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Abstract

We characterize in terms of Beurling–Malliavin density, the generating sets for Beurling algebras L1
w(R), 

that is the sets � ⊂ R for which a function � ∈ L1
w(R) exists such that the �-translates {�(x−�)}, � ∈ �, span 

L1
w(R). Our main result extends a recent theorem from [J. Bruna, A. Olevskii, A. Ulanovskii, Completeness 

in L1(R) of discrete translates, arXiv:math.CA/0307323v1, 2003, (Revista Mathematica Iberoamericana), 
submitted for publication.], which describes the generating sets for L1(R).
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1. Introduction and statement of the results

Let B be a Banach space of complex functions on the real line R. A function �(x) ∈ B is
called a generator for B if �(x − t) ∈ B for every t ∈ R and the set of all translates {�(x −
t)}t∈R spans B, i.e. the set of all finite linear combinations

∑
cj�(x − tj ), cj ∈ C, tj ∈ R,

is dense in B. The space B is called translation-invariant if f (x − t) ∈ B for every real t,
provided f (x) ∈ B.

Two classical results give description of generators in the spaces L1 = L1(R) and L2 = L2(R).
The Wiener Tauberian theorem asserts that a function � is a generator in L1 if and only if its
Fourier transform �̂ does not vanish. Another theorem of Wiener states that � is a generator in
L2 if and only if the measure of the zero set of �̂ is zero. No description is known for the spaces
Lp, p �= 1, 2.
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Let w be a measurable function on R, and set

L1
w =

{
f : ‖f ‖w =

∫
R

|f (t)|ew(t) dt < ∞
}

.

Then L1
w is a Banach space. We shall assume that w is non-negative and

w(x + t)�w(x) + w(t), s, t ∈ R, w(tx)�w(x) for all x and t �1. (1)

Then L1
w is a (translation-invariant) commutative Banach algebra with respect to convolution

multiplication defined by the equation

(f ∗ g)(t) =
∫

R
f (t − s)g(s) ds, f, g ∈ L1

w.

These algebras were introduced by A. Beurling in 1938 [2].
The algebra L1

w is called non-quasianalytic if w satisfies
∫

R

w(t)

1 + t2
dt < ∞. (2)

It was established in [2] that the Wiener Tauberian theorem admits extension to non-quasianalytic
Beurling algebras L1

w: suppose a weight w satisfies (1) and (2). Then a function � ∈ L1
w is a

generator in L1
w if and only if its Fourier transform �̂ does not vanish. A modern proof of this

result is presented in [8] (see also [7] for a proof based on complex analysis). On the other hand,
in general, the Wiener Tauberian theorem cannot be extended to L1

w if condition (2) does not
hold (see e.g. [4] and the references therein). We refer the reader to [6] for a history of results on
different extensions of the Wiener Tauberian theorem.

Let us say that a set � ⊆ R is generating for a Banach space B if there is a function �(x) ∈ B

such that �(x −�) ∈ B for every � ∈ � and the set of all �-translates {�(x −�)}�∈� spans B. The
function � is called a �-generator for B. Recently, there have been a number of papers studying
generating sets and related problems for the spaces Lp (see e.g. [1,11–13,5] and the literature
therein). A full description of generating sets for the space L1 was given in a recent paper [5].
To formulate this result, we denote by E� the exponential system {ei�x}�∈�, and by R(�) its
completeness radius:

R(�) := sup{r > 0 : E� is complete in L2(−r, r)},
where one sets R(�) = 0 if E� is not complete in L2(−r, r) for any r > 0.

Theorem 1 (Bruna et al. [5]). A set � ⊆ R is generating for L1 if and only if R(�) = ∞.

The aim of this note is to extend this result to Beurling algebras L1
w.

We start with an inclusion result for the generating sets.

Theorem 2. Suppose � ⊆ R.
(i) Suppose 1�p < q. If � is generating for Lp, then it is generating for Lq .
(ii) Suppose w and � are any measurable functions such that �(x) > c + w(x), x ∈ R, where

c is a constant. If � is generating for L1
�, then it is generating for L1

w.



