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Abstract 
 

Drilling fluid is an essential part of drilling operation. The main functions of the 

drilling fluid are to transport cutting, to maintain well pressure and cooling formation 

and drill-bit. The detail knowledge of drilling fluid is very important to design safe 

and proper drilling operations.  

 

This thesis presents the characterization and performance evaluation of 70/30 and 

90/10 Oil Water Ratio of Oil Based Mud systems. The characterization is through 

direct experimental measurements and the performance is through simulation and 

experimental studies as well. 
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1 Introduction 
 

This thesis presents the characterization and performance of the 90/10 and the 70/30 

oil water ratio (OWR) of Oil-Based Mud systems. The characterization and 

comparisons are based on direct measurement and indirectly based on their 

performances. 

Measurement and modeling 

 The temperature dependent rheological properties, HPHT filtrate, Flow in 

porous media, the physical, and the viscoelastic properties will be 

measured.  

 Based on the measurement, hydraulics simulation and rheology modeling will 

be performed.  

Performance evaluation:  

The performance of the drilling fluid depends on its properties. The performance 

evaluation of the two drilling fluid systems will be investigated through experimental 

and simulation studies such as:  

 Bridging experiment 

 Hole cleaning simulation and 

 Torque and drag simulation 

In addition, a finite element simulation studies will be performed in order to analyze 

the stress cage interpretations presented by Alberty et al [9] and Aadnøy et al [13]. 

 

1.1 Background  
 

An oil or gas well simply cannot be drilled without continuous circulation of the 

drilling fluid to facilitate drilling the hole. The functions of drilling-fluid are to (a) 

Transport drilled cuttings to the surface, and b) Maintain well pressures. Additionally, 

to cool and lubricate the bit and drill string, buoy the weight of the drill string and 

casing, and help obtain information on subsurface formations [2][19][23]. 
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While providing these functions, the drilling fluid should not cause side effects. The 

productive formations are not caused damage by the drilling fluid. Filtration control 

additives in drilling minimize formation damage [2]. 

 

Lost circulation is the most common problem in the drilling industry [3] [4]. The loss 

of drilling fluid occurs through excessive mud pressures induced fracture and also 

through a pre-existing open fracture. The problem can be minimized by loss 

circulation material additives in a drilling fluid [4] [10]. 

 

Due to drilling fluid and formation physicochemical interaction the wellbore might be 

unstable. For instance due to the fluid filtrate into the formation may cause pore 

pressure build up and weaken the formation strength. The temperature and pressure 

affects the rheology and the physical properties of the drilling fluid. This as a result 

affects the hydraulics of the drilling fluid.  

 

Wellbore stability is a complex subject, which integrate mechanical, thermodynamic 

and fluid mechanical and chemistry [2]. Since the introduction of wellbore stability, 

several researches through experimental, modeling and numerical means have been 

performed. Despite the efforts, still the problem of well stability is not a completely 

solved subject.  

 

One of the backgrounds this thesis is the experimental study performed on 80/20 and 

60/40 OBM mud systems [11]. The studies show that the mechanical and petro-

physical properties of mud cake determine the strength of mud cake, which indirectly 

determine the bridging and wellbore strengthening performances.  

 

This thesis tries to characterize the properties of the 90/10 and 70/30 Oil-Based Mud 

(OBM) systems. In addition, the thesis will look into analyzing the performance the 

drilling fluid fluids. 
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1.2 Problem Formulation 
 

In reference [9], the authors have presented a stress cage theory stating that the 

particles increase the hoop stress and therefore the well is strengthening. In reference 

[13], the authors have presented the process of cylindrical bridge forming at the 

mouth of a fracture and carrying well pressure and increasing the well strength. As the 

bridge collapse the communication between the well and the fracture further allow 

fracture growth. This is because the stress concentration will be increasing due to the 

pressure on the face of the fracture. Bridging is a key factor for hindering the possible 

stress field increase at the tip of the fracture and hence hinders the fracture 

propagation. Reference [11] presented bridging experimental study of the 

comparisons of 80/20 and 60/40 OMB systems with respect to bridging performances 

at various fracture widths. However the work didn’t study characterize the drilling 

fluid properties in detail. 

 

Having the mentioned works earlier as background, this thesis work is to study further 

with more detail to characterize the properties of the 90/10 and 70/30 OBM mud 

system through directly and indirectly performances. Figure 1.1 shows the picture of 

the mud systems. As shown, the 90/10 consists of about three times more filtrate than 

the 70/30 OBM.  

 

 

 

 

 

 

 

Figure 1.1: Illustration of the 70/30 & 90/10 Oil Based Mud systems 
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This thesis addresses issues such as: 

 What is the temperature effect on the rheology of the drilling fluids? 

 What is the filtrate of the two mud systems at higher temperature? 

 What are the thermo-physics parameters of the 90/10 and 70/30 mud systems? 

 What are the visco-elastic behavior of the 91/10 and 70/30 mud systems? 

 What is the stress distribution as the particle plug at the mouths and tip of a 

fracture? 

 What are the bridging performance of the 90/10 and 70/30 mud systems? 

 What are filtrate behaviors of the 90/10 and 70/30 mud systems in porous 

media? 

1.3 Objective 

 

In this thesis, the performance of 90/10 and 73/30 Oil-Based Mud systems are 

characterized and evaluated by using experimental and numerical methods. The 

activities are: 

 

o Literature study to be used to analyze the mud systems.  

 

o Experimental measurement and modelling of measured data 

 

o Finally performance evaluation of the mud system through simulation 

studies  
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2 Literature Study  
 

Drilling fluid is associated with several drilling operations such as hole cleaning, well 

stability, torque and drag. The rheology, density and visco-elasticity properties 

determine the performance of drilling operations. This section presents the theories 

associated with the problems mention above. Later the stress case phenomenon will 

be analyzed with ANSYS finite element numerical study in order to learn more about 

the stress conditions at a tip of a fracture and around a wellbore. 

2.1 Well Program  

 

Wellbore instability is one of the major problems encountered during drilling 

[1][3][5]. The borehole problems can be analyzed by using the stresses around the 

wellbore. There are two main wellbore failure mechanisms which could occur during 

drilling and completion operations. These are wellbore fracture and wellbore collapse 

failures [5][6]. The problem of well fracturing results lost circulation and the problem 

of well collapse results mechanical drill string sticking. The well bore instability 

problem alone increases the drilling budget by 10%, which is several billions per year 

[37].  

To avoid or mitigate the problem, it is important to predict the appropriate circulation 

mud weight, which is between the well collapse and the well fracture profiles. The 

well pressure is a function of static mud weight and the friction loss. The friction loss 

term is a function of the drilling fluid properties. Thus characterization of drilling 

fluid properties is an important subject in order to predict the desired mud weight 

during drilling operations. The dynamics circulation pressure is given as [19]:  

      
   

  
          (1.1) 

Where, = the static mud weight and Pf = dynamic friction loss, g = acceleration due 

to gravity and h = True vertical depth 
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2.2 Well Fracture Models   

 

Drilling fluid is lost when the minimum effective principal stress at the wellbore 

exceeds the tensile strength of the formation [5][6]. The following sections review 

non-penetrating and penetrating well fracture models. 

 

2.2.1 Non-penetrating fracture model  

 

The non-penetrating or impermeable well boundary condition assumes that there is no 

or minor communication between the well and the formation. This is due to the 

formation petro-physical properties and the quality of mud cake. Figure 2.1 illustrates 

a non-penetrating boundary condition between the borehole and the formation. This 

condition doesn’t cause pore pressure build up, which may weaken the well strength.  

 

For this boundary condition, among other Aadnoy and Chenvert (1987) [6] have 

derived a fracture model. The model assumes that the deformation is linear elastics, 

isotropic, and a continuous medium. The model is derived based on the Kirsch 

solution. The formation breakdown pressure equation reads:  

 

toHhwf PP   3                                    (2.1) 

 

Where   Pwf       = fracturing pressure 

h, H  = minimum and maximum in-situ horizontal stresses 

Po         = pore pressure 

t         = tensile strength of a rock 

 

Equation 2 is a function of in-situ rock and reservoir parameters. Experiments show 

that the fracturing pressure depends on the type of drilling fluids [6]. This implies that 

mud cake contributes to the fracturing resistance in the case of a permeable rock. This 

suggests the need to characterize the fluid behaviour in order to evaluate the 

performance on well strengthening.  For this, 90/10 and 70/30 OWR mud systems 

well be characterized and tested for the loss circulation. 

 



      

  

MSc Thesis, 2014                                                                                                                    12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Non-penetrating borehole [8] 

2.2.2 Penetrating fracture model  

Because of the porous and permeable properties and micro fracture of a formation, the 

differential pressure causes fluid and filtrate to flow into the formation. This results 

formation pressure build up. Figure 2.2 illustrates the fluid flow and pressure 

communication between the borehole and the formation. For this case, Haimson and 

Fairhurst (1968) [38] among others have developed a fracture model based on the 

poro-elasticity theory. The hydraulic fracturing model is given as 

 















1

)21(
2

3 ''

tHh

owf
PP                                    (2.2) 

where: 

Pwf    = breakdown pressure, Po       = pore pressure, t        = tensile strength of the rock, 


'
h       = minimum effective stress, 

'
H      = maximum effective stress,        = Poisson's 

ratio for the rock.o is the Biot poroelastic parameter and is defined as o  1 - Cr/Cb, 

where Cr is rock matrix compressibility; Cb is rock bulk compressibility 

Po, Formation 

Pw 

 Well 
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Figure 2.2: Penetrating borehole and possible pore fluid distribution [8] 

 

2.3 Well Collapse  

 

 

Borehole collapse is mainly caused by the shear failure. The well collapse results a 

near –wellbore breakout zone that causes spalling, sloughing, and hole enlargement. 

The borehole collapse is occurred at the pressure in the wellbore is low [5][6]. 

There are a number of failure criteria to determine well collapse pressure. The most 

commonly used failure criterion is Mohr-Coulomb. Considering a vertical hole with 

an impermeable wall, drilled in an anisotropic horizontal stress (H > h ) field. The 

minimum mud weight required in order to prevent shear failure by excessive hoop 

(tangential) stress is then [3][36]. 

 






2

2

min
tan1

)1(tan3




 oohH PC

gH    (2.3)  

Where Co = Uniaxial compressive strength, and  is the failure angle,  is Biot 

coefficient and Po is the pore pressure, g is acceleration due to gravity, and H is the 

Vertical depth. 

 

Formation 

Pw 

Po 
Well 
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2.4 Stress Cage Theory  

 

Stress caging is the wellbore strengthening method by increasing the fracture 

resistance of a formation. As illustrated in Figure 2.3, the mechanism of stress cage 

theory is that particles (LCM eg, Graphite, Quartiz, Feldspar, CaCO3) propped into 

the fracture and deposited at the mouth of the fracture [4]. This as a result isolated the 

communication between the well pressure the fracture tip. Since the tip of the fracture 

doesn’t grow hence the mud loss will be stopped.   

Aston el at presented that the solid particles plugged the fracture keep it open, and 

near wellbore tangential stress increases [4].
 
However this thesis will analyze the 

claim proposed by reference about the increase in tangential stress at the wellbore or 

the fracture tip will be investigate through numerical finite element simulation. 

 

2.4.1 Alberty’s Interpretation of Stress Cage 

 

Alberty et al presented a finite element model and their study interpretation shows that 

high stresses can be developed in the near well bore region by inducing fractures and 

plugging and sealing them with particles [9]. The amount of stress trapped is a 

function of the stiffness of the formation, the width of the fracture, the position of the 

bridge within the fracture, the length of the fracture, and the compressive strength of 

the bridging material. Figure 2.3 illustrates the stress cage concept. According to 

Aston el at, the stress cages result in a wellbore strengthening with the help of 

changing the stress state in the vicinity of the well. The equation for a penny shaped 

fracture is given as [4]:  

 

   
   

  (    )
                        (2.4) 

Where, w- width of the fracture, - Poisson Ratio, R- Distance from the center of the 

wellbore and E- Young’s Modulus 
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Figure 2.3: Stress cage concept to enhance wellbore strength [4] 

 

The lost circulation particles should hold the fracture open near the fracture mouth 

and to seal efficiently to provide pressure isolation to prevent the propagation of the 

opening. In case when the induced opening is created and sealed at or close to the 

wellbore, the hoop stress is established in the vicinity of the well [10].  

Figure 2.4 illustrates a poor bridging which allows well pressure communicating with 

the fracture. In this case if the formation is porous and permeable, the fluid is then 

leak into the wings of the fracture. Figure 2.5 illustrates a good bridging which 

doesn’t allow well pressure communicating with the fracture. In addition, one can 

observe that if in case the fluid is communicating due to low permeable nature of the 

formation, the fluid is not leak into the wings of the fracture [4]. 
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Figure 2.4: Fracture sealing in permeable rocks [4] 

 

 

 

 

Figure 2.5: Fracture sealing in low-permeability rocks [4] 
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2.4.2 Aadnøy’s Interpretation of Bridging and Fracture Propagation 

Process  

 
It is experimentally investigated that the fracturing pressure depends on the types of 

drilling fluid used. Drilling fluid forms a mud cake on the wall of the fracture. The 

mud cake is then used as a part of the well bore and carries well pressure. Good 

quality of mud cake increase the wellbore strengthens. The quality of mud cake is 

determined by the particle deposited in the mud cake and the type of drilling fluid 

used. Aadnøy et al have presented a theory that describe the bridging phenomenon 

and fracture propagation. According to the paper, in the mud cake, there exists a 

bridge that carries a well pressure [12] [13]. 

