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KJELL HAUSKEN

STUBBORNNESS, POWER, AND EQUILIBRIUM
SELECTION IN REPEATED GAMES WITH

MULTIPLE EQUILIBRIA

ABSTRACT. Axelord’s [(1970), Conflict of Interest, Markham Publishers, 
Chicago] index of conflict in 2 × 2 games with two pure strategy equilibria 
has the property that a reduction in the cost of holding out corresponds to an 
increase in conflict. This article takes the opposite view, arguing that if losing 
becomes less costly, a player is less likely to gamble to win, which means that 
conflict will be less frequent. This approach leads to a new power index and a 
new measure of stubbornness, both anchored in strategic reasoning. The win 
probability defined as power constitutes an equilibrium refinement which 
differs from Harsanyi and Selten’s [(1988), A General Theory of Equilibrium 
Selection in Games, MIT Press, Cambridge] refinement. In contrast, 
Axelrod’s approach focuses on preferences regarding divergences from 
imaginary outmost rewards that cannot be obtained jointly. The player who 
is less powerful in an asymmetric one-shot game becomes more powerful in 
the repeated game, provided he or she values the future sufficiently more 
than the opponent. This contrasts with the view that repetition induces 
cooperation, but conforms with the expectation that a more patient player 
receives a larger share of the pie.

KEY WORDS: conflict, discounting, equilibrium refinement, equilibrium
selection, power index, repeated game, stubbornness incentive

1. INTRODUCTION

The nature of conflict is made up of and can be reduced to two
complementary dimensions, the interest dimension and the stra-
tegic dimension. Each by itself is insufficient, but together they
provide an exhaustive account of conflict. The interest dimen-
sion has been worked out by Axelrod (1970) in an insightful



way. This article takes the view that Axelrod understood only 
half of the idea, which means that his picture was incomplete. 
Accordingly, this article develops and extends Axelrod’s work. 
To supplement Axelrod’s focus on the interest dimension, this 
article conceptualizes conflict as a struggle for preferred 
equilibria in 2 ×2 conflict games, and analyzes the role of the 
strategic dimension. Although a moderate percentage of games 
without a mutually best outcome have two Pareto-superior 
Nash equilibria, the significance of such games is considerable. 
Struggle for preferred equilibria occurs when several players 
within an industry attempt to agree on standards, or agree on 
procedures for interaction. Knight (1992) argues that struggle 
for preferred equilibria is a crucial characteristic, for example, at 
the start-up of most social institutions.

The relative weight assigned to the interest dimension and 
strategic dimension depends on what is to be explained and 
the nature of social interaction. The difference between the 
two dimensions is illustrated by two questions. The strength 
of conflict in terms of the interest dimension is determined 
by answering the first question, which refers to the divergence 
of preferences and thus to the conflict of interest in a game:
(1) How large is the payoff one player gets if the other player 
gets her best payoff, how large is the other’s payoff if the first 
player receives his best payoff, and what are the feasible points 
which may serve as a compromise? The second question 
proceeds beyond the first question of how preferences diverge, 
and refers also to strategic considerations regarding how a 
player can improve her own payoff by exhibiting aggressive, 
recalcitrant, stubborn, hardheaded, strategically conflictful 
behavior:(2) What may a player win if she successfully 
challenges her opponent and what is her chance of winning the 
challenge? The difference between the two questions is that the 
first deals with latent and often hidden conflicts of interest, while 
the second deals with overt conflictful behavior.

One drawback of limiting attention only to the interest
dimension of conflict is that the link between conflict and
behavior becomes unclear. Consider, for example, Axelrod’s
(1970, p. 80), statement, which we refer to as his proposition



concerning conflictful behavior, that “other things being equal, 
the more conflict of interest there is, the more probable it is that 
conflictful behavior will result.” Crucial here is how “conflictful 
behavior” is defined. Axelrod frequently refers to a prisoner’s 
dilemma in which conflictful behavior is well defined. However, 
he proceeds to argue that his proposition concerning conflictful 
behavior holds not only in a prisoner’s dilemma, but also in all 
cases. Unfortunately, Axelrod does not explicitly define 
conflictful behavior in general social situations. Rather, Axelrod 
(1970, p. 80) states: “The specific meaning of conflictful 
behavior will differ from one political process to another, of 
course, but usually there are types of behavior which are clearly 
conflictful and hence some hypotheses are easy to specify.” We 
illustrate these points over the next sections, questioning the 
validity of Axelrod’s hypotheses for conflictful behavior by 
showing that they do not necessarily follow from his conflict 
measure the way he suggests.

Axelrod’s (1970) conflict measure satisfies two properties. 
One of these is plausible and acceptable, but the other is 
not, as this article demonstrates. The unacceptable property is 
replaced by an exact opposite acceptable property. The article 
argues for the appropriateness of these two properties, and 
shows how these imply two new conflict measures. One is the 
stubbornness conflict measure. It accounts for both a player’s 
preference for one equilibrium rather than another,1 and the 
other player’s inclination to go along with the first player’s 
preferred equilibrium. The second is the power index conflict 
measure. A player’s power is interpreted as his probability of 
“winning” his preferred equilibrium. The power index conflict 
measure constitutes an equilibrium refinement technique in 
normal form games possessing more than one equilibrium.

