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Cooperation and between-group competition

Kjell  Hausken

Abstract

Introducing competition between groups may induce cooperation to emerge in defection games 
despite considerable cost of cooperation. If the groups can confine themselves to a cooperative 
sector, either by providing incentives to raise the cooperation level in one group, or by providing 
disincentives so that the cooperation level in the other group gets lowered to match that of the first, 
maximum degrees of cooperation can be obtained. The cooperative sector broadens as the degrees 
of cooperation increase, or the cost of cooperation decreases, or the group benefits of cooperation 
increase. 

1. Introduction

The article illustrates cooperation against all odds. Imagine a group rigged such that
defection is inevitable. Introducing a second group and specifying conventional competi-
tion between the groups may imply that within-group cooperation nevertheless is possible.
Two-level analysis involves drawing upon ideas from collective rent seeking,1 the analysis
of the impact of product–market competition on managerial slack,2 and the analysis of
conflict between actors.3 Each agent makes an individual decision of whether to cooperate
or defect, mediated through the within/between-group structure of the model.

1 Katz et al. (1990), Nitzan (1991, 1994), Hausken (1995a, b, 1998), Lee (1995), Baik and Lee (1997), Rapoport
and Amaldoss (1997).

2 Winter (1971), Hart (1983), Tirole (1988: 46–47), Horn et al. (1995), Vickers (1995).
3 Hirshleifer (1995).



2. The model

In each of two groups withn1 andn2 agents, an agent can choose to cooperate through
incurring a costc of effort, or to defect incurring no cost of effort.hi cooperators in group
i produce an amounthiBi of payoffs (products, goods, outcomes, prizes, benefits, or re-
wards), whereBi is the productive efficiency,i=1, 2. We assume thathiBi , and not the
aggregate efforthic, is used as input in the between-group competition for groupi’s even-
tual payoff. This is so becausec may be utilized differently in the two groups if the group
characteristics expressed by the productive efficienciesB1 andB2 are different.4 The total
amounth1B1+h2B2 of payoffs is placed in a common pool which the two groups compete
for according to the conventional ratio form (Tullock, 1967) with (h1B1)m and (h2B2)m as
input, wherem is a parameter.5 Payoffs acquired by each group are distributed equally on
the group members. A cooperatorj in group 1 receives a payoff

P1j(S
−1j, c) = 1

n1

(h1B1)
m

(h1B1)m + (h2B2)m
[h1B1 + h2B2] − c, (1)

whereS−1j is the set of strategies by all then1−1+n2 agents in the two groups except agent
j in group 1 who chooses to cooperate. If agentj decides to defect rather than to cooperate,

4 An example considered by Hausken (1995a: 471) is a two-island tax system where the within-group efforts are
used to invest in ‘social welfare, cultural training, military training and equipment, and so on,’ all of which are
relevant for how the group succeeds in the between-group struggle with the other group. The effort by an agent
is thus not devoted directly to the between-group competition, but to the ‘within-group machinery,’ which may
be efficient (Bi is large) or inefficient (Bi is small) in utilizing it in the between-group competition. For example,
if the overall strategy, culture, equipment, or training in one group are lacking, insufficient, or inadequate, it may
not matter much whether each agent cooperates because a mechanism at the group-level is not able to utilize the
cooperation, which corresponds to a smallerBi for this group.

