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Abstract

In this thesis, mathematical models describing glucose-insulin regulation
within the human body have been studied. Glucoregulatory models are
valuable in diabetes related research. Monitoring glucose-insulin dynamics,
testing software and hardware related to autonomous insulin infusion, med-
ical testing and student training, are some of the main motivating factors
for developing physiologically accurate glucoregulatory models. In addition,
mathematical modeling of glucose control demands that the anatomical pro-
cess is studied in detail, which can increase our understanding of the process
itself. This can in turn improve the medical service for diabetic patients.
This thesis presents and evaluates the anatomical validity of six glucoregu-
latory model. The evaluation will focus on the models' ability to simulate
a physiologically plausible glucose-insulin dynamics, both quantitatively and
qualitatively. Homeostatic glucose control will also be a central focus point
when evaluating the models' simulation performance. Based on this evalua-
tion, improvements and modi�cations are suggested.

This thesis is primarily a theoretical study, made up of three main segments.
The �rst segment will present the theoretical research conducted regarding
anatomy, biochemistry, and biochemical modeling. The second segment is
a presentation of all the six glucoregulatory models studied. The third will
present and evaluate the Matlab and Simulink simulation result, and present
a optimized model based on the model study.
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Chapter 1

Introduction

1.1 Problem to be addressed

To study and compare a set of mathematical models describing glucose-
insulin control. The study will be focused on examining the models' glucose-
insulin oscillation related to food intake, and to examine their ability to
simulate homeostatic glucose control.

1.2 Background

Industrial controllers are the building blocks of control engineering. Even
though the human body does not contain controllers in the traditional, in-
dustrial sense, the principles of control engineering is highly valid and appli-
cable for biochemical regulatory processes. Mathematical modeling of these
processes within the human body has been a subject for scienti�c research
for over a century. This way of describing anatomical, physiological and
biochemical processes has led to an increased understanding of the human
regulatory system, the same way as the principles of control engineering has
contributed markedly to the development and scienti�c innovation in numer-
ous other engineering �elds [24]. Examples of these are process automation
and -control, subsea technology and medical engineering.

6



CHAPTER 1. INTRODUCTION 7

1.3 Anatomy

1.3.1 Enzymes

Chemical reactions within living organisms are crucial for the maintenance of
life. Examples of such reactions are nutrition uptake from food, utilization
and distribution of water in cells, reaction related to our immune system,
regulation regarding pH-level, blood sugar and -salt concentration [6]. These
reactions are mostly carried out spontaneously, though some of them require
catalyst for them to initiate or be carried out fast enough. Catalyst are
substances present in chemical reaction, speeding up the reaction rate to up
to more than a million times, compared with the uncatalyzed reaction [20].
Catalysts are able to work as reaction accelerators without themselves being
permanently altered in the process [20]. Catalysts are reusable as they return
to their initial state after the reaction has been carried out.

Biochemical catalysts are mostly proteins called enzymes [20]. The glu-
coregulatory process is dependent of these enzymes as they lower the energy
demand of certain biochemical reaction, enabling them to be carried out
spontaneously [20]. The enzymes in focus when considering the glucoregu-
latory process are the hormones insulin and glucagon. These hormones are
responsible for the regulation of blood levels of triglycerides, glucose, fat- and
amino acids, as well as the management of tissue metabolism [6].

Insulin is responsible for the lowering and stabilizing of an elevated blood
glucose concentration related to food intake [6]. This is done by accelerating
the glucose-uptake in skeletal muscle and fat, combined with an inhibition
of the glucagon secretion. Opposite to insulin, the hormone glucagon ele-
vates the lowered glucose concentration experienced while fasting, exposed
to physical stress or -exercise. The stored glucogen is then converted into
glucose, a hepatic reaction catalyzed by the enzyme glucagon [6]. Figure 1.1
illustrate computer generated molecule images of these hormones.

Figur 1.1: Insulin and glucagon molecule respectively [25, 26].
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1.3.2 The pancreas

Insulin and glucagon are hormones secreted from the pancreas - an organ
with a vital role in the glucoregulatory process. The pancreas is a glandular
organ located in the central abdomen, see �gure 1.2.

Figur 1.2: An illustration of the pancrease and its location in the abdomen
[28].

The primary functions of the pancreas are to contribute to digestion in the
small intestine, and act as a endocrine gland secreting hormones [27]. The
organ comprises two types of tissue, namely dark-staining cells related to the
digestion process, and lighter-stained cell-clusters called the Islet of Langer-

hans [27]. In this report, we will focus on the latter.
The Islet of Langerhans are pancreatic regions discovered by Paul Langer-

hans, a German pathological anatomist, in 1869 [16]. The Isle of Langerhans
are the endocrine regions1 of the organ. In the least, �ve types of cells in-
ject the secreted hormones directly into the blood stream. Examples of such
cell types are a- and b-cells that secrete the previously mentioned hormones
glucagon and insulin respectively.

Having introduced insulin, glucagon and the pancreas, we will now present
their interaction in the glucose-insulin regulatory system.

1Hormone producing regions.
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1.3.3 Homeostasis

Every day, the human body is exposed to, and a�ected by external and inter-
nal perturbations. These perturbations a�ect the biochemical processes and
dynamic functions within the human body. Counteraction of, and compen-
sating for these disturbances to maintain internal stability, homeostasis, is
done through thoroughly regulation and control. The term homeostasis was
introduced by the American physiologist Walter Cannon (1871�1945), and
is a fusion of the words homeo and stasis meaning �the same� and �standing
or staying� respectively [5]. There are many bodily functions that require
homeostatic control. Examples of these are the regulation of plasma glucose
concentration, body temperature, pH-level, ion-concentration as well as our
balance- and visual system [5]. A too strong deviation form homeostatic nor-
mal values, caused by a defect in the homeostatic control, can lead to severe,
and potentially life threatening conditions.

1.3.4 The glucose-insulin regulatory system

The glucose-insulin regulatory system is kept under tight homeostatic con-
trol. Glucose is the human cells primary source of energy and is delivered
to the cells through the blood stream. For the cell to have adequate access
to glucose, the glucose level in the blood stream needs to be kept within a
certain range2. The glucose-insulin regulatory system regulates the plasma
glucose level, keeping the levels within this range [6]. The main contributor
for maintaining plasma glucose homeostasis is the earlier mentioned pancreas,

and the two hormones insulin and glucagon.

The digestion of, and nutrition uptake from food will lead to an elevation of
the blood sugar level. This elevation will break the blood sugar homeostasis
and the body will try to oppose this change. When the blood sugar level
exceeds approximately 110 mg/dl, the hormone insulin is secreted from the
Islet of Langerhans' β-cells in the pancreas. Insulin accelerates the conversion
of the excess glucose in the blood stream into glycogen through a series
of kinetic biochemical reactions. Glucogen is stored in the liver, and acts
together with stored glucose in muscle and adipose tissue as a long-term
energy supply. Through these means, plasma glucose levels are reduced and
homeostasis is restored [6].

When the glucose level drops below 70 mg/dl, usually associated with fasting,
physical activity or stress, the pancreatic a-cells responds by secreting the
hormone glucagon. Glucagon inhibits the glucose-to-glycogen conversion,

2Normally 70-110 mg/dl for fasting non-diabetic subjects [6].
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and reverse the process. The glucogen stored in the liver is degraded and
converted into glucose which in turn is taken up in the blood stream, elevating
the glucose level and restoring plasma glucose homeostasis. This regulatory
cycle is visually presented in �gure 1.3.

Figur 1.3: The glucose-insulin-glucagon regulatory system [8].



CHAPTER 1. INTRODUCTION 11

Figure 1.3 illustrate the general steps of maintaining blood-sugar homeosta-
sis 3. Some people are challenged or inhibited to naturally maintain this
equilibrium, namely diabetics.

1.3.5 Diabetes

�Diabetes mellitus describes a metabolic disorder of multiple etiologies char-
acterized by chronic hyperglycemia with disturbance of carbohydrate, fat
and protein metabolism resulting from defects in insulin secretion, insulin
action or both.�[4] According to The Norwegian Institute of Public Health,
in 2012 there were 375,0004 people in Norway su�ering from diabetes [1].
Patients that su�er from diabetes are unable to regulate their blood sugar
level naturally when the homeostasis is broken. The condition is divided into
two groups; diabetes type 1 and diabetes type 2. In both cases, the subjects'
blood sugar level is too high, potentially leading to life threatening condition
if not treated.

Diabetes type 15, also called insulin-dependent or juvenile-onset diabetes, af-
fects among 10% of the total number of patients diagnosed with the condition
[11]. Type 1 diabetes is commonly diagnosed through detection of symptoms
such as increased hunger and/or thirst, weight loss, frequent urination, dry
mouth and fatigue [12]. In contrast to diabetes type 2, DMT1 is not a result
of poor dieting or overweight, but has a stronger connection to genetics.

Subjects diagnosed with type 1 diabetes have been subjected to an au-
toimmune attack of the pancreatic b-cells, causing relative or total inhibition
if insulin secretion. The reduction in, or absent of insulin supply inhibits
the plasma glucose regulatory process to lower blood sugar level, a condition
that can be fatal [12].

Being a chronic condition, diabetes needs to be treated carefully for the
subjects to live close to normal lives. Since the pancreas is unable to pro-
duce insulin, this hormone has to be arti�cially injected to maintain glucose
regulation, hence the name insulin-dependent. Insulin replacement therapy
involves a manually insulin injection, demanding close monitoring of the glu-
cose level using a glucose meter [12]. Alternatively, a insulin pump is used for
the insulin injections. In more critical cases, Islet cell- or complete pancreas
transplantation are preformed to restore glucose regulation. Such treatment

3Reference of liver �gure: http://www.sccollege.edu/SiteCollectionImages/Private/816_liver.jpg
Reference of pancreas �gure: http://www.visualphotos.com/image/1x6346825/human_pancreas
4Out of 375,000 diabetic subjects there are 2,500 with type 1 and 350,000 with type 2

diabetes.
5Hereby also referred to as DMT1 (diabetes mellitus type 1).
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is only preformed when highly necessary as the side e�ects, complication
and risk associated with such a procedure might be greater than the medical
bene�ts gained. In most cases, manually injection of insulin is an adequate
method of treatment [12].

Diabetes type 2 6, also called non-insulin dependent or maternity-onset, af-
fects amount 90% of the total number of patients diagnosed with diabetes
[11]. Symptoms include frequent urination, increased thirst and hunger,
weight loss, blurred vision, peripheral neuropathy, itchiness and fatigue [13].
In contrast to DMT1, which is a condition that is primarily linked to genetic
predisposition, the development of DMT2 is strongly connected to factors
related to people's environment and lifestyle. Examples of such factors are
obesity7, stress, lack of exercise and poor dieting. Females and elderly are
more likely to develop the condition.

DMT2 di�er from diabetes type 1 in that the insulin production is partly
of fully functioning. The complication in DMT2 is that subjects have de-
veloped a resistance or intolerance of the insulin secreted from the pancreas.
The subjects are therefore unable to utilize the insulin in the glucose regula-
tory process, leading to elevated plasma glucose levels, which further on can
lead to serious life threatening conditions [13].

While the treatment of DMT1 is limited to, or focused on recovering pancre-
atic functionality, treatment of DMT2 is more complex focusing on proactive
measures and health promotion [13]. Improvement of diet, exercise level and
physical health, medication and even weight loss surgery are measures used to
increase insulin sensitivity and -action, and reduce the complications related
to DMT2.

If treated right, diabetics can live close to normal lives. If not, the pa-
tient is at immediate life threatening risk. Hypoglycemia, or too low blood
sugar, is a common condition associated with diabetes. Hypoglycemia can
cause mild dysphoria, seizures, unconsciousness, and in some cases perma-
nent brain damage or death [14]. In contrast to hypoglycemia, hyperglycemia
is caused by a too high glucose level. Generally, temporary hyperglycemia
is a asymptomatic and benign condition. However, subjects experiencing
chronic or frequent hyperglycemic episodes over a long time period stand
at risk for developing severe, and potentially life threatening complications.
Examples of these are kidney disease, cardiovascular damage, neurological
damage, impaired vision or blindness and amputation [15].

Diabetes is the result of a malfunction in the glucose control process. Math-

6Hereby also referred to as DMT2 (diabetes mellitus type 2).
7Body mass index > 30
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ematical modeling and analysis of said process can therefor contribute to an
increased understanding of the cause and e�ect of this malfunction, which in
turn can improve the medical treatment of the condition.

1.4 The developement within biochemical mod-

eling

Mathematical models of biochemical metabolism have been a subject to re-
search for over 50 years. To consider biochemical processes using the princi-
ples of industrial process control has contributed to increased understanding
of, and medical development within the �eld of anatomical process control.
The following will focus on models of glucose-insulin dynamics in vivo8.

Models of the glucoregulatory system can be traced back to 1961 when Vic-
tor Bolier [54] presented the �rst model describing glucose-insulin dynamics
related to blood sugar regulation. This was a fairly simple model compris-
ing two linear ordinary di�erential equation which illustrated the principle
of the glucose-insulin interaction [36]. In spite of its simplicity, the model
turned out to be the foundation of the work conducted by scientist like Co-
belli [58] and Ackerman [55, 56, 57], people considered pioneers within the
�eld of glucoregulatory- and diabetes modeling. Ackerman's et al. models
were based on oral glucose tolerance test describing individuals capacity of
glucose utilization.

One of the most signi�cant contributions is however considered to be the
work conducted by Richard Bergman et al. [59]. His model, known as �The
Bergman Minimal Model�, is related to his award winning diabetes research.
With its simple structure and limited complexity, the model is one of the most
common starting point when mathematically considering insulin-glucose dy-
namics in vivo, and has been extended, modi�ed and improved by a numerous
of scientist worldwide.

Another valuable contribution to the �eld was the work conducted by
Claudio Cobelli and co-workers [60]. In contrast to the fairly uncompli-
cated nature of the Minimal Model, Cobelli developed a complex, though
comprehensive, nonlinear model focusing on modeling the short-term glucor-
egylatory process in terms of glucose-, insulin- and glucagon dynamics. This
was a valuable contribution to the �eld as the amount of complicated and
detailed models were limited.

