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Abstract 
 

Centralization of casings is very important in order to ensure a high quality well. Poor 

centralization of casing is often the main reason for bad cement jobs, which forces the 

operators to perform remedial cementing. This increases the costs and delays the completion 

of wells. By ensuring proper spacing between centralizers, a good primary cement job can be 

achieved. The “do it right the first time” principle cannot be stressed enough.  

 

This thesis focus on the use of the OptiCem™ module included in the WELLPLAN™ 

software. The module have been used to do simulations on proper distribution of centralizers 

along the casing in order to achieve good standoff values. Several well profiles have been 

investigated, as well as the DLS’, radius’ and casing-weight’s effect on centralizer density. 

 

Results of the simulations shows that distribution rates from 1,5-3 centralizers per 100 ft. of 

casing is sufficient in order to meet the industrial standoff requirement of 70%. This coincides 

well with today’s current practice. 
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1. Introduction 
 

 

The drilling and completion of wells have been highly improved over the years. This has 

mainly been driven by the desire for optimizing production rates and recovery factor and to 

increase the safety in the industry. 

 

While drilling to reach TD, it is necessary to seal off the surrounding formation to prevent it 

from collapsing into the wellbore, causing the operator huge economic losses. While drilling, 

a drilling mud with special properties is used to ensure stability in the well, mainly by having 

an optimal density or weight. It does not only prevent the well from collapsing, but also acts 

to prevent unwanted inflow from the formation, which in turn can cause a kick.  

 

At a point the mud weight alone is no longer enough to ensure stability in the well. Further 

drilling may either cause fracturing of the formations, or more likely a kick from a high pore 

pressure in the formation. At this point, we have to set casings in order to stabilize the well 

before drilling further with a new mud, with a more suitable density. 

 

Casings are high OD tubulars, which comes in different material grades and sizes. These 

pipes are run into the hole and cemented in place. This operation is called “running pipe”. The 

biggest challenge when running casing is that we do not have much control of the placement 

of the pipe in reference to the wellbore walls. If the pipe is not well centralized, the following 

cementing operation is just a waste of time and money. 

 

Correct placement and spacing of centralizers along the casing string can assist in getting a 

successful cement job, and complete isolation around the casing string. This thesis will 

discuss the events prior to running casing, and simulate optimal distribution of centralizers for 

different well profiles and cases. 
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2. The Drilling and Completion of Wells 
 

 

2.1 Initial Drilling 
 

After a reservoir has been discovered, or whenever an operator decides to extend the 

production of a field, a well needs to be drilled. The well then acts as a direct connection 

between the reservoir and the surface. In order to drill a well, a drilling rig is needed, along 

with a series of different equipment. 

 

2.1.1 Drilling Rigs 
There exist many different drilling rigs with different properties, but they can be categorized 

into two main groups. Stationary and mobile rigs. 

 

Stationary rigs 

Stationary rigs are rigs that are installed at site, often on top on a steel jacket, or on concrete 

legs. Stationary rigs can include a living quarters along with drilling and productions 

facilities. These platforms are often referred to as PDQ-platforms (Production Drilling & 

Quarters). It is also normal to separate the living quarters from the production and drilling 

facilities due to safety of accommodation. 

The X platform in the Ekofisk-Field is a good example of a stationary rig without quarters. 

 

 
Figure 2.1: The 2/4-X located in the Ekofisk-field [3]. 
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Mobile rigs 

Mobile rigs are the most common for drilling wells offshore. These can be either jack-up rigs, 

semisubmersible, or drilling ships. These rigs can move around and do work on several 

oilfields. These rigs are usually leased by operators on long term contracts. 

 

Statoil has their own classification system for rigs used for both drilling and intervention. 

 

Cat A: Vessel for light well intervention. Used for light wireline operations in subsea wells. 

Can also be used to plug wells. 

 

Cat B: Fit for purpose rig for well intervention and sidetrack drilling through production 
tubing (so-called ”through tubing drilling and completion”). For use in wireline operations, 
coiled tubing, plugging of wells and sidetrack drilling. The well services will be done through 
existing subsea x-mas trees. 

 

Cat C: Ordinary drilling rig that can be used for all types of operations. 

 

Cat D: Custom-built rig adapted to medium water depths on the Norwegian Shelf. For use in 

drilling, completion and well work overs, but can also be used for similar operations as Cat A 

and Cat B, but is not optimized for this. Statoil has four rigs of this type on order. 

 

Cat J: Jack-up drilling rig with longer legs for deeper waters than customary for this type of 

rig. For use in drilling, completion and well work overs, but can also be used for similar 

operations as Cat A and Cat B, but is not optimized for this [4].  

  

 
Figure 2.2: Rig categories [4]. 
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2.1.2 Drilling Equipment 
The drilling of a well is a long and costly process. Rig rates are high & equipment is 

expensive. When rig rates extends as high as 600 000$ per day, it is crucial that drilling is 

optimized with regards to time consumption [5]. 

 

When reserves has been proven, the operator need to develop a PDO which is delivered to the 

NPD for approval [6]. This is required on the NCS, while other rules and regulations apply in 

other countries. 

 

The drilling is carried out with a drill string, which now will be described briefly. 

 

Drill Bit 

The drill bit finalizes the drill string, and serves to crush or scrape away the formation in order 

to reach TD. It is made of high endurance materials such as tungsten carbide, natural 

diamonds and artificial diamonds. Almost all other equipment on the drilling rig and in the 

drill string serves to assist the drill bit in achieving the highest ROP possible. 

 

Drill bits can be categorized in two main types; the roller-cone bit and the PDC bit. The 

roller-cone bit has moving parts, which serves to crush the formation. The PDC bit has no 

moving parts, but has imbedded cutters, which serves to shear the formation. The bits are 

selected with respect to the formation to be drilled. 

 

Recently the oilfield service company Baker Hughes Inc. has developed a new type of bit, 

which combines the properties of the PDC-bit, and the roller cone bit. They have decided to 

call it Kymera Hybrid Drill Bit [7]. By using this type of bit it is not necessary to change bit 

when hitting new types of formations. This reduces tripping time, which again saves the 

operator money.   

 

 
Figure 2.3: PDC-bit, roller cone bit & the Kymera Hybrid bit below [7]. 
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Bottom Hole Assembly  

The BHA is located above the bit and includes several tools and parts. Along with the bit the 

BHA consists of components which assist in making the drilling process as effective as 

possible. 

 

In order for the bit to crush the formation, it is necessary to provide weight on the bit. This is 

provided by heavy weight drill collars. These thick walled pipes also keeps the drill string in 

tension, preventing it from buckling. 

 

During drilling operations it is beneficial for the operator to know as much as possible about 

the down-hole environment, as well as the strings location. By including MWD and LWD 

equipment in the BHA it is possible for the operator to gain such knowledge. These tools are 

usually high technology equipment, and can provide a lot of information. However, the data 

transmission needed are putting limitations on this. Today the most common transmission 

method is mud pulse telemetry. This technology sends signals by creating encoded pressure 

fluctuations in the drilling mud, and signals are then decoded when reaching surface. This is a 

very primitive method, which only provides a rate of 8 – 12 bits/s [8]. The operators are 

therefore forced to only prioritize the most critical data, whereas the rest needs to be stored in 

the equipment, or goes to waste. Lately there has been a lot of improvements on this field, and 

high speed telemetry and wired drill pipe are methods that have the potential to revolutionize 

exploration and development drilling. With field proven transmission rates of 57 000 bits/s,   

it clearly sets a new standard for real-time data during drilling [8]. 

 

At some point during drilling the drill-pipe may get stuck due to collapsing somewhere in the 

well, or due to differential sticking. In order to get the drill-string loose the BHA have a jar. 

The jar is a mechanical device which serves to deliver impact loads in order to loosen the 

string [9]. If successful the drilling may proceed. If the driller is not able to free a stuck pipe, 

the stuck part of the pipe must be cut off and left in the hole. The hole containing the stuck 

part must then be cemented and before the well can be sidetracked and drilled down to TD. 
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The BHA can with benefit also include a down-hole motor. The motor is powered by the mud 

flowing through the drill pipe. By adding a down-hole motor, the driller is able to get a higher 

RPM on his bit, increasing the penetration. Especially when drilling horizontal wells, the 

rotation provided by the top drive is not always sufficient, and the down-hole motor is then 

necessary to include in the BHA. 

 

Often when drilling horizontal wells, it is done in very thin formations. The driller therefore 

wants to achieve as precise steering as possible, in order to stay within the pay zone. If 

successful, it can maximize the contact area to the reservoir, which again results in increased 

production. To achieve this the BHA must have a rotary steerable system. The RSS uses 

logging data continuously so that the navigation of the drill bit is optimized [10].  

 

Apart from the components mentioned in the sections above, the BHA can include several 

other components, which acts to increase the ROP. Components such as under reamers, hole 

openers and stabilizers are common in the BHA. 

 

 

 
Figure 2.4: The BHA (Based on Skaugen [11]). 
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Drill Pipes 

Above the BHA we find the largest portion of the drill string. This section is made up by 

several drill pipes which each measures around 30ft or 9m. Every pipe have a male and a 

female thread used for connecting the drill pipes together.  

 

The drill pipes are hollow inside making it possible to pump drilling mud through the drill 

string and the bit. The mud then flows up through the annulus, carrying cuttings from down 

hole.  

 

When drilling deep and extended wells, the pipes will experience a series of combined forces. 

The top section must be able to carry the entire weight of the string, while also enduring 

forces exerted by rotating the bit. The selection of drill pipes is therefore an important factor 

in order to optimize and ensure safe drilling operations. 

 

Drill pipes come in several different dimensions and grades. The grades show the yield 

strength of the pipe and in which environment it is suitable. The system is developed by API. 

 

 

Example: A pipe with grading L80, has a yield strength of 80 000 psi and is suitable in sour 

environments [12]. 

