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Abstract 

 

Influence of seismic and velocity uncertainties on reservoir 

volumetrics 

 

David Thor Odinsson, M.Sc. 

The University of Stavanger, 2015 

 

Supervisor:  Nestor Cardozo; Lothar Schulte 

 

Uncertainty is a well-known concept in geology, and can lead to re-evaluation 

of important development decisions if properly assessed.  This thesis describes 

uncertainty through the set-up of “scenarios”. For each parameter used for the 

structural model a so-called low case, base case and high case are defined. The 

combination of the different cases results in many structural models that deliver a 

distribution of the bulk volume. A generally acknowledged way of handling the large 

number of models coming from the different combinations of the model parameters is 

experimental design.  

This study has shown that the uncertainty in the seismic picks and 

consequently in the reservoir thickness have a large impact on the gross-volume. The 

reservoir structural geometry controls the influence of fault uncertainty on the 

reservoir volume. Well velocities used in this thesis for domain conversion are quite 

accurate but sparsely sampled and therefore subject to uncertainty. In addition, the 



 vi 

geologic complexity may have a dramatic influence on the uncertainty of the depth 

conversion.  

A proper assessment of seismic and velocity uncertainties can be applied to 

risk analysis for field appraisal and development, hydrocarbon volume estimation, 

accurate well placement, optimal well trajectory and reservoir history matching. 
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1. Introduction 

Success in the oil and gas exploration and production (E&P) industry relies on 

accurate positioning and interpretation of geological structures, as well as the use of 

decision analysis. A proper assessment of seismic and velocity uncertainties can be 

applied to risk analysis for field appraisal and development, accurate well placement, 

optimal well trajectory, reservoir history matching and gross-rock volume estimation 

(Vincent et.al., 1999; Thore et al., 2002 and Osypov et.al., 2011). 

Experiments of uncertainties related to subsurface structures require a 

geoscientist to create 3-D structural models. Structural models integrate different 

types of data, e.g. 3-D/2-D seismic reflection surveys, borehole information, field 

observations and analog models, each subject to different types of uncertainty. Data 

most used for creating 3-D structural models of the subsurface are seismic images 

obtained through seismic reflection surveys (Caers, 2011). Seismic reflection Surveys 

follow the principles of seismology by generating artificial seismic waves and 

measuring the time it takes the waves to travel from its source to a receiver on the 

surface. Compiling and processing the travel time measurements results in an image 

of the subsurface. Seismic images are a useful tool in creating three-dimensional 

models but they are subject to inherent uncertainties, which directly affect the input 

data for the structural model. 

In a geologic context, uncertainty and error is easily confused. Uncertainty is 

the recognition that our results may deviate from reality, whereas error expresses the 

quantified uncertainty (Bárdossy et al., 2001). Mann (1993) studied uncertainty in 

geology and classified uncertainties into three different types and listed possible 
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sources for each type. According to Mann (1993), Type I uncertainties refer to error, 

bias and imprecision in the data. Type II uncertainties refer to stochasticity, for 

example due to inhomogeneity and anisotropy in rock units. Type III uncertainties 

refer to lack of knowledge or a need for generalization, predicting future or past 

events for instance.  Uncertainties of type I and II are quantitative and can be handled 

by statistical methods, while uncertainties of type III are qualitative and theoretically 

unknowable (Mann, 1993).  

 This thesis describes uncertainty through the set-up of “scenarios”. For each 

parameter used for the structural model a so-called low case, base case and high case 

are defined. The combination of the different cases results in many structural models 

that deliver a distribution of the bulk volume. This distribution represents the bulk 

volume uncertainty of the reservoir. A generally acknowledged way of handling the 

large number of models coming from the different combinations of the model 

parameters is experimental design. Experimental design is based on multiple linear 

regression techniques to derive a volume equation capable of predicting the reservoir 

volume for any combination of the model parameters. 

The study area for this thesis is in the Gulf of Mexico. This region started to 

form in the Middle to Late Triassic (230 Ma) as a result of intracontinental rifting 

between the Yucatan and North America (Bird et al., 2005). According to Galloway 

(2008), marine transgression into the continental area during the Middle Jurassic 

resulted in the formation of extensive salt deposits. Tectonic activity during the Late 

Cretaceous – Early Paleogene provided large quantities of terrigenous siliciclastic 

sediments from uplifted source areas. This continued sediment influx resulted in the 

accumulation of a wedge of Cenozoic deposits. These progradational deposits contain 
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reservoir, source, and seal units and are characterized by alternating sand reservoirs 

and thick sealing shales. In addition, there are large growth faults and rollover 

anticlines associated with tectonics, sedimentation and salt movement (Bascle et al., 

2001).  

Many authors have contributed different techniques and methods for 

estimating and quantifying uncertainty. For example, Thore et al., (2002) divided the 

steps involved in the construction of a structural model into six phases: acquisition, 

preprocessing, stacking, migration, interpretation and time-to-depth conversion and 

discussed sources of uncertainty related to each phase. Their method to generate 

multiple realizations of the structural model involves using a stochastic approach with 

the algorithm of probability field simulation. This algorithm samples a local 

conditional probability distribution that covers a range of possible outcomes of the 

simulated variable, while forcing neighboring probability values to have some 

similarities (Srivastava, 1992). First, a randomly selected value from the conditional 

cumulative distribution function corresponding to a local probability value is added to 

the base case surface (Figure 1). The local probability is correlated to the neighboring 

nodes with a variogram describing the lateral correlation of the surface. In addition, 

Thore et al., (2002) used a vertical variogram for intercorrelation between horizons. 

Finally, the simulation is performed using any geostatistical methods that can 

reproduce spatial correlation. 
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Figure 1. Stochastic simulation of geological surfaces using P-field simulation (Thore et al.,  2002). 

Samson et al., (1996) studied uncertainties related to stratigraphic horizons 

through computing gross volume by stacking thickness maps of lithological units 

below the top reservoir. In this way, they separated the uncertainty of the overburden 

and the uncertainty of the reservoir units. 

Faults are generally assumed as two-dimensional objects represented by 

surfaces, “even though they are three-dimensional zones of deformation” (Røe et al., 

2014). This inevitably leads to uncertainty in their position and initial geometry when 

digitizing them for instance, as “fault sticks” on seismic sections. Lecour et al., (2001) 

applied a stochastic approach for fault modeling. Their method involves constructing 

the faults by calculating the intersection of the horizons with the envelope of the fault 

zone (horizons lines). These horizon limits are linearly interpolated within the fault 

zone and the fault plane defined by the median line given by the mid points of the 
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interpolated lines (Figure 2). Their simulation methods involve the application of 

probability field simulation controlled by a random function generator. 

 

Figure 2. Fault constructed from horizon fault lines (Lecour et.al, 2001). 

Velocity information is required for the time-to-depth conversion. Such 

information can be derived from processing, i.e. seismic velocities or from well 

measurements (Thore et al., 2002). Check-shot surveys and vertical seismic profiles 

provide a highly accurate time-depth relationship. However, this velocity information 

is limited to the borehole location and does not capture lateral variations (Hart, 2011). 

Thore et al., (2002) applied cross validation technique by using the blind well test for 

measuring the velocity uncertainties. However, the blind well test only delivers 

reliable results for a large number of wells in the study area. 

Following the division of Thore et al., (2002) for the steps involved in the 

construction of a structural model, this thesis addresses uncertainties related to 

interpretation and depth conversion. The analysis of the errors coming from 

acquisition and processing are beyond the scope of this study. 
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Seismic uncertainties involve parameterizing and quantifying the uncertainty 

of the reservoir location and the geometry of faults from interpreted seismic data in 

the time domain. The structural uncertainty analysis of the reservoir model includes 

the quantification of the uncertainty coming from the seismic interpretation in the 

time domain. The reservoir under consideration consists of a top and a base horizon 

captured by the seismic interpretation. Both horizons share a common source of 

uncertainty coming from the overburden. This error includes static problems and 

migration uncertainties of the seismic. The base reservoir horizon includes an 

additional uncertainty coming from the reservoir thickness. The method outlined by 

Samson et al., (1996), is applied so that the top reservoir horizon reflects the 

uncertainty in the location of the reservoir, while the reservoir base is generated by 

stacking thickness maps of lithological units below the top reservoir.  