An immediate corollary of this result is that (i) if � is generating for L1, then it is generating
for Lp, for every p > 1; (ii) if � is generating for L1

w, where w�0, then it is generating for L1.
Hence, if a weight w is non-negative, by Theorem 1, the assumption R(�) = ∞ is necessary for
a set � to be generating in L1

w. It turns out that this assumption remains sufficient for the weights
w satisfying (1) and (2). Thus, similarly to the Wiener Tauberian theorem, Theorem 1 admits
extension to Beurling algebras:

Theorem 3. Suppose w is a non-negative function satisfying (1) and (2). A set � ⊆ R is gener-
ating for L1

w if and only if R(�) = ∞.

If the weight w is no longer non-quasianalytic (i.e. the integral (2) diverges), we conjecture
that the assumption R(�) = ∞ is not sufficient for a set � to be generating for L1

w.
Observe that condition R(�) = ∞ has a clear geometric meaning. In the beginning of the

1960s Beurling and Malliavin established that the completeness radius of an exponential system
can be expressed in terms of a certain density: R(�) = �D(�), where D is called Beurling–
Malliavin exterior density (for definition and basic properties of D see [9]). It is easy to check that
condition R(�) = ∞ is equivalent to the condition that there exists a family of disjoint intervals
(ak, bk), k ∈ N, bk − ak → ∞, k → ∞, with the properties that

# (� ∩ (ak, bk))

bk − ak

→ ∞, k → ∞,
∑
k∈N

(
bk − ak

ak

)2

= ∞.

Here # means the number of elements.
The rest of the note is organized as follows. First we prove Theorem 3, and then we prove some

auxiliary results used in the proof of Theorem 3. Theorem 2 is proved in the last section.

2. Proof of Theorem 3

(i) Necessity of R(�) = ∞. Suppose that � is generating for L1
w. Then, by Theorem 2(ii),

� is generating for L1, and so, by Theorem 1, R(�) = ∞.
(ii) Sufficiency of R(�) = ∞. By Theorem 2(ii), if � is generating for some weighted space

L1
�, where �(x)�w(x), x ∈ R, then it is generating for L1

w. Hence, without loss of generality
we may assume that w is smooth, even and ‘large’:

w ∈ C2(R), w(−x) = w(x), x ∈ R,

∫
R

e−w(x) dx < ∞. (3)

The proof is based on two fundamental theorems of Harmonic analysis: the extension of Wiener
Tauberian theorem to Beurling’s algebras [2], which is used in the proof of Lemma 4, and the
Beurling–Malliavin multiplier theorem [3], used in the proofs of Lemmas 5 and 6.

Denote by �̌(x) := �(−x), and by L∞
w the space of all functions f satisfying f (x)�cew(x) for

almost all x and some c > 0.
A set � is called a uniqueness set for a class of functions if no non-trivial function of this

class vanishes on �. It follows from (1) that w(x)�w(x − �) + w(�), and so the convolution
�̌ ∗ f exists for every � ∈ L1

w and f ∈ L∞
w . We shall denote by �̌ ∗ L∞

w the set of all functions
�̌ ∗ f, f ∈ L∞

w .



Lemma 4. A function � ∈ L1
w is a �-generator for L1

w if and only if �̂ does not vanish and � is
a uniqueness set for the class �̌ ∗ L∞

w .

Proof. By duality, � is a �-generator for L1
w if and only if there is no non-trivial function f ∈ L∞

w

which is orthogonal to all translates �(x − �):

(f ∗ �̌)(�) =
∫

R
f (x)�(x − �) dx = 0 for every � ∈ �.