8�In vivo� is a often used medical term with Latin origin meaning �within the living�.
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In 1985, Salzsieder et al. [61] brought forth a contribution in the diabetes
research when he presented an alternative to the short-term glucoregulatory
Minimal Model. In the paper �Estimation of individually adapted control pa-
rameters for an arti�cial beta cell� [36], he described the necessity of modeling
each diabetic patient individually in order to obtain accurate control param-
eters in long-term glycemic regulation [36]. The model combined several
domains and segments of the glucose-insulin regulation process, e.g. insulin-
dependent glucose utilization, insulin catabolism and endogenous glucose
production. Through the use of optimal control theory, they were able to
optimize the model parameters, and develop a detailed and accurate model,
well correlating with medical data and patient information. Jean Pierre Mon-
tani and Robert Summers [62, 63] presented a glucose homeostasis model in
1989, focusing on the bi-hormonal glucagon and insulin regulation of glu-
cose [36]. The names Sturis [53], Andreassen [64] and Boroujerdi [65] are
also mentioned here as signi�cant contributors to the scienti�c development
within the �eld of mathematically modeling anatomical control processes.

1.5 Thesis outline

• Chapter 1 - Introduction

� This chapter will provide the reader a brief introduction to the
anatomy related to glucose-insulin control, as well as a historical
review of the development within biochemical modeling.

� It will present segments of the theoretical research conducted.

• Chapter 2 - Enzyme kinetics and biochemical modeling

� This chapter will present the theory related to glucoregulatory
modeling in detail.

• Chapter 3 - Models of the glucoregulatory system

� In this chapter, the di�erential equations, model structure and
model parameters of all six models will be presented.

• Chapter 4 - Implementation and result

� This chapter will brie�y describe how the models are implemented
and simulated in Matlab and Simulink.



CHAPTER 1. INTRODUCTION 15

� In will further present and discuss the simulation result of all six
models.

� Based on the simulation results, a modi�ed model will be pre-
sented.

• Chapter 5 - Discussion and conclusion

� Chapter �ve will present a conclusion of the model study con-
ducted. It will discuss potential sources of errors and possible
improvements.

� Further work will also be suggested in chapter 5.

• Chapter 6 - Appendix

� Chapter six will present additional material including some of the
Matlab and Simulink implementation.

� An extended portion of additional material in will be attached in
the CD.



Chapter 2

Enzyme kinetics and biochemical

modeling

This chapter will present how substances in biochemical reaction react and
interact. It will also provide a theoretical introduction to biochemical mod-
eling.

2.1 Biochemical reactions and enzyme kinetics

Reactions of the central metabolic pathways are essential for the maintenance
of life [19]. Many of these reactions happen spontaneously, while others need
catalyst for them to happen naturally due to their high energy demand.
Catalyst lower the amount of energy needed for the reaction to proceed [19].
Equation 2.1 shows how the enzyme E reacts with the substrate S creating
the enzyme-substrate complex ES. Examples of a substrate included in the
blood sugar regulatory process is glucose, and the enzymes E might be the
hormones insulin and glucagon. The end result is the formation of product
P , in our case glycogen or glucose, and the enzyme returns to its initial
state, available for reuse. The parameters k1 and k−1 denotes the reaction
rate of the forward and reverse reaction of the enzyme-substrate complex
respectively, and k2 is the reaction rate of dissociation of the end product P .
In addition to these parameters, we also consider the �ow per time unit - the
�ux 'J '.

E + S
k1


k−1

ES
k2
→ E + P (2.1)

16
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The way substances in biochemical reaction evolves over time is often de-
scribed through the use of di�erential equation on the form represented in
equation 2.2 [29].

dxi
dt

= synthesis− degradation ± shuttling... (2.2)

...± complex formation ± chemical modification

In eq. 2.2, negative signs are associated with a loss-rate, and positive signs
with gain-rates. It is the relationship between these rates that describes the
dynamics of variable xi. The steady state level, i.e. dxi

dt
= 0 , is obtained

when the loss-rates equals the gain-rates. A system of variables is at steady
state when all variables included in the system are at equilibrium.

When considering the glucoregulatory system, we consider a set of vari-
ables and di�erential equations. These di�erential equations and their vari-
ables are dependent of one another, meaning that the di�erential equation
describing the dynamics of one variable is a function of the other variables:

dxi
dt

= f(x1, x2, x3...xn)

As a tool of solving these di�erential equations numerically, the software
package Matlab has been used.

A central point when considering dynamics is the order of biochemical reac-
tions. The order of the reaction describes to what degree the reaction rate
is dependent of, or in�uenced by the concentration of the substances present
or active in the reaction. We consider the end-reaction in 2.1 where the
enzyme-substrate complex ES form the product P , see equation 2.3.

k2
ES → E + P (2.3)

The dynamics of, or change in the ES-concentration can be described by the
law of mass action1 [18] as follows:

dES

dt
= −k2 · Eα · Sβ (2.4)

The di�erential equations above describe the dynamics in the concentration
of the enzyme-substrate complex ES, while k denotes the reaction rate. The

1�The rate of a reaction is proportional to the concentration of the participating
molecules� [29].
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sum of the indexes a and b determine the order of the reaction. The reaction
order is central when considering the substance �ow or �ux 'J' as will be
described below.

A zero-order reaction has a reaction rate independent of the concentration
of the substance. The reaction rate is therefore constant and una�ected
by concentration in E or S. An example of a zero-order reaction is the
elimination of blood alcohol which lies on a constant level of 15 milligrams
percent per hour (±5 mg%/hr) regardless of the blood alcohol level [21]. For
zero-order reactions, the �ux is equal to the reaction rate, see eq. 2.5 [18].

J = k (2.5)

Where α = 0 and β = 0. If an reaction is of �rst- or second-order, the reaction
velocity is linked to, or dependent on the concentration of substances present
in the reaction, i.e. E or S. First-order reaction-�uxes has a linear relation
to the substance-concentration as showed in equations 2.6 and 2.7.

J = E · k (2.6)

J = S · k (2.7)

Where α = 1 or β = 1. For second-order reactions, the reaction rate k relates
to the concentration of E or S in the power of two as follows:

J = S2 · k (2.8)

J = E2 · k (2.9)

J = S · E · k (2.10)

Where either α = 2 or β = 2, or both α = 1 and β = 1. Considering
a �rst order reaction where the enzyme E increases the concentration of
the substrate S. Keeping the enzyme-concentration at a constant level, the
concentration of the substrate will increase. Proportional to this increase,
the reaction velocity V will increase in a hyperbolic matter, until it reaches a
upper limit, namely VMAX . When the maximum reaction rate is reached, an
increase in the substrate-concentration will not in�uence the reaction rate.
This because the enzyme molecules are used to bind substrates, and are
unable to accelerate the reaction beyond this point [18]. Vmax is calculated
on the basis of initial enzyme concentration E0 and catalyst reaction velocity
kcat, cf. 2.11.
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VMAX = kcat · E0 (2.11)

The maximum reaction velocity is also central in the Michelis-Menten equa-
tion resented in section 2.2.

2.2 Michaelis-Menten equation

The stating point when considering Michaelis-Menten enzyme kinetics is the
curve illustrating the relationship between reaction velocity v0 and the sub-
strate concentration [S]:

Figure 2.1: Maximum reaction velocity Vmax [19].

Figure 2.1 illustrates the course of the reaction velocity v0 at increasing
substrate concentration [S] [19]. This relationship can be expressed by the
Michaelis-Menten equation as follows [19]:

v0 =
Vmax[S]

Km + [S]

Where v0 is the reaction rate, [S] is the concentration of substrate S, and
Km is the Michaelis-Menten constants de�ned as follows [19]:

Km =
Vmax
2

Considering enzyme kinetics, the Michaelis-Menten equation can be applied
as an approximation to describe zero-order enzymatic reactions. As �gure 2.1
illustrates, the relationship between the reaction rate v0, and the substrate
concentration [S] has a rectangular hyperbolic shape [19]. At high substrate
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concentration [S], the Michaelis-Menten constant Km becomes negligible in
comparison:

lim

[S]→∞
Vmax[S]

Km + [S]
= Vmax

v0 = Vmax (2.12)

As eq. 2.12 presents, the reaction rate v0 is now of zero-order with respect
to the substrate concentration S [19].

Considering modeling the glucoregulatory system, zero-order enzyme reac-
tions are valuable as they can possibly ensure steady state glucose homeosta-
sis. Instead of assuming strictly zero-order reactions, the more physiologically
valid Michaelis-Menten approximation can be applied. Having presented how
substances react, it is also a valid point to consider how they in�uence ea-
chother within the reaction or reaction chains. A central aspect of this is
substance activation and inhibition, a subject presented in section 2.3.

2.3 Inhibition

An inhibitor is a molecule that restricts or inhibits the enzyme-activity in a
reaction. Inhibitors play a vital role in the glucose-regulatory system, and
are also essential in many types of medications. Inhibitors bind reversely
to the enzyme, preventing the formation of the enzyme-substrate complex
ES, or blocks the end reaction inhibiting the dissociation of the product P
related to the previously presented equation 2.1 [19]. We separate between
competitive-, uncompetitive- and non-competitive inhibition. Competitive
inhibition is the most common form of inhibition [19], see equation 2.13.

k1 k2
E + S 
 ES −→ E + P
+ k−1

I
Ki l

EI

(2.13)

In competitive inhibition, the inhibitor I competes with the substrate S over
the enzyme E. The enzyme-inhibitor complex EI is formed, leaving the
enzyme unable or challenged to catalyze the overall reaction leading to the
production of product P .
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The inhibitor can also react directly with the enzyme-substrate complex ES
in equation 2.1. This principle is shown in equation 2.14 and is known as
uncompetitive inhibition.

k1 k2
E + S 
 ES −→ E + P

k−1 +
I

Ki l
ESI

(2.14)

The third category of inhibition is a combination of the mentioned and is
called non-competitive inhibition. These inhibitors are able to react to both
free enzyme molecules, as well as enzyme-substrate complexes creating EI
or ESI respectively.

k1 k2
E + S 
 ES −→ E + P
+ k−1 +
I I

Ki l Ki l

EI + S 
 ESI

(2.15)

In this report, we will focus on competitive inhibition.

Having introduced inhibition and principles related to biochemical- and en-
zymatic reactions, we now want to consider these principles in the control
engineering domain. For this, we introduce the topic of physiological con-

troller motifs [18].

2.4 Controller motifs

Natural controller motifs illustrate how substances in biochemical regulatory
processes behave and interact [24]. These controllers present the interac-
tion, activation and inhibition of substances in biochemical reactions and
-processes. Depending on how the substances in�uence each other, natu-
ral controllers are classi�ed as either in�ow- or out�ow controllers [18]. An
overview of negative feedback in�ow-/out�ow controllers are presented in
�gure 2.2.
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Figure 2.2: Negative feedback in�ow-/out�ow controllers [18].

Figure 2.2 presents eight structures of two-component homeostatic controller
motifs [24]. The substance A is generally considered to be a process, while
E is the controller responsible for maintaining homeostasis in process A.

As an example, consider the in�ow controller structure 2 in �gure 2.2. In
this case, the substrate A activates the in�ow of the enzyme E, while E has
an inhibiting e�ect on the in�ow of substrate A. The practical interpretation
of this is that the more the concentration of substrate A increases, the more
the in�ow in enzyme E will be activated by A. As a result of this activation,
the concentration of E will trigger an inhibition of the in�ow signal of A,
resulting in a reduction of concentration of substrate A.

To relate these principles to the glucoregulatory system, an presentation of
the inhibiting and activating relation between substances included in this
process is presented below:
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Figure 2.3: Controller motifs in the glucoregulatory system [8].

Figure 2.3 show how the generic substances in the glucose-insulin regulatory
system may interact. The main goal of the controllers glucagon and in-
sulin is to maintain homeostasis in process A - plasma glucose concentration.
Glucose is taken up from the bowel resulting in an increase of the glucose
concentration A. This increase will inhibit the pancreatic a-cells from se-
creting glucagon, which in turn will mitigate the glucogen decomposition in
the liver. Figure 2.3 also illustrates how an increase in A will activate the
b-cells causing he insulin concentration to rise. Insulin will then activate the
out�ow of A in that glucogen is stored in liver and muscle tissue.

Figure 2.3 illustrate the principle of glucose control in a compact and sys-
tematic matter. Such a schematic presentation is therefor also used when
presenting the respective glucoregulatory models in chapter 3.
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2.5 Modeling homeostatic control

A physiologically plausible model is able to simulate homeostatic glucose
control. A hypothesis presented by my thesis advisor Tormod Drengstig
states that homeostatic control might be related to zero-order degradation.
Consider the following example:

Figure 2.4: Zero order degradation controller motifs.

Figure 2.4 illustrate two substances A and E with their corresponding input-
output rates. Based on �gure 2.4, the dynamics in A and E can be expressed
as follows:

dA(t)

dt
= k1 − A(t)E(t) · k2 (2.16)

dE(t)

dt
= k3 · A(t)− k4 (2.17)

Based on eq. 2.17, the following steady state expression of A(t) is derived:

dE(t)

dt
= k3 · A(t)− k4 = 0 (2.18)

k3 · A(t) = k4 (2.19)

A(t) =
k4
k3

(2.20)

Expression 2.20 illustrate how zero-order degradation might ensure a con-
trolled A(t) concentration at steady state. To assume zero-order degradation
is however a rather physiological unrealistic assumption. The more anatom-
ically valid Michaelis-Menten kinetics is therefor used as a approximation to
zero-order degradation. Michaelis-Menten degradation kinetics is introduced
in expression 2.21:
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dE(t)

dt
= k3 · A(t)− k4

E(t)

Km + E(t)
= 0 whereKM � E(t)

A(t) =
k4
k3

(2.21)

Equation 2.21 illustrate how A(t) is controlled when Michaelis-Menten kinet-
ics is assumed in the degradation of E(t).

In addition to zero-order degradation and Michaelis-Menten approximation,
auto catalysis of E(t) might ensures a steady state homeostatic control in
A(t), see �gure 2.5.

