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Preface
This thesis is submitted as partial fulfillment of the requirements for the
degree of Philosophiae Doctor at the University of Stavanger, Norway. The
research has been carried out at the Department of Electrical Engineering
and Computer Science in collaboration with the Centre for Organelle
Research (CORE), both at the University of Stavanger. A period of nine
months (from August 2014 to May 2015) was spent as a research stay
abroad at the Synthetic Biology and Cellular Control Lab of assoc. prof.
David McMillen at the University of Toronto, Mississauga, Canada.

The research has resulted in five published articles. I started writing this
thesis with the idea of creating a compilation thesis made out of the five
articles. However, as writing progressed I felt that the research and the
results deserved a clear, reworked, and thorough presentation. Thus, the
thesis evolved into a form that is closer to the coherent monograph. The
thesis consists of six chapters, where the main part (chapters 2-6) presents
the research and results in a linear and logical progression. The chapters
are written so that the reader can understand the work and the results
without having to carefully read each of the published articles. The full
articles are nevertheless, for completeness, included at the end of the thesis.

Kristian Thorsen, November 2015
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Abstract
Living organisms have over billions of years evolved into highly specific
and complex entities. Although the range of organisms that inhabit our
planet is strikingly diverse, they are all in some extent able to protect
their inner environment by keeping important variables within relatively
narrow limits. This is called homeostasis and is achieved through elaborate
regulatory networks with nonlinear interactions between genes, proteins
and metabolites. These regulatory networks incorporate a combination of
mechanisms, such as negative feedback, feedforward, integral control and
proportional control.

It is clear that concepts from control theory, most often applied in systems
engineered by humans, can also be applied to further the understanding
of regulatory networks in biology. The complexity and nonlinearity of
biological network does, however, make this not as straight forward and
easy as one might think. Man-made systems are contrary to biological
systems most often engineered from a set of separable components or
subsystems, and specifically designed to keep interactions between different
subsystems as simple as possible.
This thesis aims to explore how chemical species in a biological system

can interact to form simple structures with homeostatic properties. A set
of building blocks for regulation, consisting of two-component reaction
kinetic schemes called controller motifs, is presented and formalized. The
controller motifs have a structure that combines negative feedback with
integral control, consequently giving the motifs homeostatic properties.

The controller motifs are useful in modeling and understanding of cellular
homeostasis. They are herein employed to explore transepithelial glucose
transport and ionic homeostasis in enterocytes. A mathematical enterocyte
model is developed, and controller motifs are used in this model to explain
how enterocytes can maintain a near constant internal concentration of
sodium while dealing with sodium coupled nutrient transport.
Furthermore, this thesis demonstrates how controller motifs can be

applied in synthetic biology as guidelines on how to design novel regulatory

v



networks. A copper controller in the form of a copper transporting Cu-
ATPase, under control of a copper dependent promoter, is added to yeast
(Saccharomyces cerevisiae) by genomic integration. This controller extends
the yeast’s ability to regulate its internal concentration of copper, and
moreover the controller is shown to increase the yeast’s survivability in
environments with high concentrations of copper.

Finally, the controller motifs and the classical concept of homeostasis are
extended and applied on oscillatory systems. A wide range of biological
processes are, in fact, oscillatory. Examples include signaling by cytosolic
calcium and circadian rhythms. This part of the thesis shows how even
oscillatory systems can have properties, such as average level and frequency,
that are maintained in a homeostatic fashion.
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Chapter 1

Introduction
The ability to create, at least temporary, a local environment protected
against the law of increasing entropy is one, if not the most, important
property of all living organisms. Single- and multicellular organisms create
their own internal environment, a milieu intérieur, protected against the
outside. The chemical composition of the internal environment is regulated
and maintained so that the biochemical processes that make out life can
occur. As put by Claude Bernard «La fixité du milieu intérieur est la
condition de la vie libre».
The first requirement to create a local environment is of course the

existence of some kind of border. All cells are enclosed by a membrane, the
plasma membrane, that enables the cell to create an internal environment
different from the environment outside. Some cells also have cell walls,
a tougher and more rigid layer. More complex multicellular organisms
as plants and animals even have specialized cells that creates protective
borders such as bark and skin.
The border cannot be absolute; an organism must be able to import

raw materials, such as nutrients, and export unwanted waste products.
Cells have specialized membrane bound proteins that transport specific
molecules from one side to the other. Some of these proteins are active, that
is, they use energy to move chemical species against their electrochemical
equilibrium. In the most simple cases the energy can be harvested from
the external environment by the proteins themself. One such example is
bacteriorhodopsin, which is a transport protein used by certain archaea1

that absorbs energy from light and uses it to move protons out of the
cell [73].

Thus, the internal environment of a cell is protected by its cell membrane
and proteins that can use energy, ultimately derived from external sources,

1Archaea is one of the three main domains of life together with bacteria and eucaryotes.
Both archaea and bacteria are procaryotes, i.e., they have no distinct nucleus.
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CHAPTER 1. INTRODUCTION

to keep the internal environment away from chemical (thermodynamic)
equilibrium with the outside.

Another hallmark property of living system is the ability to receive and
communicate information. We humans receive information through the
basic senses, and communicate information by the use of language and
body language. Information can also be received and passed by more subtle
means: between animals, between cells within an organism, between single
cells, and between cells and their environment. Hormones send messages
between the different organs and cells inside the body, and pheromones
do the same outside the body. Even the most simple organisms such as
bacteria can sense certain chemicals in their environment [1, 45].

However, having a local environment different from the outside, and being
able to receive and send information, is not enough. The local environment
has to be regulated, and the organism have to react to the information
it receives in order to do so. To live is to be able to use information to
adjust to changes in the outer environment2. An illustrative example is
how bacteria senses certain chemicals, and move accordingly either towards
nutrients or away from toxins, a property known as chemotaxis [1, 45, 205].
Physical conditions, and chemical substances, in the internal environment
have to be kept within certain golden ranges. Our body temperature is
tightly regulated within a couple of degrees. Regulation of blood glucose by
insulin and glucagon is an example with a somewhat larger range; healthy
people have a blood concentration of glucose between 4 and 8 mM. The
degree of regulation varies in the kingdom of life, and higher species often
have, if not more refined, at least, more complex regulatory mechanisms.
In essence this thesis deals with the questions of how, by which mech-

anisms and interactions, cells and animals respond to information and
regulate their internal environment to compensate for outside disturbances.
And to how these mechanisms behave, i.e., what does it do. These questions
lie within the field of cybernetics.
Cybernetics is the child of Norbert Wiener who coined the term with

his book Cybernetics: or Control and Communication in the Animal and
the Machine [200] first published in 1948. Cybernetics is the study of
control and communication in self-regulating entities, and combines the
theories of servomechanisms from mechanics and electronics with the theory

2Sentence adapted from Norbert Wiener: The Human Use of Human Beings, Cyber-
netics and Society [199] (pp. 17-18).
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CHAPTER 1. INTRODUCTION

of homeostasis (see next section) from physiology and biology3. Both
machines and living organisms are entities that respond to information and
create local environments with order, environments that are maintained
and regulated.

1.1 Biological regulatory systems: homeostasis
and adaptation

Organisms have through evolution developed mechanisms that help them
survive and reproduce; networks consisting of genes, proteins, organelles,
cells, and whole organs create regulatory systems that interact to keep
internal variables protected against variations in the external environment.
Homeostasis is the concept that describes the coordinated physiological

processes that regulate and keep internal variables maintained at constant
or near constant values. The term homeostasis was introduced by Walter
Cannon in the 1920s. Cannon redefined the terminology of constancy
(fixité) used by Claude Bernard; homeostasis does not mean regulation to
a single always constant value, but coordinated regulation that maintain
internal variables within narrow limits4 [24, 25].
The concept of adaptation is tightly intertwined with homeostasis. A

system shows adaptation if the system’s response reverts back towards its
original state when exposed to a constant change (a step) in one of its
inputs. There is perfect adaptation in a variable if the response of that
variable returns to precisely the same value as it had before the input
change. Fig. 1.1 shows different modes of adaptation. Perfect adaptation is
the ideal for a homeostatic control mechanism that aims to maintain an
output at a specific setpoint in spite of environmental disturbances.