 

Nominal 
Size 
(in) 

Nominal 
Weight 
(lb/ft) 

 
Grade 

Tool Joint 
OD 
(in) 

ID 
(in) 

2 3/8 
2 3/8 
2 3/8 

6.65 
6.65 
6.65 

E75 
X95 

G105 

3 3/8 
3 3/8 
3 3/8 

1 3/4 
1 3/4 
1 3/4 

4 1/2 
4 1/2 

13.75 
13.75 

E75 
E75 

6 3/8 
6 5/8 

3 3/4 
3 7/8 

6 5/8 
6 5/8 
6 5/8 
6 5/8 

27.70 
27.70 
27.70 
27.70 

E75 
X95 

G105 
S135 

8 
8 1/4 
8 1/4 
8 1/2 

5 
4 3/4 
4 3/4 
4 1/2 

Table 2.1: Drill pipes, dimensions and grades. Based on DDH [13]. 
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2.1.3 Wellbore Stability 
 

Drilling Mud 

When drilling a well the bit crushes and grinds the formation, producing cuttings, which must 

be transported to surface. In order to transport the cuttings to surface a high viscous fluid is 

used. This fluid is commonly known as a drilling mud. 

 

The mud’s most important task is, however, not to transport cuttings, but to ensure wellbore 

stability. The mud’s weight is designed in such a way that drilling can be conducted without 

risking the well collapsing or fracturing. In order to achieve this both the static and the 

equivalent mud weigh must be located between the pore pressure and the fracture pressure 

equivalents. The equivalent mud weight is the density of a mud that gives a bottom hole 

pressure that is equal to the static mud pressure plus the friction pressure drop of the mud flow 

up the annulus [14].  

 

When the driller has reached a depth where the current mud weight will conflict with both the 

pore pressure and fracture pressure a casing must be set. After setting the casing, the mud 

weight can be increased or decreased and drilling can commence. 

 

The loss of wellbore stability can be hazardous, causing loss of equipment or in worst case; a 

blowout due to a kick. 

 

 
Figure 2.5: The design of mud weight. 
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Casings 

Casings are steel tubulars which are lowered into the well bore when drilling no longer can be 

continued with the current mud weight, or when the driller have reached TD. The casing acts 

to support the well bore, preventing surrounding formation from caving in or fracture. 

 

When the casing shoe has reached desired depth, cement is pumped through the casing and 

into the annular space between the well bore and the outer casing wall. The cement acts to 

isolate the annulus and keep the casing rigid.  

 

Correct setting of casing is crucial in order to achieve good well integrity. The use of 

centralizers and the placement of these are essential. Centralizers are tools that keep the 

casing from touching the wellbore. If a casing is off-centered when pumping down cement, 

we’ll risk getting poor isolation around the casing. This results in degraded integrity of the 

well, and will cause problems. This subject will be discussed more thorough later.  

Casings come in different sizes and grades, all relative to the application. The most common 

sizes and types will now be presented. 

 

Conductor pipe 

The conductor is the first and largest pipe, which is set into the ground. Its primary objective 

is to support the surface formations, which often consist of unconsolidated material such as 

sand and mud. The conductor pipe is normally set 100-200m into the seafloor in offshore 

wells. The size of this pipe is usually 30” OD. The pipe often gets driven into the ground 

before drilling commences. Alternatively, a 36” hole is drilled before landing and cementing 

the conductor in place. 

 

Surface casing 

After the conductor is set drilling continues. In these shallow formations the pore pressure 

gradient is often the same as the seawater’s. Because of this seawater is often used instead of 

drilling mud. The use of seawater instead of drilling mud is something that require serious 

consideration. The seawater is cheap but does not provide the same amount of well control as 

a heavier mud. This combined with fact that this section is drilled without a BOP installed, 

demands for even more caution. 
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The surface casing, which usually has an OD of 20”, acts as a fundament for the well head if 

this is on the sea bottom. It has to support the remaining casings, which will be installed, as 

well as the BOP and the X-mas tree when the well is completed. 

 

Intermediate casing 

The intermediate casing is a casing, which is set after the surface casing but prior to the 

production casing. Its purpose is to seal off the formation to assist in deepening the well. The 

size of this casing varies, but traditionally has an OD of 13 3/8”. 

 

Production casing 

After drilling through the reservoir the production casing is run into the well. This is the final 

casing, and the reservoir is now connected to the surface, making production of hydrocarbons 

possible. After drilling through the cap-rock, hydrocarbons will try to migrate upwards 

towards surface. It is therefore extremely important to have good isolation around the 

production casing [15]. According to NORSOK-D010 there is a minimum requirement of 

200m of good isolation above the source of inflow [1]. The production casing has commonly 

an OD of 9-5/8”, but can also come in other dimensions. The size of the production casing 

dictates the size of the production tubing, and should be taken into consideration early in the 

planning process. 
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Liners 

Liners are casing strings, which do not extend all the way up to the wellhead. The liner is 

hung off inside the last run casing string [15]. The use of liners have several advantages. The 

most common application of a liner is to use it as a reservoir liner. In this way the operator 

have a proper sealing of the reservoir, but at the same time have more accommodation for the 

tubing. 

 

If the operator ever get problems with a leak in the production casing, a solution can be to run 

a scab-liner, which isolates over the damaged section. 

 

The use of liners instead of casing is also something that reduces the cost by reducing the total 

length of pipes in the well. 

 

 
Figure 2.6: Casing design with liners [1]. 
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2.2 Completion 
 

The completion of wells is the process in which a very expensive hole in the ground is 

transformed into a reservoir depletion tool [16]. 

 

2.2.1 Production Tubing 
After the well is drilled to TD, and hydrocarbons have been proven, the process of completing 

the well begins. At this stage the well may be filled with drilling mud. This fluid need to be 

replaced with a solids-free completion fluid, in order to ensure a successful completion and to 

avoid damage on the equipment. 

 

After displacing the well with completion fluid the production tubing can be run into the well. 

The tubing is hanged off inside the wellhead, and the production packer ensures isolation of 

the annulus, forcing the fluids to flow through the tubing. Between the tubing hanger and the 

production packer there exist several tools, which contribute to the safety of the well and to 

optimize production. 

 

Down Hole Safety Valve 

The DHSV can be considered as the most important component in the production tubing. This 

valve isolates the well pressure in case of an emergency, and where well control at surface is 

lost. The valve is fail-safe meaning that it will close automatically in case of malfunction. The 

valve is kept open by hydraulic pressure provided by control lines leading to surface. If 

pressure is lost, the valve automatically closes, preventing fluids from reaching the surface.  

 

Annular Safety Valve 

The ASV is a common component in wells, which is produced with gas lift. The ASV reduces 

the risk of pressurized gas in the annulus from reaching surface in case of failure or 

malfunction. The ASV is located close to surface, limiting the amount of gas between the 

ASV and the wellhead. 
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Side Pocket Mandrels 

The tubing string can include several side pocket mandrels. These acts as housing for gas lift 

valves or similar components. 

 

Gas Lift Valves 

Throughout the life of a field the reservoir pressure will be depleted. At some point the 

pressure is not enough to push the oil through the production tubing and up to surface. A way 

to counteract this is to use gas lift. By installing a GLV inside one of the side pocket 

mandrels, gas can be injecting into the tubing. The fluids inside the tubing will then mix with 

the gas, and the density of the combined fluid will be lowered. The pressure needed to push 

the fluids through the tubing is then reduced and production can be commenced. 

 

Chemical Injection Valves 

When producing oil and gas the operator may experience development of scale, corrosion of 

tubulars, and wax. By installing a CIV it is possible to inject chemicals into the tubulars. 

These chemicals can help remove wax and scale, and act to prevent corrosion. 

 

2.2.2 X-mas Tree 
After installing the production tubing the well is made ready 

for production by installing a X-mas Tree. The tree is a set 

of chokes and valves, which acts to control the production. 

The tree is also the final barrier preventing unwanted flow 

from reaching surface [17]. 

 

There are typically 5 main valves a x-mas tree: 

The MMV is a manual operated valve, which is able to 

close the flow from the well. The HMV has the same 

properties but is hydraulically operated. The uppermost 

valve is the Swab Valve and provides vertical access to the 

well. 

The PWV is the valve where the produced fluids flow 

through. The last valve is the kill valve, which can be used 

to pump fluids into the well for different purposes. 

Figure 2.7: Completed platform well [1] 

For full WBS see Appendix A. 
17 

 



3. Cementing 
 

 

Production optimization begins with a good completion, and good completion depends on the 

integrity of the primary cement job [18]. Every year poor cement jobs causes tremendous cost 

to the oil and gas industry. Poor cement jobs demands for additional cementing operations 

such as squeeze jobs. These operations are time consuming and rig demanding, which in turn 

leads to economic loss. If a poor cement job is left unattended, the result can be catastrophic. 

 

3.1 Cement jobs 
 

Complete zonal isolation is the main goal of a cement job. To ensure the longevity of the well, 

a high quality cement job must be conducted. A good cement job exhibits an extremely low 

matrix permeability, providing an excellent seal [18]. 

 

During the life of a well, the cement is subject to numerous conditions, which combined, can 

reduce the longevity of the well. Temperature and pressure fluctuations can cause the cement 

to expand and contract. This stress can eventually crack the cement, which will reduce its 

integrity. Another problem is de-bonding. This means that the bond between the rock and 

cement, or cement and casing fails, creating a migration route for gas and liquids. Shear 

failure is the third problem and is the most severe & hardest to prevent. This is often caused 

by stress in the formation due to subsidence and movement as the reservoir is produced. The 

result can be complete failure of the cement sheet [18]. 

 
Figure 3.1: Casing deformation caused by movement of the formation [18]. 
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3.1.1 Primary Cementing 
After driller has reached desired depth, the drill string is tripped out of the hole. The casing is 

run into the hole, which as this point is filled with drilling mud. This mud must be removed 

before cementing. This is done by pumping a spacer fluid down the well, followed by the 

cement. The spacer displaces the mud and prevents it from contaminating the cement.  

On its way down the casing, the cement flows through the float collar. This tool is located 

near the bottom of the well and acts to prevent backflow of fluids and gas through the casing 

[19]. 

 

After passing the float collar and casing shoe the cement flows upwards through the annulus. 

The pressure is monitored at the surface, and indicates when the cement plug has reached the 

desired depth. The well is then shut in to allow the cement to harden before completion or 

further drilling commences. 

 

Primary cementing is considered to be one of the most critical stages during drilling and 

completion of wells. You only have one chance to complete a successful job, so careful 

planning cannot be stressed enough [18]. 

 

According to NORSOK D-010 the length of the primary cement job must be minimum 200m 

above the casing shoe. If the casing is installed across a productive formation, the cement 

must extend 200m above the top of the productive formation [1]. 

 

 

 
Figure 3.2: A successful primary cement job [18]. 
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3.1.2 Remedial Cementing 
Remedial cementing is the term describing cement jobs, which is done to cure a well problem. 

