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Semi-algebraic optimization of temperature
compensation in a general switch-type negative
feedback model of circadian clocks

Sven Ole Aase · Peter Ruoff

Abstract Temperature compensation is an essential property of circadian oscillators 
which enables them to act as physiological clocks. We have analyzed the temperature 
compensating behavior of a generalized transcriptional–translational negative feed-
back oscillator with a hard hysteretic switch and rate constants with an Arrhenius-
type temperature dependence. These oscillations can be considered as the result of 
a lowpass filtering operator acting on a train of rectangular pulses. Such a signal-
processing viewpoint makes it possible to express, in a semi-algebraic manner, the 
period length, the oscillator’s control (sensitivity) coefficients, and the first and 
second-order derivatives of the period–temperature relationship. We have used the 
semi-algebraic approach to investigate a 3-dimensional Goodwin-type representation 
of the oscillator, where local optimization for temperature compensation has been 
considered. In the local optimization, activation energies are found, which lead to a 
zero first order derivative and to a closest-to-zero second order derivative at a given 
reference temperature. We find that the major contribution to temperature 
compensation over an extended temperature range is given by the (local) zero first 
order derivative, while only minor contributions to temperature compensation are 
given by an optimized second order derivative. In biological terms this could be 
interpreted to relate to a circadian clock mechanism which during evolution is being 
optimized for a certain but relative narrow (habitat) temperature range.
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1 Introduction

Biological clocks are physiological oscillators which play an important role in the 
adaptation of organisms to their environments [3,6,7]. Among the most intensively 
studied biological clocks we have circadian oscillators which have a period length of 
approximately 24 h (the name is derived from latin circa, about and dies, day). 
Circadian rhythms adapt (entrain) organisms to daily light/dark cycles, take part in 
the control of sleep/wake cycles, but also take part in the control of annual events 
such as migration of birds, butterflies, flower induction, hibernation and 
reproduction [3,6,7]. Circadian rhythms are present in practically all eukaryotic 
species, ranging from single cell organisms to mammals and have been found even 
in cyanobacteria.

Circadian oscillators behave as true physiological clocks and possess the 
capability to keep their period length approximately constant against environmental 
fluctuations such as variations in temperature, pH, or nutrition [19,22]. Temperature 
compensation, i.e., the approximate constancy of the period within a certain, for the 
organism important physiological temperature range, is probably one of the best 
studied examples of period homeostasis in circadian rhythms [3,6,7].

Experiments with mutant organisms have shown that most of the circadian “pace-
makers” consist of transcriptional–translational negative feedback loops [4]. Model 
studies have shown that circadian clock properties, including temperature compensa-
tion, can be simulated by negative feedback oscillators such as the Goodwin 
oscillator [10,11,25].

By considering a general reaction kinetic oscillator which consists of N 
component processes, a condition for temperature compensation can be formulated 
[21,23]:

d ln P

dT
= 1

RT 2

N∑

i=1

C P
i · Ei = 0, (1)

where P is the oscillator’s period, the Ci
P ’s are control (sensitivity) coefficients 

[8,14] (defined as ∂ ln P/∂ ln ki ) and Ei , R, and T are the activation energies for 
each component process, the gas constant and the temperature (in Kelvin), 
respectively. In case the period P is a homogeneous function [1] of the rate 
constants ki , the control coefficients obey the summation theorem [8,14]:

N∑

i=1

C P
i = −1. (2)

However, Eq. 1 is only valid for a given reference temperature Tref for which the
temperature-dependent C P

i ’s are calculated. This means that the condition of Eq. 1



cannot guarantee that temperature compensation will occur over an extended 
temper-ature interval around Tref . Because temperature compensation is considered 
in this paper with respect to a given reference point (Tref ), the optimization 
procedure occurs locally at Tref , where the second-order derivative of the period 
with respect to temperature is also used for optimization. Furthermore, we develop a 
novel semi-algebraic approach in order to find the period, and its derivatives. The 
model we use is a generalized switch-type transcriptional–translational negative 
feedback oscillator, for which a 3-dimensional version has successfully been used to 
describe different properties of the Neurospora circadian clock [23].