In biology adaptation is often encountered in sensory systems. A sensor
that gives a response and then returns to its original prestimuli state when
faced with sustained stimuli can function over a larger dynamic range in
stimuli input. One example of adaptation in sensory response is how our
eyes adjust to various levels of darkness and light. The intensity of sunlight

3The word cybernetics is borrowed from Greek χυβερνήτης meaning steersman,
governor. Although the term was not coined until 1948 the field itself dates further
back [200].

4Cannon derived the term from homoio, meaning similar (instead of just homo), and
stasis, in the meaning of a condition [24]. Although Cannon had used the term before, it
was his book The Wisdom of the Body (1932) [25] that made it famous.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Systems respond to stepwise changes in their input with different degrees
of adaptation.

is about 10 billion times that of starlight; the eye adapts to dark or light
conditions and can change its sensitivity to light with a factor of up to
106 [69]5. Adaptation also occurs in the auditory system. Both inner and
outer hair cells function as transducers converting deflections in small hairs
to electrical signals [168]. Fig. 1.2 shows experimental data of how the
electrical current, emitted from these cells, adapts to sustained deflections.
An indispensable concept in homeostatic and adapting mechanisms is

control/regulation by negative feedback6. Fig. 1.3 shows a general repre-
sentation of a control system with negative feedback. The overall system
is divided into two part, the process (or the controlled system) and the
controller. The output signal y(t) of the process (controlled variable or
response) is fed back to the controller. The controller uses current and/or
past information7 about the value of the output signal to adjust the process
with a signal u(t) (also called manipulated variable). Negative feedback

5There are several regulatory systems that contribute to the adaptation of the eye.
The amount of light that reach the retina is regulated by a change in pupillary size (∼ 30
fold change in sensitivity). The rods and cones on the retina adapt their response in the
photochemical system (∼ ten thousandfold change in sensitivity), and adaptation also
occurs in the neurons in the visual chain, from the retina to the brain (∼ fewfold change
in sensitivity) [69].

6Note that homeostasis is not exclusively equal to negative feedback. Other mecha-
nisms such as feedforward and prediction may also have homeostatic properties.

7Information about past values requires some sort of memory in the controller.
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CHAPTER 1. INTRODUCTION

Figure 1.2: Adaptation in inner and outer hair cells of mice, IHC and OHC. Recorded
transduction currents [pA] (upper) and stimulus [deflection in µm] (lower). Adaptation
is seen in the parts marked by grey squares. The transduction current falls back during
the conditioning step even though the displacement is sustained. Reprinted from [168]
with permission. Copyright © 2007, The American Physiological Society.

means that the controller opposes changes in y(t); if y(t) increases then the
controller will act to decrease it, and vice versa.

Figure 1.3: Schematic block diagram of a regulatory system with negative feedback.
The controller has information about current (and previous) values of the output y(t)
through feedback. The overall sign of the closed control loop is negative: the process
output y(t) affects the controller output u(t) negatively and u(t) affects y(t) positively
(the opposite also gives a negative loop). The inset shows a realization of a controller
operating on the error between y(t) and a reference r(t), see main text.

Any inputs to the process other than the input from the controller is
called disturbances d(t). Although such (uncontrolled) inputs act against
the controller, they are often very important for the overall system; e.g.,

5



CHAPTER 1. INTRODUCTION

eating and muscle use disturb the glucoregulatory system of the blood.
Opposed to ordinary design in control engineering it is often vital that a
disturbance in a biological system creates a large transient in the output,
since the output of one regulatory system is often used for signal detection
in other connected systems. This is certainly true for the many sensory
systems, a forever stable output cannot carry information!

In control engineering it is common to have a controller operating on the
error e(t) between the current output signal y(t) and the desired output
signal r(t) (e(t) = r(t) − y(t)), see inset in Fig. 1.3. In cases where the
reference signal is constant (or very slowly changing) the term setpoint is
used instead of reference, r(t) = yset. This concept of a reference signal,
or a setpoint, can also be applied to biological systems, even though the
controller may not have an easily distinguishable, or external, reference
signal r(t).
Likewise it is in biological systems often not easy to distinguish the

process from the controller. Strictly speaking such a separation is not
necessary; the overall system can still be analyzed and shown to have
regulatory properties. Nevertheless, there can be significant advantages by,
at least conceptually, separating the different parts of a biological system
into modules with well defined roles as processes and controllers; and this
thesis will show that it is advantageous to do so.

1.2 Robust perfect adaptation: integral feedback

An important aspect of homeostatic and adaptive systems is their robustness
[3, 12, 171, 205]. In general a system is robust if its characteristic behavior
is the same under a range of perturbations or uncertainties. The regulatory
system in Fig. 1.3 shows robust perfect adaptation if it can reach the same
steady-state value in y(t) for a whole class of disturbances; it is then robust
to that class of disturbance signals. In this thesis robust perfect adaptation8

is taken to mean robust against the class of all step-type disturbances, unless
stated otherwise.

Some of the mechanisms that account for perfect adaptation have been
argued to stem from a balance between various opposing components within
a reaction network [12, 153]. However, a balancing based approach like

8There is in this thesis no difference in the concepts of robust perfect adaptation and
robust perfect homeostasis.
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CHAPTER 1. INTRODUCTION

this does not guarantee a fixed steady state of the controlled variable in
the presence of perturbations, i.e., it is not robust. Yi et al. [205] elegantly
showed this by doing bifurcation analysis of balanced based model for
chemotaxis proposed by Spiro et al. [167].
The alternative to a balancing approach is a regulatory system with a

structure that inherently provides robustness. It is from control engineering
well known that this is provided by integral control [116]. With integral
control the controller output u(t) is the integrated error e(t) over time,
expressed mathematically as,

u(t) = Gi

∫ t

0
e(τ) dτ = Gi

∫ t

0
(r(τ)− y(τ)) dτ (1.1)

where Gi is a constant called the (integral) gain of the controller. An
equation describing the output u(t) in a controller such as Eq. 1.1 is
in control engineering called a control law. The integral controller uses
information about the current and all past errors, i.e., it sums up the
difference between the reference and the output over time.

The inherent robust perfect adaptation can be proven by contradiction.
Assume that the system is in steady state at time t=0, and that the error e0
then has a value different from 0, e0=ξ 6= 0 (assuming that the adaptation
is not perfect). Integrating Eq. 1.1 to t gives,

u(t) = Gi

∫ t

0
ξ dτ = Giξt (1.2)

but u(t) is not constant, because it depends on t. This contradicts the
assumption about steady state, and the conclusion is that if we are in
steady state then e(t) = ξ = 0 . Thus, integral control has robust perfect
adaptation9.
The integral controller can equivalently be described by its derivative

form:
du(t)
dt

= Gie(t) = Gi (r(t)− y(t)) (1.3)

The property of zero steady-state error is often demonstrated by this
equation, as the assumption of steady state implies that all time derivatives
are zero.

9Robust integral control does not imply stability. The proof assumes steady state,
i.e., stability. Integral feedback actually decreases the stability margin of a system and
may lead to sustained oscillations or a diverging output.
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CHAPTER 1. INTRODUCTION

1.2.1 Sufficiency and necessity of integral feedback for ro-
bust adaptation

It can be proven that any system that shows robust perfect adaptation to
step disturbances must have integral feedback; it is both a sufficient and
necessary structural property. This is a special case of the internal model
principle (IMP) [54, 83, 166]; it states that in order for a regulatory system
to asymptotically adapt its output y(t), under disturbances by a specified
class of signals, the system must necessarily contain a subsystem which
itself is capable of creating the same class of signals. And this subsystem
must do so while having only the system output y(t) as input. In other
words, if a system is to be robust against all constant disturbances, then
the system must contain a subsystem that can generate all constant signals.
An integral controller operating on the error e(t) is such a system; constant
signals are generated by the differential equation u̇ = (r(t) − y(t)). The
controller output u(t) becomes constant when y(t) = r(t), i.e. when the
output is perfectly adapted to the reference.

1.3 Homeostasis and oscillatory processes

A wide range of biological processes are oscillatory. We are all familiar with
our own periodic breathing and our heartbeats. Oscillations are observed
over the whole range from cellular to ecological systems. Examples include
metabolic glycolysis [38, 161], the p53 Mdm2 system controlling apoptosis10

(often related to cancer) [85, 119], cellular signaling by Ca2+ [17, 26, 56],
circadian rhythms [48, 121, 135], and ecological predator prey systems
[19, 179]. Fig. 1.4 shows an example of oscillations observed in cytosolic
Ca2+ and membrane potential for pancreatic islets of insulin producing
β-cells. Islets (collections of β-cells) show synchronous oscillations when
exposed to high concentrations of glucose (10 mM).