This may be due to a failed primary cement job, leaking tubulars or to seal of a productive 

zone in order to alter the production characteristics [18].   

 

Remedial cementing is usually divided into two categories. Squeeze cementing and plug 

cementing. 

 

Squeeze cementing 

Squeeze cementing is the operation where cement is forced through holes in tubulars, cracks 

in the formation or into existing cement [20]. 

 

If the primary cement job is confirmed to be inadequate, a squeeze operation is necessary. 

Perforating guns need to be run and fire shots in the area where squeezing is planned. Then 

cement is squeezed through the perforations and into the annulus. This is of course a time 

demanding operation, and should be avoided if possible. 

 

If there is a leak in the casing cement can be squeezed through the leak in order to seal it. In 

this case it is important to choose correct cement material. The leak may be due to a very 

narrow passage, and the particle sizing in the cement must be selected thereafter. 

 

During the life of a reservoir the oil water contact, normally rise towards surface. A zone, 

which initially produced oil, can later on produce water due to this fact. By squeezing cement 

through the original perforations, water production can be postponed. New perforations can 

be shot at a shallower depth, and production can be resumed. 

 
Figure 3.3: Different squeeze jobs [18]. 
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Plug cementing 

Plug cementing is the method where cement slurry is placed in a cased off, or open-hole 

section the well. The slurry is then allowed to set in order to form a barrier, which may be 

permanent or temporary. 

 

Plug cementing is the main tool used for permanent plugging of wells in the event of 

abandonment. However, plug cementing has several other applications.  

 

• Sealing off a depleted zone 

• Used to initiate directional drilling – kick off plug 

• Isolate weaker formation during well testing 

• Seal off when sidetracking around a fish 

• Provide an anchor for open-hole tests such as LOTs and FITs. 

 

The setting of plugs can be done by several methods, but the most common is the balanced 

plug method, followed by the dump bailer method [18]. 

 

The balanced plug method is performed by running a drill pipe or tubing into the well. When 

the pipe has reached the desired depth the pumping of cement commences. To avoid 

contamination of the cement, spacer is pumped both ahead and behind the cement. The 

volumes are designed in such a way that the heights corresponds in the pipe and in the 

annulus when pumping is finished. The pipe is then pulled out slowly and the plug is allowed 

to set [18]. 

 

The dump bailer method is performed by running a cement retainer into the well by using 

either slickline or wireline. Actuation of the cement retainer can be done by predefining a 

pressure before running in hole. When the retainer achieves the predefined pressure, the 

cement retainer opens and the cement inside is dumped into the well. The cement can be 

dumped on a preset plug, which then acts as a foundation for the cement plug [18].  
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3.2 Plug and Abandonment 
 

The number of aging fields on the Norwegian continental shelf is increasing. When 

production cannot be maintained due to a drained reservoir or integrity issues, the well must 

be plugged & abandoned. In order to abandon a well, several barriers must be set to ensure 

proper sealing of the wellbore.  

 

Since the first discovery on the NCS in 1966, over 3600 offshore development wells have 

been drilled. Eventually these wells must be plugged and abandoned. Today the cost of an 

abandonment operation can be just as expensive as the drilling operation. It is therefore 

important that the industry develops methods that increase the efficiency of plugging 

operations [21]. 

 

3.2.1 Reasons for Abandonment 
There exist several situations where the abandonment of a wellbore is necessary. Some of 

them are mentioned below. 

 

Stuck pipe 

When drilling a well, the driller may experience that the drill string get stuck. If attempts on 

freeing the pipe prove unsuccessful, the driller is forced to cut the string above the stuck 

point. The following procedure is then to place a cement plug above the fish, before 

continuing the drilling. If the wellbore has no potential source of inflow, one barrier is 

sufficient [1]. 

 

Production 

When production rate decreases, the well will reach a point where it’s no longer sustainable. 

To maintain the production within the field it may be necessary to perform a slot recovery, 

and re-drill to a higher productive area of the reservoir. Slot recovery operations includes 

permanently plugging of the old well, before creating a window in the casing and sidetracking 

to an area with higher oil saturation and/or higher mobility. 
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Reduced integrity 

If the well cannot be produced in a safe manner, it must be shut-in. If well integrity cannot be 

re-established, the well must be plugged and abandoned. Reduced integrity can be caused by 

leaking tubulars, poor cement, collapsing, and/or failed equipment.  

 

Decommissioning 

When an operator considers a field to be fully recovered, they will start a decommissioning 

campaign. This includes the removal of all platform installations and the plugging of their 

corresponding wells. 

 

3.2.2 Requirements 
The Petroleum Safety Authority of Norway (PSA) governs all plugging operations on the 

NCS. In addition to the regulations provided by the PSA, the industry has a guideline. This 

guideline is the NORSOK D-010, and is meant to provide minimum requirements for all well 

operations on the NCS. 

 

“Permanently abandoned wells shall be plugged with an eternal perspective taking into 

account the effects of any foreseeable chemical and geological processes. The eternal 

perspective with regards to re-charge of formation pressure shall be verified and 

documented[1]”. 

 

To satisfy the acceptance criteria provided by NORSOK, several barriers must be set into the 

well. 

 

Primary well barrier 

The primary well barrier acts to isolate the source of inflow. The barrier must be impermeable 

and placed at a depth so that the formation integrity is higher than the potential pressure from 

below [1]. 

 

Secondary well barrier 

The secondary barrier acts as a back-up for the primary barrier. The same requirements 

applies to both of them [1]. 
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Cross-flow well barrier 

The cross-flow barrier must be placed in a well if it extends across multiple reservoirs with 

different pressure profiles. If the reservoirs have the same pressure profile, a cross flow 

barrier is not necessary. See Figure 3.4 for example. This barrier can also act as a primary 

barrier for the deepest reservoir. The same requirements with regards to depth applies [1]. 

 

 
Figure 3.4: Multiple reservoirs with no cross-flow [1]. 

 

Open hole to surface well barrier 

The last cement barrier to be set acts to isolate all possible flow paths between surface and the 

well. The plug is set after retrieving the production casing. The plug has no depth requirement 

with respect to formation integrity [1]. After this plug is set the surface casing and conductor 

is retrieved some meters below the seabed. This is to ensure no exposure of the casing above 

the sea bottom in the future – minimizing the footprint.  
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Plug requirements 

A permanent well barrier must extend across the full cross section of the well. This includes 

the wellbore and all the belonging annuli. The cement behind the casing must be verified by 

logging and shall be a minimum of 30m with acceptable bonding [1]. The primary cement 

jobs quality is therefore crucial in order to execute an effective P&A operation. 

 

The cement plug itself shall have a length of minimum 100m MD with minimum 50m MD 

above any source of inflow/leakage point. If the cement is set above a mechanical plug, the 

minimum length of the plug is 50m [1]. 

 

According to NORSOK D-010 a permanent well barrier shall have the following 

characteristics [1]: 

 

• Provide long term integrity (eternal perspective) 

• Impermeable 

• Non-shrinking 

• Able to withstand mechanical loads/impact 

• Resistant to chemicals/substances (H2S, CO2 and hydrocarbons) 

• Ensure bonding to steel 

• Not harmful to the steel tubulars integrity 

 

Prior to setting a permanent plug the casing cement must 

verified to have a good bond. If not, the casing must be 

milled, so that a full cross-sectional rock-to-rock barrier 

can be established. A milling operation is a time 

consuming one, and should be avoided if possible.  

 

The production tubing may be left in hole if proper 

sealing can be provided. Control lines must, however, be 

removed prior to the placement of plugs, as they can 

induce leak paths in the barrier [1]. 

 

 

Figure 3.5: The barrier shall seal both 

vertically and horizontally [1]. 
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After setting a plug, its location must be verified by 

tagging. In addition, its sealing ability must be verified 

by pressure testing the barrier.  

 

As previously mentioned the P&A operations deeply 

depends on the wells status. Today abandonment is 

often postponed, which is unfortunate as wells tend to 

deteriorate over time. The quality of the primary 

cement jobs is essential in performing an effective 

P&A. It reduces the amount of equipment needed along 

with the type of rigs. In the future, dedicated P&A 

vessels can be important in rationalizing the P&A 

operations, and making the drilling rigs available for 

their intended use [22].  

 

 

  

Figure 3.6: An abandoned well with the tubing removed [1]. 

For full WBS see Appendix B. 
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3.2.3 Perforate, Wash & Cement 
A newly developed method in P&A called Perforate Wash & Cement can contribute in 

making the operation more effective. By accessing the annulus through perforations, the 

system can set a full cross-sectional barrier. 

 

This method is effective for placing plugs in both poor and non-cemented sections of the 

casing. 

 

Unlike traditional methods where cutting, milling, and pulling of casings is necessary, the 

PWC-methods provide rock-to-rock seals in one run. A full milling and cementing operation 

can take as much as 10-11 days, while a successful 1 trip PWC operation can take 2.55 days 

[23]. The time and cost saved by this method is unquestionable, and if we take into account all 

the wells that need to be P&A, the money saved is quite immense.  

 

The PWC method also eliminates the production of swarf, associated with milling. This 

contributes to better safety, and the need for handling equipment is not necessary. High 

viscous fluids for swarf transporting is not needed. However, there is need for high-density 

fluids to maintain the stability of exposed formations. 

 

Figure 3.7: The PWC placement method [24]. 
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Plug placement technique 

The BHA includes perforating guns, a washing tool & a cement stinger. By including all tools 

in one BHA, the operation can be carried out in one run. The BHA is lowered into the well 

with a drill pipe. When reaching the plug placing depth the perforating guns are activated by a 

ball drop. After the perforation is performed, the guns are deployed in the well. A rat-hole is 

therefore necessary.  

 

After dropping the perforating guns, the washing tool is 

lowered to the perforated section. The washing tool has a 

lower and upper cup, which forces the washing fluids into the 

annulus through the perforations and upwards towards the 

surface. Washing of the annulus ensures good bonding 

conditions for the cement plug.  

 

 

 

When the washing is completed, the washing tool is released, and pushed below the desired 

plug depth. The top cup then acts as a base for the following cement plug. The cement stinger 

is then positioned for the placement of the plug. The plug is placed as a balanced plug and the 

cement is squeezed through the perforations. After finishing the displacement, the string is left 

in hole to await the setting of the cement plug. When the cement has set, it can be washed, 

tagged and pressure tested. If desired, the plug can be drilled through and the cement in the 

annulus can be logged. If the log verifies good bond, the drilled section will again be 

cemented, and the plug tested before concluding the work [23].  

