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Abstract

Spontaneous imbibition is a process where the wetting fluid displaces the non-wetting
fluid in a porous medium by means of capillary forces. Spontaneous imbibition
plays a significant role in the recovery of hydrocarbons, especially from fractured
reservoirs and particularly where the matrix has low permeability. An increasing
portion of remaining reserves in both oil and gas reservoirs are retained in low
permebility rocks and in these reservoirs spontaneous imbibition is the key recovery
mechanism. In this study we have derived an analytical solution of a model that
describes counter-current imbibition, in terms of a non-linear diffusion equation,
based on ideas presented in a paper by Tavassoli, Zimmerman and Blunt [19]. We
have also considered a discrete scheme for the equation which allowed us to compute
a numerical solution of the model. We have then used the solutions to gain insight
into which parameters that control the oil recovery by spontaneous imbibition. A
comparison of the numerical and the analytical solution have been made to test the
validity of the analytical solution.
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1. Introduction

In this thesis we will study spontaneous imbibition, a process where the wetting
fluid, by means of capillary forces, will displace the non-wetting fluid. Spontanous
imbibition is an important recovery mechanism in fractured reservoirs [4], and it is
also strongly dependent on wettability, a property that can be altered through EOR
mechanisms [20]. The focus point of this study will be a paper by Tavassoli et al.
[19]. They present an analytical solution to a model for oil recovery during counter-
current spontaneous imbibition in water-wet systems. A thorough description of the
objectives is presented in sec. 1.3.
The thesis will be divided into 4 parts. In the first part, consistiting of chapter 1
and chapter 2, we will describe the objectives and take a look at the fundamental
concepts relevant to this thesis, in the second part, consisting of chapter 3, we
will attempt to reproduce the model that Tavassoli et al. proposed [19], including
the solution procedure for early and late times. In the third part, consisiting of
chapter 4, we will focus on solving the model both analytically and numerically,
and also look at the model’s dependence on specific parameters. In the last part,
consisting of chapter 5 and chapter 6, we will compare the analytical and numerical
models and conclude.

1.1. Enhanced oil recovery

Oil recovery operations can usually be divided into three stages: The primary pro-
duction period, which is the production resulting from the initial pressure naturally
existing in the reservoir. The secondary production period, which is the use of
mechanical energy to maintain pressure in the reservoir, usually by water or gas
injection. The tertiary oil recovery methods, which are also referred to as enhanced
oil recovery [7]. The target of EOR methods is to recover the oil not produced
by the conventional primary and secondary production methods, usually by use of
injectants to decrease residual oil and increase volumetric sweep [7][16].
Thermal recovery by steam injection through imbibition of condensed water, water-
flooding of heterogenous reservoirs as well as alternating injection of water and gas
are all different types of secondary recovery processes where the important role of
spontaneous imbibition has been recognized. [13]. As mentioned in the next section
the recovery of oil by spontaneous imbibition of brine into reservoir rock is of special
importance in fractured reservoirs. EOR processes in fractured reservoirs must try
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Chapter 1 Introduction

Figure 1.1.: Oil production vs. time for different production methods. Figure from
[9]

to improve the spontaneous imbibition process. The most common EOR method to
improve the spontaneous imbibition process is wettability alteration. Many carbon-
ate reservoirs act as neutral or preferentially oil-wet [20], and for oil-wet reservoirs no
spontaneous imbibition of water takes place. However, if the injected fluid can alter
the wetting condition towards a more water-wet state, improvement of oil recovery
is possible [20]. For carbonate reservoirs the use of cationic surfactants have been
used to alter the wettability to more water-wet conditions, especially through the
ion-pair interaction between the cationic surfactants and the carboxylates in crude
oil, which are the most strongly adsorbed material onto the chalk surface [18]. When
flooding the reservoir with seawater, the potential determining ions Ca2+ and SO2+

4
present have also been shown to greatly influence the surface charge of chalk and
thereby modify the wettability during the water injection [20]. In addition Mg2+

have also been found to be a strong potential determining ion [20].

1.2. Fractured reservoirs

Naturally fractured reservoirs are important oil and gas resources [4]. The reser-
voirs are composed of two parts, a low permeability matrix block, surrounded by
fractures with much higher permeability. Most of the recoverable oil is located in
the low permeability matrix. Waterflooding is frequently implemented to increase
recovery in fractured reservoirs [4]. However, the success of the waterflood is largely
determined by the ability of the matrix block to imbibe the injected water and push
the oil out in the highly mobile fracture system and towards the production well.
If the reservoir is oil-wet the water will not displace the oil in the matrix since
there is no spontaneous imbibition of water, and only the oil in the fractures will be
displaced. This will result in poor recoveries and early breakthrough of water. In
cases where the fractured reservoir is water-wet, imbibition can lead to significant
recoveries [4].
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1.3 Objectives

1.3. Objectives

In this thesis we focus on a mathematical model for spontaneous imbibition. We
restrict ourselves to the case with a fixed wetting case, i.e no alteration of wetta-
bility occurs. As mentioned the starting point for this thesis is a paper presented
by Tavassoli et al. [19]. They present an analytical solution of the model that de-
scribes counter-current imbibition in terms of a nonlinear diffusion equation. The
objective of the thesis is to reproduce this analytical solution and fill in some details
in the derivation of the model, we then implement MATLAB code to visualize this
solution and its dependence on various parameters. We make several observations
of the characteristic behaviour of the model based on the analytical approach. The
analytical approach involves several assumptions and simplifications when an early
and a late time solution is derived. Hence it is instructive to assess the consequences
of these assumptions. We also consider a discrete scheme for the model. The an-
alytical solution will then be compared to the approximate solution obtained by
solving the diffusion equation numerically. We will also include some comparison
with experimental data.
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2. Fundamentals

In this chapter we will describe general principles and fundamental concepts related
to this thesis.

2.1. Interfacial tension

Figure 2.1.: Interfacial forces at an interface between two immiscble fluids and a
solid. Figure from [5].

Interfacial tension is a term describing the acting forces between two immiscible
fluids in contact with each other. One can view the interfacial tension as the force
required per unit length to extend the surface one unit [7]. When the immiscible
fluids are located in a porous medium the interfacial tension influences the satu-
rations, distributions and displacements of the fluids [7], and is thus an important
parameter in many recovery methods. The interfacial tension is denoted by σ, and
when in a pressure equilibrium state, the magnitude of interfacial tension describes
how much energy is required to keep the two fluids separated [23]. Fig. 2.1 shows the
interfacial forces between two immiscible fluids, oil and water in this case, denoted
by σow.

2.2. Wettability

The tendency of a fluid to adhere to a solid surface if another fluid is present is
called the wettability. When there are two or more immiscible fluids present in a
system, one of them will usually be more attracted to the solid than the other [7].
The fluid that is more strongly attracted is called the wetting fluid, e.g if water
is more attracted to the solid we call it the wetting phase and we say the rock is
water-wet [1][7]. Referring to Fig. 2.2 we can say, although very simplified, that if the
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Chapter 2 Fundamentals

Figure 2.2.: Figure showing a water drop on a solid surrounded by oil. θ is the
contact angle between the oil/water/solid interface measured trough the water
phase, and σow is the interfacial tension between oil and water. Figure from [5].

wetting angle, θ, is between 0◦ and 90◦ the solid is water-wet, and from 90◦ to 180◦
it is characterized as oil-wet. Tab. 2.1 shows a more comprehensive classification of
different wetting states as a function of wetting angle.

Wetting angle (degree) Wettability preference
0 - 30 Strongly water-wet
30 - 90 Preferentially water-wet
90 Neutral wettability

90 - 150 Preferentially oil-wet
150 - 180 Strongly oil-wet

Table 2.1.: Arbitrary wettability classes for water-oil system. Table from [23].

Figure 2.3.: Wetting in pores. In a water-wet case (left), oil remains in the center
of the pores. The reverse condition holds if all surfaces are oil-wet (right). In the
mixed-wet case, oil has displaced water from some of the surfaces but is still in
the centers of the water-wet curves (middle). The three conditions shown have
similar saturations of water and oil [1]. Figure from [1].

Rock wettabilities has a strong influence on the nature of fluid saturations and also
the relative permeability characteristics of a fluid/rock system as can be seen in

6



2.3 Relative permeability

Fig. 2.4. The location of a phase within the pore structure depends on the wetta-
bility of that phase, as we see in figure Fig. 2.3. For water-wet systems the oil is
trapped in the pores while the water is spread over the surface of the rock, and in-
versely for oil-wet systems [7]. Mixed-wet systems are more complex, where we may
encounter both oil- and water-wet areas in the same reservoir. This is usually a re-
sult of heterogenities in chemical composition of the rock surface, the rocks mineral
composistion or a difference in saturation history [1]. There also exists intermediate
wettability where the wetting systems have little to no preference between oil and
water. In this thesis the focus has mainly been strongly water-wet systems.

2.3. Relative permeability

Figure 2.4.: Relative permeability curves in water- and mixed-wet reservoirs. This
figure also contains capillary pressure curves which will not be discussed in this
section. Figure from [1].

Relative permeability is the relationship between absolute and effective permeability
in a porous system and is defined as:

Krl = Ke

K
(2.1)

where Krl is the relative permeability, K is the absolute permeability, that is, when
the system is 100% saturated by a single fluid and Ke is the effective permeability
(the permeability of a given fluid when more than one fluid is present) of a particular
fluid in the system [23]. From Eq.(2.1) we see that relative permeability is the ratio
of the effective permeability to the absolute permeability. In short we can say that it
is a measure of how easily a fluid can pass through a porous medium in the presence

7



Chapter 2 Fundamentals

of another fluid, and it is a strong function of the respective phase saturations.
Relative permeability is a rock-fluid property, so the functionality between relative
permeability and saturations will also be a function of rock properties like pore
size distribution and wettability [23]. Generally there is not a strong correlation
between relative permeability and fluid properties, though when there is a drastic
change in certain properties, like interfacial tension, the relative permeability can
be affected [7][23]. Fig. 2.4 illustrates the difference in relative permeability curves
for different wetting conditions. At low water saturations the Kro values are lower
in the mixed-wet case because the oil is in competition with the water in the large
pores. Similarly, in the water-wet case the Krw is reduced at high water saturation
because the large pores is preferentially occupied by oil [1].