5 For unitary actors, Hirshleifer (1995) interpretsm as a ‘decisiveness parameter,’ while Tullock (1980) and
Nitzan (1994: 44) interpret it as ‘the marginal return to lobbying outlays’.m>1 gives a disproportional advantage
to groupi of producing more payoffshiBi than the other group, which implies that payoffs are transferred to group
i, which can be interpreted as exploiting benefits from economies of scale.m<1 gives a disproportional advantage
to each group of producing less payoffs than the other group. For the special case thatm=1,n1=n2, B1=B2, there
is no transfer of payoffs between the groups. The groups then do not appropriate each others’ internally generated
payoffs, and operate as if in isolation from each other.m=0 causes equal distribution of payoffs between the
groups.m<0 means punishing cooperation and placing a premium on defection, which is not considered here.
Consider three interpretations ofm, one economic/industrial, one political, and one military. First, a lowm for
industrial imperiums, companies, business firms, enterprises, means that each group can defend itself easily. This
can be due to stable market conditions where neither group has an incentive or opportunity to get the upper hand
in the competition, where the groups have divided the market geographically or according to target consumer
groups, or where heavy sunk costs in production technology, procedures, personnel training, marketing strategies
etc. hamper the way in which the groups can change their interference with each other, e.g. through the entering
of new markets and employment of new strategies. Second, a lowm for some political groups or collective entities
in a democratic constitution means wide separation of powers, bills of right, capacities, endowments, and legal
entitlements among the groups, which ‘reduce the decisiveness of majority supremacy, thereby tending to moderate
the intensity of factional struggles. If the political system were winner take all, decisivenessmwould be very high
and all politics would be a fight to the death’ (Hirshleifer, 1995: 32–33). Third, as Hirshleifer (1995: 32) points out,
“in military struggles, lowmcorresponds to the defense having the upper hand. On the western front in World War
I, entrenchment plus the machine gun made for very low decisivenessm. . . But in World War II, the combination
of airplanes, tanks, and mechanized infantry allowed the offense to concentrate firepower more rapidly than the
defense, thus intensifying the effect of force superiority.”

 there will  be h1−1 cooperators in group 1 giving agent j a payoff

P1j(S
−1j, 0) = 1

n1

((h1 − 1)B1)
m

((h1 − 1)B1)m + (h2B2)m
[(h1 − 1)B1 + h2B2]. (2)

The payoffs to an agent in group 2 are found by permuting the indices in (1) and (2).



3. Equilibrium analysis

Agentj in group 1 cooperates rather than defects whenP1j(S−1j , c)>P1j(S−1j , 0), which
by inserting (1) and (2), gives

c <
1

n1

(h1B1)
m[h1B1 + h2B2]

(h1B1)m + (h2B2)m
− 1

n1

((h1 − 1)B1)
m[(h1 − 1)B1 + h2B2]

((h1 − 1)B1)m + (h2B2)m
= cr. (3)

The analogous requirement for group 2 is found by permuting the indices. (3) can also
be expressed asc<cr(h1, h2, B1, B2, m,n1) which is a necessary and sufficient condition
for agentj in group 1 to cooperate with his fellow group members. The key equilibrating
variables of interest areh1 andh2. We first determineh1 for group 1 assumingh2, B1, B2,
m, n1 as fixed. We secondly determine the overall equilibriumh1 andh2 for both groups,
assumingB1, B2, m,n1, n2 as fixed. We thirdly carry out comparative statics ofh1 andh2.

When (3) is satisfied so thatc<cr for a given numberh1 of cooperators in group 1, then
the marginal agentj for whom the condition is being evaluated wishes to cooperate; of
course, no current cooperator wishes to defect. Given that agentj cooperates,h1 has now
increased with 1, and we may ask whether another current non-cooperator wishes to switch
to cooperation. So long as the inequality is maintained, the current non-cooperators wish
to become cooperators. Thus, we can imagine a one-by-one process whereby the number
of cooperators increases until either a value ofh1 is reached at whichc=cr (treatingh1
as real here), or elseh1=n1 is reached. On the other hand, if we begin atc>cr, then the
opposite occurs. Current cooperators wish to switch to defection, and we can again imagine
a one-by-one process whereby they do so until either a value ofh1 is reached at whichc=cr
or h1=0.

Property 1. When the status (including a possible non-equilibrium situation) within group
2 is taken as given, a Nash equilibrium in cooperation/defection strategies for the members
of group 1 is a value ofh1 such that eitherh1 = 0 and c = cr (an all-defection stable
equilibrium); orh1 = n1 andc < cr (an all-cooperation stable equilibrium); or0 < h1 <

n1 andc = cr (an interior stable or unstable equilibrium).