Another problem with Axelrod’s conflict measure is its reli-
ance on the so-called outmost point, which is imaginary since it
cannot be jointly obtained. It represents both players’ aspiration
levels. Axelrod’s focus on the outmost point, consistent with his
focus on the interest dimension of conflict, implies a de-empha-
sis of the importance of the Nash equilibria, and a de-empha-
sis of the role of strategic interaction. Higher incompatibility of



preferences between the players does not necessarily imply that
they are more inclined to behave challengingly.

We also develop a power index conflict measure for repeated
games, summing up the power for each player in a finitely
or infinitely repeated game. The implications are illustrated
when the players emphasize the future differently. Section 2
presents the three measures of conflict, i.e., Axelrod’s measure,
the stubbornness measure, and the power index measure. Sec-
tion 3 compares the conflict measures. Section 4 concludes.
The Appendix develops a power index conflict measure in
repeated games.

2. THREE MEASURES OF CONFLICT

Consider the game in Table I where a1 �b1 � t1, b2 �a2 � t2, a1 �
d1, b2 >d2 or a1 >d1, b2 � d2.2 Table I encompasses games 64–
69 in Rapoport and Guyer’s (1966, p. 213) ordinal taxon-
omy. The most well-known of these are the Battle of the
Sexes (game 68), Chicken (game 66), and “Let George do it”
(game 69). The six games are listed in Table III.3 The two
pure strategy equilibria are (a1, a2) and (b1, b2). Player 1 (row
player) prefers (a1, a2) and player 2 (column player) prefers
(b1, b2). Each side’s preferred equilibrium involves its own sec-
ond strategy and the opponent’s first.

The simple bargaining problem when there are two equi-
libria has a long history. Some of this history is related to
the principle of risk dominance, which was originated by
Zeuthen (1930) as a dominance relation based on comparing

TABLE I

Two-person two-strategy game with two equilibria

I II

I d1, d2 b1, b2

II a1, a2 t1, t2



the various players’ risk limits. Subsequently Ellsberg (1961)
discussed the principle related to his paradoxes. Thereafter
Harsanyi (1977) analyzed Zeuthen’s principle, and Harsanyi
and Selten (1988, p. 90) applied the notion of risk dominance
as a criterion for equilibrium selection. They state that (a1, a2)

risk dominates (b1, b2) if (a1 − d1)(a2 − t2) > (b1 − t1)(b2 − d2),
which is a comparison of Nash products, where (d1, d2) plays
a role. (If the inequality is reversed, (b1, b2) risk dominates
(a1, a2), and if the Nash products are equal, there is no risk
dominance between (a1, a2) and (b1, b2).)

Harsanyi and Selten (1988, p. 86ff) provide three axioms 
which uniquely determine the given risk dominance 
relationship. These are invariance with respect to 
isomorphisms, best-reply invariance, and payoff 
monotonicity. There is no axiom of independence of 
irrelevant alternatives. As Harsanyi and Selten (1988, p. 
86ff) point out, “the nature of the problem of equilibrium 
point selection in non-cooperative games does not seem to 
permit a satisfactory solution concept that can be 
characterized by a set of simple axioms.” The main problem 
with Harsanyi and Selten’s (1988) conceptualization is that 
it amounts to assign equal weight to four payoff 
differences. Choosing equal weight seems as arbitrary as any 
other choice of weights unless backed with a good argument.

Let us illustrate. Consider first equilibrium (a1, a2) in Table I. 
Player 1 prefers a1 relative to d1 which gives the difference 
a1 −d1. Player 2 prefers a2 relative to t2 which gives the differ-
ence a2 − t2. Then consider equilibrium (b1, b2). Player 1 pre-
fers b1 relative to t1 which gives the difference b1 − t1. Player 
2 prefers b2 relative to d2 which gives the difference b2 − 
d2. Assigning equal weight to these four payoff differences 
amounts to assign equal weight to the payoff combinations 
(t1, t 2) and (d1, d 2). That is, the two non-equilibrium outcomes 
in Table I are placed on an equal footing. One main 
argument in this article is that (t1, t 2) and (d1, d 2) are not 
on an equal footing since they are positioned differently 
relative to the equilibrium outcomes (a1, a 2) and (b1, b 2).

To see this difference, consider equilibrium (a1, a2). Player
1 prefers under no circumstances to switch from II to I since



a1 �d1. The payoff d1 plays no role in player 1’s reasoning pro-
cess. In contrast, player 2 prefers the other equilibrium and
may prefer to switch from I to II. Although a2 � t2, player 2
observes that since b2 � a2, the only way to reach (b1, b2) is
to switch from I to II. This may cause the payoff t2, but it
may also cause the payoff b2 if player 1 is thereby induced
to switch from II to I as a consequence of player 2’s chal-
lenge. Hence t2 indeed plays a role in player 2’s reasoning pro-
cess. Analogously for equilibrium (b1, b2), the payoff d2 plays
no role in player 2’s reasoning process, while t1 plays a role in
player 1’s reasoning process if he challenges player 2.