Figure 2.5: Auto catalyzed controller motifs.

Based on �gure 2.5, the dynamics of A(t) and E(t) is described as follows:

dA(t)

dt
= k1 − A(t)E(t) · k2

dE(t)

dt
= A(t)E(t) · k3 − E(t) · k4

The steady state property in A(t) then becomes:

dE(t)

dt
= A(t)E(t) · k3 − E(t) · k4 = 0

A(t)E(t) · k3 = E(t) · k4

A(t) =
k4
k3

The concentration in A(t) is then stabilized at a steady state level of k4/k3.
A mathematical model with zero-order degradation, Michaelis-Menten ap-
proximation or auto catalysis will therefor supposedly be able to simulate
homeostatic integral control.
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2.6 Model classi�cation

Glucoregulatory models are often classi�ed as empirical, semi-empirical or
physiologically-based models. Empirical models are developed based on the
relationship between a systems input/output data, not focusing on the details
within the system itself. These models are valuable when it comes to describe
the overall system principle in a simple uncomplicated matter [38].

Semi-empirical models are somewhat more complicated than strictly em-
pirical models. �The goal in such models is to capture the major physiological
interactions in order to reproduce the data without sacri�cing the structural
simplicity� [39]. The system dynamics is captured making these models more
versatile, descriptive and extensible than strictly empirical models.

For a more detailed insight of the system, physiologically based models are
applied. Related to modeling the insulin-glucose dynamics, a physiologically
based model process the metabolic substrates at the intracellular organ/tis-
sue level. These models are time consuming to develop and are made up of
a numerous high order- nonlinear di�erential equations.

The models presented in this chapter are a variety of the three model types
mentioned above.

2.7 Model development

Models of the glucoregulatory system are often based on data obtained by
one of the two tests: oral glucose tolerance test (OGTT), or intravenous
glucose tolerance test (IVGTT). These types of tests are also central in the
diabetes diagnostic process.

When conducting an oral glucose tolerance test, a subjects insulin- and
glucose levels are measured after eight hours of fasting. Then, the subject
orally consumes a certain amount2 of glucose and the insulin-/glucose levels
are remeasured in a three-hour course. Typical result of a OGTT is showed
in �gure 2.6.

2The typical glucose amount is approximately 75 g. [40]
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Figure 2.6: The typical result of an oral glucose test showing a normal (green,
glucose level < 140 mg/dl), pre-diabetic (yellow, glucose level 140-200 mg/dl
), and diabetic response (red, glucose > 200 mg/dl). [40]

Figure 2.6 illustrates the glucose cycle after a oral glucose intake for a normal,
pre-diabetic and diabetic subject. The glucose level for healthy subjects
(green curve) will rise as a reaction to the glucose intake, but is eventually
controlled down to the normal steady state plasma glucose level. The glucose
level for non-health subjects (yellow and red curve) will have an initially
higher glucose plasma concentration relative to healthy subjects. As �gure
2.6 illustrates, the diabetic or pre-diabetic subjects are unable to control the
glucose level adequately, hence it is stabilized at a generally higher level.

The same way as the OGTT, an intravenous glucose tolerance test (IVGTT)
is able to map a subjects glucose response and -regulation. In addition,
IVGTT is used to estimate glucose e�ectiveness, insulin sensitivity as well
as pancreatic responsiveness parameters [40]. The test in itself is carried out
though intravenous glucose injections, 0.30g/1kg body weight. The glucose
level in the bloodstream is then measured for a three hour period. Typical
result of a IVGTT is viewed in �gure 2.7.
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Figure 2.7: The result of an intravenious glucose tolerance test of a healthy
subject. [40]

Figure 2.7 illustrates the insulin secretion response to an elevated plasma
glucose concentration. The insulin secretion peaks shortly after the detected
glucose level elevation, enabling a glucose uptake in muscle and adipose tis-
sue. As a result, the plasma glucose level is lowered. The result of an IVGTT
provide valid information regarding mathematical modeling and medical di-
agnostics.

When comparing the two test forms, the glucose concentrations curve of
an IVGTT would have generally steeper slope regarding the initial glucose
elevation. This because the glucose is infused directly into the blood stream.
As the glucose is infused orally in an OGTT, the glucose elevation would be
smoother.



Chapter 3

Models of the glucoregulatory

system

This chapter will introduce the glucoregulatory models. The structure, dif-
ferential equations and model parameters of each model will be presented.

3.1 Choice of models

There are many mathematical models describing glucose regulation. In this
thesis, some of the most frequently cited ones are chosen. Individual dif-
ferences in terms of assumptions, state variables and model structure are
studied. The models examined are presented in table 3.1. A short review
of the models and how they are linked is presented in the following bullet
points.

• The BMM is a empirical minimal model. It is one of the most frequently
cited glucoregulatory models.

• The βIG-model is a empirical minimal model. It is developed based on
the principles of the BMM, including the dynamics of β-cell mass.

• The βIGIR-model is a modi�cation of the βIG-model. It is an empirical
model including the dynamics of insulin receptors.

• The GIE-model is a semi-empirical model. Apart form the GIM-model,
it is the most complex of the ones examined. It includes the dynamics
of the regulatory hormone glucagon.

• The S&H-model is a minimal empirical model. It is the simplest of the
ones examined considering mathematical complexity.

29
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• The GIM-model is the most complex of all the models studied. It is
a physiologically-based model with a high level of mathematical com-
plexity. The model is based in a graphic user interface which makes it
easily applicable despite its complex model structure.

Model name Abbreviation Developed by State variables

The Bergman BMM Richard N. Glucose, insulin
Minimal Model Bergman [49] and remote

(1979) insulin
The Glucose- The GIM-model Cobelli, Dalla Man, Glucose and
Insulin model Raimondo and insulin

(2007) Rizza [30]
The β-cell mass, The βIG-model Topp, Promislow, Glucose, insulin

Insulin and Glucose Vires, Miura and
model and Finegood [42] β-cell mass
(2000)

The β-cell mass, The βIGIR-model Hernandez, Lyles, Glucose, insulin,
Insulin, Glucose and Rubin, Voden and β-cell mass and
Insulin Receptor Wirkus [43] insulin receptors

model
(2001)

The Glucose, Insulin The GIE-model Sulston, Ireland Glucose, insulin
and Glucagon model and Praught [36] and glucagon

(2006)
The Stolwijk and The S&H-model Stolwijk and Glucose and
Hardy model Hardy [44] insulin

(1974)

Tabell 3.1: Models of the glucoregulatory system.

Having brie�y introduced the models, they will now be presented individu-
ally in detail. All models have are presented as they are described in their
respective articles. The only new thing introduced is the glucose input vari-
able Ginn(t), allowing the user to de�ne a glucose input signal common for
each model. In chapter 4, two di�erent input signal are applied, one to
study the glucose/insulin response to three meals, and another to examine
the homeostatic glucose control properties of the models.



CHAPTER 3. MODELS OF THE GLUCOREGULATORY SYSTEM 31

3.2 The BMM

Article [49] presents the original Bergman Minimal model. Model parame-
ters, -values and -syntax presented in article [41] is used as supporting ma-
terial in the presentation and evaluation of the BMM.

When considering the human body as a regulatory system, detailed and
complex mathematical models are required to describe this system accu-

rately. However, in many cases the aim when modeling is to describe the
overall principle in a clear and uncomplicated matter, including only a lim-
ited, and necessary amount of detail. Models consisting of a minimal set of
equations and parameters, focusing only on describing the system adequately
rather than accurately, with a low-as-possible level of complexity can be re-
ferred to as minimal models. In 1980, Richard N. Bergman, in collaboration
with Bowdon, To�olo and Cobelli, published his minimal model in the paper
�Minimal modeling, partition analysis and identi�cation of glucose disposal
in animals and man� [40]. The Bergman minimal model is one of the earli-
est introduced and best known models of the insulin-glucose metabolism in
man. Modi�cations and further development of the Bergman minimal model
has contributed to an increased understanding of the human glucoregulatory
system. The overall model structure is presented in �gure 3.1. The arrows
marked in red are used to clarify some of the points presented in the model
description.

Figure 3.1: Model structure of the BMM.

The model deviation describing the dynamics of each of the state variables;
glucose G(t), remote insulin X(t) and insulin I(t) will be presented in the
following.
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3.2.1 Glucose dynamics

To mathematically describe the glucose dynamics, the mass balance is ap-
plied. The description is presented in expression 3.1, and is equal for all the
models examined.

dG(t)

dt
= activation− consumption (3.1)

Considering �gure 3.1 arrow 1 and 2, the glucose is activated by a basal glu-
cose infusion Gb at rate p1, and a glucose input signal Ginn. The basal glucose
infusion Gb is presumably related to the hepatic glucose release. Whereas
the input signal Ginn is probably related to glucose uptake from food. The
activation �ux, jact can then be expressed as follows:

jact = Ginn +Gbp1 (3.2)

The glucose dynamics description has two consumption terms, arrow 3 and
4 �gure 3.1. Insulin independent glucose consumption in the brain at rate
p1, and a insulin activated glucose consumption. The latter is most likely
describing glucose uptake in muscle- and fat tissue, and in the liver. The
glucose consumption �ux jcon then becomes:

jcon = p1G(t) +X(t)G(t) (3.3)

Combining expression 3.2 and 3.3, the complete glucose dynamics becomes
the following [41]:

dG(t)

dt
= Ginn − p1 (G(t)−Gb)−X(t)G(t) (3.4)

3.2.2 Insulin dynamics

To mathematically describe the insulin dynamics, the mass balance is ap-
plied. The description is presented in expression 3.5, and is equal for all the
models examined.

dI(t)

dt
= activation− degradation (3.5)

An increase in the insulin concentration is activated by two term in the
BMM, arrow 5 and 6 �gure 3.1. A increased glucose concentration activates
the insulin secretion with a rate γ. In addition, the insulin dynamic has a
basal secretion Ib at rate n. The insulin activation �ux is then expressed as
follows:
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jact = Ibn+ γG(t) (3.6)

The insulin concentration has two degradation terms, arrow 7 and 8 �gure
3.1. One �rst order term associated with the degradation rate n, and a zero-
order degradation. This zero-order degradation is interesting in terms of
homeostatic control and will be examined further in chapter 4. The complete
insulin degradation �ux jdeg is expressed as follows:

jdeg = nI(t) + γh (3.7)

Expression 3.6 and 3.7 is combined resulting in the complete insulin dynamics
description [41]:

dI(t)

dt
= −n (I(t)− Ib) + γ (G(t)− h))

3.2.3 Remote insulin in action

In addition to glucose and insulin, the BMM describes the insulin e�ect on
the net glucose disappearance, or remote insulin in action X(t) [41]. Figure
3.1, arrow 9 illustrate how the insulin concentration I(t) activates the remote
insulin X(t), which in turn activates the glucose degradation. Remote insulin
is has a �rst- and zero-order degradation, arrow 11 and 10 respectively. The
zero-order degradation term will be further discussed in chapter 4. The
complete expression of the remote insulin dynamics becomes [41]:

dX(t)

dt
= −p2X(t) + p3 (I(t)− Ib) (3.8)

3.2.4 Complete model

The BMM as a whole is presented in eq. 3.9, 3.10 and 3.11 [41]. Model
parameters are presented in table 3.2.

dG(t)

dt
= Ginn − p1 (G(t)−Gb)−X(t)G(t) (3.9)

dX(t)

dt
= −p2X(t) + p3 (I(t)− Ib) (3.10)

dI(t)

dt
= −n (I(t)− Ib) + γ (G(t)− h) (3.11)
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Parameter Value Description Unit

G(t) Plasma glucose concentration mg/dl
I(t) Plasma insulin concentration mU/ml
X(t) Remote insulin action min−1

Gb 60.0 Basal injection level mg/dl
of glucose

Ib 7.0 Basal injection mU/ml
of insulin

p1 0.03 Insulin-independent rate min−1

constant of glucose uptake
in muscle, liver

and adipose tissue
p2 0.01 Rate for decrease in min−1

tissue glucose
uptake ability

p3 0.00001 Insulin-dependent increase min−2

in glucose uptake ability in (µU/ml)−1

tissue per unit of insuin
consentration above Ib

n 0.3 First order decay rate min−1

for insulin in plasma
h 17.04 Threshold value for mg/dl

glucose, above which
the pancreatic b-cells

release insulin

g 0.004 Rate of the insulin release µU
ml
min−2

after the glucose injection (mg/dl)−1

and with glucose
consentration above h

G0 60.0 Initial glucose concentration mg/dl

I0 7.0 Initial insulin concentration mU/ml
X0 0 Initial remote insulin min−1

concentration

Tabell 3.2: Model parameters of the Bergman minimal model [41].
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3.3 The βIG-model

This model was developed by Brian Topp et al. and was presented in the
Journal of Theoretical Biology in 2000 [42]. The model describes the dynam-
ics of glucose, insulin and β-cell mass in the glucoregulatory process. The
dynamics of the β-cell mass was included in the model inspired by studies
conducted by Leahy (1990) and Tobin et al. (1992) [42]. The point is to
study the homeostatic properties with limited β-cell functionality, assuming
normal insulin sensitivity. A schematic of the model is presented in �gure
3.2. The arrows are indexed with red numbers to clarify some points in the
model description.

|

Figure 3.2: The model schematics of the βIG- model.