Intracellular oscillations are often related to signaling. Ca2+ oscillations
in β-cells (Fig. 1.4) are a key signal for the secretion of insulin as a response
to high blood glucose [56]. Ca2+ oscillations are found in most cell types
and Ca2+ is one of the most common messenger species found in cells [137].

At first glance oscillations may be considered to contradict active control
and regulation, and it has been suggested that oscillations represent a

10Programmed cell death, occurs in development, and as a response to cellular injury.

8



CHAPTER 1. INTRODUCTION

Figure 1.4: Oscillations in membrane potential (MP) and cytosolic Ca2+ in β-cells in
a pancreatic islet. (The islets of Langerhans are regions in the pancreas with hormone
producing cells; β-cells make out 60-70% of the cells in an islet [96].) The cells were
perifused with a solution containing 10 mM glucose (stimulus). Both fast (A) and slower
oscillations (B) can be observed. Reprinted from [14] with permission. Copyright © 2006,
The American Physiological Society.

breakdown of homeostasis11 [109]. A chapter in the book Chronobiology
Biological Timekeeping [186] describes the circadian oscillations in human
body temperature as «cracks in the homeostasis theory». This leads to the
question: how can homeostatic mechanisms possibly work when many of
the regulatory processes within a cell are based on oscillations.
To answer this it should be realized that oscillations do not necessarily

contradict homeostasis as defined by Cannon [121]. Physiological variables
are allowed to fluctuate within a homeostatically defended range, which can
be quite wide. Cannon’s only figure in his 1929 paper on homeostasis [24]
illustrates the concept by showing how the normal level of human blood
glucose oscillates between 70 mg/dL and 130 mg/dL. This range is what
Cannon called «relatively narrow». Furthermore, whether conditions are
pathologic or not may in many cases depend on average values over longer
periods, and not on maximum values with only a short duration.

In fact, even oscillatory systems can have properties that are defended in a
homeostatic fashion, as will be shown in chapter 5 in this thesis. The period
of the circadian clock is a prime example. Regulatory mechanisms keep
the period of this internal clock more or less constant against temperature
changes [48, 72].

A further introduction to the mathematical definition, classification, and
description of oscillators is given in chapter 5.

11The tendency to think so may be even greater among scientists with a background
in engineering. Control systems that oscillates are in general frowned upon in the
engineering community.

9



CHAPTER 1. INTRODUCTION

1.4 A new age for research on homeostasis.

The type of biological systems that have been subject to analysis for home-
ostatic properties have changed over time. In the years of Bernard and
Cannon homeostasis was applied on large scale physiological systems of
humans and higher mammals, such as body temperature, blood concen-
trations, oxygen supply, thirst, hunger, and so on [25, 102]. At their time
homeostasis was more of a philosophical concept. Bernard’s la vie constante
was reserved for humans and warm-blooded animals [102], and Cannon’s
homeostasis gave higher animals freedom to be conscious about other things
than to alter the rate of bodily processes to maintain constancy [25]. Hu-
mans were at that time still regarded to be on the top of the evolutionary
pinnacle, and homeostasis gave us freedom from being an animal.

In the years after the second world war (late 1940’s and 1950’s) the mech-
anisms behind homeostasis became more apparent [102]. The mathematical
formalization with cybernetics introduced new terms such as feedback,
loops, servomechanisms, transfer functions, and many other expressions
to physiology. This created an explosion of publications dealing with reg-
ulation and homeostasis. Homeostasis became mechanistic and the body
was treated as any other machine. Fig. 1.5 shows the relative trend of
publications dealing with homeostasis, in some way or another, indexed in
PubMed [126]. While around 3‰ of papers mentioned homeostasis in 1960,
as many as 11‰ did so in 1971. The publication rate then peaked around
the same time as Langley edited the book Homeostasis: Origins of the
Concept [102], a collection of seminal papers on homeostasis. The introduc-
tion to the most recent papers in this collection had the comment: «Any
paper published today, at least in physiology, which is worth the paper it is
printed on, should further clarify a homeostatic mechanism.»([102] p. 293)

The research from the 1950’s to the 70’s mainly dealt with homeostasis
of organs and the whole body; the main theme was understanding human
physiology. The work by Robert Steele and others [170, 183] on elucidating
the glucoregulatory system by dividing it up into compartmentalized pools,
building mathematical models for the interaction and passing of glucose and
insulin between these pools, creating electrical analog circuits for simulation
studies, and doing experiments with radioactively labelled sugar molecules
is representative for this period.
A new rise in work on homeostasis started around the new millennium.

Revolutionary methods in molecular biology have now opened up a whole
new world to the study of homeostasis; the internal regulation of cells
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Figure 1.5: Relative number of articles in PubMed (Medline) published every year that
have homeostasis in any of the searchable fields in the database entry. The results are
relative, to account for the general inflation of publications, and given in ‰. Retrieved
by using Medline trend [33].

and single-cellular organisms. The sequencing of the human genome, and
other sequencing projects have created incredible amounts of information;
and made it possible to research regulation on the gene-protein-cell scale.
Moreover, methods for genomic modification have made it possible to add
reporter genes, genes that confer characteristics that are easily identified
and measurable. For example the gene of a green fluorescent protein12

(GFP) can be added to the end of the gene of the protein of interest to create
a fusion protein. Whenever the cell translates this protein it will glue a
fluorescent protein onto it. This technique and others have made it possible
to do quantitative time-series measurements of intracellular concentrations,
producing data that is suitable to test and refine mathematical models.
Two emerging, or now established, fields related to this new age are

Systems Biology and Synthetic Biology. Systems biology is a top-down
approach, enabled by the recent advances in high-throughput assays. It is
a system of systems approach, and focuses on investigating the behavior of
several elements, or subsystems, in a larger system (the cell) at once [79, 95].
The typical experimental procedure is to perturb one element in the system,
and gather data about how all other elements behave. System behavior
is integrated by systematically doing this perturbation for all, or the
most interesting, elements in the system. The acquired information is
then compared to a predicted model and used to establish relationships
between elements. Synthetic biology on the other hand takes the bottom-up

12First isolated from jellyfish. Today variants in different colors are available, engineered
by mutations.
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CHAPTER 1. INTRODUCTION

approach [4, 68]. The focus of synthetic biology is to study simple molecular
networks and to uncover fundamental principles or mechanisms. The idea
is that complex network behavior can be understood by well-characterized
submodules. A major part of synthetic biology is the construction of
designed submodules with various functions that are built by constructing
novel gene networks inside living cells. Examples include: a genetic toggle
switch [59], oscillators [8, 52], logic gates [10, 184], and more [91].

Although far from all topics in systems and synthetic biology are directly
related to homeostasis, they are all important for understanding the overall
regulation of cells and organisms. Both fields rely heavily on mathematical
models, control theory and informatics and thus fit nicely under the umbrella
of cybernetics. Several books have been published in the last five years
aimed at introducing the reborn field of control and regulation in biological
systems to biologists, chemists, mathematicians, engineers and physicists
[36, 80, 82, 108].

1.5 Aim of this thesis

The main objective of this thesis is to take a bottom-up approach to
homeostasis on a cellular level and to:

• Explore the mechanisms of how chemical species can interact to
achieve homeostatic properties particular in relation to the internal
regulation of cells and single-cellular organisms.

• Present a set of building blocks for homeostatic control termed con-
troller motifs, which are reaction kinetic schemes with structure that
incorporates integral control.

• Show how these controller motifs can be used as building blocks in
mathematical modeling of cells and their regulatory systems.

• Present a mathematical model of sodium driven transport and ionic
homeostasis in intestinal enterocytes.

• Show how the controller motifs can be used as blueprints for designing
regulatory networks in synthetic biology.

• Extend the controller motif to model oscillatory systems, and highlight
the homeostatic properties of such systems.

12
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1.6 Main contribution

Taken together, the parts of this thesis present a guideline for construction
of regulatory networks. It presents a way of doing modeling by submodules
with known homeostatic properties that can be interconnected and expanded
in a multitude of ways. In popular jargon, the thesis presents a controller
motif modeling framework for homeostatic molecular and physiological
mechanisms. The scientific contribution of the thesis is made up of five
published scientific papers, and the, so far, unpublished results of a synthetic
implementation of a controller motif in yeast cells. Fig. 1.6 visualizes the
connections between the different parts of this thesis.

