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ABSTRACT

Majority of the fatigue damage on offshore structures is generally assumed to be caused
by relatively frequently occurring moderate sea states, i.e. sea states with significant wave
height in the range of 4m – 8m.On the contrary, Økland [17] claims that the dominating
fatigue damage is caused due to higher sever sea states. These two claims in regard to
the major cause of fatigue damage are opposite to each other, therefore, this thesis aims
to investigate the inter relationship between fatigue damage verses sea state severity. To
perform this study, the thesis has identified the Kvitebjør Statoil jacket platform, in which
3-hour duration wave records are available from 1957 to 2013. These short term waves
are assumed as a stationary Gaussian process in which the sea surface elevation process
is completely described by Pierson-Moskowitz wave spectrum.

In this thesis, the analysis is performed using the spectral-based fatigue assessment
method, which is frequency domain analysis and attempts to account for the random
nature of sea states in a rational manner. The analysis is performed by developing uni-
directional transfer function or Best fit RAO, which is generated from 21 Gaussian sea
surface processes and their corresponding linear nature response processes using the Fast
Fourier Transform method (FFT). Response spectrum for a given sea state is generated
using the Best fit RAO and furthermore standard deviation and number of response cycles
of this response process are determined assuming as a narrow band response process. The
standard deviation is used to determine the scaling parameter of the Rayleigh-distribution,
which represents the distribution of stress ranges for short term. The Rayleigh distribution
and the number of response cycles of the process are combined to calculate the number of
cycles for a constant stress range in a given stress block. The number of cycles to failure
corresponding to the stress range in the given stress block are determined from “T” S-N
curve. The effect of the accumulated fatigue damage on the structure is observed by ana-
lyzing the S-N curve with double and single slope. Finally, the linear damage calculation
by “Miner-Palmgren” summation is used to evaluate the accumulated fatigue damage.
Furthermore, the Best fit RAO is assumed to deviate at four different frequency ranges
and the fatigue damage for each deviated RAO is calculated.

The fatigue analysis results have asserted the first claim that fatigue damage in the
structure is observed to be caused due to the moderate sea states. 60% to 65% of the
accumulated fatigue damage is induced in the structure by the moderate sea states. This is
because; the moderate sea states are more than the higher sea states and have relatively
higher stress ranges than the lower sea states. On the other hand, when straight S-N
curve with slope m = 3 is used, the accumulated fatigue damage are observed to be
overestimated, particularly due to the lower sea states, i.e. sea states with significant
wave height 2m to 6m.
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BACKGROUND

It is generally expected that the major contributions to fatigue damage come from sea
states of moderate severity, i.e. sea states with a significant wave height in the range 4m –
8m. This is because these sea states occur relatively frequently. Based on about 1 year of
good quality measurements of the Statoil jacket Kvitebjørn, however, it was experienced
that the dominating fatigue accumulation during the period of measurements occurred
during two rather severe storms. This seems not to agree with common expectation.

The purpose of this thesis is to investigate fatigue accumulation versus sea state severity.
The investigation shall focus on a drag dominated jacket structure. For such a structure
the hydrodynamic loading is given by the Morrison equation. The topics that shall be
given special focus are:

• Relative importance of mass term versus drag term in the Morrison load equation.

• Relative importance of dynamics.

The necessary weather information will be given by the Norwegian hind cast data base,
NORA10, giving weather characteristics every 3 hours from 1957 – 2013. The fatigue
assessment is to be done by calculating the fatigue accumulation for every 3-hour period
during 1957 – 2013.
Below a possible division into sub-tasks is given.

1. Introduce briefly typical properties of jackets and jack-ups.

2. Discuss briefly fatigue accumulation in welded structures. The discussion should
also include a brief introduction of two common methods for fatigue assessments; i)
S-N approach and ii) Crack growth approach.

3. Describe closed form approximation of the S-N approach. This is an important part
of the investigation. If one shall be able to address properly the bullet points above,
the fatigue assessment must be based on a closed form approach. In this part one
should also select the S-N curve that will be used in the following. Discuss one
slope versus two slope curves in view of the closed for approximation. Can we for
the purpose adopt a one slope curve?

4. Estimate generic RAOs that qualitatively can represent the response the Kvitebjørn
jacket. Show how RAOs can be estimated from available measurements.

5. In the fatigue analysis, all waves can be considered to come from same direction,
but the effects of this simplification shall be discussed. Fatigue accumulation is to
be calculated for all 3-hours period. Results shall be shown versus hs and versus
storm events. Variability in fatigue accumulation from year to year shall also be
indicated. Fatigue shall be estimated using a base case set of RAOs. Thereafter
fatigue shall be calculated for:

• Various levels of resonance induced dynamics.

• Different RAOs regarding their shape in the major wave frequency regime. The
variation shall reflect the effects increasing importance of drag term.

ii



6. Summarize the investigation in conclusions pointing out major learnings of this
investigation.

The candidate may of course select another scheme as the preferred approach for solving
the requested problem. He may also other subjects than those mentioned above.

The work may show to be more extensive than anticipated. Some topics may therefore be
left out after discussion with the supervisor without any negative influence on the grading.

The candidate should in his report give a personal contribution to the solution of the
problem formulated in this text. All assumptions and conclusions must be supported
by mathematical models and/or references to physical effects in a logical manner. The
candidate should apply all available sources to find relevant literature and information on
the actual problem.

The report should be well organised and give a clear presentation of the work and all
conclusions. It is important that the text is well written and that tables and figures are
used to support the verbal presentation. The report should be complete, but still as short
as possible.

The final report must contain this text, an acknowledgement, summary, main body, con-
clusions, suggestions for further work, symbol list, references and appendices. All figures,
tables and equations must be identified by numbers. References should be given by author
and year in the text, and presented alphabetically in the reference list. The report must
be submitted in two copies unless otherwise has been agreed with the supervisor.

The supervisor may require that the candidate should give a written plan that describes
the progress of the work after having received this text. The plan may contain a table of
content for the report and also assumed use of computer resources. As an indication such
a plan should be available by early March.

From the report it should be possible to identify the work carried out by the candidate
and what has been found in the available literature. It is important to give references to
the original source for theories and experimental results.

The report must be signed by the candidate, include this text, appear as a paperback,
and - if needed - have a separate enclosure (binder, diskette or CD-ROM) with additional
material.
Supervisor: Sverre Haver, Statoil ASA.
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Chapter 1

INTRODUCTION

1.1 Background and Motivation

The Kvitebjørn jacket platform is installed at a water depth of 190m in the North Sea.
The jacket has bottom dimension of 50m X 50m and top dimension of 25m X 20m. It is a
relatively slender structure and has a natural or Eigen period about 4 seconds [16]. Based
on the measured responses in the diagonal bracings of the tubular joints of the jacket at
elevation 108 m below still water level (SWL), the accumulated fatigue damage for one
year was estimated and it was found that two large storms contributed to a relatively
large part of the accumulated damage as shown in Figure 1-1 [17]. However, it has been
assumed that major part of fatigue damage in offshore structures to be caused by mod-
erate sea states, i.e. sea states with significant wave height in the range of 4m – 8m. The
reason for this assumption is that these sea states occur relatively frequently than higher
sea states and they have severe fatigue effect than the lower sea states. Therefore, this
thesis aims to investigate the inter relationship between fatigue damage verses sea state
severity for the available 3 hour duration from 1953 to 2013 at the jacket’s installation site.

Figure 1.1: Contribution to fatigue life for brace A1A2 (a) and A1B1 (b). [17]
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Figure 1.1 illustrates sea states contribution to fatigue life for A1A2 and A1B1 braces of
the Kvitebjørn jacket platform and it shows that large part of the accumulated fatigue
damage was from sea states with significant wave height in the range of 11m – 12m in
Brace A1B1 and 9m – 11m in Brace A1A2. The damage on these bracing was estimated
based on the Rain flow counting method which is designed to count reversals in accordance
the material’s stress-strain response [1].

1.2 Objective

The main objective of this master thesis is to investigate which sea states yield the domi-
nating contribution to fatigue damage accumulation in offshore structures based on short
term wave records.

1.3 Scope of Work

The scopes of this project include:

• An introduction to the dynamic behavior of offshore structures mainly on typical
properties of jackets and jack-ups.

• Determination of wave induced loads on slender members (Jackets and Jack-ups)
using Morison’s equation in order to see the relative importance of mass term versus
drag term.

• Estimation of the generic Response Amplitude Operator (RAO) that can qualita-
tively represents the Kvitebjørn jacket platform. This task includes, estimation
of wave spectrum and response spectrum from the time series wave and response
records respectively using the Fast Fourier Transform method (FFT).

• A brief discussion of fatigue assessment by crack propagation method and fatigue as-
sessment based on S-N curve and an introduction about tubular joints and members
and stresses in their joints.

• Derivation of the fatigue damage ratio based on the closed form approach, which
is derived from the stress range distribution function and from S-N curve of the
considered tubular joint.

• Determination of fatigue damage accumulated in the tubular joints using base case
set of RAO (Best fit ROA) and double segment S-N curve for all 3-hours duration
sea states from 1957 to 2013. Then the result will be presented as a function of
significant wave height (Hs) and storm events. Farther fatigue damage are estimated
for the following cases:

– Deviated or shifted RAOs in the beginning and in the major wave frequency
regime.

– Deviated or shifted RAOs around the natural or Eigen frequency of the jacket.

– With single straight S-N curve with slope m=3 and m=5.

• Finally, in conclusion section a review of the whole process of the investigation will
be presented and the major finding will be concluded.
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Chapter 2

OFFSHORE STRUCTURES

2.1 Introduction

For exploration and production the natural source of energy, oil and gas, number of
offshore structures have been installed in different depth of water throughout the world.
These structures can be categorized on different groups based on their support condition,
rigidity, material of construction, response to excitation force etc. some typical offshore
structures are given in Figure 2.1. In this thesis, the structures are categorized based on
some important structural parameters such as:

• Based on the stiffness and dampness coefficient behavior of the structure as linear
mechanical system and non-linear mechanical system, see section 2.2.

• Generally based on cross sectional dimensions: as linear response problem and non-
linear response problems, see section 2.2 and 3.4.

Figure 2.1 shows typical floating and bottom supported offshore platforms. All these
platforms are made of steel, except the one in Figure 2.1a, which is made of concrete
platform with a steel deck.
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Figure 2.1: Selected offshore structures [12] .

2.2 Types of offshore Structures

When an offshore structure is exposed to time variable excitation load such as wave load,
current load and wind load, the structure can react to the applied load differently based
on the stiffness and dampness characteristics or state of the structure. According to the
structural stiffness and dumping coefficient behavior, the response to the time varying
load can be found by solving the general equation of motion for a single degree of freedom
given below.

m ∗ ẍ(t) + c(x, ẋ) ∗ ẋ(t) + k(x, ẋ) ∗ x(t) = F (t) (2.1)

This dynamic equation of motion includes mass force or inertial force, m ∗ ẍ(t), damping
force, c(x, ẋ), stiffness, k(x, ẋ) and the time varying force, F(t) .
where,

• x is translational or rotational motion.

• ẋ =
dx

dt
is the rate change of response.

• m is mass of the system plus added mass if the system is moving.

• c(x, ẋ) is damping coefficient associated with the motion degree of freedom.

• k(x, ẋ) is stiffness coefficient associated with the motion degree of freedom.

• F(t) is external load acting on the mass in the direction of the selected degree of
freedom.

Generally damping coefficient and stiffness coefficient are of nonlinear in nature, however,
for a wide number of response problems, results of sufficient accuracy can be obtained by
considering damping force as a linear function of the rate change of response, ẋ, and stiff-
ness as a linear function of response, x, [8]. Hence, according to the characteristics of the
damping and stiffness coefficient relative to the rate change of response and deformation
respectively, an offshore structure can be categorized as:

• Linear mechanical system

• Non-linear mechanical system
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2.2.1 Linear Mechanical system

As described above, dumping and stiffness coefficients are non-linear in nature. However,
when a structure is within the elastic state, for example if we consider the stresses due to
wave forces, it can be modeled with a sufficient accuracy as a linear mechanical system.
In elastic state, dumping and stiffness coefficients do not depend on the rate change of
response, ẋ, and deformation, x , respectively. This means that the dumping and stiffness
coefficients remain constant as far as the structures are within this region or Hook’s low
is valid [1]. As a result, damping force will be considered as a linear function of the
rate change of response, ẋ, and stiffness force as a linear function of deformation, x.
Consequently, the general equation of motion for these structures is given as:

m ∗ ẍ(t) + c ∗ ẋ(t) + k ∗ x(t) = F (t) (2.2)

The solution for equation 2.2 is given by the sum of homogeneous solution, xh, and
particular solution, xp, as:

x = xh + xp (2.3)

The homogeneous solution, xh, may have larger value at the initial time and damped out
with time and it is computed as:

xh = e−λω0t ∗ (Asinωdt+Bcosωdt) (2.4)

where A and B are constants and they are determined from the initial or boundary
conditions; λ is relative damping; ω0 is natural frequency of the system and ωd is damping
frequency of oscillation given by:

ωd = ω0

√
1− λ2 (2.5)

The particular solution, xp, in equation 2.3 lasts as far as the external loading,F(t), exists.
This solution depends on the behavior of the external load applied. The external loads can
be either harmonic loading or arbitrary type of loading. If the external load is arbitrary
type, the particular solution, xp, can be determined using the impulse-response method
or the frequency-response method, for detail see [10]. In this thesis only for harmonic
loading is presented.

For Harmonic loading

If the load on a linear structure is harmonic type of loading, the external load, F(t), given
in equation 2.2 will be given as:

F (t) = F0sin(ωt) (2.6)

Where F0 is the static loading; ω is loading frequency. Then, the particular solution for
the harmonic loading can be determined as:

xp = x0sin(ωt− θ) (2.7)

where: xo is amplitude and and θ is phase angle which are determined as follows:

x0 =
F0

mω2
0

D (2.8)
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and,

θ = arctg
2λβ

(1− β2)
(2.9)

where: D is the Dynamic amplification number. which is given by:

D =
1

((1− β2)2 + (2λβ)2)
1
2

(2.10)

Where β is the relative frequency relation between the frequency of the loading ,ω and
the natural frequency of the system, ω0, given in the form:

β =
ω

ω0

(2.11)

The phase angle, θ , given in equation 2.9 describes the phase angle between the external
loading, F(t), and the response, x(t), while the amplification factor, D, in equation 2.10
describes how much the dynamic response of the system is relative to its response due to
the static loading, F0.

Figure 2.2: Phase angle as a function of relative frequency [10]

Figure 2-2 shows the phase angle, θ, as a function of relative frequency, β, based on
equation 2.9.From this figure , we can see that:

• At relative frequency, β,= 1, the phase angle, θ,= 900 for all values of the relative
damping, λ.
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• For relative frequency, β,<1, the phase angle, θ,≈ 0 when the relative dumping,
λ,→ 0.

• For relative frequency, β,>1, the phase angle, θ,≈ 1800 when the relative damping,
λ→ 0 again.

Figure 2-3 shows dynamic amplification factor, D, as a function of relative frequency, β,
based on equation 2.10.

Figure 2.3: Dynamic amplification as a function of the relative frequency

From Figure 2-3, it can be noticed that at a relative frequency, β,= 1, i.e. when the
loading frequency, ω, is equal to the natural frequency of the system, ω0, the dynamic
amplification factor reaches its maximum value and the system gets its resonance. Fur-
thermore, it can be observed that the damping reduces the dynamic amplification factor
and for higher damping values, the resonance top is for relative frequency, β, less than one.

From the above observations i.e. equation 2.9 or Figure 2-2 and equation 2.10 or Figure
2-3, the dynamics can be divided in to three cases:

1. β � 1: Where the dynamics is controlled by the stiffness of the system in phase
with the loading. In this case there is small or no dynamic effect and such systems
are termed as Quasi-statically behaving structures.

2. β ≈ 1: When the system is at resonance or where there is large dynamic effect, the
dynamics is controlled by the damping in the system by 900 out of phase with the
loading.
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3. β � 1: Mass controlled motion and it is out of phase to the loading by 1800, i.e.
the mass or inertia force acts in opposite direction to the external loading and tries
to reduce the response of the system.

Generally linear mechanical systems can be grouped in two classes based on their response
to the external loading as:

• Quasi-statically behaving structures

• Dynamically behaving structures

Quasi-statically Behaving Structures

Off shore structures such as jacket platforms installed up to water depth of around 150m
have low natural period or larger natural frequency. As a result, the relative frequency for
such structures are much less than one, β �1, as case 1 in section 2.2.1. In such offshore
structures, the dynamics is controlled by the stiffness of the structures and the energy
lost due to dumping and acceleration or mass force on their structural members can be
neglected and such structures are termed as quasi-statically behaving structures. In this
case the mass term, m, and dumping coefficients, c, in equation 2.2 are assumed be zero.
As a result, equation for harmonic loading is reduced to:

k ∗ x(t) = F0sin(ωt) (2.12)

Where: k is stiffness of the elastic/linear mechanical structure; F0 is the static loading;
ω is loading frequency. Then, the response of a quasi-statically behaving structure for
harmonic type of loading can be determined as:

x(t) =
F0sin(ωt)

k
(2.13)

Based on Haver [8], the following offshore structures can be considered as quasi-static
structures:

• For jacket platforms installed up to water depth 150m.