Fault geometries are constrained by basic geological rules explained in figure 

3: they should not display inversion of curvature along the vertical axis and retain a 

high wavelength of sinuosity along the horizontal axis for the reservoir interval 

(Lecour et al., 2001). In addition, faults should retain their dip direction along the 

horizontal axis. 
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Figure 3. Geological constraints on faults (Lecour, et.al, 2001). 

Another major source for structural uncertainty is depth conversion. The blind 

well test is an important tool to determine the velocity uncertainties and derive a depth 

error distribution, representative for the whole area under investigation outside the 

influence radius of the wells.  

This thesis will differentiate itself from previous research in using 

experimental design for describing the structural uncertainty analytically and 

capturing the gross volume uncertainty of the reservoir through several thousand runs 

of the volume equation with stochastically selected model parameter values. Finally, a 

novel method is discussed that provides the possibility to set up a numerical 3-D 

reservoir model for a parameter set used by any of the runs of the volume equation.  
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2. Data 

The research area is covered by a 16.7 km
2
 of 3-D reflection seismic survey 

consisting of 270 cross-lines and 220 in-lines with fifty-five feet spacing. The trace 

length ranges from 0-3500 milliseconds (ms) with processing performed at four ms 

sample interval. There are twenty-seven wells, of which twenty-five are inside the 

research area with well log information. Table 1 shows the available well logs used in 

this study for each well through the reservoir interval. Also available for these wells 

are densely sampled check shot surveys that give accurate average velocity 

measurements. The top and the base of the reservoir are defined by well tops and can 

be identified by seismic events.  

Table 1. Well information. 

Well 

name 
Reservoir interval 

MD-Top (ft) MD-Base (ft) TWT-Top (ms) TWT-Base (ms) Gamma Density Neutron Sonic 
Well-1 6162.00 6241.00 1778.21 1797.22 X X X - 
Well-2 6130.00 6209.00 1779.70 1798.73 - - - X 
Well-3 6433.00 6548.00 1858.52 1885.78 - - - X 
Well-4 6468.00 6577.00 1802.97 1826.14 X - X X 
Well-5 5846.00 5912.00 1723.99 1740.16 - - - X 
Well-6 6427.00 6514.00 1818.04 1837.73 X - - X 
Well-7 6412.00 6528.00 1834.53 1860.78 - - - X 
Well-8 6536.00 6650.00 1860.31 1885.83 - - - X 
Well-9 - - - - X - - X 
Well-10 6536.00 6650.00 1834.26 1859.54 - - - X 
Well-11 6299.00 6435.00 1824.57 1856.97 - - - X 
Well-12 6413.00 6522.00 1839.92 1864.44 - - - X 
Well-13 6365.00 6502.00 1855.90 1888.48 X X - X 
Well-14 6663.00 6805.46 1910.04 1943.83 - X - X 
Well-15 6376.00 6498.00 1842.50 1871.34 X X X X 
Well-16 6227.00 6317.00 1796.14 1816.55 - - - X 
Well-17 6208.00 6298.00 1804.90 1826.23 - - - X 
Well-18 6593.00 6657.00 1629.82 1642.67 - - - X 
Well-19 5370.00 5405.00 1613.03 1621.96 - - - X 
Well-20 6237.00 6285.00 1751.76 1762.95 X - - X 
Well-21 6678.00 6804.00 1832.29 1859.81 - - - X 
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Well-22 6386.00 6493.00 1820.33 1844.76 - - - X 
Well-23 6474.00 6601.00 1868.65 1898.93 - - - X 
Well-24 6418.00 - 1792.80 - - - - X 
Well-25 6387.59 6444.54 1812.00 1824.94 - - - X 
Well-26 6179.00 6269.00 1797.15 1818.70 X - - X 
Well-27 Outside Outside Outside Outside Outside Outside Outside Outside 
Well-28 Outside Outside Outside Outside Outside Outside Outside Outside 

The area of interest for the development of the methodology for this uncertainty 

study consists of two horizons, top and base reservoir, and is bounded by two east-

west striking normal faults (Figure 4). The reservoir volume is calculated above the 

oil water contact. The data in this study shows a salt dome in the western edge of the 

seismic volume, outside the analyzed reservoir. The poor data quality near the salt 

would have made an interpretation a challenge, given the time constraints. 

 

Figure 4. Depth structure map outlining the area of interest. 

O
W
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3. Methodology 

This chapter discusses data calibration, uncertainty quantification, the steps 

involved in creating structural models, and the method used to derive a distribution 

for the gross volume of the reservoir.  

3.1 WELL DATA 

The reservoir under consideration shows characteristics of alternating shale 

and sand bodies covered by a shale layer (Figure 5). The shale is characterized by 

high GR (gamma-ray), RHOB (density) and NPHI (neutron porosity) values. The 

sand shows low GR, RHOB and NPHI values. Using the cross-over display of RHOB 

and NPHI, using a reverse scale for NPHI, allows to identify the sand bodies as 

shown by Well-1 in figure 5. Based on the well log interpretation, the well tops were 

defined for the top and base boundaries of the reservoir. 

 

Figure 5. Sand and shale distribution in four wells. First track shows gamma ray log, second track shows neutron 

and density logs. 
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The seismic is based on changes in the acoustic impedance, which typically 

occur at lithological boundaries. The sonic log measures velocity on a frequency 

range much higher than the seismic and typically starts several meters below datum 

(Schlumberger, 2009). A checkshot survey provides more accurate seismic velocity 

information at each checkshot point than the sonic log and allows for a better 

comparison of the well data with the seismic. However, check shot surveys with large 

check shot spacing can provide inaccurate time-depth information between the check 

shot points. By calibrating the sonic log with a checkshot survey, a more accurate 

time-depth relationship at the wells is derived. The principle of sonic calibration 

involves fitting a drift curve to the check shot points (Schlumberger, 2009). First, the 

drift curve is obtained by subtracting the integrated sonic times from the check shot 

times. The resultant drift points are interpolated usually with a polynomial function. 

Finally, the drift curve is added to the integrated sonic time, which is finally converted 

to the calibrated sonic log. The final step establishes a link between the seismic and 

the wells through generating a synthetic seismogram. The steps involved in 

calculating the synthetic trace are shown in Figure 6. The sonic log (Dt) and density 

log (ρ) are converted into the time domain with the help of the check shot survey. The 

acoustic impedance log (AI) is derived from the sonic and the density log as: 

 
AI =  ρ ∗  

1

𝐷𝑡
 ( 3.1) 

 

The reflectivity (RF) is derived from the acoustic impedance log: 

 𝑅𝐹𝑖  =  
(AIi+1 – AIi)

(AIi + AIi+1)

𝑖: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒

 (3.2) 
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Finally, the reflectivity is convolved with a wavelet, which results in the synthetic 

trace.  

 

Figure 6. Convolution model of a synthetic trace. First track shows density (blue) and sonic (black), second track 

shows derived acoustic impedance, third track shows calculated reflectivity, fourth track shows Ricker wavelet, 

fifth track shows synthetic seismog 

The match between the synthetic trace and the seismic depends highly on the 

wavelet. Often a so-called Ricker-wavelet with a user-defined mid-frequency is used. 

Figure 7 shows the seismic well tie for Well-15. In the left-most track it shows the 

sonic log (black) and the density log (blue). In the next track the reflectivity is shown. 

It is convolved with the displayed Ricker wavelet, which delivers the synthetic trace 

displayed in the middle of the seismic section, which is closest to the well location. 

The last track (to the right) shows the correlation between the synthetic trace and the 
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seismic trace closest to the well position. The vertical axis is the “lag” axis. A 

horizontal dashed white line marks the zero lag position.  The match between the 

synthetic and the seismic is done through adjusting the center frequency of the 

wavelet. The maximum correlation, shown by a white asterix, should be at zero lag, 

which means there is no shift between the synthetic and the seismic. In case of non-

zero lag, a constant shift needs to be applied to the synthetic in order to get a good 

match with the seismic event. Finally, the time-depth relationship needs to be updated 

to consider the final constant shift. The sign of the maximum correlation defines the 

polarity of the seismic. A positive maximum correlation indicates SEG polarity; a 

negative maximum correlation indicates European polarity. 