 

 

 

 

  

Figure 3.8: The washing tool forces 

fluids through the bottom perforations 

and upwards [2]. 
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3.3 Cementing Materials 
 

Cement is by far the most important oil-well binding material in terms of quantity produced. 

The most know type of cement is the Ordinary Portland Cement (OPC). OPC is produced 

mainly by pulverized clinker and other additives. Clinker consists primarily of hydraulic 

calcium silicates, calcium aluminates and calcium aluminoferrites. Gypsum is also ground 

into the material in order to make the finished product. The gypsum prevents the cement from 

“flash setting”, or quick setting, which can prevent proper placement [18]. 

 

API has identified nine types of cement according to composition and properties [25]: 

 

• Classes A and B (Portland Cement)  

• Class C (High early strength cement)  

• Classes D, E and F (Retarded cement)  

• Classes G and H (Basic cement)  

• Class J (Special cement)  

 

3.3.1 Portland Cement 
Portland cement is the most common type of cement, and is the most used isolation material 

in the oil industry. It is defined as a hydraulic cement, meaning that it hardens when reacting 

with water and at the same time forms a water resistant material. In the European standard 

EN-197-1 Portland cement is defined as a CEM1 and CEM2, where CEM1 mainly consist of 

clinker, while the different CEM2 types has various additives [26]. Se appendix C for 

complete cement table. 
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3.3.2 Alternative Isolation Materials 
Lately there has been a lot of research carried out regarding the development of isolation 

materials. Cement is a strong and durable material, but it also faces challenges. It is a brittle 

material, and can break if subjected to too high stress. Curing of cement is greatly influenced 

by the temperature; HPHT-wells therefore present a problem. The high temperature can 

induce an irreversible premature stiffening of the cement, called “flash setting” [18]. 

 

A good alternative to traditional cement is the Thermaset® polymer, which is developed by 

the Norwegian company WellCem. The material already has field proven results. It is a non-

reactive particle free solution, which can be pumped down hole using the same methods as for 

cement. Its gravity can be adjusted from 0.7-2.5 s.g, depending on the formation properties. 

Operation temperature range from -9°C to 150°C. When it is cured it is resistant to 320°C 

[27].  

 

Thermaset® curing is triggered by the temperature in the well. Meaning that it can be 

designed to fit for each specific well. When the fluid reaches the designed depth the curing 

process starts, and the setting time can take from a few minutes to several hours. This can also 

be regulated.  

 

Thermaset® is also more resistant than the Portland cement concerning compressive, flexural 

and tensile strength (see Table 3.1). 

 

 

 Portland Cement Thermaset® 

Compressive Strength (MPa) 58 77 

Flexural Strength (MPa) 10 45 

E-modulus (MPa) 3700 2240 

Rupture Elongation (%) 0.01 3.5 

Tensile Strength (MPa) 1 60 

Failure Flexural Strain (%) 0.32   1.9 
Table 3.1: Properties of Portland Cement vs. Thermaset® [27]. 
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4. Casing Centralization 
 

 

“One of the most important aspects of the displacement efficiency of the drilling fluid by the 

cement slurry is the casing centralization in the well. The cement slurry tends to pass by the 

zone of least resistance to the flow, that is, through the widest part of the well-casing annulus, 

forming thus preferential circulation channels. This problem is critical for highly deviated 

wells” [28].  

 

Correct use of centralizers along the casing joints is critical in order to achieve a good cement 

job. Centralizers are tools that are attached to the outside of the casing. By installing them in 

appropriate intervals, a good casing centralization can be achieved. In 2010, the oil industry 

experienced one of the world’s worst oil related disasters. The drilling rig “Deepwater 

Horizon”, which was drilling for BP in the Gulf of Mexico, experienced a blowout. This 

initiated an explosion, which in turn led to the rig sinking. 11 persons lost their lives, and 17 

got injured [29]. One of the reasons for the blowout was insufficient use of centralizers, 

preventing a good cement job. This topic will be discussed later. 

 

Good centralization of the casing depends on several parameters. Well path, hole size, casing 

size, buoyancy factor, but most importantly the placement of centralizers. Centralization is 

measured in percentage standoff. 100% standoff indicates that the casing is perfectly 

centralized in the wellbore/outer casing. If the casing is touching the outer casing or the 

formation, the standoff is 0%. Standoff is calculated by dividing the gap between the casing 

and the wall by the difference between the hole radius and the casings outer radius (Figure 

4.1). The industrial standard is to obtain a minimum standoff of 70% prior to cementing [30]. 

 

 
Figure 4.1: Calculation of standoff [30].  
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4.1 Centralizers 
 

There exist several centralizers on the market, each with different properties regarding 

functionality, properties and appearance. The bow spring type is the most common one, but 

alternatives like rigid centralizers and semi rigid centralizers are widely used. However, they 

all provide the casing with the desired standoff, if distributed correctly. Improper or lack of 

centralizer usage can lead to poor bonding of the cement sheath. A standoff value below 70 % 

can prevent a proper displacement of the drilling fluid. The drilling fluid will then create 

small channels in the cement sheath, which prevents the cement from creating a tight seal. 

 

The use of centralizers also helps avoid differential sticking when running the casing into the 

well. This is because the contact area between the casing and the mud cake on the wellbore 

wall is reduced. 

 

 

 

Figure 4.2: Bad centralization of casing can cause mud channels in the annulus. 
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4.1.1 Bow-Spring Centralizer 
The Bow-Spring Centralizer is the most common centralizer and the first to be developed. 

Two collars are connected by bow-shaped springs. These springs have an OD, which is 

slightly larger than the wellbore ID, making them force the casing away from the wellbore 

wall. This allows the cement to be evenly distributed around the casing. The standoff 

provided depends on the restoring force of the springs, and the spacing between the 

centralizers. 

 

Bow-Spring centralizers come in welded and non-welded styles. The non-welded centralizers 

come with hinges, which attaches the centralizer to the casing. According to Halliburton, both 

of them provide the following advantages [31]: 

• They help center the casing in the wellbore, allowing even distribution of cement 

around the casing. 

• They help reduce casing drag on the wellbore during casing running operations. 

 

• They help prevent differential sticking of the casing. 

 

• They increase fluid turbulence at the tool, helping remove filter cake from the 

wellbore. 

• They can be run through hole restrictions in the wellbore or through smaller casing 

strings that are cemented in the well, thereby centering the casing below the 

restriction. 

 

Bow-spring centralizers do, however, provide less support in highly deviated wells, as they do 

not support the weight of the casings very well [32]. 

 

 
Figure 4.3: Bow-Spring Centralizers [31]. 
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4.1.2 Rigid Centralizer 
The rigid centralizers serves the same purpose as the bow-spring type, but with some 

deviations. The rigid centralizers has no moving/flexible parts, making them more prone to 

being stuck. If the well is not in excellent condition, it can cause problems for the centralizer. 

When running rigid centralizers one must have a margin between the wellbore ID and the 

Centralizers OD, in order to prevent stuck pipe. This makes it impossible to achieve a 100% 

standoff, but this is of course not necessary. 

 

The high strength of the rigid centralizers makes them very beneficial for use in highly 

deviated or horizontal wells. The centralizer can be installed between two stop collars. The 

centralizer can then move freely between these collars. This also allows the casing to rotate 

without needing to rotate the centralizer. Rotation of the casing improves the fluid 

displacement. Another option is centralizers with integral setscrews [33].   

 

Rigid centralizers come in different types; solid body, straight blade and spiral blade 

centralizers. 

 

 

 
Figure 4.4: Rigid centralizer with spiral blades [33]. 
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4.1.3 Semi Rigid Centralizer 
The semi rigid centralizers utilizes the concept from both the rigid and the bow-spring type. 

Initially the unit acts as a bow-spring centralizer. As the side force increases the, and the bow 

is compressed, it turns itself into a rigid type. The bows then acts as blades not very different 

from the rigid type [30]. The Dual-Contact centralizer from Figure 4.3 is a typical semi rigid 

centralizer. 

 

4.1.4 Protech CRB™ Centralizers 
Centralizers are subject to a lot of wear and tear when run into hole. It can be destroyed or get 

stuck during the running operation. 

 

The Protech CRB™ (Casing Resin Blend) solution is an alternative to the more traditional 

centralizers. The technology is developed by Halliburton together with Eni S.p.A [34]. The 

concept is to attach a high resistant resin blend onto the casing. This forms a solid type 

centralizer, which is applicable to whatever casing size. With good thermal properties as well 

as being H2S and CO2 resistant, it makes a good alternative to traditional centralizers. 

 

The blend is bonded to the casing at the yard before shipped to the site. Time used to install 

centralizers and welding them on is then eliminated, which contributes in streamlining the 

operation. 

 

This technology also applies to drillpipe and is called Protech DRB™ (Drillpipe Resin Blend) 

[34].  

 
Figure 4.5: Protech CRB™ blend attached to a pipe [34]. 
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4.2 Deepwater Horizon & the Macondo Blowout 
 

The Deepwater Horizon was a semisubmersible drilling rig owned by Transocean. In 2010 it 

operated for BP at the Macondo prospect in the Gulf of Mexico. The 20th of April it 

experienced a blowout, which led to the rig exploding and sinking. The accident claimed the 

lives of 11 persons, and injured 17 [29]. Several barriers were breached, which resulted in this 

catastrophic incident. 

 

The well spilled oil into the Gulf of Mexico for several months, and was not completely 

abandoned until 5 months later. It has then managed to become the worst offshore oil spill in 

U.S history, with 206 million gallons of oil spewed [35]. 

 

 

 

Figure 4.6: A sinking Deepwater Horizon [36]. 
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4.2.1 Course of Events 
The course of events described here is taken from BP’s internal investigation report [29]. 

 

The Macondo well was spudded with Transocean’s Marianas rig the 6th of October 2009. In 

January 2010, the Deepwater Horizon rig arrived Macondo to replace the Marianas rig. On 

the 9th of April, the TD of 18 360 ft. was reached, and a 9 7/8” x 7” casing was planned ran 

into the well. Appendix D can be viewed for the full casing program. 