Although outcome (d1, d2) plays no role in the players’ rea-
soning processes when they focus their attention on either of 
the equilibria, an alternative consideration is whether (d1, d2) 
plays or should play a role when the players consider the game 
as such. The answer is yes. All outcomes play a role and are 
possible when players play a game, otherwise it is not a game. 
The problem is that game theory provides no clear-cut 
recommendation for how to play a game with at least two 
equilibria. Without pre-play communication, the players can 
reason multifariously. All the four outcomes in Table I are 
possible. This does not mean that all the four payoff differences 
considered by Harsanyi and Selten (1988) should be assigned 
equal weight when reasoning about risk dominance, e.g., as a 
criterion for equilibrium selection or conflict measures. 
Choosing equal weight seems as arbitrary as any other choice of 
weights unless backed with a good argument. And, indeed, the 
argument above suggests that as long as d1, d2, t1, t2 satisfy the 
inequalities specified above, (t1, t2) does play a role in the play-
ers’ reasoning process, while (d1, d2) does not. The outcome 
(d1, d2) is possible, but the players don’t reason about it when 
attempting to determine risk dominance.

Assume that the players engage in pre-play communica-
tion prior to playing the static game in Table I, i.e., prior to
making independent, effectively simultaneous, choices. Assume
that they during their discussion reason such that each can
hold out or give in. The four possible outcomes are such that
they either both hold out, one holds out and the other gives



in, one gives in and the other holds out, or both give in. It
is quite dysfunctional for both of them to give in, so assume
that the pre-play communication runs over a time interval
such that if one gives in, then the other does not.

The argument above implies that given that d1, d 2, t 1, t 2
satisfy the specified inequalities, the players can be expected not 
to assign equal weight to the four payoff differences. 
Instead, they can be expected to let (t1, t 2) play a role when 
determining risk dominance, and let (d1, d 2) play no role.

Axelrod (1970, p. 20) argues that “there is a single prede-
termined outcome, which I’ll call the no agreement point that
occurs if no agreement is reached. In other words, either player
can veto anything other than the no agreement point.” He
defines the “no agreement point” as equivalent to the “null
point.” From a game-theoretic point of view we most plau-
sibly define Axelrod’s null point as the minmax point, hereaf-
ter referred to as the threat point (t1, t2). Rasmusen (2001, p.
114) and Fudenberg and Tirole (1991, p. 150) define a player’s
minmax value as his “security value” and “reservation util-
ity,” respectively. The question is how incompatible the players’
demands are beyond or above the threat point (t1, t2).4

To fully characterize Axelrod’s conception we need to
expand the two-strategy game in Table I to the three-strategy
game in Table II which additionally assumes A1 � a1 and
B2 �b2, and also ti �xi, ti �yi, ti � zi, i =1,2.

Axelrod’s (1970, p. 5) conflict approach focuses on “the
state of incompatibility of the goals of two or more actors,”

TABLE II

Two-person three-strategy game with two equilibria

I II III

I d1, d2 b1, b2 y1, y2

II a1, a2 t1, t2 A1, t2

III x1, x2 t1,B2 z1, z2



a state in which one player can get her best payoff only at 
the expense of the other player. That is, he refers to “the 
proportion of the joint demand area which is infeasible” 
(Axelrod, 1970, p. 57). The area of joint demand above the 
threat point is the rectangle spanned out by the threat point 
(t1, t2) and the outmost point determined by the best pay-
off (A1,B2) each player can possibly obtain under his most 
favorable circumstances. (A1,B2) can not be jointly obtained. 
It represent both players’ aspiration levels, and is necessary 
for Axelrod as an imaginary point in order to determine the 
conflict of interest between the players. The area of infeasible 
joint demand in pure strategies is defined as the polygon 
spanned out by the best possible payoff each player can obtain 
(A1,B 2), the two points in which one of the players gets his most 
preferred payoff (A1, t 2) and (t1,B 2), and (t1, b 2), (b1, b 2), 
(b1, a 2), (a1, a 2), (a1, t 2) which closes the poly-gon shown as the 
sum of the black and dark grey areas in Figure 1. For pure 
strategies Axelrod define the degree c of conflict as the ratio of 
the two areas, which is analytically expressed as

c= (A1 −b1)(B2 −a2)+ (A1 −a1)(a2 − t2)+ (b1 − t1)(B2 −b2)

(A1 − t1)(B2 − t2)
,

0� c�1, (1)

which equals c=2/3 when (a1, a2)=(4,3), (b1, b2)=(3,4), (t1, t2)

= (1,2), (A1,B2)= (6,5). Conflict c increases when the area of
infeasible joint demand increases and the whole area of joint
demand decreases. The first problem with (1) is that the out-
most point (A1,B2) can be rendered irrelevant by strategic
reasoning. (A1, t2) and (t1,B2), neither of which are equilibria,
are irrelevant as points from which either player may chal-
lenge the other in order to enforce her most preferred solu-
tion. No player may reasonably hope for, nor has the power
to induce the other to go along with, his highest possible
payoff. Hence the dark grey area in Figure 1 is irrelevant.