The model deviation describing the dynamics of each of the state variables;
glucose G(t), insulin I(t) and β-cell mass β(t) will be presented in the fol-
lowing.
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3.3.1 Glucose dynamics

Figure 3.2 arrow 1 illustrate the glucose activation. It has a basal level R0,
and a glucose input signal associated with food intake Ginn. The activation
�ux is expressed as follows:

jact = Ginn +R0

The glucose is consumed independent from the insulin concentration by the
brain at a rate Ego, arrow 2 �gure 3.2. The glucose uptake has also a �rst
order term, cf. �gure 3.2 arrow 3. This �ux describes how the peripheral
glucose uptake, at rate SI , is accelerated by an elevated insulin concentration
[42]. The total glucose consumption then becomes:

jcon = G(t)Ego + SI · I(t)G(t)

Combining the activation- and consumption �ux, the complete description
of the glucose dynamics is expressed as follows [42]:

dG(t)

dt
= Ginn +R0 − (Ego + SI · I(t))G(t)

3.3.2 Insulin dynamics

Insulin I(t) is activated by a elevation in the glucose concentration G(t). In-
sulin is also activated by the β-cell mass β(t), as the β-cells secrete insulin.
The parameter σ denotes the maximum β-cell insulin secretion rate. The
model describes this insulin activation, arrow 8 �gure 3.2, as a sigmodial
function of the plasma glucose concentration G(t) with an associated func-
tion parameter α. This consideration is adopted form studies conducted by
Cobelli et al. (1980) and Rudenski et al. (1991). The sigmodial activation
�ux is is expressed as follows:

jact = β(t)σ
G(t)2

G(t)2 + α

The parameter k is related to the combined �rst order insulin degradation in
liver, kidneys and insulin receptors. It is indicated as arrow 9 in �gure 3.2,
and expressed as follows:

jdeg = I(t)k

The activation- and degradation �ux is combined to form the complete insulin
dynamics expression [42]:
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dI(t)

dt
=
β(t)σG(t)2

G(t)2 + α
− kI(t) (3.12)

3.3.3 β-cell mass dynamics

The dynamics of the β-cell mass is included in this glucoregulatory model to
how normal glucose control can be maintained in spite of limited β-cell func-
tionality, assuming normal insulin sensitivity [42]. The βIG-model assumes
slow process dynamics related to the β-cell mass. This is the reason for the
time scale being in days and not hours or minutes [42]. The mass balance
provides the following expression of the β-cell mass dynamics:

dβ(t)

dt
= synthesis− degradation

The β-cell synthesis is activated by an elevation in the glucose concentration
G(t). In addition, the synthesis is auto catalyzed by the β-cell mass it self
β(t). A hypothesis presented by my thesis advisor suggest that such a auto
catalysis can ensure steady state homeostatic control. Homeostatic model
property is a central focus point is this thesis and will therefore be further
discussed in chapter 4. The synthesis is associated with a rate constant r1
and is expressed as follows:

jsyn = r1G(t)β(t)

The degradation of the β-cell mass is modeled in two terms. One �rst order
term associated with the natural death of β-cells with rate constant d0, cf.
arrow 6 �gure 3.2. The limitation in β-cell functionality is modeled as a
three order term activated by the glucose concentration G(t). This β-cell
degradation is associated with the rate constant r2 and illustrated as arrow
7 in �gure 3.2. The complete β-cell mass degradation �ux becomes the
following:

jdeg = d0β(t) + r2G(t)
2β(t)

The synthesis and degradation expression is then combined to form the com-
plete description of the β-cell mass dynamics [42]:

dβ(t)

dt
=
(
−d0 + r1G(t)− r2G(t)2

)
β(t)
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3.3.4 Complete model

The βIG-model as a whole is presented in eq. 3.13, 3.14 and 3.15 [42]. The
model parameters are presented in table 3.3

dG(t)

dt
= Ginn +R0 − (Ego + SII(t))G(t) (3.13)

dI(t)

dt
=
β(t)σG(t)2

G(t)2 + α
− kI(t) (3.14)

dβ(t)

dt
=
(
−d0 + r1G(t)− r2G(t)2

)
β(t) (3.15)

Parameter Value Description Unit

G(t) Plasma glucose consentration mg dl−1d−1

I(t) Plasma insulin consentration µUml−1

β(t) Mass of pancreatic β-cells mg
G2

α−G2 Hill function, a sigmoid

ranging from 0 to 1
reaching half its

maximum at G = α0.5

R0 864 Net rate of production mg dl−1d−1

at zero glucose
Ego 1.4 Glucose e�ectiveness at zero d−1

insulin for production
and uptake

SI 0.7 Total insulin sensitivity µUml−1d−1

σ 43.2 Maximum β-cell insulin µUml−1d−1

secretion rate
k 432.0 Combined insulin uptake d−1

at the liver,kidneys
and insulin receptors

α 20,000 Parameter of the Hill mg2dl−2

function G2

α−G2

d0 0.06 The β-cell death rate d−1

at zero glucose
r1 0.84× 10−3 Rate constant mg−1dl d−1

r2 0.24× 10−5 Rate constant mg−2dl2d−1

Tabell 3.3: Model parameters for The βIG-model [42].



CHAPTER 3. MODELS OF THE GLUCOREGULATORY SYSTEM 39

3.4 The βIGIR-model

The βIGIR-model is a modi�cation of the previously described βIG-model,
including the dynamics of insulin receptors R(t). The βIG-model describes
how normal glucose control can be maintained at reduced β-cell functionality,
when normal insulin sensitivity is assumed. Whereas the βIGIR-model de-
scribes how normal blood sugar regulation is maintained assuming reduced
insulin sensitivity. A lower-than-normal insulin sensitivity has been docu-
mented in pubertal, obese and aging subjects and during pregnancy, who
are still able to maintain healthy plasma glucose control [43]. The model
structure is presented in �gure 3.3.

Figure 3.3: Structural overview of the βIGIR-model.

A description of the state variable dynamics is presented in the following.
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3.4.1 Glucose dynamics

Equal to the βIG-model, the βIGIR-model has a basal insulin activation with
rate constant a, in addition to a glucose input signal related to food intake
Ginn. The glucose activation �ux is indexed 1 in �gure 3.3 and is expressed
as follows:

jact = a+Ginn

The glucose consumption by the brain is independent from both insulin I(t),
and insulin receptors R(t) [43]. Rate constant b is associated with this con-
sumption and illustrated as �ux 2 in �gure 3.3. The peripheral glucose con-
sumption with rate constant c , �ux 3 in �gure 3.3, is activated by both
insulin I(t), and insulin receptors R(t). The complete consummation �ux
becomes:

jcon = G(t)b+ cR(t)I(t)G(t)

The activation and consummation �ux is combined to form the complete
glucose description:

dG(t)

dt
= Ginn + a− (b+ cR(t)I(t))G(t) (3.16)

3.4.2 Insulin dynamics

The insulin activation is described using the same sigmodial function as seen
in the βIG-model. In addition, the insulin receptors R(t) a�ect the insulin
activation. The insulin receptors is a number from 0-1, where 0 indicate
100% insulin resistance. Hence, a healthy person would have a R(t) value
close to 1. A person with limited insulin sensitivity needs a higher plasma
insulin concentration to maintain glucose control. This is modeled as follows:

jact =
dβ(t)G(t)2

e+G(t)2
· 1

1 +R(t)

The degradation is described using two terms indexed 7 and 8 in �gure 3.3.
Flux 8 is of �rst order in respect to the insulin concentration I(t), and �ux
7 is activated by the fraction of insulin receptors R(t). The rate constant f
is related to both terms. The degradation �ux becomes:

jdeg = fI(t) + fR(t)I(t)

The activation and degradation �ux is combined to form the complete insulin
dynamics description:
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dI(t)

dt
=

dβ(t)G(t)2

(1 +R(t)) (e+G(t)2)
− fI(t)− fR(t)I(t) (3.17)

The β-cell dynamics is equal to the one described in the βIG-model, and will
therefor not be repeated.

3.4.3 The dynamics of insulin receptors

The mass balance provide the following description of the insulin receptor
dynamics [43]:

dR(t)

dt
= recycling − reduction

Figure 3.3 indicate two recycling terms, one independent and one dependent
from the insulin receptor dynamics R(t). The terms are indexed 9 and 10
respectively and is expressed as follows:

jrec = j + jR(t)

The reduction in insulin receptors is primarily the result of endocyntosis [43].
Endocyntosis is the process of molecules being absorbed by cells. Figure 3.3
illustrate a insulin dependent and insulin independent reduction �ux, indexed
11 and 12 respectively. The �uxes with their associated rate constants, k and
l respectively is expressed as follows:

jred = kI(t)R(t) + lR(t)

The insulin receptor dynamics is described as follows [43]:

dR(t)

dt
= j (1 +R(t))− kI(t)R(t)− lR(t) (3.18)

3.4.4 Complete model

The βIGIR-model is presented as a whole in equation 3.19-3.22 [43]. Model
parameters are presented in table 3.4

dG(t)

dt
= a− (b+ cR(t)I(t))G(t) (3.19)

dI(t)

dt
=

dβ(t)G(t)2

(1 +R(t)) (e+G(t)2)
− fI(t)− fR(t)I(t) (3.20)
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dβ(t)

dt
=
(
−g + hG(t)− iG(t)2

)
· β (3.21)

dR(t)

dt
= j (1 +R(t))− kI(t)R(t)− lR(t) (3.22)

Parameter Value Description Unit

a 864 Glucose production rate by liver mg/dl d
at zero glucose consentration

b 1.4 Insulin independent 1/d
glucose clerance rate

c 0.9 Insulin induced ml/µU d
glucose uptake rate

d 43.2 Maximum b-cell insulin µU/ml d mg
secretion rate

e 20 000 Gives in�ection point of mg2/dl2

sigmodial function
f 216 Insulin clerance rate 1/d
g 0.03 b-cell death rate 1/d
h 0.57 ×10−3 Determines b-cell glucose dl/mg d

tolerance rate
i 0.25×10−5 Determines b-cell glucose dl2/mg2d

tolerance rate
j 2.6 Insulin receptors 1/d

recycling rate
k 0.020 Insulin dependent ml/µU d

receptor endocytosis rate
l 0.2 Insulin independent 1/d

receptor endocytosis rate

Tabell 3.4: Model parameters for the βIGIR-model [43].
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3.5 The GIE-model

Studies conducted by Celeste et al. [50] and Summers and co-workers [51, 52]
suggests that a weighted combination of insulin and glucagon has an e�ect
on the regulation of the plasma glucose levels [36]. This is the motivation
as to why glucagon is included as a state variable, E(t), in the GIE-model.
Being a semi-empirical model it has a markedly higher complexity level than
the previously mentioned models. The overall model structure is presented
in �gure 3.4.

Figure 3.4: Schematic presentation of the GIE-model.

Figure 3.4 illustrate the complexity of the model. To get a systematic
overview, the dynamics of each state variable is presented in the following.
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3.5.1 Glucose dynamics

The input signal Ginn is based on the original input signal of the GIE-model,
Gexg(t). This signal describes the glucose absorption through food, and is
developed by Yates and Fletcher [48]. It is described in detail in appendix
B.

Glucose is modeled with three activation terms. One related to food in-
take, Ginn marked 1 in �gure 3.4, and two describing hepatic glucose release,
indexed 2 and 3. Arrow 2 describes a glucose release from the liver, with
associated rate constant k7, activated by glucagon E(t). Arrow 3 is also
related to hepatic glucose release, inhibited by insulin I(t), with associated
rate constants k5 and k6. The glucose activation �ux is expressed as follows:

jact = Ginn + k5
k6

k6 + I(t)
+ k7E(t) (3.23)

A remark considering the activation term k7E(t) in eq. 3.23. This term is in-
dependent from the glucose concentration G(t). This implyes that glucagon
will activate the hepatic glucose release even at high plasma glucose concen-
tration, something that is seemingly unwanted and physiologically unreason-
able.

The GIE-model describes glucose to be consumed in four terms, arrow 4-7
�gure 3.4. Arrow 5 represents the insulin independent glucose consumption
by the brain, at max rate k4. Insulin dependent glucose consumption in
peripherals, with associated rate constants k1 and k2, is indexed 7a and
7b. In addition, the GIE-model describes renal glucose uptake when the
plasma glucose concentration exceeds the threshold value Gr = 180 mg/dl
[36]. The renal glucose uptake is controlled using a threshold function, and
the rate constant kr. Glucose is also consumed in the liver. The renal and
hepatic glucose consumption is indexed 6 and 4 in �gure 3.4 respectively.
The complete glucose consumption is expressed as follows:

jcon = k8
G(t)

k9 +G(t)
+k4

G(t)

k3 +G(t)
+(k1G(t) + k2) I(t)+kr (G(t)−Gr)u (G−Gr)

(3.24)
A remark considering the peripheral uptake (k1G(t) + k2) I(t) eq. 3.24. The
consummation term k2I(t), implies that glucose will be consumed in muscle
and fat tissue independent form the glucose concentration. Thus even at
low plasma glucose concentration, it will be further reduced by this insulin
activated peripheral uptake. This does not seem physiologically plausible
and is therefor commented.
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The activation and degradation �ux is combined forming the complete glu-
cose dynamics description [36]:

dG(t)

dt
= Ginn+

k5k6
k6 + I(t)

− k8G(t)

k9 +G(t)
+k7E(t)−

k4G(t)

k3 +G(t)
−(k1G(t) + k2) I(t)

−kr (G(t)−Gr)u (G(t)−Gr)

3.5.2 Insulin dynamics

The GIE-model describes the insulin dynamics of having two activation
terms. On �rst order term activated by glucagon E(t) with associated rate
constant b1, cf arrow 9 �gure 3.4. In addition, insulin is modeled as a hyper-
bolic tangent function dependent of glucose. This insulin activation model is
adopted from Sturis et al. [53]. In addition to the two terms, the model en-
ables the user to specify a exogenous insulin input signal related to diabetic
model simulation. As the focus point in this thesis is healthy blood sugar
regulation, this term is neglected. The insulin activation �ux is described as
follows:

jact =
a1
2
[tanh (a2 (G(t)− a3)) + 1] + b1E(t)

Insulin is modeled with a �rst order degradation with rate constant b2:

jdeg = b2I(t)

The complete insulin dynamics description becomes [36]:

dI(t)

dt
=
a1
2
[tanh (a2 (G(t)− a3)) + 1] + b1E(t)− b2I(t)

3.5.3 Glucagon dynamics

The mass balance is applied to describe the glucagon dynamics:

dE(t)

dt
= secretion− degradation

Figure 3.4 illustrate how the glucagon secretion is described using two terms,
marked 11 and 12. Arrow 11 indicate the basal secretion at rate c0. Secretion
12 is activated by glucose G(t), inhibited by insulin I(t), and is modeled
combining the Heavyside step function with the threshold function GE [36].
When the plasma glucose concentration falls bellow the threshold GE = 75
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mg/dl, glucagon is secreted to restore glucose homeostasis. This secretion is
inhibited by insulin, as a high insulin concentration implies a high plasma
glucose concentration. Glucagon has max secretion rate c1

c2
at I(t) = 0. The

secretion �ux is presented in equation 3.25.