 

The 20th of April hydrocarbons escaped from the Macondo well. The rig crew and BP well 

team failed to gain control over the situation, which eventually lead to the rig sinking. The 

key events leading up to the catastrophe is described below. 

 

The annulus cement barrier did not isolate the hydrocarbons 

Halliburton’s OptiCem™ program was used to simulate the cement job and the required 

number of centralizers needed. The program concluded that 21 centralizers was required in 

order to achieve 70% standoff in the planned cemented section. The cement was planned to 

have a TOC 500ft above the shallowest hydrocarbon zone.  

 

The 7” section of the casing was delivered with six inline centralizers; not enough to provide 

the desired standoff. An order of 15 additional bow spring centralizers was placed the 15th of 

April, and these were delivered to the rig the next day. The well team did however, believe 

that they had received wrong centralizers, and was concerned that they would fail during 

running of casing. The centralizers were correct, however, the team decided not to install 

them, and ran the casing with only the six inline provided centralizers. 

 

The casing was run, and cement pumped. Full returns was observed, indicating no fluid 

losses. After the cement job was completed the well team had discussions about running a 

cement evaluation, but they concluded that it was not necessary. This decision combined with 

the decision not to run the recommended amount of centralizers may have contributed to the 

cement not sealing the annulus; allowing hydrocarbons to migrate towards the surface through 

said annulus and into the casing. 
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Float collar did not isolate the hydrocarbons 

The float collar is a component in the lower part of the casing, mentioned in chapter 3.1.1. 

This component is a flapper, which serves as a mechanical barrier, preventing unwanted 

backflow. This component failed, allowing the hydrocarbons to migrate upwards through the 

casing. 

 

A negative-pressure test was accepted although well integrity was not established 

10 ½ hours after the cement job the drill crew started the pressure testing of the mechanical 

barriers. The positive-pressure test was conducted and proved successful.  

 

When doing a negative-pressure test the well is brought into underbalance, and the sealing 

capability of the well can be tested. 

 

The negative pressure test did however indicate that flow path communication existed, but 

this was faulty interpreted by the rig crew and the BP leaders. They concluded that the test 

was successful and that well integrity had been established. 

 

Influx was not recognized until hydrocarbons were in the riser 

After the negative-pressure test was finished and accepted, the well was brought into 

overbalance again, preventing further influx. Later when the well was about to be temporary 

abandoned, the heavy mud in the well was replaced with seawater, under-balancing the well. 

This allowed hydrocarbons to migrate upwards through the production casing, and passed the 

BOP. The pressure increase in the drill pipe should have been noticed, but counteractions 

where not done until 40 minutes later, when hydrocarbons where rapidly flowing to the 

surface. 
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Well control response actions failed to regain control of the well 

Some minutes before the hydrocarbons reached surface, witnesses observed mud flowing 

uncontrollably onto the rig floor. The annular preventer was closed, but it was too late as 

hydrocarbons had already entered the riser. The annular preventer did not properly seal the 

annulus, so the hydrocarbons continued to enter the riser. 

The fluids entering the riser was diverted to the mud-gas separator, but this was quickly 

overwhelmed by the amounts, and failed to control the hydrocarbons. Some minutes later the 

drill pipe pressure rose from 1200 psi to 5730 psi! This was likely caused by the sealing of the 

annulus caused by the variable bore rams in the BOP. At approximately 21:49 hours, a couple 

of minutes after the pressure increase, the explosions occurred, followed by fire. 

Attempts were made to activate the emergency disconnect sequence (EDS). This would have 

sealed the well and disconnected the riser. The EDS did not activate. 

 

Diversion to the mud gas separator resulted in gas venting onto the rig 

When the rig crew noticed the hydrocarbons above the BOP, they diverted the flow to the 

MGS. The MGS was not designed for the high amounts of gas, and was overwhelmed. This 

led to the gas being diverted directly to the rig floor, creating a highly flammable 

environment. 

 

The fire and gas system did not prevent hydrocarbon ignition 

The fire and gas system is designed to detect hydrocarbon gas when they exceed a 

predetermined concentration. When activated the system shuts down electrical devices, which 

can act as an ignition source. Because of the unlikeliness of hydrocarbons, being present when 

there is no producing wells, the Deepwater Horizon only had small areas that was electrically 

classified. Therefore, the system did not prevent the hydrocarbons from being ignited. 
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The BOP emergency mode did not seal the well 

The last option to seal of the well and kill the blowout was to activate the Blind Shear Ram 

(BSR). If activated, the BSR cuts through the drillpipe and seals off the wellbore. If the EDS 

system had been working properly the BSR would already have been activated, but damaged 

cables prevented this. 

 

33 hours after the explosion a ROV managed to activate the BSR. Although the BSR had been 

activated it failed to seal of the well. 

 

Conclusions 

The Macondo blowout was a result of human and technical errors. Several barrier was 

breached, which could have been maintained with proper well design and equipment 

maintenance. In this thesis, it is natural to focus on the first key failure, which was the 

primary cement not isolating the hydrocarbon-bearing zone. Proper centralization of the 

casing followed by methods of verification could have prevented the biggest oil spill in US 

history. 

 
Figure 4.7: Several barriers were breached [29]. 
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5. Optimizing Centralizer Distribution 
 

 

By optimizing the distribution of centralizers along the casing, it is possible to acquire the 

desired standoff. It is especially important to obtain a good centralization in the section, which 

is to be cemented. Poor centralization here may cause poor circulation, which can lead to mud 

not being removed. If there is still mud in the well when the cement is being pumped it will 

contaminate the cement. This reduces the quality of the cement, making its sealing properties 

poor. Poor cement jobs is causing great cost to operators, as remedial cementing is required. 

Optimal placement of centralizers depends on several parameters. When these parameters are 

known, several different methods for calculating the optimal distribution exists. One of them 

is the OptiCem™-Module, which is included in the WELLPLAN™ program developed by 

Landmark, Halliburton. This module will be used in this thesis for simulating the optimum 

distribution of centralizers, and the spacing between them. 
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5.1 Well Trajectories 
 

A parameter, which is very important in regards to centralizer placement, is the well’s 

trajectory. A perfectly vertical well would in theory have no need for centralizers, whereas 

highly deviated and horizontal wells would need several centralizers in order to centralize the 

casings. 

 

Several things govern the well trajectory design. Especially on offshore installations, well 

trajectory design is a key to reach the desired production zones. The platform has a restricted 

set of well slots, and must try to cover the reservoir by the use of these. All the wells have 

almost the same origin, and it is important to plan the wells with high precision to avoid 

colliding with and destroying other wells.   

 

Well trajectory design also affects the possibility to reach remote reservoirs, which are too 

small to economically support the development of a platform or subsea template. 

 
Figure 5.1: Well trajectories below a fixed offshore platform. 
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5.1.1 Vertical 
Vertical wells are the simplest wells to design. The risk of experiencing mud channeling due 

to bad centralization is small, and centralizers is not required, in theory. A well is however, 

never completely vertical, and centralizers should be applied to ensure good standoff values 

before cementing.  

 

 

5.1.2 Build & hold 
The build & hold well has a kick off point at a 

shallow depth. Often right after the surface 

casing has been set. The well then goes into a 

build section where the wells inclination is 

increased. After the build section, the well 

enters the sail section, which it holds until it 

reaches the target depth.  

 

The use of centralizers in the build and sail 

section is crucial in order to get a good cement 

job. 

 

5.1.3 Build, hold & drop 
This type of well is similar to the build & hold 

type, but the angle drops after the sail section. 

This type of well design may be necessary when 

the TD is located away from the slot and 

reservoir properties dictates that a vertical entry 

angle is beneficial.  

 

Centralizers are necessary in the build and drop 

section as well as in the sail section. 

 

 

 Figure 5.3: Build, hold & drop profile. 

Figure 5.2: Build & hold profile. 
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5.1.4 Horizontal 
Horizontal wells are beneficial in thin reservoirs 

where vertical wells would be unsatisfactory. By 

drilling horizontal into the reservoir the drainage area 

is increased, which enhances productivity and lowers 

cost. The horizontal profile does, however, create 

problems related to the centralization of the casings. 

Without centralizers, the casing or liner will just rest 

on the wellbore floor. If centralizers are used, it is 

important to have the correct spacing in order to 

achieve the desired standoff. If the spacing is too 

large the casing will bend, and touch the wellbore 

wall in the middle between the centralizers.  

 

Correct centralization of a horizontal well will aid the spacer in cleaning the hole, and the 

cement to create a good bonding to the formation. 

 

The four well types described above will be used as a base for the simulations in OptiCem™.  

  

Figure 5.4: Horizontal profile. 
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5.2 OptiCem™ Simulations 
 

OptiCem™ is a simulation software developed by Landmark. It was previously a stand-alone 

application, but is now implemented as a part of the Wellplan package. By using this 

program, one can simulate cement jobs, but also the optimal distribution of centralizers prior 

to a cement job. 

 
Figure 5.5 Starting the OptiCem™ centralizer module. 

 

In order to simulate you have to provide the application with some input data. First, you need 

a survey. The survey defines the wells path, and is the most critical for centralizer placement. 

If the user do not have an actual survey available he can enter some data points, and the 

application will create a survey by interpolation. This is done by using the minimum curvature 

method. This method uses the inclination and direction of a lower and upper point in the well, 

and creates a smooth arc between the points. This method is considered to be the most 

accurate method [37]. 

 

Next, you have to define the wellbore. If there is casings already in place, these have to be 

entered. The module has a catalog of casings, which includes size grade weight & connection 

type. This is however not very relevant to the distribution of centralizers. If there is an open 

hole section this must also be defined here. 

 

After defining the wellbore, the user defines the string, which is to be run into the hole. In 

these cases, this string would be a casing string. The casing is chosen from the same catalog 

as before. 
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It is also possible to define the fluid, which is in place while running the casing. This fluid 

will provide buoyancy, which effects the number of centralizers in some degree. However, the 

effect of the fluid is rather small, so the density will be set to 8,5 ppg during all simulations. 

 

 
Figure 5.6: The data needed for calculations must be entered under the "case" menu. 

 

After all these parameters are in place, it is possible to choose centralizers. The centralizers 

are also chosen from a catalog. The casing string, which is going to be run, alters the catalog, 

so that only the centralizers suited for the hole and casing are listed. When a centralizer type 

is chosen, it is possible to choose desired standoff or to specify the spacing between them. 

The module then calculates the number of centralizers, and the standoff respectively.  