 

Figure 7. Well-15, seismic well tie. 
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3.2 CAPTURING UNCERTAINTY IN SEISMIC INTERPRETATION 

This study is based on the key assumption that well tops are correct even 

though in reality there is uncertainty associated with well top determinations. A major 

source of this uncertainty lies in the difficulty of correlating the events interpreted on 

a well with the neighboring wells. Uncertainty coming from seismic interpretation is 

captured by three interpretation versions reflecting the high case, base case and low 

case. The high case results in a bulk volume increase and the low case in a bulk 

volume decrease with respect to a reference case (base case). 

3.2.1 HORIZONS 

Making a reliable seismic well tie prior to the interpretation phase ensures that 

the correct seismic event is being picked. Manual picking is required in areas of a low 

signal-to-noise ratio where the seismic event is distorted (high uncertainty). Auto 

tracking is automatically picking the seismic event through comparing the amplitudes 

and cross correlation of neighboring traces within a small time-window (L. Schulte, 

personal communication, March 25, 2015). It can be applied in areas of a coherent 

seismic event. Auto tracking is a very efficient way of picking a horizon and delivers 

a reproducible interpretation. 3-D guided auto tracking creates a dense interpretation 

following the seismic event minimizing the need for manual interpretation. Applying 

3-D seismic attributes that enhance the continuity of reflectors, such as structural 

smoothing or cosine of instantaneous phase, assists in manually picking in areas of 

high uncertainty (see section 3.2.3).   

Typically, well tops do not accurately match the seismic event. They may 

correspond to a different phase on the seismic image or show a small offset. 
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Measuring this time offset between the interpreted horizon and the well tops delivers 

a two-way-time (TWT) error distribution. Only if the error distribution shows a non-

zero mean is the top reservoir surface shifted accordingly to acquire a Gaussian 

distribution of the time errors. The standard deviation of this error distribution is used 

to construct the high and low case horizons for the top reservoir. All horizons (low, 

base and high case) are adjusted to the well tops (Figure 8). 

 

Figure 8. High, base and low case of the top reservoir. 

Constructing the low and high case for the reservoir base involves stacking 

thickness maps below the top reservoir (Figure 9). The base case of the reservoir 

thickness is derived from the tracked top and base horizons that are not adjusted to the 

well tops. This thickness map is stacked below the top horizon that has been adjusted 

to the well tops (Figure 10). Measuring the TWT error between the constructed 

reservoir base and the well tops delivers the thickness uncertainty. The standard 
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deviation of the thickness error is used to construct the low and high case of the 

thickness maps. 

 

Figure 9. High, base and low case reservoir time thickness for base case top reservoir surface. 

 

Figure 10. Reservoir time thickness uncertainty. 

Variogram analysis of the time errors is used to determine the influence radius 

of the wells used for the well top adjustment. The principles of deriving the variogram 

Top reservoir 

Top reservoir

Adjusted to wells 

Base reservoir 

Constructed 

Base reservoir 
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function involves collecting point pairs separated by a so called “lag distance” to 

describe the natural variation in the data in a specified direction (Caers, 2005). The 

squared difference between all point pairs are gathered for a single value of variance 

for a certain lag distance and repeated for different lag distances. An experimental 

variogram plots these variance points against the corresponding lag distance, shown 

as red circles in figure 11. A model variogram, represented by a spherical, Gaussian 

or exponential function is fitted to the experimental variogram, shown by the black 

curve in figure 11, where the data points of the experimental variogram appear to 

flatten horizontally. Variance points that plot above the sill of the model variogram 

are said to display no statistical similarities and the corresponding range is the spatial 

correlation of the data in a specified direction (Caers, 2005). The variogram model is 

needed by kriging or Gaussian simulation. For this study, the range of the variogram 

model is used as input to the Petrel mapping algorithm that flexes the time and depth 

surfaces to the well tops.  

 

Figure 11. Experimental variogram. 
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3.2.2 FAULTS 

In seismic faults are characterized by amplitude variations, changes in 

reflectors dip or reflector discontinuities/offsets. The 3-D seismic attributes that 

measure these characteristics can be a powerful tool for fault detection. The ant track 

workflow (see section 3.2.3) results in a volume that highlights the deformation zone 

around the faults and provides the possibility of drawing polygons outlining the fault 

envelope. The envelope represents the uncertainty in the fault interpretation that 

approximates the 3D fault zone by a fault plane. All polygons drawn on several time 

slices are gathered forming a couple of hanging wall – footwall sets for each fault 

describing the high and low case. A median line is computed and linked to each set to 

create the base case fault (Figure 12). This method ensures that the median line is 

nearly centered on the ant tracked event.  

 

Figure 12. Fault uncertainty envelope. Median line (green) calculated between high case (red) and low case (blue). 

Fault slicing provides a way to quality check the assumed width of the fault 

envelope by projecting the ant track volume onto the base case fault plane. The fault 
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plane is translated by a certain user-defined distance into the hanging wall and 

footwall. This process is called fault slicing and allows observing amplitude changes 

(Figure 13) at the edges of the fault zones that are characterized by the onset of the 

high amplitudes. 

 

Figure 13. Fault slicing. Ant track volume projected onto the base case fault surface (middle) showing amplitude 

changes with a step-out distance of 100 feet into the hanging wall (left) and footwall (right). 

3.2.3 VOLUME ATTRIBUTES 

Structural smoothing performs data smoothing of the input signal by applying 

Gaussian weighted average filtering following the trend of the seismic events after 

determining the local dip and azimuth of the structure (Schlumberger, 2010). This 

attribute increases the signal-to-noise ratio, which can be useful for structural 

interpretation (Figure 14). 

 

Figure 14. Original seismic (left) vs. Structural smoothing (right). 
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Cosine of instantaneous phase as the name suggests is the cosine function of 

the instantaneous phase angle φ(t). Mathematically, the instantaneous phase is given 

by: 

 
𝜑(𝑡) = tan−1[(𝑔(𝑡) 𝑓(𝑡)⁄ )] (3.3) 

 

f(t) is the real part of the complex seismic signal and g(t) its imaginary part 

(Schlumberger, 2010). This attribute is linked to the instantaneous phase and therefore 

not sensitive to amplitude variations (L. Schulte, personal communication, March 25, 

2015). The peak of the cosine of instantaneous phase is at the position of the seismic 

amplitude peaks, its troughs located at the seismic amplitude troughs. Therefore, it is 

possible to track a seismic horizon on this attribute. Often in noisy or complex areas, 

it is easier to interpret on the cosine of instantaneous phase than on the original 

seismic cube because of its amplitude-independent character. Figure 15 shows the 

same section of the original seismic and of the cosine of instantaneous phase cube. 

Obviously, it is easier to follow the seismic events on the attribute cube because the 

amplitude dependence is gone. 

 

Figure 15. Original seismic (left) vs. Cosine of instantaneous phase (right). 

Ant tracking uses the principles of swarm intelligence to extract events shown 

by high amplitudes in a preconditioned seismic cube (Figure 16). Typically the 
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attribute processes chaos or variance are applied to the seismic cube. Both attributes 

highlight the discontinuities in the seismic signal and hence are optimum for fault 

detection. Ant tracking deploys agents (ants) on the preconditioned volume.  Each ant 

agent searches for local maxima and tries to follow these events (faults). The 

parameter control allows the user to apply constraints to the ant agents, which defines 

the number of tracked faults and the quality (coherent noise) of the ant track volume 

(Schlumberger, 2010). 

 

Figure 16. Ant track workflow. Original seismic (top left), Structural smoothing (bottom left), variance (top right) 

and ant track (bottom right). 