jsec = c0 +
c1

c2 + I(t)
(GE −G(t))u (GE −G(t)) (3.25)

Glucagon is modeled with �rst order degradation with corresponding rate
constant c3:

jdeg = c3E(t)

The complete glucagon dynamics becomes the following [36]:

dE(t)

dt
= c0 +

c1
c2 + I(t)

(GE −G(t))u (GE −G(t))− c3E(t) (3.26)

3.5.4 Complete model

The complete GIE-model is presented in eq. 3.27-3.29 [36]. Model parameters
are presented in table 3.5 and 3.6.

dG(t)

dt
= Ginn +

k5k6
k6 + I(t)

− k8G(t)

k9 +G(t)
+ k7E(t)−

k4G(t)

k3 +G(t)
(3.27)

− (k1G(t) + k2) · I(t)− kr (G(t)−Gr)u (G(t)−Gr)

dI(t)

dt
=
a1
2
[tanh(a2(G(t)− a3)) + 1] + b1E(t)− b2I(t) (3.28)

dE(t)

dt
= c0 +

c1
c2 + I(t)

(GE −G(t))u (GE −G(t))− c3E(t) (3.29)
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Parameter Value Description Unit

k1 1.1·10−4 Insulin dependent min−1per (ng/dl of I)
glucose uptake rate

by peripherals
k2 9.8·10−3 Insulin dependent min−1per (ng/dl of I)

glucose uptake rate
by peripherals

k3 207.1 Insulin independent mg/dl
glucose uptake rate

in brain
k4 9.1 Insulin independent mg/dl/min

glucose uptake rate
in brain

k5 25.3 Maximum glucose mg/dl/min
release rate

k6 149.8 �Damping� factor ng/dl of I
k7 0.45 Glucagon dependent mg/dl/min

hepatic glucose
release rate

k8 35.4 Glucose saturation mg/dl/min
parameter

k9 73.0 Glucose saturation mg/dl
parameter

kr 0.04 Uptake rate control min−1

parameter
Gr 180.0 Renal glucose mg/dl

threshold
Tasc 15.0 Duration of the min

ascending branch of
the gastric

emptity curve
Tdesc 15.0 Duration of the min

decending branch of
the gastric

emptity curve
Vmax 360.0 Maximum rate of mg/min

gastric emptity
Kgabs 1/60 Absorption rate min−1

constant of glucose
from the gut

Tabell 3.5: Model parameter of the GIE-model [?]
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Parameter Value Description Unit

a1 248.8 Maximum secretion ng/dl/min
rate in the absence

of glucagon
a2 0.02 Parameter de�ning (mg/dl)−1

insulin secretion
a3 198.0 Parameter de�ning mg/dl

insulin secetion
b1 0.14 The dependence of (ng/dl/min of I)

insulin on glucagon per (ng/dl of E)
b2 0.2 Insulin decay min−1

constant
c0 0.65 Basal glucagon ng/dl/min

secretion rate
c1 2.5 Glucagon secretion (ng/dl/min of E)

parameter per (mg/dl of G)
c2 -5.25 Glucagon secretion ng/dl of I

parameter
c3 0.08 Glucagon degradation min−1

GE 75.0 Threshold value mg/dl

Tabell 3.6: Model parameter of the GIE-model [?]
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3.6 The S&H-model

When using mathematical models to describe nonlinear complex anatomical
processes, simpli�cations are made. The central point is to make reasonable

simpli�cations and assumptions without compromising the clinical validity
or -plausibility of the model. The Stowijk and Hardy empirical minimal
model describes �Regulation of blood glucose using physiologic data to de-
termine the numeric coe�cients and making simplifying assumptions to limit
the complexity of the equations.� [45]. It is the least complex of all the mod-
els examined, comprising only two state variables, namely glucose G(t) and
insulin I(t). The model is schematically presented in �gure 3.5.

Figur 3.5: Model schematics of the S&H-model.

The dynamics of the glucose- and insulin concentration is presented in the
following.

3.6.1 Glucose dynamics

As previously seen, the glucose is activated by a basal glucose infusion in
addition to the input signal Ginn, highlighted as �ux 1 �gure 3.5:

jact = Q+Ginn

The glucose degradation is described using three terms. Arrow 2 indicate
the insulin independent glucose uptake in the brain, with rate constant δ.
Flux 3 represents the insulin dependent glucose uptake in peripheral tissue
with corresponding rate constant γ. Common with the GIE-model, the S&H-
model also include a renal glucose degradation, indexed 4 in �gure 3.5. This
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degradation is modeled to occur when the plasma glucose level exceeds the
threshold value GK = 250 mg/dl, which is a higher, seemingly more reason-
able threshold value than the one used in the GIE-model - Gr = 180 mg/dl.
The renal glucose degradation is associated with the rate constant µ. The
complete degradation �ux becomes:

jdeg = γI(t) (G(t)−Gt) + δ (G(t)−Gt) + µ (G(t)−GK)

The parameter Gt denotes the e�ective intracellular glucose concentration
and de�ned as Gt = 0 [36]. Is is therefor neglected in the following. The
complete glucose dynamics description then becomes [44]:

CG
dG(t)

dt
= Q+Ginn − γI(t)G(t)− δG(t)− µ (G(t)−GK) (3.30)

Where CG is the volume scaling factor [44]

3.6.2 Insulin dynamics

The S&H-model describes insulin secretion to be activated when the plasma
glucose exceeds the threshold level G0 = 51.0. The activation �ux is marked
5 in �gure 3.5, and is associated with the rate constant β:

jact = β (G(t)−G0)

The insulin degradation �ux is of �rst order in respect to the insulin concen-
tration I(t), with corresponding rate constant α:

jdeg = αI(t)

The complete insulin concentration dynamics is expressed as follows [44]:

Ci
dI(t)

dt
= β (G(t)−G0)− αI(t)

A remark to the insulin dynamics is that by extending the parenthesis, a
zero-order degradation term is obtained:

Ci
dI(t)

dt
= βG(t)− αI(t)− βG0

This is a interesting dynamics feature considering modeling homeostatic glu-
cose control, and will be further discussed in chapter 4
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3.6.3 Complete model

The complete S&H-model is expressed in eq. 3.31 and 3.32 [44]. Model
parameters are presented in table 3.7 [44].

CG
dG(t)

dt
= Ginn +Q− γI(t)G(t)− δG(t)− µ(G(t)−GK) (3.31)

Ci
dI(t)

dt
= β(G(t)−G0)− αI(t) (3.32)

Parameter Value Description Unit

G(t) Glucose consentraiton mg%
of extracellular space

I(t) Insulin consentraiton mU%
of extracellular space

α 76.0 Coe�cient for insulin mUhr−1·mU%−1

destruction
β 14.3 Coe�cient for insulin mUhr−1·mg%−1

secretion
δ 24.7 Coe�cient for insulin mUhr−1·mg%

independent glucose
utilization

γ 13.9 Coe�cient for insulin mg·hr−1·mg%−1·mU%−1

e�ect on glucose utilization
µ 72.0 Coe�cient for gllucose mg·hr−1·mg%−1

loss in urine
Gt 0.0 E�ective intracellular mg%

glucose consentration
G0 51.0 Threshold consentration mg%

of glucose for insulin secretion
GK 250.0 Tubular reabsorption mg%

maximum for glucose
CG 150.0 Glucose capacitance mg·mg%−1

for extra cellular space
Ci 150.0 Insulin capacitance mU·mU%−1

for extra cellular space
Q 8,400 Basal glucose release mg·hr−1

into extracellular space

Tabell 3.7: Model parameters on the S&H-model.
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3.7 The GIM-model

The glucose-insulin model (GIM) is the most mathematically complex of
the ones studied in this thesis. The model is a GUI1-based meal simulation
software developed by Dalla Man, Raimondo, Riazza and Cobelli [30]. The
GUI allows the user to simulate the glucose- and insulin levels of a healthy-,
type 1 diabetic- and type 2 diabetic subject, with limited to no modeling
competence. The model has been derived based on a data collection from
204 healthy subjects between 54 and 58 years, weighing 77-79 kg, as well as
14 type 2 diabetic subjects from 54 to 60 years, weighing 86-96 kg [31]. The
parameters are numerically calculated based on measured concentration and
�uxes, minimizing the deviation between the model and measured data values
through the use of the nonlinear least squares method. Details regarding
the model structure will not be presented as the simulation is based on the
graphical user interface. This will illustrate how applicable the model is in
spite of its high complexity level. The GIM is included in the CD attached
to the thesis report.

3.7.1 GUI-presentation

To initiate the GUI, the Matlab-code showed in algorithm 3.1 is compiled.

Algorithm 3.1 Initiating the graphical user interface of the GIM-model.

1 % Glucose−I n s u l i n Simulator
2 g l oba l numprova numprova_n numprova_d numprova_d
3 warning o f f
4 c l e a r a l l
5 numprova=1;
6 numprova_n=1;
7 numprova_d=1;
8 choose_status

The GUI is initiated and the following window is displayed:

1Graphical User Interface
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Figure 3.6: Simulating the GIM-model, step one.

The �rst window allows the user to choose the status of the subject. This
way, the user is able to study the glucose-insulin dynamics in both normal
and diabetic subject with the push of a button, rather than manually ma-
nipulating complex di�erential equations. Which demands a high level of
understanding and competence related to mathematical modeling.

Since the focus in this thesis is to study the course of glucose and insulin
in healthy subjects, the status �Normal� is chosen.

Figure 3.7: Simulating the GIM-model, step two.

After having chosen the status of the subject, the following window with
default parameter values appear:
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Figure 3.8: Simulating the GIM-model, step two.

Figure 3.8 enables the user to specify the parameters for the glucose-insulin
simulation. Again, the GIM-models user friendliness is demonstrated. The
user is able to specify basal glucose and insulin concentration, as well as
basal glucose production. Figure 3.8 indicates additional parameters that
can be speci�ed eg. body weight, peripheral insulin sensitivity and dynamic
β-cell responsivity. The GIM user interface also allow the user to specify the
quantity of the glucose intake and at what time. In our case, 45 g is infused
at time t = 4 hr, and 75 g at time t = 10 hr and t = 17, see �gure 3.9.
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Figure 3.9: Specifying simulation parameter in the GIM GUI.

The simulation result is displayed when pushing the �START SIMULATION�
button in �gure 3.8.

Figure 3.10: Simulation result of the GIM-model.

Figure 3.8 illustrate the output signals when the GIM-model is simulated.
Plasma glucose and plasma insulin, the two top panels, are the two signal
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used as reference in chapter 4. The output signal �Rate of Appearance�
in the lower left hand corner represents the glucose input signal. Its form is
somewhat deviating for the glucose input signalGinn applied when simulation
the other models. It is not possible to manually de�ne the shape of this signal,
just the infused glucose quantity and time of infusion.

All models have now been presented with their associated structural char-
acteristics, di�erential equations and model parameters. They vary widely
in in terms of complexity, assumptions and approach to model the glucoreg-
ulatory process. In the following, their ability to accurately simulate blood
sugar control will be evaluated as they are implemented and simulated in
Matlab and Simulink.



Chapter 4

Implementation and results

This chapter will present how the models are implemented in Matlab and
Simulink. The simulation result of the models will be presented and com-
pared, highlighting distinctive simulation characteristics in each of the mod-
els. Based on this, a modi�ed model will be developed and presented.

4.1 Implementation

All models are implemented and simulated in Matlab1 and Simulink2. In
Simulink, function block are used to implement the di�erential equations.
Each of the di�erential equation are implemented in separate function block
to get a clear overview of input and output signals. The implementation of
the S&H-model is presented as an example in �gure 4.1:

1www.mathworks.se
2www.mathworks.se/products/simulink

57
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Figur 4.1: Simulink implementation of the S&H-model.

The model implementation presented in �gure 4.1 contains the following four
main segments marked in red:

1. Input signal applied to examine the glucose-insulin response to three
meals over a time period of 24 hrs. The signal is based on the model
of Fletcher and Yates [48], and infuses 40 g glucose at time t = 4, 75 g
at t = 10 and 75 g at t = 17. The amount of glucose is based on the
dosage given in oral glucose tolerance tests. The signal is displayed in
�gure 4.2.
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Figure 4.2: Input signal applied to examine glucose-insulin response to three
meals.

The input signal in the GIM-model has a di�erent shape, but the same
glucose quantity is infused. This because the GUI inhibits the user in
specifying the shape of the input signal. Only the glucose quantity and
infusion time can be speci�ed. The GIM-input signal is displayed in
�gure 4.3

Figure 4.3: Glucose input signal of the GIM-model.

2. Input step-signal applied to examine homeostatic control properties in
the models. The 10 g continuous glucose signal presented in �gure 4.4.
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Figure 4.4: Common glucose input signals for each of the models to examine
homeostatic control.

3. Simulink function-block implementation of the glucose- and insulin dy-
namics with their respective input/output signals.

4. The di�erential glucose- and insulin expressions are scaled and inte-
grated resulting in the glucose and insulin output signal displayed
in Scope 1. The simulation result is then imported in the Matlab
workspace, and further scaled and plotted.

Simulink implementation for each of the models is presented in appendix
C. In addition to the Simulink implementation, the simulation result was
imported and processed in Matlab. This was needed as all the models were
designed in di�erent time scales and with di�erent glucose- and insulin units
as presented in table 4.1.

Time Glucose Insulin

The GIM-model [min] [mg/dl] [pmol/l]
The βIG-model [day] [mg/dl] [µU/ml]
The βIGIR-model [day] [mg/dl] [µU/ml]
The GIE-model [min] [mg/dl] [ng/dl]
The S&H-model [hr] [mg/dl] [µU/ml]

Chosen Simulation Units [hr] [mg/dl] [µU/ml]

Table 4.1: Overview of model units.