 

 

 
Figure 5.7: Centralizers are picked from the catalog. 
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5.2.1 Centralizing a vertical well 
One would suspect that a vertical well would not have any demand for centralizers in order to 

keep the casing centralized. The tension in the casings provided by their own weight should 

ensure proper centralization. It is however, interesting to see how the OptiCem™ software 

responds to the input. 

 

We start by entering the well path. Since this is a completely vertical well only two data 

points is necessary; start point and the TD. 

 

Measured Depth (ft) Inclination (°) Azimuth (°) TVD (ft) 

0 0 0 0 

10000 0 0 0 
Table 5.1: Vertical survey data 

After defining the well path and let the module create a survey using the minimum curvature 

method, the hole sections can be defined. For this simulation we will have a cased off section 

going down to 5000 MD. This will be a casing with an OD of 13 3/8”. The casing is followed 

by an open-hole with an OD of 12 1/4”, which continues down to TD. 

 

There would normally be casings set prior to the 13 3/8”, but they are left out, as they do not 

affect the centralization of the next casing. 

 

Section Type Measured Depth (ft) Length(ft) OD(in) ID(in) Weight (ppf) 

Casing 5000 5000 13 3/8 12,347 72 

Open Hole 10000 5000 - 12,25 - 
Table 5.2: Vertical hole section 

Now that the well is defined with a survey and previous casings, it is possible to define the 

string, which is to be run into the hole.  A 9 5/8” casing will be chosen as the next casing. 

 

Section Type Length(ft) OD(in) ID(in) Weight (ppf) 

Casing 10000 9 5/8 8,681 47 
Table 5.3: Vertical casing string 
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All the data necessary to choose centralizers is now available in the module.  By chosing the 

“Centralizer Placement” option available under the “Parameter” tab, the user can start 

simulation by entering desired standoff, or by specifying the spacing between the centralizers. 

 

 
Figure 5.8: Centralizer simulation is carried out in the "parameter" section. 

For this example with a vertical well, one would expect that no centralizers are required to get 

a good standoff value. By using this application, we can confirm this.  

 

First, a bow spring type will be used to centralize the well. 

 

Pattern Centralizer A (Casing, Hole, Nominal Diameter, Description) Required Standoff (%) 

A 9,625 x 12,25 x 13 1/2- Hinged Imperial Bow (API Spec 10D) 70 

Table 5.4: Centralizers in the vertical well. 

 

In Table 5.4 the centralizer is defined. The pattern defines the pattern if different centralizers 

are used. Here we only use one type, so the pattern is A. If we had a mix of two different 

centralizers, we could have patterns like AB, AAB, and AAAB etc.  

 

The numbers in front of the centralizer defines the casing it will be hinged on, the hole size 

and the nominal diameter of the centralizers itself. Note that the nominal diameter is larger 

than the hole. This is normal for bow spring types, as the springs get compacted when ran into 

the hole.  

 

The user can choose the required minimum standoff. Here 70% is used as it is the industrial 

standard [30].  . 
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After selecting the centralizer, the module produces a standoff chart, which represents the 

standoff value of the casing along the depth of the well. For this example, a value of 100% is 

obtained along the entire wellbore, as one would expect.  

 

Figure 5.9: Standoff chart for the vertical well. 

 

After selecting centralizers the user can open 

the “Standoff Devices” section and gain 

knowledge about how many centralizers are 

needed. In this case, the simulation tells us that 

two centralizers are enough. 

It is also possible to define the spacing of the 

centralizers manually. The result is the same, 

giving standoff value close to 100%. However, 

a small change can be observed close to 5000 

feet where the well changes from cased to 

open hole. This is because of the small change 

in the hole diameter. 

 

 

Figure 5.10: Well schematic for the vertical well. 
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5.2.2 Centralizing a build & hold well 
When the well profile gets more complicated, the number of centralizers required increases. 

Especially in the build and the sail section one would expect that a great number of 

centralizers is necessary. The section above the KOP would not be that critical, but the weight 

of the underlying casing will try to drag the casing against the wellbore wall. 

 

By looking at Figure 5.11 we see how we would 

expect the casing to behave in the well if no 

centralizers were used. The vertical section would 

be centralized, but in the build section the casing 

would be dragged towards the roof of the casing 

(red lines) wall because of the weight of the casing 

below. When we reach the start of the sail section, 

the casing would have a point where it is 

completely centralized before it starts 

decentralizing against the wellbore floor (blue 

lines). 

 

In order to investigate this profile in OptiCem™ we need a survey, which is easy to compose. 

By entering a set of values, the module calculates a survey using the minimum curvature 

method. This example will only be two dimensional, letting the azimuth be 0 degrees at all 

depths. The well will kick off at 3500 ft and build inclination until it is 45 degrees. Then it 

enters the sail section, which continues down to a TD of 10000 ft. 

 

 

 

 

 

 

 

Figure 5.11: A build & hold well without 

centralizers. 
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Measured Depth (ft) Inclination (°) Azimuth (°) TVD (ft) DLS (°/100ft) 

0 0 0 0 0 

1000 0 0 1000 0 

2000 0 0 2000 0 

3500 0 0 3500 0 

4000 10 0 3994,9 2 

4500 20 0 4477,3 2 

5000 30 0 4929,9 2 

5500 40 0 5338,9 2 

5750 45 0 5523,2 2 

6000 45 0 5700 0 

1000 45 0 8528,4 0 
Table 5.5: Survey data for the build & hold well. 

 

 

By entering the above data into 

OptiCem™, it creates a complete 

survey. The well path created can be 

viewed in Figure 5.12. Before it is 

possible to do any simulations on 

centralizers, some data on the casings 

in the hole are needed. Previous 

casing and the casing to be run need 

to be specified. The same casing 

dimensions will be used for this 

example as for the previous one with 

the vertical well. 

 

 

 
 

Figure 5.12: 3D plot of the build & hold well. 

51 
 



For this well the 13 3/8” will be at the same measured depth as for the vertical well. 

Section Type Measured Depth (ft) Length(ft) OD(in) ID(in) Weight (ppf) 

Casing 5000 5000 13 3/8 12,347 72 

Open Hole 10000 5000 - 12,25 - 
Table 5.6: Build & hold hole section 

The following casing to be set is a 9 5/8” casing, which continues down to a TD of 10000 ft. 

Section Type Length(ft) OD(in) ID(in) Weight (ppf) 

Casing 10000 9 5/8 8,681 47 
Table 5.7: Build & hold casing string. 

 

The same centralizer as for the previous example will be used. The required standoff will be 

defined so that it will meet the requirements. 

 

Pattern Centralizer A (Casing, Hole, Nominal Diameter, Description) Required Standoff (%) 

A 9,625 x 12,25 x 13 1/2- Hinged Imperial Bow (API Spec 10D) 70 

Table 5.8: Centralizers in the build & hold well. 

The defined settings result in the following standoff profile seen in Figure 5.13. Here it is 

possible to observe that the casing is completely centralized until it approaches the KOP 

where there is a sharp change in standoff value. This standoff is, however, kept stable along 

the build section, and increases only when entering the sail section.  

 
Figure 5.13: Standoff chart for the build & hold well. 

52 
 



In this example, a minimum standoff value of 70% was achieved using 140 centralizers. The 

centralizers are however, unevenly spaced to achieve this result, and this is something that can 

be difficult to achieve when installing the centralizers out in the field. 

 

Section Depth interval (ft) No. of centralizers Cent./100ft 

Vertical 0-3500 6 0,17 

Build 3500-5750 50 2,22 

Hold 5750-10000 84 1,97 
Table 5.9: Distribution of centralizers in the different sections in the build & hold well. 

From Table 5.9  we can observe that the build section is the section that requires the most 

centralizers per 100 ft. in order to acquire a minimum standoff value of 70%. The sail section 

has a lower value, while the vertical section has almost no demand for centralizers.  

As mentioned above, it can be complicated to install the centralizers in the manner required in 

the example above. An easier approach could be to install them with a constant spacing. For 

example one centralizer on every casing joint (approx. 40ft) [38].  

Spacing (ft) Standoff  ≥ 70% No. of centralizers Problem area 

50 No 200 Build Section 

40 No 250 Build Section 

30 Yes 300 N/A 
Table 5.10: Constant distribution of centralizers along a build & hold well. 

The above results show that a good standoff is harder to achieve when a constant spacing is 

applied. The result is satisfactory when using 300 centralizers with a constant spacing of 30 ft. 

The installment of these centralizers are, however, easier to implement, but the number 

centralizer is more than doubled relative to the first example, so this is something that should 

be evaluated by the operator. 

 

When using a spacing of 50 ft. the standoff is satisfactory in every section but the build 

section. Here the standoff reaches a low point at about 35% at the kick off point. This section 

would normally not be cemented, as it is high above the casing shoe. Therefore, this result 

could have been considered. A spacing of 60ft. is, however, unsatisfactory in all sections but 

the vertical, and is not a recommended option. 
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An alternative solution is to divide the well into three parts. The vertical, build, and the hold 

section all have different demands with respect to centralizers. A spacing of 30 can for 

example be considered redundant in the vertical section. By implementing different spacing 

for the different sections, the amount of centralizers is reduced, while installation still is kept 

simple. 

 

Depth Interval (ft) Spacing Standoff ≥ 70% No. of centralizers 

0 - 3500 3500 Yes 0 

3500 - 5750 30 Yes 75 

5750 - 10000 50 Yes 85 
Table 5.11:Various distribution of centralizers along a build & hold well. 

Table 5.11 shows the result of dividing the well into different sections. This result yields a 

total amount of 160 centralizers, which only is 20 more than for the optimal solution shown in 

Table 5.9. The fact that this solution is easier to implement, makes it a preferable solution. By 

looking at Figure 5.14, one can see that this solution is satisfactory concerning standoff 

values.  

 

Figure 5.14: Standoff chart for various distribution of centralizers along the well. 
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5.2.3 Centralizing a build & hold well with azimuth  
A parameter it can be interesting to look at is the azimuth. So far the well profile have only 

been in two dimension, leaving the azimuth at 0 degrees. If all other parameters is left equal, 

but with an increase in azimuth along the build section, it is possible to see how this affect the 

number of centralizers needed.  

