analogously define
r12l ¼ 1−
ðb1−t1Þl01dk2ðl

⁎
2;d1Þ

2

a1−t1
; r22l ¼ b2−b2l

b2−t2
¼ 1−l01d

k2ðl⁎2;d1Þ
2 ;

cr2l ¼ r12lr22l; d2zPd2ðl⁎2; d1; e2Þ:
ð7Þ
Eq. (5) is illustrated in Fig. 3 for δ2=0.2. As player 1's patience increases beyond δ1≥δ
¯1
(0.3,0.2,ε1),

both risk limits and the conflict measure decrease. Increased difference between the players' emphasis on
the future causes them to be more inclined to “cooperate” on the equilibrium preferred by the patient
player. Conversely, as the players' emphasis on the future gets more similar, the conflict between them
increases. Only the player who most successfully engages in costly reputation building in the present,
which involves insisting on playing his preferred equilibrium to deter the other player from getting his
preferred equilibrium, and which requires a high emphasis on the future, increases his chances to get his
preferred equilibrium in the long run.

The benefits of “playing hard” are primarily in the future and can be gained only by choosing conflict 
today. Without explicit conflict in the present that higher payoff cannot be obtained. Players who place 
greater value on the future are more likely to choose conflict in order to reap those future benefits. Note 
the similarity between this reasoning and that of Skaperdas and Syropoulos (1996) and Garfinkel and 
Skaperdas (2000), where, despite a short-run incentive to settle a conflict, there can be long-term
“compound rewards to cheating”, or “long-term compounding rewards to going to war.” If these
.
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roperty 2. As one player becomes sufficiently more patient than the other player, both players' risk
imits, and the conflict between the players, decrease.

The Properties 1 and 2 jointly mean that both players benefit from an increasing discrepancy in the
layers' discount factors, which causes lower risk limits and reduced conflict. That is, increasing
ifferences in patience contribute to a greater likelihood of cooperation.
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