Property 1 for group 2 is found by permuting the indices. To throw light on Property 1,
assumeB1=B2=n1=n2=1000 agents in the two groups and thatm takes on seven values in
the range 0≤m≤7. Givenh2=400 cooperators in group 2,cr for group 1 is given in Fig. 1.

The familiar case of Fig. 1 ism=1 which gives pure cooperation by all agents whenc<1
∀hi≥0 (necessary and sufficient requirement), and a prisoner’s dilemma and pure defection
when 1=Bi /ni<c<Bi=1000,i=1, 2. Any valuecr takes on the abovecr=1 and makes the
between-group model interesting. Form<1, the requirement for cooperation is more lenient
thanc<1 for h1≈0, as the very first agents to cooperate may increase their payoff above



Fig. 1. Requirementc<cr as a function ofh1 for h2=400 for seven values ofm.

0. cr approaches asymptotically a stricter requirement below 1 ash1 increases. Form>1,
h1 considerably lower thanh2=400 causes a strict requirement forc because the benefits
from cooperation by agentj get expropriated by group 2. When the payoff production in
the two groups is similar,h1B1≈h2B2, which givesh1≈h2 whenB1=B2, the requirement
c<cr is lenient, inducing agentj to cooperate even at considerable costc. This is illustrated
by c<4 forh1=h2 andm=7. Ash1>h2, the incentives for agentj to free-ride increases ifc
is high. To illustrate the three different cases of Property 1, Fig. 2 replicates the curve for
m=7 from Fig. 1, considering three different values ofc; c=ch, c=cm, andc=cl .

Fig. 2. Equilibrium values ofh1 for h2=400 andm=7.



The all-defection stable equilibrium in Property 1 givingh1=0 occurs whenc is suffi-
ciently high and/or there are considerably fewer cooperatorsh1 in group 1 than in group
2. The necessary condition isc>cr. For c=ch, this happens for∀h1, for c=cm, it happens
for h1 < hu

1, and forc=cl , it happens forh1 < h1
1. The all-cooperation stable equilibrium

in Property 1 givingh1=n1 occurs whenc is low and there initially are many cooperators
h1 in group 1. The necessary condition isc<cr. For c=ch andc=cm, this never happens,
and forc=cl , it happens forh1>h1

1. The interior equilibrium in Property 1 giving 0<h1<ni

occurs whenc=cr. For c=ch, this never happens, forc=cm, it happens forh1 = hu
1 (un-

stable equilibrium) andh1 = hs
1 (stable equilibrium), and forc=cl , it happens forh1 = h1

1
(unstable equilibrium). Assumec=cm. When 0< h1 < hu

1, any cooperator wishes to defect
and no current defector wishes to cooperate, soh1 falls to 0. Ath1 = hu

1, no member has
an incentive to switch in any direction. Forhu

1 < h1 < hs
1, each current defector wishes

to cooperate, and no cooperator wishes to defect, soh1 increases tohs
1, at which point no

further incentive exists for either a cooperator or a defector to switch. Finally, forh1 > hs
1,

each current cooperator has an incentive to defect, pushingh1 back tohs
1. Observe that

all stable interior equilibria has∂cr/∂hi≤0. The Nash equilibrium solution for the stable
interior equilibrium in groups 1 and 2 can be written as

hs
1 = hs

1(h2, B1, B2, m, n1, c) and hs
2 = hs

2(h1, B1, B2, m, n2, c), (4)

respectively. The overall Nash equilibrium for the agents in the two groups is given by the
simultaneous solution of the two equations in (4), which gives

ho
1 = ho

1(B1, B2, m, n1, n2, c), ho
2 = ho

2(B1, B2, m, n1, n2, c). (5)

For the example above whereh2=400,m=7, andcm=2, the stable interior equilibrium
is hs

1 ≈ 547, and the unstable interior equilibrium ishu
1 ≈ 307. To determine the overall

equilibrium ho
1 and ho

2, we need to determine four curves: first, the stable equilibrium
valuehs

1 = hs
1(h2, ·) for all h2, 0≤h2≤1000; second, the unstable equilibrium valuehu

1 =
hu

1(h2, ·) for all h2, 0≤h2≤1000; third, the stable equilibrium valuehs
2 = hs

2(h1, ·) for all h1,
0≤h1≤1000; fourth, the unstable equilibrium valuehu

2 = hu
2(h1, ·) for all h1, 0≤h1≤1000.