2.3.1. Corey relative permeability

In this thesis we have used the Corey relative permeability correlation for oil and
water, which are given by:

Kro = Kmax
ro (1− S)b, Krw = Kmax

rw (S)a (2.2)

where Kmax
ro and Kmax

rw is introduced as the end point relative permeabilities of oil
and water respectively, S is the normalized water saturation from Eq.(2.11), b is the
Corey oil exponent and a is the Corey water exponent. Fig. 2.5 shows a set of relative
permeability curves created using the Corey relative permeability correlation. Based
on the high intitial Kro and the reduced Krw we see that these relative permeability
curves are for water-wet reservoirs.
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Figure 2.5.: Figure showing a set of Corey relative permeability curves.
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2.4 Capillary pressure

2.4. Capillary pressure

Figure 2.6.: Illustration of a capillary tube experiment.

Whenever immiscible fluids are in contact with each other there exists a molecular
pressure difference across the interface of the fluids. This pressure difference is what
is defined as the capillary pressure [23]. In short, Ursin and Zolotukhin describes
the capillary pressure as the molecular pressure difference between the wetting and
the non wetting fluid [23].

Pc = Pnon−wetting phase − Pwetting phase (2.3)

The fluid rise in a capillary tube is one way of illustrating the capillary pressure
(Fig. 2.6). The fluid above the water is oil and since the glass has a preference for
water, there will be a capillary rise in the tube. It can be shown that the capillary
pressure in a tube is given by

Pc = 2σowcosθ
r

(2.4)

Through the relation in Eq.(2.4) we see that the capillary pressure is related to the
interfacial tension between the fluids (σow), the wettability of the fluids (through
the contact angle θ), and the size of the capillary, r. Because of the complexity of
the porous media, the capillary tube model is often used as an idealized approxi-
mation to capillary phenomenon in oil bearing rocks [7]. Despite the idealization
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Chapter 2 Fundamentals

Figure 2.7.: Basic capillary pressure curves. Figure from [11]

the experiment can still be related to fluid contacts and saturation distributions in
a reservoir [7][23].
Fig. 2.7 shows a set of basic capillary pressure curves. Drainage refers to a decrease
in the wetting fluid saturation and imbibition refers to an increase in the wetting
fluid saturation [23]. So for a reservoir originally filled with water, the primary
drainage curve corresponds to the initial filling of the reservoir with oil. The sec-
ondary drainage curve relates to later displacement processes and the imbibition
curve relates to the displacement of oil by water.
Referring to Fig. 2.8 we see capillary pressure function for both water- and mixed-wet
reservoirs. The capillary pressure curve stays positive over most of the saturation
range in the strongly water-wet case, this is because all of the surface imbibe water.
In the mixed-wet case its sign has both positive and negative portions, which signifies
that some parts of the surface imbibe water and others imbibe oil [1].
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2.4 Capillary pressure
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Figure 2.8.: Figure showing capillary pressure functions for water- and mixed-wet
states. The figure was created using LET capillary pressure described in sec. 2.4.2

2.4.1. Leverett J-function
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Figure 2.9.: Figure showing dimensionless capillary pressure, the Leverett J-
function, vs. water saturation Sw.

The Leverett J-function is a dimensionless capillary pressure function of water satu-
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Chapter 2 Fundamentals

ration. It is used to eliminate capillary pressure differences beween different strata,
and to describe reservoirs of similar lithology [8]. The Leverett J-function can be
expressed by the formula:

J(Sw) = Pc
σ

√√√√K

/o
(2.5)

where Pc is the capillary pressure, σ is the interfacial tension, K is the permeability
and /o the porosity. The physical interpretation of the Leverett J-function is that
for reservoirs whose lithology is similar and have fixed saturations, the J-function
remains unaltered. Differences caused by different media or fluids can also be elim-
inated by the J-function [8]. Fig. 2.9 shows a J-function where the Pc curve was
created using LET-Capillary pressure as described in the next section.

2.4.2. LET capillary pressure
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Figure 2.10.: Example of capillary pressure curve created using the LET capillary
pressure correlation.

Lomeland et al. proposed a new analytical correlation for the capillary pressure
function in 2008 [11]. The advantage of the LET model is that it has a greater
degree of flexibility than previously proposed capillary pressure correlations.
The LET type correlation for imbibition is given by:

PC = P si
C (1− Swn)Lsi

(1− Swn)Lsi + EsiST si

wn

+ P si
C S

Lfi

wn

SLfi

wn + Efi(1− Swn)T fi (2.6)
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2.4 Capillary pressure

where the parameter L describes the lower part of the curve. The parameter T
describes the top part of the curve in much the same way that the L-parameter
describes the lower part, and the parameter E describes the position of the slope
of the curve. Increasing the value of the E-parameter shifts the slope towards the
high end of the curve and opposite for decreasing values of the E-parameter [11].
The first term in Eq.(2.6) describes the positive part of the curve, which is the
spontaneous imbibition, denoted by the superscript si, and the second term describes
the negative, forced part of the curve, denoted by the superscript fi. Fig. 2.10 shows
an example of an arbitrary capillary pressure curve created using LET, and Fig. 2.11
shows the flexibility of LET capillary pressure for the spontaneous imbibition part
of the curve.
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Figure 2.11.: Figure showing capillary pressure curves with varying LET-
parameters for the spontaneous imbibition curve.

Since no experimental data has been given for the capillary pressure, the flexibility
of the LET capillary pressure has made it easier constructing capillary pressure
curves that corresponds to the J-function used by Tavassoli with a gradient of 0.19
for S=1.
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Chapter 2 Fundamentals

2.5. Spontaneous imbibition

Spontaneous imbibition occurs when the wetting phase spontaneously displaces the
non-wetting phase in a porous medium. The mechanism is regarded as one of the
most important contributors to increase displacement efficiency in fractured reser-
voirs [16]. Imbibition can take place by two types of flow, co-current and counter-
current [4]. In co-current flow the water and oil flows in the same direction, and
the water expels the oil from the matrix. For counter-current imbibition the oil
and water flow in opposite directions and the oil flows back along the same path
that water has imbibed. Even though co-current imbibition can be faster and more
efficient, mainly due to flow patterns and more viscous friction as the two phases
pass eachother [22], counter-current imbibition will often be the only mechanism
possible. Particularly in fractured reservoirs where the lower permeability matrix
may be surrounded by water as mentioned in section sec. 1.2. In this thesis we will
only study counter-current imbibition.
Many attempts have been made to match the oil recovery by imbibition as a function
of dimensionless time to a simple analytic expression. Zhang et al. [21] proposed the
following equation, which is a simple exponential function of time, the expression
matched a range of imbibition experiments on samples with different geometry and
fluid properties [19].

R = R∞(1− e−αtDE ) (2.7)

whereR is recovery, R∞ is ultimate recovery and tDE is an empirical scaling equation
for dimensionless time. The constant α is approximately 0.05 [19]. Equation 2.7 is
based on two assumptions: (1) the recovery is a continous function of time and
converges to a finite limit and; (2) none of the properties that determine the rate of
convergence change during the process [17]. The dimensionless time in the expression
was proposed by Ma et al. [12] and is defined by:

tDE = t

√
K

φ

σ
√
µwµo

1
Lc

(2.8)

where σ is the interfacial tension and LC is a characteristic or effective length given
by:

LC = V∑n
i=1

Ai

li

(2.9)

where V is matrix block volume, Ai is the area open to imbibition in the ith direction
and li is the distance from the open surface to a no-flow boundary. The physical
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2.5 Spontaneous imbibition

interpretation of the characteristic length LC is therefore to quantify the length a
wetting front can travel without encountering a boundary or another imbibition
front [12][14].

Equation (2.7) can be re-written in terms of the average water saturation in the
core, S̄w:

R

R∞
= S̄w − Swi

1− Sor − Swi
(2.10)

where Swi is the initial water saturation and Sor is the residual oil saturation, or to be
described more accurately, it is the oil saturation that is reached after spontaneous
imbibition only. Defining a normalized saturation:

S = Sw − Swi
1− Swi − Sor

; 1 ≥ S ≥ 0. (2.11)

S̄ = 1− e−αtDE (2.12)
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Figure 2.12.: Exponential empirical correlation, Eq.(2.7) as a function of dimen-
sionless time tDE, Eq.(2.8), without experimental data.
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Chapter 2 Fundamentals

2.5.1. Scaling groups

Scaling groups are a tool used to describe how key parameters influence spontaneous
imbibition, and they are essential whenever the process of spontaneous imbibition
needs to be understood [14][15]. Schmid et al. lists some of the important features
of scaling groups as: 1) being a constraint for an appropriate upscaling of laboratory
data, 2) beeing of key importance when modelling and simulating flow in fractured
and heterogenous reservoirs, and they are also 3) necessary when evaluating the
feasibility of water injection in geothermal reservoirs [15]. Because of the vast im-
portance of spontaneous imbibition and scaling models, a lot of research has been
done on the subject. The scaling group has most commonly been expressed in the
form of dimensionless time tD. There are many conditions that apply to the scaling
equation, including identical core sample shapes and fluid viscosities [12].
One of the most widely applied scaling equation was proposed by Mattax and Kyte
in 1962. It is similar to the one proposed by Ma et al. [12] in this chapter, Eq.(2.8),
but it did not include the viscosity of oil. Also, the characteristic lengh, LC , in their
equation did not correspond to any shape factor. The shape factor was proposed
to compensate for the effects of shapes and boundary conditions, allowing more
experimental data to be compared to the models. The expression we will derive
in this thesis was proposed by Tavassoli et al. [19], and has been proven to match
experiments well, although not as well as the scaling group wich includes the viscosity
of water, Eq.(2.8).