• For jack-ups installed in shallower water depth, less than 70m, in particular if the
support or foundation on the sea floor is close to fixed.

• Structures with natural period less than 2sec.

Dynamically Behaving Structures/Forced Linearly Damped Structure

As water depth increases the height of the offshore structure increase its natural period
increases and as a result the structure behaves dynamically. In this case the energy lost
due to dumping and the acceleration or mass force to control the dynamics cannot be
ignored and this leads to dynamic effects that have to be accounted. The response of dy-
namically behaving linear structure in the direction of force can be determined by solving
the linear equation of motion given in equation 2.2.

With reference to Haver [8], the following offshore structures can be considered as dy-
namically behaving structures:
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• For jacket platforms installed in water depth greater than 150m.

• For jack-ups installed in water depth deeper than 70-80 m.

• Structures with natural period larger than 2s.

Linear response problem

In addition to the dependency of the stiffness coefficient and damping coefficient to the
response and rate change of response discussed above, if the hydrodynamic load on an
offshore structure can be modeled as a linear function of the surface elevation process,
such structure is referred as a linear response problem [8]. Hydrodynamic loads can be
reasonably modeled as a linear function of the surface elevation process, when the inertia
or mass force dominates to the drag force as described in section 3.4.

For linear response problems, their response quantity —is conveniently characterized by
a transfer function, HΞΓ(ω), [8]. As is further discussed in chapter 6, transfer function is
the ratio between the complex response amplitude, Γ(t), and wave amplitude, Ξ(t) , and
it is given in the form:

Γ(t) = (RAO) ∗ Ξ(t) (2.14)

where: RAO is the absolute value of the transfer function, |HΞΓ(ω)|, referred as the
Response Amplitude Operator (RAO).
Based on Haver [8], for a short period of time if a sea surface process can be well described
as Gaussian process, it can be well represented by a wave energy spectral density or wave
spectrum, SΞΞ(ω). This means for linear systems, the response process is also Gaussian
process which can be characterized by the response energy spectral density or response
spectrum, SΓΓ(ω), which is given in the form:

SΓΓ(ω/h, t) = |HΞΓ|2 ∗ SΞΞ(ω/h, t) (2.15)

2.2.2 Non-linear Mechanical System and Non Linear Response
Problems

As mentioned in section 2.2.1, when a structure is within its elastic behavior or the Hook’s
low is valid, the structure can be treated as a linear system. But for example, if the struc-
ture is subjected to higher load that the structure can reach within its plastic limit, then,
in this state the stiffness coefficient, k, and damping coefficients, c, can’t be assumed as
constant. Instead the coefficients have to be updated at each time step when the structure
is beyond its elastic limit and such systems are considered as non-linear systems.

When the hydrodynamic load on an offshore structure is dominated by its non linear
component, the drag force, the right hand side of equation 2.1 can’t be modeled as a
linear function of the surface elevation process, and such structures are referred as non-
linear response problems. The response of a non-linear mechanical system can be found
by solving the general equation of motion given in equation 2.1.
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Chapter 3

HYDRODYNAMIC LOADS ON
OFFSHORE STRUCTURES

3.1 Introduction

A structure installed in an ocean can be subjected to different types of loads; generally
these loads can be categorized as: permanent actions, variable actions, environmental
actions, deformation actions and accidental actions [14]. As shown in Figure 3.1, envi-
ronmental loads include wave load, current load, wind loads earthquake etc. One of the
major sources of environmental forces on offshore structures is the wave loads, such loads
are irregular in shape, variable in magnitude and may approach the structure from one or
more directions which will cause stress variation in the structure and may lead to fatigue.
For these reasons and economic and safe design of a platform good estimation of wave
loads are essential.

Figure 3.1: Environmental loads on offshore structures [12].
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Based up on the flow regime in the vicinity of a submerged structure, which depends on
the relative cross sectional dimension of the structural to the water wave length, the wave
loads can be calculated using the following three different methods [3]:

1. Morison equation: Morison equation assumes that the hydrodynamic load is a linear
composition of mass or inertia proportional to acceleration and drag force being
proportional to the square of velocity. It is applicable when the structural member
has a cross sectional dimension significantly small, slender members, relative to the
water wave length, so that the fluid kinematics around the structural member is not
affected by the presence of the member, i.e. to assuming as if the structural member
is not there. Structural members of jacket platforms and jack-up platform are good
examples slender members. Based on DNV-RP-C205[6], structural members are
classified as slender members and Morison equation is applied when the equation
below is satisfied:

λ>5 ∗D0 (3.1)

where: λ is the water wave length and D0 is the diameter or other projected cross-
sectional dimension of the member.

2. Froude-Krylov theory: The Froude-Krylov theory is applicable when the submerged
structure has not too small or not too large cross sectional dimension relative to the
water wave length. Similar to the Morison equation, the effect of the structural
member to the wave field around it is ignored and assumed as if the structure is not
there. Due to the above assumption, this method has limited practical application
but good exercise in understanding the problem of wave forces on a structure and
the force coefficients are easier to determine, for detailed information refer [3].

3. Diffraction theory: For larger volume structure, where the cross sectional dimen-
sion or size of the submerged member is comparable to the water wave length, the
diffraction theory is used to determine the wave loads on the members. In this
theory, the radiation or diffraction effect of the large volume structure to the wave
fluid kinematics in the vicinity has to be taken in to account when calculating the
wave load on it, for detailed information refer [3].

3.2 Wave kinematics

Fluid particle velocity and acceleration around a submerged structure can be calculated
using numerous water wave theories. These theories assumes that the waves are periodic
and uniform with a period T and height H. Note that the wave period is the time interval
between successive crests or troughs passing a particular point, and the wave height is the
vertical distance from a trough to the adjacent crest. The common wave theories which
are described in [3] and [6] are:

• Linear Airy wave theory

• Stokes wave theory

• Cnoidal wave theory
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• Steam function wave theory

• Solitary wave theory

• Standing wave theory

Selection of a specific wave theory from the common theories listed above depends up
on the specific environmental parameters, such as wave height, wave period and water
depth. The validity of the selected wave theory can be tested on Figure 3-2 given bellow,
in which the horizontal axis measures the shallowness while the vertical is a measure of
steepness.[6]

Figure 3.2: Ranges of validity of the various wave theories [6].

3.2.1 Linear Airy Wave Theory

This theory is based on the assumption that the wave height is small compared to the
wave length and water depth, which allows the free surface boundary conditions to be
linearized and the free surface conditions to be satisfied at the mean water level, rather
than at the oscillating free surface [3]. Based on this theory the surface profile is given as:

η(x, y, t) =
H

2
cosθ (3.2)
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where: H is the wave height; θ = k(xcosβ+ysinβ)−ωt is the phase and β is the direction
of propagation.

3.2.2 Horizontal particle velocity and Acceleration

For a given wave parameters and water depth, the horizontal particle velocity can be
determined as a function time, t, and distance of propagation, x, at a specified depth
below still water level as given bellow [15]:

u(x,y,z) =
π ∗H
T
∗ cosh[k(z + d)]

sinh(kd)
∗ cos(ωt− kx) (3.3)

By direct differentiation of the horizontal particle velocity equation (3.3), we get the
acceleration of the water particles as:

(x,y,z) = −2π2 ∗H
T 2

∗ cosh[k(z + d)]

sinh(kd)
∗ sin(ωt− kx) (3.4)

In equations 3.3 & 3.4, H is trough to crest wave height; T is wave period; k =
2π

λ
= wave

number; λ is wave length; d is mean water depth; t = time; x is distance of propagation;

z is distance from still water level (SWL) positive upward and ω =
2π

T
= angular wave

frequency.

Figure 3.3: Surface profile and Horizontal particle velocity

Figure 3-3 and 3-4 show the horizontal water particle velocity and acceleration for a wave
height 8m and period of 10 second in a mean water depth of 190m. The quantities,
velocity, acceleration and profile, are calculated at the still water level (SWL) at a station
given by x=0. From Figure 3-3, it can be seen that the horizontal velocity and the surface
profile are in phase and the velocities are maximum at crests, minimum at troughs and
zero at SWL. Also from Figure 3-4, it can be observed that the acceleration and the profile
are out of phase by 900 and the acceleration is maximum at SWL and zero at trough and
crest. Note that the velocity and the acceleration are out of phase by 900.
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Figure 3.4: Surface profile and acceleration of water particles

3.3 Wave Induced Loads on Slender Members Using

Morison Equation

As shown in Figure 3-5, the Morison equation was developed by Morison, O’Brien, John-
son, and Shaaf (1950) in describing the horizontal wave forces (f) acting on a vertical pile
which extends from bottom through the free surface [3]. Morison’s equation is composed
of drag term, fD(x,z,t), and inertia term, fI(x,z,t), as in equation 3.4. The drag term is
proportional to the square of the horizontal particle velocity, u(x,z,t), given in equation
3.3 and the inertia term being proportional to the horizontal acceleration, (x,z,t), given in
equation 3.4. Normal wave force per a unit length on a submerged structural member
can be calculated using the Morison’s equation given in equation 3.5 [6]:

Figure 3.5: Morison force on a vertical pile [15]

f(x,z,t) = fD(x,z,t) + fI(x,z,t) =
1

2
1/2 ∗ ρw ∗ CD ∗D0 ∗ u ∗ |u|+

π

4
∗D2

0 ∗ ρw ∗ Cm ∗ u (3.5)

where

• f(x,z,t): Normal wave load at a distance x and depth z
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• fD(x,z,t): Drag force at a distance x, depth z and time t.

• fI(x,z,t) : Mass or inertia force at a distance x, depth z and time t.

• ρw : Density of sea water

• u = u(x,z,t): Undisturbed horizontal particle velocity at the center of the member at
a given depth z

• =(x,z,t): Fluid particle acceleration at a given depth and time.

• D0 = Diameter or typical cross-section dimension.

• A: Cross sectional area.

• CD : drag coefficient [-]

• Cm = (1 + CA): Inertia coefficient

• CA = ma
(ρw)

A:added mass coefficient

• ma : Added mass per unit length that can be determined based on [7].

As shown in the Figure 3-5, x is zero at the center of the submerged vertical pile and z is
distance from still water level positive upward, i.e. it is zero at the mean free surface and
–d at the mean water depth.
When using the Morison’s equation to determine the hydrodynamic loads on a submerged
structure, one should take in to account the variation of the hydrodynamic coefficients.
These coefficients depend on different parameters such as the flow characteristics around
the structure, cross sectional dimension and roughness of the submerged structure, see
[6]. Based on laboratory experiments and field measurements, various certifying agencies
such as American Petroleum Institute, British standard Institute and Det Norske Veritas
etc have made specific drag and inertia coefficients, see [15].

An example of the drag force, inertia force and total/normal force is shown in Figure 3-6.
These forces are on a 5m diameter submerged cylindrical structure of a wave height 8m
and period of 10 second in a mean water depth of 190m. The quantities are calculated at
the depth of 108m bellow the still water level at the center of the cylinder, i.e. at a fixed
point.

Figure 3.6: Drag, Inertia and normal forces on a submerged cylinder.
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In Figure 3.6 it can be observed that similar to the velocity in Figure 3-3, the drag force
reaches minimum at crests, maximum at troughs and zero at the SWL. The inertia or mass
force has maximum value at the SWL and zero at crests and troughs as the acceleration
does, see Figure 3.4. It can be noticed that when the inertia force is zero, the drag force
reaches maximum and the vise verse is true.

3.4 Mass or Inertia Term Versus Drag Term on Slen-

der Members:

As described in section 3.3, the Morison’s equation is composed of drag term and inertia
term. As the drag term is proportional to the square of the horizontal particle velocity,
it is not linearly related to the incident wave amplitude or wave process while the inertia
term being proportional to the acceleration and it is linearly related to the incoming wave
amplitudes. Based on DNV-RP-C205 [6], the relative importance of maximum drag force
fD,max and maximum inertia force fI,max for a circular cylinder can be determined using
the equation given bellow.

f(D,max)

f(I,max)

=
CD

π2 ∗ Cm
∗Kc (3.6)

where CD and CM are drag and mass coefficients respectively which can be determined
from laboratory experiments and field measurements and Kc is the Keulegan-Carpenter
number that can be written as a function of wave height, H, and the structural cross
sectional dimension, D0, as below:

Kc =
π ∗H
D0

(3.7)

Substituting equation 3.7 in equation 3.6 gives as:

f(D,max)

f(I,max)

= C ∗ H
D0

(3.8)

where: C= CD
πCM

is constant.

Figure 3.7 to 3.9 shows drag forces Vs inertia or mass force for slender structures of
various wave heights and cross sectional diameter of the submerged structure based on
the Morison’s equation given in equation 3.5. Note that the wave period is kept constant,
T=10sec, for each case that means the wave length is kept to be 317 m, which is determined
by the dispersion relation given in the form [15]:

ω2 = g ∗ k ∗ tanh(kd) (3.9)

where: ω is wave frequency; k = 2π
λ

is wave number; λ is wave length; d is mean water
depth and g is gravitational acceleration taken as 9.81m/sec2.
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Figure 3.7: Drag term dominant for H= 26m, T= 10 sec and Do= 3m

Figure 3.8: Inertia term dominant for H= 26m, T= 10 sec and Do= 30m

Figure 3.9: Drag term dominant H=1m, T=10 sec and Do= 3m
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From equation 3.8 and Figures 3-7 to 3-9, it can be seen that the magnitude of the max-
imum drag force depends on the ratio between the wave height, H, and the structural
cross sectional dimension, Do, and it dominates when the wave height is much larger than
the structural cross sectional dimension. Thus, if the wave height is much larger than the
structural diameter, the system may be treated as nonlinear system or non-linear response
problem as the drag term is non-linearly related to the wave process.

As in Figure 3-8, if the structural diameter is larger relative to the wave height such as
floating platforms or Semi-submersible platforms and Tension leg platforms (TLP) etc..,
the inertia force dominates. Also as in Figure 3-9 inertia force may dominate as in the
case of jacket and jack-up platforms on small wave height provided that equation 3.1
is satisfied or the Morison equation is valid. Therefore, for large volume and for more
slender offshore structures, the hydrodynamic load applied on them can be reasonably
well modeled as linear function of the surface elevation process, provided that the inertia
force is dominant to the drag force on the Morison’s equation (3.5) and such systems are
called linear response systems or problems while a linearization method may be adopted
to the drag force, for detail see [3].
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Chapter 4

ESTIMATION OF WAVE ENERGY
SPECTRAL DENSITY

4.1 Introduction

Based on Haver [8], for short period of times, within time interval of three to six hours,
observed sea surface at a fixed location can be modeled as a stationary stochastic process,
Ξ(t). Stationary stochastic process is a process in which its statistical properties (such as
mean value, standard deviation etc.) do not change with time and such process are often
assumed to be a Gaussian process. For real sea surface, the Gaussian surface process
may not describe in a sufficient accuracy and this inaccuracy can create some deviation
in modeling detailed structures. In order to minimize this inaccuracy of the Gaussian
process, a new process called a second order process can be used. However, for this
study case, the stationary stochastic process is assumed of a sufficient accuracy. Under
this process, the zero mean sea surface process can be represented with higher accuracy
by the wave energy spectral density function, SΞΞ(ω;h, t). A wave energy spectrum is
a power spectral density function which describes the vertical displacement of the sea
surface and how energy of harmonic wave components is distributed on various frequency
bands. Energy of a harmonic wave is proportional to the square of its amplitude. A wave
process can be either a broad band, a process with many local maxima and minima, or
narrow band process, process with no local maxima), which can affect the shape of the
wave spectra.

4.2 Screening of Model Test Conditions

The available data includes 21 time series wave records of 20 minute duration given in
table 4-1. Note that the name convention used as a file name in the table 4.1 for each
event is based on the start time for each 20 minute record (e.g. 200312311900 is for the
20 minute record from 19:00 to 19:20 on 31/12/2003).

4.3 Estimation of wave Energy Spectral Density

As mentioned in section 4.1, a wave energy spectral density, SΞΞ(ω|h, t), is a power spectral
density function which describes the vertical displacement of the sea surface and shows
how energy of harmonic wave components is distributed on various frequency bands. As
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Table 4.1: Time series wave records test conditions.

described in S.K. Chakrabarti[3], the time series records of an ocean can be transformed in
to the frequency domain wave energy spectrum by two commonly used methods, namely
Autocorrelation and Fast Fourier Transform method (FFT). In this study, for estimation
of the wave spectrum the MATLAB’s built in FFT function is used. A brief introduction
of the FFT method is presented in section 4.3.1 and for more detail and derivation of
equation 4.11 see [9]. Estimation of wave spectral density for the 21 time series records
given in Table 4-1 have done and the first four are presented in section 4.3.2 while the
others are presented in Appendix A-1.