Figure 1. Diagram of the game in Table II, assuming pure strategies.

Inserting A1 =a1 and B2 =b2 into (1) gives

c= (a1 −b1)(b2 −a2)

(a1 − t1)(b2 − t2)
when A1 =a1 and B2 =b2, (2)

where the numerator is the black square of infeasible joint
demand in Figure 1, and the denominator is the joint demand
above the threat point (t1, t2) and below the new outmost
point (a1, b2). Inserting the given values gives conflict c=1/6,
which is lower than c = 2/3 since the additional strategies
(III,III) in Table II sharpens the incompatibility of interest.5

The second problem which applies for both (1) and (2) is
that the outmost points (A1,B2) and (a1, b2) are irrelevant,
according to the argument in this article, since these can-
not be jointly obtained. Furthermore, for the case of pure
strategies, the entire black square is irrelevant since the play-
ers have no possibility to jointly obtain payoffs within this
square.6 If the players accept this, there is no reason to let the
black square play a role in the conflict measure. An analogy
may here be drawn to Nash’s (1953, p. 137) “independence
of irrelevant alternatives” axiom. Whereas Nash rules out
alternatives irrelevant for a unique bargaining equilibrium, we



remove the black square including the outmost point since
strategic reasoning renders these irrelevant. Axelrod presents a
procedure for his conflict measure which satisfies the following
two properties:

Property 1. A conflict measure should be lowest when the two
Nash equilibria are identical or nondiscriminating, and should
increase as the product of the payoff difference each player
experiences between the two equilibria increases.

The justification is that there is no conflict between the players, 
which in Table I means a1 = b1 and b2 = a2. This article accepts 
Property 1, and a conflict measure should contain the terms a1 − 
b1 and b2 − a2.

Property 2. A conflict measure should be highest when the Nash
equilibria in question are weak (weakly dominant), and should
decrease as the product of the payoff difference each player
experiences between his non-preferred equilibrium and the threat
point increases.

Property 2 illustrates the fundamental disagreement between
the approach in this article and Axelrod’s approach. It con-
cerns whether there is more or less “conflict” as the equilibria
get closer and closer to the degenerate case of weak dominance,
which in Table I means b1 = t1 for player 1 and a2 = t2 for player
2. Axelrod’s idea is that increases in the level of conflict cor-
respond to smaller costs for holding out. The cost of holding
out in (t1, t2) is zero for player 1 when b1 = t1. Analogously, the
cost of holding out in (t1, t2) is zero for player 2 when a2 = t2.
This means that deviation from the non-preferred equilibrium
is costless. That this causes an increase in conflict, as Axelrod
suggests, may in one sense seem reasonable if each player is
thought of as balancing a motivation to hold out against a
motivation to give in. That is, the motivation to give in rises
as the potential cost of holding out when the opponent insists
falls. Only if the level of “conflict” is very high will the moti-
vation to hold out overcome the motivation to give in. Thus
in Axelrod’s approach “conflict” refers to a condition under



which the bargaining takes place that reflects how much the
participants want to win. It some sense conflict then becomes
an environmental variable.

This article does not accept Property 2. The contrasting view
taken in this article is that as the cost of holding out falls, a player
is less likely to do so. Given that the gain from winning is fixed, if
losing becomes less costly, a player is less likely to gamble to win.
So we observe less “conflict,” in the sense of observations of fixed
decision makers implementing their threats. Instead of a condi-
tion that enhances some motivations relative to others, “conflict”
is an observed frequency of disagreement.7

To illustrate this further, consider Table I with the change 
that t2 is increased to t2 = a2. It is costless for player 2 to 
switch from I to II since payoff a2 is obtained in both cases. 
Player 1 should accept this fact and realize that player 2 
inevitably will switch to II since then a payoff of at least a2 is 
guaranteed. This should give no rise to conflict. Why should 
player 2 be criticized for following her self interest and choose 
a strategy that guarantees payoff t2 =a2? Accepting that player 
2 inevitably will switch to II, player 1’s best response is I 
which gives (b1, b2) and no conflict. Hence we propose the 
exact opposite of Property 2.

Property 3. A conflict measure should be lowest when the Nash
equilibria in question is weak (weakly dominant), and should
increase as the product of the payoff difference each player
experiences between his non-preferred equilibrium and the threat
point increases.

An implication of Properties 1 and 3 is that the conflict measure
should be highest when the product of four factors is highest. The
first factor is player 1’s payoff difference a1 − b1 between his pre-
ferred and non-preferred equilibrium. The second factor is player
2’s payoff difference a2 − t2 between his non-preferred equilibrium
and the threat point. The third factor is player 2’s payoff differ-
ence b2 −a2 between his preferred and non-preferred equilibrium.
The fourth factor is player 1’s payoff difference b1 − t1 between his
non-preferred equilibrium and the threat point.