2 Methods of calculation

System analysis using symbolic and numerical calculations was performed with the 
use of MATLAB (ver. 7.0.4, The Mathworks, Natick, MA, USA). Some simulation 
calculations were performed using the open access FORTRAN subroutine LSODE 
[20]. In comparison, MATLAB and LSODE gave essentially identical results.

3 A theory for semi-algebraic analysis

In this work we analyse a set of coupled differential equations of the following form:

ẋ1 = k1 f (xn) − kn+1x1

ẋ2 = k2x1 − (k3 + kn+2)x2

ẋ3 = k3x2 − (k4 + kn+3)x3

...

ẋi = ki xi−1 − (ki+1 + kn+i )xi

...

ẋn−1 = kn−1xn−2 − (kn + k2n−1)xn−1

ẋn = kn xn−1 − k2n xn (3)

where x1, . . . , xn is a vector of n system variables describing concentrations of inter-
mediates X1, . . . , Xn , and where k1, . . . , k2n are rate constants. The equations define
a transcriptional translational negative feedback oscillator shown in Fig. 1. The oscil-
lations are driven by the “switch” term f (xn) which can only take two values, 0 and 1.
As indicated in Fig. 2, f can be a step function, or a hysteresis. In the case of hysteresis,
the transcriptional on/off occurs at different xn values.

In general, there are no analytical methods for solving systems such as given in Eq. 3.
The aim of our study was to find expressions for the period of the circadian clock, P ,
as well as gaining insight on how P is influenced by the rate constants k1, . . . , k2n .
Due to reaction kinetic constraints the xi and ki parameters are real positive numbers.
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Fig. 1 General transcriptional–translational negative feedback model (Eqs. 3) for circadian rhythms. 
Transcription and translation are the processes of making mRNA (X1) and clock protein (X2), respectively. 
The modification reactions are processes which can lead to clock protein species Xi with altered 
properties, for example stability [5]

3.1 Linear system analysis

Using standard linear algebra notation, the system in Eq. 3 can be written as

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
...

ẋn−1
ẋn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ẋ

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−kn+1 0 · · · 0
k2 −(k3 + kn+2) 0

0
...

...
. . .

. . .
. . .

kn−1 −(kn + k2n−1) 0
0 · · · 0 kn −k2n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
...

xn−1
xn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Ax

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

k1 f (xn)

0
0
...

0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
F(xn)

(4)

where x is the vector of system variables, A is an n × n matrix of real constants, 
and F(xn) contains the switch term k1 f (xn). In the following analysis we interpret
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the second term in Eq. 4 as an input signal to the linear system characterized by the 
matrix A. The system variable xn(t) is considered as an output signal. Also note that 
due to the special structure of Eq. 3, A is a band-matrix: Only elements on the 
diagonal and the first lower sub-diagonal are nonzero. It follows that the eigenvalues 
of the A matrix are given as

λ1 = −kn+1

λ2 = −(k3 + kn+2)

...

λn−1 = −(kn + k2n−1)

λn = −k2n . (5)

A standard tool for analysing coupled, linear differential equations is the 
Laplace transformation. Eq. 3 is transformed to

s X1(s) = k1 F(s) + λ1 X1(s)

s Xi (s) = ki Xi−1(s) + λi Xi (s), i = 2, . . . , n. (6)

where we have temporarily ignored the xn-dependence of F(s). By straightforward
algebraic manipulation we can now find the input–output relation defined as

H(s) = Xn(s)

F(s)
= Xn(s)

Xn−1(s)

Xn−1(s)

Xn−2(s)
. . .

X2(s)

X1(s)

X1(s)

F(s)
=

n∏

i=1

ki

s − λi
. (7)

The poles in Eq. 7 are identical to the eigenvalues of A and characterize the linear
part of the differential equation system. Assuming distinct eigenvalues the inverse
Laplace transform can be found using partial fracture decomposition, and gives the 
causal time-domain input–output relation:1

h(t) =
{∑n

i=1 Ki eλi t , t ≥ 0,

0, t < 0,
where (8)

1 This is commonly referred to as the unit pulse response in electrical engineering literature.
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Fig. 3 System interpreted as a filtering operator

Ki =
⎛

⎝
n∏

j=1

k j

⎞

⎠
n∏

j=1
j �=i

1

λi − λ j
. (9)

Due to the rate constants k1, . . . , k2n all being real and positive, the eigenvalues are 
real and negative, so the input–output relation of Eqs. 7 and 8 constitutes a lowpass
filter.

