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The impact of the future in games with multiple equilibria
Kjell Hausken
Abstract

The article shows that in a game with multiple equilibria, where one player estimates that there is at least a 
minuscule probability that the other player acquiesces, then conflict is inevitable if both players value the future 
sufficiently highly.
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It is commonly believed that in repeated games where the threat of punishment is credible and 
immediate and future cooperation is collectively desirable, the more the players value their future 
interactions (the greater is the discounted benefit of future cooperation) the more likely cooperation will 
be the equilibrium. In these games cooperation is immediate and e.g. a trigger strategy can be designed to 
continue that cooperation into the future. This works nicely when there is an agreed upon outcome that is 
best for everyone (e.g. prisoner's dilemma), where cooperation backed up by credible equilibrium threats 
elicit cooperation.1 The threat of conflict thus enforces cooperative relations. The approach in this article 
is different. “Cooperation” is not immediate. One player is trying to get his preferred equilibrium at the
1 The Folk Theorem (Fudenberg and Maskin, 1986:533) states that “any individually rational payoff vector of a one-shot gam
of complete information can arise in a perfect equilibrium of the infinitely repeated game if players are sufficiently patient.
Observe also the tit-for-tat strategy analyzed by Axelrod (1984).
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Table 1
Two-person two strategy game with two equilibria

I II

I a1,a2 t1,t2
II d1,d2 b1,b2

2 Table 1 encompasses games 64–69 in Rapoport and Guyer's (1966:213) ordinal taxonomy. The most well-known of thes
are the Battle of the Sexes (game 68), Chicken (game 66), and game 69 with several names such as “Let George do it”
“Apology”, “Hero”, “Sacrificed leader”. The games 64, 65, 67 are hybrid asymmetric games.
3 In the finitely and infinitely repeated versions of the game in Table 1 the two Nash equilibria are subgame perfect. In the

infinitely repeated game the following two strategies constitute a subgame perfect equilibrium with payoff (a1,a2) in each
period: Player 1: Choose strategy I when challenged, unless strategy 2 was chosen in the past, then always choose strategy
II. Player 2: Choose strategy I unless player 1 failed to choose strategy I in the past, then always choose strategy II. The

justification for the subgame perfect equilibrium with payoff (b1,b2) in each period is analogous. For these two subgame perfec
equilibria one player acquires a reputation for recalcitrance, the other for acquiescence. One problem with these two equilibria 
that the reputation is never tested. Table 1 is equivalent to the probably most well-known example of entry deterrence, viz. th
chain store game on normal form, when a1 = d1 ≥b1 ≥ t1, b2 ≥a2 = d2 ≥ t2, where player 1 is the incumbent (fight = strategy 
acquiesce = strategy II) and player 2 the entrant (stay out = strategy I, enter = strategy II). Both games have the same two Nas
equilibria, but the chain store game in its finitely repeated version has only one unique subgame perfect equilibrium (proved b
backward induction); the entrant enters and the incumbent does not fight. Kreps and Wilson (1982) and Milgrom and Rober
(1982) were first to formalize reputation effects, where a small amount of incomplete information can be sufficient to overcom
Selten's (1978) chain store paradox. As Kreps and Wilson (1982:255) point out, the second equilibrium (the entrant stays out an
the incumbent chooses the strategy “fight if entry”) i s “imperfect” and “not so plausible as the first. It depends on an expectatio
by the entrant of the bincumbent'sN behavior that, faced with the fait accompli of entry, would be irrational behavior for th
bincumbentN.” For text book treatments see e.g. Fudenberg and Tirole (1991:369–374), Osborne and Rubinstein (1994:105
106,239–243), Rasmusen (1989:85–118, 2001:110,129), Wilson (1985:31–33).
4 A generalization is the following “trigger strategy” for player 2 where a challenge may last f+1 periods, f≥1: Challenge

player 1 in periods 0,1,2,…,f if player 1 chooses strategy I in periods −1,0,1,…,f−1. If player 1 resists in period f, then
revert to strategy I giving (a1,a2). If player 1 acquiesces, continue with strategy II giving (b1,b2) until player 1 reverts back to
strategy I. If this is before and including period f, continue to choose strategy II. If this is in period f+1 or thereafter, then
choose strategy I.
 

 
 

expense of the other. There is fundamental disagreement as to what is the best equilibrium. In addition, a
player, by challenging the other player, is trying to induce him to give in to choosing the other
equilibrium.