Suppose a function � ∈ Lw is a �-generator for L1
w. Then for every non-trivial function

f ∈ L∞
w , the convolution �̌∗f cannot vanish on �, i.e. � is a uniqueness set for the class �̌∗L∞

w .
Moreover, since � ∈ L1

w is a generator for L1
w, by the extension of Wiener Tauberian theorem to

Beurling algebras, �̂ does not vanish.
Conversely, suppose �̂ does not vanish and that � is a uniqueness set for �̌ ∗ L∞

w . Suppose
a function f ∈ L∞

w is such that (�̌ ∗ f )(�) = 0 for all � ∈ �. Then, �̌ ∗ f = 0 a.e. Now,
by the extension of Wiener Tauberian theorem to Beurling algebras, f = 0 a.e. Hence, � is a
�-generator for �̌ ∗ L∞

w , which proves the lemma. �

Let � be a non-decreasing function defined on (0, ∞). Following [5], we introduce the following
classes of entire functions:

B(�) := {f entire function: |f (x + iy)|�Cf e|y|�(|y|), x + iy ∈ C},
where Cf is a constant depending only on f. The following two steps are the main ingredients of
the proof of Theorem 1 in [5]:

• For every non-decreasing function �(y) ↗ ∞, y → ∞, there exists a function � ∈ L1 such
that �̂ does not vanish and �̌ ∗ L∞ ⊆ B(�).

• For every � ⊂ R with R(�) = ∞ there exists a non-decreasing function �(y) ↗ ∞, y → ∞,
such that � is a uniqueness set for B(�).

It turns out that a similar approach works in the more general case of Beurling algebras.
However, our proofs are quite different from the proofs in [5].

Let � be a positive function, and � be a non-decreasing function, where both functions are
defined on (0, ∞). We now introduce more general classes of entire functions:

A(�, �) := {f entire function: |f (x + iy)|�Cf e|y|�(|y|)+�(x), x + iy ∈ C},
where Cf is a constant depending only on f.

The following lemmas are analogues of the two steps described above:

Lemma 5. For every non-negative weight w satisfying (1), (2) and (3), and every non-decreasing
function �(y) ↗ ∞ there exists a function � ∈ L1

w such that �̂ does not vanish and �̌ ∗ L∞
w ⊆

A(�, w).

Lemma 6. For every non-negative weight w satisfying (1), (2) and (3), and every set � ⊂ R with
R(�) = ∞, there exists a non-decreasing function �(y) ↗ ∞ such that � is a uniqueness set
for A(�, w).

Lemmas 5 and 6 will be proved in the next section.



We can now complete the proof of Theorem 3. By Lemma 6, for every � ⊂ R satisfying
R(�) = ∞, there exists �(y) ↗ ∞ such that � is a uniqueness set for A(�, w). By Lemma 5,
there exists � ∈ L1

w such that �̂ does not vanish and �̌∗L∞
w ⊆ A(�, w). Hence, � is a uniqueness

set for �̌∗L∞
w . We conclude, by Lemma 4, that � is a �-generator for L1

w, so that � is a generating
set for L1

w.

Remark. One can easily establish the necessity of R(�) = ∞ without use of Theorem 1. One
can show that for every � ∈ L1

w such that �̂ does not vanish, the set �̌ ∗ L∞
w contains all entire

functions f of finite exponential type such that f ∈ L2(R). Hence, if � is generating for L1
w, then

� is a uniqueness set for this class of functions, i.e. the exponential system E(�) is complete in
L2 on every interval (−r, r). This implies R(�) = ∞.

3. Proof of Lemmas 5 and 6

Proof of Lemma 5. Observe that if two non-decreasing functions satisfy �1(y)��2(y), y > 0,
then A(�1, w) ⊆ A(�2, w). It follows that it is enough to prove Lemma 5 for slowly increasing
functions. So, we may assume that

�(2y)�2�(y), y > 0, �(y) = o(log y), y → ∞. (4)

In what follows, for simplicity, we shall denote by c different positive constants.
Step 1: There exists an entire function h such that ĥ is non-negative, and

|h(x + iy)|�e|y|−8w(x) for all x + iy ∈ C. (5)