Figure 1.6: Connections between the main parts of this thesis.

Chapter 2 presents the results from Paper 1 and Paper 3 together with
some parts from Paper 2. The submodules in this work are made out by a
complete set of two-component molecular controller motifs with negative
feedback and integral control that show robust homeostasis. The controller
motifs consist of a controlled species A that is regulated by a controller
species E. The work in these papers formalizes the construction of controller
motifs and clarifies their control properties when used individually and

13
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together in pairs13. Emphasis is put on how integral control is dependent
on zero-order degradation of the controller species E. It is shown how
the controller motifs have properties such as setpoints, integral gain and
measurement functions, and how diversion from ideal conditions affects the
accuracy of the controllers. The operating limits of the controller motifs and
the cases where they break down are explored in detail. Furthermore, it is
shown how controllers can be combined within a cell to explain mechanisms
such as the integrated uptake and metabolization of homeostatic controlled
species, and the activation of pathways that leads to formation of alternative
products. Chapter 2 also includes the first part of Paper 2, which extends
the work in papers 1 and 3 by showing how integral control can be achieved
by autocatalytic formation and first-order degradation of the controller
species.
In chapter 3, the controller motifs are put to use as a part of a study

on transepithelial glucose transport and ionic homeostasis in enterocytes.
Whereas chapter 2 is largely theoretical, this chapter presents a practical
case of modeling a specific mechanism in a specific cell type. A mathematical
model of the enterocyte is developed, and this model is extended with
controller motifs. The controller motifs are used to test the hypothesis that
sodium homeostasis in enterocytes can be explained by a sodium mediated
regulation of the amount of active sodium-pump proteins (Na-K-ATPase)
in the enterocyte membrane. Simulation results of the model show that the
proposed hypothesis together with a regulation of K-channel permeability
provide ionic homeostasis during absorption of glucose. This model is also
the first mathematical model of enterocytes that integrates realistic reaction
kinetic expression for transport through major transporter proteins.

Chapter 4 presents preliminary, unpublished, results from implementation
of a Cu regulation controller motif in the yeast Saccharomyces Cerevisiae.
This work was done during my stay at the Synthetic Biology and Cellular
Control Lab of assoc. prof. David McMillen at the University of Toronto,
Mississauga. These results show how the addition of an outflow controller,
in the form of a copper transporting Cu-ATPase under control of a copper
dependent promoter, can increase the yeast’s survivability in environments
with high concentrations of copper. The added outflow controller extends

13Homeostatic controller motifs had already been an useful idea of our group before
I joined in August 2011. Four years earlier, less formalized, motifs were presented in a
paper in 2009 [130] and some had been used in a modeling study of the p53 system [85].
Seeing how powerful these motifs where, we wanted to formalize their construction and
clarify their control properties when used individually and together in pairs.
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the range of external copper wherein the yeast can maintain homeostatic
regulation. The outflow controller was synthetically added to the yeast
genome by genomic integration.
Chapter 5 is based on Paper 5 and the second part of Paper 2. The

chapter introduces oscillatory systems and shows how the two-component
controller motifs can show simple conservative oscillations, and how they,
by extension of an intermediate species in the formation of the controlled
species A or the controller species E, can exhibit stable limit-cycle type
oscillations. Also, the well-known Lotka-Volterra oscillator is demonstrated
to be equivalent to a controller motif with an autocatalytic loop in both
A and E. This chapter demonstrates how oscillations can emerge in
regulatory systems with negative feedback, and furthermore, investigates
whether biological oscillators can show robust homeostatic and adaptive
behaviors. Controller motifs are added to already oscillating systems to
create oscillatory homeostats. These homeostats are oscillators that have
the ability to keep the average level of a controlled variable at a defined
setpoint, and to keep the period/frequency of the that variable tuned
within a certain well-defined range. The work presented in chapter 5 is an
attempt to extend the classical concept of homeostasis to biological systems
that show sustained oscillations, such as circadian rhythms and calcium
signaling.

1.7 Modeling methods and presentation

The majority of the work in this thesis is dry in the opposite sense of
how the term wet is used to describe experimental benchtop experiments
with chemicals and living cells. Mathematical models are used to study
how chemical species, such as proteins, interact to form networks that
show regulatory and homeostatic properties. The mathematical models are
dynamic and formed by sets of, in general, nonlinear differential equations.
Chapters 2 and 5 (Papers 1, 2, 3, and 5) consider general networks of

interacting species with the goal of finding structures that have homeostatic
and oscillatory properties. Compared to the papers these chapters are more
focused on the theoretic concepts and properties. I have relaxed the focus
on showing examples of where such motifs are found in biology; relations
to well known mathematical models for biological systems are on the other
hand well covered.
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Standard reaction kinetic expressions for activation and inhibition are
used to describe the flow of species caused by production, degradation,
transport. For the most part no particular species are considered and
variables and states are hence in arbitrary units, unless stated otherwise.
Parameters, such as rate constants, used in examples in these chapters
are selected to give representative system responses, which visualize the
underlying concepts and properties.
The biological significance of this work is thoroughly covered by chap-

ters 3 and 4. Specific species are used in the model in chapter 3, which
considers the case of regulation of ionic species in enterocytes during glu-
cose absorption. Results in this chapter are given in proper units, and
flow expressions are based on experimental kinetic data and models of the
particular molecular mechanisms in question.

The mathematical models are explored by analysis and by numerical sim-
ulations. The models are implemented and simulated in Matlab/Simulink
from MathWorks. The low level programming language Fortran is also used
together with the subroutine LSODE [143].

1.7.1 Partition of inflow and outflow

Consider the regulation of a chemical species A in a compartment such as
a cell. The amount of A can change by (Fig. 1.7):

Inflow: A is transported over the border and into the compartment or
produced inside.

Outflow: A is transported over the border and out of the compartment,
or used/degraded inside.

In agreement with the above definitions, inflow and outflow are throughout
this thesis used to described any positive and negative terms in the differen-
tial equations describing the change of a species in a certain compartment,
i.e.,

dA

dt
= Inflow−Outflow (1.4)

16



CHAPTER 1. INTRODUCTION

Figure 1.7: Inflows (transport into the cell and internal production) increase the amount
of a chemical species A in a cell, and outflows (transport out of the cell and internal
usage) decrease it.

1.7.2 Assumption of a fixed volume

The differential equation describing the change of A, Eq. 1.4, is called the
law of mass balance. It is based on the fact that matter cannot be created
nor destroyed, except for radioactive and nuclear reactions.

In most biological systems amounts are measured in units of concentration.
Concentration is mass divided by volume, c = m/v. Consequently m = cv,
and the law of mass balance can by the product rule be written as:

dm

dt
= dc

dt
v + dv

dt
c (1.5)

The change in concentration is then:

dc

dt
= 1
v

(
dm

dt
− dv

dt
c

)
(1.6)

So when A is measured as a concentration, often denoted by using square
brackets [A], the differential equation describing its change becomes,

d[A]
dt

= 1
V

(
dA

dt
− dV

dt
[A]
)

(1.7)

where dA/dt is sum of inflows and outflows of A (in mass or molecules per
time). The distinction between Eq. 1.4 and Eq. 1.7 may be important in
systems with a nonconstant volume, such as growing cells. An increasing
cellular volume acts to reduce [A] by diluting the molecular concentration.
How important this distinction is depends, however, on how fast the cells
are growing compared to the rest of the dynamics in A.
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The effects of a changing volume is for the systems studied in this thesis
considered to be negligible and is therefore not included. It is assumed that
the volume is either constant, or very slowly changing compared to the rest
of the system dynamics, that is, dA/dt � [A]dV/dt. The volume is not
explicitly included in the theoretical treatment of the controller motifs in
chapters 2 and 5 (implicitly assumed that V = 1). Furthermore, to make
notation simpler, concentrations are written without square brackets14.

14Square brackets are used in section 3. This is simply because they were used in
Paper 4, which section 3 is based on.
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Chapter 2

The controller motif
framework (papers 1 to 3)
This chapter presents the main components of our framework for modeling
and understanding of homeostatic mechanisms: the basic controller motifs.
These two-component, reaction kinetic, motifs serve as building blocks,
as simple subsystems that exhibit homeostatic properties. To be able
to understand and use the controller motifs we give here, a detailed and
thorough exploration of their inner workings and their underlying features.
This chapter highlights capabilities as well as limits with the controller
motifs.