The first and third factors are consistent with Property 1.
The second and fourth factors are consistent with Property 3,
and inconsistent with Property 2. Consider again Table I
with the starting point that t2 = a2. Assume that t2 decreases
which increases a2 − t2. This is conflict inducing since player
2 becomes less inclined to switch from I to II. Player 1 real-
izes that player 2 is more inclined to go along with his pre-
ferred (a1, a2), and can be expected to take advantage of this
by insisting more fiercely on his preferred strategy II, which
raises the conflict proportional to a2 − t2. The payoff difference
a2 − t2 is not present in Axelrod’s conflict measure, but b2 − t2
is present in the denominator in (2) as conflict reducing. That
is, reducing the threat point payoffs by moving (t1, t2) down-
wards and leftwards in Figure 1 reduces conflict according to
Axelrod. In contrast, this article argues that reducing (t1, t2)

increases the abyss and thus conflict between the two players.
A threat point with low payoffs is detrimental for both play-
ers and should thus increase conflict, not reduce it. Proper-
ties 1 and 2 imply that Axelrod’s conflict measure does not
depend on the Nash equilibria as equilibria, but on the black
square containing the outmost point and the degree to which
the payoffs in the preferred equilibria differ for the players. In
contrast, Properties 1 and 3 applied in this article imply that
only the two equilibria and the threat point are relevant for
strategic reasoning.

Player 1’s incentive to be stubborn (recalcitrant, hardheaded,
tough, aggressive) and induce conflict depends on two fac-
tors. First, it depends on a1 − b1 which expresses the extent to
which player 1 prefers equilibrium (a1, a2) rather than (b1, b2).8

Second, it depends on a2 − t2 which is player 2’s lack of inclina-
tion to go along with player 1’s preferred equilibrium (a1, a2).
Multiplying these two effects, (a1 −b1)(a2 − t2) expresses player
1’s incentive to be stubborn. This expression is shown as a light
grey area in Figure 1. The analogous expression (b2 −a2)(b1 − t1)

expresses player 2’s incentive to be stubborn, also shown as a
light grey area in Figure 1. We divide with the sum of the two
expressions to scale the sum of the two players’ stubbornness
incentives to be equal to one, that is,



s1 = (a1 −b1)(a2 − t2)

(a1 −b1)(a2 − t2)+ (b2 −a2)(b1 − t1)
,

s2 = (b2 −a2)(b1 − t1)

(a1 −b1)(a2 − t2)+ (b2 −a2)(b1 − t1)
, (3)

where s1 + s2 = 1. Graphically in Figure 1, s1 is expressed as
the lower right light grey area divided by the sum of the two
light grey areas, and analogously for s2. The black square
plays no role in (3), consistent with our discussion above.
Multiplying (3) with 4 since s1(1 − s1) � 1/4 when 0 � s1 � 1,
the product cs of the two stubbornness incentives gives the
conflict measure

cs =4s1s2 = 4(a1 −b1)(a2 − t2)(b2 −a2)(b1 − t1)

[(a1 −b1)(a2 − t2)+ (b2 −a2)(b1 − t1)]
2 , 0� cs �1.

(4)

This conflict measure gives zero when any of the four pay-
off differences in the numerator equals zero, in contrast to
Axelrod’s conflict measure which equals zero when any of the
two payoff differences (a1 − b1) or (b2 − a2) in (2) equals zero.
More specifically, both cs in (4) and c in (2) equal zero when
(a1 −b1)(b2 −a2)=0, in accordance with Property 1. However, cs

in (4) also equals zero when (a2 − t2)(b1 − t1)=0, in accordance
with Property 3, and thus not in accordance with Property 2.
Axelrod thus predicts conflict in cases when there is no conflict.

Within political economy the concept of power has received
the definition of win probability dependent on the players’
efforts exerted, resource commitments of players, and conflict
technology (Grossman, 1991; Hirshleifer, 1988, 1991, 1995;
Skaperdas, 1992, p. 724). I.e., in competition for an object
the player with the largest probability of winning has high-
est power. For non-cooperative games with two equilibria the
literature offers to the author’s knowledge no power index.9

Define player 1’s stubbornness incentive s1 as the probability
that he is stubborn and plays II. Analogously s2 is the prob-
ability that player 2 plays II. The probability p1 that player
1 wins his preferred (a1, a2) is thus s1(1 − s2), and the proba-
bility p2 that player 2 wins her preferred (b1, b2) is (1 − s1)s2.



Defining the two win probabilities as power gives

p1 = s1(1− s2)= s2
1 , p2 = (1− s1)s2 = s2

2 , (5)

which constitutes an equilibrium refinement. The term 
equilibrium refinement refers to a definition that picks out a 
subset of the equilibria by some special property. The subset 
here is one equilibrium chosen among two pure strategy 
equilibria. The special property is the stubbornness probability, 
and thus the stubbornness and power index conflict measures. 
The equilibrium refinement applies for six especially promi-
nent games listed as games 64–69 in Rapoport and Guyer’s 
(1966, p. 213) taxonomy.

Let us formulate the following equilibrium refinement prop-
erty.

Property 4. Equilibrium (a1, a2) is selected if p1 > p2, equilib-
rium (b1, b2) is selected if p1 < p2, and there is no equilibrium
selection if p1 =p2, where p1 and p2 are defined in (5) and (3)
based on the game in Table I.