We say that a non-negative measurable function W admits multipliers, if for every positive �
there exists an entire function f of exponential type �� such that |f (x)(1 + W(x))|�1 for all
real x. Beurling and Malliavin [3] established, using independent proofs, two such conditions:∫ +∞

−∞[log W(x)/(1 + x2)] dx < ∞ and either (i) W is the restriction to R of an entire function
of exponential type, or (ii) log W is uniformly Lipschitz over R. Assumption (1) shows that the
function exp(16w(x)) is uniformly Lipschitz, so that, by (2), it admits multipliers. In particular,
there exists an entire function h1 of exponential type � 1

4 satisfying

|h1(x)|� exp(−16w(x)), x ∈ R. (6)

Set

�(x) := x−2 sin2(x/8), h2(x) := h1(x)�(x), h3(x) := h2(x) ∗ h̄2(−x).

Clearly, h3 is of exponential type �1, and the Fourier transform of h3 satisfies ĥ3(x) = |ĥ2(x)|2,
so the function ĥ3 is non-negative. Recall that, by (1), −w(x − s) − w(s)� − w(x), and, by (3),
w(−s) = w(s). This and (6) give

|h3(x)| �
∫

R
|h2(x − s)h̄2(−s)| ds

�
∫

R
e−16w(x−s)−16w(s)�(x − s)�(s) ds�c(x)e−16w(x),

where

c(x) :=
∫

R
�(x − s)�(s) ds → 0, |x| → ∞.



Clearly, if � > 0 is small enough, the function h(x) := �h3(x) is of exponential type �1, satisfies
(6) and ĥ is non-negative.

It is well-known that if h is an entire function of exponential type �1 bounded on the real line,
then the function log |h(x + iy)|− |y|, y �= 0, is bounded from above by the Poisson integral (see
[10, Chapter 5]):

log |h(x + iy)|� |y| + |y|
�

∫
R

log |h(t)|
(t − x)2 + y2

dt, y �= 0.

Using estimate (6) and the second inequality in (1), we obtain:

log |h(x + iy)| � |y| − |y|
�

∫
R

16w(t)

(t − x)2 + y2
dt = |y| − 16|y|

�

∫
R

w(x + t)

t2 + y2
dt

� |y| − 16|y|w(x)

�

∫ ∞

0

1

t2 + y2
dt = |y| − 8w(x), y �= 0,

which proves (5).
Step 2: There exists a sequence � = {�k}∞k=1 ⊂ N and a subsequence n = nj → ∞ such that

n∑
k=1

1

�k

��(�n), n = 1, 2, . . . , (7)

n∑
k=1

1

�k

��(�n) − 1, n = nj . (8)

We shall construct � as a union of disjoint (integer) intervals:

� =
∞⋃

k=1

{mk, . . . , mk + lk − 1}.

Here {mk} ⊂ N is any sequence satisfying

�(m1)�2, �(mk+1)�2
mk∑
j=1

1

j
, k = 1, 2, . . . (9)

and the sequence {lk} is uniquely defined by the following procedure: it follows from (9) and (4)
that there is a unique integer l1 such that

k∑
j=0

1

m1 + j
< �(m1 + k), 0�k� l1 − 1,

l1∑
j=1

1

m1 + j
��(m1 + l1).

We set �k := m1 + k − 1 for 1�k� l1, and n1 := m1 + l1. Clearly, (7) holds for 1�n� l1, and
(8) holds for n = n1.

Observe that

�(m1 + l1)�
l1∑

j=1

1

m1 + j
�

m1+l1∑
j=1

1

j
.



Hence, by (9), m2 > m 1 + l1. It follows from (4) that there exists l2 �1 such 

that
l1−1∑
j=0

1

m1 + j
+

k∑
j=0

1

m2 + j
< �(m2 + k), 0�k� l2 − 1,

l1−1∑
j=0

1

m1 + j
+

l2∑
j=0

1

m2 + j
��(m2 + l2).