3.3 DEPTH CONVERSION BASED ON WELL DATA 

The interpretation is done in the time domain, but the volume calculation must 

be done in the depth domain. Therefore, time-to-depth conversion is necessary. Using 

the linear velocity law in a layer cake model down to the top of the reservoir should 

take into account major velocity boundaries of the overburden layers to get a more 

accurate depth of the top reservoir. The velocity model process (Petrel) offers two 
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types of linear velocity functions (Figure 17). Both functions give the same result at 

the wells, but derive the V0 at different locations. K is the slope of the linear velocity 

law and describes the increase in velocity with depth. Therefore, K is related to 

compaction. The K value of the velocity law for each layer is the average of the k 

value derived at each well for the layer under consideration. It is kept constant since 

compaction is considered as a regional event. As this project deals with a thin 

reservoir interval velocities are used to depth convert the reservoir time thickness. The 

calculation of the interval velocities is based on the well top depths and the surface 

times at the well top positions. 

 

Figure 17. Two linear velocity functions (Schlumberger, Petrel manual, Velocity modeling course, 2009) (edited 

by author). 

The depth error of the top reservoir coming from the velocity uncertainty is 

estimated with a blind well test. The velocity model is set up based on all wells with 

the exception of one well. The difference between the depth surface and the well top 

depth of the left out well is measured. This process is repeated for all wells to get a 

distribution of the depth errors. The assumption is that this error distribution describes 

the depth uncertainty at any location of the depth surface outside the radius of 



 

23 

influence of the wells. In practical terms, this means that the depth error of the surface 

at the position of a new well lies within the depth error distribution derived by the 

blind well test. The depth error standard deviation is used to derive the low and high 

case of the depth surface describing the top reservoir.  

The estimation of the depth error of the reservoir base is done in two steps. 

First, the depth surface of the reservoir top is adjusted to the well tops (Figure 18). 

Second, the depth uncertainty of the reservoir base is estimated by applying a constant 

interval velocity to the reservoir time layer (L. Schulte, personal communication, 

March 25, 2015) (Figure 19). The constant velocity is estimated through averaging the 

interval velocities derived at all wells. The depth thickness resulting from the constant 

interval velocity is stacked below the reservoir top giving the reservoir base (Figure 

20). The well tops at the reservoir base deliver the depth error distribution describing 

the uncertainty of the reservoir base surface. 

 

Figure 18. Depth surface adjusted to wells. Intersect given in figure 19. 
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Figure 19. Time thickness map converted to depth. 

 

Figure 20. Base reservoir depth surface constructed from depth thickness map. Intersect given in figure 19. 

3.4 STRUCTURAL MODELING 

The goal of building the 3-D models for this study is to calculate reservoir 

volumes. Figure 21 illustrates the three steps involved in creating a structural model in 

the used modeling package (Petrel). The first step defines the fault planes of the 
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geological model as a set of linear key pillars that form the basis of creating the 3-D 

grid. The second step uses the pillars from the faults to construct a skeleton grid, 

which guides the geometry of the final 3-D grid. The final step is to insert horizons 

and, if necessary, zones defined by well tops only into the skeleton grid. This process 

defines the 3-D grid. Often modeling the seismic horizons require manual editing to 

ensure that the horizon-fault intersects are correct.  

 

Figure 21. Structural modeling. Fault modeling (left), pillar gridding (middle) and horizon modeling (right). 

3.5 EXPERIMENTAL DESIGN 

Experimental design applies multiple linear regression analysis to several 

independent variables (X) to make an analytical relationship with a measurable output 

(Vpred). The used method assumes a linear relationship between X and Vpred, 

represented by a proxy equation: 

 
𝑉𝑝𝑟𝑒𝑑 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 … 𝛽𝑛𝑋𝑛 (3.4) 

 

where the βn coefficients reflect the contribution to the output of each 

corresponding Xn factor, where n is the number of factors under consideration. The 

factors represent the model parameters. This study considers six parameters, i.e. two 

faults, time horizon, time thickness, depth horizon and depth thickness. Vpred is the 
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predicted reservoir volume based on the value of the parameters. In order to solve the 

coefficients (βn) a set of linear equations (n+1) for different parameter sets and 

corresponding reservoir volumes is solved through multiple linear regression analysis. 

The parameters can have values within the range of [-1, 1] with minus one describing 

the low case, zero the base case and plus one the high case parameter.  Table 2 shows 

the matrix of the screening design used and the parameter sets for which the reservoir 

volume needs to be calculated. This involves building 3D models using these 

parameter sets and calculating the requested volumes.  

Table 2. Experimental design matrix. 

Exp # Fault1 Fault2 HorizonT ThicknessT HorizonD ThicknessD Resp_Volume 
1 1 -1 1 -1 -1 -1 

 2 -1 -1 -1 -1 -1 -1 
 3 -1 -1 1 1 1 -1 
 4 1 1 1 -1 1 1 
 5 1 1 -1 1 -1 -1 
 6 1 -1 -1 -1 1 1 
 7 0 0 0 0 0 0 
 8 -1 1 1 1 -1 1 
 9 -1 1 1 -1 1 -1 
 10 1 1 -1 1 1 -1 
 11 1 -1 1 1 -1 1 
 12 -1 1 -1 -1 -1 1 
 13 0 0 0 0 0 0 
 14 -1 -1 -1 1 1 1 
  

For example, consider a linear equation describing the reservoir volume as a 

function of one parameter (Horizon): 

 
𝑉𝑝𝑟𝑒𝑑 = 𝛽0 + 𝛽1 ∗ 𝐻𝑜𝑟𝑖𝑧𝑜𝑛 (3.5) 
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First, the coefficients β0 and β1 are calculated from two equations with the 

parameters and volumes given below: 

 

Experiment Horizon Response  Volume (V) 

1 0 30 

2 -1 10 

 

The first equation is the centerpoint of the regression model, and delivers the 

value of the β0 coefficient (30). Subsequently, the β1 coefficient is derived using 

simple algebra, 

𝛽1 =
𝑉 − 𝛽0

𝐻𝑜𝑟𝑖𝑧𝑜𝑛
= 20 

With, 

𝑉 = 10 

𝐻𝑜𝑟𝑖𝑧𝑜𝑛 = −1 

𝛽0 = 30 

Now the reservoir volume distribution can be computed by solving the 

equation (5) several hundred times through stochastically varying the parameter 

values within the range [-1, 1] as shown below. 

 

Prediction Horizon Predicted Volume (Vpred) 

1 -0.2 26 

2 0.91 48.2 

3 1 50 



 

28 

4 0.34 36.8 

 

This study applies a Plackett-Burman design (Plackett et al., 1946) for 

screening the reservoir parameters in order to understand their influence on the 

volume. Screening designs assume that all interactions are negligible this delivers a 

less accurate proxy equation (3.6). The number of experimental runs required is 

dependent on the parameters under consideration and the saturation level of the 

model. The benefit of Placket-Burman designs, as implemented in the used software 

(Essential Experimental Design, (Steppan et al., 1998)), is that they only require 

twelve experimental runs plus two centerpoints for up to eleven factors. In other 

words, they utilize all degrees of freedom to estimate the main terms (Steppan et al., 

1998). These results are accurate enough for identifying the most influential 

parameters on the calculated volume. 

 
𝑉𝑝𝑟𝑒𝑑 = 𝛽0+𝛽1𝑋1+𝛽2𝑋2+𝛽3𝑋3+𝛽4𝑋4+𝛽5𝑋5+𝛽6𝑋6 (3.6) 

 

The uncertainty analysis of the reservoir volume is based on those coefficients that 

contribute more than 5% to the total volume. 

Based on the most influential parameters a two-level full factorial 

experimental design has been selected for setting up the proxy equation used for 

predicting the volume distribution resulting from the parameter uncertainties. A two-

level full factorial design includes two- and three-way interactions in addition to the 

main terms. A two-level full factorial design requires 2
n
 experimental runs and two 

centerpoints, where the constant 2 represents the high and low setting coming from 
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each factor and n represents the number of factors used to model the predicted volume 

(Steppan et al., 1998). 