The product cp of the two power indices,

cp =16p1p2 =16s2
1s

2
2 = c2

s , 0� cp �1, (6)

is our third measure of conflict. 0�1−p1 −p2 =2s1(1− s1)�1
is the probability that no player wins a preferred equilibrium,
interpreted as general powerlessness among the players. Con-
sistently with Property 1, lima1→∞ s1 = 1 and lima1→b1 s1 = 0,
which means that both the stubbornness incentive and power
of player 1 decrease from 1 to 0 as the value of his pre-
ferred relative to his non-preferred equilibrium decreases from
∞ to 1. Consistently with Properties 1 and 3, and in con-
trast to Property 2, limt2→−∞ s1 =1 and limt2→a2 s1 =0. Clearly,
t2 =−∞ means that player 2 is infinitely bad off in her threat
point, which makes her maximally vulnerable when threat-
ened, which gives player 1 maximum power over player 2.
Conversely, t2 = a2 means that player 2 is equally well off
in her threat point and her non-preferred equilibrium, which
gives player 1 no power over player 2.



3. PROPERTIES OF THE THREE CONFLICT MEASURES

Rapoport and Guyer (1966) have identified 78 2 × 2 games
with different ordinal ranking of the payoffs. A total of 6 of
12 two-equilibria games numbered 58–63 do not satisfy a1 �
b1 � t1, b2 � a2 � t2. These are no-conflict games where both
players prefer one equilibrium to the other, which renders a
conflict measure inappropriate. The six remaining two-equilib-
ria games satisfying a1 � b1 � t1, b2 � a2 � t2 are conflict games
shown in Table III together with Axelrod’s measures c and cm

in pure and mixed strategies, and the stubbornness and power
index conflict measures cs and cp.

Comparing game 68 with a detrimental threat point (1,1)
with game 64 with a less detrimental threat point (1,2),
the stubbornness and power index conflict measures correctly
give higher conflict for the former than the latter, while the
reverse is the case for Axelrod’s measures. Games 64 and 65
give the same conflict measures cs = 8/9 and cp = 64/81 for
the stubbornness and power index conflict measures since
(a1 − b1)(b1 − t1) = (4 − 3)(3 − 1) = (4 − 2)(2 − 1) = 2 is equal
for the two games (Properties 1 and 3). In contrast, Axel-
rod’s measures give twice as much conflict for game 65 where
the area of infeasible joint demand is twice that of game 64,
while the area of joint demand above the threat point is equal
for games 64 and 65 (Properties 1 and 2). The stubbornness
conflict measure cs = 16/25 is relatively low for game 67 due
to player 1’s low incentive s1 = 1/5 to be stubborn, rendering
player 2 likely to get her preferred equilibrium.

For the symmetric games 66, 68, 69, cs = cp = 1 since s1 = s2 = 
1/2 and p1 = p2 = 1/4.10 The philosophical interpretation is that 
two players with equal incentives to be stubborn, and equal 
power, disagreeing over one penny or disagreeing over one 
trillion dollars are in a full-scale conflict in both situations. 
Assuming players with pure self-interest, it is as difficult to settle 
on one equilibrium in one symmetric case as another. What they 
would like to risk, and whether they would like to act 
challengingly or conciliatory, are irrelevant for stubbornness 
and power determination.
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The fourth and third last rows in Table III are the win
probabilities p1 and p2 of players 1 and 2, defined as power.
Property 4 dictates the equilibrium (3,4) for games 64 and
67, and the equilibrium (4,3) for game 65, shown in bold.
No equilibrium selection is made for games 65,66,69 since
p1 =p2. The reason (3,4) is chosen for game 64 is that player
2 receives 2 in the threat point (t1, t2), while player 1 receives
only 1. Hence player 2 is in a stronger position and is will-
ing to insist more fiercely on his preferred equilibrium since
the threat point is more acceptable to him than player 1.
For game 67 both players receive only 1 in the threat point,
but player 2 is more willing to accept it since earning only
2 in the non-preferred equilibrium is only marginally better
than the threat point. Game 65 selects (4,3). Player 1 loses 2
through the equilibrium switch, and loses 1 more in the threat
point. Player 2 loses only 1 through the equilibrium switch,
and loses 1 more in the threat point. Hence player 1 is willing
to insist most fiercely on his preferred equilibrium.

The last two lines in Table II are the two sides of Harsanyi
and Selten’s (1988, p. 90) inequality (a1 − d1)(a2 − t2) >

(b1 − t1)(b2 −d2) for (a1, a2) to risk dominate (b1, b2). They pro-
vide the same equilibrium selection for game 64, the opposite
selection for game 65, and no selection for the games 66–69.
The reason for the opposite selection for game 65 is the low
d2 =1, which causes a large Nash product (b1 − t1)(b2 −d2) on
the RHS in the inequality.

Table IV shows 12 cases allowing various cardinal rankings
of the payoffs, applying L’Hopital’s rule to settle indetermi-
nate “0/0” and “∞/∞.” The properties of the power index
conflict measure are not included in Table IV since these fol-
low straightforwardly from the stubbornness conflict measure,
i.e., pi = s2

i , cp = c2
s .

