ON A UNIQUENESS PROPERTY OF SECOND CONVOLUTIONS
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1. Introduction and Main Result

Let M, denote the space of all finite nontrivial complex Borel measures on
the real line whose variation has a fast decay at —oo:

0
(1) / e dlu(n)| < oo, for every r > 0.
—00
It follows from (1) that the Fourier-Stieltjes transform of every measure u €
Mo, ~
Az) = / e dpo),
—00

converges uniformly on compact subsets of the upper half-plane C, := {7 €
C: Imz > 0} to a function analytic in C;. Let /(i) := inf supp u denote the
left boundary of the support of 1, and w"* the nth convolution power of w.

The following uniqueness property of nth convolutions of measures from
Mo, was discovered in connection with some probabilistic results (see for
example [1], [7], [8], [9], [10] and the literature therein): Let n > 3 be an
integer, and let u € My be such that /[(u) = —oo. Then every half-line
(=00, a),a € R, is a uniqueness set for the nth convolution u**, in the sense
that the implication holds: Suppose v € M, and

(2) there exists a € R such that ©"*|(_c0,a) = V"*|(=00.q)- Then u™** = v"*

It is also known that property (2) does not hold for n = 2. An easy way to
check this is to take two measures &1, &, € My, such that [(§] + &) = —o0
and &; x & = 0 on some half-line (—o0, a). Then the measures © = & + &
and v = & — &, belong to M, [(1) = —oo and we have

(1> =) ooy = 461 % E2l(—o0.0) = 0.



For example, let §; € M, be the measures with Fourier-Stieltjes transforms

i

3) E@=eVer j=1,2.

From éléz = 1, we see that & % &, is the unit measure concentrated at the
origin, so that (& 4 &) — (&1 — &)™ = 4§ & =0 on (=00, 0).

It turns out that there cannot be more than two different second convolutions
which agree on a half-line. The aim of this note is to prove the following

THEOREM 1. Assume a measure . € My, satisfies [(u) = —o0. Suppose
there exists a € R and measures v, ¢ € My, such that

2 2 2
“4) W (—o0,a) = V] (—00,a) = D | (—0,a)»

and v*¥* # ¢**. Then either v¥* = pu** or ¢>* = p**.

An immediate corollary is the following uniqueness property of the second
convolutions:

COROLLARY 2. For every 4 € My, [(n) = —o00, there is a real number
ay = ao() such that u** is uniquely determined by its values on (—oo, a), a >
ao, i.e. if v € My, and there exists a > ay such that ,U«2*|(—oo,u) = v2*|(,oo,a),
then u** = v,

We also mention a uniqueness result for squares of analytic functions:

COROLLARY 3. Assume functions f, g and h are analytic in the punctured
unit disk 0 < |z| < 1, and that f has an essential singularity at the origin.
Suppose that both functions f> — g and f* — h? have a pole or a removable
singularity at the origin and g*> # h*. Then either g*> = f? or h> = f>.

This is just a particular case of Theorem 1 for measures concentrated on the
set of integers, and follows from it by the change of variable z = exp(—it).

2. Remarks

1. Observe that condition (1) is crucial for the uniqueness property (2): The
property (2) does not in general hold for measures whose Fourier—Stieltjes
transform is not analytic in C,, see [7], [8] and [1]. A comprehensive survey
of results on this and similar uniqueness properties can be found in [9].

2. As it was observed in [7], the uniqueness property of nth convolu-
tions (2) is closely connected with the Titchmarsh convolution theorem and
its extensions. The classical Titchmarsh convolution theorem states that if
& and &, are finite Borel measures satisfying [(§;) > —oo, j = 1,2, then
[(&1%&) = [(&1)+1(&). This is not true for measures with unbounded support,



for there exist measures §;, j = 1, 2, [(§;) = —o0, such that /(& x&,) > —oo.
Such measures can be taken from M, see example (3). However, it was
shown in [8] that the conclusion of Titchmarsh convolution theorem holds true
whenever the variation of measures satisfies a condition at —oo more restrictive
than (1):

0
®) / Mgl gy, (n)| < oo, forevery r > 0.
—0oQ

Second convolutions of such measures enjoy the uniqueness property above
([7], [8]). Moreover, examples similar to (3) show that restriction (5) cannot
be weakened. Analogous results for unbounded measures were established in
[2].

Observe that extensions of the Titchmarsh convolution theorem have also
applications in the theory of invariant subspaces, see [2], [3] and [4].

3. The Titchmarsh convolution theorem has been extended to linearly de-
pendent measures: the equality

[Grx-x8) =) &)
j=1

holds for linearly dependent measures &§ € My, j = 1,...,n,n > 3, in
“general position”, for the precise statement see [5]. Our proof of Theorem 1
below is a fairly easy consequence of this result.