2.5.2. Boundary conditions

Figure 2.13.: Figure showing boundary conditions for core samples. Figure from
[12].

The experiments used in the paper by Tavasolli et al. [19] where carried out by
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2.5 Spontaneous imbibition

Mattax and Kyte, Hamon and Vidal, and Zhang et al. They where all for different
types of porous media, core dimensions, boundary conditions and oil/water viscosi-
ties. In the analysis conducted by Tavassoli et al., a boundary condition of type
OEO was applied to a matrix block of length L. This implies that for the results to
be compared to experiments conducted with other boundary conditions, e.g. TEO,
TEC and AFO, the length L has to be replaced with the characteristic length LC ,
Eq.(2.9) as discussed in the previous section. This then ensures that experimental
data in the can be compared to each other. Later in the thesis when we compare
the analytical solution to experimental results, the experimental results have already
been corrected for using the characteristic length LC by Tavasolli et al. [19].
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3. Oil Recovery during
counter-current imbibition

Tavassoli et al. proposed a solution for oil recovery during counter-current imbibition
in strongly water wet systems [19]. This chapter focuses on reproducing the model
that Tavassoli et al. proposed, but with a more thorough review of the mathematical
model and a closer look at how the equations are derived.
First we derive an expression for conservation of water volume in one dimension with
no overall flow. We use the extended Buckley-Leverett model as a starting point.

3.1. Derivation of the model

φ
∂Sl
∂t
− ∂

∂x
(Kkrl
µl

∂Pl
∂x

) = 0, l = o, w (3.1)

where S is saturation, K is the permeability krl is the relative permeability and Pl
is the pressure. We define the mobility λl = krl/µl. The total darcy velocity in the
system is

UT = Uw + Uo (3.2)

where the phase dependent darcy velocities Uw and Uo are defined as:

Uw = −Kλw
∂Pw
∂x

, λw = krw/µw (3.3)

and:

Uo = −Kλo
∂Po
∂x

, λo = kro/µo (3.4)

respectively. This gives us the total flux:

U = −Kλw
∂Pw
∂x
−Kλo

∂Po
∂x

(3.5)
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Chapter 3 Oil Recovery during counter-current imbibition

Using the relation that the capillary pressure Pc is given by:

Pc = Po + Pw (3.6)

and inserting into Eq.(3.5) :

U = −Kλw
∂Pw
∂x
−Kλo(

∂Pw
∂x

+ ∂Pc
∂x

) (3.7)

For counter-current flow both the wetting and non-wetting phase flow through one
boundary in opposite direction so that the Darcy velocity is zero, that is, there is
no net flow [3]. Solving for the resulting pressure term gives:

∂Pw
∂x

= −K
λo

∂Pc

∂x

λt
(3.8)

where λt = λw + λo. Substituting Eq.(3.8) into the mass balance equation for the
wetting phase gives:

φ
∂Sw
∂t
− ∂

∂x
(Kλw(−

λo
∂Pc

∂x

λt
) = 0 (3.9)

and we rearrange to get:

φ
∂Sw
∂t

+ ∂

∂x
(λwλo
λt

K
∂Pc
∂x

) = 0 (3.10)

Applying the chainrule on the capillary pressure term:

∂Pc
∂x

= ∂Pc
∂Sw

∂Sw
∂x

(3.11)

and substituting this into Eq.(3.10):

φ
∂Sw
∂t

+ ∂

∂x
(λwλo
λt

K
∂Pc
∂Sw

∂Sw
∂x

) = 0 (3.12)
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3.1 Derivation of the model

For simplicity we will refer the non-wetting phase as oil, denoted by subscript o.
We can rewrite Eq.(3.12) in terms of dimensionless variables; the normalized water
saturation, S, given by Eq.(2.11), and the dimensionless length defined as:

xD = x

L
(3.13)

using this relation we get:

∂

∂x
= ∂

∂xD

∂xD
∂x

= ∂

∂xD

1
L

(3.14)

and rearranging Eq.(2.11) gives:

Sw = S(1− Swi − Sor) + Swi (3.15)

This yields:

∂Sw
∂t

= (1− Swi − Sor)
∂S

∂t
+ ∂Swi

∂t
(3.16)

Swi is constant with regards to time so the term disappears and we have:

∂Sw
∂t

= (1− Swi − Sor)
∂S

∂t
(3.17)

same for:

∂Sw
∂x

= ∂S

∂xD

∂Sw
∂S

∂xD
∂x

∂S

∂xD

(1− Swi − Sor)
L

(3.18)

and:

∂Pc
∂Sw

= ∂Pc
∂S

∂S

∂Sw
= ∂Pc

∂S

1
(1− Swi − Sor)

(3.19)

The boundary conditions for flow in 1 ≥ xD ≥ 0 are as follows:

xD = 0, S = 1 (3.20)
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Chapter 3 Oil Recovery during counter-current imbibition

xD = 1, ∂S

∂xD
= 0 (3.21)

Inserting equations (3.13), (3.17), (3.18) and (3.19) into Eq.(3.12) and assuming
constant permeability K gives us:

∂S

∂t
+ K

φ(1− Swi − Sor)L2
∂

∂xD
(λwλo
λt

∂Pc
∂S

∂S

∂xD
) = 0 (3.22)

Instead of attempting to solve the non linear equation 3.22 directly it is proposed
by Tavassoli et al. [19] to construct a solution of the weak, or integral form of the
equation:

1ˆ

0

[
∂S

∂t
+ K

φ(1− Swi − Sor)L2
∂

∂xD
(λwλo
λt

∂Pc
∂S

∂S

∂xD
)
]
dxD = 0 (3.23)

Let S̄ be defined as:

S̄ =
1ˆ

0

SdxD (3.24)

Evaluating the integral:

∂S̄

∂t
= −K
φ(1− Swi − Sor)L2

[
λwλo
λt

∂Pc
∂S

∂S

∂xD

]xD=1

xD=0
(3.25)

Using the boundary condition ∂S
∂xD
|xD=1 = 0 (Eq.(3.21)) we get:

∂S̄

∂t
= K

φ(1− Swi − Sor)L2

[
λwλo
λt

∂Pc
∂S

∂S

∂xD

]
xD=0

(3.26)

Since the oil and water saturations must sum to unity, it becomes apparent that the
average normalized water saturation is also a measure of the normalized oil recovery.
Tavassoli et al. notes that the solution to Eq.(3.26) is controlled by a functional
form of the capillary pressure and mobilities at the inlet, where S tends to 1 [19].
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3.1 Derivation of the model

For convenience Tavassoli et al. [19] assumed the following Corey type functional
forms for the mobilities, as described in more detail in sec. 2.3.1, and the imbibition
capillary pressure [19][3]. For more flexibility we will assume a LET-functional form
of the capillary pressure when we compare the numerical solution of Eq.(3.22) with
the analytical solution.

λw = λmaxw Sa (3.27)

λo = λmaxo (1− S)b (3.28)

Pc = σ

√
φ

K
J(Sw) (3.29)

∂Pc
∂Sw

= σ

√
φ

K

∂J(Sw)
∂Sw

= −σ
√
φ

K
J ′ (3.30)

Where λmaxo = Kmax
ro /µo, λmaxw = Kmax

rw /µw and a, b > 0.
Using Eq.(3.19) gives:

∂Pc
∂Sw

= 1
(1− Swi − Sor)

∂Pc
∂S

(3.31)

combining equations (3.29), (3.30) and (3.31) gives us:

∂Pc
∂Sw
|Sw=1−Sor = −σ

√
φ

K
J´ = 1

(1− Swi − Sor)
∂Pc
∂S
|S=1 (3.32)

In Eq.(3.29) Tavassoli et al. [19] assumed Leverett J-function scaling, where J(Sw)
is a dimensionless capillary pressure and −J´ is the dimensionless gradient of the
capillary pressure at S = 1. We first solve Eq.(3.32) with respect to ∂Pc

∂S
and rewrite

Eq.(3.26) with 1− S = ε and take the limit as ε→ 0 and xD → 0:

∂Pc
∂S

= −σ
√
φ

K
J ′(1− Swi − Sor) (3.33)
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Chapter 3 Oil Recovery during counter-current imbibition

and insert into Eq.(3.26) and we get:

∂S̄

∂t
= K

φ(1− Swi − Sor)L2

λwλo
λt
− σ

√
φ

K
J ′(1− Swi − Sor)

∂S

∂xD

 (3.34)

We can rewrite λwλo
λt

using the Corey type functional form of the mobilities:

λw
λt
λo = λmaxw Sa

λmaxw Sa + λmaxo (1− S)bλ
max
o (1− S)b (3.35)

inserting for 1 − S = ε and knowing that S → 1 as ε approaches zero reduces
Eq.(3.35) to:

1
1λ

max
o εb = λmaxo εb = KMax

ro εb

µo
(3.36)

inserting this relation into Eq.(3.34) and simplifying it:

∂S̄

∂t
= −σ

√
K

φ

KroMaxσJ ′

µoL2 εb
∂S

∂xD
|xD=0 (3.37)

We can now define a dimensionless time tD:

tD = t

√
K

φ

σ

µoL2 (3.38)

substituting Eq.(3.38) into Eq.(3.37) is straightforward, and Eq.(3.37) becomes:

∂S̄

∂tD
= KroMaxJ ′εb

∂S

∂xD
|xD=0 (3.39)

As Tavassoli et al. noted and we also observed, the oil mobility λo disappears
for ε = 0, it is therefore required that either ∂S

∂xD
or ∂Pc

∂S
diverges at xD = 0 to

obtain reasonable solutions to Eq.(3.39) [19]. Tavassoli et al. further state that
if an assumption of a finite capillary pressure gradient is made, this means that
the saturation gradient must be infinite at xD = 0. This is in agreement with
earlier numerical solutions of the problem [19]. From the inlet boundary condtition,
Eq.(3.21), Tavassoli et al. [19] notes that the oil saturation is at residual value when
the mobility is zero. However, to allow oil to flow out of the system despite this, an
infinte saturation gradient is needed to ensure a finite oil flow rate [19].
The time scale for imbition given by tD, Eq.(3.38), is similar to Eq.(2.8), except for
the scaling with viscosity as noted in sec. 2.5.1 . The solution presented by Tavassoli
is inversely proportional to the oil viscosity and is independent of the water viscosity.
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3.2 Early time solution

3.2. Early time solution

Tavassoli et al. first proposed an early time solution, that is, before the saturation
front reaches the boundary. This solution is also equivalent to imbibition in a semi-
infinite medium. Tavassoli et al. [19] proposed a simple analytical form for the
spatial variation of the saturation. That makes us able to find the time-dependent
coefficients that obey equation (3.37) and the boundary conditions.
The boundary conditions specified by Tavassoli et al. [19] are as follows:

S(xD, tD) = 1− A(tD)xfD; xD ≤ x0
D, 0 < f < 1 (3.40)

S(xD, tD) = 0 xD ≥ x0
D (3.41)

This obeys the boundary condition at xD = 0, x0
D(tD) is the length where the

saturation first becomes zero. Since S(x0
D, tD) = 0, we can find an expression for x0

D

from Eq.(3.40):

0 = 1− A(tD)xfD

1 = A(tD)xfD

x0
D = ( 1

A(tD))
1
f = A(tD)−1/f (3.42)

and the average saturation can be found by integrating S(xD, tD) from 0 to x0
D:

S̄(tD) =
ˆ x0

D

0
SdxD =

ˆ x0
D

0
1− A(tD)xfDdxD

S̄(tD) = xD − A(tD) 1
f + 1x

f+1
D |

xD=x0
D

xD=0

S̄(tD) = x0
D − A(tD) 1

f + 1x
0 f+1
D (3.43)
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Chapter 3 Oil Recovery during counter-current imbibition

inserting Eq.(3.42) in Eq.(3.43) gives us:

S̄(tD) = A(tD)−1/f − A(tD) 1
f + 1(A(tD)−1/f ) f+1

S̄(tD) = A(tD)−1/f − 1
f + 1A(tD) (A(tD)−1) (A(tD)−1/f )

S̄(tD) = A(tD)−1/f (1− 1
f + 1) = A(tD)−1/f f

f + 1 = f

(f + 1)A(tD)1/f (3.44)

We will use Eq.(3.39) to find an expression for A(tD). First we find ε as a function
of A(tD) using the boundary conditions in Eq.(3.40):

1− S = A(tD)xfD

and since ε = 1− S:

ε = A(tD)xfD

We evaluate the left hand side of Eq.(3.39) :

∂S̄

∂tD
= ∂

∂tD
A(tD)−1/f f

f + 1 = − 1
f
A(tD)−1/f−1 f

f + 1
∂A(tD)
∂tD

= −A(tD)−1/f−1

1 + f

∂A(tD)
∂tD

and then the right hand side:

KroMaxJ ′εb
∂S

∂xD
|xD=0

∂S
∂xD
|xD=0 where S = 1− A(tD)xfD gives:

∂S

∂xD
= A(tD)fxf−1

D = A(tD)f 1
x1−f
D

(3.45)

26



3.2 Early time solution

and from the relation that ε = A(tD)xfD we get that 1
x1−f

D

= A
1−f

f

ε
1−f

f

. Inserting this in
Eq.(3.45) we see that:

∂S

∂xD
= A(tD)f A(tD)

1−f
f

ε
1−f

f

= fA(tD)
1
f

ε
1−f

f

(3.46)

Now the right hand side becomes:

KroMaxJ ′εb
fA(tD)

1
f

ε
1−f

f

= KroMaxJ ′fεb+1−1/fA(tD)
1
f (3.47)

and combining left and right hand side gives for Eq.(3.39):

−A(tD)−1/f−1

1 + f

∂A(tD)
∂tD

= −KroMaxJ ′fεb+1−1/fA(tD)
1
f (3.48)

for the right hand side of Eq.(3.48) to be finite when ε–> 0 we require f = 1
1+b

This specifies f and gives acceptable solutions for any b > 0, let ε–> 0 and Eq.(3.48)
becomes:

A(tD)−1−2/f

f(1 + f)
∂A(tD)
∂tD

= −KroMaxJ ′ (3.49)

To find an expression for A(tD) we integrate Eq.(3.49) once:

ˆ
A(tD)−1−2/f ∂A(tD) =

ˆ
−KroMaxJ ′f(1 + f) ∂tD (3.50)

integrating left hand side with regards to A(tD) and right hand side with regards to
∂tD and we get:

−1
2fA(tD)−2/f = −KroMaxJ ′f(1 + f) tD + C (3.51)

where C is a constant. Rearranging Eq.(3.51) yields:

A(tD)−2/f = 2KroMaxJ ′f(1 + f)
f

tD + C (3.52)
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Chapter 3 Oil Recovery during counter-current imbibition

inserting for f = 1
1+b on the right hand side and we get:

2KroMaxJ ′f(1 + f)
f

tD + C = 2(2 + b)
1 + b

KroMaxJ ′tD + C (3.53)

set:

β = 2(2 + b)
1 + b

KroMaxJ ′ (3.54)

and we have:

A(tD)−2/f = β tD + C (3.55)

A(tD) = (β tD + C)−f/2 (3.56)

A(tD) = 1
(β tD + C)f/2 (3.57)

Inserting Eq.(3.57) into Eq.(3.44) and choosing the constant C = 0 to obey the
initial condition that x0

D(0) = S(0) = 0. gives us:

S = f

(f + 1)( 1
(β tD)f/2 )1/f (3.58)

S = f

(f + 1)(β tD)1/2 (3.59)

S = 1
(2 + b)(β tD)1/2 (3.60)

S = ( β

(2 + b)2 tD)1/2 (3.61)
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3.3 Late time solution

S = (γ tD)1/2 (3.62)

where:

γ = β

(2 + b)2 = 2
(1 + b)(2 + b) Kro

MaxJ ′ (3.63)

combining equations 3.42 and 3.57 we get an expression that shows how the leading
edge of the water front advances:

x0
D(tD) = (β tD)1/2

This solution is valid for tD ≤ tD1 until the water reaches the boundary, when
x0
D(tD = tD1) = 1, and we have:

12 = β tD1 (3.64)

tD1 = 1
β

(3.65)

3.3. Late time solution

For late times, tD ≥ tD1, Tavassoli et al. proposed a similar functional form for the
saturation profile:

S(xD, tD) = 1− A(tD)xfD +B(tD)xD; 0 ≤ xD ≤ 1, 0 < f < 1 (3.66)

The extra linear term B in xD is added to fulfill the no flux constraint at xD =
1, ∂S

∂xD
|xD=1 = 0. So:

B(tD) = fA(tD) (3.67)
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Chapter 3 Oil Recovery during counter-current imbibition

and Eq.(3.66) becomes:

S(xD, tD) = 1− A(tD) (xfD − fxD) (3.68)

The average saturation is:

S̄(tD) =
ˆ 1

0
SdxD =

ˆ 1

0
1− A(tD) (xfD − fxD) dxD (3.69)

S̄(tD) = xD − A(tD) ( x
f+1
D

f + 1 −
fx2

D

2 )|xD=1
xD=0 (3.70)

S̄(tD) = 1− A(tD) ( 1
f + 1 −

f

2 ) (3.71)

We can now use Eq.(3.39) to find A(tD) in the limit as ε→ 0, xD → 0 as we did for
the early time solution and insert Eq.(3.45) for ε:

( 1
f + 1 −

f

2 )∂A(tD)
∂tD

= −KroMaxJ ′fεb+1−1/fA(tD)
1
f (3.72)

For Eq.(3.72) to be finite in the limit when ε → 0, it is once again required that
f = 1

1+b , inserting this in Eq.(3.72) gives us:

1
A(tD)1+b

∂A(tD)
∂tD

= −KroMaxJ ′fA(tD)
1
f

1
( 1
f+1 −

f
2 )

(3.73)

which becomes:

1
A(tD)1+b

∂A(tD)
∂tD

= − 2(2 + b)
b(3 + 2b)Kro

MaxJ ′ (3.74)

integrating Eq.(3.74) to find a new expression for A(tD) :

A(tD) = 1
(ηtD + C)1/b (3.75)
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3.3 Late time solution

where:

η = 1 + b

3 + 2bβ = 2(2 + b)
(3 + 2b)Kro

MaxJ ′ (3.76)

and C is a constant, Tavassoli et al. determined the constant by insisting that the
average saturation is continous at tD = tD1. From early time solution Eq.(3.62),
and late time solution Eq.(3.71) and Eq.(3.75) the constant C becomes:

C =
[
b(3 + 2b)
2(1 + b)2

]b
− ηtD1 (3.77)

Then we can write:

S̄(tD) = 1− 1 + b

(2 + b)(1 + κ(tD − tD))1/b (3.78)

where:

κ =
[

2(2 + b)
3 + 2b

] [
2(1 + b)2

b(3 + 2b)

]b
KroMaxJ ′ (3.79)
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4. Solution of the model

In this section we will look at the analytical solution to the diffusion equation as it
has been derived in sec. 3.1, and reproduce the solution presented by Tavassoli et al.
[19] using MATLAB. We will also attempt to produce a numerical solution to the
problem by creating a discrete scheme. The discrete scheme will serve as a basis for
comparing the analytical and numerical solutions.