Then, we set �k := m2 + k − l1 − 1 for l1 + 1�k� l1 + l2, and n2 := m2 + l2. We see that (7)
holds for l1 + 1�n� l1 + l2, and (8) holds for n = n2, and so on.

Step 3: Set

�(z) := h(z)

∞∏
k=1

sin(z/8�k)

z/(8�k)
, z ∈ C, (10)

where h and �k have been defined in Steps 1 and 2. Then we have

|�(x)|�e−8w(x) for all x ∈ R, (11)

|�(iy)|�ce|y|�(|y|)/4 for all y ∈ R. (12)

Observe that (11) follows from (5) when y = 0.
To verify (12) we use the inequalities:∣∣∣∣ sin iy

iy

∣∣∣∣ �e|y|, |y|�1,

∣∣∣∣ sin iy

iy

∣∣∣∣ �ey2
, 0� |y|�1.

These inequalities and (7) give∣∣∣∣∣
∞∏

k=1

sin(iy/8�k)

iy/(8�k)

∣∣∣∣∣ �
∏

8�k � |y|
e

|y|
8�k

∏
8�k>|y|

e
(

y
8�k

)2

� exp

⎧⎨
⎩

|y|
8

∑
�k � |y|

1

�k

+
(y

8

)2 ∑
k � |y|/8

1

k2

⎫⎬
⎭ �c exp

{ |y|�(|y|)
4

}
.

Step 4. The Fourier transform �̂ is everywhere positive on R.
Let 	� denote the characteristic function of [−�, �]. Then (2�)−1	̂�(x) = sin(�x)/(�x). So, it

follows from (10) that

�̂(x) =
(
ĥ ∗ (4�1	1/(8�1)

) ∗ (4�2	1/(8�2)
) ∗ · · ·

)
(x).

Since, by (8),
∑∞

k=1 1/�k = ∞, we see that the infinite convolution of the characteristic functions
4�k	1/(8�k)

is everywhere positive. Since ĥ is non-negative (see Step 1), we see that �̂ is everywhere
positive on R.

Step 5: We have

|�(x + iy)| �ce|y|�(|y|)/4 for all x + iy ∈ C. (13)

Indeed, by (12), this is true for x = 0. However, since �̂ is positive for a fixed y, the function
|�(x + iy)| attains its maximum when x = 0.



Step 6: Set

u(x + iy) := |y|
�

∫
R

w(t)

(t − x)2 + y2
dt = |y|

�

∫
R

w(x + t)

t2 + y2
dt. (14)

Then u(x + iy) is harmonic for y �= 0 and satisfies:

w(x)

2
�u(x + iy)�w(x) + c|y| + c for all x + iy ∈ C, y �= 0. (15)

It follows from (2) that the integral in (14) converges, so that u is harmonic for y �= 0. Recall
that w is even: w(−x) = w(x). Hence, u(−x + iy) = u(x + iy), and so it suffices to check (15)
for x�0. Since, by (1), w(x + t)�w(x), x, t �0, we obtain

u(x + iy)� |y|w(x)

�

∫ ∞

0

1

t2 + y2
dt = w(x)

2
.

It also follows from (2) that w(x + t)�w(x) + w(t), so that

u(x + iy) � |y|w(x)

�

∫
R

1

t2 + y2
dt + |y|

�

∫
R

w(t)

t2 + y2
dt

= w(x) + |y|
�

∫
R

w(t)

t2 + y2
dt.

Since w is smooth (see (3)), the last term is bounded when y → 0, so that the right estimate in
(15) follows.

Step 7: We have

|�(x + iy)| �ce|y|�(|y|)−2w(x) for all x + iy ∈ C. (16)

We shall verify (16) for y = y0, where y0 > 0 is an arbitrary number. The proof is similar for
y = y0 < 0. Set

v(x + iy) := log |�(x + iy)| + log |�(x + i(2y0 − y))| + 8u(x + iy),

where u is defined in (14). Then v is subharmonic in the strip 0 < y < 2y0. Recall, by (4), that
�(2y0)�2�(y0). Using (11), (12) and (15), we see that on the upper boundary of this strip v is
bounded above by a constant:

v(x + 2iy0) � 2y0�(2y0)/4 − 8w(x) + 8w(x) + cy0 + c

= y0�(2y0)/2 + cy0 + c

� y0�(2y0) + c

� 2y0�(y0) + c.