3. Proof of Theorem 1
The following lemma is a particular case of Theorem 4 in [5]:

LEMMA 4. (i) Suppose measures &1, &, &3 € My, are linearly independent
over C. Then

(6) [(G1x &% &% (61 + 86+ 8)) =1(8) +1(5) +1(5) +1(E1 + 5+ &).

(ii) Suppose measures &, & € My, are linearly independent over C and
lay| + |az| # 0. Then

L& & * (&1 + &) * (a1§) + a262))
=1(&) +1(5) +1(& + &) +1(aié) + axé).

For the convenience of the reader, we recall shortly the main ideas of the
proof in [5]. To prove, say (6), by the Titchmarsh convolution theorem, it



suffices to verify the implication

L& x&*xE1+5 +8)) >—00 = (&) >—o00, j=1,2,3.

We may assume that & x & x & % (§; + & + Sg) = O on ( 00, O) so that
the product of the Fourier-Stieltjes transforms 515253 (51 + 52 + 53) belongs
to the Hardy space H*(C,). Hence, the zero set of the product, and so the
zero set of each factor satisfies the Blaschke condition. Now one can use the
following argument: If functions f;, j = 1,...,n,n > 2, are analytic in the
unit disk, linearly independent and such that the zeros of each f; and the sum
fi+-- -+ fu satisfy the Blaschke condition in the disk, then each f; must have
“slow” growth in the disk. A sharp statement follows from H. Cartan’s second
main theorem for analytic curves, see Theorem D in [5]. This argument proves
that the growth of each £ ;7 in C;. must satisfy a certain restriction. Next, we have
additional information that each function & ; is bounded in every horizontal strip
in C;. This allows one to improve the previous estimate to show that numbers
b; exist such that §, (z)exp(ibjz) € H*(Cy), j = 1,2, 3. This means that
l(.i-‘])> —bj > —00, j=1,2,3.
We shall also need a simple lemma:

LEMMA 5. Suppose j1 € My is such that [(u>*) > —oo. Then (i) > —oo.

Indeed, we may assume that u>* = 0 on (—o0, 0), so that (2)> € H®(C,).
Since j1 is analytic in C,, we obtain i € H*(C,). Consider now convolutions
W * pn, where p, is any sequence of smooth functions concentrated on [0, o0]
which converges weakly to the delta-function concentrated at the origin. We
have p,t € (H® N H')(C,). A standard argument involving inverse Fourier
transform along the line Imz = y as y — o0, proves that [(u % p,) > 0.
Taking the limit as n — oo, we conclude that /() > 0.

PROOF OF THEOREM 1. Suppose measures i, v, ¢ € My, [(t) = —o0,
satisfy (4) for some a € R, and v>* # ¢>*. Set & = (u + v)/2,& =
(uw—v)/2,and n; := (u+ ¢)/2, N2 := (u — ¢)/2. To prove the theorem, it
suffices to show that one of the measures &;, ;, j = 1, 2, is trivial.

Let us assume that it is not so, and show that this leads to a contradiction.

Since - -
(L = V) (cooa) = 461 * E2l(—00,) = 0,
(1> — ™) ooy = 411 * M2l (—c0.a) = O,

we have

(7 1(&) x &) > —o0, I(n *m) > —o0.



Let us show that (7) implies /() > —oo, which contradicts the assumption
I(u) = —o0.

We shall consider several cases. First, assume that & and &, are linearly
dependent. Then u = &) 4+ & = (1 + b)&,, for some b € C, b # 0, and so

. ., (1+b)?
w =+ by = Tél *x&).
By (7), this gives I(u?**) > —oo. Lemma 5 yields /(i) > —oo0.
Assume now that &, and &, are linearly independent. From u = &, + &, =
m + n2 we have n, = & + & — n;. Now (7) gives

—o00 < I(& & xni k) =1E x & xn1 x (& + & —n)).

If £, &, and n, are linearly independent, then by part (i) of Lemma 4, we
obtain /(§;) > —o0, j = 1,2,and so l(u) > —o0. If &1, & and n; are linearly
dependent, we have | = c1&; + &, for some ¢y, c; € C. Hence,

—00 < [(&1x&xkn1xn2) =1 (&1 % & * (181 + 282)) (1 —c)é1+(1—2)E).

If eitherc; #0, j =1,2,0or1 —¢; #0, j = 1, 2, then part (ii) of Lemma 4
implies /(§;) > —o0, and so [(t) > —oo. Otherwise, we may assume that
c; =0and 1 — ¢; = 0. This gives

—00 < I(&] % & * 1y % m2) = L(EF % £57).

From (7) and Lemma 5 we conclude that [(§;) > —o0, j = 1, 2, which shows
that [(i) > —o0.
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