 

Measured Depth (ft) Inclination (°) Azimuth (°) TVD (ft) DLS (°/100ft) 

0 0 0 0 0 

1000 0 0 1000 0 

2000 0 0 2000 0 

3500 0 0 3500 0 

4000 10 40 3997,5 2 

4500 20 80 4480,9 2,77 

5000 30 120 4936,6 3,83 

5500 40 160 5351,0 4,91 

5750 45 180 5536,1 5,74 

6000 45 180 5712,9 0 

10000 45 180 8541,3 0 
Table 5.12: Survey data for the build & hold well with azimuth. 

 

By entering the above data into OptiCem™, it creates a complete survey. The same casing 

dimensions and setting depths will be used for this example as for the previous one.  

The 13 3/8” casing is the previous casing set at 5000 ft. while the 9 5/8” is the casing to be 

run to TD. 
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First, we let OptiCem™ find the optimal distribution of centralizers, by defining our desired 

standoff. The desired standoff is 70% as before. The same bow spring type as in previous 

examples will be used. OptiCem™ creates a good standoff profile using 179 centralizers. 

However, as in the previous example, it is an uneven distribution and may be hard to carry out 

in practice. To simplify this we split the well into three parts, the vertical, build, & the hold 

section. 

Depth Interval (ft) Spacing Standoff ≥ 70% No. of centralizers 

0 - 3500 3500 Yes 0 

3500 - 5750 20 Yes 114 

5750 - 10000 50 Yes 85 
Table 5.13: Various distribution of centralizers along a build & hold well with azimuth. 

For this example, a total of 199 centralizers is necessary to achieve a standoff value above 

70%. Again 20 centralizers more than for the optimal solution, but again easier to install. The 

azimuth does make it harder to get a good standoff value, as expected, and more centralizers 

are required. 

 

 

Figure 5.15: Standoff chart for various distribution of centralizers along the well. 
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5.2.4 Centralizing a build, hold & drop well. 
In this section, we will see how a build, hold & drop well will affect the number of 

centralizers necessary.  

 

 Again, in Figure 5.16 we see how the casing 

would behave in this type of well, if no 

centralizers had been used. It will be 

interesting to see how much the drop section 

will affect the number of centralizers. 

 

By maintaining a well length of 10 000ft and 

also entering the drop section at an earlier 

point, we can see how this affect the 

standoff, and number of centralizers. 

 

 

 

 

OptiCem™ will again be used for simulations. All parameters but the survey will be kept the 

same. This time the azimuth will be kept at zero, in order to compare the result to the build & 

hold well with no azimuth change. 

 

  

Figure 5.16: A build hold and drop well without centralizers. 
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Measured Depth (ft) Inclination (°) Azimuth (°) TVD (ft) DLS (°/100ft) 

0 0 0 0 0 

3500 0 0 3500 0 

4000 10 0 3997,5 2 

4500 20 0 4479,8 2 

5000 30 0 4932,4 2 

5500 40 0 5341,5 2 

5750 45 0 5525,7 2 

7000 45 0 6409,6 0 

7500 35 0 6792,1 2 

8000 25 0 7224,6 2 

8500 15 0 7693,8 2 

9000 5 0 8185,6 2 

9250 0 0 8435,3 2 

10000 0 0 9185,3 0 
Table 5.14: Survey data for the build, hold & drop well. 

By entering the data in Table 5.14 into 

OptiCem™, a complete survey is created. The well 

path can be viewed in Figure 5.17. Before it is 

possible to do any further simulations, the module 

needs information on the casings in hole, and the 

casing to be run. This will be the same as in 

previous examples, but will be shown again for 

clarification.    

Figure 5.17: 3D plot for the build, hold & drop well. 
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Section Type Measured Depth (ft) Length(ft) OD(in) ID(in) Weight (ppf) 

Casing 5000 5000 13 3/8 12,347 72 

Open Hole 10000 5000 - 12,25 - 
Table 5.15: Build, hold & drop hole section 

The following casing to be set is a 9 5/8” casing, which continues down to a TD of 10000 ft. 

Section Type Length(ft) OD(in) ID(in) Weight (ppf) 

Casing 10000 9 5/8 8,681 47 
Table 5.16: Build, hold & casing string. 

The same centralizer as for the previous example is used. The required standoff will be 

defined so that it will meet the requirements. 

 

Pattern Centralizer A (Casing, Hole, Nominal Diameter, Description) Required Standoff (%) 

A 9,625 x 12,25 x 13 1/2- Hinged Imperial Bow (API Spec 10D) 70 

Table 5.17: Centralizers in the build, hold & drop well. 

Now the module has enough data to run a standoff simulation. Again, the casing is completely 

centralized until it reaches KOP. Here the casing need support by centralizers along the 

remaining sections of the well. The standoff profile can be viewed in Figure 5.18. 

 

Figure 5.18: Standoff chart for the build, hold & drop well. 
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In this example, a minimum standoff value of 70% was achieved using 139 centralizers. The 

centralizers are however, unevenly spaced to achieve this result, and this is something that can 

be complicated to achieve when installing the centralizers out in the field. 

 

Section Depth interval (ft) No. of centralizers Cent./100ft 

Vertical 0-3500 4 0,11 

Build 3500-5750 58 2,58 

Hold 5750-7000   24 1,92 

Drop 7000-9250 52 2,31 

Vertical 9250-10000 1 0,13 
Table 5.18: Distribution of centralizers in the five sections of the build, hold & drop well. 

The results shown in Table 5.18 states that the build section has the highest demand for 

centralizers, followed by the drop section. The vertical section has very little demand, while 

the hold section has almost the same need as the sail section in the build & hold example in 

chapter 5.2.2. 

 

As previous mentioned the distribution of the centralizers is very irregular, and could be hard 

and cumbersome to carry out in practice. Again, to divide the well into parts and define 

centralizer spacing within them could be a better solution. 

 

Depth Interval (ft) Spacing Standoff ≥ 70% No. of centralizers 

0 - 3500 3500 Yes 0 

3500 - 5750 25 Yes 91 

5750 – 7000 50 Yes 25 

7000 – 9250 30 Yes 76 

9250 – 10000 750 Yes 0 
Table 5.19: Various distribution of centralizers along a build, hold & drop well. 
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Figure 5.19: Standoff chart for various distribution of centralizers along the well. 
By looking at the chart in Figure 5.19, we observe that the standoff value is ok. It is however, 

not an optimal solution. 192 centralizers is needed, which is 38% more than for the 

OptiCem™ optimal solution concerning 70% standoff. By comparing the standoff charts, we 

see a clear difference. The line in Figure 5.18 has a smooth profile, which indicates that the 

centralizers is well distributed, while the line in Figure 5.19 is very irregular, which indicates 

an uneconomic distribution of centralizers. The latest example would, however, be easier to 

install, which is a factor that should be considered. 

 

We also observe that the standoff value drops slightly below 70% at the drop point at 7000 ft. 

MD. This should however, not cause any problems concerning cementing, as it is not normal 

to cement 3000 ft. above the casing shoe. 
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5.2.5 Centralizing a horizontal well 
Proper centralization of casing/liner in a horizontal well is the key to success. It aids the 

spacer in cleaning out the well prior to cementing, and the chance of getting a successful 

primary cement job increases with increasing standoff values. 

 

If none or too few centralizers are used, the casing will rest on the low side of the wellbore 

wall. When circulating fluids through the well, the fluids will flow in the path of least 

resistance, which in this case will be the high side of the well. This results in poor hole 

cleaning, and a bad cement job, which in practice only leaves one with a very expensive hole 

in the ground. 

 

 

Figure 5.20: A horizontal well without centralizers. 

 

It is possible to do OptiCem™ simulations on a horizontal well if survey data and other 
necessary well data is provided.   
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Measured Depth (ft) Inclination (°) Azimuth (°) TVD (ft) DLS (°/100ft) 

0 0 0 0 0 

6000 0 0 6000 0 

7000 20 0 6979,8 2 

8000 40 0 7841,5 2 

9000 60 0 8481,0 2 

10000 80 0 8821,3 2 

10500 90 0 8864,8 2 

15000 90 0 8864,8 0 
Table 5.20: Survey data for the horizontal well. 

 

 

Survey data for a horizontal well 

can easily be created in the 

OptiCem™ module. By entering 

the data in Table 5.20 into the 

software, the software creates a 

survey using the minimum 

curvature method. The result is a 

survey with data points every 30ft. 

The resulting well path can be 

viewed in Figure 5.21 

 

 

 

 

 
 

Figure 5.21: 3D plot for the horizontal well. 
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First, we define the hole as it is with its latest casing, its setting depth, and the current depth of 
the following open hole. 

Section Type Measured Depth (ft) Length(ft) OD(in) ID(in) Weight (ppf) 

Casing 10000 10000 9 5/8 8,681 47 

Open Hole 15000 5000 - 8,50 - 
Table 5.21: Horizontal hole section. 

This example is different from the previous as we now have the 9 5/8” casing as the previous 

one. This is because it is not very likely that the 13 3/8” casing continues all the way down to 

10 000ft. Hence, the next casing needs to be of a lesser OD. 

 

Section Type Length(ft) OD(in) ID(in) Weight (ppf) 

Casing 15000 7 6,094 32 
Table 5.22: Horizontal casing string. 

In this example with the horizontal well, it can be interesting to see how different centralizers 

affect the number of units needed, but also how different spacing and specified standoff alters 

the number of centralizers. Centralizers will be used from the KOP at 6000 ft. and down to 

TD at 15000 ft. Bow-spring centralizers will be used in this first example.  

 

Method Spacing 40 ft Spacing 35 ft Spacing 20 ft Specified Standoff  70% 

Number of Centralizers 225 258 450 226 

Good Standoff No Yes Yes Yes 

Easy Installation Yes Yes Yes No 

Economics Yes Yes No Yes 
Table 5.23: Bow-spring centralizers in the horizontal well. 

By looking at the above results, we see that the specified standoff alternative gives a low 

amount of centralizers, equal to the 40 ft. spacing alternative. The 40 ft. spacing alternative 

does, however, not provide good standoff, while the specified standoff alternative may be a 

difficult-to-follow spacing program. The 35ft. spacing program is easy to install and provides 

adequate standoff. The amount of centralizers needed is not dissuasive, and it looks like the 

best solution for this well. 
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Section Depth interval (ft) No. of centralizers Cent./100ft 

Vertical 0-6000 0 0 

Build 6000-10500 100 2,22 

Horizontal 10500-15000 126 2,80 
Table 5.24: Distribution of centralizers in the sections of the horizontal well. 