3.2 Nonlinear feedback analysis

For the purpose of analysing the period P of the system, we make the following
assumptions:

1. The rate constants are chosen such that the system oscillates. Furthermore, we
assume that the system has reached the limit-cycle. All state variables are therefore
periodic signals, i.e., xi (t + P) = xi (t).

2. During one period, the “switch” term f (xn(t)) undergoes exactly 2 transitions,
reflecting the “on/off” behavior of the gene’s transcriptional activity. The use of 
a hysteretic switch as shown on the right panel of Fig. 2 was inspired by observ-
ing similar behavior (i.e., observation of different excitation thresholds between 
oxidized and reduced states) in a model of a chemical oscillator [24].

With the assumptions above we can model the system as a lowpass filtering operator
working on an infinite sequence of rectangular pulses. This is illustrated in Fig. 3. The
filter output is the system variable xn(t). Since we have a lowpass filter, the behavior
of xn(t) will be more slowly varying compared to the input pulse signal, as well as
being continuous. In order for the model to correspond directly with the original dif-
ferential equations, the value of xn must match the threshold value at the associated
switch-points. Logically, the limit-cycle assumption stated above dictates the behavior
of the switch variable xn as shown in Table 1 (see Fig. 2).

With reference to Figs. 2 and 3, we can fix the values of the output signal at switching
times ∆ and P as follows:

Step function: xn(∆) = xn(P − ∆) = x0 (10)

Hysteresis: xn(∆) = xlow (11)

xn(P − ∆) = xhigh. (12)



Table 1 Variable transition
table showing the next
transition, given the current state
and the switch type

Current state

Switch type f = 1 f = 0

Step function xn → x−
0 xn → x+

0

Hysteresis xn → x−
high xn → x+

low

Using the lowpass filter viewpoint, the output signal at switch-time t = ∆ is found
as the convolution between an infinite sequence of rectangular pulses f (xn(t)), and
the unit pulse response h(t):

xn(∆) = (h ∗ f )(∆) =
∞∫

0

h(τ ) f (∆ − τ)dτ,

=
∞∑

k=1

k P∫

2∆+(k−1)P

h(τ )dτ =
∞∑

k=1

n∑

i=1

k P∫

2∆+(k−1)P

Ki e
λi τ dτ

=
n∑

i=1

Ki

λi

∞∑

k=1

(eλi k P − eλi (2∆+(k−1)P))

=
n∑

i=1

Ki

λi

(
eλi P 1

1 − eλi P
− e2λi ∆

1

1 − eλi P

)

=
n∑

i=1

Ki

λi

eλi P − e2λi ∆

1 − eλi P
. (13)

Similarly, the expression for the output variable at switch-time t = P −∆ is found
to be

xn(P − ∆) =
n∑

i=1

Ki

λi

eλi (P−2∆) − 1

1 − eλi P
. (14)

For the hysteresis case2, we set

G1
�= xn(∆) − xlow = 0 (15)

G2
�= xn(P − ∆) − xhigh = 0, (16)

giving two equations with the unknowns P and ∆. Since the solution of our differ-
ential equation, if it exists, is unique3, this only produces one solution for (P,∆ ) .

2 Replace xlow and xhigh with x0 in the step function case.
3 Strictly speaking, the uniqueness of the solution is generally guaranteed only for systems where the
components have continuous first order derivatives. Since our system contains a step function, this is vio-
lated. However, interpreting the system as a lowpass filter applied to rectangular pulses, we can obtain an
arbitrarily good system approximation using pulses with smooth transitions.



Unfortunately, Eqs. 15 and 16 does not give a solution which is algebraically simple, 
and in practice a numerical solution for (P, ∆ )  has to be found. An illustration of 
this will be shown in Sect. 5.