(1) Can be interpreted as a conflict game (as Axelrod sug-
gests) and a no-conflict game (as the power index measure
does) dependent on the eyes of the beholder.11 (2) A conflict
game where the threat point (t1, t2) determines power differen-
tials. (3) Player 1 perceives no equilibrium payoff difference,
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and has no power, implying no conflict. (4) No players per-
ceive equilibrium payoff difference, but (t1, t2) causes power
difference between two equivalent equilibria. (5) The same
implication as case 1. (6) (t1, t2) is a third equilibrium caus-
ing maximum conflict for Axelrod (Property 2), but is irrel-
evant for power determination in a conflict game. (7) The
same implication as case 3 (8) The same implication as case 4
except different power formula. (9) (t1, t2) is an equilibrium.
Although both measures predict conflict, the players can be
expected to settle on (b1, b2) assuming player 1 does not pre-
fer to harm player 2. (10) A no-conflict game with two equiv-
alent equilibria where player 1 is omnipotent. (11) The two
equivalent equilibria (a1, a2) = (t1, t2) cause maximum conflict
for Axelrod (Property 2), The omnipotent player 2 perceives
no power conflict, she chooses strategy II, and the players can
be expected to settle on (b1, b2). (12) A full-scale conflict over
three equivalent equilibria.

4. CONCLUSION

Conflict is conceptualized as a struggle for preferred equilib-
ria. We first illustrate Axelrod’s (1970) conflict measure. He 
assumes that reduced cost of holding out in the no agree-
ment point causes increased conflict. This article takes the 
opposite view. If losing becomes less costly, a player is less likely 
to gamble to win, which causes less conflict. Axelrod predicts 
conflict in cases when there is no conflict. The new approach 
implies two new conflict measures. The stubbornness conflict 
measure accounts for a player’s incentive to play his preferred 
equilibrium strategy. The power index conflict measure 
interprets a player’s power as his probability of “winning” his 
preferred equilibrium. This provides an equilibrium refinement 
technique in normal form games with more than one 
equilibrium, where the equilibrium with the largest win 
probability is selected. The reasons why the equilibrium 
refinement differs from Harsanyi and Selten’s (1988, p. 90) 
refinement are discussed. The two new conflict measures



are anchored in strategic reasoning and the two equilibria. 
In contrast, Axelrod’s measure does not depend on the Nash 
equilibria as equilibria, but on the divergence of preferences in 
the outmost point which are the players’ aspiration levels which 
cannot be jointly obtained. Strategic reasoning renders the 
outmost point irrelevant. The conflict measures are compared 
for the six possible two-equilibria conflict games assuming 
ordinal payoff rankings, and subsequently for cardinal rankings 
of the payoffs for all possible parameter combinations. In a 
repeated game, one player’s power increases if his emphasis on 
the future increases. For a symmetric game the players are 
equally powerful when their discount factors are equal. For an 
asymmetric game, one player, that is, least powerful in a one-
shot game, becomes most powerful in the repeated game if he 
values the future sufficiently more than the other player. This is 
contrary to the commonly accepted notion where high 
valuations of the future are conducive to cooperation in long-
term relationships, but is consistent with the notion that the 
more patient player receives a larger share of the pie, and is thus 
more powerful.

APPENDIX A: POWER INDEX CONFLICT MEASURE
IN REPEATED GAMES

Let us consider the following repeated game.12 At period 0
player 1 wins with probability p1 = s2

1 , and player 2 wins with
probability p2 = s2

2 . The remaining probability is 1 −p1 −p2 =
2s1s2. Assume that the game ends in period 0 with probability
s1s2, and that it proceeds to period 1 with the remaining prob-
ability s1s2 where the same game is played again. We count 1
for a win and 0 for any other outcome. Player 1 discounts at
δ1 and player 2 at δ2. Player is accumulated absolute power
over N periods is

piNA =pi + δis1s2pi + (δis1s2)
2pi +· · ·+ (δis1s2)

N−1pi

= 1− (δis1s2)
N

1− δis1s2
pi, (A1)



which is a geometric series. As δi approaches infinity, player 
is absolute power also approaches infinity. We are interested in 
the relative power balance between players 1 and 2, determined 
by

piN = piNA

piNA +pjNA

= pi(1− (δis1s2)
N)(1− δj s1s2)

pi(1− (δis1s2)N)(1− δj s1s2)+pj(1− (δj s1s2)N)(1− δis1s2)
,

i, j =1,2, i �= j, 0� cpN =4p1Np2N �1. (A2)

Differentiating cpN with respect to δi when N =∞ implies that
maximum conflict cpN =1 arises when

δi = pj −pi(1− δj s1s2)

pj s1s2
⇔ pi

pj

= 1− δis1s2

1− δj s1s2
,

i, j =1,2, i �= j, (A3)

(A2) is shown in Figures 2 and 3 when (t1, t2) = (2,2) and
(t1, t2) = (1.99,2), respectively, as functions of δ1 when δ2 = 0
and δ2 =0.9, N =∞, (a1, a2)= (4,3), (b1, b2)= (3,4).