 

As shown on the Figure 2.6(B) the fracture propagates only after the bridging has 

been collapse. This shows that the bridging disconnects the communication between 

the well the fracture and hence it is the bridging that reduces stress field from being 

increased at the tip of the fracture. In chapter 5 the theory presented by [13] will be 

evaluated through finite element numerical simulation. In addition the bridging 

performance of the 70/30 and 90/10 will be investigated through bridging experiment 

and presented in chapter 4. 

 

L

e s s u re

W e l l

P r

cake

Mud

h

h

HH

 
 
Figure 2.6 A: Cylindrical bridge at the mouth of the fracture [12] 
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Figure 2.6 B: Description of the fracture process [13] 

 



      

  

MSc Thesis, 2014                                                                                                                    19 

 

2.5 Visco-elasticity  

 

Viscoelastic is a time-dependent property of the materials. Drilling fluids exhibit both 

viscous and elastic responds under deformation. The viscoelastic properties of drilling 

fluids are very important to evaluate gel structure, gel strength, barite sag, hydraulic 

modeling, and solid suspension [15]. 

Viscoelastic properties are usually measured as responses to an instantaneously 

applied or removed constant stress or strain or a dynamic stress or strain.  

The elastic property of drilling fluids has a strong effect on the flow behavior and 

pressure drop. The pressure transient, pressure peak and pressure delay is a clear 

evidence of viscoelasticity and gel structure formation of drilling fluids.  

Normally gel formation occurs when fluid is at test. Heavy solid components such as 

weighting additives, cuttings may result in severe operational problems. The gel 

structure of a drilling fluid holds solids in suspension and hinders particles from 

settling. The dynamic condition help to enhance cutting carrying capacity and reduce 

barite sag.  

Measurement of drilling fluids elastic modulus (G’) and viscous modulus (G’’) is the 

most common method of quantifying the viscoelastic properties of fluids. The elastic 

modulus, G’ is also known as the storage modulus since elastic energy is stored. The 

viscous modulus G’’ is refer to the loss modulus since the viscous energy is lost [16]. 

Since viscoelasticity cannot be measured in the steady, uniform flow field found in 

viscometers, oscillatory methods of measurement must be used [16].This section 

presents the basic theories of viscoelasticity and later in chapter 3 the properties of the 

70/30 and 90/10 OMB mud systems will be measured.  
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2.5.1 Fundamental Viscoelastic Theory 

 

Steady-shear viscosity provides useful rheological properties of drilling fluids under 

large deformation or shear flow. Under infinitesimal strain in transient gel formation, 

gel breakage and at rest, drilling fluids show significant viscoelastic response to the 

deformation [15][16].  

 

Drilling fluids are not strongly viscoelastic. In the linear viscoelastic range, the 

viscous property is dominant. The test method used to determine visco-elastic 

properties are called dynamic test. The two major categories of the tests are a) 

transient and b) oscillatory [15][16].  

During an oscillatory experiment, drilling fluid specimen is subjected to a sinusoidal 

deformation and the resulting fluid response stress is measured.  

Shear stress can be written in term of strain as [15][16]: 

 


































 )cos(sin)sin(cos)( ttt

o

o

o

o
o 









       

 )cos()sin()( ''' tGtGt o         (2.5) 











 




cos'

o

oG         (2.6) 











 




sin''

o

oG         (2.7) 











'

''

tan
G

G
         (2.8) 

 

For a purely viscous fluid, the phase angle (δ) is equal to 90. For a purely elastic 

material, the phase angel is equal to 0. And for a viscoelastic material, the phase angle 

has values between 0 and 90.  
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2.5.2 Linear Viscoelastic Region (LVER) 

It is common practice to define the viscoelastic regions before performing detailed 

dynamic measurements to investigate the sample’s microstructure. The linear 

viscoelastic region (LVER) is determined by an amplitude sweep test. The LVER can 

also be used to determine the stability of a suspension. The stability of the sample 

structure can be measured by the length of the LVER of the elastic modulus (G’). The 

sample having a long LVER is an indication that the system is well-dispersed and 

stable system. The stress or strain obtained from the amplitude test must of selected 

from the LVER and used to oscillation test [39]. 

2.5.3 Oscillatory Test: Amplitude Sweep 

 

Amplitude test is an oscillatory test. During an amplitude sweep test the amplitude of 

the deformation or in other words the amplitude of the shear stress is allowed to vary 

while the frequency is kept constant. Figure 2.7 shows the oscillation of the motion 

and the amplitude is the maximum of the oscillatory motion. For the analysis the 

storage modulus G' and the loss modulus G'' are plotted against the deformation [15] 

[32]. 

 

Figure 2.7: Amplitude Test G' and G'' moduli plotted against the deformation [32] 

http://www.azom.com/ads/abmc.aspx?b=13425
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At low deformation G' and G'' are constant. This is an indication that the sample 

structure is undisturbed. This region is normally called linear-viscoelastic (LVE). As 

shown on the figure as soon as the moduli start to decrease, it is an indication that the 

structure is disturbed. That is to say the end of the LVE-region is reached. 

As shown on Figure 2.7, the plateau value of G' in the LVE-region describes the 

rigidity of the sample at rest. The plateau value G'' is a measure for the viscosity of the 

unsheared sample [32] [39]. 

 If the storage modulus is larger than the loss modulus, the sample behaves 

more like a viscoelastic solid.  

 In the opposite case - G'' > G' in the LVE-region - the sample has the 

properties of a viscoelastic fluid.  

 

The yield point can be determined with the amplitude sweep test. During viscoelastic 

study, there are two Therefore two special points can be used:  

 the end of the LVE-region and 

 the intersection of the curves for G' and G''.  

In most cases the intersection of G' and G'' is of more practical importance. 

 

2.5.4 Oscillatory Test: Frequency Sweep 

 

During the frequency sweep the frequency is varied while the amplitude of the 

deformation - or alternatively the amplitude of the shear stress - is kept constant. For 

the analysis the storage and loss modulus are plotted against the frequency. The data 

at low frequencies describe the behavior of the samples at slow changes of stress. 

Oppositional the behavior at fast load is expressed at high frequencies.  

The frequency sweep is very important for polymer fluids. For dispersions (e.g. 

paints, cosmetics, comestible) this method can provide some information about the 
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sedimentation stability. Figure 2.8 shows the behavior of G' and G'' that is typical 

frequency sweep test result for a polymer solution [15][32]. 

 

 

Figure 2.8: The Frequency Sweep Test [32] 

 

2.6 Lost Circulation 
 

Lost Circulation occurs through natural and drilling induced fracture. This causes 

several negative effects. The Lost Circulation can occur in formations which are [17]: 

 

1. Unconsolidated or highly permeable formations (such as loose gravels) 

2. Natural fractures 

3. Drilling induced fractures 

4. Cavernous formations (crevices and channels) 

 

There are two different methods to avoid the problem of Lost Circulation. It is 

possible to apply “Preventive measures” during the planning phase and the second 
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method is “Corrective measures” which applies in during the execution phase. The 

choice of method between these two depends on economic and availability [29].  

 

Types of Loss Zones 

Figure 2.9 illustrates the various types of formation that experiences loss circulation. 

 

 
Figure 2.9: Types of Lost Circulation. A=Permeable zone, B=Caverns, C=Natural 

fractures and D=Induced fractures [18] 
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2.7 Drilling Fluid, Rheology and Hydraulics  

 

2.7.1 Drilling Fluid Types 

 

Due to temperature and pressure, the rheology, physical and visco-elastic properties of 

drilling fluid are also changes. This as a result influences the performance of the 

drilling fluid. There are four types of drilling fluid available in the industry. They are 

[2]; 

 Water-based muds 

 Oil-based muds 

 Synthetic-based muds 

 Pneumatic drilling fluids 

Oil-Based Muds 

Oil-based muds provide good drilling performance by combining shale hydration 

inhibition and drill string lubrication. It can be used to reduce and eliminate of the 

drilling related problems such as reduced stuck pipe risk, low formation damage, 

corrosion avoidance and increased downhole temperature. 

They are particularly effective for the drilling of (1) highly reactive shale (2) 

extended-reach wells, and (3) deep, high-pressure, high-temperature [2].  

However, oil-based muds are highly toxic and can cause the risk of contamination of 

environment. A development of refined mineral oils for use in low-toxicity oil-based 

muds can reduce environmental problems and improve working conditions [2]. Effect 

of temperature on the rheology of drilling fluids is of particular concern in high-

temperature applications and in drilling in deep water. In deep-water drilling, large 

variations in temperature from low at sea (around 1-2
o
C) to high values downhole 

cause significant changes in fluid rheology. This has major implications for the 

hydraulics of the drilling operation, including hole cleaning and hole stability [25]. 
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2.7.2 Drilling Fluid Rheology Model 

 

The rheology of the drilling fluid is a study of deformation of fluids such as the flow 

behavior of suspensions in pipes and other conduits. Frictional pressure loss is 

extremely important in relative to the analysis of drilling hydraulics since large 

viscous forces must be overcome to move the drilling fluid through the longer, slender 

pipes and annuli in the drilling process. Flow behavior of the fluid can also be 

described by the rheological model that describes the relationship between the shear 

rate and the shear stress. Figure 2.10 illustrate the summary of non-Newtonian fluids 

[40]: 

1. Viscoplastic fluid,  

2. Bingham fluid (Constant apparent viscosity),  

3. Pseudoplastic fluid (Power law, shear thinning fluid),  

4. Newtonian fluid,  

5. Dilatant fluid (Shear thickenings fluid) 

 

 
Figure 2.10: Rheology Model for different fluids [40] 
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2.7.2.1 Newtonian Model 
 

Newtonian fluids exhibit a constant viscosity for any shear rate at a constant pressure 

and temperature. The fluid rheological model can be described by one one-parameter 

such that shear stress is directly proportional to the shear rate. The proportionality 

constant is the viscosity of the fluid. There are several Newtonian fluid systems such 

as glycerin, light-hydrocarbon Water, sugar solutions, oils, oils, air and other gases are 

Newtonian fluids. However the Newtonian fluid doesn’t describe the drilling fluid and 

hence are they are non-Newtonian. The Newtonian fluid can be written as [19][31]:  

        

where, = Shear stress,  = Shear rate and  = Newtonian Viscosity 

 

 

2.7.2.2 Bingham Plastic Model 
 

The Bingham model is widely used in the industry. The model describes the flow 

behavior of many drilling fluid types. According to the model the fluid behavior 

exhibits a linear shear stress and shear rate relationship. The intercept of the line is 

part of the fluid viscosity which is caused by an attractive force of attraction between 

charges or ions in the drilling fluid. This is called the yield stress. The slope of the line 

is called Bingham plastic. This part of the fluid resistance is due to the fluid-fluid or 

fluid –solid or solid-solid interaction in the drilling fluid. Bingham model is given as: 

[19] [31] 

y + p        (2.10)   

 

where, yield point (y) and plastic viscosity (p) can be read from a graph or can be 

calculated by the following equations, 

 

p (cP) = R600- R 300       (2.11) 

y (lbf/100sqft ) =R 300-p      (2.12) 
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2.7.2.3 Power Law Model 
 

Most drilling fluid reduces the viscosity as the shear rate increase. This is also called a 

pseudo plastic fluid. For instance wasted based polymer drilling fluid especially 

shows formulated with XC polymer the power law model describe better than the 

Bingham plastic model. The power law model is described by two parameters and the 

model mathematically written as: [19][31] 

 

 = k
n
          (2.13) 

 

 

where k is the consistence index and n is flow behavior index. 

 
 

The Power-law parameters can be estimated from Fann 35 data as:  

 













300

600

R

R
log32.3n

       (2.14) 

 

nn

RR
k

1022511

600300 

      (2.15)  

   

 

 

2.7.2.4 Herschel-Buckley  
 

The Herschel-Buckley model defines a fluid by three-parameter and can be described 

mathematically as follows [22]: 

 
n

o k
                             (2.16) 

 

The unit of k is lbf.sec
n
/100sqft . The n and k values can be determined graphically.  

 

 Versan and Tolga approach can be used to obtain 0. [26] 

maxmin

*

maxmin

2*

o
x2

x






      (2.17)  
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where * is the shear stress value corresponding to the geometric mean of the shear 

rate, * and given as:  

 

 

 

maxmin

* x        (2.18) 

 

 

From Eq. 2.18* = 72.25 sec
-1

. Using this value, we need to interpolate between 

values of shear stress to get:   *=19.77 lbf/100ft
2
. 

 

 

2.8 Hydraulics Models  
 

As mentioned in the introduction part, ECD is the function of static pressure and 

frictional pressure loss.  The frictional pressure loss is a function of several factors 

such as: 

 the rheological behavior of the drilling fluid  

 the flow regime of the drilling fluid  

 the drilling fluid properties such as density and viscosity;  

 the flow rate of the drilling fluid;  

 the wellbore geometry and drill string configuration.  