In Table 5.24, we see how the density of centralizers is distributed in the different sections of 

a horizontal well. The horizontal section requires more centralizers than the build section. 
 

Since this is a horizontal well, it could be beneficial to use rigid centralizers. These 

centralizers are more robust than the bow spring types, which may be relevant when the pipe 

is to be run to a total depth of 15 000ft.  

 

Unlike the bow spring type, the rigid centralizers  provides the same standoff regardless off 

hole angle, but the casing does off course sag between the units. Bow spring types also creates 

a lot of friction if the casing is to be rotated when tripping into the well. This is because of the 

restoring force in the springs, which push against the wellbore wall. At some point, the 

operator may experience that he is unable to push the casing further, leading to an 

unsuccessful operation. 

 

Rigid centralizers are however, more vulnerable to being stuck. They require a high quality 

hole condition in order to prevent stuck pipe, key seating etc. 

 

Method Spacing 40 ft Spacing 30 ft Spacing 25 ft Specified Standoff  70% 

Number of Centralizers 225 300 360 278 

Good Standoff No Debatable Yes Yes 

Easy Installation Yes Yes Yes No 

Economics Yes Yes No Yes 
Table 5.25: Rigid centralizers in the horizontal well. 

The results show that more centralizers is necessary if the rigid type is to be used. However, it 

may be necessary to choose this solution because of the high torque created by bow spring 

types. Too high torque may cause difficulties when rotating the casing, which may lead to the 

driller twisting off casing joints. 
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Horizontal wells have a lot of contact with the reservoir, and are unique in that way. This 

makes cementing even more complicated. In order to meet requirements the section must be 

cemented thoroughly, in addition to at least 200 m of good cement above the reservoir section 

[1]. Therefore, good standoff values must be obtained not only throughout the horizontal 

section, but also further up in build-up section. The 30ft. spacing alternative does provide 

good standoff values in the horizontal section, but does have problems when exiting the build 

section. This is shown in Figure 5.22.  

 

A 25 ft. spacing solution is therefore preferable for the horizontal well, as this provides an 

acceptable standoff value in the build section. The number of centralizers is increased by 60, 

but the remedial cost of an unsuccessful cement job would probably be of a higher cost.  

 

 

Figure 5.22: Standoff chart for 30ft. distribution of centralizers along the horizontal well. 
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5.2.6 Dogleg severity’s and angles effect on standoff values 
In the previous examples, various well profiles have been used as base for standoff 

simulations. A common trait all the wells share is that the build section is critical. This section 

demands the densest distribution of centralizers, and it seems that the amount increases with 

increasing dogleg severity. 

 

DLS severity is a term, which describes the increase in inclination over a predetermined 

distance. DLS in a well can be created intentionally or unintentionally. If the dogleg is created 

unintentional, remedial operations can be carried out. This includes reaming or under-reaming 

of the problem section, or sidetracking in extreme situations. The units used to describe 

dogleg is °/100ft, or in SI-units °/30m. A higher dogleg indicates a more rapid change in the 

well trajectory. If the dogleg is too severe it may be impossible to run tools into the well [39]. 

 

It can be interesting to see how dogleg values affects the standoff value in a well. This is also 

possible to do in OptiCem™. By looking at a 1000ft. 12 ¼” open-hole section and variyng the 

angle from 0 to 90 degrees, it is possible to see how the dogleg affects the number of 

centralizers needed to center a 9 5/8” casing inside the hole.  

 

To be able to compare the results all parameters but the angle must be constant.  

 

• 12 ¼” Open hole from zero to 1000ft. MD. 

• 9 5/8” casing with a weight of 47 ppf. and grade C-90, for all examples.  

• The centralizer to be used is a 9,625x12,250x13 ½ - Hinged Imperial Bow.  

• The amount of centralizers is governed by a 70%  standoff requirement 

 

After entering these parameters into OptiCem™, it is possible to alter the angle of the 1000 ft. 

section, and thus altering the DLS. Although it is possible to have a build section that exceeds 

90 degrees, it is rather rare, and is not considered in this example. The angle have been altered 

from zero to 90 degrees. 
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Figure 5.23: Density of centralizers along the 1000ft. curve. 

The results are shown in Figure.5.23. Here we see that the density of centralizer increase 

rapidly as the well path starts building angle. The density does however, reach a sort of 

saturation around 1,8 - 2,0 centralizers per 100 ft. at the point where the angle is 90 degrees. 

A DLS value of 9°/100ft is, however, very high, and could cause problems when running into 

the hole with for instance a long BHA. 

 

If the build section where longer than 1000 ft. it would not be necessary with such a high DLS 

in order to reach 90 degrees. 

 
Figure 5.24: Density of centralizers along various curves (DLS plot). 
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Figure 5.25: Density of centralizers along various curves (Angle plot). 

By observing and comparing Figure 5.24 and Figure 5.25. we see that the density of 

centralizers in a build section is mostly governed by the angle rather than how rapid the angle 

is built (DLS). Shortening of the build section does of course reduce the amount of 

centralizers, but might again cause difficulties in following operations.  

Some reduction in density can, however, be seen when the curve is enlarged, and this can be 

investigated by increasing the curve even further.  

 

By looking at Figure 5.26, we see that an increase in well path bending leads to a decrease in 

centralizer density. A radius of 7000 ft. does, however, give a bend length of almost 11 000ft. 

and does not seem very realistic 

 

 
Figure 5.26: Radius' effect on centralizer-density. 
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5.2.7 Casing weight’s effect on standoff and centralizer density 
A parameter that have been left unaltered so far is the weight of the casing. A casing with 

higher weight might cause it to sag more between centralizers, but increased thickness of the 

pipe would also increase the moment of inertia and then the stiffness of the pipe. 

 

The moment of inertia of a hollow pipe is given by equation 5.1  

 

(5.1) 𝐼 =  
𝜋 ∙ (𝑂𝐷4 − 𝐼𝐷4)
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This equation states that an increased thickness leads to an increased moment of inertia. The 

stiffness is again a function of the moment of inertia and the elastic modulus. If the same 

material is used (with same elastic modulus) the stiffness increases with increased moment of 

inertia. 

 

For this simulation, we will look back at the 10000 ft. long build-hold-drop example. By 

choosing casings with an OD of 9 5/8”, but different ID and weight, we can see how the 

number of centralizers varies. In the first example, a bow-spring type centralizer will be used, 

and a specified standoff value of 70%. 

 

OD (in) ID (in) Grade Weight (ppf) Centralizers 

9.625 8.535 C-90 53.50 144 

9.625 8.681 C-90 47.00 137 

9.625 8.755 C-90 43.50 133 

9.625 8.835 C-90 40.00 129 

9.625 8.921 K-55 36.00 125 

9.625 9.001 H-40 32.30 121 
Table 5.26: Weight's effect on Bow-Spring centralizers. 
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In Table 5.26 we see that the number of centralizers is somewhat reduced when the weight of 

the casing is reduced. This is most likely because of the force required to push the casing 

away from the wellbore wall is reduced; therefore the number of centralizers is reduced. It can 

therefore be interesting to see the effect when using rigid centralizers. These centralizers are 

not compressed in the way bow-spring types are, so this effect should not be seen. 

 

OD (in) ID (in) Grade Weight (ppf) Centralizers 

9.625 8.535 C-90 53.50 135 

9.625 8.681 C-90 47.00 135 

9.625 8.755 C-90 43.50 134 

9.625 8.835 C-90 40.00 134 

9.625 8.921 K-55 36.00 134 

9.625 9.001 H-40 32.30 133 
Table 5.27: Weight's effect on rigid centralizers. 

Here we see that the rigid type centralizer is less prone to the casings weight, and that this 

centralizer is preferable, with respect to the number of units, when using the heaviest casing 

type. 

 

 
Figure 5.27: Bow Spring vs. Rigid centralizers. 
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Figure 5.27 illustrates that the necessity for bow spring centralizers increases approximately 

linearly with increasing weight, while the rigid type is almost unaffected by the weight of 

casings. 

 

It is worth noting that The OptiCem™ module do not take into account the effect of friction 

between centralizers and the wellbore wall. The number of centralizers is for example 

unaffected by the friction factor. A value of 0 and 0,3 produces the same amount of 

centralizers. This is probably because the effect is so small that it is not decisive when 

calculating the standoff and number of centralizers. It seems that the module focuses mainly 

on the gravitational forces. This is confirmed by looking at the deviation angle-density plot in 

Figure 5.25. Here we see that the density increases with increasing angle. The gravity force 

has increasing effect when angle is increasing, and reaches it maximum at 90 degrees – 

demanding a higher centralizer density. 
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6. Conclusion 
 

 

Good centralization of casings in wells is the key to a successful primary cement job. If the 

casing is not properly centralized, the spacer will not be able to clean the wellbore properly 

prior to the cement stage. When cement then enters the annulus, it will not be able to create a 

complete seal around the casing due to residual mud, or just uneven distribution. Fluids do 

tend to flow through the path of least resistance, and to create an equal-resistance flow path is 

the key task for centralizers. By obtaining a standoff value of minimum 70 %, we provide the 

cement with good working conditions, and increase the chance of getting a successful job 

[30]. 

 

The OptiCem™ simulations have shown that centralization of casing is hardest to obtain in 

build sections. The density of centralizers increases with increasing build angle, but by 

increasing the build sections radius, the density is also reduced in some degree. The results 

show that centralizer distribution should be around 2-3 units per 100ft in order to provide an 

adequate standoff value. When a casing joint has a length of 40 ft. it means that a centralizer 

should be placed on every joint, or at least 2 units on every 3 joints. This coincides with the 

practice preferred by the industry, which strengthens the validity of the results in this thesis 

and the reliability of the OptiCem™ software. Simulations also show that Bow-Spring 

centralizers are more prone to the weight of the casing than the rigid types. 

 

In 2010, the Deepwater Horizon rig sank due to a blowout. This was due to several reasons, 

where bad centralization of the liner was only one of them. It can, however, be used as an 

example to emphasize the importance of proper centralization prior to a cement job. 

 

It is important to remember that simulations never will be able to create a complete 

presentation of what will happen when actually performing the job. It does however, provide 

the user with some information on what to expect, guidelines on how to do it, and some 

assurance on the success of the job. It is of course better to do mistakes in a simulation 

software than in the real world, and by doing this; it aids the user in doing the job right the 

first time. 
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