The m-�les initiating, scaling and plotting the simualtion for the two sepa-
rate input signals is called �Response� and �Homeostasis� and is attached in
appendix D. The simulation result is presented and discussed in section 4.2
and 4.3.
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4.2 Glucose/Insulin response

To examine the physiological accuracy of the models, the glucose/insulin
response to three meals is examined, applying signal 1. Their physiological
accuracy will be discussed based on the GIM-reference simulation. The result
is presented in a common plot for comparison, �gure 4.5 and 4.6, followed
by a more detailed presentation of the models individually.

Figure 4.5: The glucose response for the separate models plotted together.

Figure 4.6: The insulin response for the separate models plotted together.
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The simulation result of the BMM deviated strongly from the other models
and is therefore plotted individually in �gure 4.7.

Figure 4.7: The BMM-simulation result plotted individually due to a
markedly deviation form the other model simulation results.

Some key points for the simulation results are presented in table 4.2. For
each of the response values, the best and weakest match, compared with the
reference value, is indicated with green and red respectively. As the BMM-
result deviated signi�cantly form the others, it is examined on its own.
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Response OGTT GIM βIG βIGIR GIE S&H BMM
Value (reference) (reference)

Gbasal 91.7 99.8 82.0 93.5 90.3 60.2
[mg/dl]
Ibasal 4.2 10.0 12.7 10.4 7.4 6.7

[µU/ml]
G40g 131.7 134.6 112.2 123.4 141.3 297.0

[mg/dl]
I40g 23.3 14.3 19.6 24.5 12.8 10.2

[µU/ml]
G40g-I40g 108.4 120.3 92.6 98.9 128.5 286.8
ratio

G75g,t=10 150.8 141.8 117.8 126.4 141.0 332.0
[mg/dl]
I75g,t=10 36.9 15.1 20.9 26.8 14.3 10.7
[µU/ml]
G75g-I75g 113.9 126.7 96.9 99.6 126.7 321.3
ratio

G75g,t=17 150.4 140.8 117.8 126.4 141.0 332.0
[mg/dl]
I75g,t=17 36.6 15.0 20.9 26.8 14.3 10.7
[µU/ml]
1 hr after < 200 mg/dl 150.5 141.0 117.8 114.9 114.6 165.0
75 g oral
glucose
intake

2 hrs after < 140 mg/dl 130.1 135.0 108.6 123 139.9 278.5
75 g oral
glucose
intake

Table 4.2: Key values in the glucose/insulin simulation results.

The over all aim of this simulation is to examine if the models simulate
a healthy glucose-insulin response to the tree meals. This is veri�ed or dis-
proved by comparing the simulation result of each of the models to a reference
response; the GIM-model. A quantitative reasonable response, in addition
to homeostatic control examined in section 4.3, will be used as measure
regarding the physiological validity of the models. In the following, the glu-
cose/insulin response in each of the models will be evaluated, starting with
the GIM-reference response.
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.

4.2.1 The GIM-model

Figure 4.8 presents the GIM-simulation result to input signal displayed in
�gure 4.3, section 4.1.

Figure 4.8: The glucose-insulin response of the GIM-model.

The GIM-model is a physiologically based model. It is developed consid-
ering the metabolic substrates at their intracellular organ/tissue level. Its
complexity support its physiological plausibility and is therefor used as ref-
erence when considering the other, less complex models.

As mentioned in section 4.1, the input signal applied in the GIM-model has a
di�erent shape than the signal applied in the other model simulations. This
because the user is unable to specify this input signal. The infused glucose
quantity, and infusion time is however equal in both signals. The quantitative
response is therefor comparable.
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4.2.2 The Bergman Minimal Model

Figure 4.9 presents the simulation result of the BMM put in context with
the GIM-reference. Numerical details of the simulation is presented in table
4.2.

Figure 4.9: The glucose-insulin response of the BMM.

Comparing the two, the BMM show a overall higher glucose response, panel
a), and a markedly lower insulin response, panel b). The simulation illus-
trates the short comings in the model due to its limited complexity and
simplifying assumptions. However, the BMM is well established in the �eld
of biochemical modeling, and is the most frequently cited of the ones ex-
amined. Its seemingly poor simulation result can therefor be linked to, and
caused by errors in the simulation process, and not necessarily the model
itself. Inconsistent use of input signal, scaling error and model adjustment
are mention as possible sources of errors.

The empirical BMM is designed based on a systems input/output relation-
ship, not focusing on details within the system itself. The drawbacks of this
is that the simulation result show limited physiological validity, cf �gure 4.9.
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Minimal models are however valuable stating points regarding model mod-
i�cation and optimization. The βIG-model is designed based on the BMM
and is presented in the following.

4.2.3 The βIG-model

The simulation result of the βIG-model plotted together with the GIM-
reference simulation is presented in �gure 4.10.

Figure 4.10: The glucose-insulin response of The βIG-model.

Figure 4.10, panel a) illustrates that the βIG-model simulates a adequate
glucose response compared to the GIM-reference response. The βIG-model
includes the dynamics of β-cell mass and has a more complex insulin secretion
�ux than the BMM. This seemingly improves the models ability to simulate
healthy glucose response.

Even though �gure 4.10 illustrates a more physiological reasonable quan-
titative glucose response than the BMM, the glucose/insulin ratio is more
questionable. Panel b), �gure 4.10 illustrate a markedly lower insulin re-
sponse than the stippled reference value. It is therefor interesting how such a
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low insulin level is able to correspond to such a reasonable glucose response.
Thus the glucose response can be anatomically justi�ed, but the glucose/in-
sulin ration limits the physiological validity of the model. The parameter
estimation and -�tting regarding the glucose dynamics is therefor seemingly
more successful than for the insulin dynamics.

4.2.4 The βIGIR-model

Figure 4.11 presents the βIGIR-model simulation result.

Figure 4.11: The glucose-insulin response of The βIGIR-model.

The βIGIR-model is a modi�cation of the βIG-model including the dynamics
of muscle insulin receptors. It aims to simulate how normal blood sugar levels
can be maintained in spite of reduced insulin sensitivity. As a result of the
reduced insulin sensitivity, the plasma insulin concentration must be higher
to maintain normal glucose control, see �gure 4.11, panel b). This high
insulin concentration result in a lower glucose concentration than the one
seen in the βIG-model. This signalize a reasonable connection between the
glucose- and insulin response, but the numerical simulation result is over all
signi�cantly lower than the reference.
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In line with the BMM and the βIG-model, the βIGIR-model is a empirical
minimal model. The simulation performance is therefor strongly linked to
parameter estimation and -assignment. The fact that the simulation result
shows a overall low glucose- and insulin response is mainly linked to the
insulin receptor dynamics. It addresses a special case within blood sugar
regulation, which limits its general anatomical validity and applicability. The
impression of the model quality is also a�ected negatively by the glucose
response. This should be closer linked to the GIM-reference response as it
aims to simulate healthy glucose control. Figure 4.11, panel a) illustrate a
signi�cant deviation between the two.

4.2.5 The GIE-model

The GIE-simulation result is presented in �gure 4.12.

Figure 4.12: The glucose-insulin response of the GIE-model.

Apart from the GIM-model, the GIE-model is the most complex of the ones
examined. Despite its mathematical complexity, the simulation result dis-
played in �gure 4.12 show both a glucose- and insulin response quite deviating
form the reference. The shape of the GIM-response curves is strongly resem-
bling the glucose input signal, see �gure 4.2 section 4.1. This is seemingly
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linked to the mathematical complexity of the model. As the shape of the
GIM-input signal is di�erent from the GIE-input signal, the shape of the re-
sponse is logically di�erent. Their numerical response values however. should
be more alike as the glucose quantity in both the signals is the same.

The GIE-model is a semi-empirical model. Compared with the strictly em-
pirical models, it is designed with a stronger focus on the anatomical system
as such, rather than simply describing a input/output relationship. It should
therefor be able to simulate a glucose and insulin response closer related to
the stippled reference curves. The threshold functions, and weakly estimated
threshold values can be part of the limitation in the simulation result. Poor
parameter estimation and parameter �tting can also a�ect the model perfor-
mance negatively.

4.2.6 The S&H-model

Figure 4.13 illustrates the S&H-simulation result.

Figure 4.13: The glucose-insulin response of the S&H-model.

The glucose response displayed in panel a) is closely resembling the stippled
reference curve. The insulin response, panel b), is however signi�cantly lower.
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It is reasonable to think that such a low insulin level would cause a higher
glucose concentration curve, as seen in the BMM-simulation. The glucose
level is within an anatomically reasonable range in spite of a low insulin
concentration. Thus the S&H-model simulates a physiological reasonable
glucose response, but a less reasonable glucose/insulin ratio.

The insulin response is time shifted relative the glucose dynamics curve. This
is also seen in the GIM-reference simulation. It is reasonable to think that
the insulin secretion is delayed relative the blood sugar elevation. The model
captures a physiological justi�able phenomenon. Being a strictly empirical
model, the accurate glucose response and time shifted insulin response is
presumably the result of fortunate parameter estimation and threshold value
assignment.
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4.3 Homeostasis

Homeostatic control is achieved if the steady state glucose concentration
approaches its initial fasting level, even at a continuous glucose intake. To
examine the homeostatic property of the models, a low continuous input
signal of 10 g glucose is applied, displayed in �gure 4.4 section 4.1. The
simulation result is displayed in �gure 4.14. All model simulations are plotted
together for comparison, and with the GIM-model as reference.

Figure 4.14: Simulation result when a continuous low glucose input signal is
applied.

Again, the BMM simulation is quite deviating from the rest. It is therefore
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plotted separately from the other models in �gure 4.15.

Figure 4.15: Simulation result of the BMM when a continuous low glucose
input signal is applied.

The GUI of the GIM-model does not allow the user to specify the shape
of the input signal. It is therefore not possible to de�ne a continuous low
glucose input signal to examine the homeostatic property of the model. The
GIM-model is used as a illustration of how a homeostatic glucose response
would look like. Figure 4.14 and 4.15 implies that none of the models are
able to simulate homeostatic control. To examine this more in detail, the
models are reviewed individually starting with the BMM.
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4.3.1 The BMM

The simulation result of the BMM, �gure 4.15, show no homeostatic glucose
control. In addition, the glucose response to the 10 g infused glucose is sem-
mingly unrealistically high. This combined with a very low insulin response
limits the over all anatomical plausibility of the BMM.

Models with auto catalysis, zero-order degradation terms or Michaelis-Menten
enzyme kinetics is assumed to simulate physiologic integral control. The
BMM has zero order degradation of both insulin I(t), and remote insulin in
action X(t), cf. eq. 4.1 and 4.2 respectively.

dI(t)

dt
= nIb − nI(t) + γG(t)− γh (4.1)

dX(t)

dt
= p3I(t)− p2X(t)− p3Ib (4.2)

Based on equation 4.1 and 4.2 the following steady state expressions are
derived:

dI(t)

dt
= nIb − nI(t) + γG(t)− γh = 0

G(t)SS =
γh+ nI(t)− nIb

γ

G(t)SS == h+
n

γ
(I(t)− Ib) (4.3)

dX(t)

dt
= p3I(t)− p2X(t)− p3Ib = 0

I(t)SS =
p2X(t) + p3Ib

p3

I(t)SS =
p2

p3

X(t) + Ib (4.4)

Expression 4.3 and 4.4 presents the glucose- and insulin steady state expres-
sions as functions of variables. To achieve homeostatic control, the steady
state glucose concentration must approach a numerical value. This is seem-
ingly prevented when the steady state expression is a function of a time
varying variable. The BMM illustrate how zero-order degradation in combi-

nation with degradation of �rst order prevent homeostatic control.
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4.3.2 The βIG- and βIGIR- model

Considering �gure 4.16, neither the βIG- nor the βIGIR-model simulates
homeostatic glucose control when simulated for 24 hrs. The glucose level is
merely stabilized at a higher.

Figure 4.16: The glucose/insulin response of the βIG- and βIGIR-model to
a continuous low glucose input.

This seemingly contradicts the hypothesis of auto catalysis causing integral
control, as both models have auto catalyzed β-cell mass dynamics:

dβ(t)

dt
=
(
−g + hG(t)− iG(t)2

)
β(t) (4.5)

Based on equation 4.5, the steady state glucose expression is derived:

dβ(t)

dt
=
(
−g + hG(t)− iG(t)2

)
β(t) = 0

iG(t)2 − hG(t) + g = 0 (4.6)

Solving equation 4.6 result in the following steady state glucose concentration
GSS:



CHAPTER 4. IMPLEMENTATION AND RESULTS 75

GSS =
h±

√
(−h)2 − 4ig

2i
(4.7)

Where (−h)2 − 4ig > 0 result in two equilibrium points for the steady state
glucose concentration G(t). Expression 4.7 implies integral control of the
steady state glucose concentration G(t). As the time scale of the models is
days, slow process dynamics is assumed. Thus the models must be simulated
over a longer time period than 24 hrs to illustrate the homeostatic control
property. Figure 4.17 illustrates the simulation result of the two models when
simulated for 500 days.

Figure 4.17: Simulation result of the βIG- and βIGIR-model showing
homeostatic control.
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Figure 4.17 illustrates that auto catalysis can improve the models ability to
capture homeostatic control. The fact that is takes 500 day has however no
correlation with reality.

4.3.3 The GIE- and S&H-model

Figure 4.18 illustrate how neither the GIE-model nor the S&H-model is able
to simulate physiologic glucose control. The stippled line illustrate how the
glucose concentration qualitatively should look like.

Figure 4.18: The glucose/insulin response of the GIE- and S&H-model to a
continuous low glucose input.

The two models are markedly di�erent regarding mathematical complexity.
The GIE-model comprises three higher order, nonlinear di�erential equations.
Its description of the glucose dynamics is made up of seven terms including
threshold functions and complex enzyme kinetics. Whereas the S&H-model
describes blood sugar regulation using only two di�erential equations with
simple enzyme kinetics. It is therefor more reasonable that the S&H-model
is unable to simulate glucose homeostasis than the GIE-model.
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As earlier stated, zero-order degradation or auto catalysis can ensure physi-
ologic integral control. All terms in the GIE-model is of �rst order or higher.
In line with the BMM, the S&H-model has a zero-order insulin degrada-
tion term, in combination with a degradation term of �rst order. This is
presumably the reason why homeostatic control is prevented in both models.