Figure 2. p1∞, p2∞, cp∞ as functions of δ1, δ2 = 0 and δ2 = 0.9,N = ∞, (t1, t2) =
(2,2).



Figure 3. p1∞, p2∞, cp∞ as functions of δ1, δ2 = 0 and δ2 = 0.9,N = ∞, (t1, t2) =
(1.99,2).

Player 1’s (2’s) power increases (decreases) in δ1 and maxi-
mum conflict cp∞ = 1 arises when the players are equally pow-
erful p1∞ =p2∞ =0.5 illustrated with the two thick vertical lines
in each figure, for δ2 = 0 and δ2 = 0.9, respectively. For the
symmetric game the players are equally powerful when their
discount factors 0 � δ1 = δ2 � 1 are equal (Figure 2). For the
asymmetric game the least powerful player 1 in the 1-period
game (t1 = 1.99 < t2 = 2) needs a sufficiently larger δ1 (δ1 = 0.08
when δ2 = 0, δ1 = 0.96 when δ2 = 0.9) to be equally powerful
p1∞ = p2∞ = 0.5 in the infinitely repeated game (Figure 3).
Thus note the rightward shift of the two vertical lines in
Figure 3. This result contrasts with the common view,
often supported by Folk Theorem arguments (Fudenberg and
Maskin, 1986), that high valuations of the future are conducive
to cooperation in long-term relationships. However, the result
bears resemblance to Rubinstein’s (1982) result in a complete
information alternating offers bargaining model where the more
patient player receives a larger share of the pie, and is thus more
powerful.13
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NOTES

1. See Brams’ (1994) account of a player’s “threat power.”
2. The four diagonal payoffs are sometimes considered to be equivalent,

i.e., d1 =d2 = t1 = t2. We distinguish between these because our objec-
tive is to model situations where the players have two kinds of pref-
erences: (1) Each has a strong preference for a certain state, indepen-
dent of the choice of the other player. (2) Each prefers a coordinated
to an uncoordinated outcome. If the diagonal payoffs were equiva-
lent, the importance of the second preference would be emphasized
rather than the first. The conflict measures developed in this article
of course also holds when d1 =d2 = t1 = t2.

3. Game 69 is sometimes called “Apology,” “Hero,” “Sacrificed leader.”
The games 64, 65, and 67 are hybrids and mixtures which likely
don’t have names because of the asymmetries.

4. (t1, t2) constitutes a benchmark relevant for the players’ anchoring
and adjustment (Kahneman and Tversky, 1979) of perceptions.

5. Axelrod considers his calculation of conflict c to be valid for pure
and mixed strategies. For mixed strategies all points on the line con-
necting the equilibrium points (a1, a2) and (b1, b2) are feasible. The
area of infeasible joint demand shrinks to the triangle spanned by
(a1, a2), (a1, b2), (b1, b2) which when substituted instead of the black
square in Figure 1 gives conflict cm =1/12. It is unclear how Axelrod
would define conflict in mixed strategies for the case in (1) where
(A1, t2) and (t1,B2) are not equilibria.

6. For mixed strategies, the triangle spanned by (b1, b2), (a1, b2), (a1, a2)

is irrelevant.
7. I thank an anonymous referee of this journal for the formulations in

the previous two paragraphs.
8. As an alternative formulation, player 1’s incentive to induce conflict

increases if a1 − t1 increases and he is then more likely to hold on
in the threat point. Conversely, player 1’s incentive to induce conflict
decreases if b1 − t1 increases, and he is then more likely to acquiesce
to player 2’s preference. Adding these two effects gives a1 −b1.



9. Within non-cooperative game theory assuming one unique equilib-
rium Steunenberg et al. (1999) have suggested a power index based
on the distance between a player’s ideal point and the equilibrium
outcome of a game. Within cooperative game theory power indi-
ces are more common (Banzhaf, 1965; Johnston, 1978; Holler, 1984;
Shapley, 1953; Shapley and Shubik, 1954). The concept of power has
been analyzed from a resource-dependence perspective (Pfeffer, 1981),
as power bases (Machiavelli, 1532; Hobbes, 1651; French and Raven,
1968; Hersey and Blanchard, 1982), in exchange networks (Bonacich,
1987; Skvoretz and Willer, 1993; Bienenstock and Bonacich, 1993),
and within mathematical sociology Emerson (1962, p. 32) defines
“the power of actor A over actor B as the amount of resistance on
the part of B which can be potentially overcome by A.”

10. Game 64 is not symmetric in our account since (d1, d2) does not
enter the players’ reasoning processes.

11. In the former sense players compete for the two equilibria which
cause different payoffs. In the latter sense player 1 is omnipotent and
plays his dominant strategy II regardless of player 2’s strategy. Max-
imizing von-Neumann and Morgenstern utility, player 1 perceives
strategy I as irrelevant, observes no dilemma, and experiences no
conflict. Player 2 may perceive a conflict, but it takes two to cause
conflict.

12. I thank the editor for suggesting this game which is an improvement
of the repeated game first analyzed.

13. Skaperdas and Syropoulos (1996) and Hausken (2005) also show that
increased importance of the future may harm cooperation.
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