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Abstract
We consider arbitrary-dimensional pseudo-Riemannian spaces of sig-

nature (k, k + m). We introduce a boost-weight decomposition and de-
fine a number of algebraic properties (e.g., the Si- and N-properties) and
present a boost-weight decomposition to classifiy the Weyl tensors of arbi-
trary signature and discuss degenerate algebraic types (e.g., VSI spaces).
We consider the four dimensional neutral signature space as an illustra-
tion.

1 Introduction

In Lorentzian geometry it is useful to use the boost-weights to categorise tensors
[1, 2, 3]. This was particularly useful in studying degenerate metrics and it is
thus useful to generalise this to the pseudo-Riemannian case [4, 5]. In this short
paper we will consider an arbitrary-dimensional pseudo-Riemannian space of
signature (k, k + m). The symmetry group of frame-rotations in this case is
SO(k, k + m). We will utilise the decomposition where any element, G, can
be written G = KAN , where we have split it into an compact spin piece, K,
an Abelian boost piece, A, and a piece consisting of null-rotations N . For
SO(k, k + m), K ∈ SO(m), and there are k-independent boosts (which equals
the real rank of SO(k, k + m)). We want to utilise this decomposition and we
can do so by choosing a suitable frame.

Therefore, we introduce a null-frame such that the metric can be written:

ds2 = 2
(
`1n1 + · · ·+ `InI + · · ·+ `knk

)
+ δijm

imj , (1)

where the indices i = 1, . . . ,m. The spins will act on mi, each boost will
act on the pair of null-vectors, while the null-rotations will in general mix up
null-vectors and spatial vectors. More precisely,



Spins: ˜̀I = `I , ñI = nI , m̃i = M i
jm

j , (M i
j) ∈ SO(m), (2)

Boosts: ˜̀I = eλI `I , ñI = e−λInI , m̃i = mj , (3)

while the null-rotations can be split up at each level. Considering the subset
of forms (`I ,nI ,ωµI ), where ωµI = {`I+1,nI+1, · · · , `k,nk,mi}, we can then
consider the I-th level null-rotations w.r.t. nI :

Null-rot: ˜̀I = `I − zµI
ωµI − 1

2
zµI

zµInI , ñI = nI , ω̃µI = ωµI + zµInI , (4)

and similarly for `I . Note that there are 2(2k + m − 2I) null-rotations at Ith
level, making 2k(k +m− 1) in total.

2 Boost-weight decomposition and the Si- and
N-properties

First we need to introduce some mathematical tools which are useful for studying
these metrics. Consider the k independent boosts:

(`1,n1) 7→ (eλ1`1, e−λ1n1)

(`2,n2) 7→ (eλ2`2, e−λ2n2)

...

(`k,nk) 7→ (eλk`k, e−λknk). (5)

For a tensor T , we can further consider the boost weight of the components of
this tensor as b ∈ Zk, as follows. If the component Tµ1...µn

transforms as:

Tµ1...µn 7→ e−(b1λ1+b2λ2+...+bkλk)Tµ1...µn ,

then we will say the component Tµ1...µn
is of boost weight b ≡ (b1, b2, ..., bk).

We can now decompose a tensor into boost weights, in particular,

T =
∑
b∈Zk

(T )b,

where (T )b means the projection onto the components of boost weight b.
By considering tensor products, the boost weights will obey an additive rule:

(T ⊗ S)b =
∑

b̃+b̂=b

(T )b̃ ⊗ (S)b̂. (6)

Let us consider a tensor, T , and list a few conditions that the tensor com-
ponents may fulfill:

Definition 2.1. We define the following conditions:

B1) (T )b = 0, for b = (b1, b2, b3, ..., bk), b1 > 0.

B2) (T )b = 0, for b = (0, b2, b3, ..., bk), b2 > 0.



B3) (T )b = 0, for b = (0, 0, b3, ..., bk), b3 > 0.

...

Bk) (T )b = 0, for b = (0, 0, ..., 0, bk), bk > 0.

Definition 2.2. We will say that a tensor T possesses the S1-property if and
only if there exists a null frame such that condition (B1) above is satisfied.
Furthermore, we say that T possesses the Si-property iff there exists a null
frame such that conditions B1)-Bi) above are satisfied. 1

Definition 2.3. We will say that a tensor T possesses the N-property if and
only if there exists a null frame such that conditions B1)-Bk) in definition 2.1
are satisfied, and

(T )b = 0, for b = (0, 0, ..., 0, 0).