 
𝑉𝑝𝑟𝑒𝑑 = 𝛽0+𝛽1𝑋1+𝛽2𝑋2+𝛽3𝑋3+𝛽4𝑋4+𝛽5𝑋5+𝛽6𝑋6+𝛽7𝑋1𝑋2 + ⋯

+ 𝛽𝑎𝑋1𝑋2𝑋3 + ⋯ 

 

(3.7) 

 

The number of terms in the full factorial proxy equation (3.7) is dependent on 

the results from the screening design. Equation 3.7 can contain statistically 

insignificant terms. Backward elimination measures the significance value for each 

term, where low values indicate high model significance (Steppan et al., 1998). If a 

term exceeds a preconditioned significance value it is not included in the volume 

equation. The resulting equation, with fewer terms, is regarded as the best-fit model to 

predict the volume.  
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4. Observations 

4.1 SYNTHETIC SEISMOGRAM OBSERVATION 

Synthetic seismograms were constructed for three wells that have sonic and 

density logs covering the reservoir interval to identify the geologic events on the 

seismic data. Figure 22 shows that the seismic data has SEG polarity:  the upper part 

of the figure shows the synthetic trace in inverse polarity, the lower part shows the 

normal polarity. The correlation trace gives maximum positive correlation for the 

synthetic trace in SEG polarity. A zero crossing between a strong peak reflection and 

a trough features the top of the reservoir on the synthetic traces of all three wells 

(Figure 23). The base of the reservoir is not as clearly defined and alternates between 

a faint peak reflection and an s-crossing, i.e. where the amplitude is zero between a 

trough at the top and peak reflector at the bottom. 

 

Figure 22. Synthetic seismogram from Well-15. First track shows a Ricker wavelet, which delivers the synthetic 

trace displayed in the middle of the seismic section. The last track (to the right) shows the correlation between the 

synthetic trace and the seismic trace closest to the well position. 
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Figure 23. Synthetic seismogram from well-15 (left), well-14 (middle) and well-13 (right). 
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4.2 SEISMIC INTERPRETATION AND UNCERTAINTY ESTIMATION 

4.21. Horizons 

To illustrate the uncertainty in seismic interpretation requires the analysis of 

seismic sections with focus on comparing the original seismic volume with attribute 

cubes in areas of uncertainty, such as low signal-to-noise. Three random seismic lines 

crossing key wells were created for this purpose (Figure 24). 

 

Figure 24. Time structure map of top reservoir, shows selected wells and seismic intersections. 

These areas of uncertainty can be identified based on the following classification: 

Class 1: Weak semi-continuous amplitude 
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Class 2: Low signal-to-noise ratio resulting in discontinuities 

The navigation of the seismic sections discussed in the following is given in 

Figure 24. The frames shown in black on sections A – C (Figure 25, 28 and 32) 

correspond to the enlarged sections to highlight the areas of uncertainty. The seismic 

sections show that the top reservoir seismic event (shown in green) is tracked on a 

zero crossing between peak and trough reflectors with strong amplitudes. The base 

reservoir seismic event (shown in yellow) is tracked on a zero crossing between 

trough and peak reflectors with weak semi-continuous amplitudes. 

In frame 1 and 2 on section A (Figure 25), strong amplitudes characterize the 

top reservoir throughout the section; whereas the base reservoir features class 1 and 2 

uncertainties (Figure 26a and 27a). The cosine of instantaneous phase provides a 

better continuity of the base reservoir seismic event for the interpretation, which 

allows tracking the horizon in this area with more confidence (Figure 26b and 27b). 

 

Figure 25. Section A, intersect shown on figure 24. 

1
2
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Figure 26. Section A, frame 1. 

 

Figure 27. Section A, frame 2. 

In frame 1 on section B (Figure 28), the two seismic events display class 1 

uncertainty near a minor fault (Figure 29a). The structural smoothing attribute 

enhances the continuity of the downthrown events significantly (Figure 29b). In frame 

2, the top reservoir horizon features class 1 uncertainty, and the base class 1 and 2 

uncertainties (Figure 30a). Again, structural smoothing enhances the continuity of the 

top reservoir horizon, although on cost of the resolution, which is decreased near the 

base horizon (Figure 30b). In frame 3, the top reservoir features class 1 uncertainty, 

and the base class 1 and 2 uncertainties (Figure 31a). Structural smoothing enhances 

continuity and increases the signal-to-noise ratio (Figure 31b). 

a b

a b
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Figure 28. Section B, intersect shown on figure 24. 

 

Figure 29. Section B, frame 1. 

 

Figure 30. Section B, frame 2. 
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Figure 31. Section B, frame 3. 

In frame 1 on section C (Figure 32), the top and base horizons feature class 1 

uncertainty (Figure 33a). Structural smoothing enhances seismic continuity for the top 

horizon only (Figure 33b). In frame 2, the top reservoir horizon shows characteristics 

of strong amplitudes, whereas the base reservoir horizon features class 1 uncertainty 

(Figure 34a). Cosine of instantaneous phase provides better continuity of the base 

reservoir seismic event (Figure 34b). 

 

Figure 32. Section C, intersect shown on figure 24. 
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Figure 33. Section C, frame 1. 

 

Figure 34. Section C, frame 2. 

A difference map of the original seismic volume and a smoothed volume 

shows that uncertainties due to statics have a Gaussian distribution with a standard 

deviation of ± 1.32 ms (Figure35). 

a b

a b
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Figure 35. Time error distribution due to statics. 

Tops on three wells show significant offset with respect to the seismic event 

(Figure 36). Well-11 and Well-8 are both in the vicinity of the tied Wells 13 and 14 

respectively (Figure 36a and b). The tops of Well-19 are located on a different phase 

positioned in an isolated fault segment (Figure 36c). Following the seismic event 

linked to these well tops will result in a conflict with the interpretation supported by 

the other wells. Therefore, wells 8, 13 and 19 are not included in the uncertainty 

study. 
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Figure 36. Seismic intersections showing offset wells. 

The time error between the interpreted top reservoir horizon and each well top 

gives a distribution of time errors (Figure 37). Table 3 summarizes the time error 

statistics, of the top reservoir horizon and the reservoir thickness, used for 

constructing the high and low cases. The mean error of -1.83 ms for the top reservoir 

indicates that the geological event is about 2 ms below the tracked zero crossing. 

Applying the shift of -1.83 ms to the top reservoir results in a normal error 

distribution with zero mean. The base reservoir is constructed through stacking the 

reservoir time thickness below the top reservoir as discussed in the Methodology. The 

time error for the reservoir base is resulting from the reservoir thickness uncertainty 

(Figure 38). 

a b

c
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Figure 37. Time error distribution of the top reservoir. 

 

Figure 38. Time error distribution of the reservoir thickness. 

Table 3. Time error statistics. 

  Top reservoir (ms) Reservoir thickness (ms) 
Mean -1.83 0 
std.dev. 7.38 6.55 
Variance 54.46 42.94 

 

The sample variograms shown in Figure 39 and 40 define the spatial 

correlation of the time errors. The variogram model fitted to the variance points of the 

time errors shows that the influence radius of the wells (variogram range) has a range 
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of 600 feet for the top reservoir and 1000 feet for the reservoir thickness (Figure 39 

and 40). These measurements are used for adjusting the top and base reservoir cases 

to the well tops.  

 

Figure 39. Variogram analysis of time errors for top reservoir, shown in figure 37. 

 

Figure 40. Variogram analysis of the reservoir thickness in the time domain, shown in figure 38. 
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4.2.2 Faults 

The ant track volume captures the two faults outlining the reservoir fairly well 

within most of the seismic volume (e.g. section A, Figure 41). The time lines of the 

ant tracking time slices in Figure 42 are also included in Figure 41. In Figure 41 and 

42 the faults representing the base case are shown in green, the faults capturing the 

fault zone outline are shown in red and blue. Both faults are represented by the offset 

of strong amplitudes in the reservoir.  However, the southern fault shows more 

bifurcation on the ant tracking time slices resulting in a wider uncertainty envelope. In 

addition, the westernmost area between -1700 and -1900 ms shows the southern fault 

changing its strike significantly. Here the characteristics for fault detection are weak 

and not captured by the ant track volume (Figure 41 and 42). The continuation of the 

fault can be seen below -1900 ms, where it is truncated by the northern fault. 

