
Coley, A. and Hervik, S.  (2009) Note on the invariant classification 
of vacuum type D spacetimes.

 Classical and Quantum Gravity, 26(24)

Link to official URL: doi:10.1088/0264-9381/26/24/247001
(Access to content may be restricted)

UiS Brage
http://brage.bibsys.no/uis/

This version is made available in accordance with publisher policies. It is the 
authors’ last version of the article after peer review, usually referred to as postprint.
Please cite only the published version using the reference above.



Note on the invariant classification of vacuum type D

spacetimes

A. Coley

Department of Mathematics and Statistics

Dalhousie University, Halifax, NS B3H 3J5, Canada

aac@mathstat.dal.ca

and

S. Hervik

Faculty of Science and Technology

University of Stavanger, N-4036 Stavanger, Norway

sigbjorn.hervik@uis.no

Abstract

We illustrate the fact that the class of vacuum type D spacetimes which are I-non-

degenerate are invariantly classified by their scalar polynomial curvature invariants.
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1 Introduction

In Lorentzian spacetimes, identical metrics are often given in different coordinate systems,

which disguises their true equivalence. It is consequently of fundamental importance to have

an invariant way to distinguish spacetime metrics. The invariant classification developed by

Karlhede [1], based on the Newman-Penrose (NP) formalism [2] and the Cartan equivalence

method, is widely used to characterize Lorentzian spacetimes in terms of their Cartan scalars

in general relativity [3].

However, perhaps the easiest way of distinguishing metrics is through their scalar poly-

nomial curvature invariants, which are scalars obtained by contraction from a polynomial in

the Riemann tensor and its covariant derivatives, due to the fact that inequivalent invariants

implies inequivalent metrics. In [4] the class of four-dimensional Lorentzian manifolds that

can be completely characterized locally (in the sense defined below) by their scalar polyno-

mial curvature invariants was determined. In particular, for any given Lorentzian spacetime,

(M, g), let I denote the set of all scalar polynomial curvature invariants constructed from the

Riemann tensor and its covariant derivatives. If there does not exist a metric deformation of

g having the same set of invariants as g, then we call the set of invariants I-non-degenerate,

and the spacetime metric g is called I-non-degenerate. This means that for a metric which

is I-non-degenerate, the invariants locally characterize the spacetime uniquely. In [4] it was

proven that a four-dimensional Lorentzian spacetime metric is either I-non-degenerate or

degenerate Kundt.

This important result implies that metrics not determined by their scalar polynomial

curvature invariants (at least locally) must be of degenerate Kundt form. These Kundt met-

rics therefore correspond to degenerate metrics in the sense that many such spacetimes can

have identical scalar polynomial invariants. The Kundt class is defined as those spacetimes

admitting a null vector ℓ that is geodesic, expansion-free, shear-free and twist-free [3, 5]. It

follows that there exists a kinematic frame in which the NP scalars κ = σ = ρ = ǫ all vanish.



In a degenerate Kundt spacetime there exists a common null frame in which the geodesic,

expansion-free, shear-free and twist-free null vector ℓ is also the null vector in which all

positive boost weight terms of the Riemann tensor and its covariant derivatives are zero [5].

Any metric in the degenerate Kundt class can be written in a canonical form [5, 6].

Clearly, by knowing which spacetimes can be characterized by their scalar curvature

invariants alone, the computations of the invariants (i.e., simple polynomial scalar invariants)

is much more straightforward and can be done algorithmically (i.e., the full complexity of the

equivalence method is not necessary). On the other hand, the Cartan equivalence method

also contains, at least in principle, the conditions under which the classification is complete

(although in practice carrying out the classification for the more general spacetimes can be

very difficult). Therefore, in a sense, the full machinery of the Cartan equivalence method

is only necessary for the classification of the degenerate Kundt spacetimes [7].

2 Vacuum type D spacetimes

In this note we shall illustrate this by considering the class of vacuum type D spacetimes.

These spacetimes were studied by Kinnersley [8], who divided the spacetimes into 4 subclasses

(I-IV) (which subdivides further into 10 distinct classes of metrics). This simple class of

spacetimes are of physical interest, and have been classified using the Karlhede method

[9]. Recently, an earlier invariant classification of the vacuum type D spacetimes based on

the NP formalism [10] has been extended by exploiting some NP identities using the GHP

formalism [11]. Clearly the classification of vacuum type D spacetimes is still of interest. We

shall show that we can classify these spacetimes, which are, in general, I-non-degenerate [4],

using simple scalar polynomial curvature invariants. As an illustration we shall present the

results for the Kinnersley class I spacetimes (the other cases work in a similar way). Note

that this method does not reproduce the determination of the upper bound (2) on the order



of the Cartan scalars for these spacetimes [11, 9].