Proposition 2.4. For tensor products we have:

1. Let T and S possess the Si- and Sj-property, respectively. Assuming, with
no loss of generality, that i ≤ j, then T ⊗ S, and any contraction thereof,
possesses the Si-property.

2. Let T and S possess the Si- and N-property, respectively. Then T⊗S, and
any contraction thereof, possesses the Si-property. If i = k, then T ⊗ S
possesses the N-property.

3. Let T and S both possess the N-property. Then T⊗S, and any contraction
thereof, possesses the N-property.

It is also useful to define a set of related conditions. Consider a tensor T
that does not necessarily meet any of the conditions above. However, since the
boost weights b ∈ Zk ⊂ Rk, we can consider a linear GL(k) transformation,
G : Zk 7→ Γ, where Γ is a lattice in Rk. Now, if there exist a G such that the
transformed boost weights, Gb, satisfy (some) of the conditions in Def.2.1, we
will say, correspondingly, that T possesses the SGi -property. Similarly, for the
NG-property.

If we have two tensors T and S both possessing the SGi -property, with the
same G, then when we take the tensor product:

(T ⊗ S)Gb =
∑

Gb̂+Gb̃=Gb

(T )Gb̂ ⊗ (S)Gb̃.

Therefore, the tensor product will also possess the SGi -property, with the same
G. This would be useful for us later when considering degenerate tensors and
metrics with degenerate curvature tensors. Note also that SGi -property reduces
to the Si-property for G = I (the identity).

Remark 2.5. A tensor T satisfying the SGi -property or NG-property is generi-
cally not determined by its invariants in the sense that there may be another
tensor T ′ with the same invariants. The Si-property therefore implies a certain
degeneracy in the algebraic structure of the tensor.

1Clearly, we assume that any trivial reordering (i.e., relabelling the bi) has been affected.



3 Boost-weight classification

We can also use the boost-weight decomposition to classifiy the Weyl tensors [1]
of arbitrary signature. By successively using null-rotations at each level, we can
use the well-known boost-weight classification to give an algebraic classification
of arbitrary-signature (Weyl) tensors. At each level we can consider the null-
rotations leaving invariant the (2k +m− 2I)-dimensional metric

2`InI + ηµIνIω
µIωνI . (7)

The metric ηµIνI will be of signature (k − I, k − I +m).
Therefore, consider a Weyl tensor, C, which can be decomposed into boost

weight components, as explained earlier. To find the primary level algebraic
type, we consider the components:

C = (C)(+2,∗,∗,...,∗)+(C)(+1,∗,∗,...,∗)+(C)(0,∗,∗,...,∗)+(C)(−1,∗,∗,...,∗)+(C)(−2,∗,∗,...,∗),

where (+2, ∗, ∗, ..., ∗) means all the components of boost-weight b1 = +2, etc.
We can now use the standard algebraic classification of Lorentzian tensors at

each level; e.g., will say that C is of primary (or primary level) algebraic type III
if there is a frame such that (C)(+2,∗,∗,...,∗) = (C)(+1,∗,∗,...,∗) = (C)(0,∗,∗,...,∗) = 0.

In order to get the second level type, we use the prefered form from the
primary level. Consider the highest non-zero primary boost-weight component
(C)(b1,∗,∗,...,∗). Again, we can decompose as follows:

(C)(b1,∗,...,∗) =
+2∑

b2=−2

(C)(b1,b2,∗,...,∗),

The second level type can then be found by trying to find a frame (using the
2th level null-rotations which preserves the primary boost-weights).

The full algebraic type will then be the sum of the prime, second, . . . . kth-
level types. We will write this as follows; e.g., (I,D, III), means the type at
1st, 2nd, and 3rd level are I, D, and III, respectively.

For Weyl tensors obeying the Si,- or N-property, we have the following:

Si : (II, II, ..., II︸ ︷︷ ︸
i

, G, ..., G)

N : (II, II, ..., II, III)

or simpler.

4 Four Dimensional Neutral space

In the special case of 4D neutral signature (NS) space, the Weyl operator, C,
splits into a self-dual and anti-self-dual part: C = W+ ⊕ W−. In [5] Law
classified the Weyl tensor of NS metrics using the Weyl operator the (anti-)self-
dual operators which can be defined as:

W± = 1
2 (1± ?)C.