 

Figure 41. Section A, intersect shown on figure 42 (top left). 
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Figure 42. Time slices from ant track volume. 
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The apparent average thicknesses of the northern and southern faults defined 

by the fault envelopes are 466 ft and 765 ft, respectively. These thicknesses were 

calculated from the difference between polygon nodes in a consecutive order (see 

Figure 12). In order to quality check the apparent thickness of the fault envelope fault 

slicing has been applied. Figure 43 shows the fault slicing results for the northern 

fault using a step-out distance of 150 and 233 ft. Most of the amplitudes fade out at a 

step out distance of ± 233 ft from the base case fault. The bifurcation and low quality 

imaging of the southern fault yields imperceptible results. 

 

Figure 43. Fault slicing of the northern fault. 

Hanging wall 233 ftHanging wall 150 ft

Foot wall 150 ftFoot wall 233 ft
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4.3 DEPTH CONVERSION 

4.3.1 Linear velocity law 

Figure 44 shows the relationship between the interval velocities coming from 

the check shots and the derived linear velocity law for two wells. The check shot 

velocities show a velocity boundary marked as the overburden horizon. Below the 

overburden boundary, the slope of the linear velocity law changes. For the reservoir 

interval, a constant interval velocity has been selected, which is shown by the straight 

vertical line in Figure 44. 

 

Figure 44. Linear velocity law (black) and checkshot interval velocities (red) from Well-1 and Well-15. 

As discussed in the methodology chapter, the K-value of each of the two linear 

velocity laws of the overburden is constant.  The V0 values are extracted at the layer 
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top and interpolated away from the wells. The selected gridding algorithm influences 

the resulting depth surface. Figure 45 shows the depth conversion of the top reservoir 

surface based on two different gridding algorithms applied to the V0 data.  The 

moving average gridding algorithm ensures that the V0 approaches a constant average 

value at some distance away from the wells. Convergent interpolation uses the slopes 

defined by the data points and therefore can interpolate and extrapolate to unrealistic 

values. A comparison of the depth surfaces resulting from the two V0 interpolations 

shows considerable differences. This is highlighted in Figure 46, which shows the 

difference map between the two depth surfaces and the histogram of the depth 

differences. 

 

Figure 45. Problems in depth conversion. Time structure map of top reservoir (left), Initial velocity surface 

(middle) and depth structure map of top reservoir (right). 
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Figure 46. Difference map of the two depth surfaces of the top reservoir based on V0 interpolation using 

Convergent Interpolation and Moving Average, respectively. 

 4.3.2 Blind well test for estimating uncertainty in depth 

Fifteen out of twenty-five wells were selected for the blind well test to avoid a 

cluster effect (Figure 47). The left out well is not taken into account for the extraction 

of the velocity law for the top two layers up to the reservoir top. The blind well test 

predicts that the depth surface uncertainty can lie within a probability interval 

described by the depth error distribution (Figure 48). Variogram analysis of the depth 

errors shows that their influence radius is about 900 feet (Figure 49). 
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Figure 47. Depth structure map of top reservoir, wells used for the blind well test are shown. 

 

Figure 48. Depth error distribution of the top reservoir based on the blind well test. 
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Figure 49. Variogram analysis of depth errors shown in figure 48. 

The reservoir base shows a depth error at each well as a result of using the 

averaged interval velocity. The depth error distribution for the reservoir base is 

resulting from the reservoir thickness uncertainty (Figure 50). It is important to note 

that this approach requires that the top reservoir depth surface is adjusted to the well 

tops. Variogram analysis of the depth thickness errors shows that their influence 

radius is about 1000 feet (Figure 51). Table 4 summarizes the depth error statistics, of 

the top reservoir depth surface and the reservoir thickness used for constructing the 

high and low cases. 
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Figure 50. Thickness depth error distribution. 

 

Figure 51. Variogram analysis of depth thickness errors in figure 50. 

Table 4. Depth error statistics. The two columns for the top reservoir show the results from the blind well test 

using the moving average and convergent interpolation gridding algorithm, respectively. 

  Top reservoir (ft) Reservoir thickness (ft) 
Mean 0 -8.67 0 
Std.dev 7.84 46.76 12.05 
Variance 61.52 2186.63 145.23 
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4.4 UNCERTAINTY IN GROSS-VOLUME DERIVED FROM MODELLED STRUCTURAL 

UNCERTAINTY 

The Placket-Burman experimental design requires only fourteen structural 

models to solve the coefficients of the proxy equation, as discussed in the 

methodology chapter. The combinations of experimental runs and their results are 

summarized in Table 5. 

Table 5. Combinations and volume results of structural models for the Placket-Burman  experimental design. 

Exp # Fault 1 Fault 2 HorizonT ThicknessT HorizonD ThicknessD Volume 
1 1 -1 1 -1 -1 -1 56.2 
2 -1 -1 -1 -1 -1 -1 32.5 
3 -1 -1 1 1 1 -1 122.6 
4 1 1 1 -1 1 1 112.8 
5 1 1 -1 1 -1 -1 109.9 
6 1 -1 -1 -1 1 1 72.8 
7 0 0 0 0 0 0 97 
8 -1 1 1 1 -1 1 142 
9 -1 1 1 -1 1 -1 72.7 

10 1 1 -1 1 1 -1 128.6 
11 1 -1 1 1 -1 1 142 
12 -1 1 -1 -1 -1 1 56 
13 0 0 0 0 0 0 97.2 
14 -1 -1 -1 1 1 1 111.7 

 

The Placket-Burman design is not accurate enough to derive a representative 

proxy equation for the volume. Figure 52a shows that the observed volume and the 

volume predicted by the proxy equation resulting from the Placket-Burman 

experimental design have a linear relationship. However, the residual plot of the 

difference between volumes of the proxy equation and the model volumes shows 

values up to 8*10
7
 ft

3
 (Figure 52b). The Placket-Burman experimental design gives a 
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good estimation of the influence of the individual parameters on the predicted 

volume.  

 

Figure 52. Placket-Burman experimental design. a) Observed volume vs. Predicted volume. b) Residual plot. 

The Tornado diagram in Figure 53 graphs the coefficients high and low setting 

for each parameter as an illustration of their volume contribution. The time thickness 

accounts for an uncertainty about 30,5% of the base case volume. The time horizon 

and the depth thickness account for an uncertainty about 12% and 10%, respectively. 

The two faults and the depth horizon each account for an uncertainty about 7% of the 

base case volume. This shows that all parameters are statistically significant for 

describing the structural volume uncertainty. 

a b
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Figure 53. Influence of parameters on the base case volume. 

The full factorial experimental design uses all six parameters. As a result, 

sixty-six structural models were created to derive the coefficients of the volume 

equation. The combinations of experimental runs and their results are summarized in 

table 6. 

Table 6. Combinations and volume results of structural models for the full factorial experimental design 

Exp # Fault 1 Fault 2 HorizonT ThicknessT HorizonD ThicknessD Volume 
1 -1 -1 -1 1 -1 -1 85.2 
2 1 1 -1 -1 1 -1 57.9 
3 1 -1 -1 -1 -1 -1 35.5 
4 -1 1 -1 -1 -1 1 54.9 
5 1 -1 -1 -1 1 1 67.9 
6 -1 1 -1 1 -1 1 113.4 
7 1 -1 -1 -1 -1 1 56 
8 1 1 1 -1 -1 -1 60.5 
9 -1 -1 1 1 1 1 138.2 