These are shown in Fig. 3.The interesting part of Fig. 3 is the ‘cooperative sector’ spanned
out by the thick unstable equilibrium curveshu

1 = hu
1(h2, ·) andhu

2 = hu
2(h1, ·). If the groups

confine their initial and subsequent location (h1, h2) to the cooperative sector, they inevitably
get propelled to the overall cooperation equilibrium (h1, h2)=(1000, 1000).6 Conversely,
if the groups confine their initial and subsequent location outside the cooperative sector,
they move to (h1, h2)=(0, 0). This means that an overall stable internal Nash equilibrium
for the two groups does not exist.

Property 2. Assume two equivalent groups whereB1 = B2 and n1 = n2. When c >

cr∀hi, 0 ≤ hi ≤ ni , there exists one unique overall Nash all-defection equilibrium(ho
1, h

o
2)= (0, 0). Whenc < cr for at least one hi , there exist two overall Nash equilibria. The first

6 Consider a random point within the cooperative sector. For any given value ofh2, a defector in group 1 will
switch to cooperation, increasingh1, and no cooperator will switch to defection. Analogously, for any given
value ofh1, a defector in group 2 will also switch to cooperation, increasingh2, and no cooperator will switch to
defection. The groups will thus inch up on each other, eventually reaching (h1, h2)=(1000, 1000).



Fig. 3. Mutual reaction curveshs
1 = hs

1(h2, ·), hs
2 = hs

2(h1, ·), hu
1 = hu

1(h2, ·), hu
2 = hu

2(h1, ·).

is (ho
1, h

o
2) = (n1, n2) and is reached ifh1 and h2 throughout the equilibrating process

lie within the cooperative sector spanned out byhu
1 = hu

1(h2, ·) and hu
2 = hu

2(h1, ·). If
confinement to the cooperative sector can not be obtained, the overall Nash all-defection
equilibrium(ho

1, h
o
2) = (0, 0) is reached.

Property 2 has implications for how the rigging, monitoring, and external regulation of
competing groups can affect strategic behavior within groups. Maximum degreesh1 and
h2 of cooperation can be obtained by matching the cooperation levels in the groups with
each other, either by providing incentives to raise the cooperation level in one group, or by
providing disincentives so that the cooperation level in the other group gets lowered to match
that of the first. This ensures a transition into the cooperative sector. Ifh1 andh2 initially
are unequal, or the internal dynamics or speed for switching from defection to cooperation
is different, movement out of the cooperative sector may occur giving (h1, h2)=(0, 0). The
exactness by which the cooperation levels in the groups are matched is more important
the lower areh1 and h2, as indicated by the cooperative sector being narrower for low
cooperation levels. Conversely, ash1 andh2 increase, the two groups’ capacity for mutual
cooperation becomes more stable to parameter fluctuations. Hence, Property 2 may still
hold whenB1 6=B2 or n1 6=n2.

W.r.t. comparative statics, the cooperative sector for givenh1 and h2, broadens asc
declines, and narrows to the lineh1=h2 asc increases to the maximum value ofc where
c=cr has a unique solution. This happens forh1=hm

1 and corresponds to the mountain top
in Fig. 2. Forc>cr, there is no cooperative sector and the equilibrium(ho

1, h
o
2) = (0, 0)

is inevitable. IncreasingB1 andB2 has a similar effect as decreasingc since one group
in isolation has prisoner’s dilemma characteristics when 1=Bi /ni<c<Bi=1000, i=1, 2.
Increasingm has an effect as can be seen from Fig. 1. First, ifc is low, increasingm



Fig. 4.cr as a function ofh1 andh2 for m=7,B1=n1=500,B2=n2=1000.

may imply the presence of a cooperative sector. Second, ifm is too high, giving fierce
between-group competition, the cooperative sector becomes narrower, making a mutual
cooperation equilibrium unstable if other parameters fluctuate too much.