 

The pump pressure, Pp, has to overcome: 

 Frictional pressure losses (Ps) in the surface equipment such as Kelly, swivel, 

standpipe. 

 Frictional pressure losses (Pds) inside the drillstring (drillpipe, Pdp and drill 

collar, Pdc). 

 Frictional pressure losses across the bit, Pb. 

 Frictional pressure losses in the annulus around the drillstring, Pa. 
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                                         Figure 2.11: Diagram of the drilling fluid circulating system 

 

 

The total pressure loss is the sum of the pressure 

losses as illustrated on Figure 2.19 [24]: 

 

ΔPp = ΔPs + ΔPdp + ΔPdc + ΔPb + ΔPadc + ΔPadp

                                 (2.19)   

 

Frictional pressure losses across the bit, Dpb [24]: 

22

3N

2

2N

2

1N

2

b
)DDD(

q..156
p




          (2.20)                   

where DN1 , DN2 , DN3 are diameters of the three 

nozzles. 

 

For the hydraulic evaluation of the 70/30 and 

90/10OBM systems a Unified model was considered.  Table 2.1 shows the summary 

of the model in pipe and annular flow. 

 

The unified rheology model is given as: [27] [28] 

 

                =   + kγn      (2.21) 

 

Where, the shear yield (y), k and n values are calculated from Fann rheology data as 

shown in the table. 
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Pipe Flow Annular Flow 
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Table 2.1: Summary of Unified hydraulics model 
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3 Experimental Drilling Fluid Characterization 
 

This chapter presents the direct characterization of the 70/30 and the 90/10 OBMs 

thought measurement. These are rheology, density, HPHT filtrate, visco-elasticity, 

and flow in porous media. In addition, the hydraulic and rheology modeling will be 

presented. 

3.1 Fann 35 - Viscometer ES and Density Measurement of 70/30 & 

90/10 OBMs 
 

The two drilling fluids, 70/30 and 90/10 OBMs, have been measured with the Fann35 

viscometer. The drilling fluids have been heated at the desired temperature with the 

Tufel heating cup and the measurement was performed under controlled temperature 

condition and under atmospheric pressure. The measurement was performed at 80, 

120 and 180 degree Fahrenheit (
o
F). Before the measurement the drilling fluid 

systems were shear for 10-min with Hamilton Beach mixer. Figure 3.1 shows the 

comparisons of the measured viscometer data. 

 

Figure 3.1: Rheology data for 70/30 and 90/10 OBMs in different temperatures 
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For better comparisons of the measured data shown in Figure 3.1, the relative 

percentage error between the two drilling fluids was calculated. Figure 3.2 presents 

the comparisons between the 70/30 and 90/10 OBMs at the temperature of 80, 120 

and 180
o
F. As shown the error ranges from -18 to 140%, -18 to 154% and 20 to 186% 

at temperatures 80
o
F, 120

o
F and 180

o
F respectively. The lower and the upper limits of 

the error values are at 3 and 600RPM. The result exhibits that the error rate is higher 

at higher RPM and at lower temperature. 

 

 

Figure 3.2: Comparison of Error % for the 70/30 and 90/10 OBMs at the 80, 120 and 

180
o
F temperatures 
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The relative error comparisons of the individual mud systems (i.e 70/30 and 90/10 

OBM) between (80 and 120
o
F) and (80 and 180

o
F) is shown in the Figure 3.3. The 

result shows that an increase in relative error is due to the increase in RPM and 

temperature. For the 70/30 OMB, the relative error changes ranges from 21-35% and 

33-53% respectively. For the 90/10 OBM, the error range from 10-27% and 10-44% 

respectively. The result in general shows that the error rate is higher at higher RPM 

and at higher temperature. 

 
 

Figure 3.3: Comparison of the individual mud systems at the 80, 120 and 180
 o

F 

temperatures 
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3.2 HPHT Static Filtration and ES Measurement  
 

Filtration is the diffusion of the liquid phase of the drilling fluid into a permeable 

formation by the applied differential pressure. The solid part of the fluid systems 

deposited and forming filter cake. It is important to control the filtration behavior of 

the drilling fluid in order to control both the volume filtrate and the quality filter 

cake formed on the wellbore. The quality of drilling fluid can be evaluated based on 

the filtrate behavior. The more the filtrate of the drilling fluid shows the more the 

formation damage and at the same time the drilling fluid loses its rheological and 

physical properties. As a result it reduces its performances with respect to cutting 

transport and results several undesired operational problems such as borehole 

instability, excessive torque and drag, pressure differential sticking, and formation 

damage [1][2][23]. 

 

In order to compare the two mud systems, static HPHT filtration test was performed 

at the temperature of 100
0
C. The differential pressure across the filter paper is 

maintained as 500 psi. Running time for the HPHT filtration test is set to 30 minutes 

[23].  

 

The HPHT filtration test result is presented in Figure 3.4. The volume of the 90/10 

OBM is recorded as 7,2 ml and the 70/30 OBM is recorded as 1,1 ml water phase 

out of the total filtrate volume 4,6ml oil filtrate. The water phased in the filtrate is an 

indication that the 70/30 is not very well emulsified.  

 

Growcock el at (1990) studied that the Electrical Stability voltage values generally 

correlates well with other established measures of mud stability, such as HTHP fluid 

loss [30].Thus the measurement of the Electrical Stability (ES) test is required to 

check the stability of the drilling fluids. 
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Figure 3.4: Comparison of the HPHT filtration for the 70/30 and 90/10 OBMs 

 

The ES Measurement 

Many of the physical properties of the Oil-Based Mud and Water-Based Mud are 

common except the Electrical Stability Test, which can only be applied on the Oil-

Based Muds [23]. The measurement is critical since the Electrical Stability (ES) of an 

oil-based mud is considered a measure of its emulsion stability [31]. The ES 

measurement shows the voltage of the current to flow in the mud. The measured 

Electrical Stability number represents mud emulsion stability. In this section, the ES 

measurements of two drilling fluids are performed. 

The result of the ES measurement should typically be higher than 500 volts for a good 

emulsified mud. However, the amount of water and solids contained in the drilling 

mud do have effect on the ES measurement. A typical behavior of drilling mud with a 

poor emulsion exhibit high viscosity, high amount of water phase in filtration and 

lower ES value [23]. 

 

 

 

 

 

Water phase 
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ES measurement the 70/30 OBM and 90/10 OBM 

The drilling muds of 70/30 and 90/10 OWR were performed to measure the property 

of ES. Both drilling muds were mixed for around 10 minutes by using a Hamilton 

Beach mixer before the measurement and the results of the measurement are shown in 

Figure 3.5.  

The ES measurement result for 90/10 OWR displays that the drilling mud has a good 

emulsified mud. On the other hand, the ES measurement result for the 70/30 OBM is 

350mV, which can be considered as lower value. The lower ES value is an indication 

that the drilling mud has a poor emulsion. This was the reason for the 1,1ml water 

phase in the HPHT filtrate. We decided to improve the emulsification of the 70/30 

OBM system and re-measure the ES value and HPHT filtrate test. The comparison of 

the result of the ES measurement for 70/30 and 90/10 OBMs before modification and 

re-measurement result of the 70/30 OBM after modification is presented in the Figure 

3.5 below. 

Figure 3.5: ES measurement of Before and After Modification for the 70/30 and 90/10 

OBMs  
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ES adjustment of 70/30 OBM 

The ES of the 70/30 OBM is adjusted by adding lime and emulsifier such as Paramul 

and Parawet into the drilling mud. The ratio of the lime and emulsifier added to the 

drilling fluid is 1:1. The drilling fluid was sheared very well for 40 minutes. The ES-

value is then re-measured and recorded as 683mV. This indicates that the drilling 

fluid has attained a good emulsion. 

 

HPHT filtrate re-measured 70/30 OBM 

The HPHT filtrate test of the 70/30 OBM is carried out again after modification by 

adding lime and emulsifier to the drilling mud. The filtrate volume is recorded as 2,25 

ml for the 70/30 OBM after modification and no water contains in the filtrate. The 

result shows that the modification for the 70/30 OBM is successful since it can 

remove the water containing in the drilling mud. Comparison between before and 

after modification of the 70/30 OBM is shown in Figure 3.6.  

 

Figure 3.6: Volume of filtration test for the 70/30 OBM (Before & After 

Modification) and 90/10 OBM  
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3.2.1 Rheology Modeling and Analysis of 70/30 OBM 

 

Rheology data is an important parameter for drill string mechanics, hydraulics ECD, 

hole cleaning, kick simulation and swab/surge calculation. As reviewed in section 

§2.6.2, there exist several rheology models. It is therefore important to raise question 

that which of these models can describe the behavior of the 70/30 and 90/10 OBM 

systems? 

In order to answer the question, this section deals with modeling of the Fann 35 data 

with the rheology models and compare errors obtained from the analysis. In addition, 

temperature dependent plastic viscosity and yield stress of the mud systems will be 

modelled.   

The Rheology prediction of the 70/30 OWR drilling fluid at normal temperature 

(80
o
F) is shown in Figure 3.7. Using different rheology models, the shear stress of the 

drilling fluids were calculated and compared with experimental data.  

Figure 3.7: Comparison of different rheology models measurement of the 70/30 OWR 

at normal temperature (80
 o
F) 
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The commutative error was analyzed based on comparing the difference between the 

model and the experimental measured data. All the models derived for each drilling 

fluid are available in appendix A. Figure 3.8 shows the % error obtained from the 

rheology models. As can be seen, for the three temperatures, the Herschel Buckley 

and the Unified models are recorded the lowest error rates. The commonly used 

Power low and the Bingham models show 11% and 18 % error rates respectively. 

This shows that the Herschel Buckley and Unified models describe the behavior of the 

mud system very well. It is obvious that the Newtonian model doesn’t describe the 

drilling fluid behavior at all. 

Another observation is that increasing the temperature the prediction behavior the 

models are not influenced by the temperature. 

 

 

Figure 3.8: Comparison of the different rheology models errors of the 70/30 OWR at 

the 80, 120 and 180
 o
F 
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3.2.2 Rheology Modeling and Analysis of 90/10 OBM 

 

The Rheology prediction of the 90/10 OBM at the normal temperature of 80
o
F is 

presented in the Figure 3.9. The figure shows that the comparison of the 80
o
F Fann 

data among rheology models with the modeled curves.   

 

Figure 3.9: Comparison of different rheology models measurement of the 90/10 OWR 

at normal temperature (80
 o
F) 
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result shows that the Newtonian model is not suitable to describe the behavior of the 

drilling fluid systems.    

 

Figure 3.10: Comparison of the different rheology models errors of the 90/10 OWR at 

the 80, 120 and 180
o
F 

 

3.2.3 Temperature Dependent Plastic Viscosity Modeling of 70/30 &90/10 

OBMs 
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temperature. Figure 3.11 shows polynomial best fit equation. 
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the 70/30 than the 90/10 OBM systems. This shows that the behavior of the 90/10 in 

terms of hydraulics and cutting transport efficiency is not very much varies comparing 
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to the 70/30 OBM. Evaluation of hydraulics and cutting transport efficiency of two 

drilling fluids will be carried out later in the performance simulation. 

 

 

Figure 3.11: Comparison of the temperature effect on the Plastic Viscosity of the 

70/30 and 90/10 OWR  

 

 

Mud System Plastic Viscosity Equation R
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2
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Table 3.1 Temperature dependent plastic viscosity models 
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3.2.4 Temperature Dependent Yield Stress Modeling of 70/30 & 90/10 

OBMs 

Similarly, temperature dependent yield stress correlations equation is developed. 

Figure 3.12 shows that polynomial equation fits the measured data. The 90/10 OBM 

shows a minimum value point between the 80
o
F and 180

o
F. On the other hand, the 

70/30 OBM shows a decreasing trend as temperature increase. As can be seen at 

higher temperature, the yield stress values are getting closer than at the lower 

temperature.  

 

Figure 3.12: Comparison of the temperature effect on the Yield Stress of the 70/30 

and 90/10 OWR  

 

Table 3.2 shows the yield stress as a function of temperature. Please note that if the 

measurement had been done at different pressure and temperature the results would 

have been different.  

Mud System Yield Stress Equation R
2
 

73/30 OMB YS = 0,0002x
2
 - 0,1333x + 39,6 

 

1 

90/10 OMB YS = 0,0004x
2
 - 0,1083x + 23 
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Table 3.2: Temperature dependent yield stress equations 
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3.2.5 Hydraulic Simulation and Analysis 

 

For many operations, ECD is an important parameter. For instance well stability, 

cutting transport and stress in drill string are functions of the ECD. As mentioned in 

the introduction part, ECD is the sum of the static mud weight and the annular friction 

loss. The annular friction pressure loss is determined by hydraulics models. Therefore 

it is interesting to compare the hydraulic behavior of the 70/30 and 90/10 OBM 

systems at various temperatures. 

In the industry, there are several hydraulic models available. However, in this thesis, 

the unified model is selected since the rheology model prediction shows a lower error 

rate (see section §3.2.1 & §3.2.2).  

 

3.2.5.1 Experimental arrangement 
 

For the hydraulic friction loss comparisons a vertical well with a total depth of 10000 

ft well geometry was considered. The well has 9 5/8 in casing as the last casing and 

the casing shoe is set at the 8600 ft depth. Internal diameter of the casing is 8,755 in. 