10 -1 1 1 1 -1 1 142 
11 1 1 1 1 -1 -1 144.3 
12 1 -1 1 1 -1 1 142 
13 0 0 0 0 0 0 97.2 
14 -1 -1 -1 -1 1 -1 45.9 
15 -1 -1 1 -1 1 -1 63.3 
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16 -1 -1 1 1 -1 -1 107.1 
17 -1 -1 -1 1 -1 -1 85 
18 1 1 -1 -1 -1 1 61.6 
19 1 -1 -1 1 -1 -1 96.6 
20 1 -1 -1 1 1 -1 109.9 
21 1 -1 -1 1 -1 -1 96.6 
22 1 1 -1 1 -1 -1 109.9 
23 -1 1 1 1 1 -1 141.4 
24 -1 -1 -1 1 1 1 111.7 
25 1 1 1 -1 1 -1 79.8 
26 1 1 1 1 -1 1 161.5 
27 -1 -1 -1 -1 1 1 62.2 
28 1 1 -1 1 1 -1 128.6 
29 -1 1 -1 -1 1 -1 52.8 
30 -1 1 1 -1 -1 -1 56.2 
31 -1 1 -1 1 -1 1 113.3 
32 -1 1 -1 1 1 1 129.2 
33 1 -1 1 1 -1 -1 122.7 
34 1 1 -1 -1 -1 -1 42.1 
35 -1 1 -1 1 1 -1 113.3 
36 0 0 0 0 0 0 97 
37 -1 -1 1 1 -1 1 123 
38 1 -1 1 1 1 -1 139.6 
39 -1 1 -1 -1 1 1 72.8 
40 1 1 -1 1 1 1 147.8 
41 1 -1 1 -1 1 -1 72.7 
42 1 1 -1 -1 1 1 80.1 
43 1 -1 -1 -1 1 -1 51 
44 -1 1 -1 -1 -1 -1 37.2 
45 1 1 1 1 1 -1 157.8 
46 -1 -1 -1 -1 -1 1 48.8 
47 1 1 1 -1 -1 1 84.5 
48 1 -1 -1 1 1 1 128 
49 -1 1 1 1 1 1 160 
50 1 -1 1 -1 -1 -1 53.9 
51 1 1 1 1 1 1 180.3 
52 -1 -1 -1 1 1 -1 98.3 
53 -1 -1 1 -1 -1 1 66.2 
54 1 1 1 -1 1 1 112.8 
55 -1 -1 -1 1 -1 1 98.7 
56 -1 1 1 -1 1 -1 73.5 
57 -1 -1 -1 -1 -1 -1 32.5 
58 1 -1 -1 1 -1 1 114.6 
59 -1 1 1 -1 -1 1 76.2 
60 1 -1 1 1 1 1 158.9 
61 -1 -1 1 -1 -1 -1 47.9 
62 -1 1 -1 1 -1 -1 97.2 
63 1 -1 1 -1 -1 1 76.6 
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64 -1 -1 1 1 1 -1 122.6 
65 -1 1 1 1 -1 -1 122.8 
66 -1 1 -1 1 -1 -1 98.2 

 

The proxy equation derived from the full factorial design contains seven main 

terms and thirty-five interacting terms, which give a near perfect fit to the observed 

volumes. This is a further indication that main terms (linear) alone cannot predict the 

volume with sufficient accuracy. Including interacting terms can greatly increase the 

accuracy of the volume equation (Figure  54a). Analysis of the residual plots shows 

that the volume errors given by the full factorial design are less than 2*10
7
 ft

3
 (Figure  

54b). This is about 5% of the smallest reservoir volume of ca. 40*10
7
 ft 

3
 (low case of 

all parameters) and ca 1% of the largest reservoir volume (high case for all 

parameters). 

 

Figure 54. Full factorial experimental design 25 terms. a) Observed volume vs. Predicted volume. b) Residual plot. 

Backward elimination optimizes the volume equation to find the best-fit model 

with fewer terms, and subsequently fewer coefficients to solve. The volume equation 

takes the form: 

a b
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𝑉𝑝𝑟𝑒𝑑 = 𝛽0 + 𝛽1 ∗ 𝐴 + 𝛽2 ∗ 𝐵 + 𝛽3 ∗ 𝐶 + 𝛽4 ∗ 𝐷 + 𝛽5 ∗ 𝐸 + 𝛽6 ∗ 𝐹 + 𝛽7

∗ 𝐴𝐷 + 𝛽8 ∗ 𝐵𝐷 + 𝛽9 ∗ 𝐶𝐷 + 𝛽10 ∗ 𝐴𝐹 + 𝛽11 ∗ 𝐴𝐶 + 𝛽12

∗ 𝐵𝐶 + 𝛽13 ∗ 𝐵𝐸 + 𝛽14 ∗ 𝐵𝐹 + 𝛽15 ∗ 𝐷𝐹 + 𝛽16 ∗ 𝐸𝐹 + 𝛽17

∗ 𝐶𝐸 + 𝛽18 ∗ 𝐵𝐸𝐹 + 𝛽19 ∗ 𝐶𝐷𝐸 + 𝛽20 ∗ 𝐷𝐸 + 𝛽21 ∗ 𝐶𝐷𝐹

+ 𝛽22 ∗ 𝐸𝐹 + 𝛽23 ∗ 𝐶𝐸𝐹 + 𝛽24 ∗ 𝐷𝐸𝐹 + 𝛽25 ∗ 𝐴𝐵𝐷 

(4.1) 

 

The parameters, coefficients and their meaning are summarized in table 7. By 

eliminating terms with significance higher than 0,05 derives a volume equation with 

seven main terms and twenty-five interactions. This volume equation is more practical 

and retains the same accuracy as the forty-two term equation (Figure 55a). The 

residual plot of the new equation shows a single outlier, shown by the red circle, and a 

slightly larger variance (Figure 55b). 

Table 7. Explanation of the parameters and coefficients in the 25 term volume equation. Also shown is the 

significance of each term to the volume equation. 

Parameter Coefficient Coefficient value Significance 
- β0 96.14 <0.0001 
A - Fault 1 β1 5.927 <0.0001 
B - Fault 2 β2 6.569 <0.0001 
C - Time horizon β3 12.55 <0.0001 
D - Time thickness β4 31.36 <0.0001 
E - Depth horizon β5 8.485 <0.0001 
F - Depth thickness β6 9.803 <0.0001 
AD β7 2.444 <0.0001 
BD β8 2.268 <0.0001 
CD β9 1.497 <0.0001 
AF β10 0.815 <0.0001 
AC β11 0.838 <0.0001 
BC β12 0.744 <0.0001 
BE β13 0.713 <0.0001 
BF β14 0.619 0.0001 
DF β15 -1.028 <0.0001 
EF β16 0.972 <0.0001 
CE β17 0.959 <0.0001 
BEF β18 0.3 0.0481 
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CDE β19 -0.503 0.002 
DE β20 -0.603 0.0004 
CDF β21 -0.522 0.0015 
EF β22 0.515 0.0019 
CEF β23 0.472 0.0037 
DEF β24 -0.378 0.0179 
ABD β25 0.3 0.0456 

 

Figure 55. Full factorial experimental design 25 terms. a) Observed volume vs. Predicted volume. b) Residual plot 

The uncertainty in the gross-volume is calculated by stochastically changing 

the parameter values between [-1,1] for five-thousand simulations of the volume 

equation (Figure 56a). The cumulative density function shows that there is a 90% 

probability the reservoir volume will be greater than 66*10
7
 ft

3
 and 10% probability it 

will be higher than 123*10
7
 ft

3
 (Figure 56b). 

a b
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Figure 56. a) Volume distribution for 5000 calculations of the volume equation. b) Cumulative density function of 

the volume distribution. 

4.4.1 Numerical 3-D reservoir model 

Sometimes a 3-D model is needed for a specific reservoir volume given by the 

proxy equation. For instance, the reservoir engineer may request a model referring to 

a specific volume probability. The following procedure describes how to derive the 

model parameters for a specific run of the proxy equation in order to build the 3-D 

model (Table 8).  

Table 8. Random experimental run and its corresponding numerical 3-D model. 

Volume equation results 
Exp # Fault 1 Fault 2 HorizonT ThicknessT HorizonD ThicknessD Resp_Volume 

1 0.55 0.39 0.94 -0.08 -0.78 0.54 109.2 

        Numerical 3-D model results 
Exp # Fault 1 Fault 2 HorizonT ThicknessT HorizonD ThicknessD Resp_Volume 

1 0.55 0.39 0.94 -0.08 -0.78 0.54 106.1 
 

a b
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All reservoir parameters are described with Gaussian distribution, apart from 

the faults. Therefore, each parameter value given by the experimental run acts as a 

weight between ± one standard deviation of the error distributions. For example, the 

new position for the time horizon is obtained by shifting the top reservoir by: 

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑇 = 0.94 ∗ 𝜎 

Where σ represents the standard deviation of the time horizon. The same method is 

applied to all parameters whose uncertainty is represented by a Gaussian distribution. 