4.3.1 Fast Fourier Transfer Method

In FFT technique, the transformation is taken directly from the time domain to frequency
domain and then the result is squared to convert to the energy unit. If Ξ(t) is the wave
elevation as a function of time for a total data length Ts and ∆t is a constant time
increment, then the energy spectrum by FFT can be estimated as [3]:

SΞΞ(ω) =
1

Ts
[
N∑
n=1

Ξ(n∆t) ∗ ei2π∗f(n∆t) ∗∆t]2 (4.1)

General parameters that involved in the estimation of a wave spectrum using the above
equation from a time series wave records are:
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• Number of sections, M, in which the total data length is equally divided.

• Number of data points in each section, N.

• Number of segment,K = M
N

.

• Time increment or sampling rate, ∆t.

• Frequency increment or resolution, fs = 1
∆t

.

• Nyquist frequency, fN = 1
2∗∆t .

In this process, for each test condition the total data length ,Ts, is divided in to numbers
of segments and each segment is divided in to N data pints. The wave spectrum is eval-
uated with the equation given in equation 4.11 at all data pints within a given segment
and then, the final wave spectrum result is averaged over the number of segments. Note
that for a given record Ts and ∆t are fixed, and Ts = N ∗K ∗∆t .

As shown in equation 4.1, the estimated wave spectrum depends on the magnitude of
the data points, N. As result, the shape of the spectral curve as well as the wave pa-
rameters for a given test condition change as the magnitude of the data point changes.
Figure 4.1 ”a” to ”d” and Table 4.2 show the estimated wave spectral curves and wave pa-
rameter values for different value of number of data point for test.con 1 given in Table 4.1.

Figure 4.1: Variation of wave spectrum curve with variation of N for Ts=1200 sec.

From Figure 4-1 “a” to “d” one can notice that the estimated wave spectrum of a given
wave record is not unique. The shape of the curve or relative distribution of energy
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changes slightly as the value of data point, N, changes and the larger the values of N the
sharper is the spectrum with an increase number of peaks, the smaller the data point the
smoother the spectral curve is. Similarly table 4.2 shows that the significant wave height,
Hs, and spectral peak period, Tp, vary slightly as the value of data point, N, changes.

Table 4.2: Wave parameters for test.con1with varying of number of data points

4.3.2 Estimation of Wave Energy Spectral Density from test
conditions

In this section, each time series wave record listed in table 4.1 are transformed in to fre-
quency domain using the FFT-Matlab built in function. In this process, the total data
length of a given time series record ,Ts = 1200 sec, is divided in to nine numbers of seg-
ments each one having 1024 data points and time increment of 0.1302 seconds. Here, as
shown in Figure 4-2 to 4-9 only the first four test conditions, test.con 1-4, from table 4-1
are presented, while the remaining are attached in appendix A.1.

Figure 4.2: Time series wave records (a) & estimated wave spectrum (b) for test.con 1.
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Figure 4.3: Time series wave records (a) & estimated wave spectrum (b) for test.con 2.

Figure 4.4: Time series wave records (a) & estimated wave spectrum (b) for test.con 3.

Figure 4.5: Time series wave records (a) & estimated wave spectrum (b) for test.con 4.
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For each test conditions in Table 4-1, significant wave heights, Hs, and peak spectral
periods, Tp, are determined as shown in Figure 4.6. The significant wave heights, Hs, are
estimated using equation 4.5 which is derived as follows:

Hs = 4 ∗
√
M(0,ΞΞ) (4.2)

where: M(0,ΞΞ) is zero order spectral moment of a given sea state which is equal to the
area under the estimated spectral curve and it represents the total energy of the process.
This can be computed as:

M0,ΞΞ =

∫ ∞
0

SΞΞ(ω) ∗ dω (4.3)

Substituting equation 4.13 in to equation 4.12 gives as:

Hs = 4 ∗ [

∫ ∞
0

SΞΞ(ω) ∗ dω]
1
2 (4.4)

As the frequency resolution goes closer to zero, i.e. as dω → 0, the integration,
∫

, can be
approximated in to summation,

∑
, as a result equation 4.14 becomes as:

Hs ≈ 4 ∗ [
∞∑
0

SΞΞ(ω) ∗∆ω]
1
2 (4.5)

The spectral peak periods, Tp, are estimated from the wave spectra which are determined
by the inverse of the frequencies at which the estimated wave energy spectra reach their
maximum values, i.e.Tp = 2π

ωp
, where ωp is peak frequency determined from each spectral

density.
As shown in Figure 4-6, for each test condition the significant wave heights, Hs and
spectral peak periods, Tp, are estimated by writing a script in MATLAB as shown below,
this scrip is an example for the first test condition, test.con1, given in Table 4.1.
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Figure 4.6: Estimated Hs and Tp for test conditions

4.4 Standard Wave Spectra

4.4.1 Introduction

Based on the geographical area with local bathymetry and sea state severity, wave energy
spectra can be developed as single peak applied for wind or swell seas or double peak
spectrum applied for a combined sea (wind and swell seas) using mathematical spectral
models. As described in S.K. Chakrabarti [3], there are several mathematical spectral
models, However, in this thesis only the Pierson –Moskowitz and JONSWAP spectra are
introduced in Appendix A.2 and compared with the estimated wave spectra in section
4.3.2.

4.4.2 Comparison between the Estimated Wave Spectra Vs Stan-
dard Wave Spectra

Based on the estimated significant wave heights, Hs, and spectral peak periods, Tp, in
section 4.3.2, the standard mathematical spectral models are plotted in the same graph in
order to compare the area/energy under these spectral curve relative to their correspond-
ing estimated spectral curve. For the first four test conditions, test.con 1-4, listed in table
4.1, are shown in Figure 4-7 and the standard deviations for these four test conditions are
given in Table 4-3.

Figure 4-7 is presented to compare which mathematical wave spectra fits best to the
estimated wave spectra and their standard deviation are computed as in Table 4-3. The
standard deviation of each test condition is estimated as the square root of the zero order
wave spectral moment, M0,ΞΞ. The zero spectral moment is the area under the given
spectral curve which is equal to tha variance of the sea surface process. In Table 4-3 it
can be seen that the area under the Pierson-Moskowitz has almost identical to the area
under the estimated spectrum, but there is slight difference to the JONSWAP spectrum.
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Figure 4.7: Estimated, Pierson-Moskowitz and JONSWAP spectra

Table 4.3: Standard deviation from estimated and standard wave spectra for test.con 1-4
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Chapter 5

ESTIMATION OF RESPONSE
ENERGY SPECTRAL DENSITY

5.1 Introduction

As described in Chapter 2, for more slender structural members such as jacket and jack
ups the inertia term of the Morison equation is dominant and then the hydrodynamic
load on such structures can be treated as a linear function of the surface elevation pro-
cess, Gaussian process, and their response as a linear response problem.

For the time series wave records listed in the screening of model test conditions Table
4.1, their corresponding time series responses, Γ(t), of the Kvitebjørn jacket platform are
also recorded. In this study, axial force responses of leg A1 and leg A2 of the platform at
a water depth of 108m below the still water level are considered. Natural period of the
jacket platform is around 4 seconds [16]. Figure 5-1 shows the orientation of the jacket
with reference to the geographical north. North of the platform is assumed along the
y-axis.

Figure 5.1: Orientation of Kvitebjørn jacket relative to geographical north and location
of Leg A1 and A2.[16]
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5.2 Estimation of Response Spectrum From Time Se-

ries Records

For estimation of the response spectrum, SΓΓ(ω), the MATLAB’s built in Fast Fourier
Transform (FFT) function is used, see section 4.3.1. Do keep in mind that in equation 4.1,
the time series sea surface elevation, Ξ(t), has to be replaced by the time series response,
Γ(t). For leg A1 four time series response records were taken, i.e. responses to the first
four wave record listed in table 4.1 while for leg A2, 21 response records were taken,
i.e. responses to the 21 time series wave records listed on table 4.1. In this sub chapter,
response spectrum from the first four time series test conditions (test.con 1-4) of both legs
are presented while the others are attached in Appendix B.1. A table showing the period,
Ts,peak, where the response spectrum reaches its maximum around the wave spectral peak,
resonance period, Tr,peak, where response spectrum reaches maximum around the natural
period of the jacket, and their corresponding wave spectral peak, Tp, for all test conditions
is presented in Table 5.1. The period Ts,peak is estimated by the relation in equation 5.1.

Ts,peak =
2π

ωs,peak
(5.1)

where: ωs,peak [rad/sec] is the frequency where the response spectrum reaches its maximum
around the wave spectral peak.

And the resonance period is determined by:

Tr,peak =
2π

ωr,peak
(5.2)

where: ωr,peak [rad/sec] is the frequency where the response spectrum reaches its maximum
around the natural frequency of the jacket.

5.2.1 Estimated Response Spectrum from Leg A1

Figures 5-2 to 5-5 parts “a” and “b” show 20 minute of time series axial load records
on the Kvitebjørn platform leg A1 and estimated response spectrum on 14/12/03 from
07:00, during test.con1, on 14/12/03 from 21:00, during test.con2, on 15/12/03 from 08:20,
during test.con3, and on 15/12/03 from 09:00, during test.con4, respectively. Where as
Figures 5-2 to 5-5 part “c” are plotted to show the estimated response spectrum of the
leg relative to their corresponding wave spectrum estimated in section 4.3.2. Note that
the vertical values of SΓΓ(ω) are multiplied by factor four in Figures 5-2 to 5-5 part “c”.

Figure 5-2 and 5-3 part “b” and “c” shows that the response spectra of leg A1 increased
when the wave spectra reached around their spectral peak periods of 11.53 and 11.55 sec-
ond on 14/12/03 from 07:00 to 07:20 and on 14/12/03 from 21:00 to 21:20 respectively,
this is the region where the wave energy concentrated. As discussed in section 2.2.1, when
the forcing frequency is equal to the natural frequency of the structure, the dynamic am-
plification factor reaches at its maximum value. Consequently the response energies lost
to control the amplified dynamics reached at their maximum value at the frequency 1.56,
which is close to the natural frequency of the jacket platform.
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Figure 5.2: A1 time series response records (a), A1 response spectrum (b) and A1 response
& Wave spectrum (c) during test.con1

From Figure 5-4 and 5-5 part “b” and “c”, it can be seen that the response spectra
reach their maximum value away from the wave spectral peak and this might be there
were additional secondary forces such as wind, current or others during the recording time,
that is on 15/12/03 from 08:20 and on 15/12/03 from 09:00. The response spectra reached
their maximum value when the wave frequency reached around the natural frequency of
the jacket platform.
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Figure 5.3: A1 time series response records (a), A1response spectrum (b) and A1 response
& Wave spectrum (c) during test.con2
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Figure 5.4: A1 time series response records (a), A1 response spectrum (b) and A1 response
& Wave spectrum (c) during test.con3

Figure 5.5: A1 time series response records (a), A1 response spectrum (b) and A1 response
& Wave spectrum (c) during test.con4
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5.2.2 Estimated response spectrum from Leg A2

Figures 5-6 to 5-9 part “a” and “b” show 20 minute of time series response or axial load
records on the Kvitebjørn platform leg A2 and estimated response spectrum on 14/12/03
from 07:00, during test.con1, on 14/12/03 from 21:00, during test.con2, on 15/12/03
from 08:20, during test.con3, and on 15/12/03 from 09:00, during test.con1, respectively.
Where as Figures 5-6 to 5-9 part “c” are plotted to show the estimated response spectrum
of the leg relative to their corresponding estimated wave spectrum described in section
4.3.2.

Figure 5.6: A2 time series response records (a), A2 response spectrum (b) and A2 response
& Wave spectrum (c) during test.con1

From Figure 5-6 to 5-9 part “b” and “c” one can notice that the response spectra reach
their maximum at their corresponding wave spectral peak period, where the wave energy is
concentrated. At around the natural period of the jacket platform, the response spectrum
reached at its peak, this is the energy lost to resist to the amplified dynamics of the jacket.
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Figure 5.7: A2 time series response records (a), A2 response spectrum (b) and A2 response
& Wave spectrum (c) during test.con2
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Figure 5.8: A2 time series response records (a), A2 response spectrum (b) and A2 response
& Wave spectrum (c) during test.con3

Figure 5.9: A2 time series response records (a), A2 response spectrum (b) and A2 response
& Wave spectrum (c) during test.con 4
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Table 5.1: Tp for all test conditions and their corresponding Tr,peak and Ts,peak for leg A1
and A2.

From Table 5.1 it can be noticed that;

• The wave spectral peak periods, Tp, are close to Ts,peak for both legs, which show
that the response energy was more at the wave spectral peak period where the wave
energy is concentrated. The small difference may be due to the presence of secondary
additional forces, i.e. in addition to wave load, such as wind loads, current load etc
during the recording time.

• Tr,peak are also close to the natural period of the jacket platform that show there
was high energy lost to control amplified dynamics at resonance. As discussed in
section 2.2.1, when relative frequency is close to unity, its dynamic amplification
factor reaches at its peak as a result the response/particular solution in section
2.2.1 gets its maximum value.
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Chapter 6

ESTIMATION OF TRANSFER
FUNCTION

6.1 Introduction

Transfer function HΞΓ(ω/θ), can be defined as the response of a linear offshore structure
to a sinusoidal wave with unit amplitude for sufficient number of frequencies, ω, and
different wave heading directions, θ, where in this study only unidirectional is consid-
ered. As explained in chapter 2, by linear offshore structure means that the structure
response amplitude Γ(t), e.g., the axial forces on legA1 and leg A2, and the excitation
amplitude,Ξ(t), e.g., wave elevation given on test conditions, has linear relation. Transfer
function gives amplitude scaling and phase shift of response relative to the excitation
component. The absolute or scaling value of a transfer function, HΞΓ(ω/θ), is known as
the response amplitude operator, RAO(ω). Transfer function can be written either as
a function of angular frequency in radian per second or frequency in hertz. RAO of a
structure can be estimated using the following two methods.

6.1.1 RAO Using Spectral Relation

From the time series wave records of each test condition listed in Table 4.1 and their
corresponding axial responses on leg A1 and A2, the wave energy spectra and response
energy spectra are estimated in chapter 4 and 5 respectively. Furthermore, RAO of the
system can be evaluated using the spectral relation given in the form:

|HΞΓ(ω)| = [
SΓΓ(ω)

SΞΞ(ω)
]

1
2 (6.1)

In which, SΓΓ(ω) is the energy density spectrum of the measured response on leg A1
and A2 from chapter 5 and SΞΞ(ω) is the corresponding energy density spectrum of the
incoming wave record from chapter 4. Estimation of RAO using this method, equation
6.1, produces uncorrelated signal noises especially at the beginning and at the tail end of
the spectrum as shown in Figure 6-1. These unwanted frequency components that appear
as noises can be minimized by applying a filtering routine to the original time series wave
and/or response record. An example of a band pass filtered with a cut off lower frequency,
ω1 = 0.02, and higher frequency, ω2 = 0.4 is shown in Figure 6-2. However, it should
be noted that there may still leakage of neighboring frequencies in the filtering process.
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In the spectral relation method, the phase relationship between the wave amplitude and
response amplitude cannot be determined.

Figure 6.1: Unfiltered Wave spectral density, Response spectral density, and RAO

Figure 6.2: Filtered Wave spectral density, Response spectral density and RAO

6.1.2 RAO Using Cross Spectral Density

In order to avoid the uncorrelated signal noise at the tail beginning and end of a spec-
trum and to determine the information of the phase relationship between the response
and forcing amplitudes a cross spectral density analysis method may be used. To apply
this method, the cross spectral density function SΞΓ(ω), between the wave and the re-
sponse under consideration has to be determined. Thenafter, the transfer function can
be determined by the relation given below [4]:

C(ω) + iQ(ω) =
SΞΓ(ω)

SΓΓ(ω)
(6.2)

where: C and Q are the coincident and quadrature spectra as a function of frequency, ω,
and i is the imaginary quantity. The RAO is computed as the scaling amplitude of the

37



Investigation of Which Sea States Yield the Dominating Contribution to Fatigue
Accumulation in Offshore Structures

transfer function:

|HΞΓ(ω)| = [C2(ω) +Q2(ω)]
1
2 (6.3)

And the corresponding phase angle is determined from:

ε(ω) = tan−1(
Q(ω)

C(ω)
) (6.4)

6.2 Estimation of RAO Using the Spectral Relation

Using the spectral relation described in section 6.1.1, equation 6.1, RAOs during the
21 test condition listed in Table 4.1 for both legs are determined. In this case, the wave
spectra SΞΞ(ω), and response spectra SΓΓ(ω), for both legs are estimated in Chapter 4 and
5 respectively. In section 6.2.1 and section 6.2.2, RAOs during the first four test condition
(test.con 1-4) for leg A1 and leg A2 respectively are presented while the remaining are
attached on Appendix C.1.