As an example of an asymmetry, letB1=n1=500 andB2=n2=1000.7 Fig. 4 plotscr as
a function ofh1 andh2 for m=7.8

Fig. 4 illustrates how the stable and unstable equilibria change, while being dependent
onc, and how a diagonal mountain ridge in a symmetric case changes to a translate which
is such that max(cr) occurs forh2≈250 whenh1=n1=500. Hence, the larger efficiency
of production or larger group sizeB2=n2=1000 in group 2 must be accompanied with a
smaller cooperation levelh2 in group 2 to facilitate the initiation and increase in cooperation
in group 1, ifc s.t.c<cr is high. If this is satisfied, the two groups move to an equilibrium
with a maximum degreeh1=n1 of cooperation in the smaller or less efficient group 1, and a
lower degreeh2<n2 of cooperation in the larger or more efficient group 2. For the smaller
group 1, the payoff to each of theh1=n1=500 cooperators isP1j(S−1j , c)≈502−cwhere

7 We have considered Bi proportional to ni , which is often realistic and means that the benefits reaped by one 
agent do not reduce the benefits received by another agent. An alternative is to consider Bi as a constant, which 
means that the amount of payoffs produced by a cooperative act is divided between the group members, giving 
smaller share to each as ni increases. With proportionality between Bi and ni , varying Bi or ni for the groups has 
similar effects, where we focus on varying Bi .

8 The ‘mountain ridge’ in Fig. 4 is continuous and has no isolated tops, the latter being due to the resolution 
of the Mathematica software package used to generate the plots (PlotPoints→80). The resolution can be made 
arbitrarily good, but then it becomes more difficult  to read the landscape. The mountain ridge is especially narrow 
and knife-edge sharp when h1 and h2 are small.



c<cr=4. For the larger group 2, the payoff to each agentv of the h2≈250 cooperators
(adjusted in an equilibrium manner to the nearest whole number) isP2v(S−2v , c)=249−c
wherec<cr=4, and the payoff to each defector isP2v(S−2v , 0)=245.

Property 3. When group 1 is smaller or less efficient than group 2, the two groups move
to an equilibrium with a maximum degreeh1 = n1 of cooperation in group 1, and a lower
degreeh2 < nu of cooperation in group 2. The payoff to each cooperator in the smaller
group 1 is larger than the payoff to each agent (cooperator or defector) in the larger group
2.9

4. Conclusion

Cooperation may emerge in defection games if competition between groups is introduced 
and the degrees of cooperation in the groups are sufficiently m atched t o f all w ithin a 
cooperative sector. If the groups gradually inch up on each other within a cooperative 
sector, no group falling behind or ahead of the other group, maximum degrees of 
cooperation are obtained. This may occur through providing incentives for cooperation in 
the least cooperative group, or providing disincentives for cooperation in the most 
cooperative group. A crucial point is how to get cooperation started since the cooperative 
sector is narrow for low degrees of cooperation. The cooperative sector broadens as the 
degrees of cooperation increase, or the cost of cooperation decreases, or the group benefits 
of cooperation increase.

Acknowledgements

I would like to thank Erwin Amann, Joerg Oechssler, Ross Cressman, Jack Hirshleifer,
Wolfgang Leininger, participants at the University of Dortmund Seminar on Economic
Theory, and three anonymous referees of this journal for helpful comments.
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can be attained if one group absorbs the members of the other group and sustains cooperation as an equilibrium
through being endowed with beneficial structural parameters.
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