3.3 Computing derivatives

For analysing temperature compensation we want to compute the following entities 

algebraically:

∂ ln P

∂ ln ki
,

∂2 ln P

∂ ln ki∂ ln k j
, i, j = 1, . . . , n. (17)

Although not explicitly solvable for P, we can still use Eqs. 15 and 16 to find 
derivatives in a semi-algebraic manner. Noting that Gm = Gm(ln k1, . . . , ln k2n, 
P,∆ ) , m = 1, 2, where P = P(ln k1, . . . , ln k2n) and ∆ = ∆(ln k1, . . . , ln k2n), we 
can differentiate Gm with respect to ln ki using the generalized chain rule:

∂Gm

∂ ln ki
+ ∂Gm

∂ ln P

∂ ln P

∂ ln ki
+ ∂Gm

∂ ln ∆

∂ ln ∆

∂ ln ki
= 0, m = 1, 2. (18)

These are linear equations in the unknowns ∂ ln P
∂ ln ki

and ∂ ln ∆
∂ ln ki

and we can find the
desired unknown as

∂ ln P

∂ ln ki
=

∂G1
∂ ln ∆

∂G2
∂ ln ki

− ∂G1
∂ ln ki

∂G2
∂ ln ∆

∂G1
∂ ln P

∂G2
∂ ln ∆

− ∂G1
∂ ln ∆

∂G2
∂ ln P

, i = 1, . . . , 2n. (19)

Similarly, a straightforward, but tedious derivation leads to the following expression
for the second derivatives:

∂2 ln P

∂ ln ki∂ ln k j
=

∂G1
∂ ln ∆

A(2)
i j − A(1)

i j
∂G2
∂ ln ∆

∂G1
∂ ln P

∂G2
∂ ln ∆

− ∂G1
∂ ln ∆

∂G2
∂ ln P

, (20)

where

A(m)
i j = ∂2Gm

∂ ln ki∂ ln k j
+ ∂2Gm

∂ ln ki∂ ln P

∂ ln P

∂ ln k j
+ ∂2Gm

∂ ln ki∂ ln ∆

∂ ln ∆

∂ ln k j

+
(

∂2Gm

∂ ln k j∂ ln P
+ ∂2Gm

∂2 ln P

∂ ln P

∂ ln k j
+ ∂2Gm

∂ ln P∂ ln ∆

∂ ln ∆

∂ ln k j

)
∂ ln P

∂ ln ki

+
(

∂2Gm

∂ ln ki∂ ln ∆
+ ∂2Gm

∂ ln P∂ ln ∆

∂ ln P

∂ ln k j
+ ∂2Gm

∂2 ln ∆

∂ ln ∆

∂ ln k j

)
∂ ln ∆

∂ ln ki
,

m = 1, 2, i, j = 1, . . . , 2n. (21)



Given the rate constants k1, . . . , k2n, we can solve for (P, ∆ )  numerically using 
Eqs. 15 and 16 and then find the first and second order derivatives from Eqs. 19, 20, 
and 21.

4 Local curve optimization for temperature compensation

A change in temperature from, say Tmin to Tmax will, according to the Arrhenius 
equation

ki = Ai e− ERT
i (22)

define a parametric curve in R2n, the Euclidian space spanned by the 2n reactions/rate 
constants.

In order to achieve temperature compensation, temperature-induced changes in each 
ki need to cancel out any changes in the system period P. In this section we provide 
a local theory for optimal temperature compensation: Given initial k1

ref , . . . , k2
ref
n 

and an associated initial temperature Tref , the task is to find the optimal set of 
activation energies E1, . . . ,  E2n such that the period will be affected as little as 
possible when the temperature is changed within a certain temperature interval. 
The criterion for optimization is that the first order derivative of the period with 
respect to temperature is zero and that the second order derivative is at a minimum.

Starting with the first order derivative, we can write [23]:

∂ ln P

∂T

∣∣∣∣
T =Tref

=
2n∑

i=1

∂ ln P

∂ ln ki

∂ ln ki

∂T
= 1

RT 2

2n∑

i=1

∂ ln P

∂ ln ki
Ei . (23)

It follows that the inner product of the activation energies and the control coeffi-
cients C P

i = ∂ ln P
∂ ln ki

vanishes.
The second derivative is found as:

∂2 ln P

∂2T

∣∣∣∣
T =Tref

= − 2

RT 3

2n∑

i=1

∂ ln P

∂ ln ki
Ei

︸ ︷︷ ︸
0

+ 1

RT 2

2n∑

i=1

2n∑

j=1

∂2 ln P

∂ ln k j∂ ln ki

∂ ln k j

∂T︸ ︷︷ ︸
E j

RT 2

Ei

= 1

R2T 4

2n∑

i=1

2n∑

j=1

∂2 ln P

∂ ln k j∂ ln ki
E j Ei = 1

R2T 4 ETHE, (24)

where H is the Hessian matrix of second derivatives and E is the vector of activation
energies.