6.2.1 Estimated RAO from Leg A1

Figure 6-3 to 6-6 show that the wave spectral density, response spectral density and their
respective RAO during the first four test conditions from leg A1.

Figure 6.3: Wave spectrum, response spectrum and RAO from Leg A1 during test.con 1.
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Figure 6.4: Wave spectrum, response spectrum and RAO from Leg A1 during test.con 2.

Figure 6.5: Wave spectrum, response spectrum and RAO from Leg A1 during test.con 3

Figure 6.6: Wave spectrum, response spectrum and RAO from Leg A1 during test.con 4

39



Investigation of Which Sea States Yield the Dominating Contribution to Fatigue
Accumulation in Offshore Structures

6.2.2 Estimated RAO from Leg A2

Figure 6-3 to 6-6 below shows that the wave spectral density, response spectral density and
their respective RAO for the first four test conditions and their corresponding response
on leg A2 respectively.

Figure 6.7: Wave spectrum, response spectrum and RAO from Leg A2 during test.con 1

Figure 6.8: Wave spectrum, response spectrum and RAO from Leg A2 during test.con 2

From the estimated RAOs, Figures presented in section 6.2.1 and 6.2.2 and Appendix
C.1, one can notice the following:

• The RAO value reaches at its maximum within the natural frequency of the system,
but with different values.

• Leakage of Signal noise particularly at the beginning.

• Most of the RAOs die for higher frequencies, but some RAOs do not, see Appendix
C.1.

These observations might be due to the following reasons:

• Due to the non-linear proporty of the structure
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Figure 6.9: Wave spectrum, response spectrum and RAO from Leg A2 during test.con 3

Figure 6.10: Wave spectrum, response spectrum and RAO from Leg A2 during test.con 4

• There might be additional secondary forces such as wind load, current load etc..,
during recording of the time series data, which could reduce the correlation between
the incident wave amplitude and their corresponding response on the structure.

• Due to leakage of neighboring frequencies in the filtering process.

• Due to the unidirectional assumption of the incoming waves.

Hence, in order to analyze the degree of linear correlation between an incident wave and
its corresponding response on leg A1 and A2 and to determine where the RAOs can be
relatively trusted, the coherence analysis has been done in section 6.3 below.

6.3 The Coherence Function

6.3.1 Introduction

A coherence function states the degree of linear correlation between an incident wave/input
and its corresponding response of a structural member. In this case, the linear depen-
dency between the 21 test condition and their corresponding response on leg A1 and A2
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at 108 m bellow still water level are performed. By measuring the correlation between the
incident waves and their corresponding output or responses, the frequency ranges where
the RAOs can be relatively trusted can be determined. As shown in Figures 6-11 to 6-14
and in Appendix C.2, the relatively trusted frequencies are highlighted with dashed rect-
angle while noises caused by secondary driving forces, i.e. in additional environmental
forces other than wave loads are neglected.

Value of a correlation function, ηΞΓ, ranges between zero and one. The correlation or
degree of linear dependency between an incident wave and its corresponding response is
good as the correlation value, ηΞΓ, approaches unity while it is a poor correlation as the
value approaches to zero.

The coherence function between the incident wave, Ξ(t), and response, Γ(t), at a given
frequency, ωf , can be determined by using the following relations[11]:

η2
ΞΓ(ωk) =

SΞΓ(ωk) ∗ SΞΓ(ωk)

SΞΞ(ωk) ∗ SΓΓ(ωk)
(6.5)

Since SΞΓ(ωk) = S∗ΞΓ(ωk), SΞΓ(ωk) ∗ SΞΓ(ωk) = SΞΓ(ωk) ∗ S∗ΞΓ(ωk) = |SΞΓ(ωk)|2, then
equation 6.5 can be rewritten as:

ηΞΓ(ωk) =
|SΞΓ(ωk)|√

SΞΞ(ωk) ∗ SΓΓ(ωk)
(6.6)

where: SΞΓ(ωk) is the cross-spectrum between the incident wave and its corresponding
response on both legs; SΞΞ(ωk) is estimated wave spectrum and SΓΓ(ωk) is estimated
response spectrum.

6.3.2 The Coherence Analysis of the Estimated RAOs

By using equation 6.6, the correlation relation between the incident wave amplitudes and
their corresponding response amplitudes are analyzed. These analyses include for the 21
test conditions listed in Table 4.1 to their corresponding responses on leg A1 and A2 at
108m below still water level. In this section, only during the first four test conditions,
test.con1-4, for both legs are presented as shown in Figures 6-11 to 6-14 and the others
are presented in Appendix C.2. In this case, correlation value greater or equal to 0.62 is
assumed to be trusted and as shown in Figures below the trusted frequency ranges are
highlighted with dashed rectangular box.
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Figure 6.11: Coherence analysis during test.con1 & 2 on leg A1.

Figure 6.12: Coherence analysis during test.con 3 & 4 on leg A1.
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Figure 6.13: Coherence analysis during test.con 1 & 2 on leg A2.

Figure 6.14: Coherence analysis during test.con 3 & 4 on leg A2.
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6.4 Relatively Trusted Part of RAOs From the Trusted

Frequency Ranges

After the coherence analysis is performed and the relatively trusted frequency ranges are
determined, highlighted with dashed rectangular box, in section 6.3, the RAOs corre-
sponding to these relatively trusted frequency ranges for each case are also determined.
Figure 6-15 shows RAOs corresponding to the frequency ranges highlighted with dashed
rectangular box, i.e. relatively trusted frequency ranges, in Figure 6-11 to 6-14 and Fig-
ures in appendix C.2. Note that by trusted frequency ranges means frequency ranges
where the incident wave and the axial response are assumed to have good linear correla-
tion or in the frequency ranges where the coherence, η(ΞΓ), approaches to unity.

Figure 6.15: Relatively trusted RAOs during all test conditions

From the relatively trusted RAOs in Figure 6-15, one can see that the trusted RAOs are
approximately 0.5 in the frequency range of [0-0.3], and they diverge in the frequency
range of [0.3 – 0.85], which is around the wave spectral peak periods or in the regime
where the wave energy is concentrated. Around the natural frequency of the jacket, i.e.
around 1.57 radian per second, the correlation between the incident waves and the axial
responses on both legs were found relatively poor during all test conditions. This might
be due to the presence of secondary environmental loads in addition to the wave load
during the data recording time. In addition, in the frequency range of around [0.7-1.5]
the correlation is very low, which leads for further uncertainties in this area.

6.4.1 Mean of Trusted RAOs and Best Fit RAO

From the relatively trusted RAOs that have been evaluated in section 6.4, a mean value of
the RAOs is determined as shown in Figure 6-16. The mean value is further approximated
to a combination of linear, quadratic and exponential best fit equation given in equation
6.7, Best fit RAO. However, as it has been mentioned above, there is poor correlation
between the incoming waves and thier corresponding responses, divergence of the relatively
trusted RAOs in some frequency ranges and generation of unwanted noises particularly
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at the beginning. This means that there is some uncertainty on the Best fit RAO and to
cover this uncertainty, the Best fit RAO is decided to deviate at various frequency ranges
as in section 6.4.2.

RAO(ω) =



0.50, for 0 ≤ ω ≤ 0.39

−5.34ω2 + 6.65ω − 1.28, for 0.39 ≤ ω ≤ 0.85

0.50, for 0.85 ≤ ω ≤ 1.39

123.39ω2 − 345.50ω + 242.35, for 1.39 ≤ ω ≤ 1.56

9181.18 ∗ exp(−5.04ω) for ω>1.56

(6.7)

Figure 6.16: Mean of the trusted RAOs and best fit RAO

6.4.2 Possible Deviations of the Best Fit RAO at different Fre-
quency Ranges

Due to number of reasons mentioned in section 6.4.1, the Best fit RAO has a possibility
to deviate at different frequency ranges. In order to include these possibilities and to
investigate their effect in fatigue damage accumulation on a structural detail, the following
possible deviations in different frequency ranges are considered.

At the Beginning of the Best fit RAO [0 - 0.39]

Even though there may be high correlation at the lower frequencies between the incident
waves and their corresponding axial forces on both legs, but as mentioned in section 6.1.1
there is a probability of generating uncorrelated signal noise at this frequency range. To
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cover this uncertainty, the Best fit RAO is assumed to start from zero as given in Appendix
C.3, Figure C-61 and equation 4.
In the major wave frequency regime [0.39-0.85]
In Figure 6-15 it has been observed that the relatively trusted RAOs diverge in the
frequency range of [0.39-0.85] and to include this divergence, the Best fit RAO is shifted
in the specified frequency range:

a. 50% deviation above the best fit RAO in the frequency range [0.39-0.85]: see Figure
62 and equation 5 in Appendix C.2.

b. 50% below the estimated RAO in the frequency range [0.39-0.85]: see Figure 63 and
equation 6 in Appendix C.2.

Between the Major Wave Frequency Regime and Natural Frequency of the
Structure [0.85-1.39]
During the coherence analysis in section 6.3, it has been found that the correlation be-
tween the incident waves and their corresponding response on the jacket was very low
in the frequency range [0.85-1.39]. Therefore, due to this uncertainty some deviation is
considered as shown in Appendix C.2, Figure 64 and equation 7.
Around the natural frequency of the jacket [1.56]]
To cover the various levels of resonance induced dynamics, the Best fit RAO is also shifted
by 50% above and below its resonance peak. The equations of these RAOs are given in:

a. For 50% deviation above the Best fit RAO around the natural frequency [1.56]: See
Figure 65 and equation 8.

b. For 50% deviation below the Best fit RAO around the natural frequency [1.56]: see
Figure 66 and equation 9.
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Chapter 7

INTRODUCTION ON FATIGUE

7.1 What Is Fatigue?

Fatigue is the main source of structural degradation. When a structure is subjected
to a fluctuating stress or strain, time varying load, the structure can be subjected to
fatigue failure mainly steel structures. For offshore structures the main source of fatigue
inducing stress ranges are ocean waves and to ensure that the structures have an adequate
fatigue life, a fatigue assessment should be carried out for each and individual members
of the structure. Generally, any element or member of a structure, every welded joint
and attachments or other sources of stress concentration, under a time varying load are
potentially source of fatigue failure and should be individually assessed for their fatigue
capacities. Fatigue capacity of a structural detail can be assessed using two common
methods; namely crack growth propagation and S-N curve approach.

7.2 Fatigue Assessment by Crack Propagation

In this method, the fatigue life of a given structural detail can be subdivided in a crack
initiation period or stage 1 and crack propagation period or stage 2, Np, as in Figure
7-1. The crack initiation period normally contributes a small part of the total life of the
structural detail under consideration and it is often ignored. During the crack propagation
period in stage 2, the crack growth can be determined using the Paris’ equation (7.1).
This equation gives good description behavior for the mid-range of the growth rate. Based
on this equation, the fatigue crack propagation rate, da

dN
, is determined as:

da

dN
=


0.00, for 0 ≤ ∆K<∆Kth

C0 ∗∆Km, for ∆Kth ≤ ∆K ≤ ∆Kc

∞, for ∆K>∆Kc

(7.1)

where: a is crack size [m]; N is number of stress cycles [cycle]; ∆K is stress intensity
factor range [MPa

√
m]; ∆Kth is threshold of the stress intensity factor range below which

crack propagation is ignored; Kc is critical value where fast fracture triggers and Co & m
are constants, which depend on a particular material and particular testing conditions.

As shown in Figure 7.1, fatigue process goes through three general stages, from the initial
state of the material to the final fracture, each stage characterized by the nature of the
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fatigue process, for more detail see [1].

Figure 7.1: Crack growth rate curve and stages of crack growth

The crack propagation period, Np, of a structural detail under consideration is determined
by integrating the curve under stage 2 in Figure 7.1 starting from initial crack length
(depth), ai, to a final (critical) crack length (depth), af , as given below:

Np =

∫ af

ai

da

C0 ∗∆Km
(7.2)

By substituting the relevant parameters of crack growth rate and stress intensity in equa-
tion 7.2, one is able to obtain an estimate of crack propagation period.

7.3 Fatigue Analysis Based on S-N Curve

7.3.1 Basic S-N Curve Design

In this method, the fatigue design is based on use of S-N curves which is derived by fatigue
testing of small specimens in test laboratories [5] . Typical S-N curve has two-segment
with different slopes m1 and m2 as shown in Figure 7.2. When the predicted number of
cycles to failure, N, is less than NQ, equation of the S-N curve of the upper segment is
given as:

N = a1 ∗∆σ−m1 (7.3)

where: N is the number of cycles to failure; ∆σ = σmax − σmin: is stress range; m1 is
the negative inverse slope of the upper S-N curve and a1 is constant which depends on a
particular material and particular testing conditions.
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When the predicted number of cycles, N, to failure for a stress range, ∆σ, is greater than
NQ, then the equation for the lower segment of S-N curve is given as:

N = a2 ∗∆σ−m2 (7.4)

Where: m2 is the negative inverse slope of the lower S-N curve and a2 is constant which
depends on a particular material and particular testing conditions.

Figure 7.2: Basic upper and lower segments S-N curve

NB: NQ is number of stress cycle where the two segments meet. It depends on the on a
particular material and particular testing conditions.

7.3.2 Adjustment of the S-N Curve

Adjusting S-N curves for Environment

As mentioned above, the basic S-N curve is derived by fatigue testing of small specimens
in test laboratories which means that the S-N constant parameters or coefficients, a1 and
a2, are determined under the laboratory test conditions that may represent a specified
environmental and surface protections. However, these coefficients may vary with the
environmental conditions and surface protection type. Thus, to account these variations,
the classification of a detail needs appropriately matching it to the applicable environ-
mental condition. Based on the environmental conditions and corrosion protection of a
tubular or non-tubular detail, as shown in Figure 7.5, S-N curves are be categorized as
follows:

a. S-N curves in air conditions

b. S-N curves in seawater with cathodic protection

c. S-N curve in seawater for free corrosion/without corrosion protection.
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Figure 7.3: Basic S-N curve for a detail based on the environmental and surface protection.
[5]

Adjusting S-N curves for the Effect of plate Thickness

The S-N curve equations given above are applicable only for thicknesses that are less than
the reference thickness, tref , which varies with standards – for example in DNV-RP-C203
[5] the reference thickness starts form 25 mm while 22 mm in Plaza [13]. However, to
account the effect of the local geometry of weld toe in relation to the thickness of the
adjoining plates and the stress gradient over the thickness, the basic S-N curves in section
7.3.1 should be modified for thickness greater than the reference thickness, tref , as:[5]

logN = loga−m ∗ log(∆σ(
t

tref )k
(7.5)

where: m is negative inverse slope of the S-N curve; loga = intercept of log N axis; tref
is reference thickness; t is thickness through which crack most likely to grow and k is
thickness exponent depend on fatigue detail type and stress concentration factors (SCF).

7.3.3 Types of S-N Stress Curves

1. Nominal stress S-N curve

Nominal fatigue S-N curves are derived for classified structural details. The fatigue test
data for these structural details are determined mainly from samples subjected to axial
and bending loads with consideration to the effects of stress concentration due to sudden
geometrical changes and weld profiles on the samples. The design stress for this type S-N
curve can be regarded as nominal stress which can be calculated based upon:

1. The cross sectional area of the structural detail under consideration including effect
of local stress raising due to concentrated loads and macro geometric features such as
access holes or in way of cut-outs as shown in Figure 7.4 b. That means an additional
stress concentration factor (SCF) should be introduced in order to include the local
stress, σlocal, as given in shown in Figure 7.4.

σlocal = SCF ∗ σnominal (7.6)
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2. Ignoring the effect of stress raise due to weld joints as shown in Figure 7-4 a, because
their effect are already included in the nominal S-N curve.

Figure 7.4: Effects of micro geometric features and welds on nominal stress.[5]

3. By applying of an additional stress modification factor, Km.eff , if the angular mis-
alignment or eccentricity of the structural detail is greater than that it has been
already covered by the S-N curve for the structural detail under consideration. Fig-
ure 7.5 presents the variation of nominal stress on structural joints due to excessive
misalignment or eccentricity.

Figure 7.5: Effects of eccentricity or angular misalignment on nominal stresses.[5]

2. Hot spot stress S-N curve

The hot spot stress S-N curves is categorized for non-tubular, i.e. plated structures and
tubular joints which include brace to chord connections. According A.Hobbacher [2], hot
spot stress is applied in a situation where there is no clearly defined nominal stress due to
complicated geometrical effects, or where the structural discontinuity is not comparable
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to a classified structural detail in section 7.3.4. Even though this method can be used
for analysis of sites where there is a potential for fatigue crack initiation such as weld
root, mostly it is used for assessment of a weld toe - for example at the toe weld of a
structural attachment and on both chord and brace sides of a tubular welds, see section
7.4. It should be noted that the stress change due to concentrated loads or shape is not
included in the hot spot stress, as it is in the nominal stress.