2.1 Analysis of regulation and homeostasis: Con-
troller motifs

The basic set of two-component controller motifs, shown in Fig. 2.1, consists
of negative feedback loops with two species: A, the controlled species (or
controlled variable CV) and E, the controller species (or manipulated vari-
able MV). The controller motifs are constructed in the following way: from
E and A inhibition or activation signals act on the other species’ synthesis
or degradation processes, but not on both. Uncontrolled disturbances in
inflow and outflow of A, marked di and do, are compensated for by E which
adjusts a compensatory flow j. There are four configurations by which E
can affect A through a compensatory flow j, and these are:

(i) Synthesis of A is:

(a) Activated by E (motif 1 and 3)
(b) Inhibited by E (motif 2 and 4)
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(ii) Degradation of A is:

(a) Activated by E (motif 5 and 7)
(b) Inhibited by E (motif 6 and 8)

And likewise there are four configurations by which A can affect E. Four
by four configurations gives a total of 16 different motifs. Eight of these
have an overall negative feedback loop (shown in Fig. 2.1) and eight are
positive feedbacks (see Fig. S3 in the Supporting Material for Paper 1).

Figure 2.1: Two-component controller motifs. The motifs fall into two operational
classes termed inflow and outflow controllers (for definition, see main text). A is called
the controlled species, and E is called the controller species. The dashed lines refer to
signal transduction that originates from one species and affects the inflow or outflow of
the other. The different inflows and outflows (solid arrows) are explained in the main
text.

The sign of the overall feedback loop is determined by starting at A and
moving along the loop while multiplying the plus/minus signs of the activa-
tion/inhibition steps with the plus/minus signs of the synthesis/degradation.
This procedure is illustrated in Fig. 2.2.

Inspection of the motifs shows that the set divides equally into two
operational classes termed inflow and outflow controllers. Inflow controllers
are defined by that they compensate by adding A to the system from an
internal or environmental source, whereas outflow controllers compensate
by removing A from the system.
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Figure 2.2: The type of feedback is determined by multiplying the signs along the
feedback loop.

2.2 The controlled part of the system, A

The dynamics of A can be written as,

Ȧ = di(·)− do(·)± j(·, E) (2.1)

where di(·) and do(·) are disturbances related to uncontrolled inflow/outflow,
and j(·, E) is the E-mediated compensatory flow.

The disturbance functions can by principle take any form; we have most
often used di(·) = kip and do(·) = kopA, where the two k’s are parameters
that we perturb to emulate disturbances (e.g., in a stepwise manner)1.

Throughout this thesis E-mediated compensatory flows are mostly writ-
ten on the form,

j(·, E) = fcf(·)E, activation. (2.2)

j(·, E) = fcf(·) KE
I

KE
I + E

, inhibition. (2.3)

where fc is typically a rate constant and the function f(·) describes the flow’s
dependence on other parameters, e.g., the level of A or external species,
temperature, or pH. For the inflow controllers we often use fcf(·) = k1,
fcf(·) = k1Aext, or a saturable function of Aext; for the outflow controllers
we often use fcf(·) = k2A, or a saturable function of A.

The E-activated flow, Eq. 2.2, has first-order kinetics with respect to E,
so that the flow increases with increasing E. The E-inhibited flow, Eq. 2.3,

1The subscript p denotes perturbation and the superscripts i and o denotes inflow
and outflow. The k’s were written as kinflow

pert and koutflow
pert in Paper 1 and Paper 2.
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decreases as E increases; its maximum rate is fcf(·) when E=0. KE
I is the

concentration of E where the flow is half of its maximum rate. No specific
inhibition mechanism is assumed at this point, i.e., the inhibition constant
KE
I does not have to be a constant in the sense of a chemical equilibrium

(dissociation) constant for a specific enzymatic inhibition type2.

2.3 The controller, E

Information about the level of A is passed to E by the measurement flow m
(Fig. 2.1). As with the compensatory flow, this flow is written on the form,

m(·, A) = gcg(·)A, activation. (2.4)

m(·, A) = gcg(·) KA
I

KA
I +A

, inhibition. (2.5)

where gc is a constant and the function g(·) describes the flow’s dependence
on other parameters, e.g., the level of E or external species, temperature,
or pH.
Negative feedback is in itself not sufficient to provide homeostasis in

the sense of perturbation independent regulation of A to a setpoint. Our
controller motifs incorporate integral feedback, which is both necessary and
sufficient for robust adaptation, see section 1.2.1 in the introduction. One
way to achieve integral feedback is to remove E with zero-order kinetics
in relation to its own concentration; this has been shown both by our
group [130] and by others [6, 7]. Zero-order degradation can occur in a
biochemical environment if E is degraded by a saturated enzyme (e.g.,
Michaelis–Menten kinetics with a low KM value).
I will illustrate this here by using motif 5 from Fig. 2.1. The change in

E is described by the following differential equation,

Ė = kEs A−
V Eset
max E

KEset
M + E

(2.6)

which can be rewritten as:

Ė = −kEs

(
V Eset
max

kEs

E

KEset
M + E

−A
)

(2.7)

2A case where KE
I is a real equilibrium constant is outlined in the Supporting Material

for Paper 1.
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With zero-order degradation, i.e. KEset
M � E, this reduces to,

Ė = −kEs

(
V Eset
max

kEs
−A

)
= −kEs (Aset −A) (2.8)

where Aset is the theoretical setpoint for this controller, found by the
steady-state condition in E (setting Ė = 0).

Aset = V Eset
max

kEs
(2.9)

Equation 2.8 is structurally similar to the standard integral control law,
in control engineering commonly written as u̇ = Gi(r − y), where r is
the reference (setpoint), y is the measurement and Gi is the integral gain
(Eq. 1.3).

Controller motif 5, shown in Fig. 2.3A, can with the assumptions above be
represented in a block schematic form as shown in Fig. 2.3B. The feedback
loop with integral action can be identified by following the line from A
via kEs , the E integrator, the multiplication block, and k2, colored red in
Fig. 2.3B. The block schematic representation can also be rearranged in
such a way that the controller, given by Eq. 2.8, and the setpoint is clearly
shown, see Fig. 2.3C. This is the conventional visualization of a feedback
system in control engineering; it clearly shows the controller integrating the
error between the setpoint and the fed back measurement of A, enabling it
to compensate for the disturbances (kip and kop).

The negative integral gain Gi = −kEs in Eq. 2.8 is essential as controller
motif 5 removes A by a compensatory outflow. If perturbations cause A
to increase, then E must increase so that the compensatory outflow can
increase to remove more A.

The same approach can be used to show the homeostatic behavior of all
the eight two-component motifs in Fig. 2.1. This is done in Paper 1 and
its Supporting Material with some added generality that shows how KEset

M

and the inhibition constant KA
I (for controllers 3, 4, 7, and 8) may affect

the accuracy of the controller, see also section 2.6

2.4 Setpoint determination

The setpoint Aset of outflow controller motif 5, where A is activating the
measurement flow (m), was above found by the steady-state condition of
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Figure 2.3: Controller motif 5. A Reaction kinetic representation and equations for
zero-order removal of E. B Block schematic representation of the system. The feedback
loop is highlighted in red. C Control engineering type block schematic representation
showing the distinction between the controller and the controlled system.

the manipulated variable E together with the assumption of zero-order
degradation, i.e., KEset

M � E. Inflow controller 3, where A is inhibiting
the measurement flow, is used below to show how Aset is determined and
defined in general. Letting the A-inhibiting measurement flow be given by
Eq. 2.5 the change in E is described by,

Ė = gcg(·) KA
I

KA
I +A

− zcz(·) (2.10)

where a general form zcz(·) is used for the degradation term. The steady-
state condition in E and ideal conditions, i.e., g(·) = z(·) = 1, are used to
determine the theoretical setpoint. For inflow controller 3:

Aset = gcK
A
I

zc
−KA

I (2.11)

The basis for setting g(·) and z(·) equal to 1 is to make A the only variable
in the differential equation for the manipulated variable (E), thus making
it possible to find a constant solution for A using only the steady-state
condition in Ė.
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The procedure above was used in Paper 3; the presentation in Paper 1
is slightly different. Inflow controller 3 is therein given by the following
equation (Eq. 2 in Paper 3):

Ė = kEs
KA
I

KA
I +A

− V Eset
max E

KEset
M + E

(2.12)

This is the same as Eq. 2.10 with gc = kEs , g(·) = 1, zc = V Eset
max , and

z(·) = E/(KEset
M + E). With g(·) = 1, the remaining idealization is to

assume KEset
M � E so that z(·)→ 1. Paper 1 then defines the setpoint as,

Aset = kEs K
A
I

V Eset
max

−KA
I (2.13)

which is exactly the same definition as in Eq. 2.11.
A list of the setpoint expressions for all the eight controller motifs is

given in Table 1 in Paper 1. Our definition of the controller setpoint always
assumes ideal conditions3, even when the motifs are used in modeling real
systems where for example removal of E is not perfectly zero-order. In such
cases controller accuracy is introduced to describe the difference between
the theoretical setpoint (Aset) and the steady-state value of A (Ass), see
section 2.6.