The outer and inner diameters of the drill pipe are 5 in and 4,275 in respectively.  

The drill collar is placed in the open hole and it has a length of 500 ft. And the drill 

collar is located 900 ft from the casing shoe. The outer and inner diameters of the drill 

collars are 8 in and 3 in respectively. Inner diameter of the open hole is the same as 

the casing hole that is 8,755 in.  

Surface pressure is assumed to be zero. The drill bit has three nozzles of 28 in size.  

The rheology measured data shown in Figure 3.1 are used in Figure 3.13 experimental 

well. Table 3.3 is the well construction geometry.  
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Table 3.3: Well construction geometry  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Figure 3.13: Simulation well for hydraulic analysis 

 
 

 

 

DP Drill collar Openhple Casing  Nozzle 

5’’x4.275’’ 8x3’’ 8.755 9 5/8  3x28’’ 

 

 

 

 

10000ft 
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3.2.5.2 Simulation result 
 

As mentioned earlier, the Unified hydraulics model was used to compare the frictional 

pressure losses of the 70/30 and the 90/10 Oil-Based Mud systems. The simulation 

was performed the rheology data obtained from the 80, 120 and 180
o
F. During the 

simulation, the flow rate was varied from 50 to 300 gpm. 

Figure 3.14 shows the simulation result. As can be shown the 70/30 OBM exhibits a 

higher friction loss in compared to the 90/10 OBM. This is directly associated with 

the higher density and the higher viscosities. 

As can also observe from the 70/30 OBM that as temperature elevates from 80-120
o
F, 

the pressure loss higher than as temperature increases from 120-180
o
F. Similar 

behavior also can be observed on the Fann 35data.  

The relative change in the 90/10 is lower than the 70/30 as temperature changes. This 

behavior can also be observed in the Fan 35 data.  

 

Figure 3.14: Comparison of the frictional pressure losses of the 70/30 and 90/10 OWR 

at the 80, 120 and 180
o
F based on the Unified Hydraulics model 
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Comparisons between the two mud systems were performed based on error analysis. 

Figure 3.15 shows the results of the error analysis. As can be seen the trends more or 

less show as a power law curves up to 250gpm and then begun reducing. At the 80
o
F, 

the error between the 70/30 and 90/10 OBMs shows 40% and 53% at 50gpm and 250 

gpm respectively. However the error reduces to 47% at the 300gpm. 

For an elevated temperature, i.e 120
o
F and 180

o
F, one can observe that both drilling 

fluid shows the same error rates at 50gpm and 300gpm. However, the difference in 

error rates shows almost constant between 100 and 250gpm, which is about 4-5 %.   

The error rate is lower when the temperature is higher, as shown for the 180
o
F. One 

can also learn that the 70/30 OMB at 180
o
F nearly behaves like the 90/10 OBM at 

80
o
F. 

 

Figure 3.15: Comparison of the error% for the 70/30 and 90/10 OWR based on 

temperature differences 

 

Similarly, the relative change or % error among three difference temperatures for two 

drilling fluids is evaluated. The results are shown in Figure 3.16.  
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For the 70/30 OBM as the temperature elevated from 80
o
F to 120

o
F, the hydraulics 

relative % difference increases from 28 to 30% as flow rate increases from 50 to 250 

gpm respectively. The error % increases from 39 to 45% as the temperature elevated 

from 80
o
F to 180

o
F.  

During the temperature elevated from 80
o
F to 120

o
F, the hydraulics relative % 

difference for the 90/10 OBM increases from 8 to 15% as flow rate increases from 50 

to 250 gpm respectively. The error % increases from 20 to 28% due to the 

temperature elevated from 80
o
F to 180

o
F. 

 

Figure 3.16: Comparison of the error% for the 70/30 and 90/10 OWR based on 

temperature elevated from 80-120
o
F and 80-180

o
F 

 

The overall analysis shows that the appropriate knowledge of the thermodynamics 

states of drilling fluid rheology and physical properties is very important for the 

appropriate prediction of the hydraulic in the drilling formation. For this, it is 

important to derive a model which predicts the behavior of the drilling fluid at any 

temperature and pressure. 
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3.3 Flow in Sand Pack Porous Media of 70/30 & 90/10 

OBMs 
 

In this study, the rate of the two drilling mud filtrate invasion into porous media is 

investigated. The porous media is one sized homogeneous sand packs of 24% 

porosity.  

Though the two mud system have different densities, the depth fluid column is 

calculated in order to have the same bottom hole pressure at the top of the sand pack.  

The depth of drilling fluid flow into the porous sand pack was measured every 30min 

until the flow rate become stable.  

Flow in 70/30 OBM 

 

Figure 3.17 shows the diffusion test process during filling of mud and after 150min 

testing period. The first measurement of diffusion rate for 70/30 OBM is carried out 

after 30min, and the diffusion depth of drilling mud is recorded as 2,8 cm. The depth 

of invasion finally stabilizes after 150min reaching to 3,8cm.  

 

70/30 At start of 

measurement 

 70/30 after 150min of 

measurement 

 

 

 

 

 

 

 

 

 

Figure 3.17: Illustration of diffusion of 70/30 OBM in Sand pack 

3.8cm 
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Flow in 90/10 OBM 

 

Unlike the 70/30 OBM system, an instant diffusion (spurt loss) of the 90/10 drilling 

fluid is observed as shown in the picture. Figure 3.18 shows the process of fluid 

invasion into the sand pack. 

 

After 30 min the depth of invasion recorded was 4,5cm. The rate of diffusion 

gradually decreases after 150min. The invasion stopped after 150min recording 

4,87cm. 

 

90/10 after 150 min of 

measurement 

 

 

 

90/10 after 150 min of 

measurement 

 
 

 

 

 

 
  

Figure 3.18: Illustration of diffusion of 90/10 OBM in Sand pack 

 

Figure 3.19 shows the depth of mud invasion measured in time. Comparing with 

70/30 OBM, the 90/10 OBM exhibits a quick fluid invasion rate into the sand pack 

due to fact that the 90/10 OWR is less viscous than the 70/30 OWR. 

 

4.87cm 
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Figure 3.19: Diffusion of the 70/30 and 90/10 OBMs against Time 

 

3.4 Visco-elasticity Test 

 
Viscoelastic behaviors of the two mud systems were investigated by using Anton Paar 

MCR 301 Rheometer, which include Oscillatory Amplitude Sweep and Oscillatory 

Frequency Sweep Test. The tests were performed at 22
o
C. The experiment was 

conducted in parallel plate. Figure 3.20 shows the picture of Anton Paar MCR 301 

Rheometer. 

 

A repeat test was performed. It was observed that the behavior was changing due to 

gelation. In main part of the report presented only one of the selected.  
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Figure 3.20: Illustration of the Anton Paar MCR 301 Rheometer 

3.4.1 Oscillatory Amplitude Sweep Tests-70/30 OBM and 90/10 OBM 

 

This test is the first test conducted to determine the linear viscoelastic range, the range 

of strain (or stress) where G’ and G’’ are constant. It is also used to detect structural 

stability, strength and dynamic yield point of drilling fluids. 

Test parameters and Test result 

The first experiment in dynamic tests is the oscillatory amplitude sweep test to define 

the linear viscoelastic range. Amplitude sweep tests were conducted with a constant 

frequency of 10 s
-1

 and a strain ramp from 0,001 to 1000%.  
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Figure 3.21 shows the comparisons of the amplitude sweep test results. As can be 

shown the storage and the loss modulus of the 90/10 OBM system is higher than the 

70/30 OBM system. At a frequency about lower than 0,3% strain the 70/30 OBM 

dominates which indicates the stable gel structure or solid like property. This indicates 

the viscoelasticity of the fluid system such that the fluid deformation is dominated by 

elastic behavior. After the crossing point the fluid behaves viscoelastic fluid since the 

loss modulus greater than the storage modulus 

Similarly until about lower than 0,7% strain, the 90/30 OBM dominates which 

indicates the stable gel structure or solid like property.  This system is viscoelastic 

solid. It is interesting to observe a transitional system that behaves like a mixture of 

viscoelastic solid and viscoelastic fluid within the range of 0,7-10% strain. The 

system then dominated by viscoelastic fluid since the loss modulus became large than 

the storage modulus. 

 

 

 

Figure 3.21: Amplitude sweep test of the 70/30 and 90/10 OBM systems 
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3.4.2 Oscillatory Frequency Sweep Test 90/10 OBM 

 

The frequency sweep test was performed based on the result obtained from the 

amplitude sweep test.   

The test was also conducted in the linear viscoelastic range. In this study, strains of 

0,05% and the frequency ramps from 100 to 0,01 in a log scale were used.  

 

Figure 3.22 shows the test results. As can be shown throughout the test period the G’ 

and G’’ modulus are frequency dependent and oscillating up and down. This event is 

interpreted as the fluid system behaves unstable gel structure or solid like property 

since the storage modulus is higher than the loss modulus. It is also observed that 

complex viscosity is also a frequency dependent. As can be seen the viscosity profile 

follows the storage modulus profile. This indicates that probably there is a direct 

relationship between these two profiles.   

 

Figure 3.22: Sweep frequency test for 90/10 OBM system 
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4 Drilling Fluid Performance Evaluations  
 

The 70/30 and 90/10 OMB mud systems will be compared through their performance 

in drilling operations. The performance of the drilling fluids will be investigated 

through experimental and simulation works. These are bridging, cutting transport 

efficiency, and hydrodynamic force effect on Hook Load. 

4.1 Bridging Experimental Study 
 

The behavior of the 70/30 and the 90/10 Oil-Water Ratio two mud systems are 

characterized in terms of their bridging performance. The 70/30 mud system is more 

viscous in compared to the 90/10 mud system.  The viscosity properties of the drilling 

fluid may have a relation with the particle stability at the mouth of a fracture. 

Therefore, for the comparisons purpose a loss circulation experimental test has been 

performed. From the test result the parameters used for comparison of the two mud 

systems includes the average pressure, the maximum pressure and the peak of the 

pressure. 

The question to be raised is that is there any correlation between bridging with fluid 

behavior?  

4.1.1 Experimental Arrangements and Test Procedure 

 

Figure 4.1 shows the static bridging experimental setup. Mud systems is mixed with 

particles and filled in the cylindrical mud holder (5) having 35mm and 64mm for the 

inner and outer diameters, and 150mm long. A single line-opening slot is designed to 

simulate a fracture in the formation. The suspensions-settling process is affected by 

gravitational force and buoyancy force.  The maximum pumping capacity of the pump 

is 50MPa. The openings used for testing are200m, 300m, 400m, and 500m. The 

depth of the slots is 10mm and the length is 24,4mm. Drilling fluid with suspension is 

filled in (5) and forms a filter cake at (4). As the cake collapses, it passes through the 

opening slot cell (7), and the fluid collects in the graduated cylinder (8). The volume 

of mud loss can be measured to evaluate the efficiency of particles in the mud cake. 
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The pressure response compressed by Gilson pump is recorded in the PC-control Lab-

View (1). Valves (3) and (6) control fluid (air) and mudflow respectively [7].  

 

The experiment was carried out at room temperature and pressure. Before the actual 

testing began, the test preparations were performed by closing valve (6) and opening 

valve (3). The water is injected by Gilson pump until water began flowing out through 

(9). This ensured the avoidance of undesired air from the system. Once the system 

was ready, the test was then initiated by closing valve (3) and opening valve (6) 

throughout the 30-minute duration. The injection rate during testing was 2ml/min. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Schematic particle bridging testing experimental set-up (1) Lab-View (2) 

Gilson pump (3) Valve to control air/fluid flow  (4) Cake (5) Drilling fluid with 

suspension (6) Valve to control mudflow (7) Opening slots  (8) Cylinder (9) Fluid/air 

outflow [7] 
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4.1.2 Description of Drilling Fluids 

 

In this experiment, two types of oil-based mud have been obtained from MI-SWACO. 

These are 70/30 oil-water ratio and another type with 90/10 oil-water ratio. The two 

different types of fluids have both different densities and different rheology. 

Figure 4.2 shows rheological properties of the drilling mud systems used for bridging 

experiments. .  

 

 

Figure 4.2: Drilling fluid rheology for 70/30 and 90/10 OBM 

Parameters 70/30 OBM at 80F 90/10 OBM at 80F 

Plastic Viscosity 121 38 

Yield Stress 88 16 

Density 1.77 1.65 

 

Table 4.1: Calculated viscosity and measured density of drilling fluids 
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4.1.3 Description of Particle – LC-lube 

 

LC-lube particle was used as bridging material in the two drilling fluid. The LC-lube 

is the product of Baker Hughes. Basically the LC-lube is graphite. At first the particle 

is sieved in order to find out both the sizes of the particle and the percentage of the 

mass of each particle size Figure 4.3. Then the cumulative particle size distribution 

was generated as shown in Figure 4.4. As can be seen from the PSD, the D50 value is 

at about 300 micron.  The D10 and the D90 are about 150 and 500 microns 

respectively. For the experiment, 200, 300 400 and 500 microns have been selected. 