One can check that the same estimate holds on the real axis. Hence, the estimate holds for all
points in the strip. In particular, by the left inequality in (15), we have for y = y0 that

2 log |�(x + iy0)| = v(x + iy0) − 8u(x + iy0)�2y0�(y0) + c − 4w(x).

This implies (16) for y = y0.
Now, using (16), for each function f ∈ L∞

w , we have

|(�̌ ∗ f )(x + iy)| =
∣∣∣∣
∫

R
�(s − x − iy)f (s) ds

∣∣∣∣ �
∫

R
|�(t − iy)f (x + t)| dt

� c

∫
R

e|y|�(|y|)−2w(t)ew(x+t) dt.



Since, by (1), w(x + t)�w(x) + w(t), it follows from (3) that

|(� ∗ f )(x + iy)|�ce|y|�(|y|)+w(x)

∫
R

e−w(t) dt �ce|y|�(|y|)+w(x).

Hence, �̌ ∗ f ∈ A(�, w), which completes the proof of Lemma 5. �

Proof of Lemma 6. It was established in [5] that for every � ⊆ R with R(�) = ∞ there exists
a non-decreasing function �1(y) ↗ ∞ such that � is a uniqueness set for B(�1).

Set �(y) = �1(y) − 1, y�0. Let h be an entire function of exponential type �1 satisfying (5).
Then, clearly, f h ∈ B(�1), for every function f ∈ A(�, w). We conclude that � is a uniqueness
set for A(�, w). �

4. Proof of Theorem 2

First, we state two simple lemmas without proof:

Lemma 7. Suppose a function � ∈ Lp, 1�p < ∞, and a function � is bounded with compact
support. Then, � ∗ � ∈ LP for every p�P �∞.

Lemma 8. A function � is a �-generator for Lp, p�1, if and only if there is no non-trivial
function f ∈ LP , 1/p + 1/P = 1, such that (f ∗ �̌)(�) = 0 for all � ∈ �.

Proof of Theorem 2(i). Suppose � is a generating set for Lp, and that 1�p < q �∞. Let � be
a �-generator for Lp, and let 	1 be the characteristic function of the interval (−1, 1). To establish
(i), we show that the function � := � ∗ 	1 is a �-generator for Lq . Let 1�Q < P �∞ be the
numbers such that 1/p + 1/P = 1 and 1/q + 1/Q = 1. Suppose there exists f ∈ LQ such
that (f ∗ �̌)(�) = 0 for all � ∈ �. By Lemma 8, we have to show that f = 0 a.e. We see that
((f ∗ 	1) ∗ �̌)(�) = 0, � ∈ �. By Lemma 7, we have f ∗ 	1 ∈ LP . Since � is a �-generator for
Lp, by Lemma 8, we conclude that

(f ∗ 	1)(x) =
∫ x+1

x−1
f (s) ds = 0 a.e.

Since f ∈ LQ, where Q < ∞, this implies f = 0 a.e. Hence, � is a �-generator for Lq .
(ii) Let � ∈ L1

� be a �-generator for L1
�. Since �(x)�c + w(x) for all x, we have for any

function f ∈ L1
� that ‖f ‖w �e−c‖f ‖� < ∞. It follows that � ∈ L1

w, and that every function
f ∈ L1

� can be approximated in the norm of L1
w by finite linear combinations of �(x −�), � ∈ �.

However, clearly, the functions f ∈ L1
� form a dense subset in L1

w. Hence, any function f ∈ L1
w

can be approximated in the norm of L1
w by finite linear combinations of �(x − �), � ∈ �, so that
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