4.1. Analytical solution
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Analytical Solution

Figure 4.1.: Analytical solution of the model proposed by Tavassoli et al. [19],
that we reproduced in sec. 3.1.

Fig. 4.1 shows the solution of the model derived in sec. 3.1. The solution is plotted
as a continuous curve consisting of the early time solution, Eq.(3.62) and the late
time solution, Eq.(3.78) as a function of dimensionless time tD, Eq.(3.38).
The analytical solution derived in the previous chapter has been proven to match
experimental data quite well [19] as we can see in Fig. 4.2, where the solution is
plotted together with experimental data from three different authors. As mentioned
in sec. 2.5.2 the experiments conducted by Mattax and Kyte, Hamon and Vidal, and
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Figure 4.2.: Figure showing the analytical solution derived in chapter sec. 3.1 com-
pared with experimental oil recovery data as a function of dimensionless time

Zhang et al. have been conducted with different boundary conditions for the core
samples. Tavassoli et al. [19] obtained the experimental oil recoveries as a function
of time and plotted them as a function of dimensionless time tD, Eq.(3.38). We
would like to note that since we did not aquire the experimental data ourselves, the
experimental data presented in this thesis is plotted from figures in Tavassoli et al.

4.1.1. Early and late time solutions

Fig. 4.3 shows analytical recovery for both the early and late time solutions. It is
worth noting that the early time solution increases with the square root of time
as we can see from Eq.(3.62). Tavassoli et al. explaines that the reason for this
behaviour is that the advance rate is proportional to the capillary pressure gradient,
which is inversely proportional to the distance the waterfront has already travelled
[19]. We observe that the solutions intersect in the point where the water reaches the
boundary, tD1 = 1.7544. From Fig. 4.1, where the solution is plotted as a continous
function, it is also possible to observe a small change in the gradient of the curve
in that same point. One explanation for this change in gradient may result from
the fact that Tavassoli et al. [19] only made a requirement that there is continuity
in S̄(t), and not in S̄´(t). From Fig. 4.4 we see that the experimental data gives a
good match with the early time solution until it reaches tD1 and for tD > tD1 the
experimental data matches the late time solution.
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4.1 Analytical solution
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Figure 4.3.: Figure showing analytical recovery solution versus dimensionless time
for early and late time solutions.
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Figure 4.4.: Figure showing early- and late time solutions vs. experimental data
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Chapter 4 Solution of the model

4.1.2. Dependence on parameters

The expressions derived for the average water saturation, which corresponds to the
normalized oil recovery, are dependent on three multiphase flow properties; The
Corey oil maximum relative permeability, Kmax

ro , the Corey oil relative permeability
exponent, b, and the dimensionless capillary pressure gradient, that is, J´ at S = 1.
For the early time solution this dependence is expressed through the relation γ,
Eq.(3.63), and for the late time solution through κ, Eq.(3.79). It is important to
note that changing parameters in the model only affect the rate at which recovery is
achieved, not the recovery efficiency. The overall recovery efficiency is dependent on
residual oil saturation, which we have assumed constant at a value of 0.25 throughout
this thesis.
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Figure 4.5.: Figure showing oil recovery vs. dimensionless time for different values
of the maximum oil relative permeability, Kmax

ro .

Fig. 4.5 shows the recovery plotted vs. dimensionless time for different Kmax
ro values

ranging from 1 to 0.65. It is apparent that the imbibition process is more effective
for higher values of Kmax

ro . This is readily explained through the relationship with
κ, Eq.(3.79) for late time solutions and the variable β Eq.(3.54) found in the early
time solution variable γ, Eq.(3.63). In both solutions we note that the solution
varies proportionally with the value of Kmax

ro .

Tavassoli et al. state in [19] that the value for dimensionless capillary pressure gra-
dient at S=1, which in the paper is 0.19, corresponds to typical imbibition pressures
given by Bear [3], which give similiar or larger values for J´on sand and bead-packs.
When testing the sensitivity to different J´ values we will therefore use values be-
tween 0.15 and 0.30. We see from figure Fig. 4.6 that the solution gives a more
effective imbibition process for higher dimensionless capillary pressure gradients.
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Figure 4.6.: Figure showing oil recovery vs. dimensionless time for different values
of the dimensionless capillary pressure gradient, J´.

This is through the same relations that we mentioned in context with Kmax
ro above,

both early and late time solutions vary proportionally with the value of J´. Later
in the thesis we will investigate further to see how letting S̄(t) only be dependent
on J´ in the point S = 1, and ignoring J´ for S ∈ [0, 1], will affect the solution.
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Figure 4.7.: Figure showing Oil Recovery vs. dimensionless time for different values
of the Corey oil exponent, b.

The Corey oil relative permeability exponent b is set to 1 in [19] and has to fulfill

37



Chapter 4 Solution of the model

b > 0, referring to conditions for Eq.(3.27) and (3.28). When varying b-values we
see from Fig. 4.7 that the recovery process is more effective for lower values. The
Corey oil exponent also alters the shape of the recovery curve, especially for late
time solutions, and much more so than varying the Kmax

ro and J´ values. This can
also be explained through the relationship with κ, Eq.(3.79) for late time solutions,
and the variable β Eq.(3.54) found in the early time solution variable γ, Eq.(3.63).
However, we note that the dependence on b in the solutions is more complex than
for Kmax

ro and J´. Especially for the late time solution κ, Eq.(3.79) since b is also an
exponent in this nonlinear expression. This accounts for the considerable changes
in the shape of the curve for late times and varying b-values observed in Fig. 4.7.
The premise for using b = 1 in the paper is that for steady state waterflooding
data for strongly water-wet Berea sandstone, the oil relative permeability varies
approximately linearly with saturation.
It becomes apparent when looking at the figures Fig. 4.5, Fig. 4.6 and Fig. 4.7 that
the Corey oil relative permeability exponent b is the parameter that has the greatest
effect on the model. Another important thing to note is how the transition from
early to late time solutions change for varying values of Kmax

ro , J´ and b. The time
when the change occurs is termed tD1, Eq.(3.65) and is given by 1

β
. Since β varies

proportionally with Kmax
ro and J´ we can see from Fig. 4.5 and Fig. 4.6 that lower

values of the parameters give a transition from early to late time solutions at a later
time, tD. For example, Kmax

ro = 1, b = 1 and J´ = 0.19 gives tD1 = 1.7544. However,
if we change Kmax

ro to 0.65, we get tD1 = 2.6991. This implies that the imbibition
front meets the boundary at a later time, which means that the rate of recovery is
slower. For b the change in transition time is more complex, but we note that for
lower values of b we have an earlier transition, and also a higher recovery in the
point of transition, referring to Fig. 4.7.

4.1.3. Recovery vs. Distance

In this section we would like to see how the model behaves if we plot S(xD, tD)
instead of S̄(tD). It is important to note that the area under the saturation profile
is equal to the recovery. Note that tD = tD1 is the time for transition between the
early and late time solution.
The solution proposed by Tavassoli et al. [19] gives a good correlation between
early and late time (before and after meeting the boundary) data when we plot
S̄(t). However, if we plot S(xD, tD) for a fixed time instead, we can see that there is
a discontinuity between the solutions when tD = tD1 = 1.7544. Referring to Fig. 4.8
we see that for the exact same time, the saturation profile is quite different for early
and late time solutions. The area under the graph is equal for both early and late
time solutions so the condition that the average saturation, S̄(tD), is continuous at
tD = tD1 is still valid, but we see that this is not the case when plotted as a function
of the spatial variable xD. This is most likely due to the fact that Tavassoli et al.
[19] only made the requirement that there is continuity in S̄(t) and not in S(xD, tD).
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Figure 4.9.: Figure showing S(xD, tD) for given tD for both early and late time
solutions.
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Chapter 4 Solution of the model

From 4.9a we note that for tD = tD1, the saturation profile is at xD = 1 as we
expected since xD = 1 is the location of the boundary, this is however not the case
for the late time solution in tD = tD1 where we see that the water has already passed
the boundary. Looking at 4.9b we see that for tD = 1000 the sample/reservoir is
fully saturated, that is S = 1 for all xD. Since the area under the profile is equal to
recovery, this means that the recovery is 100% in this case, which is confirmed by
Fig. 4.1.
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Figure 4.10.: Figure showing the model’s depence on the three multiphase flow
properties when plotting saturation vs. dimensionless distance, S(x, tD = 1).