Hot spot stresses are usually obtained by analyzing the structural detail in structural
computer software that employs finite element analysis. It can be determined as well
from nominal stress by applying stress concentration factor (SCF) to include the stress
changes due to weld profile and macro geometrical features as given as below:

σhotspot = SCF ∗ σnominal (7.7)

3. Notch stress S-N curve:
According to DNV-RP-C203 [5], effective notch stress is the total stress at the root of
a notch, which includes the hot spot stress and the stress due to the presence of weld.
Effective notch stress is obtained under the assumption of linear-elastic material behavior.
To account the non-linear material behavior and the statistical nature and scatter of a
weld shape parameter the real weld is replaced as effective one [5]. Do keep in mind
that for fatigue design the calculated notch stress should be linked to notch stress S-N
curve.The Figure 7.3 shows how notch and hot spot stress can be extrapolated.

Figure 7.6: Hot and Notch stresses on a given plane.[5]

7.3.4 S-N curves and joint classification

As per DNV-RP-C203 [5] and Plaza [13], for practical fatigue design, the S-N curves of
structural details are classified in to nominal classes: donated as B, C, D, E, F, G, W and
T. For example all tubular joints are assumed to be categorized on class “T” S-N curve.
S-N curves for tubular and non tubular structural details are classified based upon:
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7.4 Tubular Joints and Members

7.4.1 Classification of tubular joints

Based on the axial force in a brace of a joint, tubular joints can be classified in to three
classes as K, X and Y joints. A joint can be classified as K-joint, if the axial force carried
by a brace can be balanced to within 10% by another brace, which is on the same side
and in the same plane of the joint as in Figure 7.7. But if the axial force on a brace at a
joint is not shared or balanced by other brace in the same joint and if it reacted as beam
shear in the chord, it is classified as Y-joint as in Figure 7.8. The X-joint classification,
for an axial force in a brace is balanced by a brace in the opposite direction, see Figure
7.8.

Figure 7.7: Tubular K-joint classification. [5]

Figure 7.8: Figure: Tubular Y and X-joint classification. [5]

7.4.2 Stresses in Tubular Joints

For fatigue analysis of tubular joints, the hot spot stresses around the circumference of
the joint have to be determined. These stresses are obtained by the summation of the
stress components due to an axial loading, in-plane loading and out of plane loading on
the tubular member or brace as shown in Figure 7.9.
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Figure 7.9: Geometrical definition & Loading on tubular members. [5]

where: N is axial loading of the brace; MIP is in-plane bending of the brace and MOP is
out of plane bending of the brace.

The stresses due to the above load cases are calculated at 8 locations, i.e. around the
circumference of the joint between the brace and chord as in Figure 7-10. These stresses
are determined based on equations 7.8 - 7.15 given below. [5]

Figure 7.10: Superposition of stresses around a tubular joint. [5]

σ1 = SCFAC ∗ σX + SCFMIP ∗ σmy (7.8)

σ2 =
1

2
(SCFAC + SCFAS)σX +

1

2

√
2SCFMIP ∗ σmy −

1

2

√
2SCFMOPσmz (7.9)

σ3 = SCFAS ∗ σX − SCFMOP ∗ σmz (7.10)
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σ4 =
1

2
(SCFAC + SCFAS)σX −

1

2

√
2SCFMIP ∗ σmy −

1

2

√
2SCFMOPσmz (7.11)

σ5 = SCFAC ∗ σX − SCFMIP ∗ σmy (7.12)

σ6 =
1

2
(SCFAC + SCFAS)σX −

1

2

√
2SCFMIP ∗ σmy +

1

2

√
2SCFMOPσmz (7.13)

σ7 = SCFAS ∗ σX + SCFMOP ∗ σmz (7.14)

σ8 =
1

2
(SCFAC + SCFAS)σX +

1

2

√
2SCFMIP ∗ σmy +

1

2

√
2SCFMOPσmz (7.15)

Where σX , σmy, and σmz are the maximum nominal stresses due to axial loading, bending
in-plane and bending out of plane respectively. SCFAS is the stress concentration factor
at the saddle for the axial load and the SCFAC is the stress concentration factor at the
crown. SCFMIP is the stress concentration factor for in plane bending moment and
SCFMOP is the stress concentration factor for out of plane bending moment.



Chapter 8

SHORT
TERM-SPECTRAL-BASED
FATIGUE ASSESSMENT

8.1 Screening of Model Test Data

As in table 8-1 and appendix D.2, Table 2, the available data for this assessment includes
163133 sea states of three hour duration from 1957 to 2013. In each year there are around
2920 sea states, but in 1957 and 2013 there are 974 and 1448 respectively.

Table 8.1: Sea state ranges and their frequency of occurrence from 1957 to 2007
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8.2 Standard Wave Energy Spectral Density

As described in chapter 4, for short term period it can be assumed that the sea surface
elevation at a fixed location can be accurately modeled by a zero-mean Gaussian process.
This process can be completely characterized by the frequency spectrum of standard math-
ematical models, SΞΞ(ω|Hs, Tp), for a given average direction of wave propagation θ, which
can be described by two parameters, namely by the significant wave height, Hs, and the
spectral peak period, Tp. As in appendix A.2, the common standard wave spectral models
are JONSWAP and Pierson-Moskowitz. For fatigue assessment, the Pierson-Moskowitz,
S(PM,ΞΞ)(ω|Hs, Tp) mathematical model, which is originally developed for fully-developed
wind sea state, is adopted as a reasonable model of the sea surface. The mathematical
equation for this spectral model is given as:

SPM,ΞΞ(ω|Hs, Tp) =
5

16
∗H2

s ∗ ω4
p ∗ ω−5 ∗ exp(− 5

4
∗( ω
ωp

)−4)
(8.1)

where: Hs is the significant wave height in meter; ωp = 2π
Tp

is angular spectral peak fre-

quency in radian per second and TP is the spectral peak period in seconds.

Wave Spectral Moments

The n order spectral moment, Mn,ΞΞ, for a given wave spectral density, SPM,ΞΞ(ω|Hs, Tp),
as a function of angular frequency, ω, is given as:

Mn,ΞΞ(Hs, Tp) =

∫ ∞
0

ωn ∗ SPM,ΞΞ(ω|Hs, Tp) ∗ dω (8.2)

where: ω is angular frequency and n = 0, 1, 2, 3, ...
When n is zero, the spectral moment it is called zero order moment (M(0,ΞΞ)) which gives
the area under the spectral curve and this represents the total energy of the process.
Further, for a Gaussian process, the zero order spectral moment is equal to the variance,
σ2

ΞΞ, of the water surface elevation.

M0,ΞΞ(Hs, Tp) = σ2
ΞΞ =

∫ ∞
0

SPM,ΞΞ(ω|Hs, Tp) ∗ dω (8.3)

The Zero-Up-Crossing Wave Period

The zero-up-crossing wave period, Tz,ΞΞ, can be defined as the average time interval
between two successive up-crossings of the mean sea level. The zero-up-crossing period
can be estimated from the wave spectral moments and it can be estimated by:

Tz,ΞΞ(Hs, Tp) = 2π

√
M0,ΞΞ(Hs, Tp)

M2,ΞΞ(Hs, Tp)
(8.4)

where: M0,ΞΞ(Hs, Tp) and M2,ΞΞ(Hs, Tp) are the zero and second order wave spectral mo-
ment respectively for a given sea state.

Number of Wave Cycles within a given short term duration
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For a stationary Gaussian and narrow band process, where there are no local maxima or
minima, the number of cycles, n0,ΞΞ, and wave number can be assumed to be equal during
the short term duration [hours]. Thus, the number of cycles for 3-hour duration can be
estimated as:

n0,ΞΞ(Hs, Tp) =
3hr

Tz,ΞΞ(Hs, Tp)
(8.5)

Substituting the zero-up-crossing wave period, Tz,ΞΞ(Hs, Tp), from equation 8.4 to equa-
tion 8.5 gives as:

n0,ΞΞ(Hs, Tp) =
5400

π
∗

√
M2,ΞΞ(Hs, Tp)

M0,ΞΞ(Hs, Tp)
(8.6)

8.3 Response Amplitude Operator (RAO) of the Jacket

As explained in chapter 6, Response Amplitude Operator (RAO) is the absolute value
or the modulus part of the transfer function, which is the response of a linear offshore
structure to a sinusoidal wave with unit amplitude for sufficient number of frequencies,
ω, and different wave heading directions, Θ, where only from one direction is considered
in this study.

Based on the analysis and linearity assumption considered in chapter 6 for the deter-
mination of the Response Amplitude Operator , RAO(ω), of the structure, the Best fit
RAO equation developed in section 6.4.1 is assumed to be reasonably acceptable for the
Kvitebjørn jacket platform, see equation 8.7. This equation will be used initially for the
assessment of fatigue accumulation due to all the sea states given in Table 8.1. Further-
more, its possible deviations will be analyzed to investigate if these deviations will have
an effect on the accumulated damages. Four possible deviations of the Best fit RAO have
been discussed in section 6.4.2 and their equations are available in Appendix C.3.

RAO(ω) =



0.50, for 0 ≤ ω ≤ 0.39

−5.34ω2 + 6.65ω − 1.28, for 0.39 ≤ ω ≤ 0.85

0.50, for 0.85 ≤ ω ≤ 1.39

123.39ω2 − 345.50ω + 242.35, for 1.39<ω ≤ 1.56

9181.18 ∗ exp(−5.04ω) for γ>1.56

(8.7)
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Figure 8.1: Best fit RAO for the jacket platform.

8.4 Linear response spectrum

Since the sea surface elevation process is described as a Gaussian process for the short
term duration and the response process is also modeled as a Gaussian process due to the
linearity assumption, for detail information see chapter 2. Once the response amplitude,
Best fit RAO, of the structure is generated as given in section 8.3, the response spectrum,
Sγγ(ω|Hs, Tp), is evaluated for each sea state listed in Table 8.1 using the spectral relation
given below.

Sγγ(ω|Hs, Tp) = |HΞΓ|2 ∗ SΞΞ(ω|Hs, Tp) (8.8)

Figure 8-2 presents an example of wave spectrum, RAO and their corresponding response
spectrum of the jacket platform for a sea state of 8 meter significant wave height and
spectral peak period of 10 second.

Figure 8.2: Wave spectrum, RAO and Response spectrum for a given sea state
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Response Spectral Moments

Similar to the wave spectral moments,Mn,ΞΞ, in section 8.2, the spectral response mo-
ments, Mn,ΓΓ, are determined using the following equation:

M(n,ΓΓ)(Hs, Tp) =

∫ ∞
0

ωn ∗ SΓΓ(ω|Hs, Tp) ∗ dω (8.9)

where: ω is angular frequency and n = 0, 1, 2, 3. . . . . . . . . . . .
When n is zero, it is called zero order response moment, M0,ΓΓ, which gives the area under
the response spectral curve and this represents the total energy lost during of the process.
The zero order spectral moment is also equal to the variance of the response process, σ2

ΓΓ,
which is determined as:

M0,ΓΓ(Hs, Tp) = σ2
ΓΓ =

∫ ∞
0

SΓΓ(ω|Hs, Tp) ∗ dω (8.10)

Expected Zero-Up-Crossing Response Period

Similar to the zero-up crossing wave period,T(z,ΞΞ), in section 8.2, the zero-up-crossing
response period, T(z,ΓΓ), is defined as the average time interval between two successive up-
crossings of the mean sea level. It is calculated from the zero and second order response
spectral moments using equation below:

T(z,ΓΓ)(Hs, Tp) = 2π

√
M0,ΓΓ(Hs, Tp)

M2,ΓΓ(Hs, Tp)
(8.11)

where: M0,ΓΓ(Hs, Tp) and M2,ΓΓ(Hs, Tp) are the zero and second order wave spectral mo-
ment respectively for a given sea state.

Number of Response Cycles For The Given Duration

For Gaussian and narrow band response process, the number of response cycles of given
duration can be determined from the expected zero-up crossing response period, Tz,ΓΓ(Hs, Tp).
The number of response cycles within the given duration,τ [hours], is given as:

n0,ΓΓ(Hs, Tp) =
τ

Tz,ΓΓ(Hs, Tp)
(8.12)

By substituting equation 8.11 in to equation 8.12 for 3-hour duration gives as:

n0,ΓΓ(Hs, Tp) =
5400

π
∗

√
M2,ΓΓ(Hs, Tp)

M0,ΓΓ(Hs, Tp)
(8.13)
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8.5 Closed Form Fatigue Damage Using S-N Curve

Cumulative fatigue damage is normally calculated based on the Miner-Palmgren‘s rule,
which assumes that the cumulative fatigue damage (D) inflicted by a group of variable
amplitude stress cycles is the sum of the damage inflicted by each stress range, ∆σ,
independent of the sequence in which the stress cycles occur [13]. The Miner-Palmgren
formula for cumulative fatigue damage is given as:

D =
k∑
i=1

ni
Ni

(8.14)

where: k is number of stress blocks; ni is number of stress cycles in stress block i with
constant stress range ∆σi; Ni is number of cycles to failure at constant stress range ∆σi.

Let’s assum that a linear submerged structural detail is subjected to a total number
stress cycles, n0,ΓΓ(Hs, Tp), of a given sea state. The total stress cycles are the number
of response cycles for a given duration of time which are estimated from the spectral
response moments given in equation 8.13. Further it can be assumed that these stress
cycles are randomly distributed with a probability density function f(∆σ) as shown in
Figure 8-3.

Figure 8.3: Typical stress range distribution function

In this case, the number of stress cycles, ni,ΓΓ(Hs, Tp), in a given stresses block i of width
d∆σ, i.e. between ∆σ and (∆σ + d∆σ), can be determined as:

ni,ΓΓ(Hs, Tp) = n0,ΓΓ(Hs, Tp) ∗ f(∆σ) ∗ d∆σ (8.15)
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As in section 7.3, the S-N curve is usually used to determine the number of cycles to
failure, Ni, for a given structural detail at constant stress range ∆σi with the equation is
given by:

Ni = a ∗∆σ−mi (8.16)

where: m is slope of the S-N curve and a is coefficient which depends on the structural
detail under consideration.
Substituting equations 8.15 and 8.16 in to equation 8.14 gives as:

D(Hs, Tp) =
n0,ΓΓ(Hs, Tp)

a
∗
∞∑
0

∆σm ∗ f(∆σ) ∗ d∆σ (8.17)

As the stress block width, d∆σ, is close to zero, the summation,
∑

, can be approximated
in to integration,

∫
. As a result equation 8.17 can be rewritten equivalently as:

D(Hs, Tp) =
n0,ΓΓ(Hs, Tp)

a
∗
∫ ∞

0

∆σm ∗ f(∆σ) ∗ d∆σ (8.18)

For offshore structures, the stress range distribution function for short term duration is
represented by a special type of Weibull distribution function called Rayleigh distribu-
tion, i.e. when the Weibull shape parameter,β, is assumed to be 2. The Weibull scale
parameter,α, is approximated to 2

√
2 ∗ σΓΓ(Hs, Tp), where σΓΓ(Hs, Tp) is standard devi-

ation of the structural response process for a given sea state [13]. Note that standard
deviation of response process is the square root of its variance as described in section 8.4.

The cumulative Weibull distribution functions as a function of stress range is given as:[3]

F (∆σ) = 1− exp(−( ∆σ
α

)β) (8.19)

where: β is the shape parameter; α is the scale parameter.
Substituting the scale parameter, α, in equation 8.19, the cumulative stress distribution
for a given sea state becomes as:

F (∆σ) = 1− exp−( ∆σ
2
√

2∗σΓΓ(Hs,Tp)
)β

(8.20)

By differentiating equation 8.20 with respect to the variable stress range, ∆σ, it gives the
Weibull probability density function as:

f(∆σ) =
β

2
√

2 ∗ σΓΓ(Hs, Tp)
∗ (

∆σ

2
√

2 ∗ σΓΓ(Hs, Tp)
)β−1 ∗ exp(−(

∆σ

2
√

2 ∗ σΓΓ(Hs, Tp)
)β)

(8.21)
Figure 8-4 shows the stress range distribution for a given sea state based on the Weibull
distribution function given in equation 8.21.
When the Weibull shape parameter, β, is assumed to be 2, equation 8.21 reduces to a
Rayleigh- distribution function as:

f(∆σ) =
∆σ

4σ2
ΓΓ(Hs, Tp)

∗ exp(−(
∆σ

2
√

2 ∗ σΓΓ(Hs, Tp)
)2) (8.22)

Figure 8-5 shows distribution of the stress ranges for different sea states based on the
Rayleigh distribution equation 8.22.
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Figure 8.4: Weibull probability stress range density function for a given sea state.

Figure 8.5: Rayleigh probability stress range density function for a given sea state.

In the Figure 8-5 one can notice that the stress ranges for lower sea states are concen-
trated in the lower values. In reference to the basic S-N curve design given in section
7.3.1, the number of stress cycles to failure is relatively higher for the lower stress range
values. Thus, based on the “Miner-Palmgren” formula, lower sea states have lower fatigue
damage effect compared to the higher sea states in which their stress ranges are relatively
distributed over a wider range. Remember that the number of stress cycles to failure, N,
is inversely proportional to the fatigue damage in “Miner-Palmgren” rule (equation 8.14).