 

Figure 4.3: LC-Lube particle size distribution 
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Figure 4.4: Cumulative Percentage of LC-Lube 

SEM 

To have a better insight of the structure of the particles Scan electron picture of the 

particle is taken Figure 4.5. As can be seen the LC lube is an irregular shape and 

having a longer length than the width.  Mechanically on the Mohs scale the scratching 

is 4.  

 

         Figure 4.5 SEM picture of LC-lube at magnification of 60x 
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4.1.4 Bridging Test Results and Analysis 

 

4.1.4.1 Bridging Test Result Summary 
 

In the 70/30 and 90/10 OBM systems a 16,85 ppb LC lube was mixed for testing. The 

experiment was carried out at the 200, 300, 400 and 500 microns. Table 4.2 shows the 

test matrix and average bridging pressure obtained from test results.  

Table 4.2: Test matrix and average bridging pressure 

The bridging test results obtained from 70/30 and 90/10 OBMs are plotted together in 

order to show a better comparisons. 

 

4.1.4.2 Test with 70/30 OBM vs 90/10 OBM 
 

The bridging performance of the 70/30 and 90/10 OBM are plotted for each opening 

slots. Figure 4.6 shows the comparisons of the two mud systems at 200 micron. As 

can be seen, during the first 10min testing period the bridging of the two systems 

shows equal strength. However after the 10min testing, the 90/10 OBM system shows 

a better performance. Figure 4.7-4.9 shows the test result at 300, 400 and 500 microns 

slots respectively. The results show that the performance of the 70/30 is better than 

the 90/10 OBM. One of the possible reasons why 70/30 is better bridging 

performance could be due to the high viscosity and the lower filtrate behavior of the 

Mud and additives  Slot µm Average Pressure/20min 

70/30 OBM + 16,85 LC Lube 200 10,1 MPa 

70/30 OBM + 16,85 LC Lube 300 4,74 MPa 

70/30 OBM + 16,85 LC Lube 400 2,81 MPa 

70/30 OBM + 16,85 LC Lube 500 4,23 MPa 

      

90/10 OBM + 16,85 LC Lube 200 13,99 MPa 

90/10 OBM + 16,85 LC Lube 300 2,64 MPa 

90/10 OBM + 16,85 LC Lube 400 0,57 MPa 

90/10 OBM + 16,85 LC Lube 500 0,11 MPa 
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mud system allows good bridge stability. The overall results indicate the fluid barrier 

effect on wellbore strengthening. 

 

 
 

Figure 4.6: Pressure Profile of the 70/30 and 90/10 OBM for Bridging Test with 200 

slot opening 

  

 

 
 

Figure 4.7: Pressure Profile of the 70/30 and 90/10 OBM for Bridging Test with 300 

slot opening 

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20

P
re

ss
u

re
, M

P
a 

Time, min 

70/30 @200

90/20 @200

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20

P
re

ss
u

re
, M

P
a 

Time, min 

70/30 @300

90/20 @300



      

  

MSc Thesis, 2014                                                                                                                    64 

 

  

 

 
 

 

Figure 4.8: Pressure Profile of the 70/30 and 90/10 OBM for Bridging Test with 400 slot 

opening 

 

 

 

 

 
 

Figure 4.9: Pressure Profile of the 70/30 and 90/10 OBM for Bridging Test with 500 slot 

opening 
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4.1.4.3 Comparison and Analysis of the Experimental data  
 

The experimental data analysis is based on the method presented by Mostafavi, V. 

[14]. 

Figure 4.10 shows the maximum Pressure in the cell (Pmax) during the 20min testing 

duration. This magnitude describes the maximum strength of the bridging tolerate to 

carry the load. As can be shown the bridging in the 70/30 OBM records a higher 

maximum pressure than the 90/10 except at the 250 microns opening. 

Figure 4.11 shows the average bridging pressure (Pavg) during the 20min testing 

duration. The result shows that very similar trend to the peak pressure shown in 

Figure 4.10. This pressure considers both pressure build-up and collapse pressures, 

which actually reflects the sealing capacity of the bridge. 

Figure 4.12 shows the average of peak bridging pressures. The peak pressure is the 

pressure build-up right before bridge collapse. The magnitude describes the strength 

of the bridging performance of the system at the given slot during the testing period. 

The result shows similarly that the 70/30 OBM is better sealing performance than the 

90/10 OBM system.   

Figure 4.13 shows the number of pressure build-up before collapse is counted during 

testing period. The number of bridge (N) corresponds to the number of peaks as new 

bridge forms. However, comparing with the other figures, there is no direct 

correlations. Comparing the two mud systems, the 70/30 shows higher number of 

bridge than the 90/10 OBM. This means that as the bridge collapse, it forms new 

bridge by building the pressure. 
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Figure 4.10: Maximum Pressure in tests with various Slot widths 

 

 

Figure 4.11: Average Pressure in tests with various Slot widths 
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Figure 4.12: Average Peak Pressure in tests with various Slot widths 

 

 

Figure 4.13: Number of peak as a function of Slot width 
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4.2 Hole Cleaning Efficiency of the 90/10 and 73/30 OBM systems  

 

The cutting transport phenomenon is influenced by forces acting on particles such as: 

Forces acting on the particle determine the transport, deposition and suspension 

mechanism of cutting. Different types of loading acting on the particle when the 

cuttings are transported through the annulus. The forces can be categorized as 

hydrodynamic forces, static forces and colloidal forces. In addition sticking force due 

to the stagnation of the mud system [33]. 

The mud systems are characterized based on their hole cleaning performances. The 

comparisons are made at three temperatures conditions. The Fann 35 data shown in 

section § 3.1 are used for the evaluation. 

The cutting lifting ability of fluid system is an important aspect for effective hole 

cleaning. There are several parameters that influence cutting transport efficiency. 

They are fluid properties, cutting properties and operational parameters [19][34][35]. 

In this section assuming that the cutting and well and operational parameters are 

constant, the two mud systems will be evaluated. The simulation experiment is 

performed in a real well geometry which consists of vertical and bend and inclined 

sections.  

 

4.2.1 Simulation Setup 

 

The experimental well is 11003ft measure depth long. The well is constructed with 

12,26’’casing and 12,22’’open hole. A drill string which consists of drill pipe 

(OD=5’’) and BHA are used in the simulation well. The detail of the well and string 

data is shown in Appendix E. Figure 4.14 shows the simulation experimental well. 

The simulation is performed with Well-Plan
TM

 software [20] and Power Law rheology 

model is chosen for the simulation. Figure 4.15 shows the well inclination of the 

simulation. 
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Figure 4.14:  Simulation experimental well  
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Figure 4.15: Well inclination of the simulation 

4.2.2 Simulation Performance Result and Analysis 

 

The cutting carrying capacity of the 70/30 and the 90/10 OBMs at different 

temperatures was investigated through the bed height deposition. For the analysis, the 

drilling fluid was allowed to circulate at 400gpm, which is the typical circulation rate. 

Bed height is deposition of cuttings on the bottom of the well. Poor hole cleaning 

results a higher bed height which can cause several undesired operational effect. 

These are drill string stucking, increase hydraulic pressure and hence increase ECD 

and increase torque and drag [35]. Through the experimental well, the cutting 

transport performances are simulated and the results are shown in Figure 4.16. As 

shown on the figure, the 70/30 shows good performance than the 90/10 in terms of the 

bed height with a maximum bed height difference of 0,5inch.  
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Figure 4.16: Comparison of the Bed Height between two mud systems with difference 

temperatures 
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The cutting bed deposited in the Figure 4.16 shows that the profile follows the trends 

of the well inclination. In vertical section up to 5000t, the figure obviously exhibits 

that no sign of cutting deposit and intuitively this is correct. Increment of well 

inclination from vertical to horizontal to about 600ft results dramatically increased of 

the cutting deposited to about 0.45 to 0.9in bed height. The well inclination shows 

quite inclined but quite varied until the 1000ft MD.  

For better comparisons of the simulation results, the analysis of the relative errors 

between the two mud systems individually was performed. Figure 4.17 shows the 

calculated % error between the mud systems.  

 

As shown on the figure, for the 70/30 OWR drilling fluid, the average error % of bed 

height ranges between 21-28% and 15-18% when the temperature increases from 80-

120
o
F and 80-180

o
F respectively. 

For the 90/10 OBM mud system, the average bed height error% ranges between 1,4-

3,7% and 1,0-3,3% when the temperature is increased from 80-120
o
F and 80-180

o
F 

respectively.  
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Figure 4.17: % Error comparisons of bed height between two drilling fluids 
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4.3 Hydrodynamic Force Effect of 90/10 & 73/30 OBM Systems on Hook Load 

 

Before drilling operation, the design of torque and drag is one of the most important 

operations which need to be simulated. The torque and drag are a function of mainly 

drilling string geometry, length and weight. However, the hydrodynamic force due to 

fluid properties and flow also do have effects on the torque and drag. In addition, the 

density of the drilling fluid and the friction coefficient between the drill string and the 

wellbore/casing are the main factors. 

In this thesis, the friction coefficient of the drilling fluid systems were planned, but 

due to time the measurement were not be able to perform. However, the analysis of 

the hydrodynamic force effect was carried out under some assumptions. The 

simulation is performed with Well-Plan
TM

 software [20] and Power Law rheology 

model is chosen for the simulation. 

 

Since the densities of the drilling fluids at various temperatures were not measured, it 

is assumed that the 120 and 180
o
F decrease the density by 5 and 10% respectively. 

Table 4.3 below shows the calculated result of density % decrease due to the elevated 

temperatures.  

 

Temperature Density 
 80F 13,74 Reference (measured) 

120F 13,053 5% Decrease Density (assumed) 
180F 12,366 10% Decrease Density (assumed) 
Table 4.3: Measured and assumed drilling fluid densities used for hook load 

simulation 

 

Simulation was performed in Figure 4.15.  For the simulation, 0 and 400gpm drilling 

fluid flow rates were used. For the given fluid systems, the Hook Load was computed.  

In the main report the effect of the tripping out comparisons presented. The effect of 

the tripping in comparisons is shown in the Appendix-D.  
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Temperature/% 
density 
decrease 

Hook Load 
(tons) 
when 
Flow rate 
=0 gpm 

Hook Load 
(tons) when 
Flow rate 
=400 gpm 

Increase in tons 
(Flow rate=0gpm) 
  

Increase in tons 
(Flow 
rate=400gpm) 
  

80F (Reference) 115 114 

120F (5% density 

Decrease) 
117 116 1,6 2,1 

180F (10% 
Decrease) 

118 117 3,1 3,8 

Table 4.4: Tripping Out of 70/30 OBM for 0 and 400gpm flow rates 

As shown in the Table 4.4 above, during tripping out the hydrodynamic force effect of 

the 70/30 OBM on Hook Load due to temperature elevated from 80-120
o
F and from 

80-180
o
F are calculated. At 0gpm flow rate, the hook load increases from 1,6 tons to 

3,1 tons due to the temperature increased from 80
o
F to120

o
F and 180oF respectively. 

As the flow rate increased to 400gpm, the Hook Load also increases from 2,1 tons and 

3,8 tons when the temperature elevates from 80
o
F to 120

o
F and 180

o
F respectively.  

Temperature/% 
density 
decrease 

Hook Load 
(tons) 
when Flow 
rate =0 
gpm 

Hook Load 
(tons) when 
Flow rate 
=400 gpm 

Increase in tons 
(Flow rate=0gpm) 
  

Increase in tons 
(Flow rate=400gpm) 
  

80F (Reference) 117 116 

120F (5% 
Decrease) 

119 118 1,4 0,8 

180F (10% 
Decrease) 

120 119 2,9 2,3 

Table 4.5: Tripping Out of 90/10 OBM for 0 and 400gpm flow rates 

 

For the 90/10 OBM, the simulation result of the hydrodynamic force effect of tripping 

out at the flow rate of 0gpm and 400gpm due to temperature elevation is shown in the 

Table 4.5 above. At the flow rate of 0gpm, the Hook Load increases from 1,4 tons to 

2,9 tons due to the temperature increased from 80
o
F to 120

o
F and 180

o
F respectively. 

The simulation running at the flow rate of 400gpm, the Hook Load is increased from 

0,8 tons to 2,3 tons when the temperature increases from 80
o
F to 120

o
F and 180

o
F.   
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5 Simulation and Analysis of Mud Systems 

 

5.1 Numerical Bridging Simulation 

 

 

Several bridging experimental study have been carried out at the UoS [7] [11] [12]. 

The result shows that particle forming bridging at the mouth of a fracture hinders fluid 

loss. In addition, well fracturing experimental results have also shows that the 

addition of particles in drilling fluid increase both fracturing pressure and re-

fracturing pressure. During re-fracturing test particles plugged at the mouth of the 

fracture increase the strength of the well. 

 

The question to be asked  

 

 Does bridging hinder the possible stress concentration increase at the fracture 

tip by disconnecting the communication between the fracture tip and the well?  

 

Nowadays, the application of the finite element method (FEM) for stress and fracture 

analysis of a complex problem is widely used, and the result is believed to be reliable. 

 

We have used ANSYS structural finite element simulator to understand the stress 

field at the tip and around a fracture [21].  

 

In this thesis three scenarios were analyzed to describe the interpretation presented in 

section § 2.4.1 [9] and section § 2.4.2 [13].  