2.5 Controller breakdown

The homeostatic behavior of inflow controllers breaks down when there
are large uncontrolled inflows. This happens when the E-mediated com-
pensatory flow (j) becomes close to zero. Simply put, an inflow controller
cannot compensate if there is already too much A; it can only add more
A, not remove it. Likewise, the outflow controllers lose their homeostatic
behavior in the presence of large uncontrolled outflows. We will in the fol-
lowing use the wording dominating inflow/outflow disturbances to describe
whether the net disturbance is an inflow or an outflow (d(·) = di(·)− do(·)).
An inflow controller breaks down at dominating inflow disturbances, and
an outflow controller breaks down at dominating outflow disturbances.
In the event of a controller breakdown the steady-state behavior in A

is determined by the disturbances, di(·) and do(·). Fig. 2.4 shows typical
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Figure 2.4: Controller breakdown. Steady-state values of A and E as functions of
inflow and outflow disturbances, di(·) = ki

p and do(·) = ko
pA. Inflow controller motif 4

shown in A and B, and outflow controller motif 6 shown in C and D. The setpoint for
both controllers is Aset = 1.0. The behavior of Ass in A and C is typical for inflow and
outflow controllers, respectively. In the breakdown region Ess will either go towards zero
or infinity depending on whether the compensatory flow is E-activated or E-inhibited.
Both motif 4 and 6 have E-inhibited compensatory flows causing E →∞ in B and D.
The rate equations for motif 4 are: Ȧ = k1K

E
I /(KE

I + E) + ki
p − ko

pA, Ė = kE
s −

(V Eset
max E/(KEset

M + E))(KA
I /(KA

I +A)), and the parameters used are: k1 = 106, KE
I =

10−6, kE
s = 1, V Eset

max = 106, KEset
M = 10−6, KA

I = 10−6 The rate equations for motif 6 are
Ȧ = ki

p−ko
pA−k1AK

E
I /(KE

I +E), Ė = kE
s −V Eset

max EA/(KEset
M +E). The parameters

used are: k1 = 106, KE
I = 10−6, kE

s = 1, V Eset
max = 1, KEset

M = 10−6, KA
I = 10−6.

behavior of controller breakdown using inflow controller 4 and outflow
controller 6 (Fig. 2.1) as examples.

The horizontal segments of the surfaces in panels A and B of Fig. 2.4 are
where the steady-state level of the controlled variable (Ass) is regulated so
that it has the same value as the setpoint (Aset). These segments form the
homeostatic region, where the manipulated variable (E) is able to adjust

3It is only under ideal conditions, z(·) = g(·) = 1 , that the steady-state solution of Ė
gives a well defined setpoint for A.
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the compensatory flow j to compensate for changes in inflow and outflow.
The controller breakdown at di(·) = do(·) limits the homeostatic region,
creating a border.

2.6 Controller accuracy

Even in the homeostatic region the actual steady-state value of A (Ass)
may deviate from the theoretical setpoint Aset. This happens when the
value of KEset

M is comparable to the level of E, i.e., there is no longer perfect
zero-order removal of E. The difference between the actual steady-state
value and the setpoint is called the controller’s inaccuracy, defined as:

αi = |Aset −Ass| (2.14)

A high accuracy means that the inaccuracy αi is low and vice versa. Fig. 2.5
illustrates how controller accuracy changes with variations in KEset

M . It also
shows the difference between controller breakdown (region where j → 0)
and controller accuracy.

Figure 2.5: Controller accuracy and controller breakdown. A System where the
outflow of A is controlled by outflow controller 5. B Steady state values of A as a
function of disturbances in inflow (di(·) = ki

p) and outflow (do(·) = ko
pA) shown for

increasing KEset
M . A decreased accuracy (increased inaccuracy) is observed as KEset

M

increases. Controller breakdown and loss of homeostasis happens when the uncontrolled
outflow becomes larger than the inflow. The rate equations used for motif 5 are:
Ȧ = ki

p − ko
pA − E(V A

maxA)/(KA
M + A), Ė = kE

s A − (V Eset
max E)/(KEset

M + E), and the
parameters used are: kE

s = 1, V Eset
max = 1, V A

max = 1, and KA
M = 10−3.
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The rate equations of the individual controller can be compared with
the structure of a standard integral control law to further elucidate what
happens at nonideal conditions. For instance Eq. 2.10, which describes
controller motif 3 and 8 can be written on the form Ė = Gi (Aset −Ameas),

Ė = zcg(·)
A+KA

I︸ ︷︷ ︸
Gi

[(
gcK

A
I

zc
−KA

I

)
︸ ︷︷ ︸

Aset

−
(
z(·)
g(·)

(
A+KA

I

)
−KA

I

)
︸ ︷︷ ︸

Ameas

]
(2.15)

where Gi is the integral gain, and Ameas is the measurement signal that
is compared to the setpoint Aset. Note that the measurement signal,
Ameas, is not an easily measurable physical signal or flow4. It is in regard
to the controller motifs an abstraction, which reflects the overall signal-
transduction events originating from A and leading to a change in E.
Fig. 2.6 shows a schematic block diagram of how a measurement system
can be thought to affect the feedback of A.

Figure 2.6: Schematic block diagram of a regulatory system with a measurement system
included in the feedback path. The output A will only reach the setpoint Aset if the
output and the measurement is one-to-one.

Expressions for accuracy, α, the measurement signal, Ameas, and integral
gain, Gi, for each controller motif can be found in Table 1 in Paper 15.

4The idea of a measurement is adapted from control engineering where a measurement
system is used to convert a measured quantity to a signal which can be processed by an
electronic controller, e.g. a voltage, or a current signal between 4-20 mA.

5Notice that Paper 1 uses the word accuracy (defined as α = Aset −Ass) to denote
what really is a measure of inaccuracy. The definition of inaccuracy in this thesis is used
to avoid that awkwardness. Also note that in Table 1 in Paper 1 g(·) is assumed to be 1
and z(·) = f(E) = E/(KEset

M + E).
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2.7 Combining controllers

Many of the homeostatic control mechanisms that occur in higher organ-
isms are mediated by hormones that often act as antagonistic pairs when
exercising control on a particular compound, such as blood glucose [155].
One mechanism (e.g. glucagon in the glucose system) is responsible for
increasing the amount of the controlled compound and another mechanism
(e.g. insulin in the glucose system) is responsible for decreasing the amount
of the controlled compound. The use of two controllers, each operating in
their own direction, in biological systems has been called (integral) rein
control [31, 155, 156]. The reason for having two antagonistic controllers is
to allow the system to be stable against relatively large perturbations in
either direction6.
The same type of antagonistic pairs is also often seen with membrane

bound transporter protein on the cellular level. The invasive yeast Candida
albicans uses a high affinity copper transporter, Ctr1p, to transport copper
ions into the cell [117], and an ATPase pump protein, Crp1p, to transport
copper ions out of the cell if the internal concentration gets too high [198].
Copper is an essential cofactor for several enzymes, but very toxic at higher
concentrations. The yeast regulatory system for copper is presented in
detail in chapter 4.
The controller motifs can be used as building blocks and combined to

model this type of pairwise control. Fig. 2.7 shows an archetypical example
of combined inflow/outflow controllers using controllers 1 and 5, described
by the following differential equations:

Ȧ = kip − kopA+ V Aext
max Aext

KAext
M +Aext

E1 −
V A
maxA

KA
M +A

E5 (2.16)

Ė1 = kE1
s −

V
Eset,1
max E1

K
Eset,1
M + E1

A (2.17)

Ė5 = kE5
s A− V

Eset,5
max E5

K
Eset,5
M + E5

A (2.18)

The two manipulated variables E1 (controller 1) and E5 (controller 5) have
the functions of inflow and of outflow transporters7. The compensatory

6It is in a way similar to a car where you have one mechanism for acceleration and
one mechanism for deceleration.