5 A Goodwin-type model with hysteretic switch

A 3-dimensional representation of Eq. 3 with a hysteretic switch has recently been 
studied numerically in connection with the Neurospora circadian clock [23].



Table 2 Rate constants, control
coefficients, and optimal
activation energies at reference
temperature Tref = 292 K

Reaction i Rate constant Control coefficient Optimal activation
ki , h−1 C P

i energy Ei , kJ/mol

1 0.30 0.100 200.0

2 0.30 0.100 159.3

3 0.30 −0.096 30.0

4 0.27 −0.455 30.0

5 0.20 −0.131 30.0

6 0.20 −0.518 30.0

In Neurospora the circadian pacemaker is closely related to the expression of the
frequency (frq) gene into its protein (FRQ), which is regulated by a negative feedback,
i.e., expressed FRQ protein inhibits its own transcription [2,5]. In a 3-dimensional
representation of the model (Fig. 1), x1 corresponds to frq-mRNA concentration, x2
to the cytosolic concentration of FRQ (FRQc), and x3 to its nuclear concentration of
FRQ (FRQn).

Table 2 shows the rate constant values defined at Tref = 1 9  ◦C (292 K) [23] 
together with the control coefficients (Eq. 19) calculated semi-algebraically at Tref . 
These rate constants refer to the wild-type strain ( f r q +) for which FRQ degradation 
rate constants (and activation energies) have been experimentally estimated [23]. 
The hys-teretic switch is defined as follows: when the nuclear FRQ concentration 
(x3) exceeds an upper threshold, x3 ≥ xhigh = 0.1 a.u., f (x3) is set to zero, which 
leads to a stop in transcription and to a decrease of frq-mRNA (x1), FRQc (x2), and 
FRQn (x3), because of the degradation reactions corresponding to the rate constants 
k4, k5, and k6. Transcription is started again when the (decreasing) x3 has reached a 
lower threshold (≤ xlow = 0.05 a.u.) [23].

Figure 4 shows the implicitly defined functions G1(P,∆ )  = 0 and G2(P,∆ )  = 
0 for the system defined in Table 2. The unique solution for (P,∆ )  is found 
numerically as the intersection of the two curves.

5.1 Local curve optimizations

Starting with the set of rate constants in Table 2 (defined at Tref ), we determine a 
locally optimized set of activation energies, i.e., finding those Ei ’s, which makes Eq. 
23 zero, while keeping the second derivative (Eq. 24) as close to zero as possible. 
This was done in Matlab using the quadratic programming command quadprog. As 
in a previous study [23] the activation energies were limited to the 30–200 kJ/mol 
range. As can be seen from Table 2, the optimal choice of activation energies is 
found by choosing values on the grid limit, except for E2 = 159.3 k J / m o l .

The solid line in Fig. 5 shows the period as a function of temperature using the 
optimized activation energies for Tref = 292 K. In addition, 100 period–
temperature relationships are shown as dotted lines when activation energies were 
randomly selected from a uniform distribution between 30 and 200 kJ/mol. The figure
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Fig. 5 Temperature–period curve for locally optimized activation energies (solid line). This is contrasted
with nonoptimized curves (dotted lines) when randomly selected activation energies in the allowed energy
range are used. By definition, all curves intersect at the reference temperature Tref = 292 K

clearly reveals the significance of having a well chosen set of activation energies for 
temperature compensation.