The result of simulation may also describe the laboratory observations presented in 

section § 4.1.  

 

 

 



      

  

MSc Thesis, 2014                                                                                                                    77 

 

5.2 Model Generation Loading and Material Properties 

 

The geometrical model is built as a semi well with fracture at the center. A bridge is 

formed at the mouth of the fracture. The modeling procedure starts with the pre-

processing stage, which includes geometry building, meshing, loading, material 

properties, problem type and boundary conditions as specified. The post-processing 

includes deformed meshes, stress and strain contours. ANSYS has no defined 

geometry dimension that the MKS system is used in this experiment that the unit used 

in this geometry model dimension is meter or mm [21].  

 Meshing: The bilinear Q8 element with 8 degree of freedom gives a better 

solution and is chosen for meshing the model.   

 Loading: The well is loaded with constant pressure on the bridge, on the 

wellbore and on wall of the fracture.  

 Boundary condition: Around the external side of the model, we assume no 

deformation along the x and y directions that the model is fixed. The 

assumption is based on that the formation is unable to move to any direction in 

reality.  

 Material properties: The material properties are Young’s modulus, Poisson’s 

ratio and the thickness of the model. For the thin model, the plain stress 

problem is recommended. The plane stress thickness is set as “0,01 m (or) 

0,01 mm”.  

The properties for the model in this experiment are chosen as Linear, Elastic and 

Isotropic.   

5.2.1 Model Scenario 1-Refernce model 

 

In this case, the model is assumed that the drilling fluid system doesn’t make good 

mud cake. During well fracturing, the drilling fluid doesn’t make bridging. Therefore 

the well pressure is communicating with the fracture and loads on the face of the 

fracture.  
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This scenario simulates the model presented in Figure 5.1. The face of the fracture can 

be permeable or non-permeable depending on the petro-physical properties of the 

formation.  

The modeling parameters used for the analysis is obtained from reference [9]. The 

pressure on the wellbore and on the face of the fracture is 9200psi. The pressure of the 

minimum horizontal in-situ stress is 9000 psi and the pressure of the maximum 

horizontal in-situ stress is 9200 psi respectively. The model parameters are presented 

in the Table 5.1. 

 

Length of the Formation 5 meter 

Height of the Formation 5 meter 

Radius of the Wellbore 1 

Width or aperture at the mouth of the Fracture 0,6 meter 

Length of the Fracture 1 meter 
Formation Young’s Modulus 1.09E+06 psi 
Formation Poisson’s ratio 0.225 
Minimum Horizontal in- situ Stress 9000 psi 
Maximum Horizontal in-situ Stress 9200 psi 
Wellbore Pressure 9200 psi 
Pressure inside the Fracture 9200 psi 
 

Table 5.1: Geometry of the Scenario 1 
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Figure 5.1: Illustration of loads and boundary conditions for scenario 1 

 

Results: 

 

Figure 5.2: Deformation and Stress Distribution results by Von Mises of scenario 1 
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Figure 5.3: Line plot of Von Mises and Stress component along the X-direction (x) 

for scenario 1 

 

Figure 5.4: Line plot of Von Mises and Stress component along the Y-direction (y) 

for scenario 1 
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Figure 5.2 shows the deformation and Von-Mises stress distribution. As can be seen at 

the tip of the fracture the loading induce higher tensile strength. When the strength 

reaches to the tensile strength the fracture will propagate and in a real operation mud 

flows into a formation.  

To better understand the stress fields along the direction and perpendicular to the 

fracture, path plots profiles are generated.  

Figure 5.3 is the path plot of Von-Misses (Svon) and the stress component in the X-

direction (x). The result shows that both the Von Mises stress and the x-components 

are higher at the fracture tip and exponentially decay out as going away from the tip. 

The stress magnitudes are about three times higher than the well pressure.  

Figure 5.4 is the path plot of the Von-Mises (Svon) and the stress component in the Y-

direction (y). As can be seen, the stress at the tip of the fracture in the y-direction is 

higher than in the x-direction by about 54%.  The stress fields decay exponentially as 

we go from the tip away.  

From this huge stress concentration, if there is a well and fracture communication, the 

application pressure loading causes a continuous fracture growth and hence mud 

losses.  

 

This simulation result suggest that the need to have fluid barrier at the mouth of the 

fracture in order to avoid the communication between the well and the fracture. In 

section §4.1, the bridging experimental result illustrates that good bridging hinder 

mud loss through opening slots. 
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5.2.2 Model Scenario 2-Model based on Alberty’s interpretation 

 

Scenario 2 developed based on the Alberty’s [9] FEM simulation study. The model is 

shown in Figure 5.5. The loading is inside the fracture. Based on their loading, the 

following two cases try to describe the models.  

The first interpretation of the model is that the drilling fluid system doesn’t make 

good mud cake. During well fracturing, the drilling fluid doesn’t make bridging. 

Therefore the well pressure is communicating with the fracture and loads on the face 

of the fracture. The second interpretation of the model is that the particles deposited at 

the mouth of the fracture width as illustrated in Figures 2.3-2.5. The pressure loaded 

on the particle is equally transferred the side contact surface area of the fracture. 

Therefore, the pressure in the well (i.e on the bridging) is the same as loading on the 

face of the fracture.  

The face of the fracture can be permeable or non-permeable depending on the petro-

physical properties of the formation. However, ANSYS cannot handle the diffusion 

and pore pressure build-up effects. The modeling parameters used for the analysis is 

obtained from reference [9]. The pressure on the wellbore and on the face of the 

fracture is 9200psi. The pressure of the minimum horizontal in-situ stress is 9000 psi 

and the pressure of the maximum horizontal in-situ stress is 9200 psi respectively. 

The model parameters are shown in Table 5.2. Figure 5.5 illustrates the meshed model 

geometry, and loading. 

Length of the Formation 3 meter 

Height of the Formation 3 meter 

Radius of the Wellbore 1 

Length of the Fracture 0,2 meter 

Formation Young’s Modulus 1.09E+06 psi 

Formation Poisson’s ratio 0.225 

Minimum Horizontal in-situ Stress 9000 psi 

Maximum Horizontal in-situ Stress 9200 psi 

Wellbore Pressure 9200 psi 

Pressure inside the Fracture 9200 psi 

Table 5.2: Geometry of the Scenario 2 
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Figure 5.5: Illustration of loads and boundary conditions for scenario 2 

 

Results: 

 

Figure 5.6: Deformation and Stress Distribution results by Von Mises of scenario 2 

 



      

  

MSc Thesis, 2014                                                                                                                    84 

 

 

Figure 5.7: Line plot of Von Mises and Stress component along the X-direction (x) 

for scenario 2 

 

 

Table 5.8: Line plot of Von Mises and Stress component along the Y-direction (y) 

for scenario 2 
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Figure 5.6 shows simulation result of the Von-Mises stress distribution. As can be 

seen, the maximum tensile stress located at the tip of the fracture. When the stress at 

tip of the fracture reaches to the tensile strength of the formation, it will open up the 

fracture and growth ahead. This observation is contrary to the interpretation of the 

Alberty, which says that the stress cage increase the strength of the wellbore.   

 

Figure 5.7 is a line plot of VonMises (Svon) and (x) along the X-direction of the 

fracture. The result shows that both stress are tensile and very high at the tip of the 

fracture and decay out as we go far from the fracture tip.  

Figure 5.8 also shows the plot of VonMises (Svon) and (y) along the Y-direction of 

the fracture. The result shows that the Von-Mises is tensile and the y stress 

component is compressive. Both shows higher stress magnitudes the tip of the 

fracture. From the two stress line plots we can learn that the Von-Mises along and 

perpendicular to the fracture tip are higher and tensile. This stress is responsible for 

the fracturing provided that the magnitude reaches to the tensile strength of the 

formation. 

This thesis simulation results support the interpretation presented by Aadnøy [12][13]. 

 
  

5.2.3 Model Scenario 3-Model based on Aadnøy’s interpretation 

 

In this case, the model is assumed that the drilling fluid system makes good mud cake. 

The bridge is a cylindrical shape at the mouth of the fracture and illustrated in Figure 

5.9 [12][13]. The process of loading and bridging deformation and finally bridge 

collapse is illustrated on the figure. Based on this model interpretation, Model 

scenario-3 is developed.  According to the model, since the bridge forms good cake, 

there will be no communication between the well pressure and the fracture.  Therefore 

the loading will be on the bridge and on the wellbore. We will also assume that even 

if there is a bridge because of filtrate there will be pressure communication between 

the well and the fracture. .  



      

  

MSc Thesis, 2014                                                                                                                    86 

 

The modeling parameters used for the analysis is obtained from reference [9]. The 

pressure on the wellbore and on the face of the fracture is 9200psi. The pressure of the 

minimum horizontal in-situ stress is 9000 psi and the pressure of the maximum 

horizontal in-situ stress is 9200 psi respectively. Table 5.3 shows the model 

parameters. Figure 5.9 illustrates the meshed model geometry, and loading. 

Length of the Formation 5 meter 

Height of the Formation 5 meter 

Radius of the Wellbore 1 

Width or aperture at the mouth of the Fracture 0,6 meter 

Length of the Fracture 1 meter 

Thickness of the Bridging 0,02 meter 

Formation Young’s Modulus 1.09E+06 psi 

Formation Poisson’s ratio 0.225 

Minimum Horizontal in-situ Stress 9000 psi 

Maximum Horizontal in-situ Stress 9200 psi 

Wellbore Pressure 9200 psi 

Pressure inside the Fracture 9200 psi 

Table 5.3: Geometry of the Scenario 3 

 
Figure 5.9: Illustration of loads and boundary conditions for scenario 3 
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Figure 5.10: Deformation and Stress Distribution results by Von Mises of scenario 3 

 

Figure 5.11: Line plot of Von Mises and Stress component along the Y-direction (y) 

for scenario 3 
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Figure 5.12: Line plot of Von Mises and Stress component along the X-direction (x) 

for scenario 3 

 

 

Figure 5.10 shows the Von Mises stress field after loading. As shown on the figure, 

due to loading the bridge is deformed. The stress fields are very low at the tip of the 

fracture as compared to scenario 1.  

 

Figure 5.11 is the path plot of the Von-Mises (Svon) and the stress component in the Y-

direction (y). Similarly the path plot along the x-direction is shown in Figure 5.12. 

As can be seen, the stress at the tip of the fracture in the y-direction is higher than in 

the x-direction by about 44%.  The stress fields decay exponentially as we go from the 

tip away.  

 

The Von-Mises stress comparison between scenario 1 and 3 show that scenario 1 is 

higher than scenario 3 by 56%.  Comparisons between the stress components show 

that scenario 1 is higher than scenario 3 by 48% and 56% along the x and y-direction 

respectively. 
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Comparing the interpretation of Aadnoy with the ANSYS simulation result, one can 

observe that the interpretation is in line with the numerical bridging deformation and 

stress field phenomenon. This is also supported by core well fracturing experiments 

and the bridging experimental result, which exhibits good bridging hinder mud losses 

since the bridging can carry well pressure and disconnect the communication with the 

fracture. The experimental results also show that the particle additives in a mud 

system regain the strength of a fractured wellbore [12] [7] [14]. 
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6 Summary and discussion  
 

This section presents the summary and discussion of the overall study. The main 

purpose of the thesis is to compare between 70/30 and 90/10 OBM systems. The 

investigation was through experimental, modelling and performance simulation and 

finite element numerical methods. These are Bridging test, Rheology test, HPHT 

filtration test, Viscoelasticity test, Hook Load and Cutting Transport simulations. 

 

Temperature Effect on Plastic Viscosity and Yield Stress 

 

The knowledge of the effect of the thermodynamic state on the drilling fluid is very 

important for accurate predictions of hydraulics. Most simulators do have empirical 

correlation equation which adjust the density and viscosity to the given temperature 

and pressure. In this thesis, the effect of temperature on the two mud systems were 

analyzed and compared. The results show that both fluid systems are sensitive to the 

temperature. As temperature increases from 80 to 180
o
F, the rheology of the both 

drilling fluids decreases. The effect is more significant on plastic viscosity (PV) than 

on the yield stress (YS). For instance: 

 

 As temperature increases from 80 to 180oF, the PV of the 70/30 OBM system 

decreases from 112 to 55cP, while the PV of 90/10OBM decreases from 30 to 

13cP.    

 However it is interesting to observe that the YS of the 90/10 OBM doesn’t 

shows a significant decreases (it is almost equal). The YS of the 70/10 OBM 

decreases from 30 to 21 lbf/100sqft.  

 

The temperature dependent correlation equations developed in this thesis are valid for 

the given temperature ranges and at atmospheric pressure. For a realistic analysis, it 

would be interesting to study the problem at various temperature and pressure, which 

simulated the thermodynamics state of drilling formations.   
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HPHT Filtrate Test 

One of the drilling challenges is drilling in a HPHT environments. The more the 

filtrate results in formation damage and modifying the properties of the drilling fluid 

since it losses the chemical, the fluid and particle solids. The lower the filtrate the 

thinner the mud cake is the better.  The static HPHT filtrate test was performed on the 

two mud systems at 500psi and 100
o
C. 