Consider the game in Table 1 where a1 ≥b1 ≥ t1, b2 ≥a2 ≥ t2, a1 ≥d1, b2 N d2 or a1 N d1, b2 ≥d2.
2 The 

two pure strategy equilibria are (a1,a2) and (b1,b2). Row player 1 prefers (a1,a2), and column player 2 
prefers (b1,b2).3

Consider a “trigger strategy” (Osborne and Rubinstein, 1994:143–154) for player 2 where the players
move simultaneously in each period and a challenge lasts only two periods. In period 0 player 1 gets to 
know that he is challenged, and in period 1 player 2 gets to know whether player 1 resists or acquiesces:
Assume play of (I,I) in Table 1 in period −1 giving (a1,a2) and that player 1 also chooses I in period 0.
Challenge player 1 in periods 0 and 1 if player 1 chooses strategy I in periods −1 and 0. This gives (t1,t2) i n 
period 0. If player 1 resists in period 1 giving (t1,t2), then revert to strategy I giving (a1,a2). If player 1 
acquiesces in period 1, then continue with strategy II giving (b1,b2) until player 1 reverts back to strategy I.4
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In an infinitely repeated game with discount factors δ1 and δ2 for players 1 and 2, respectively, where
player 1 resists, players 1 and 2 get
ti þ d1t1 þ d21a1 þ d31a1 þ : : : þ dl1 a1 ¼ t1 þ ða1−t1Þd21
1−d1

ð1Þ
t2 þ d2t2 þ d22a2 þ d32a2 þ : : : þ dl2 a2 ¼ t2 þ ða2−t2Þd22
1−d2

ð2Þ
respectively. If player 1 acquiesces, they get
t1 þ d1b1 þ d21b1 þ d31b1 þ : : : þ dl1 b1 ¼ t1 þ ðb1−t1Þd21
1−d1

ð3Þ
t2 þ d2b2 þ d22b2 þ d32b2 þ : : : þ dl2 b2 ¼ t2 þ ðb2−t2Þd22
1−d2

: ð4Þ
Player 1 resists in period 1 when his payoff in (1) is larger than that of (3), i.e.
t1 þ ða1−t1Þd21
1−d1

N
t1 þ ðb1−t1Þd1

1−d1
Zd1N

b1−t1
a1−t1

¼ d⁎1 : ð5Þ
According to (5) player 1 is more likely to resist the more important the future is. In order for player 2's
challenge in period 0 to be part of a subgame perfect equilibrium, her expected payoff from challenging
must be larger than the payoff a2/(1−δ2) of not challenging. For this calculation player 2 needs to make a
conjecture of the probability q1 that player 1 resists the challenge. Applying (2) and (4) player 2
challenges in period 0 when
q1
t2 þ ða2−t2Þd22

1−d2
þ ð1−q1Þ t2 þ ðb2−t2Þd2

1−d2
N

a2
1−d2

Zd2N
−ð1−q1Þðb2−t2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−q1Þ2ðb2−t2Þ2 þ 4q1ða2−t2Þ2

q

2q1ða2−t2Þ ¼ d⁎2 :

ð6Þ
Eqs. (5) and (6) imply that if sufficiently low weight is placed on the future (δi is small, i=1,2), player 2
does not challenge, and neither does player 1 resist if there were a challenge, implying “peace” at (a1,a2).
Satisfaction of (5) but not (6) implies that player 2 does not challenge, implying (a1,a2). Conversely,
satisfaction of (6) but not (5) implies that player 2 challenges and player 1 acquiesces, implying “peace” at
(b1,b2). Finally, if sufficiently high weight is placed on the future (δi is large), player 2 challenges and
player 1 resists, implying conflict at (t1,t2).

Proposition 1. 1. If δ1bδ1⁎ and δ2bδ2⁎, then player 2 does not challenge, and player 1 does not resist,
implying (a1,a2). 2. If δ1Nδ1⁎ and δ2bδ2⁎, then player 2 does not challenge, implying (a1,a2). 3. If δ1bδ1⁎

and δ2Nδ2⁎, then player 2 challenges, and player 1 acquiesces, implying (b1,b2). 4. If δ1Nδ1⁎ and δ2Nδ2⁎,
then player 2 challenges, and player 1 resists, implying (t1,t2).