The locally optimized curve in Fig. 5 is found using criteria for the first and second 
order derivatives. A more simplified optimization can be done using the first order 
derivatives only. This allows for many solutions for the activation energies since the 
equations
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derivatives. In comparison, the dotted lines show curves where only the first order derivative (Eq. 1) is zero
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6∑

i=1

C P
i Ei = 0, (25)

30 ≤ Ei ≤ 200 , i = 1, . . . , 6. (26)

define the solution set as the intersection between a 5-dimensional space (defined by 
Eq. 25)  a n d   a  6   d i m e n s i  onal hypercube (defined by Eq. 26). Figure 6 shows 
the obtained results when using activation energies randomly selected within this 
solution set. A procedure for finding such solutions is to project the uniformly 
distributed E-vectors used in Fig. 5 onto the 5-dimensional space and then remove 
solution not satisfying Eq. 26. Figure 6 compares the temperature-period curves 
obtained in this fashion with the curve obtained when additionally minimizing the 
second order derivative.

Although the model’s temperature compensation is generally in good agreement 
with experimental results [23], it is not able to show the experimentally observed 
over-compensation (i.e., the period increases with increasing temperature) [9] a t  
t h e  l o w e  r  end of Neurospora’s temperature range (Fig. 5). We believe that 
this is related to the relative simple structure of the model.

6 Discussion

Temperature compensation is one of the defining and canonical properties of 
circadian rhythms [3,7]. Although molecular and theoretical explanations for many 
aspects of circadian oscillators have been developed over the past decade [6], there 
have been few attempts to describe temperature compensation on a mathematical 
kinetic basis [26]. For an overview on other or related attempts to explain 
temperature compensation the



reader is referred to the following papers [12,13,15–18,27,28]. However, a discussion 
of these various approaches on how to “balance P” is beyond the scope of this paper.

In many organisms the circadian pacemaker has been found to contain a transcrip-
tional–translational negative feedback loop as described in Fig. 1. Transcription and 
translation of clock proteins as well as clock protein modifications are composed of 
many individual reactions and the usage of single rate constants and activation 
energies to each of the processes in Fig. 1 represent therefore a considerable 
simplification. Nevertheless, the transcriptional–translational negative feedback 
oscillator has been shown to describe many circadian clock properties [25,23].

Equation 1 was derived [21,23] by assuming an Arrhenius-type dependence 
between rate constants of the various component processes and temperature (Eq. 22), 
which is valid for all (elementary) chemical processes. In order to satisfy the con-
dition for temperature compensation (Eq. 1), at least one of the control coefficients 
needs to be positive in order to “balance” the otherwise negative contributions (see 
Eq. 2). In the generalized model studied here, only transcription (synthesis of clock 
mRNA) and translation (synthesis of clock protein) show positive control coefficients 
(Table 2), indicating that the origin of temperature compensation is closely related to 
the processes involved in transcription and translation.

The algebraic methodology introduced in this article allows for better insight into 
this relationship. Inspection of the (lengthy) algebraic expressions for G1 and G2 
(Eq. 15) reveals that in both expressions the k1 and k2 rate constants always appear 
as the product k1k2. It follows that the period must also depend on this product, i.e., 
P = P(k1k2). Since P is a homogenous function of k1 and k2 this implies that the
associated control coefficients must be equal, C P

1 = C P
2 . From Eq. 1 we see that the

first order derivative of the period–temperature relationship will be unaffected as long
as the sum of E1 and E2 are kept constant.

The condition for temperature compensation (Eq. 1) is only valid for a given 
reference temperature (Tref ) at which rate constants are defined. This means that Eq. 
1 does in principle not guarantee for temperature compensation beyond Tref , i.e., 
over an extended temperature range. However, the results show that when 
comparing randomly selected activation energies with any activation energy 
combination satisfying Eq. 1, the system satisfying Eq. 1 (Fig. 5) leads to a much 
better temperature compensation, but not to a complete constancy of the period. 
Minimizing of the second-order derivative provides only a marginally improvement 
of temperature compensation (Fig. 6), indicating that higher-order derivatives 
contribute only little to the overall tempera-ture compensation. However, one has 
also to be careful when drawing more general conclusions from the study of a 
special model.

In conclusion, the local condition of temperature compensation given by Eq. 1 with 
constant activation energies provides most of the temperature compensation behavior 
in a general model for transcriptional–translational negative feedback oscillators. In 
biological terms this could be interpreted to relate to a circadian clock mechanism 
which during evolution is being optimized for a certain but relative narrow (habitat) 
temperature range.
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