Each of the parts can be considered to be symmetric and tracefree with
respect to the 3-dimensional Lorentzian metric with signature (+ − −). Con-
squently, each of the operators W± can be classified according to “Segre type”(the
“Type” refers to Law’s enumeration):

• Type Ia: {1, 11}

• Type Ib: {zz̄1}

• Type II: {21}

• Type III:{3}.

As in [4] is also advantageous to refine Law’s enumeration for the special cases:

• Type D: {(1, 1)1}

• Type N: {(21)}

We first note that the refined Law classification translate into our boost-
weight classification as follows (for each tensor W±)

I � (I, I), II � (II, II) D � (D,D) III � (III, III) N � (N,N).

As for the full Weyl tensor C = W+ + W−, there is no simple 1-1 corre-
spondence like above. In some sence, there is a “tilted” correpondence (using a
map G in “boost” space). In terms of the SGi - and N-property, which measures
a degeneracy of the Weyl tensor, we can relate it to the Law classification as
follows.

Proposition 4.1. For a 4D neutral signature space (k = 2, m = 0), then:

1. If either the self-dual or the anti-self-dual part of the Weyl tensor is alge-
braically special of type II, D, III, N or O, then the Weyl tensor possesses
(at least) the SG1 -property.

2. If both the self-dual and the anti-self-dual part of the Weyl tensor are
algebraically special of type II, D, III, N or O, then the Weyl tensor pos-
sesses (at least) the SG2 -property.

3. If both the self-dual and anti-self-dual part of the Weyl tensor are alge-
braically special of type III, N or O, then the Weyl tensor possesses the
N-property.

This result gives us a statement in terms of degeneracy of the Weyl tensor.
In particular, it tell us that if one of the parts of the Weyl tensor is algebraically
special, then the Weyl tensor is degenerate in the sence that its not determined
by its invariants.

In Fig 1, we have illustrated the boost weight components of the Ricci tensor
(the ‘diamond’) and Weyl tensor (the ‘cross’) in 4D Neutral signature. Each of
the Weyl tensors W± are the diagonal and anti-diagonal components (there are
two independent boost-weight (0, 0) components of the Weyl tensor C).



Figure 1: Figures showing the components of the Weyl and Ricci tensor in
boost-weight space. Displayed are metrics of signature (2, 2) (first column) and
(2, 2 +m), m > 0 (second column). The axes are the two boost weights b1 and
b2.

Note that for 4D Neutral signature, a Ricci tensor obeying the N-property
has a 4-step nilpotent Ricci operator: R4 = 0. 2 By inspection we see that for
a Ricci tensor obeying the N-property, we have that the powers of R must be
of the following types (or simplier):

R : (II,N), R2 : (III, III), R3 : (N,D), R4 : (O,O)

As an illustration, let us consider the following 4D NS spacetime which is a
VSI spacetime [3]:

ds2 = 2du1
(
dv1 +Hdu1 +Wµ1

dxµ1
)

+ 2du2dv2, (8)

where

Wµ1dxµ1 = v1W
(1)
u2 (u1, u2)du2 +W

(0)
u2 (u1, u2, v2)du2 +W

(0)
v2 (u1, u2, v2)dv2,

H = v1H(1)(u1, u2, v2) +H(0)(u1, u2, v2). (9)

In general this metric is of Ricci type (II,N). Here, the term with W
(1)
u2 (u1, u2)

contributes with a boost-weight (0,−2) component. Consequently, ifW
(1)
u2 (u1, u2) =

0, then this spacetime is of type (III, I) and we have R3 = 0. The above met-
ric also allows for the additional subcases (III, III) and (N,D). It should be
pointed out that the types given here are not complete in the sense that the
metric above allows for the two distinct cases of (II,N), where R3 6= 0 or R3 = 0.

2This need not be the case in higher dimensions. For example, a Ricci tensor R of signature
(2, 2 + m), m > 0, possessing the N-property need not be 4-step nilpotent, however it must
be 5-step nilpotent; i.e., R5 = 0. The corresponding numbers for the Weyl tensor possessing
the N-property in signatures (2, 2) and (2, 2 + m), m > 0 are 3 and 9 respectively.
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