By substituting the Rayleigh-distribution equation (8.22) in to equation 8.18, the damage
ratio equation for a given sea state yields as:

D(Hs, Tp) =
n0,ΓΓ(Hs, Tp)

a
∗
∫ ∞

0

∆σm+1

4σ2
ΓΓ(Hs, Tp)

∗ exp(−(
∆σ

2
√

2 ∗ σΓΓ(Hs, Tp)
)2) (8.23)
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Therefore, for linear offshore structures under the assumptions of Gaussian process, their
fatigue damage is evaluated using equation 8.23. This equation will be used for analysis
of the fatigue accumulation on the Kvitebjørn jacket platform due to 163133 sea sates
listed in Table 8.1. Similarly, by substituting the Weibull-distribution equation 8.21 in
to equation 8.18, the fatigue damage can be estimated for different values of the Weibull
shape parameter, β.

8.6 Procedures And Numerical Calculations

Assumption Taken For Base Case Analysis

In this short term closed form approach analysis, the Kvitebjørn platform will be taken
as a case study. For the base/primary study case of the fatigue damage analysis, the
assumptions taken are as follows:

• The sea state given in table 8.1are considered as a stationary Gaussian process of 3
hour duration.

• All waves are considered to come from the same direction.

• The wave spectra are assumed to be narrow band width.

• The variation of the stress ranges are assumed as a narrow band and random Gaus-
sian process.

• The jacket is assumed as a linear mechanical system, i.e. the structural members
of the jacket will remain in their elastic limit state under the applied hydrodynamic
loads.

• The joint thickness is assumed to be less than the reference thickness; hence, further
thickness correction for the S-N cure is ignored.

• The eccentricity effect is assumed to be within the effect embodied in the design
S-N curve.

• The jacket is assumed to be in seawater with cathodic protection, i.e. corrosive
environment adjustment is ignored.

• The jacket is assumed to have tubular joints and class “T” S-N curve as described
in section 7.3.4. For this type of S-N curve, the constant parameters are given in
Table 8-2, i.e. a and m in equation 7.3 and 7.4.

Table 8.2: S-N curve constants for tubular “T class” structural details. [5]

Figure 8-6 shows two segmented “T” S-N curve for tubular structural details based on
the basic S-N curve design equations 7.3 and 7.4. The constant parameters of this type
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Figure 8.6: Two segment S-N curve for tubular “T class” structural details

of S-N curve are given in Table 8-2. The “T” S-N curve has a transition in slope from
m=3.0 to m=5 at 106 cycles, which corresponds to a stress range 83.4 MPa.
General Procedures For The Primary/Base Case Study

The following procedures and flow chart diagram in Figure 8-6 illustrate the general steps
for short term-spectral –based fatigue assessment on the structure:

1. Estimation of wave spectral density, SΞΞ(ω|h, t),from the standing Gaussian sea
surface process,Ξ(t). As in section 4.3.1, this is done by Fast Fourier Transfer
Method (FFT) using equation 4.1.

2. Similar to step 1, estimate response spectral density, SΓΓ(ω|h, t), from the time
series response process, Γ(t).

3. From steps 1 and 2 estimate the stress transfer function, RAO(ω), or response
amplitude operator, by using equation 6.1.

4. For correlation relation between the incident waves and their corresponding response
of the structure, perform Coherence analysis, ηΞΓ(ωk), using the relation in 6.6.
Then, from the correlated or linearly dependent waves and responses, determine the
Best fit RAO(ω), in this case equation 6.7 is taken to be the Best fit.

5. Develop wave spectra, S(PM,ΞΞ)(ω|Hs, Tp) for a given sea state of Hs and Tp using
Perison-Moskowitz formula (8.1).

6. From the RAO(ω) in step 4 and the wave spectra generated in step 5, S(PM,ΞΞ)(ω|Hs, Tp),
develop the response spectrum, SΓΓ(ω|Hs, Tp), using the relation given in equation
8.8.

7. Once we have the response spectrum, SΓΓ(ω|Hs, Tp), from step 6, calculate the
response spectral moments, Mn,ΓΓ(Hs, Tp), using equation 8.9, standard deviation
or variance of the response process, σ2

ΓΓ(Hs, Tp), from equation 8.10 and number of
response cycles, n0,ΓΓ(Hs, Tp), using equation 8.13.
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8. Decide which probability density function describes best to the short term re-
sponses/ stress range distribution. For linear response problems, the Rayleigh dis-
tribution is assumed to be best as given in equation 8.22.

9. Using the probability function in step 8 and the number of response cycles found
in step 7, determine the number of cycles ni(Hs, Tp), within in a given stress range
block i of the distribution by equation 8.15.

10. Decide the structural detail type and based on its type determine the constant
parameters of the S-N curve.

11. Determine the number of stress cycles to failure, Ni, at constant stress range ∆σi
of the stress block considered in step 9 based on the S-N curve chosen in step 10.

12. Determine fatigue damage,Di(Hs, Tp), as the ratio of the number of cycles ni(Hs, Tp)
and Ni in steps 9 and 11 respectively. Again back to step 9 and repeat this for all
stress block in the distribution. Finally, fatigue damage due to the given sea state,
D(Hs, Tp), is linear summation of the damages due to each stress block as given in
equation 8.14.

13. Back to step 5 and redo steps 5 to 12 for the next sea states.

Similarly the flow chart diagram given in Figure 8.7 shows the general procedures followed
for the transformation of the time domain wave and response records in to frequency
domain and for calculation of the fatigue damage accumulation on the tubular structural
detail.
The procedures on how to determine the fatigue damage on the structural detail by the
short term-spectral-based fatigue assessment illustrated above and in Figure 8.7 are gen-
erally followed. But to show these steps numerically, fatigue damage due to one sea state
is presented in Appendix D.1. In this thesis, these procedures are written in the MATLAB
script as in Appendex D-1 and fatigue damage for all the sea states given in Table 8.1
are analyzed and the results are presented in section 8.7. The procedures given are for
one study case/base case study only, but by modifying steps 4, for deviate RAOs, and 11,
Single slope S-N curves, the following further investigation about the fatigue damage on
the tubular joints are performed.

Secondary Study Case (Possible Deviation of the Best Fit RAO)

In section 6.4.2, it has been discussed that there are four possible deviations of the Best
fit RAO at different frequency ranges. By replacing the Best fit RAO in step 4 with these
possible deviated RAOs, the fatigue damage on the structure are analyzed and the results
are presented in section 8.7.

Third Study Case (Single Slope S-N Curves)

In the base case and secondary study cases, the S-N curve of the structural detail has
been considered to have two slope segments as given in Figure 8-6. The effect of the
accumulated fatigue damage on the structural detail is also observed by analyzing with a
single slope “T” S-N curve in step 11. The single slope S-N curve is given as:
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Figure 8.7: General procedures for estimating fatigue damage on a submerged structure
detail by the short term-spectral – based fatigue assessment method

• Option 1: The upper segment of the “T” S-N curve to be continuous. In this
case, the single slope “T” S-N curve equation for all stress ranges within the stress
distribution function is by:

N = 5.8076 ∗ 1011∆σ−3 (8.24)

• Option 2: The lower segment of the “T” S-N curve to be continuous where “T”
S-N curve equation for all stress ranges within the stress distribution function is
given as:

N = 4.0364 ∗ 1015∆σ−5 (8.25)
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8.7 Results Of The Closed Form-Based Fatigue Anal-

ysis

A - Fatigue Damage Result For The Base/Primary Study Case

In this subsection, the analysis is performed based on the assumptions and procedures
described in section 8.6 and the fatigue damage accumulation is presented in two options.

• Option 1 - Fatigue damage accumulation versus significant wave heights, Hs.

Figure 8.8: Fatigue accumulation vs. Hs for the base/primary study case

In the base case, i.e. when the double slope “T” S-N curve and the Best fit RAO
are taken, around 60% of the fatigue damage are accumulated from the sea states
within the range 4 to 8 significant wave height, particularly from sea states within
the range of 6m to 7m as shown in Figure 8-8 and Table 1 in Appendix D.2. As in
Figure 8-8, the fatigue damage accumulation is included for different values of the
Weibull shape parameter, β. This is done to find out if these shape parameter values
could have some effect on the fatigue damage - sea state severity relationships. The
results have been found that the fatigue damage decreases as the shape parameter
value decreases, but the shape parameter values have no role on the damage versus
sea state severity.

• Option 2 - Fatigue damage accumulation versus storm events for the base case
study

Figure 8-9 shows yearly accumulated fatigue damage on the structure detail under
consideration from the end of 1957 until the beginning of 2013. In this analysis, 974
and 1448 sea states were recorded in 1957 and 2013 respectively; while in the other
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Figure 8.9: Fatigue accumulation vs. storm events for the base/primary study case

years around 2920 sea states were recorded, see Appendix D.2 in Table 2. Excluding
in 1957 and 2013, the lowest fatigue accumulation was estimated in 1965, around 1%
of the total damage. The reason for this might be that there were higher numbers
of lower sea states during this year which have lower fatigue damage effect. In 1993
the highest fatigue damage accumulation was estimated around 3.23% of the total
damage accumulated from 1957 to 2013, this might be there were higher number of
higher and/or moderate sea states during this year.

B - Fatigue Damage Results For the Secondary Study Case (Possible Devi-
ations Of The Best Fit RAO)

As mentioned in section 6.4.2, there is a doubt that the Best fit RAO equation can be
different, if the uncorrelated signal noise could be minimized or if the correlation between
the incoming waves and their corresponding response could be good enough. To take ac-
count of these possibilities, the Best fit RAO equation is customized in different frequency
ranges, deviated RAOs, as given in section 6.4.2 and Appendix C-3. To investigate the
effects of these deviated RAOs on the accumulated fatigue damage, the Best fit RAO in
the base/primary study case is replaced by these deviated RAOs. Similar to the base case
for various values of the Weibull shape parameter are also included in these cases.

1. Deviation of the Best fit RAO at the beginning [0-0.39]
As in the Figure 8-10 and Appendix D.2 in Table 3, the fatigue damage distribution
remain equivalent as in the base/primary case study. This shows that deviation of
the Best fit RAO at the lower frequency does not have effect on the accumulated
fatigue damage on the structural detail.
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Figure 8.10: Fatigue accumulation for the secondary study case, where the Best fit RAO
deviated at [0-0.39]

2. Deviation Of The Best Fit RAO in The Major Frequency Regime [0.39-0.85]

a. 50 % deviation above the Best fit RAO in the frequency range [0.39-0.85]

Figure 8.11: Fatigue accumulation for secondary study case, where the Best fit RAO
deviated 50% up at [0.39-0.85].

In this analysis, similar to the base case study, it has been found that around
65% of the accumulated fatigue damage came from the moderate sea states.
However, the fatigue damage due to each sea state ranges increased in some
percentage of the base case study as presented in Appendix D.2, Table 4.

b. 50% deviation below the Best fit RAO in the frequency range [0.39-0.85]

As in the Figure 8-12, similar to base case study it has been found that large
amount of the accumulated fatigue damage, around 62.5%, was from these
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Figure 8.12: Fatigue accumulation for the secondary study case, where the Best fit RAO
deviated 50% down at [0.39-0.85].

moderate sea states. But, the fatigue damage due to each sea state ranges
decreased in some percentage of the base case study; see Appendix D.2 in
Table 5.

3. Deviation between the major wave frequency regime and natural frequency of the
Jacket [0.85-1.39]

Figure 8.13: Result of fatigue accumulation for the secondary study case, where the Best
fit RAO deviated at [0.85-1.39].

As in the Figure 8-13, still the fatigue damage accumulation is dominated by the
moderate sea states as in the base case. The fatigue damage accumulation was found
around 64% from the moderate sea states and only 23% from higher sea states, but
generally it decreased due to all sea states in some percentage relative to the base
case, see Appendix D.2 in Table 6.

4. Deviation around the natural frequency of the Jacket [1.57]
To investigate the effect of resonance induced dynamics to the fatigue damage accu-
mulation on the structural detail, the Best fit RAO is shifted 50% below and above
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around the natural frequency of the jacket, see section 6.4.2. The results for this
analysis are found as in below.

a. When the Best fit RAO is deviated up by 50% around the natural frequency

Figure 8.14: Fatigue accumulation for the secondary study case, where the Best fit RAO
deviated 50% up at [1.56].

Even if when the Best fit ROA is assumed to be shifted by 50% around the
Eigen frequency of the jacket, majority of the accumulated fatigue damage,
around 62%, was found from the moderate sea states as in the base and only
around 18% from the higher sea states, see Figure 8-14. However, the fatigue
damage due to each sea state ranges increased in some percentage of the base
case study as presented in Appendix D.2 in Table 7.

b. When the Best fit RAO is deviated down by 50% around the natural frequency
From Figure 8-15, one can notice that the fatigue damage accumulation

Figure 8.15: Fatigue accumulation for the secondary study case, where the Best fit RAO
deviated 50% down at [1.56].
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reached maximum for the sea states around 6.5 m significant wave height.
In this case, around 64% of the accumulated fatigue damage was found from
the moderate sea states and it decreased for all the sea state ranges in some
amount relative to the base case study. The values for each sea state range is
available in Appendix D.2 in Table 8.

C - Fatigue Damage Result For The Third Study Case (Single Segment S-N
Curve)

As mentioned in section 8.6, the following parameters are taken in this study case

• The Best fit RAO determined in section 6.4.1 is assumed as a reasonable RAO of
the system.

• The “T class” S-N curve in Figure 8-5 is modified as single slope curve, i.e. either
equation 8.24 or 8.25.

• Option 1: With a straight “T” S-N curve with slope m=3.
Figure 8-16 shows the fatigue damage on the structural detail assuming that the
upper segment of “T class” S-N curve, equation 8.24, to be continuous.

Figure 8.16: Fatigue accumulation for the third study case, with straight S-N curve with
m=3

As in the Figure 8-16, it has been found that around 66% of the accumulated fatigue
damage came from relatively lower sea states, sea states of significant wave height
between 2m – 6m and the fatigue damage accumulation for each sea state range
increased by large quantity relative to the base case, see Appendix D.2 in Table 9.

• Option 2: With a straight “T” S-N curve with slope m=5.

In this case the fatigue damage on the structural detail is determined assuming that “T”
S-N curve to be continuous as a single slope as in equation 8.25. This means the lower
segment is extended up-word with the same slope and number of cycles to failure, N, for
all stress ranges within the stress distribution function are determined from this single
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Figure 8.17: Fatigue accumulation for the third study case, with straight S-N curve with
m=5

segment. As shown in the Figure 8-17 and Appendix D.2 in Table 10, the fatigue damage
distributions versus significant wave heights and their magnitude is equivalent to the base
case.

8.8 Discussion

In the previous sections, the fatigue damage accumulation on the structural detail under
consideration was calculated in three study cases, namely base primary study case, sec-
ondary study case (deviated RAOs ), and third case study (single slope S-N curve). In
the base or primary study case the Best fit RAO and double slope “T” S-N curve are
used for the damage analysis. The results for these three study cases are presented in the
Figure 8-18. The figure is drawn as the fatigue damage accumulation in the horizontal
axis Vs. significant wave height, Hs, in the vertical axis. It should be noted that the
stress range distribution is represented by the Rayleigh probability density function in
this part, i.e.β = 2.

Base on the Base case in Figure 8.18, the fatigue damage accumulation is concentrated
in the sea states of moderate severity, i.e. sea states with significant wave height in the
range of 4m – 8m. In this case, around 60% of the total accumulated fatigue was found
from these sea states. This is because, these sea states are more than the higher sea states
as in Table 8-1 and they have higher standard deviation consequently higher stress range
distribution than the lower sea states. As discussed in section 8.5, higher sea states have
higher stress ranges, ∆σ, and higher stress ranges have less number of stress cycles to fail-
ure, N, which implies higher fatigue damage on the structural detail, see Miner-Palmgren
formula (8.14). Thus, even though the moderate sea states are less than the lower sea
states, they could cause higher fatigue damage due to their higher stress ranges.

In Figure 8.18, one can notice that the curves for the Base case, Deviated RAO at [0-0.39]
and lower single S-N curve are overlapping. This shows that the fatigue damage for the
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Figure 8.18: Fatigue damage on tubular structure joint vs. Hs

base case, for the secondary case when the Best fit RAO is deviated at the beginning
[0-0.39] and for the third case where the “T” S-N curve is represented with the lower
single slope m = 5 are equivalent. This is can be due to the following reasons:

• Deviating or shifting the Best fit RAO at lower frequencies [0-0.39] had no effect on
the standard deviation of the response process, which could affect the stress range
distribution function.

• The stress ranges, ∆σ, on the structural detail under consideration were less than
83.4 MPa for all the sea states used for this analysis. This stress range value is the
stress range at which the two segments of the “T” S-N curve meet and this stress
range corresponds to 106 cycles, see Figure 8.18.