4.4 Model optimization

Minimal models with their limited complexity are well suited for further
development and optimization. This will be demonstrated in the following as
the empirical S&H-minimal model is modi�ed. The aim of this modi�cation
is to improve the S&H-simulation performance regarding homeostatic glucose
control. This modi�cation will principally illustrate how homeostatic control
can be achieved. Numerical details is less of a focus point. The original
S&H-model is presented in eq. 4.8 and 4.9.

CG
dG(t)

dt
= Q− γI(t)G(t)− δG(t)− µ (G(t)−GK) (4.8)

Ci
dI(t)

dt
= −αI(t) + β (G(t)−G0) (4.9)

The approach is to introduce zero order insulin degradation. The degradation
rate α in equation 4.9 is no longer dependent of the insulin concentration I(t).
The modi�ed model, referred to as the S&H*-models, then becomes.

CG
dG(t)

dt
= (Q− γI(t)G(t)− δG(t)) (4.10)

Ci
dI(t)

dt
= (β (G(t)−G0)− α) (4.11)

Based on eq. 4.11, the glucose steady expression is derived:

(β (G(t)−G0)− α) = 0

G(t) =
α

β
+G0

The parameter G0 is a threshold value presumably de�ned by Stolwijk and
Hardy to optimize the simulation result. The G0 threshold can therefore be
adjusted to optimize the simulation result in the modi�ed model. It is desired
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that the glucose concentration G(t), at steady state, equals the initial glucose
level of 90.28 mg/dl. The threshold parameter is assigned the following value:

α

β
+G0 = 90.28

G0 = 90.28− 76.0

14.3
= 84.69 ≈ 85

The modi�ed model with zero-order degradation and adjusted threshold
value is implemented and simulated. The same continuous 10 g glucose input
signal is applied. The result is displayed in �gure 4.19.

Figure 4.19: Simulation result of the optimized model.

Figure 4.19, panel b) illustrate how the modi�ed model is able to simulate a
controlled steady state glucose concentration. This in spite of a continuous
glucose infusion illustrated in panel a). The numerical simulation result
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was however quite divergent from the GIM-reference. The main aim of the
model modi�cation was to illustrate how a zero-order insulin degradation
would improve the homeostatic control property in the S&H-model, which
was done satisfactorily.



Chapter 5

Discussion and conclusion

5.1 Conclution

In this thesis, six of the most cited mathematical models of the glucoregula-
tory system have been examined. The examination has focused on studying
the models' glucose-insulin oscillation related to fool intake, and their ability
to simulate homeostatic glucose control.

The simulation result showed that only two out of the six models, the βIG-
and βIGIR-model, were able to indicate physiological integral control of the
steady state glucose concentration. This was presumably linked to the auto
catalyzed β-cell mass in the two models. To maintain glucose homeostasis
is supposedly the most important task of glucose control. The fact that the
BMM, GIE- and S&H-model were unable to simulate this property limits
their physiological plausibility and -validity. This can possibly be explained
by their lack of zero-order degradation terms, Michaleis-Menten approxima-
tion, auto-catalysis, simplifying assumptions, parameter �tting/-estimation
or limited model complexity.

The BMM and S&H-model are however well established and often cited
minimal models. They are used as foundation in design, modi�cation and
optimization of glucoregulatory models. The fact that they are seemingly
unable to simulate glucose homeostasis can be linked to the input signal
applied in the simulation. This signal is de�ned by yours truly, deviation
from the glucose input signal de�ned in the model description and design
process. This to apply a signal common for all models so they are studied on
common grounds. The weak simulation result of the BMM and S&H-model
regarding homeostatic control can therefore be the cause of a modeling error.

80
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The simulation result of the six models, excluding the GIM- and the BMM,
illustrated the strengths of the minimal models. With limited complexity
they were still able to model glucose-insulin oscillation within an anatom-
ically reasonable range. The least complex S&H-minimal model had sim-
ulation result of the glucose dynamics well corresponding to the result of
the markedly more complex GIE-model. This implies that minimal models
can be valuable in describing glucose-insulin regulation as they are compact,
comprehensible and easier to apply and modify than more complex models.

The close correspondence in the simulation result of the two models can
however be related to fortunate chosen input signal. This can be veri�ed or
disproved repeating the simulation with di�erent glucose input signals.
The modi�cation of the S&H-model, resulting in the S&H*-model, illus-

trated the principle of how zero-order insulin degradation may contribute to
improver homeostatic model property.

It was also shown, in the BMM simulation, how zero-order insulin degrada-
tion in combination with an insulin degradation term of �rst order seemingly
prevent homeostatic glucose control.

5.2 Further work

In this thesis, the glucose-insulin control of healthy subjects has been the
focus point. Further work could therefore involve a similar model study of
diabetic glucose-insulin control. To introduce PID-controllers when consid-
ering glucose-insulin regulation is also an interesting scenario. An interesting
task would also be to develop a graphical user interface, as seen in the GIM-
model, to make the complex models more comprehensible and unfriendly to
those with limited modeling competence.

Maybe the most valuable suggestion to further work is however to improve the
models' ability to simulate glucose homeostasis. Several suggestions to how
this can be done have been presented. With improved model performance, in
terms of homeostatic simulation, glucoreguatory models can be applied on a
higher level of research which in turn may contribute to medical progression
and innovation.
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Figures All �gures included in the report.
Implementation Matlab and simulink implementations

Report PDF- and lyx-�le of the thesis report

Table A.1: Content of CD.
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Appendix B

Exogenous glucose infusion

The GIE-model models the exogenous glucose to be absorbed via a meal,
unlike many glucose-insulin models that assumes an intravenious glucose in-
fusion [?]. This models adopts the absorption model presented by Yates and
Fletcher [48]. This exogenous glucose model combines a trapezoidal function
describing gastric emptying, and a description of how the gut processes glu-
cose. Yates and Fletcher de�ne gastric emptity to have the following form
[?]:

Gempt(t) =



Vmax

Tasc
· t, t < Tasc

Vmax, Tasc < t < Tasc + Tmax

Vmax − Vmax

Tdesc
(t− Tasc − Tmax) , Tasc + Tmax < t

< Tasc + Tmax + Tdesc

0, otherwise

(B.1)

All parameters are explaind in table 3.5. The parameter Tmax is de�ned by
the total glucose contant in a meal Gtotal, and is expressed as follows [?]:

Tmax =
Gtotal − Vmax(Tasc+Tdesc)

2

Vmax
(B.2)

The glucose dynamics Ggut is described by the following di�erential equation
[?]:

dGgut(t)

dt
= Gempt(t)−KgabsGgut(t) (B.3)

Equation B.1, B.2 and B.3 are then combined to arrive at the expression
describing the exogenous glucose input [?]:
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Gexg(t) = KgabsGgut(t) (B.4)

Figure B.1 illustrates the form of the exogenous glucose input.

Figur B.1: Exogenous glucose input [48].



Appendix C

Model Implementation In

Simulink

C.1 Input Signal

The two input signal is common in all model implementations. One signals
for the glucose infusion simulating three meals over a time period of 24 hr,
and a step signl infusing glucose continously to test homeostatic properties
in the models. The signal are shown in �gure C.1
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Figur C.1: Input signal common for all models.
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C.2 The BMM

Figure C.2: Simulink implementation of the BMM-model.
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C.3 The βIG-model

Figur C.3: Simulink implementation of the βIG-model.
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C.4 The βIGIR-model

Figur C.4: Simulink implementation of the βIGIR-model.
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C.5 The GIE-model

Figur C.5: Simulink implementation of the GIE-model.
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C.6 The S&H-model

Figur C.6: Simulink implementation of the GIE-model.
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Tillegg D

Source Code

D.1 Simulating And Ploting Glucose/Insulin Re-

sponse

Algorithm D.1 Matlab m.�le for model initiating, simulating and plotting.

1 %%
2 % AUTHOR : Ingeborg Siem Kndusen
3 % DATE : 03−June−2013 19 : 53 : 02
4 % FILENAME : Response .m
5 %
6 % Master Thes i s at The Un ive r s i ty Of Stavanger
7 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8

9 %I n i t i a t i n g Model S imulat ion Parameters
10

11 %The BIG−model
12

13 %Glucose Input Parameters
14 Tasc = 15/(24∗60) ; %days
15 Tdesc = 15/(24∗60) ; %days
16 Vmax = 360∗(24∗60) ; %mg/days
17 Kgabs = (1/60) ∗(24∗60) ; %days^−1
18

19 %Model Parameters
20 r1=8.4e−4; %mg^−1∗dl ∗d^−1
21 r2=2.4e−6; %mg^−1∗dl ∗d^−1
22 a=20000; %mg^2∗ dl^−2
23 SI =0.72; %muU∗ml^−1∗d^−1
24 R0=864; %mg∗ dl ∗d^−1
25 Ego=1.44; %d^−1
26 sigma = 432 ; %muU∗ml^−1∗d^−1
27 d0 = 0 . 0 6 ; %d^−1
28 k = 430 ; %d^−1
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Algorithm D.2 Matlab m.�le for model initiating, simulating and plotting.

1 %Simulat ion parameters
2 SimTime2=1; %Simulat ion Time
3 G2start =100; %Glucose i n i t i a l c ond i t i on SS
4 I 2 s t a r t =10; %In s u l i n i n i t i a l cond i t i on SS
5 B2start =30; %Beta−c e l l mass i n i t i a l c ond i t i on SS
6

7 %Def in ing Time And Quatity o f
8 %Glucose Input
9

10 %Fi r s t Meal
11 Start31 =(1/6) ;
12 Mengde31=45e3 /24 ;
13

14 %Second Meal
15 Start32 =(10/24) ;
16 Mengde32=75e3 /24 ;
17

18 %Third Meal
19 Start33 =(17/24) ;
20 Mengde33=75e3 /24 ;
21

22 %Simulink Simulat ion
23 sim ( 'BIGmeal ' )
24 t1=BIG . time ∗24 ;
25 Glu1=BIG . s i g n a l s ( 1 , 1 ) . va lue s ; %BIG−model
26 Ins1=BIG . s i g n a l s ( 1 , 2 ) . va lue s ;
27

28 %%
29 %The BIGIR−model
30

31 %Glucose Input Parameters
32 Tasc = 15/(24∗60) ; % days
33 Tdesc = 15/(24∗60) ; % days
34 Vmax = 360∗(24∗60) ; % mg/days
35 Kgabs = (1/60) ∗(24∗60) ; % days^−1
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Algorithm D.3 Matlab m.�le for model initiating, simulating and plotting.

1 %Model Parameters
2 a=864; %mg/ dl d
3 b=1.44; %d^−1
4 c =0.85; %ml/muU d
5 d=43.2; %muU/ml d mg
6 e=20000; %mg^2/ dl^2
7 f =216; %d^−1
8 g=0.03; %d^−1
9 h=0.5727502102e−3; %dl /mg d

10 i =0.2523128680e−5; %dl ^2/mg^2d
11 j =2.64; %d^−1
12 k=0.02; %ml/muU d
13 l =0.24; %d^−1
14

15 %Simulat ion parameters
16 SimTime3=1; %Simulat ion Time
17 G3start=82; %Glucose i n i t i a l cond i t i on SS
18 I 3 s t a r t =12.70; %In s u l i n i n i t i a l c ond i t i on SS
19 B3start =856.95; %Beta−c e l l mass i n i t i a l c ond i t i on SS
20 IRs ta r t =0.84; %In s u l i n r e c ep to r i n i t i a l c ond i t i on SS
21

22 %Def in ing Time And Quatity o f
23 %Glucose Input
24

25 %Fi r s t Meal
26 Start41 =(1/6) ;
27 Mengde41=45e3 /24 ;
28

29 %Second Meal
30 Start42 =(10/24) ;
31 Mengde42=75e3 /24 ;
32

33 %Third Meal
34 Start43 =(17/24) ;
35 Mengde43=75e3 /24 ;
36

37 %Simulink Simulat ion
38 sim ( 'BIGIRmeal ' )
39 t2=BIGIR . time ∗24 ;
40 Glu2=BIGIR . s i g n a l s ( 1 , 2 ) . va lue s ; %BIGIR−model
41 Ins2=BIGIR . s i g n a l s ( 1 , 3 ) . va lue s ;
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Algorithm D.4 Matlab m.�le for model initiating, simulating and plotting.

1 %%
2 %GIE−Model
3

4 %Glucose Input Parameters
5 Tasc = 15 ; % min
6 Tdesc = 15 ; % min
7 Vmax = 360 ; % mg/min
8 Kgabs = 1/60 ; % min^−1
9

10 %Model parameters
11 k1 = 1.0855∗10^−4; % min^−1 pr ( ng/ d l o f I )
12 k2 = 9.7947∗10^−3; % min^−1 pr ( ng/ d l o f I )
13 k3 = 207 .12654 ; % mg/ dl
14 k4 = 9 . 1119 ; % mg/ dl /min
15 k5 = 25 . 3039 ; % mg/ dl /min
16 k6 = 149 .7698 ; % ng/ d l o f I
17 k7 = 0 . 4572 ; % mg/ dl /min
18 k8 = 35 . 3878 ; % mg/ dl /min
19 k9 = 72 . 9766 ; % mg/ dl
20 kr = 0 . 0365 ; % min ^−1
21

22 Gr = 180 ; % mg/ dl
23

24 a1 = 248 . 8 1 ; % ng/ d l /min
25 a2 = 0 .01667 ; % (mg/ dl )^−1
26 a3 = 198 ; % mg/ dl
27

28 b1 = 0 .14545 ; % (ng/ d l /min o f I ) per ( ng/ d l
o f E)

29 b2 = 0 . 2 0 6 ; % min^−1
30

31 c0 = 0 . 6 5 6 ; % ng/ dl /min
32 c1 = 2 . 5441 ; % (ng/ d l /min o f E) per (mg/ dl

o f G)
33 c2 = −5.2523; % ng/ d l ( o f I )
34 c3 = 0 . 0 8 ; % min^−1
35

36 Ge = 75 ; % mg/ dl
37

38 %Simulat ion parameters
39 SimTime5=1440; %Simulat ion Time
40 G5start = 9 3 . 6 ; %Glucose i n i t i a l c ond i t i on SS
41 I 5 s t a r t = 4 1 . 6 ; %In s u l i n i n i t i a l cond i t i on SS
42 E5start = 8 . 2 ; %Glucagon i n i t i a l c ond i t i on SS
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Algorithm D.5 Matlab m.�le for model initiating, simulating and plotting.