2.1 Kinnersley class I metric

The Kinnersley class I Petrov type D vacuum metric is given by [8]:

s.
2 = −2Su.

2 + 2u. r. + 4D−1lSyu. x. − 4D−1lSxu.y. − 2D−1lyr.x. + 2D−1lxr.y.

+
(

−2D−2l2Sy2
− D−2zz∗

)

x.
2 + 4D−2l2Sxyx.y. +

(

−2D−2l2Sx2
− D−2zz∗

)

y.
2,

where the variables (labelled 0−3) are (u, r, x, y), z = r+il is a complex variable, l, C, (2Cil+

m) and (−2Cil + m) are constants, and

S ≡ 2Cl2(zz∗)−1
− C +

1

2
(2Cil + m)r(zz∗)−1 +

1

2
(−2Cil + m)r(zz∗)−1

D ≡
1

2
Cx2 +

1

2
Cy2 + 1.

There are 4 algebraically independent (complex) Cartan invariants, which are 1:

Ψ2 = −(2Cil + m)z−3

∇Ψ20′ = 3(2Cil + m)S
1

2 z−4 = ∇Ψ31′

∇
2Ψ20′ = −12(2Cil + m)Sz−5 = ∇

2Ψ42′

∇
2Ψ31′ = −3C(2Cil + m)z−4z∗−1 +

3

2
(2Cil + m)2z−5z∗−1

− 3(2Cil + m)Sz−4z∗−1

−12(2Cil + m)Sz−5.

We calculate the 4 (complex) scalar polynomial invariants:

I ≡
1

2
ΨabcdΨ

abcd = 3(2Cil + m)2z−6,

CαβγδCαβγδ = 24(2Cil + m)2z−6 + 24(−2Cil + m)2z∗−6

1 The worksheets, based on the work of J. Åman, were kindly provided by J. Skea. We follow the notation

of these worksheets and [9]. Note that Re(Ψ2) = (2Cil+m)z−3+(−2Cil+m)z∗−3 is an independent function.



Ψ(abcd;e)f ′

Ψ(abcd;e)f ′ = 180(2Cil + m)2Sz−8

Cαβγδ;µCαβγδ;µ = 720(2Cil + m)2Sz−8 + 720(−2Cil + m)2Sz∗−8,

where Ψabcd is the Weyl spinor, a, b, .. are spinor indices, and α, β, ... are frame indices.

We see that (Ψ2)
2 ∼ I, (∇Ψ20′)

2 ∼ Ψ(abcd;e)f ′

Ψ(abcd;e)f ′ , and ∇2Ψ20′ ∼ Ψ(abcd;e)f ′

Ψ(abcd;e)f ′/I.

These can be used to solve for the 4 real parameters (r, l, C, m) in terms of the scalar polyno-

mial invariants. Then by inserting these into the expression for ∇2Ψ31′ we can write also this

Cartan invariant in terms of polynomial invariants. Therefore, all of the Cartan invariants

can be expressed in terms of scalar polynomials.

3 Discussion

All of the other cases in the Kinnersley classes can be dealt with in a similar way [8].

The Schwarzschild vacuum type D spacetime belongs to the Kinnersley class I and, as

discussed in [4], in canonical coordinates there are two functionally independent (as functions

of the two parameters r and M) scalar polynomial invariants 2, CαβγδCαβγδ = 48M2r−6 and

Cαβγδ;µCαβγδ;µ = 720(r−2M)M2r−9, and all of the algebraically independent Cartan scalars

Ψ2, ∇
2Ψ20′ , ∇

2Ψ31′ , and ∇2Ψ42′ are related to these two polynomial curvature invariants

(see also [12] for the invariant classification of the Schwarzschild spacetime). The Kerr

solution belongs to Kinnersley class IIA; this spacetime has been invariantly characterized

intrinsically (using, in addition to algebraic scalar invariants, differential Weyl concomitants)

[13].

In general, the vacuum type D spacetimes in the Kinnersley classes are I-non-degenerate;

from the Bianchi identities the covariant derivative of the Weyl tensor is of algebraic type

2 By setting l = 0, C = −(1/2)(−m/M)2/3, and by rescaling the radial coordinate, r 7→ (−m/M)1/3r, we

see that the invariants in the Schwarzschild metric are equivalent to those in the Kinnersley metric (where

l = 0 is the Schwarzschild case).



I (for non-flat spacetimes) except in some very special cases (i.e., some special degenerate

Kundt spacetimes are included in the Kinnersley classes [8]). There is a sense in which the

type Dk degenerate Kundt spacetimes can also be completely characterized by their scalar

polynomial curvature invariants [4, 5]; however, the vacuum type Dk spacetimes are trivial.
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