7Additional combinations with two controllers of the same type (inflow-inflow or
outflow-outflow) are discussed in Paper 1.
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flow in A from the external source (Aext) and the compensatory flow of A
out of the system are both described by Michaelis–Menten kinetics with
respect to Aext and A, respectively. The inflow controller has the setpoint
Ainset (from Eq. 2.17) and outflow controller has the setpoint Aoutset (from
Eq. 2.18). For combined inflow/outflow controllers there are three possible
setpoint combinations, Ainset < Aoutset , Ainset = Aoutset , and Ainset > Aoutset . These
combinations are described in detail in the following sections.

Figure 2.7: Combining inflow controller 1 and outflow controller 5. The inflow controller
will add A when the outflow perturbation is larger than the inflow perturbation. In a
similar way, the outflow controller will remove A when the inflow perturbation is larger
than the outflow perturbation. Both controllers have their own setpoints, see main text.

2.7.1 Combination 1, Ain
set < Aout

set

Having the setpoint of the inflow controller at a lower level than the
setpoint of the outflow controller is unquestionably the most logic and
sane combination. The outflow controller can compensates for high inflow
disturbances and is active when the level of A is higher than Aoutset ; the inflow
controller is in this case inactive because of its lower setpoint. Moreover,
the inflow controller can compensate for high outflow disturbances and
is active when the level of A is lower than Ainset; the outflow controller is
in this case inactive because of its higher setpoint. When combined like
this the two controllers operate independently, and for the system as a
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whole this effectively removes the nonhomeostatic regions of the individual
controllers (Fig. 2.4). Thus, the overall region of homeostasis is the union
of the homeostatic regions of the inflow/outflow controllers, see Fig. 2.8h.

Figure 2.8: System behavior when combining an inflow and an outflow controller such
that Ain

set < Aout
set described with a simplified tank analogy. Black arrows indicate active

controllers and active inflow/outflow perturbations, and white arrows indicate inactive
controllers. a, b, c The upper row shows how A settles to Aout

set (b) in the presence of
a dominating inflow perturbation. e, f, g The lower row shows how A settles to Ain

set

(f) in the presence of dominating outflor perturbations. d Both controllers are inactive
when Ain

set < A < Aout
set . h The steady-state value of A as a function of the inflow and

outflow disturbances/perturbations (ki
p and ko

p); the three segments in Ass corresponds
to the steady-state levels shown in b, d and f. Parameters listed in Paper 1 SM.

The homeostatic domains of the two controllers are separated by a
transition zone, in which both controllers are inactive. This transition zone
may be interpreted as the acceptable range of A; no regulatory action is
needed if A is between the two setpoints.
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2.7.2 Combination 2, Ain
set > Aout

set

This setup is far from optimal as the two controllers will be working against
each other. The inflow controller adds A to the system to increase the level
to Ainset, but at the same time the outflow controller removes A to reduce
the level to Aoutset .

During this process the compensatory flows (jE1 and jE5) and the levels of
Ein and Eout will continually increase if the controllers have an E-activated
compensatory flow (1, 3, 5 and 7). The actual level of A will be somewhere
between the two setpoints dependent on which of the two controllers is most
dominant (depending on the parameters for the individual controllers). If
the controllers are of the inhibiting kind (2, 4, 6 and 8), E will become
close to zero, leading to the least possible inhibition and the maximum
compensatory flow.

2.7.3 Combination 3, Ain
set = Aout

set

In the trivial case with just one common setpoint the steady-state level
of A ends up in the common setpoint (within the limits of the accuracy).
Both controllers will in general be active and the level of activity (i.e., the
size of the compensatory flows) depends on the levels of disturbances in
inflow and outflow. Although this setup might be tempting due to a tight
regulation, it is not preferable as small changes in the parameters of the
motifs can bring the whole system into the Ainset > Aoutset region.

2.8 Integral windup in combined controllers

Integral windup is the occurrence of an unlimited growth in the manipulated
variable E (integrated error). Windup issues can occur in many cases,
particularly when controllers are combined in pairs as described in the
previous section. The thing to consider is the sign of the derivative of E
when the controller is in its region of breakdown, i.e., when its compensatory
flow j is close to zero. Take inflow controller 2 and outflow controller 6 as
an example, they breakdown with E →∞, and Ė > 0.
A graphical method to determine whether windup issues may occur is

shown in Fig. 2.9A, where the signs of the derivatives of the manipulated
variables are given for each controller motif. Possible windup issues in a
combination of controllers can be found by organizing the pair according
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to their setpoints along the axis of steady-state A values. This is done in
Fig. 2.9B, for the example of combined inflow 1 and outflow 5 controllers
with Ainset > Aoutset .

Figure 2.9: Determination of possible windup behavior using combined controllers.
A. Sign-change of Ė for the eight controllers as a function of steady-state concentration
of A. Ė = 0 at A = Aset. B. Inflow controller 1 and outflow controller 5 combination
with Ain

set > Aout
set ; both controllers are active and the Ass lies between the two setpoints.

Integral windup in both E1 and E2.

2.8.1 The dangers of combining two inhibiting controllers

Studying Fig. 2.9 it becomes apparent that any combination of controllers
that inhibits the compensatory flow (2, 4, 6 or 8) will have windup issues
when Ainset < Aoutset . An example is shown in Fig. S19 in the Supporting
Material for Paper 1. These issues may be tolerable if there are some other
mechanisms that limits the maximum amount of E, see section 2.9 about
controller limitations.

An inhibiting inflow and an inhibiting outflow controller can be combined
without windup issues if the setpoints are arranged as in combination 2
(Ainset > Aoutset ). Although this leads to maximum compensatory inflow and
outflow when A is between the two setpoints, it keeps the manipulated
variables near zero. It is counter-intuitive to regulate the level of A by
adding and removing as much as possible at the same time. Nevertheless,
there are cases where such an arrangement might be advantageous. Imagine
that A is a chemical species that is part of a larger pathway. A cell may
want to keep A within certain limits, but at the same time also maximize
the total flow of A through the pathway; for example to maximize energy
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uptake or growth. If A falls below the lower limit (Asetout) the outflow is
reduced while the inflow is maintained at its maximum. Likewise if A
increases above its high limit (Ainset) the inflow is reduced while the outflow
(consumption) is kept at its maximum.

Of course, the flows could also be maximized in the same way by combin-
ing two activating controllers (1, 3, 5 and 7) with the setpoints arranged as
in combination 2 (Ainset > Aoutset ). But, then some other mechanism would
be needed to limit the maximum amount of E as these controllers have
windup issues in this type of setpoint combination.

2.9 Controller limitations

Breakdown and controller accuracy are two factors that affect the perfor-
mance of our controller motifs. Controller breakdown occur when individual
inflow or outflow controllers experience dominating inflow or outflow dis-
turbances so that the compensatory flow becomes close to zero.

One additional factor for controller performance not considered so far is
saturation in the compensatory flow. Any biophysical system will have a
limit in how high the compensatory flow can become. At some point the
compensatory flow becomes saturated. This can either happen because
there is a limit in the amount of E, for example if E is a transporter
protein, or because there are other factors limiting the compensatory flow
so that it saturates and becomes independent of E. These two situations are
different in that the first one limits the amount of E (E itself is saturated),
whereas the second one does not (the flow is saturated). The effect of the
first situation in illustrated in Fig. 2.10. This is the same system as in
Fig. 2.8, but with limits in the amount of E. The combined homeostatic
region (Fig. 2.10A) is now reduced and homeostasis breaks down both at
high inflow and outflow disturbances when Eout,5 and Ein,1 saturates, see
Fig. 2.10B.
In the second situation the compensatory flow saturates before the

manipulated variable. The homeostatic region of A is similar to the one
shown in Fig. 2.10A, but when the flow saturates there will be a steady
increase in E towards infinity8. This is again a type of integral windup.