When the “T” S-N curve is assumed to be represented with a straight slope m = 3, the
fatigue damage was increased by large quantity relative to the base case as shown in the
Figure 8-18. In this case, it was found that around 66% of the total fatigue accumulated in
the structural detail came from relatively lower sea states, i.e. sea states with significant
wave height in the range of 2m – 6m.
When the upper segment of the “T” S-N curve was assumed to be extended as shown in
Figure 8-19, the number of stress cycles to failure, N, for all stress ranges, ∆σ, below 83.4
Mpa reduced. Based on the Miner-Palmgren formula, equation 8.14, it has been shown
that the number of stress cycle to failure is inversely proportional to fatigue damage also.
Thus, reducing the number of cycles to failure, N, means increasing the fatigue damage.
Above it has been said that the stress ranges for all sea states in this analysis are below
83.4MPa which indicates that fatigue damage due to these sea states are over estimated.

In the Rayleigh stress range probability function, section 8.5, it has been observed that the
stress ranges for lower sea states are concentrated on the lower value of the distribution.
Consequently, for the double slope S-N curve, the fatigue damage due to the lower sea stats
is very small compared to the moderate sea states. However, when the upper segment
of the “T” S-N curve is assumed to be continuous as shown in Figure 8-19, the fatigue
damage accumulation difference due to the stress range distribution between lower and
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moderate sea states is relatively reduced. This is because the extended S-N curve has
higher slope than the lower curve. Therefore, since the fatigue damage difference due to
stress range distribution is minimized and there are higher number of lower sea states in
the analysis, the fatigue damage due to these lower sea states could be higher than the
moderate as shown in Figure 8-18.

Figure 8.19: “T” S-N curve as a single slope segment

When the Best fit RAO is deviated at different frequency ranges, generally the fatigue
damage increased if the RAO is shifted up and reduced if moved down, but the cumulative
damage is still concentrated within the moderate sea states. The effect of the deviated
RAOs for the fatigue damage is illustrated below by assuming 3-hour duration single sea
state with 8m significant wave height, Hs, and 10sec spectral peak period, Tp.
As in section 8.4, response spectrum is determined from the RAO of the system and the
wave spectrum of a given sea state. This indicates that for every deviated RAO, there
may be different response spectrum, i.e. different standard deviation and different stress
range distribution for the given sea state as shown in Table 8-3.

Table 8.3: Standard deviations and fatigue damage based on the Best fit RAO and the
deviated RAOs for a given sea state.

Stress range for short term duration is modeled by Rayleigh distribution function, equation
8.22. Using this distribution and standard deviation from Table 8-3, the stress range
distribution of the six deviated RAOs and the base case, Best fit RAO, are given in
Figure 8-20.
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Figure 8.20: Variation of stress range distribution due to the deviated RAOs

In Figure 8-19, it can be noticed that when the Best fit RAO is deviated by 50% up in the
major wave frequency regime, [0.39-0.85], and around the natural frequency of the jacket,
[1.56], their corresponding distribution curves covers wider stress ranges than the base
case, i.e. higher standard deviation as shown in Table 8-3. As mention above also larger
stress ranges have less number of stress cycles to failure, N, and less number of cycles to
failure means higher fatigue damage on the structural detail as shown in Figure 8-18 and
table 8-3. Similarly, when the Best fit RAO is shifted by 50% down, their corresponding
distribution curves covers smaller stress ranges than the base case, as a result low fatigue
damage on the structural detail, see Figure 8-18 and Table 8-3.



Chapter 9

CONCLUSION AND
RECOMMENDATIONS

9.1 Summary

In this section the main points of the project discussed in details in the previous chapters
will be summarised.

First an introduction study has been done about offshore structures and their classifi-
cation based on their dynamic behavior and cross sectional dimension relative to wave
height, H. Offshore structures are classified as linear and non-linear mechanical systems
as summarized below.

• Linear mechanical systems are structures where their damping and stiffness coef-
ficients remain constant under the applied the time varying hydrodynamic loads.
This means the structures are in elastic state or Hooke’s law is valid under the
whole process. Responses of these types of structures are determined by solving
equation 2.2. Further, linear structures are also classified as:

– Quasi-static structures: are structures where their relative frequency is much
smaller than one β � 1. In this case the dynamics is controlled by the stiffness
of the system in phase with the loading. For example structures with natural
period less than 2 seconds (Haver, 2013).

– Dynamically behaving structures: are structures where their relative frequency
is close or much larger than one, β � 1. In this case the dynamics is controlled
by the damping and mass of the system by 900 and 1800 out of phase respec-
tively. Examples of these type structures are structures with natural period
larger than 2 seconds such as the Kvitebjørn platform (Haver, 2013).

– Linear response problems: are linear structures where the hydrodynamic loads
on them can be modeled as a linear function of the surface process and this
can be applied when the inertia/mass term of the Morison’s equation (3.5)
dominated to the non-linear drag term. Inertia/mass term is dominant in
large volume structures such as floating platforms, see Figure 3-8, and in more
slender structures such as jacket and jack-up platforms as shown in Figure 3-9.

• Non-linear mechanical systems: are structures where their stiffness and damping
coefficients change with time under the time varying hydrodynamic loading, which
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means the structures are in their plastic regime and the Hooke’s low is not valid.
Responses of these structures are determined by solving the general equation of
motion (2.1).

– Non-linear response problems: are opposite to the linear response problems, in
which the drag term of the Morison’s equation dominates the inertia or mass
term. As shown in equation 3.8 and Figure 3-7, drag term dominates when the
wave height is much larger than the structural cross sectional dimension.

In order to determine good estimate of Best fit RAO of the Kvitebjørn platform, 21
time series wave records and their corresponding time series responses (axial loads)
on leg A1 and A2 at 109m below SWL has been taken. These time series records
have been transformed from time domain in to frequency domain by Fast Fourier
Transfer (FFT) method. Findings during these transformations are described below.

• Estimation of wave spectrum or transforming time domain wave records in to fre-
quency domain:

– During the transformation process, it has been seen that wave spectrum for a
given time series is not unique. The shape of the spectral curve, i.e. distribution
of energy in the process, significant wave height, Hs, and spectral peak period,
Tp, slightly changed as the value of data point, N, changed as in Figure 4-1
and Table 4-2. As shown in Figure 4-1, it has been found that as the number
of data points, N, increases the sharper is the spectral curve and smoother is
as the data point decreases

– The first four estimated wave spectra are compared with the Pierson-Moskowitz
(PM) and JONSWAP (J) spectrum as shown in Figure 4-7. As in Table 4-3,
it has been observed that the Pierson-Moskowitz spectrum gave best approx-
imation. This may imply that these waves were fully developed and windy
generated waves.

• Estimation of response spectrum or transforming time domain response records in
to frequency domain:

– After transforming the time domain response records in to frequency domain,
the wave spectra peak periods, Tp, with the response periods, Ts.peak, where
the response reached maximum around Tp are compared, similarly the response
peak period, Tr.peak, and the natural period of the jacket as shown in Table
5-1. Then, it has been observed that they have almost equal values with slight
difference which indicates that the response energies were more around the
spectral peak period, where the wave energies are concentrated, and there were
high energies lost at resonance to control the resonance induced dynamics. The
slight differences observed i.e. Tp vs. Ts.peak and natural period Vs Tr.peak,
may be there were secondary additional environmental loads, see Figure 3-1,
during the recording time.

After having the estimated wave spectra and response spectra for the 21 time series
records, the RAOs are estimated using the spectral relation equation (6.1). But
to check the linear correlation between the incident waves and their corresponding
responses on the jacket, the Coherence function analysis have been done. This
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analysis has been performed in order to determine frequency ranges where the RAOs
can be relatively trusted. During these processes the following remarks have been
observed:

– When a RAO was estimating, uncorrelated signal noises were produced espe-
cially at the beginning and at the tail end of the RAO as shown in Figure 6-1.
These were minimized by applying a band pass filtered with a cut off lower
frequency, ω1 = 0.02, and higher frequency, ω2 = 0.4, as shown in Figure 6-2.
However, still there were leakages of neighboring frequencies in the filtering
process.

– Generally the linear correlation between the incident waves and their corre-
sponding responses has been found low as shown in Figures 6-11 to 6-14 and
Appendix C.2. Thus, due to the low correlations and leakages of unwanted
frequencies during filtering process, possible deviations of the Best fit RAO at
different frequency ranges has been done.

After the Best fit RAO of the jacket is estimated, the fatigue damage on the struc-
tural detail under consideration due to the short term sea states has been determined
using the closed N-S approach. During this analysis the following findings have been
observed:

– For the base/primary study case, Best fit RAO and double “T” S-N curve ,
around 60% of the fatigue damage was accumulated from the sea states within
the range 4 to 8 significant wave height, mainly from sea states within the
range of 6m – 7m significant wave heights as in Figure 8-8 or Table D-1. This
was because these sea states were more than the higher sea states, see table
8-1, and had higher stress range values or higher standard deviation than the
lower sea states. Similarly it has been found that the Weibull shape parameter,
β had no effect on the damage versus sea state severity, however the damage
decreased as the parameter value decreased, see Figure 8-8.

– When the best fit RAO was deviated at [0-0.39], the fatigue damage and its
distribution versus Hs was equivalent to the base case, see Figure 8-18, which
showed that this deviation had no effect on the stress range distributions or
standard deviation of the response process, see table 8-3.

– When the Best fit is deviated by 50% in the major wave frequency regime
[0.39-0.85] and around the natural frequency of the jacket [1.56], similar to
the base case, majority of the fatigue damage were from the moderate sea
states. However, the fatigue damage due to each sea state range increased
when the Best fit RAO shifted up and reduced when it was shifted down. This
was because, the standard deviations of the response process/stress ranges
increased when the RAO shifted up and decreases when the RAO is shifted
down see Table 8-3.

– When the lower segment of the “T” S-N curve was assumed to be continuous,
straight S-N curve with slope m=5, the fatigue damage has been found equiv-
alent to the base case, which showed that the stress ranges for all sea states
included in the analysis had less or equal to 83.4 MPa.

– When the upper segment of the “T” S-N curve was assumed to be continuous,
straight S-N curve with slope m = 3, the fatigue damage has been found to
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be too high relative to the base case. The reason was that the extended curve
reduces the number of cycles to failure, N, which is inversely proportional
to fatigue damage, see Miner-Palmgren formula (8.14). In this case, it was
observed also that major of the fatigue damage was accumulated from sea
states of lower severity, i.e. sea states with significant wave height in the range
2m – 6m. This is because the extended curve over estimated the fatigue damage
especially due to the lower sea states.

9.2 Conclusion

Based on the investigation that has done in this thesis, the major findings are listed below:

• As the general expectation, majority of the fatigue damage comes from sea states of
moderate severity, i.e. sea states with significant wave heights between 4 and 8m.

• Straight S-N curve with slope m=3, upper segment to be continuous, can be adopted,
but it over estimates the fatigue damage especially due to lower sea states.

• Straight S-N curve with slope m=5, lower segment to be continuous, can be adopted,
but it can over estimate fatigue damage due to higher sea states, if their stress range
is greater than 83.4MPa in case of tubular structural details.

9.3 Recommendation and Future Work

In chapter 8.6, numbers of assumptions have been considered to determine the fatigue
damages on the tubular structural detail. But some of these assumptions might alter the
results, if they could have been taken in to consideration. For example:

• The waves could have been considered to come from different directions.

• The variation of the stress ranges could be assumed as a broad band and random
Gaussian process.

• The jacket could be assumed as a non-linear mechanical system, i.e. the structural
members of the jacket will remain in their elastic limit state under the applied
hydrodynamic loads.

• The jacket could be assumed as a non-linear mechanical system, i.e. the structural
members of the jacket will remain in their elastic limit state under the applied
hydrodynamic loads.
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Appendix A: Estimation of Wave Energy Spectral Den-

sity

A-1: Estimated Wave Energy Spectral Density from Test Condi-
tions

As described in chapter 4.3.2, 21 wave spectra are estimated for each time series wave
record listed in Table 4-1 using the FFT method. In this process, for each test condition
of total data length ,Ts = 1200 sec, is divided in to nine numbers of segments, each one
having 1024 data pints and time increment of 0.1302 second. Figure below show estimated
wave spectra from test.con 5-21.

Figure 1: Time series wave records and estimated wave spectrum for test.con 5.

Figure 2: Time series wave records and estimated wave spectrum for test.con 6.
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Figure 3: Time series wave records and estimated wave spectrum for test.con 7.

Figure 4: Time series wave records and estimated wave spectrum for test.con 8.

Figure 5: Time series wave records and estimated wave spectrum for test.con 9.
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Figure 6: Time series wave records and estimated wave spectrum for test.con 10.

Figure 7: Time series wave records and estimated wave spectrum for test.con 11.

Figure 8: Time series wave records and estimated wave spectrum for test.con 12.
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Figure 9: Time series wave records and estimated wave spectrum for test.con 13.

Figure 10: Time series wave records and estimated wave spectrum for test.con 14.

Figure 11: Time series wave records and estimated wave spectrum for test.con 15.
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Figure 12: Time series wave records and estimated wave spectrum for test.con 16.

Figure 13: Time series wave records and estimated wave spectrum for test.con 17.

Figure 14: Time series wave records and estimated wave spectrum for test.con 18.
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Figure 15: Time series wave records and estimated wave spectrum for test.con 19.

Figure 16: Time series wave records and estimated wave spectrum for test.con 20.

Figure 17: Time series wave records and estimated wave spectrum for test.con 21.
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A-2: Standard Wave Spectrum

The Pierson-Moskowitz (PM) Wave Spectra)

The Pierson-Moskowitz spectrum was originally developed for fully-developed wind sea
state, i.e. when the growth of the waves is not limited by the size of the generation area
called fetch length. The PM spectrum is applicable for major part of the time in the
North Sea and it may be used for most fatigue analysis, (A.Almar-Næss, 1985). Pierson-
Moskowitz spectrum, SPM,ΞΞ(ω|Hs, Tp), formula is given by:

SPM,ΞΞ(ω|Hs, Tp) =
5

16
∗H2

s ∗ ω4
p ∗ ω−5 ∗ exp(− 5

4
∗( ω
ωp

)−4)
(1)

where: Hs is the significant wave height in meter; ωp = 2π
Tp

is angular spectral peak

frequency in radian per second and TP is the spectral peak period in seconds.
The JONSWAP (J) Wave Spectra )

The JONSWAP spectrum is an extension of the PM spectrum to include limited size of
wave generation area and to describe developing sea states. This method can be used
for extreme wave conditions in the North Sea, (A.Almar-Næss, 1985). With reference to
(DNV-RP-C205, 2010), this specral standard is expected to be a reasonable model when
the relation given below is sutisfied.

3.6 <
Tp√
Hs

< 5 (2)

The JONSWAP spectrum, SJ,ΞΞ(ω|Hs, Tp), formula is given as:

SJ,ΞΞ(ω|Hs, Tp) = SPM,ΞΞ(ω|Hs, Tp) ∗ Aγ ∗ γexp
(−0.5∗(

ω−ωp
σ∗ωp )2)

(3)

where: γ is dimensionless peak shape parameter; σ is spectral width parameter given as:

• σ = σa for ω ≤ ωp

• σ = σb for ω ≥ ωp

σa = 0.07 and σb = 0.09 Aγ = 1 − 0.287 ∗ ln(γ) is normilizing factor. Note that the
JONSWAP spectrum reduces to Pierson-Moskowtz spectrum if the peak shape parameter,
γ is one.
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B: Estimation of Response Energy Spectral Density

B-1: Estimated Response Energy Spectral Density from leg A2

The following Figures show the estimated response spectrum based on the time series
axial load records on Leg A2.

Figure 18: A2 time series response records (a), A2 response spectrum (b) and A2 response
& Wave spectrum (c) during test.con5
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Figure 19: A2 time series response records (a), A2 response spectrum (b) and A2 response
& Wave spectrum (c) during test.con6
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Figure 20: A2 time series response records (a), A2 response spectrum (b) and A2 response
& Wave spectrum (c) during test.con7

Figure 21: A2 time series response records (a), A2 response spectrum (b) and A2 response
& Wave spectrum (c) during test.con8
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Figure 22: A2 time series response records (a), A2 response spectrum (b) and A2 response
& Wave spectrum (c) during test.con9
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Figure 23: A2 time series response records (a), A2 response spectrum (b) and A2 response
& Wave spectrum (c) during test.con10

Figure 24: A2 time series response records (a), A2 response spectrum (b) and A2 response
& Wave spectrum (c) during test.con11
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Figure 25: A2 time series response records (a), A2 response spectrum (b) and A2 response
& Wave spectrum (c) during test.con12
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Figure 26: A2 time series response records (a), A2 response spectrum (b) and A2 response
& Wave spectrum (c) during test.con13
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Figure 27: A2 time series response records (a), A2 response spectrum (b) and A2 response
& Wave spectrum (c) during test.con14

Figure 28: A2 time series response records (a), A2 response spectrum (b) and A2 response
& Wave spectrum (c) during test.con15
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Figure 29: A2 time series response records (a), A2 response spectrum (b) and A2 response
& Wave spectrum (c) during test.con16
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Figure 30: A2 time series response records (a), A2 response spectrum (b) and A2 response
& Wave spectrum (c) during test.con17

Figure 31: A2 time series response records (a), A2 response spectrum (b) and A2 response
& Wave spectrum (c) during test.con18
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Figure 32: A2 time series response records (a), A2 response spectrum (b) and A2 response
& Wave spectrum (c) during test.con19
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Figure 33: A2 time series response records (a), A2 response spectrum (b) and A2 response
& Wave spectrum (c) during test.con20

Figure 34: A2 time series response records (a), A2 response spectrum (b) and A2 response
& Wave spectrum (c) during test.con21
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C: Estimation of RAOs Using Spectral Relation

C-1: Estimated RAOs from Leg A2

Figures below shows estimated RAOs from leg A2 based on the spectral relation given in
chapter 6.1.1, equation 6.1.