The new fault position is obtained by scaling the extreme values [-1,1], used in 

experimental design, to be represented as values on the interval [0,1], as shown in 

figure 57. This indicates that a value of 0, 0.5 and 1 on the interval [0,1] represents the 

low, base and high case fault position, respectively. 

 

Figure 57. Fault parameter values scaled to the interval [0,1]. 
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The new fault position is calculated by:  

𝐹𝑎𝑢𝑙𝑡1𝑖 = 0.775 ∗ 𝑑𝑖 

Where di is the distance between a node “i” on the low case fault polygon and its 

corresponding node on the high case fault polygon, shown as circles in figure 57. 

Figure 58a shows the modeled volume used for calculating the coefficients of 

the proxy equation versus the predicted volume. The red circle indicates the two 

volumes linked to the randomly selected model. The red circle on the residual plot in 

Figure 58b shows that the proxy equation overestimates the volume by about 3%. 

 

Figure 58. Full factorial experimental design for 25 terms. a) Observed volume vs. predicted volume, numerical 

model indicated with red circle. b) Residual plot. 

  

a b
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5. Discussion 

5.1 UNCERTAINTY IN STRATIGRAPHIC HORIZONS 

 All uncertainties related to stratigraphic horizons in this study are quantitative 

and represented by a Gaussian distribution. The benefit of using a Gaussian 

distribution for describing the uncertainties is that if the mean and standard deviation 

are known, it is possible to compute the percentile rank associated with any given 

score. In other words, the standard deviation delivers the criteria for deriving the high 

and low case model parameters.  

One source of the seismic uncertainties affecting the stratigraphic horizons is 

time migration, where seismic events are relocated to the location the event occurred 

in the subsurface. Time migration is not working accurately in case of strong lateral 

velocity variations (Hubral et al., 1980). This may be the case for instance due to 

major velocity boundaries with a steep slope. Another source of uncertainty is static 

problems, which appear as amplitude variations between traces.  At sea, the water is 

homogeneous and static problems are minimal, unless the ocean floor is irregular 

(Pritchett, 1990).  Structural smoothing solves the static problem. However, this 

process has the unwanted side effect of smoothing out real properties. This type of 

uncertainty can be thought of as noise in the natural system. A difference map of the 

original seismic volume and a smoothed volume shows that uncertainties due to 

statics have a Gaussian distribution and account for ± 1.32 ms, and therefore their 

impact is insignificant for the uncertainty study (see Figure 35). 

 The structural geometries of the reservoir limit the influence of the top 

reservoir location. The reservoir shows a steep slope and consequently the OWC cuts 
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the reservoir under a relative steep angle. A considerable part of the reservoir base is 

above the OWC as well. Therefore, a change of the top reservoir position in time has 

only a limited effect on the reservoir volume. Separating the uncertainties of the 

overburden and the reservoir units by stacking thickness maps below the top reservoir 

allows the analysis of the reservoir thickness uncertainty. For an average thickness of 

24 ms, the thickness error standard deviation of 6.5 ms is about 27% of the reservoir 

thickness. This explains why the reservoir thickness uncertainty has a dominant 

influence on the reservoir volume uncertainty (see Figure 53).  

5.2 UNCERTAINTY IN FAULT POSITION 

The influence of the fault uncertainty on the reservoir volume depends on the 

relationship between the volume covered by the fault zone within the reservoir and 

the reservoir volume. There is significant subjectivity involved in deriving the 

envelope of the fault zones. In this thesis, the envelope is described by the high and 

low case fault positions from interpreted fault polygons on ant tracking time slices. 

Each polygon set was densely sampled and a new node drawn half the distance 

between each node on the high and low case fault polygon to represent the base case 

fault position. A more accurate method would be to define a rotation matrix for the 

fault object in strike direction and compute the true stratigraphic thickness between 

the extreme cases. This method more accurately derives the fault geometry while 

honoring the full extent of the uncertainty envelope defined by the extreme cases. 
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5.3 UNCERTAINTY IN DEPTH CONVERSION 

The choice of gridding algorithm (moving average) interpolates the V0 to an 

average value outside the influence radius of the wells; subsequently this method has 

relatively small deviations of depth errors compared to other gridding methods that 

use the slope of the data points (see Table 4). The blind well test delivers a standard 

deviation of 7.84 ft, which is about 0.12% of the average depth. Small deviations in 

the depth thickness uncertainty are observable. The reservoir thickness depth error 

distribution delivers a standard deviation of 12.05 ft. This is about 12% of the average 

thickness. Consequently, its influence on the reservoir volume is not dramatic.  

 Similarly, as explained in section 5.1, the amount of volume translated above 

and below the OWC due to depth conversion depends on the structural geometry of 

the reservoir. This explains why the depth conversion has such a low impact on the 

reservoir volume for a thin, dipping reservoir. As the result, if the reservoir would not 

show a significant slope the depth conversion probably has a larger impact where it 

would be divided horizontally into an oil zone at the top and a water zone at the base. 

5.4 EXPERIMENTAL DESIGN 

A key benefit of experimental design is that it works with extreme cases of the 

parameter values, rather than stochastic simulation.  

For example, the uncertainty in reservoir thickness can be modelled by 

stochastically simulating an error surface and adding it to the thickness. A stochastic 

simulation of an error surface produces many surfaces that have the same properties 

controlled by a random number generator. The simulation of the error surface depends 

not only on the standard deviation but also on a couple of simulation parameters, i.e. 
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the variogram parameters. As these parameters are subject to uncertainty, addressing 

the uncertainty stochastically becomes complicated. When working with experimental 

design and low, base and high cases for each parameter the volume uncertainty 

estimation becomes simpler and easier to quality check. In addition, any combination 

of parameter values used by the proxy equation is reproducible as a numerical model. 
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 6. Conclusion 

Uncertainty is a well-known concept in geology, and can lead to reevaluation 

of important development decisions if properly assessed. A general method of 

handling uncertainty is by describing it in the form of a probability density function or 

a cumulative distribution function.  

This thesis provides a robust methodology for capturing the structural 

uncertainty and its impact on the volumetrics. Key elements of this method are using 

Gaussian error distributions for defining the low and high case for the reservoir 

parameters. In addition, a novel method based on volumetric seismic attributes was 

introduced for capturing the fault uncertainty. Finally, a method was developed that 

allows to extract the modeling parameters from any parameter setting of the proxy 

equation describing the reservoir volume. This study has shown that a small variation 

in a reservoir parameter can mean a significant change in reservoir volume.  

 The main sources of uncertainty lie within the data source used for structural 

modeling. The quality of seismic reflection surveys is highly dependent on acquisition 

and processing. Volume attributes can improve the signal to noise ratio or enhance 

structural features, where the seismic resolution is an issue, thus making the 

interpretation more reliable.  

One interesting result is that the uncertainties in the seismic picks and 

consequently in the reservoir thickness have a much greater impact on the gross-

volume compared to the influence of faults and velocity uncertainties. The 

uncertainties in the top reservoir in the time and depth domain have only a moderate 

influence on the volume uncertainty, which is related to the structural geometries of 
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the reservoir. The constant interval velocity used for the depth thickness uncertainty is 

a good approximation of the interval velocities of the reservoir. This indicates that the 

interval velocities of the reservoir do not change significantly, consequently resulting 

in minor uncertainty in the depth thickness. The uncertainty of the fault position 

would also have a greater influence on the volume uncertainty if the reservoir area is 

small and the fault displacement uncertainty relatively large. This study shows that 

seismic uncertainties in the reservoir thickness have a larger impact on thin reservoirs.  

The limitation of the described method is that it requires a sufficient amount of 

drilled wells in order to derive meaningful error distributions. Sufficient well data is 

not always available at the development stage. In addition, different tectonic settings 

introduce new parameters to the uncertainty analysis, where the reservoir drapes onto 

a salt dome for instance or along a convergent plate boundary. Thus, a wider range of 

structurally complex models involving a large number of parameters should be 

evaluated.  
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