 

Initially the 70/30 OWR filtration test shows that the filtrate consists of 24% water 

phase. The Electrical Stability Test is required to investigate the oil-water ratio in the 

70/30 OBM. The result of the ES measurement shows 360mV, which is very low 

voltage. This is an indication that the mud system has a poorly emulsified system. 

Later the mud systems were treated with emulsifiers (paramul and parawet) and lime 

in order to adjust the stability. After modification the HPHT filtrate results shows no 

water phases and record 2,25ml. In real operation, it is therefore important to test the 

stability and adjust the system before re-use it for drilling.  

 

The ES of the 90/10 OWR was 678mV, which exhibits good emulsified system. The 

HPHT filtration test recorded 7,2ml which is 68,8 percent higher than the 70/30 

OBM. One can also easily see from Figure 1.2 section §1.2. The filtrate phase of the 

90/10 is almost three times higher than the 70/30OBM. 

Based on Bridging Performance 

Loss circulation is a critical problem for the industry. The loss circulation problem 

can occur through stress induced fracture and naturally fractured formations. 

Depending on the severity of the loss one can design a treatment to hinder further 

losses. The commonly used technique is to use loss circulation material. The bridging 

performance of the particles on the mouth of a fracture depends on the property of the 

drilling fluid. In this thesis, the bridging performance of the 16,85 ppb LC-lube in the 

70/30 and 90/10 OBMs was evaluated. LC-Lube is graphite loss circulation material. 

The LC-lube treated drilling fluids were tested at slots width of 200, 300, 400 and 500 

microns. The pressure profile the experimental results were analyzed by computing 

the maximum pressure, the average pressure and the peak of the pressure.  
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The result also shows that the bridging performance of the loss circulation material is 

better in the 70/30OBM than in the 90/10 OBM systems. The better stability of the 

70/30 could be due to low filtrate and high viscosity of the fluid systems. The 

mobility of the 70/30 fluid in fracture system is slower than the 90/10 fluid as 

illustrated in Figure 6.1. 

 

 

 

 

Figure 6.1: Illustration of mobility in 30sec 
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Hydraulic and Rheology Analysis   

The hydraulics property of drilling fluid is very important for drilling operation such 

as ECD management, cutting transport, and pump performance determinations. In this 

thesis a simulation well was designed the hydraulics of the two mud systems 

evaluated through Unified yield power law model. Since temperature has a significant 

effect on the rheology and density of drilling fluid, the hydraulic effect in HPHT is 

also higher. The result shows that as temperature increase the pressure losses 

decrease.  As RPM increase the pressure loss increases. It is therefore important to 

have a temperature and pressure dependent rheology and density models so that 

during simulation the laboratory measured data will be adjusted to the correct 

thermodynamic states. Comparing the two mud systems it is shown that the 70/30 

OBM shows a higher pressure than the 90/10 OBM mainly due to the rheology and 

density parameter effects. 

 

Cutting Transport capacity of the Fluid Systems 

Hole cleaning is an important issue to be considered during drilling operation. The 

cuttings are transported to surface by the help of the return drilling fluid. The cutting 

transport capacity of the drilling fluid depends on several factors. These are the 

rheology, the density of drilling fluids, the cutting properties, the operational 

parameters (RPM and ROP) and flow rates. In this thesis the cutting lifting capacity of 

the two mud systems at three different temperatures were evaluated. For the 

evaluation an experimental well is constructed and the bed height depositions during 

400gpm flow condition were simulated.  

 

The result shows that the performance of the 70/30 OBM is better than the 90/10 

OBM. The main reason here is that the higher the viscosity and the density holds 

cutting particles in suspension. This allows for the particles to be transported instead 

of being settled. The temperature effect on the cutting transport of the 90/10 shows 

lower than the 70/30 OBM. 
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Hydrodynamic Force Effect on Hook Load  

Torque and drag are also very important issue for drilling operation. During designing 

phase accurate prediction of loads on drill string allows a safe operation both reaching 

to the desired measured depth and without drilling string failure. Among other the 

hydro-dynamic forces do have effects on the torque and drag. In this thesis, the effect 

of flow and rheology of the two drilling fluids systems on the Hook load was 

evaluated. For instance for 70/30 OMB as temperature increase from 80 to 180
o
F, the 

result shows that the hydrodynamic force increase the hook load up to 3,8 tons during 

tripping out operation. 

 

Viscoelasticity Behavior 

The knowledge of the viscoelastic properties drilling fluids is important. The 

viscoelastic properties of a drilling fluid allow evaluating gel structure, gel strength, 

barite sag, and hydraulic modeling. In this thesis amplitude and frequency sweep tests 

were carried out. The comparison of the amplitude sweep test results shows that the 

storage and the loss modulus of the 90/10 OBM system are higher than the 70/30 

OBM system. The frequency sweep test results performed on the 90/10 OBM shows 

that loss modulus, the storage modulus and the complex viscosity are being frequency 

dependent. The fluid system behaves like unstable gel structure or solid like property 

during the testing period. It is also observed that complex viscosity follows the 

storage modulus profile, but not of the loss modulus.  

 

ANSYS Simulation 

Finite element simulation was carried out in order to study the stress fields around and 

away from fracture tip with and without bridging at the mouth of a fracture.  

The motivation of the study is to describe the bridging experimental results and to 

compare the bridging interpretations documented in literature. The simulation results 

show that good bridging carries well pressure and disconnect the communication 

between the well and the fracture. The simulation results describe best the 

interpretation presented by Aadnøy et al [13].  
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7 Conclusion  
 

The study in this thesis covers characterization and performance of the considered two 

oil based mud systems. The major investigations of the thesis work are summarized in 

the Table 7.1 below. 

 

 Parameter 70/30 OBM 90/10 OBM 

 

Rheology 

Measurement 

Error % at temperature 

elevated from 80-120oF 

Error range is between  

21 and 35% 

Error range is between 10 

and 27% 

Error % at temperature 

elevated from 80-180oF 

Error range is between 

33 and 53% 

Error range is between 10 

and 44% 

 

 

Hydraulic 

Measurement 

Error % at the temperature 

elevated from 80-120oF 

The hydraulics relative 

% difference increases 

from 28 to 30% 

The hydraulics relative % 

difference increases from 8 

to 15% 

Error % at the temperature 

elevated from 80-180oF 

The hydraulics relative 

% difference increases 

from 39 to 45% 

The hydraulics relative % 

difference increases from 20 

to 28% 

 

 

 

Bridging Test 

Slot Width of 200 µm after 

running of 20 min 

Pavg = 10,1 MPa Pavg = 13,99 MPa 

Slot Width of 300 µm after 

running of 20 min 

Pavg = 4,74 MPa Pavg = 2,64 MPa 

Slot Width of 400 µm after 

running of 20 min 

Pavg = 2,81 MPa Pavg = 0,57 MPa 

Slot Width of 500 µm after 

running of 20 min 

Pavg = 4,23 MPa  Pavg = 0,11 MPa 

 

 

HPHT 

Filtration Test 

Before Modification 4.6 ml of filtrate  with 

containing of 24% water 

Phase come out 

7.2 ml of pure filtrate come 

out 

After Modification 2.25 ml of pure filtrate 

without containing 

water phase come out 

No re-measurement since the 

first test showed a good 

result 

 

Cutting 

Transport 

Error % at temperature 

elevated from 80-120F 

The highest error% 

reached is 17%. 

The highest error% is 

recorded as 3.2%. 

Error% at temperature 

elevated from 80-180F 

Peak error% is extended 

to 21% in here. 

Peak error% is slightly 

increased to 3.7%. 

 

Flow in 

Porous Media 

After 30 minutes 2,8 cm 4,5 cm 

After 120 minutes 3,7 cm 4,85 cm 

After 150 minutes 3,8 cm 4,87 cm 

 

 

 

 

Hydrodynamic 

fluid force 

effect on Hook 

Load 

 

 

 

 

Flow Rate = 

0 gpm 

 

80oF-120F 

(Density 

Decrease 

5%) 

Hook load increased by 

1,6 tons during  tripping 

out 

Hook load increased by 1,4 

tons during tripping out 

80oF-180F 

(Density 

Decrease 

10%) 

Hook load increased by 

3,1 tons during tripping 

out 

Hook load increased by 2,9 

tons during tripping out 
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Flow Rate = 

400 gpm 

80oF-120F 

(Density 

Decrease 

5%) 

Hook load  increased by 

2,1 tons during tripping 

out 

Hook load increased by 0,8 

tons during tripping out 

80oF-180F 

(Density 

Decrease 

10%) 

Hook load increased by 

3,8 tons during tripping 

out 

Hook load increased by 2,3 

tons during tripping out 

Visco-elastic Loss modulus (G’’) 

Storage modulus (G’) 

Cross point (G’=G’’) at 

0.3 % stain 

Cross point (G’=G’’) at 0.7% 

stain 

Table 7.1: Summary of the major investigations 

 

Based on the summarized table the following conclusion can be drawn 

 

 The results of the rheology measurement present that both the Herschel 

Buckley and Unified models with lowest error rates can describe the best for 

both 70/30 and 90/10 OWR of mud systems. 

 The HPHT filtration test shows that the 70/30 OBM with less volume of 

filtrate is better than the 90/10 OBM which losses significantly amount of 

filtrate. It is vital to measure the Electrical Stability and other properties of the 

return mud before re-use it back. If the drilling fluid lost it properties, 

modification should be made right at the spot.  

 The result of the hydraulic calculation shows that the 70/30 OBM exhibits a 

higher friction loss in compared to the 90/10 OBM due to higher density and 

higher viscosity.  

 For the bridging test, the 70/30 OBM with loss circulation material shows a 

better performance due to low filtrate and high viscosity.  

 Both drilling fluids are sensitive to the temperature that temperature increase 

results the rheology of the drilling fluids decrease. The analysis shows that the 

effect of temperature is more significant on plastic viscosity than on the yield 

stress.  

 In the cutting lifting simulation, the 70/30 OBM shows a better performance 

than the 90/10 OBM due to higher viscosity helped particles to be transported. 

In addition, temperature has a significant effect on the 70/30 OBM in 

compared to the 90/10 OBM. 
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 Results of hydrodynamic force effect on Hook Load show that both elevated 

temperature and increased flow rate have effect on the Hook Load during 

tripping out for both drilling fluids. 

 In the amplitude sweep test, the storage and the loss modulus of the 90/10 

OBM is higher than the 70/30 OBM. 

 

 In the study of stress fields around the fracture tip, results of the ANSYS 

structural finite element simulator support the interpretation presented by 

Aadnøy et al [13]. 
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8 Future Work 
 

Due to the limited time, more were not able to perform. However, this thesis propose 

do more characterization and performance studies in the future. The following is 

proposal for future work: 

 The performance of the Friction test for the 70/30 and 90/10 OBMs 

 Dynamic HPHT filtration test 

 More visco-elastic test at various temperature and using cylinder cup test 

 HTHP rheology test 

 Perform modelling and simulations based on the measured data 
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Appendix 
 

Appendix A: Rheology Models and Model Parameters 
 

Based on different rheology model, shear stress were calculated and compared with 

experimental data. From the best fit, the rheology parameters are determined. The sum 

of the average % error between the models and the experimental measured data are 

calculated and shown in the tables.  

Rheology Measurement of 70/30 OWR at Normal Temperature (80F) 

Model Equation Parameters Error 

Herschel Buckley 0,5235*^0,8767+14,26 o=14.26 k=0,5235 n=0,8767 1,35 

Unified 13,871+0,5385*^0,8721 y=13.871 k=0,5385 n=0,8721 1,21 

Power Law 4,5917*^0,5385  k=4,5917 n=0,5385 12,00 

Bingham 0,2176*+17,461  μp=104.19 τy =17,461 16,16 

Newtonian 0,2423*  =116.01  38,73 
 

For Bingham : p = 0.2176x47880/100=104.1869 cp. 

For Newtonian,  = 0.2423x47880/100=116.0132 cp. 

 

Rheology Measurement of 70/30 OWR at 120F 

Model Equation Parameters Error 

Herschel Buckley 0,5209*^0,8125+14,26 o=14.26 k=0,5209 n=0,8125 1,99 

Unified 13,871+0,6407*^0,7794 y=13.871 k=0,6407 n=0,7794 1,52 

Power Law 3,7588*^0,507  k=3,7588 n=0,507 10,11 

Bingham 0,1387*+14,287  μp=66.41 τy =14,287 19,35 

Newtonian 0,159*  =76.13  41,50 
 

For Bingham : p = 0.1387x47880/100=66.4096 cp. 

For Newtonian,  = 0.159x47880/100=76.1292 cp. 
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Rheology Measurement of 70/30 OWR at 180F 

Model Equation Parameters Error% 

Herschel Buckley 0,3751*^0,8147+14,26 o=14.26 k=0,3751 n=0,8147 2,21 

Unified 13,871+0,2796*^0,8618 y=13.871 k=0,2796 n=0,8618 3,40 

Power Law 3,4449*^0,4743  k=3,4449 n=0,4743 10,25 

Bingham 0,0989*+12,469  μp=47.35 τy =12,469 20,43 

Newtonian 0,1166*  =55.83  43,60 

 

For Bingham : p = 0.0989x47880/100=47.3533 cp. 

For Newtonian,  = 0.1166x47880/100=55.8281 cp. 