Fig. 4.10 shows how the model depend on the three multiphase flow properties when
plotting S(xD, tD = 1). As mentioned before, the recovery of oil is simply the area
under the graph so our results when varying the properties when plotting S(xD, tD)
corresponds to our findings when plotting S̄(tD). We see that the saturation front
has travelled longer for higher KMax

ro and J ′ values which corresponds to the higher
recovery seen from the same values in figure Fig. 4.5 and Fig. 4.6. The b curve is
as mentioned slightly different because the b parameter changes the shape of the
curve due to a more complex relation in the solution. We see that, starting from
the lowest value of b, the saturation profile goes from almost linear to more convex
as we increase the b-value.
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4.2 Numerical solution

4.2. Numerical solution

The differential Eq.(3.22) cannot, in general, be solved analytically. We need to
discretize it for all variables so that we can solve it numerically by the use of a
numerical scheme. This leads us to a set of algebraic equations. We subdivide the
reservoar into smaller parts, grid blocks, and we divide the time axis into finite time
intervals. We see that the equation is a second order derivative with regards to x
and we will end up with an equation on the form ut = (a(u)ux)x

4.2.1. Deriving the numerical scheme

We have the equation:

∂S

∂t
+ K

φ(1− Swi − Sor)L2
∂

∂xD
(λwλo
λt

∂Pc
∂S

∂S

∂xD
) = 0 (4.1)

We can rewrite λwλo
λt

(S) as a function of fractional flow and the mobility of oil.
Fractional flow is given by:

f =
krw

µw

krw

µw
+ kro

µo

= 1
1 + µw

µo

kro

krw

= λw
λt

(4.2)

we see that λwλo
λt

(S) can be written as:

λwλo
λt

(S) = f(S)λo(S) (4.3)

substituting the capillary pressure Pc with the dimensionless capillary pressure J :

Pc(S) = σ

√
/o

K
J(S) (4.4)

Inserting equations (4.3) and (4.4) into Eq.(4.1) and we have:

∂S

∂t
+ K

φ(1− Swi − Sor)L2
∂

∂xD

f(S)λo(S)σ
√
/o

K

∂J

∂S

∂S

∂xD

 = 0 (4.5)
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Chapter 4 Solution of the model

Introducing dimensionless time given by Eq.(3.38):

tD = t

√
K

φ

σ

µoL2 (4.6)

and Eq.(4.5) reduces to:

∂S

∂tD
+ KMax

ro

(1− Swi − Sor)
∂

∂xD

(
f(S) kro(S) ∂J

∂S

∂S

∂xD

)
= 0 (4.7)

which in a simpler form we can write:

∂S

∂t
+ ω

∂

∂xD

(
a(S) ∂J

∂xD

)
= 0 (4.8)

where:

ω = kMax
ro

1− Swi − Sor
(4.9)

and:

a(S) = f(S) kro(S) (4.10)

where a(S) is the non-linear diffusion coefficient.
We use shorthand notation (and drop the subscript D in t and x) and write Eq.(4.8)
as:

∂tS + ω∂x(a(S)∂xJ(S)) = 0 (4.11)

Corresponding to Tavassoli et al.’s results [19] we set kMax
ro = 1. As mentioned before

we have set Sor = 0.25, and we will also set Swi = 0.25. These values of kMax
ro , Swi

and Sor will remain constant for the rest of the thesis unless otherwise stated. Since
Tavassoli et al. has used a dimensionless capillary gradient −J ′(Sw) = 0.19 it is
important for comparison that we choose parameters for our capillary pressure that
give − 1

(1−Swi−Sor)J
′(S) ≈ 0.19 at S = 1 ( that is, Sw = 1− Sor )
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4.2 Numerical solution

Using an explicit numerical scheme and evaluating at the grid boundaries we get:

∂tS ≈
1
4t

(Sn+1
j − Snj ) (4.12)

∂x(a(S)∂xJ(S)) ≈ 1
4x

(
a(S)nj+ 1

2
∂xJ(S)nj+ 1

2
− a(S)nj− 1

2
∂xJ(S)nj− 1

2

)
(4.13)

The terms for a(S) and J can be approximated by:

a(S)nj+ 1
2

= f(S)nj kro(S)nj+1, a(S)nj− 1
2

= f(S)nj−1 kro(S)nj (4.14)

and:

J(S)nj+ 1
2

=
J(S)nj+1 − J(S)nj

4x
, J(S)nj− 1

2
=
J(S)nj − J(S)nj−1

4x
(4.15)

with this we can rewrite eq 4.11 and solve for the next timestep Sn+1
j :

Sn+1
j = Snj −ω

4t
4x2

(
f(S)nj kro(S)nj+1

[
J(S)nj+1 − J(S)nj

]
− f(S)nj−1 kro(S)nj

[
J(S)nj − J(S)nj−1

])
(4.16)

Eq.(4.16) represents the numerical scheme that we will use to solve the model.

4.2.1.1. Discretization at the boundary:

Above we have discretized the equation in the interior part of the domain, we also
have to evaluate the boundaries, that is, block j = 1 and block j = K

From sec. 3.1 we remember that we have the following boundary conditions to con-
sider for 1 ≥ xD ≥ 0:

xD = 0, S = 1 (4.17)

xD = 1, ∂S

∂xD
= 0 (4.18)
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which gives us for j = 1:

Sn+1
1 = Sn1 −ω

4t
4x

(
f(S)n1 kro(S)n2

J(S)n2 − J(S)n1
4x

− f(S)n0 kro(S)n1
J(S)n1 − J(S)n0
4x/2

)
(4.19)

and for cell j = K:

Sn+1
K = SnK − ω

4t
4x

(
0− f(S)nK−1 kro(S)nK

J(S)nK − J(S)nK−1
4x

)
(4.20)

It is obvious that the driving force in the simulator is the difference in capillary
pressure between the outside face and the first grid block. Since the boundary
condition for the left end face states that it is fully contacted by water (S = 1) and
first grid block is at zero intial saturation (from the intitial conditions), we see that
the driving force is maximum in the beginning of the simulation and diminishes as
the difference in saturations becomes less between the grid blocks.

4.2.2. Stability criteria

Applying a difference scheme and discretising an equation gives rise to a computa-
tional error, which can affect the numerical stability of the solution.
“A difference scheme is called stable if a computational error introduced at one time
step does not grow at computations for subsequent time steps.”[10]
To ensure numerical stability we introduce a stability criteria. We can say that our
difference scheme is stable if it fulfills this criteria:

ω
4t
4x2 | f(S) kro(S)| ≤ 0.5 (4.21)

In this thesis we have ensured that we have used a 4t sufficiently large to satisfy
the criteria mentioned above.
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5. Comparing the models

While the analytical model, due to the approximations that have been used, is only
dependent on three multiphase properties, the numerical model has much more
flexibility in that we can change any parameter we like. This makes it very useful
for revealing the analytical models shortcomings and can give us a good indication
of how well it behaves, and will also allow us to assess the validity of the assumptions
that have been made. In this chapter we will therefore study the effects of changing
different parameters related to relative permeability, capillary pressure and viscosity.
While the analytical solution can be considered exact and stable, the numerical
model is dependent on grid size and timestep refinement so we will also include
a study that illustrates the effect of changing grid size. Unless otherwise stated
all numerical solutions have been run with grid size, ∆x = 1

50 . As mentioned in
sec. 4.1.2 it is important to note that changing the model’s parameters only affect
the rate at which a recovery is achieved, not the recovery efficiency. The overall
recovery efficiency is dependent on residual oil saturation which, as mentioned, is
assumed constant at a value of 0.25.
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Figure 5.1.: Figure showing an example of the numerical solution where we have
plotted the relative permeability and capillary pressure functions, the initial solu-
tion, the oil recovery vs. time, and the saturation profile for tD = 0.4.

Now, we have ensured that the parameters that the analytical model depends on
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Chapter 5 Comparing the models

are the same in the numerical model, so b = 1, KMax
ro = 1 and J ′ = 0.19 at

S = 1. The analytical model, however, says nothing about, for instance, the values
of the Corey relative permeability parameters a and KMax

rw from sec. 2.3.1, or how J ′

behaves for S ∈ [0, 1]. The numerical model also depend on oil and water viscosity
through the fractional flow term in a(S), Eq.(4.2) and (4.10). We will introduce a
viscosity ratio µr in sec. 5.3 and the effect it has on the solution will be discussed.
As mentioned before we have created a capillary pressure function that gives a
dimensionless capillary pressure gradient, J ′ = 0.19 using the LET-correlation from
sec. 2.4.2.
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Figure 5.2.: Figure showing comparison of the analytical and numerical model.

KMax
ro b J´ KMax

rw a µr

1 1 0.19 1 1 1
Table 5.1.: Inputs for Fig. 5.2

Figure Fig. 5.2 shows a comparison of the analytical and numerical model. We see
that for early times it is a poor fit, however, the numerical model in this case is run
with with KMax

rw = 1, which, in most cases, is not a good assumption for strongly
water-wet systems. We will see what will happen if we run the simulation with a
KMax
rw -value more consistent with water-wet system in the section that follows.

46



5.1 Relative permeability effects:

5.1. Relative permeability effects:

In this section we will study the effects of changing the relative permeability param-
eters KMax

rw and a.
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(a) Comparing the analytical model against the nu-
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(b) Comparing the analytical model againt numer-
ical model with different KMax

rw -values, including
experimental data

Figure 5.3.: Comparison of numerical and analytical model for varying values of
KMax
rw

KMax
ro b J´ KMax

rw a µr

1 1 0.19 0.15 1 1
Table 5.2.: Inputs for Fig. 5.3

Fig. 5.3 shows us that using a KMax
rw value more reasonable to assume in water-

wet systems gives us a much better match with both the analytical solution and
experimental data.

KMax
ro b J´ KMax

rw a µr

1 1 0.19 1 1 1
Table 5.3.: Inputs for Fig. 5.4
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Figure 5.4.: Figure showing comparison of S(xD, tD) between the numerical and
analytical model for various early time solutions, and as listed in Tab. 5.3, KMax

rw =
1
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Figure 5.5.: Figure showing comparison of S(xD, tD) between the numerical and
analytical model for various early time solutions, and as listed in Tab. 5.4, KMax

rw =
0.15

Fig. 5.4 and Fig. 5.5 shows S(xD, tD) for a number of fixed times with two different
KMax
rw -values. We observe that there is a much better match in the saturation profiles

between the analytical and numerical model for the value that represents a water-
wet system, that is KMax

rw = 0.15. We also note that the shape of the curve is slightly
more convex for the numerical solution compared to the analytical.
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5.1 Relative permeability effects:

KMax
ro b J´ KMax

rw a µr

1 1 0.19 0.15 1 1
Table 5.4.: Inputs for Fig. 5.5

Fig. 5.6 shows the numerical solution of S(xD, tD = 1) and S̄(tD = 1) for the two
different KMax

rw -values. We observe that for tD = 1 the difference in recovery for the
two KMax

rw -values is just over 22%. It is thus obvious that a change in this parameter
has a large impact on the solution.
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Figure 5.6.: Figure illustrating the difference in S̄(tD = 1) and S(xD, tD = 1) for
two different values of KMax

rw .