Proof. Follows from (5) and (6). □

Proposition 2. δ2⁎= (a2− t2 ) / (b2− t2) when q1=0, and δ2⁎=1 when q1=1.

Proof. Follows from (6) applying L'Hopital's rule for the first equality. □

Proposition 3. If q1b1 and a2bb2 and δi is sufficiently large, i=1,2, the threat point (t1,t2) is
guaranteed.

Proof. Follows from Propositions 1 and 2. □
Proposition 3 states that if the future is sufficiently important, and player 2 estimates that player 1 is not

100% guaranteed to resist, then conflict is guaranteed. In other words, given that player 2 estimates at least
a minuscule probability that player 1 acquiesces, sufficiently large emphasis on the future by both players
makes conflict inevitable.

Fig. 1 illustrates the four areas in Proposition 1 assuming (a1,a2) = (4,3), (b1,b2) = (3,4), (t1,t2) = (0,2). 
The horizontal axis is the probability q1 estimated by player 2 that player 1 resists the challenge. The 
vertical axis is the discount factor δi which may be different for players 1 and 2. This means that one for 
each value of q1 can choose one value δ1 along the vertical axis for player 1's discount factor, and another 
value δ2 along the vertical axis for player 2's discount factor, and read the optimal strategy and payoff for 
each player out of the diagram. For expositional convenience we focus on one value along the vertical 
axis, which is sufficient since all the four areas are present.

When q1=1, which means that player 2 estimates that player 1 is guaranteed to resist, then player 2 is
best off not challenging, regardless of her discount factor, as specified in Proposition 2. Conversely, when
q1=0, which means that player 2 estimates that player 1 is guaranteed not to resist, then player 2 may
Fig. 1. The four areas in Proposition 1 dependent on the probability q1 estimated by player 2 that player 1 resists the challenge
and the discount factor δi, i=1,2 for both players. The payoffs within each area are shown in brackets.
,



challenge if the discount factor is large compared with the threat payoff t2 that has to be endured in
period 0 because of the challenge, see (4). Hence when q1=0 and a2bb2, δ2⁎b1 in accordance with

⁎ ⁎
Proposition 2. Fig. 1 shows how δ2 increases in q1, while δ1 is constant in accordance with (5).
Below the curve δ2⁎ in Fig. 1, the behavior of player 1 is irrelevant since player 2 does not challenge,

which always causes (a1,a2). However, above the curve δ2⁎, the threat point (t1,t2) follows if player 1
resists, while (b1,b2) follows if player 1 acquiesces. When the parameters in (5) are adjusted so that δ1⁎

decreases, Fig. 1 reduces to three areas making (b1,b2) impossible. For example, increasing t1 from t1=0
to t1=2 causes δ1⁎=1/2 and three areas.

The development above assumes that player 2 challenges the equilibrium (a1,a2). The development is
analogous when player 1 challenges the equilibrium (b1,b2). In that case player 1 estimates a probability
q2 that player 2 resists the challenge.

Conflict at the threat point (t1,t2) raises the question of whether the off-the-equilibrium-path conjectures 
the players make of q2 and q1, and of each others' trigger strategies, when located in (I,II) (which is not an 
equilibrium) in period 1 receiving (t1,t2) are incompatible. Eq. (5) assumes that player 1 knows player 2's 
trigger strategy of acquiescing when player 1 resists. Knowing this conjecture, and assuming that (5) is 
satisfied, player 2 may rationally conjecture that player 1 is certain to resist, that is estimate q1 = 1, which 
when inserted into (6) gives δ2 N 1. Hence player 2 does not challenge if player 1 is deemed certain to 
resist. This again ensures “peace” at (a1,a2). But deeming player 1 certain to resist is problematic. It means 
that player 1 commits in advance to the sequence of actions he will take. If sufficiently challenged it is not 
rational for player 1 to keep such a commitment. Neither are the remedies suggested by Schelling (1960) 
for ensuring that one's commitment is trustworthy present in this complete information game,5 and 
neither are there any salient focal points. The analysis suggests on one hand that sufficiently high weight 
on the future increases the likelihood of conflict. But on the other hand, this presupposes that incompatible 
and sufficiently low off-the-equilibrium-path conjectures are admissible. The players are forced to play 
the game and cannot bargain themselves out of the game. Although the game has complete information, 
the players may well choose to resolve their situation by resorting to incompatible conjectures.
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