 

Rheology Measurement of 90/10 OWR at Normal Temperature (80F) 

Model Equation Parameters Error 

Herschel Buckley 0,2393*^0,827+20,96 o =20,96 k=0,2393 n=0,827 1,67 

Unified 21,34+0,3185*^0,7812 yl = 21.34 k=0,3185 n=0,7812 1,54 

Power Law 5,1835*^0,3655  k=5,1835 n=0,3655 11,91 

Bingham 0,0698*+13,024  μp=33.42 τy=13,024 10,65 

Newtonian 0,0883*  =42.28  46,23 
 

For Bingham : p = 0.0698x47880/100=33.4202 cp. 

For Newtonian,  = 0.0883x47880/100=42.2780 cp. 

Rheology Measurement of 90/10 OWR at 120F 

 

Model Equation Parameters   Error 

Herschel Buckley 0,2381*^0,7705+20,96 o =20,96 k=0,2381 n=0,7705 1,21 

Unified 21,34+0,3695*^0,7007 yl = 21.34 k=0,3695 n=0,7007 2,30 

Power Law 5,8836*^0,3018  k=5,8836 n=0,3018 11,00 

Bingham 0,0478*+12,594  μp=22.89 τy=12,594 8,73 

Newtonian 0,0657*   =31.49  48,97 

k (lbfsecn/100sq ft)   yl = lbf/100sqft,   o = lbf/100sqft  τy = lbf/100sqft   

 

For Bingham : p = 0.0478x47880/100=22.8866 cp. 

For Newtonian,  = 0.06578x47880/100=31.4955 cp. 
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Rheology Measurement of 90/10 OWR at 180F 

 

Model Equation Parameters Error 

Herschel Buckley 0,5834*^0,5938+20,96 o =20,96 k=0,5834 n=0,5938 4,05 

Unified 21,34+1,0786*^0,5003 yl = 21.34 k=1,0786 n=0,5003 5,39 

Power Law 6,0054*^0,2675  k=6,0054 n=0,2675 8,93 

Bingham 0,0347*+12,289  μp=16.6144 τy=12,289 10,65 

Newtonian 0,0521*  =24.9455  52,08 
 

For Bingham : p = 0.0347x47880/100=16.61436 cp. 

For Newtonian,  = 0.0521x47880/100=24.94548 cp. 
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Appendix B: Bridging Tests70/30 & 90/10 OBMs after 10, 15 & 20 min 

 

The average pressure trend shows a declination from lower micron to higher micron 

for almost all time measurements. The highest average pressure reaching is 9,8 MPa 

at 20 minutes running of 200 microns. The declination of average pressure trend is 

almost the same from 200 microns to 300 microns for all time measurements. The 

declination trend also continues from 300 microns to 400 microns for the time of 10- 

and 20-minutes. But the average pressure from 300 microns to 500 microns is almost 

stable for the time of 15-minutes. The reason of the stable average pressure trend 

could be the suspension of particle settling that it takes more time to settle down the 

particles on the mouth of the fracture due to the viscous drilling fluid.  

  

We can assume that most particles settle down across the slot opening around the time 

of 15-minutes for the 70/30 OBM. 

The declination of average pressure trend is perfect for the time of 10-minutes that the 

highest average pressure with 7,3 MPa at 200 microns and the lowest average 

pressure with 2,6 MPa at 500 microns.  
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90/10 OWR after 10 min, 15 min and 20 min 

The decreasing average pressure trend from lower to higher slot openings shows a 

reasonable assumption for a less viscous Oil-Based Mud like 90/10. The highest 

pressure gap is occurred at the 200 microns and the highest average pressure reaching 

is 13,65 MPa at 20 minutes running of 200 microns. The lowest average pressure 

reaching is 9,35 MPa at 10 minutes running of 200 microns. The reason of the 

increment of average pressure during the time increased is that the bridge 

development is gradually better after time. In the end the bridge is perfectly form and 

the slot is totally plugged after the time of 22 minutes 

.  

From this point, the average pressure variation is almost identical for 300 microns, 

400 microns and 500 microns in different time measurements. The reason of the 

identical average pressure trend occurrence is because of the effect of the viscosity of 

the drilling fluid and wider slot opening. In the experiment with 400 microns, the 

average pressure varies from 0,27 to 0,56 MPa in different time measurements that 

almost no pressure build-up is achieved during the test. And the result with the 

experiment with 500 micron shows more obvious that the average pressure is almost 0 

MPa throughout the test in different time measurements.  
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Appendix C: Thermal conductivity of drilling fluid  

 

In this thesis, the measurement of the thermal conductivity of the two mud systems is 

performed. Since the measurement technique is new and we are not sure if it actually 

describes the physics, we only outline how we made the experiment and the results. 

 

70/30 OWR Drilling Fluid 

The cooked drilling fluid is put into the thermos cup and thermometers was tied 

wooden stick is also put into the cup. The height of the drilling fluid in the cup is 

about 10,0 cm. 

 1.Temperature Measurement – 2,3 cm from the bottom of the cup (Deepest) 

 2.Temperature Measurement – 6,2 cm from the bottom of the cup (Middle) 

 3.Temperature Measurement – 9,5 cm from the bottom of the cup (Shallowest) 

 

 

 

 

 

 

 

 

 

 

 

The 70/30 Oil-Based Mud was boiled until the temperature of the drilling fluid 

reached at 43C (or 109F). 

Even if we measured the temperature in different depths, we assume that the heat 

capacity is the same due to the exponent of all three temperature points is the same as 

2,3cm 

6.2cm 

9.5cm 

Thermos 

10cm 
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-0,001. It can also be assumed that we measured one drilling fluid in different depths 

that we got a common exponent value.  

 

Experimental Data Modelling 

Based on the experimental data trend, we can assume that the temperature decay can 

be as exponential. This can be modeled as: 

dT/dt αT 

where α is temperature decrease by time. The slop of the decay is defined as ∆T/∆t 

where ∆T is temperature … and ∆t is time  

Solving: 

dT/dt = - αT 

Ts∫
T
 dt/T = - α 0∫

1
 dt 

In (T/Ts) = - αt 

T = Ts e
-αt 

0; 42.7 30; 42.5 

60; 41.2 

90; 39.2 
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 T = 43,593e
-0,001t

 (Deepest Point Measurement) 

 T = 42,703e
-0,001t

 (Middel Point Measurement) 

 T = 37,918e
-0,001t

 (Shallowest Point Measurement) 

90/10 OWR Drilling fluid  

Similarly the cooked drilling fluid is put into the thermos cup and thermometers was 

tied wooden stick is also put into the cup. The height of the drilling fluid in the cup is 

about 10,0 cm. 

 1.Temperature Measurement – 2,3 cm from the bottom of the cup (Deepest) 

 2.Temperature Measurement – 6,2 cm from the bottom of the cup (Middle) 

 3.Temperature Measurement – 9,5 cm from the bottom of the cup (Shallowest) 

 

 

 

 

 

 

 

 

 

 

 

The 90/10 Oil-Based Mud was cooked until the temperature of the drilling fluid 

reached at 43C (or 109F). 

Measurement of the immediate temperature of the drilling fluid in the cup was 

performed at 13:05 but the temperature was unstable in the beginning. The 

temperature was inclining until it reached the highest point. It took over 12 minutes to 

reach the highest temperature point for all three measurements (at 13:18). The highest 

temperature reached for point 3 (Shallowest) was 36,8 C at 13:10 hr. The temperature 

of the point 3 was started to decrease to 36,7 C at 13:13 hr. The temperatures of other 

two points were not stable and continued to incline at that time.  
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We get the same exponential number for 90/10 OWR drilling fluid as for 70/30 OWR 

drilling mud. The common exponential number is -0,001 and the exponential number 

is the same for all three different points.  

 

Experimental Data Modelling 

Based on the experimental data trend, we can assume that the temperature decay can 

be as exponential. This can be modeled as: 

 T = 43,593e
-0,001t

 (Deepest Point Measurement) 

 T = 42,703e
-0,001t

 (Middel Point Measurement) 

 T = 37,918e
-0,001t

 (Shallowest Point Measurement) 
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Appendix D: Hydrodynamic Force Effect on Hook Load – Tripping 

In  

The Hook Loads of the two drilling fluids during tripping in are computed for 

elevated temperature. Since the densities of the drilling fluids at various temperatures 

were not measured, it is assumed that the 120 and 180
o
F decrease the density by 5 and 

10% respectively. Two different flow rates of 0 and 400gpm are used for the 

simulation. 

Tripping in of 70/30 OBM for 0 and 400gpm flow rates 

Temperature/ 
% density 
decrease 

Hook Load 
(tons) when 
Flow rate =0 
gpm 

Hook Load 
(tons) when 
Flow rate =400 
gpm 

Increase in 
tons (Flow 
rate=0gpm) 
  

Increase in tons 
(Flow 
rate=400gpm) 
  

80F (Reference) 73 72 

120F (5% density 

Decrease) 
74 74 1,0 1,4 

180F (10% 
Decrease) 

75 75 1,9 2,4 

 

As shown in Table above, the calculation of the hydraulic force effect on the Hook 

Load during tripping in for the 70/30 OBM is performed. At the 0gpm flow rate, the 

Hook Load increases from 1.0 tons to 1.9 tons when the temperature increases from 

80oF to 120oF and 180oF respectively.  At the flow rate of 400gpm, the Hook Load 

increases from 1.4 tons to 2.4 tons due to the temperature elevated from 80oF to 

120oF and 180oF respectively. 

 

Tripping in of 90/10 OBM for 0 and 400gpm flow rates 

Temperature/ 
% density 
decrease 

Hook Load (tons) 
when Flow rate 
=0 gpm 

Hook Load 
(tons) when 
Flow rate =400 
gpm 

Increase in 
tons (Flow 
rate=0gpm) 
  

Increase in 
tons (Flow 
rate=400gpm) 
  

80F 
(Reference) 

74 74 

120F (5% 
Decrease) 

75 75 0,9 0,9 

180F (10% 
Decrease) 

76 76 1,8 1,9 
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The simulation result of the hydraulic force effect on Hook Load for the 90/10 OBM 

is shown in the Table above. At 0gpm flow rate, the Hook Load increases from 0.9 

tons to 1.8 tons due to the temperature elevated from 80oF to 120oF and 180oF 

respectively. As flow rate increased to 400gpm, the Hook Load increases from 0.9 

tons to 1.9 tons due to the temperature increased from 80oF to 120oF and 180oF 

respectively.  
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Appendix E: Hole and drill string data for simulating §4.2 & §4.3 

 

Hole data (Casing + Open hole) 

 Section 

type 

Measured 

Depth (ft.) 

Length 

(ft.) 

Shoe 

Measured 

Depth 

(ft.) 

Id 

(In) 

Drift 

(In) 

Effective 

Hole 

Diameter 

(In) 

Friction 

factor 

Linear 

Capacity 

(bbl/ft) 

Excess 

(%) 

Item 

Description 

 

1 Casing 4012.5 4012.5 4012.5 12.250 12.459 12.615 0.25 0.1458  13 3/8in, 

54.5ppf, J-55 

2 Open 

Hole 

11003.0 6990.50  12.250  12.250 0.30 0.1458 0.00  

 

Table E.1: Hole data (Casing + Open hole) 

Drill String data (Drill pipe + BHA) 

 

Type 

 

Length 

 

(ft) 

 

Depth 

 

(ft) 

Bod

y 

Stabilizer/tool joint  

Weight 

 

(ppf) 

 

Material 

 

Grade 

 

Class 

OD 

 

(in) 

ID 

 

(in) 

Avg.j

oint 

Lengt

h 

(ft) 

Length 

 

(ft) 

OD 

 

(in) 

ID 

 

(in) 

Drill pipe 10445 10445.00 5.0 4.27

6 

30.00 1.42 6.40

6 

3.75 22.26 CS_API 

5D/7 

E P 

Heavy weight 

Drill pipe 

120.0 10565.0 6.62
5 

4.5 30.00 4.00 8.25 4.5 70.50 CS_1340 
MOD 

1340 
MOD 

 

Hydraulic Jar 32.00 10597 6.5 2.75     91.79 CS_API 

5D/7 

4145H 

MOD 
 

Heavy weight 

Drill pipe 

305.0 10902 5.0 3.0 30.00 4.00 6.50 3.063 49.7 CS_1340 

MOD 

1340 

MOD 
 

Bit sub 5.00 10907 6.0 2.4     79.51 CS_API 
5D/7 

4145H 
MOD 

 

MWD tool 85.00 10992 8.0 2.5     154.36 SS_15-

15LC 

15-15LC  

MOD 
 

Integral blade 

stabilizer 

5.00 10997 6.25 2.0  1.00 8.45
3 

 93.72 CS_API 
5D/7 

4145H 
MOD 

 

Bit sub 5.00 11002 6.0 2.4     79.51 CS_API 

5D/7 

4145H 

MOD 
 

Tri-cone bit 1.00 11003 10.6
25 

     166.0    

Table E.2: Drill String data (Drill pipe + BHA) 
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Nomenclature 
 

OWR   – Oil Water Ratio 

OBM    – Oil Based Mud 

Lb/bbl (ppb) – Pounds per barrel 

ECD     – Equivalent Circulating Density 

 

 