KMax
ro b J´ KMax

rw a µr

1 1 0.19 - 1 1
Table 5.5.: Inputs for Fig. 5.6

Next we will study the effects of changing the Corey water exponent, a.

KMax
ro b J´ KMax

rw a µr

1 1 0.19 0.15 - 1
Table 5.6.: Inputs for Fig. 5.7

From Fig. 5.7a we see that changing the a-value affects the shape of the relative
permeability curve due to the fact that it is an exponent, referring to Eq.(2.2). We
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(a) Relative permeability functions for different
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Figure 5.7.: Figure showing relative permeability functions and S̄(tD) for varying
values of a.

note that a = 1 gives a linear relative permeability function, the same as Tavassoli et
al. [19] assumed for the Corey oil exponent. From Fig. 5.7b it can be observed that
the three different a-values all give a fairly good match with the analytical solution
for early times. For late times however, none of the solutions match well, but a = 1
gives us the best match.

When plotting S(x, tD) for fixed times in figures 5.8a and 5.8b the differences
between the different a-values become clearer. We note that the saturation pro-
files have three distinct shapes. While a = 1 produces a convex profile, which is
most similar to the saturation profile in the analytical solution, a = 2 produces a
approximately linear profile, and a = 3 generates a concave saturation profile.

KMax
ro b J´ KMax

rw a µr

1 1 0.19 0.15 - 1
Table 5.7.: Inputs for Fig. 5.8

From Donnez [6] we find that for water-wet systems typical Corey oil exponents are
in the range from 2 to 3, typical Corey water exponents are in the range 4 to 6.
In Fig. 5.9 we have tested these values in the numerical simulator, using b = 2 and
a = 4.

KMax
ro b J´ KMax

rw a µr

1 2 0.19 0.15 4 1
Table 5.8.: Inputs for Fig. 5.9
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Figure 5.8.: Figure showing saturation profiles for varying values of the Corey
water exponent, a, for given tD.
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Figure 5.9.: Figure showing S̄(tD) for analytical and numerical solution.
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Chapter 5 Comparing the models

The numerical solution is run until tD = 150 and is still only at 90% recovery while
the analytical is close to 100%. The numerical solution in this case does not match
the experimental data at all. It is worth noting that changing Corey exponential
parameters to reflect, according to litterature, water-wet systems, seems to give less
correlation with the analytical model. Even if we had left the Corey oil exponent
equal to 1 in Fig. 5.9, we can see from Fig. 5.7 that increasing values of a shifts the
numerical solution further away from the analytical solution.

5.2. Capillary pressure effects

One of the consequences of the assumptions Tavassoli et al. makes in their paper [19]
is that they only consider the dimensionless capillary pressure gradient in S = 1,
which in effect means that they ignore all capillary effects for S ∈ [0, 1]. In this
section we will create different J-functions which all have a dimensionless capillary
gradient of 0.19 in S = 1, and see how they affect our solution.
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Figure 5.10.: Figure showing four different J-functions which all have a dimension-
less capillary gradient, J´ = 0.19 for S = 1. The LET parameter inputs can be
found in Appendix A.

KMax
ro b J´ KMax

rw a µr

1 1 0.19 0.15 1 1
Table 5.9.: Inputs for Fig. 5.10

As we can see from Fig. 5.10 even though the gradient is the same in S = 1, using
the LET-correlation we can produce capillary pressure functions that are completely
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5.2 Capillary pressure effects

different from each other. We note that we have used capillary pressure function 1
for all numerical simulations where we haven’t studied capillary pressure effects.
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Figure 5.11.: Figure showing oil recovery vs. dimensionless time for the analytical
solution and the four different J-functions shown in Fig. 5.10..

KMax
ro b J´ KMax

rw a µr

1 1 0.19 0.15 1 1
Table 5.10.: Inputs for Fig. 5.11

From Fig. 5.11 it is noticeable that the various J-functions provide us with differing
recoveries for given dimensionless times. For example, J-function 4 reaches 90%
recovery at tD = 4 while J-function 1 doesn’t reach the same recovery until tD = 28.
It is interesting to note that all of these different J-functions would produce exactly
the same recovery in the analytical model since they all have the same value of J´
for S = 1. However, we would have thought that such big differences in capillary
pressure functions would lead to more considerable variations in the solution of the
numerical model. This leads us to believe that the shape of the capillary curve does
not affect the solution as much as we had expected.

KMax
ro b J´ analytical KMax

rw a J´ numerical
1 1 0.19 see figure 1 0.19

Table 5.11.: Inputs for Fig. 5.12

As we can see from Fig. 5.12 there is a large variety in the saturation profiles for
different J-functions. We see that J-function 4 has switched from a convex profile to
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Figure 5.12.: Figure showing the difference in saturation profiles for the analytical
solution and the four different J-functions shown in Fig. 5.10. tD = 1.

a concave profile. As mentioned before, the recovery is the area under the saturation
profile so the considerable difference in S(xD, tD) between the various J-functions
leads to the same differences we noted for the recovery.
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Figure 5.13.: Figure illustrating the difference in S̄(tD = 1) and S(xD, tD = 1) for
J-function 1 and J-function 3 (referring to Fig. 5.10).

Fig. 5.13 depicts both S̄(tD = 1) and S(xD, tD = 1) for two of the J-functions,
1 and 3, referring to Fig. 5.10 . We observe that for tD = 1 the difference in
recovery is roughly 10% between the two different J-functions. We note that while
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5.3 Viscosity effects

KMax
ro b J´ KMax

rw a µr

1 1 0.19 0.15 1 1
Table 5.12.: Inputs for Fig. 5.13

the saturation profile for J-function 1 is convex, J-function 3 is almost completely
linear. We also note that by only using capillary pressure curves that are positive
for all saturations, we have ensured that they are all for water-wet system. As we
mentioned in sec. 2.4, capillary pressures for mixed-wet systems will contain both
negative and positive parts depending if the surface imbibes oil or water.

5.3. Viscosity effects

At the start of this chapter we noted that the numerical model also depend on oil
and water viscosity through the fractional flow term in a(S), Eq.(4.2) and (4.10).
To study the effects of varying viscosities it is practical to introduce a viscosity ratio
µr = µw

µo
. If we introduce this relation into Eq.(4.2) we get

f = 1
1 + µr

kro

krw

(5.1)
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Figure 5.14.: Figure showing the fractional flow functions and recovery vs. dimen-
sionless time for different viscosity ratios.

From figure 5.14a we see that the fractional flow functions vary greatly with chang-
ing viscosity ratios. We also note that the fractional flow curves don’t have the
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Chapter 5 Comparing the models

KMax
ro b J´ KMax

rw a µr

1 1 0.19 0.15 1 -
Table 5.13.: Inputs for Fig. 5.14

characteristic S-shape. This is because we have a linear relative permeability curve
for water, due to the Corey water exponent, a, beeing equal to 1. From the recov-
ery plot in fig. 5.14b we see that for early times we have a good match with the
analytical model for µr = 1, but for late times, µr = 0.5 and µr = 0.1 correlates
better.
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Figure 5.15.: Figure showing saturation profiles for varying viscosity ratios at given
tD.

KMax
ro b J´ KMax

rw a µr

1 1 0.19 0.15 1 -
Table 5.14.: Inputs for Fig. 5.15

When plotting S(xD, tD) in Fig. 5.15 we see that there is considerable scatter in the
saturation profiles, and for the early time solutions presented in this figure, µr = 1
provides the closest match with the analytical solution.
It has been noted by Behbahani et al. [4] that the scatter in results for different
viscosity ratios is, at least partly, due to the fact that our scaling equation, tD
does not include water viscosity. Behbahani et al. [4] also showed when plotting
S̄(t) using the scaling equation proposed by Ma et al. [12], Eq.(2.8), produced
results with considerably less scatter for different viscosity ratios. Many authors,
including Tavassoli et al. [19],[4] admit that the scaling equation proposed by Ma
et al. [12] which includes a geometric mean of the oil and water viscosities, provides
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5.4 Grid effects

better matches with experimental results. Fig. 5.16 shows recovery plotted against
a dimensionless time only including the oil viscosity, the same as we have used. We
note that Behbahani et al. [4] have defined the viscosity ratioM as µo

µw
and therefore

lower values ofM corresponds to higher values of our viscosity ratio, µr. Comparing
5.14b and Fig. 5.16 we see that our results match those by Behbahani et al. [4].

Figure 5.16.: Figure showing scatter in oil recoveries for different viscosity ratios.
Figure from Behbahani[4]

5.4. Grid effects

As mentioned before, the analytical solution can be considered exact and stable.
However, the numerical model is dependent on grid size and timestep refinement to
achieve stability, referring to sec. 4.2.2. In this section will we will take a look at
how altering grid size affects the solution.