Figure 35: Wave spectrum, response spectrum, and RAO from Leg A2 during test.con 5.

Figure 36: Wave spectrum, response spectrum, and RAO from Leg A2 during test.con 6.
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Figure 37: Wave spectrum, response spectrum, and RAO from Leg A2 during test.con 7.

Figure 38: Wave spectrum, response spectrum, and RAO from Leg A2 during test.con 8.

Figure 39: Wave spectrum, response spectrum, and RAO from Leg A2 during test.con 9.
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Figure 40: Wave spectrum, response spectrum, and RAO from Leg A2 during test.con
10.

Figure 41: Wave spectrum, response spectrum, and RAO from Leg A2 during test.con
11.

Figure 42: Wave spectrum, response spectrum, and RAO from Leg A2 during test.con
12.
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Figure 43: Wave spectrum, response spectrum, and RAO from Leg A2 during test.con
13.

Figure 44: Wave spectrum, response spectrum, and RAO from Leg A2 during test.con
14.

Figure 45: Wave spectrum, response spectrum, and RAO from Leg A2 during test.con
15.
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Figure 46: Wave spectrum, response spectrum, and RAO from Leg A2 during test.con
16.

Figure 47: Wave spectrum, response spectrum, and RAO from Leg A2 during test.con
17.

Figure 48: Wave spectrum, response spectrum, and RAO from Leg A2 during test.con
18.

105



APPENDIX C

Figure 49: Wave spectrum, response spectrum, and RAO from Leg A2 during test.con
19.

Figure 50: Wave spectrum, response spectrum, and RAO from Leg A2 during test.con
20.

Figure 51: Wave spectrum, response spectrum, and RAO from Leg A2 during test.con
21.
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C-2: Coherence Analysis of the Estimated RAOs from Leg A2

Figure 52: Coherence analysis during test.com 5 & 6 on leg A2

Figure 53: Coherence analysis during test.com 7 & 8 on leg A2
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Figure 54: Coherence analysis during test.com 9 & 10 on leg A2

Figure 55: Coherence analysis during test.com 11 & 12 on leg A2

Figure 56: Coherence analysis during test.com 13 & 14 on leg A2
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Figure 57: Coherence analysis during test.com 15 & 16 on leg A2

Figure 58: Coherence analysis during test.com 17 & 18 on leg A2

Figure 59: Coherence analysis during test.com 19 & 20 on leg A2
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Figure 60: Coherence analysis during test.com 21 on leg A2
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C-3: Possible Deviations of the Best Fit RAO at Different Fre-
quency Ranges

1. At the Beginning of the Best Fit RAO [0-0.39]

RAO(ω) =



1.28ω, for 0 ≤ ω ≤ 0.39

−5.34ω2 + 6.65ω − 1.28, for 0.39 ≤ ω ≤ 0.85

0.50, for 0.85 ≤ ω ≤ 1.39

123.39ω2 − 345.50ω + 242.35, for 1.39<ω ≤ 1.56

9181.18 ∗ exp(−5.04ω) for ω>1.56

(4)

Figure 61: Possible deviation of the Best fit RAO at the beginning [0-0.39].

2. In the Major Wave Frequency Regime [0.39-0.85]

a. 50% deviation above the best fit RAO in the frequency range [0.39-0.85]

RAO(ω) =



0.5, for 0 ≤ ω ≤ 0.39

−7.99ω2 + 9.96ω − 2.17, for 0.39 ≤ ω ≤ 0.85

0.50, for 0.85 ≤ ω ≤ 1.39

123.39ω2 − 345.50ω + 242.35, for 1.39<ω ≤ 1.56

9181.18 ∗ exp(−5.04ω) for ω>1.56

(5)
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Figure 62: 50 % deviation above the best fit RAO in the major wave frequency regime at
[0.39-0.85]

b. 50% below the estimated RAO in the frequency range [0.39-0.85]

RAO(ω) =



0.5, for 0 ≤ ω ≤ 0.39

−2.68ω2 + 3.34ω − 0.40, for 0.39 ≤ ω ≤ 0.85

0.50, for 0.85 ≤ ω ≤ 1.39

123.39ω2 − 345.50ω + 242.35, for 1.39<ω ≤ 1.56

9181.18 ∗ exp(−5.04ω) for ω>1.56

(6)

Figure 63: 50% deviation below the best fit RAO in the major wave frequency regime at
[0.39-0.85]
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3. Between the Major Wave Frequency Regime and Natural Frequency of
the Structure [0.85-1.39]

RAO(ω) =



0.5, for 0 ≤ ω ≤ 0.39

−5.34ω2 + 6.65ω − 1.28, for 0.39 ≤ ω ≤ 0.85

3.43ω2 − 7.68ω + 4.55, for 0.85 ≤ ω ≤ 1.39

123.39ω2 − 345.50ω + 242.35, for 1.39<ω ≤ 1.56

9181.18 ∗ exp(−5.04ω) for ω>1.56

(7)

Figure 64: Possible deviation of the Best fit RAO at [0.85-1.39].

4. Around the Natural Frequency of the Jacket [1.56]

a. 50% deviation above the Best fit RAO around the natural frequency [1.56]

RAO(ω) =



0.5, for 0 ≤ ω ≤ 0.39

−5.34ω2 + 6.65ω − 1.28, for 0.39 ≤ ω ≤ 0.85

0.5, for 0.85 ≤ ω ≤ 1.39

172.90ω2 − 480.66ω + 334.54, for 1.39<ω ≤ 1.56

76862.54 ∗ exp(−6.12ω) for ω>1.56

(8)
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Figure 65: 50% deviation above the best fit RAO around the natural frequency of the
jacket, around [1.56]

b. 50% deviation below the Best fit RAO around the natural frequency [1.56]

RAO(ω) =



0.5, for 0 ≤ ω ≤ 0.39

−5.34ω2 + 6.65ω − 1.28, for 0.39 ≤ ω ≤ 0.85

0.5, for 0.85 ≤ ω ≤ 1.39

46.06ω2 − 128.04ω + 89.485, for 1.39<ω ≤ 1.56

256.62 ∗ exp(−− 3.17ω) for ω>1.56

(9)

Figure 66: 50% deviation below the best fit RAO around the natural frequency of the
jacket, around [1.56]
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D: Fatigue Damage

D-1: Numerical Calculation for the Base/Primary Study Case

To calculate the fatigue damage on a given structural detail, generally the procedures
presented in section 8.6.2 are followed. To show these steps numerically, fatigue dam-
age for one sea state will be presented in this section while for the others are done in
MATLAB with the same procedures. For this example let’s take a sea state with a signif-
icant wave height of 8 meter and 10 second wave spectral peak period for 3-hour duration.

Step 1. For estimation of wave spectrum from time series wave records see chapter 4.

Step 2. For estimation of response spectrum from time series response record see chapter 5.

Steps 3-4. For estimation of the best fit RAO by performing coherence analysis between the
incoming waves and responses of the jacket see chapter 6.Then from these steps,
equation 6.7 has been taken as the best fit RAO of the structure and it is given
below as:

RAO(ω) =



0.5ω, for 0 ≤ ω ≤ 0.39

−5.34ω2 + 6.65ω − 1.28, for 0.39 ≤ ω ≤ 0.85

0.50, for 0.85 ≤ ω ≤ 1.39

123.39ω2 − 345.50ω + 242.35, for 1.39<ω ≤ 1.56

9181.18 ∗ exp(−5.04ω) for ω>1.56

(10)

Step 5. In this step, the wave spectrum for the given sea state has to be determined us-
ing the Pierson-Moskowitz spectrum formula (8.1) and substituting the given wave
parameters of Hs and Tp yields as:

SPM,ΞΞ(ω|8, 10) = 3.12 ∗ ω−5 ∗ exp(−0.1948 ∗ ω−4) (11)

Figure 67: Pierson-Moskowitz wave spectrum for Hs=8m and Tp=10sec
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Step 6. From steps 4 and 5 determine the response spectrum using the spectral relation
equation 8.8, as a result the response of the jacket for the given sea state is repre-
sented as:

SΓΓ(ω|8, 10)

=



0.78 ∗ ω−5 ∗ exp(−0.1948ω(−4)), for 0 ≤ ω ≤ 0.39

| − 5.34ω2 + 6.65ω − 1.28|2 ∗ 3.18 ∗ ω−5 ∗ exp(−0.195ω(−4)), for 0.39 ≤ ω ≤ 0.85

0.78 ∗ ω−5 ∗ exp(−0.195ω(−4)), for 0.85 ≤ ω ≤ 1.39

|123.40ω2 − 345.50ω + 242.35|2 ∗ 3.18 ∗ ω−5 ∗ exp(−0.195ω(−4)), for 1.39<ω ≤ 1.56

|9181.18 ∗ exp(−5.04ω)|2 ∗ 3.18 ∗ ω−5 ∗ exp(−0.195ω(−4)), for ω>1.56
(12)

Figure 68: Response spectrum of the jacket for a sea state of Hs=8m and Tp=10sec

Step 7. Once the response spectrum for the given sea state is developed; its spectral mo-
ments can be calculated using equation 8.9. The zero order, m0,ΓΓ(8, 10), and second
order, m2,ΓΓ(8, 10), spectral moments for the give response spectrum, SΓΓ(ω|8, 10),
are determined as below:

m0,ΓΓ(8, 10) =

∫ ∞
0

SΓΓ(ω|8, 10) ∗ dω =
∞∑
0

SΓΓ(ω|8, 10) ∗∆ω (13)
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Assuming a frequency increment, ∆ω, to be 0.0052, the zero order response spectral
moment for the given sea state, which is equal to the variance of the response
process, σ2

ΓΓ(8, 10), has been solved and found to be:

m0,ΓΓ(8, 10) = σ2
ΓΓ(8, 10) = 2.24 (14)

Therefore, the standard deviation, σΓΓ(8, 10), for this response process is estimated
to be 1.197.
And second order response spectral moment, m2,ΓΓ(8, 10), can be calculated as:

m2,ΓΓ(8, 10) =

∫ ∞
0

ω2 ∗ SΓΓ(ω|8, 10) ∗ dω =
∞∑
0

ω2SΓΓ(ω|8, 10) ∗∆ω (15)

Assuming a frequency increment, ∆ω, to be 0.0052, the second order response spec-
tral moment for the given sea state has been solved and found to be 2.206.
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From these two response spectral moments, the number of response cycles, n0,ΓΓ(8, 10),
for the given duration is determined using equation 8.13 and it is found to be around
1706 cycle. This mean the structure is subjected for around 1706 stress cycles within
3-hours.

Step 8. As described in section 8.5, for linear structures their stress range distribution can be
modeled with a Rayleigh probability function for short term duration. The scaling
parameter of the Rayleigh distribution is determined from the standard deviation
of the response process in step 7. Therefore, the Rayleigh probability function given
in equation 8.22 will reduced as below for the given sea state.

f(∆σ|8, 10) = 0.112 ∗∆ ∗ exp(−(0.295∆σ)2) (16)

Step 9. From the function given in step 8 and number of response cycles in step 7, determine
the number of stress cycles, ni(Hs, Tp), within a given stress block i of the distri-
bution using equation 8.15. For the given sea state the number of cycles, ni(8, 8),
within a given stress block is determined as follows:

ni(8, 10) = 191.07 ∗∆σi ∗ exp(−(0.295∆σi)
2) (17)

Steps 10-11. As mentioned, all tubular structural details are classified as “T” class and their
S-N curve constant parameters are given in table 8-2 and Figure 8-5. For this type
of S-N curve, the number of stress cycles to failure at a constant ∆σi stress range
within the stress block i is estimated as:

Ni(∆σi) =

{
5.8076x1011 ∗∆σ−3

i , for ∆σi ≤ 83.4

4.0364x1015 ∗∆σ−5
i , for ∆σi>83.4

(18)

Steps 12. Once the number of cycles, ni(Hs, Tp), within the given stress block and the number
of cycles to failure at a constant ∆σi stress range, Ni(∆σi),are determined, the
fatigue damage is their ratio and it is given as:

Di(8, 10) =

{
32.9x10−11 ∗∆σ4

i ∗ exp(−(0.295∆σi)
2), for ∆σi ≤ 83.4

47.34x10−15 ∗∆σ6
i ∗ exp(−(0.295∆σi)

2), for ∆σi>83.4
(19)

Having calculated the fatigue damage for each stress block in the distribution and
summing up all yields the cummulative fatigue damage due to the given sea state
as bellow:

Di(8, 10) =

{
32.9x10−11

∑∞
i=0 ∆σ4

i ∗ exp(−(0.295∆σi)
2), for ∆σi ≤ 83.4

47.34x10−15
∑∞

i=0 ∆σ6
i ∗ exp(−(0.295∆σi)

2), for ∆σi>83.4
(20)

By modeling this equation in MATLAB separately, the incurred fatigue damage due
to the specified sea state, i.e. significant wave height of 8 meter and spectral peak
period of 10 seconds for the 3-hour duration, was found to be 2.49x10−7.

Step 13. For other new sea states go back to step 5 and repeat steps 5 to 12.
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In this thesis, these procedures are written in the MATLAB script and fatigue damage
ratio for all the sea states given in table 8.1 (163133 sea states) are analyzed and the result
is presented in section 8.6.4. The procedures given above are for the base case study only,
but by customizing steps 4 and 11, the secondary study case, deviated Best Fit RAO,
and third study cases, single slope S-N cure, are performed.

MATLAB Script for Accumulated Fatigue Damage vs. Hs

119



APPENDIX D

120



APPENDIX D

121



APPENDIX D

122



APPENDIX D

123



APPENDIX D

124



APPENDIX D

D-2: Accumulated Fatigue Damage Results In Tabular Form

• A - Fatigue Damage Result For The Base/Primary Study Case

– Option 1 - Fatigue damage accumulation versus significant wave heights Hs for
the base case study

Table 1: Fatigue accumulation vs. Hs for the base/primary case study

– Option 2 - Fatigue damage accumulation versus storm events for the base case
study

Table 2: Fatigue accumulation vs. storm events for the base/primary case study
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• B - Fatigue Damage Result For The Secondary Study Case (Possible
Deviations of The Best Fit RAO)

1. Deviation of the Best fit RAO at the beginning [0-0.39]

Table 3: Fatigue accumulation for the secondary study case where the Best fit RAO
deviated at [0-0.39].

2. Deviation of the Best fit RAO around the spectral peak [0.39-0.85]

a. 50% deviation above the Best fit RAO in the frequency range [0.39-0.85]

Table 4: Fatigue accumulation for the secondary study case, where the Best fit RAO
deviated 50% up at [0.39-0.85]
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b. 50% deviation below the Best fit RAO in the frequency range [0.39-0.85]

Table 5: Fatigue accumulation for the secondary study case, where the Best fit RAO
deviated 50% down at [0.39-0.85].

3. Deviation between the major wave frequency regime and natural frequency of
the Jacket [0.85-1.39]

Table 6: Fatigue accumulation for the secondary study case, where the Best fit RAO
deviated at [0.85-1.39].
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4. Deviation around the natural frequency of the Jacket [1.56]

a. When the Best fit RAO is deviated up by 50% around the natural frequency

Table 7: Fatigue accumulation for the secondary study case, where the Best fit RAO
deviated 50% up around natural frequency the jacket at [1.56].

b. When the Best fit RAO is deviated down by 50% around the natural
frequency

Table 8: Fatigue accumulation for the secondary study case, where the Best fit RAO
deviated 50% down around natural frequency the jacket at [1.56].

129



APPENDIX D

• C - Fatigue Damage Result For The Third Study Case (Single Slope
S-N Curve)

1. With a straight ”T” S-N curve with slope m=3.

Table 9: Fatigue accumulation for the third study case with straight S-N curve with slope
m=3

2. With a straight ”T” S-N curve with slope m=5.

Table 10: Fatigue accumulation for the third study case with straight S-N curve with
slope m=5
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