1 %Def in ing Time And Quatity o f
2 %Glucose Input
3

4 %Fi r s t Meal
5 Start21 =240;
6 Mengde21=45e3 ;
7

8 %Second Meal
9 Start22 =600;

10 Mengde22=75e3 ;
11

12 %Third Meal
13 Start23 =1020;
14 Mengde23=75e3 ;
15

16 %Simulink Simulat ion
17 sim ( 'GIEmeal ' ) ;
18 t3=GIE . time /60 ;
19 Glu3=GIE . s i g n a l s ( 1 , 1 ) . va lue s ; %GIE−model
20 Ins3=GIE . s i g n a l s ( 1 , 2 ) . va lue s /4 ;
21

22 %%
23 %SogH−model
24

25 %Glucose Input Parameters
26 Tasc = 15/60 ; %hr
27 Tdesc = 15/60 ; %hr
28 Vmax = 360∗60; %mg/hr
29 Kgabs = 60/60 ; %hr−1
30

31 %Model Parameters
32 gamma=13.9 ; %mg∗hr^−1∗mg%^−1∗mU%^−1
33 Gt=0; %mg%
34 de l t a =24.7; %mUhr^−1∗mg%
35 my=72; %mg∗hr^−1∗mg%^−1
36 Gk=250; %mg%
37 alpha=76; %mUhr^−1∗mU%^−1
38 beta =14.3 ; %mUhr^−1mg%^−1
39 G0=51; %mg%
40 Co = 150 ; %dl
41 Ci = 150 ; %mU/mU
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Algorithm D.6 Matlab m.�le for model initiating, simulating and plotting.

1 %Simulat ion parameters
2 SimTime4=24; %Simulat ion Time
3 G4start=90; %Glucose i n i t i a l cond i t i on SS
4 I 4 s t a r t =7.4 ; %In s u l i n i n i t i a l cond i t i on SS
5

6 %Def in ing Time And Quatity o f
7 %Glucose Input
8

9 %Fi r s t Meal
10 Star t1 =4;
11 Mengde1=45e3 ;
12

13 %Second Meal
14 Star t2 =10;
15 Mengde2=75e3 ;
16

17 %Third Meal
18 Star t3 =17;
19 Mengde3=75e3 ;
20

21 %Simulink Simulat ion
22 sim ( ' SandHMeal ' )
23 t4=SandH . time ;
24 Glu4=SandH . s i g n a l s ( 1 , 2 ) . va lue s ; %S&H−model
25 Ins4=SandH . s i g n a l s ( 1 , 3 ) . va lue s ;
26

27 %%
28 %The GIM−model
29

30 load ( 'GIM2.mat ' )
31 t5=Time/60 ;
32 Glu5=Glucose ; %GIM−model
33 Ins5=In s u l i n /6 . 9450 ; %Convert [ pmol/ l ] to [muU/ml ]
34

35 %%
36 %Creat ing Comparative Glucose Plot
37

38 c l e a r f i g u r e (1 )
39 f i g u r e (1 )
40

41 p lo t ( t1 , Glu1 , ' g ' , t2 , Glu2 , 'b ' , t3 , Glu3 , ' y ' , t4 , Glu4 , ' k ' , t5
, Glu5 , ' r ' ) ;

42 t i t l e ( ' Glucose Response Of The Glucoregu latory Models ' )
43 y l ab e l ( ' Glucose Consentrat ion [mg/ dl ] ' )
44 x l ab e l ( 'Time [ hr ] ' )
45 l egend ( 'The BIG−model ' , . . .
46 'The BIGIR−model ' , 'The GIE−model ' , . . .
47 'The S&H−model ' , 'The GIM−model ( r e f e r e n c e ) ' ) ;
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Algorithm D.7 Matlab m.�le for model initiating, simulating and plotting.

1 %%
2 %Creat ing Comparative I n s u l i n Plot
3

4 c l e a r f i g u r e (2 )
5 f i g u r e (2 )
6

7 p lo t ( t1 , Ins1 , ' g ' , t2 , Ins2 , 'b ' , t3 , Ins3 , ' y ' , t4 , Ins4 , ' k ' , t5
, Ins5 , ' r ' ) ;

8 t i t l e ( ' I n s u l i n Response Of The Glucoregu latory Models ' )
9 y l ab e l ( ' I n s u l i n Consentrat ion [ \muU/ml ] ' )

10 x l ab e l ( 'Time [ hr ] ' ) l egend ( 'The BIG−model ' , . . .
11 'The BIGIR−model ' , 'The GIE−model ' , . . .
12 'The S&H−model ' , 'GIM−model ( r e f e r e n c e ) ' ) ;
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D.2 Simulating And Ploting �Homeostasis Test�

Algorithm D.8 Matlab m.�le for model initiating, simulating and plotting.

1 %%
2 % AUTHOR : Ingeborg Siem Kndusen
3 % DATE : 03−June−2013 19 : 53 : 02
4 % FILENAME : Homeo .m
5 %
6 % Master Thes i s at The Un ive r s i ty Of Stavanger
7 %
8 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9

10 %I n i t i a t i n g Model S imulat ion Parameters
11

12

13 %The BIG−Model
14

15 %Glucose s tep
16 Star t2 =4/24; %day
17 Stopp2=20/24; %day
18 I n i t 2 =0;
19 Value2=1e4 ; %day
20

21 %Model Parameters
22 r1=8.4e−4; %mg^−1∗dl ∗d^−1
23 r2=2.4e−6; %mg^−1∗dl ∗d^−1
24 a=20000; %mg^2∗ dl^−2
25 SI =0.72; %muU∗ml^−1∗d^−1
26 R0=864; %mg∗ dl ∗d^−1
27 Ego=1.44; %d^−1
28 sigma = 432 ; %muU∗ml^−1∗d^−1
29 d0 = 0 . 0 6 ; %d^−1
30 k = 430 ; %d^−1
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Algorithm D.9 Matlab m.�le for model initiating, simulating and plotting.

1 %Simulat ion parameters
2 SimTime2=1; %Simulat ion time
3 G2start =100; %Glucose i n i t i a l c ond i t i on SS
4 I 2 s t a r t =10; %In s u l i n i n i t i a l cond i t i on SS
5 B2start =30; %Beta−c e l l mass i n i t i a l c ond i t i on SS
6

7 %%
8 %The BIGIR−Model
9

10 %Glucose s tep
11 Star t3 =4/24; %day
12 Stopp3=20/24; %day
13 I n i t 3 =0;
14 Value3=1e4 ; %day
15

16 %Model Parameters
17 a=864; %mg/ dl d
18 b=1.44; %d^−1
19 c =0.85; %ml/muU d
20 d=43.2; %muU/ml d mg
21 e=20000; %mg^2/ dl^2
22 f =216; %d^−1
23 g=0.03; %d^−1
24 h=0.5727502102e−3; %dl /mg d
25 i =0.2523128680e−5; %dl ^2/mg^2d
26 j =2.64; %d^−1
27 k=0.02; %ml/muU d
28 l =0.24; %d^−1
29

30 %Simulat ion parameters
31 SimTime3=1; %Simulat ion Time
32 G3start=82; %Glucose i n i t i a l cond i t i on SS
33 I 3 s t a r t =12.70; %In s u l i n i n i t i a l c ond i t i on SS
34 B3start =856.95; %Beta−c e l l mass i n i t i a l c ond i t i on SS
35 IRs ta r t =0.84; %In s u l i n r e c ep to r i n i t i a l c ond i t i on SS
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Algorithm D.10Matlab m.�le for model initiating, simulating and plotting.

1 %%
2 %The S&H−model
3

4 %Glucose s tep
5 Star t4 =4; %hr
6 Stopp4=20; %hr
7 I n i t 4 =0;
8 Value4=1e4 ; %hr
9

10 %Model Parameters
11 gamma=13.9 ; %mg∗hr^−1∗mg%^−1∗mU%^−1
12 Gt=0; %mg%
13 de l t a =24.7; %mUhr^−1∗mg%
14 my=72; %mg∗hr^−1∗mg%^−1
15 Gk=250; %mg%
16 alpha=76; %mUhr^−1∗mU%^−1
17 beta =14.3 ; %mUhr^−1mg%^−1
18 G0=51; %mg%
19 Co = 150 ; %dl
20 Ci = 150 ; %mU/mU
21

22 %Simulat ion parameters
23 SimTime4=24;%Simulat ion time
24 G4start=90; %Glucose i n i t i a l c ond i t i on SS
25 I 4 s t a r t =7.4 ;%In s u l i n i n i t i a l c ond i t i on SS
26

27 %%
28 %The GIE−model
29

30 %Glucose s tep
31 Star t5 =4∗60; %min
32 Stopp5=20∗60; %min
33 I n i t 5 =0;
34 Value5=1e4 /60 ; %min
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Algorithm D.11Matlab m.�le for model initiating, simulating and plotting.

1 %Model parameters
2 k1 = 1.0855∗10^−4; % min^−1 pr ( ng/ d l o f I )
3 k2 = 9.7947∗10^−3; % min^−1 pr ( ng/ d l o f I )
4 k3 = 207 .12654 ; % mg/ dl
5 k4 = 9 . 1119 ; %mg/ dl /min
6 k5 = 25 . 3039 ; % mg/ dl /min
7 k6 = 149 .7698 ; % ng/ d l o f I
8 k7 = 0 . 4572 ; % mg/ dl /min
9 k8 = 35 . 3878 ; % mg/ dl /min

10 k9 = 72 . 9766 ; %mg/ dl
11

12 kr = 0 . 0365 ; % min ^−1
13 Gr = 180 ; % mg/ dl
14

15 a1 = 248 . 8 1 ; % ng/ d l /min
16 a2 = 0 .01667 ; % (mg/ dl )^−1
17 a3 = 198 ; % mg/ dl
18

19 b1 = 0 .14545 ; % (ng/ d l /min o f I ) per ( ng/ d l o f E)
20 b2 = 0 . 2 0 6 ; % min^−1
21

22 c0 = 0 . 6 5 6 ; % ng/ d l /min
23 c1 = 2 . 5441 ; % (ng/ d l /min o f E) per (mg/ dl o f G)
24 c2 = −5.2523; % ng/ dl ( o f I )
25 c3 = 0 . 0 8 ; % min^−1
26

27 Ge = 75 ; % mg/ dl
28

29 %Simulat ion parameters
30 SimTime5=1440; %Simulat ion Time
31 G5start = 9 3 . 6 ; %Glucose i n i t i a l c ond i t i on SS
32 I 5 s t a r t = 4 1 . 6 ; %In s u l i n i n i t i a l cond i t i on SS
33 E5start = 8 . 2 ; %Glucagon i n i t i a l c ond i t i on SS
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Algorithm D.12Matlab m.�le for model initiating, simulating and plotting.

1 %%
2 %Simulat ing The Models In Simulink
3

4 sim ( 'BIGhomeo ' ) ;
5 sim ( 'BIGIRhomeo ' ) ;
6 sim ( 'GIEhomeo ' ) ;
7 sim ( 'SandHhomeo ' ) ;
8

9 %Creat ing The Time Vectors
10 t1=BIG . time ∗24 ; %hr
11 t2=BIGIR . time ∗24 ; %hr
12 t3=GIE . time /60 ; %hr
13 t4=SandH . time ; %hr
14

15 %Extract ing Glucose And I n s u l i n Values
16 Glu1=BIG . s i g n a l s ( 1 , 1 ) . va lue s ; %BIG−model
17 Ins1=BIG . s i g n a l s ( 1 , 2 ) . va lue s ;
18

19 Glu2=BIGIR . s i g n a l s ( 1 , 2 ) . va lue s ; %BIGIR−model
20 Ins2=BIGIR . s i g n a l s ( 1 , 3 ) . va lue s ;
21

22 Glu3=GIE . s i g n a l s ( 1 , 1 ) . va lue s ; %GIE−model
23 Ins3=GIE . s i g n a l s ( 1 , 2 ) . va lue s /4 ;
24

25 Glu4=SandH . s i g n a l s ( 1 , 2 ) . va lue s ; %S&H−model
26 Ins4=SandH . s i g n a l s ( 1 , 3 ) . va lue s ;
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Algorithm D.13Matlab m.�le for model initiating, simulating and plotting.

1 %%
2 %Creat ing Comparative Glucose Plot
3

4 c l e a r f i g u r e (1 )
5 f i g u r e (1 )
6

7 p lo t ( t1 , Glu1 , ' g ' , t2 , Glu2 , 'b ' , t3 , Glu3 , ' r ' , t4 , Glu4 , ' k ' ) ;
8 t i t l e ( ' Glucose Dynamics Of The Glucoregu latory Models ' )
9 y l ab e l ( ' Glucose Consentrat ion [mg/ dl ] ' )

10 x l ab e l ( 'Time [ hr ] ' )
11 l egend ( 'The BIG−model ' , . . .
12 'The BIGIR−model ' , 'The GIE−model ' , . . .
13 'The S&H−model ' ) ;
14

15 %%
16 %Creat ing Comparative I n s u l i n Plot
17

18 c l e a r f i g u r e (2 )
19 f i g u r e (2 )
20

21 p lo t ( t1 , Ins1 , ' g ' , t2 , Ins2 , 'b ' , t3 , Ins3 , ' r ' , t4 , Ins4 , ' k ' ) ;
22 t i t l e ( ' I n s u l i n Dynamics Of The Glucoregu latory Models ' )

;
23 y l ab e l ( ' I n s u l i n Consentrat ion [ \muU/ml ] ' ) ;
24 x l ab e l ( 'Time [ hr ] ' )
25 l egend ( 'The BIG−model ' , . . .
26 'The BIGIR−model ' , 'The GIE−model ' , . . .
27 'The S&H−model ' ) ;