KMax
ro b J´ KMax

rw a µr

1 1 0.19 0.15 1 1
Table 5.15.: Inputs for Fig. 5.17

To illustrate how different grid cell sizes(∆x) will affect our solution we run the
simulation with three grid refinements. From Fig. 5.17 we can see that we have some
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Figure 5.17.: Figure showing oil recovery vs. dimensionless time for different grid
sizes, ∆x.

numerical dispersion, a smearing effect, for larger grid sizes, which equals fewer grid
cells. This effect of numerical dispersion would be much more noticeable if we had
a sharper transition in the profile, like we would in, for example, a waterfront in
a waterflood. It is noticeable that increasing the grid cells gives a more precise
solution. For decreasing grid sizes, which equals more grid cells, we see that we get
better fit with the analytical model, at least for early times. The effects of the grid
refinements would probably be more transparent if the numerical and analytical
model were a better match. These figures do however give us a good indication
of how much different grid sizes affect the solution. Referring to Fig. 5.17 we note
that the difference in recoveries at tD = 1 is about 5% for ∆x = 1

20 and ∆x = 1
500 .

From Fig. 5.18 we also see that there is difference in saturation profiles between the
varying grid sizes. The biggest change occurs when decreasing the grid size from
∆x = 1

20 and ∆x = 1
50 .

KMax
ro b J´ KMax

rw a µr

1 1 0.19 0.15 1 1
Table 5.16.: Inputs for Fig. 5.18
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5.5 Illustration of combined effects from capillary pressure and relative
permeability.
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Figure 5.18.: Figure showing saturation profiles for different grid sizes, ∆x.

5.5. Illustration of combined effects from capillary
pressure and relative permeability.
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Figure 5.19.: Figure showing differences between analytical and two numerical
solutions of S̄(tD) and S(xD, tD) for early (tD = 1) and late (tD = 5) time.

In Fig. 5.19 we have combined the effects of relative permeability and capillary effects
to illustrate how much the solution can differ with changing parameters. We note
that J1 and J3 in the figure corresponds to capillary pressure functions 1 and 3
from Fig. 5.10 respectively. The parameters used can all be said to be reasonable to
assume in water-wet reservoirs. Although we get fairly good matches when plotting
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S̄(tD) it is most interesting to look at the S(xD, tD) plots for early and late time. We
see that when comparing the analytical solution with the numerical solution using
a = 1 and J-function 1 (hereby called the convex solution), they are a good match
and both have similarly shaped saturation profiles. However, when looking at the
numerical solution using a = 3 and J-function 3 (hereby called the concave solution),
we see that we get a concave saturation profile. While the analytical and convex
numerical solution are closing in on the boundary, the concave numerical solution
is not even halfway through the sample/reservoir. For late times this difference
becomes even clearer. There is no longer a good correlation between the convex
solution and the analytical solution. They do however maintain similar shapes. It
is interesting to see that even after tD = 5 the concave solution still hasn’t reached
the boundary.
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6. Conclusion

In this thesis we have reproduced an analytical solution for spontaneous imbibition.
When we derived the model, starting with the extended Buckley-Leverett model,
we filled in many details that Tavassoli et al. [19] did not include in their paper.
This should make the derivation easier to follow to someone who is less familiar with
mass balance equations and spontaneous imbibition. After deriving both early- and
late time solutions of the model, we plotted them as a continous function. We
then observed that even though the condition that S̄(tD) should be continous in the
transition between the early and late time solution was fulfilled, there was a change
in the gradient of the curve at the transition, which indicates that there was no
continuity in S̄´(tD).
When plotting S(xD, tD) for both early and late time solutions at the transition
time tD1, we noticed that there was a discontinuity between the solutions. While
the model was continous as a function of S̄(tD), that was not the case when plotting
S(tD) against the spatial variable xD. One implication of not stating continuity in
S(xD, tD) is that for a given tD the distribution of water in the reservoir/sample can
be completely different depending on which solution one would apply.
When studying the analytical model, we tested its dependence on the three mul-
tiphase flow properties b, KMax

ro and J ′ at S = 1. It became obvious that the
Corey oil relative permeability exponent, b, had the most considerable effect on the
solution. While the model has a linear dependence on KMax

ro and J ′, the depen-
dence on b is more complex, it produces changes to the gradient S̄´(tD), as can
be seen from Eq.(3.63) and Eq.(3.79) We noticed that even small changes in these
parameters could express themselves as rather large differences in the time it would
take to achieve a certain recovery and also how the water was distributed in the
sample/reservoir at a given time.
There is no doubt that the analytical model provides a good fit to experimental
data. Even better than we managed to produce with our numerical model. We did
manage to match the analytical model for recovery and saturation profiles fairly well
for early times. For late times however, we did not manage to obtain a correlation
as good, and especially in the transition from early to late time solutions. While
the analytical model solves this by utilizing two solutions, one for early and one
for late times, our numerical solution is a single continuos function. As mentioned
one of the implications of the two solutions in the analytical model are that we lose
continuity in both the gradient and the saturation profile. Another reason for the
analytical model to match the experimental data better than our numerical model
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Chapter 6 Conclusion

is most likely the scaling equation, Eq.(3.38) used by Tavassoli et al. in [19], and
the fact that it does not include water viscosity.
The assumption to use the approximate solution of the weak form, the integral
method, combined with the boundary condition that ∂S

∂xD
|xD=1 = 0, ensures that the

solution is controlled by the capillary pressure and mobilities at the inlet, where S
tends to 1. When we studied the capillary pressure effects however, we observed
that only including the capillary gradient in S = 1 may be an oversimplification.
We have shown that it is possible to produce notably differing results while fulfilling
the condition that J ′ would be equal to 0.19, but still not as significant differences
as we would have expected. The fact that the solution is controlled by the capillary
pressure and mobilities at the inlet, where S tends to 1, is also the reason that the
analytical model does not include the relative permeabilty effects for water, given
by KMax

rw and a, and in addition the viscosity of water, µw, from the fractional
flow term. Alterations of the relative permeability parameters KMax

rw and a can also
produce highly differing results, as can alterations in the viscosity. We note that for
recovery at early times the assumption in the approximate solution may not be that
bad, since most of the recovery will come from areas where S is close to 1.
In conclusion we note that even though the analytical model proposed by Tavassoli
et al. [19] gives good correlation with experimental data, we have proven through
the numerical solution that there are dependencies that need to be evaluated and
some assumptions that should be revisited. We saw that many parameters that
were ignored in the model actually had a large effect on the solution. We have also
shown that the model does not necessarily behave as expected for strongly water-wet
media, as it claims.
In considering possibilities for further work, it would be interesting to try and incor-
porate more parameters in the analytical model. However, this may not be possible
withouth making some alterations in the assumptions made by Tavassoli et al. [19].
If one could incorporate more parameters in the analytical model it would also be
interesting to make use of another scaling group in the form of dimensionless time,
tD, to see if it would be possible to produce a solution with a better match with
experimental data. Another aspect it would be useful to investigate is to see if the
differential equation that we used as the basis for our numerical solution, Eq.(4.1),
really is an exact solution for an imbibition process. The way we evaluated the
diffusion coefficient in our numerical model is surely not the only possible method,
so we are curious to see how other evaluations would affect the solution. A more
detailed study with regards to how the shapes of the capillary pressure curves affects
the solution would be intriguing, especially when considering that the effect of the
changing shapes that we observed were less than we had expected. It would also be
interesting to see if it could be possible to ensure continuity in not only S̄(tD), but
also in S(xD, tD) and S̄´(tD) for the analytical model.
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Nomenclature

A area, L2, m2.

A(t), B(t) functions of time, dimensionless.

a, b, c, f exponents.

AFO All-Faces-Open boundary condition.

C integration constant, dimensionless.

J Leverett J-function (dimensionless capillary pressure).

J’ J-function gradient at S=1.

K Permeability, L2, m2 or D.

Kr relative permeability.

L,l length, L, m.

OEO One-End-Open boundary condition.

Pc capillary pressure mL−1,t−2, Pa.

R recovery.

S saturation.

t time, T, s.

TEC Two-End-Closed boundary condition.

TEO Two-End-Open boundary condition.

V volume, L3, m3.

α, β, η, κ, γ Dimensionless rate constants.

λ mobility. M−1Lt, Pa−1 ∗ s−1.

µ Viscosity, ML−1t−1, Pa ∗ s.
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φ porosity, dimensionless.

ρ Density, ML−3t−2, Kg ∗m−3.

σ interfacial tension, L−1t−2, Nm−1.

D dimensionless.

i initial.

max maximum.

o oil.

r residual.

t total.

w water.
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A. Inputs for figures

Inputs figures chapter 4:
Constant parameters for all figures in chapter 4:

• Sor = 0.25
• Swi = 0.25
• Ø = 0.24
• K = 2554 mD = 2554 ∗ 10−15 m2

• σ= 30 mNm = 30 ∗ 10−3 N/m
• µo = µw = 1 cP = 1 ∗ 10−3 Pa · s

Unless otherwise stated the multiphase flow parameters are also constant
• Kmax

ro = 1
• b = 1
• J´ = 0.19

LET-parameters chapter 5.
J-function 1:

• Pc_si =+100
• L_si = 0.1
• E_si = 7.194
• T_si = 1
• Pc_fi = 0
• L_fi = 10
• E_fi = 50
• T_fi = 1.2
• Pc_ref= 100

J-function 2:
• Pc_si =+100
• L_si = 0.2
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• E_si = 5.212
• T_si = 1
• Pc_fi = 0
• L_fi = 1
• E_fi = 20
• T_fi = 1.2
• Pc_ref= 100

J-function 3:
• Pc_si =+100
• L_si = 0.5
• E_si = 1.985
• T_si = 1
• Pc_fi = 0
• L_fi = 1
• E_fi = 20
• T_fi = 1.2
• Pc_ref= 100

J-function 4:
• Pc_si =+100
• L_si = 0.9
• E_si = 0.5475
• T_si = 1
• Pc_fi = 0
• L_fi = 1
• E_fi = 20
• T_fi = 1.2
• Pc_ref= 100
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