8Or towards the point where E begins to saturate.
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Figure 2.10: Homeostatic region for combined controllers with capacity limits due to
saturation in the manipulated variables. A Steady-state levels of A. B Steady-state
levels of Ein,1 and Eout,5. A hard saturation is introduced, limiting Ein,1 to 2 and Eout,5

to 3. Parameters listed in Paper 1 SM.

2.9.1 A note on the expressions used for inhibition and ac-
tivation

Strictly speaking the form used for E-inhibited compensatory flow does
saturate; the factorKE

I /(KE
I +E) has a maximum value of 1 when E = 0. In

most of our calculations, however, this capacity limit (saturation) is placed
so that it lies beyond the operating range of the controller (idealization).
The KE

I value nonetheless affects accuracy of the inhibiting controllers
in their operating range. The form used for E-activated compensatory
flow is first-order and does not saturate. If it was replaced by saturation
kinetics, e.g. E/(KE

a +E), then the homeostatic performance and accuracy
of activating controllers would also be affected by the value of KE

a .

2.9.2 A note on why zero-order kinetics is modeled by a
Michaelis–Menten expression

In this thesis zero-order removal of any of the state variables is almost
exclusively modeled as Michaelis–Menten kinetics with a very low KM .
This is done even though ideal zero-order is used as a condition to define
the setpoint in sections 2.3 and 2.4. A Michaelis–Menten expression is
preferred, especially when the model is simulated, as it protects state vari-
ables from attaining negative values. This can be seen easily by inspecting
the differential equation, consider for example Eq. 2.12 for the controller
species in controller motif 3; the following holds for any KEset

M ,

lim
E→0

V Eset
max E

KEset
M + E

= 0 (2.19)
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which makes it impossible for a positive E to ever become negative9. A
Michaelis–Menten expression is asymptotically zero-order when E � KEset

M ,
and asymptotically first-order when E � KEset

M .
The use of this expression is particularly important when modeling

systems with both inflow and outflow controllers. As discussed in section 2.7,
one controller is often inactive, with E → 0, in a combined setup.

2.10 Controller motifs with autocatalysis

The requirements of zero-order kinetics in the removal of the manipulated
variable can be replaced by autocatalysis and first-order removal. Auto-
catalysis is used to described a reaction where the product is also a reactant
and therefore a catalyst of its own production10. Consider the equation for
E in outflow controller 5 (Fig. 2.3) with autocatalysis in the formation of
E and first-order removal of E.

Ė = kEs AE − k8E (2.20)

Replacing Ė/E with ˙ln(E) (valid for E > 0) gives,

˙ln(E) = kEs A− k8 = −kEs (Aset −A) (2.21)

where the theoretical setpoint Aset is k8/kEs . Again we have a similar
structure as the standard integral control law; the same structure as in
Eq. 2.8, but with the error being proportional to the derivative of the
logarithm of the manipulated variable instead of the usual derivative.
Panels A and B in Fig. 2.11 show inflow controller 1 and outflow con-

troller 5 with autocatalytic formation and first-order removal of E; the
steady-state value of A is shown for different disturbances in inflow and out-
flow (kip and kop). Both controllers show the typical behavior of breakdown
at high inflow and outflow disturbances, respectively.

9In addition to being convenient the Michaelis–Menten expression is also more close
to the real behavior of a biochemical reaction.

10The reaction X + Y k→ X is autocatalytic with a positive feedback from X to its own
production. The production of X is given by the differential equation Ẋ = kXY.
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Figure 2.11: Integral control by autocatalysis. A Inflow controller 1 with autocatalysis
in E. d ln(E)/dt is proportional to the error between the setpoint and A. The plot to
the right shows steady-state behavior at varying ki

p and ko
p; all other rate constants are

kept at 1. B Outflow controller 5 with autocatalysis in E. d ln(E)/dt is proportional to
the error between the setpoint and A. The plot to the right shows steady-state behavior
at varying ki

p and ko
p; all other rate constants are kept at 1.

2.11 Stability analysis

The previous sections have focused on showing qualitative and quantitative
steady-state properties of the controller motifs. The ability to reach a
steady state does however depend on the actual kinetics and the values
of rate constants. We will in the following show how the stability11 of a
controller motif can be analyzed by using standard methods from control
theory. There is in itself nothing new with this type of analysis, but it is
helpful for the understanding of the controller motifs and their behavior.
We will use outflow controller 5 with autocatalytic formation and first

11We are here interested in stability in the sense of Lyapunov stability (of equilibrium
points), see definition in [92 chap. 4].
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order removal of E, shown in Fig. 2.11B, as an example. This controller
motif is described by the following differential equations,

Ȧ = kip −
k3A

KM +A
E (2.22)

Ė = kEs AE − k8E (2.23)

where the outflow disturbance kop is set to zero (removed) to avoid controller
breakdown. The states and parameters are all real and positive12, i.e.,
A,E, kip, k3,KM , k

E
s , k8 > 0. This system has an equilibrium point in:

Ass = k8
kEs

, Ess =
kipk

E
s KM + kipk8

k3k8
(2.24)

A common way to analyze the stability of a nonlinear system is to linearize
it with respect to the equilibrium point [92], and then use linear methods
to analyze the behavior of the linear system. This procedure is straightfor-
ward, but does only provide information about local behavior around the
equilibrium point. We will here instead show how to analyze the stability
of a nonlinear controller motif directly by using Lyapunov’s direct method,
summarized as a theorem below (from [92 chap. 4]).

Theorem: Lyapunov’s direct method. Lyapunov’s direct method uses func-
tions with special properties to prove stability in a domain D. (The domain may
also be global, i.e., Rn.) Let the origin be an equilibrium point for the system
ẋ = f(x) and D ⊂ Rn be a domain containing x = 0. Let V : D → R be a
continuously differentiable function such that:

V (0) = 0 and V (x) > 0 in D− {0} (2.25)

V̇ (x) ≤ 0 in D (2.26)
Then, the origin is stable. Moreover if,

V̇ (x) < 0 in D− {0} (2.27)

then the origin is asymptotically stable. A function V that fulfills these criteria is
called a Lyapunov function. For proof see [92 chap. 4].

The kinetics of the removal of A plays a key-role in the stability of this
system. We will first consider the mathematically simpler case where the
removal of A is completely independent of the level of A, i.e., saturated
kinetics with KM = 0.

12Notice that E = 0 should never be an initial condition of this system, because E will
then stay identically at 0 forever. E will however never become 0 by itself in final time
(Ė → 0 as E → 0).
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2.11.1 Conservative oscillations with KM = 0

With KM = 0, Eqs. 2.22 and 2.23 reduces to,

Ȧ = kip − k3E (2.28)
Ė = kEs AE − k8E (2.29)

and the equilibrium point reduces to (Ass = k8/kEs , Ess = kip/k3). The
analysis is further simplified by introducing the variable change ξ = ln(E)
(E = eξ)13, so that the system can be expressed as:

Ȧ = kip − k3e
ξ (2.30)

ξ̇ = kEs A− k8 (2.31)

Moreover, we move the equilibrium point to the origin by the variable
change:

α = A− k8
kEs

, ε = ξ − ln(
kip
k3

) (2.32)

The resulting system is,

α̇ = kip − kipeε, α > − k8
kEs

(2.33)

ε̇ = kEs α, ε ∈ R (2.34)

which has an equilibrium point in (0, 0).
We will now show that the function,

V (α, ε) = kip (eε − ε− 1) + 1
2k

E
s α

2 (2.35)

is a Lyapunov function that can be used to show the stability properties
of the transformed system (Eqs. 2.33–2.34), and hence also the stability
properties of the untransformed system (Eqs. 2.28–2.29). To be a Lyapunov
function V (α, ε) must be positive definite (Eq. 2.25). It is easy to see that
V (0, 0) = 0, and that last term 1

2k
E
s α

2 > 0 when α 6= 0. The first term can
by a short analysis of the sign of its derivative be shown to also be positive
definite: eε − ε− 1 > 0 when ε 6= 0. Thus,

V (0, 0) = 0 and V (α, ε) > 0 in D− {0} (2.36)
13The ln function is an isomorphism from R+ → R.

39



CHAPTER 2. THE CONTROLLER MOTIF FRAMEWORK

where the set D =
{

(α, ε) ∈ R2
∣∣∣α > − k8

kE
s

}
. Furthermore, the derivative

of a Lyapunov function along the system trajectories must be negative
semidefinite (Eq. 2.26).

V̇ (α, ε) = ∂V

∂α
α̇+ ∂V

∂ε
ε̇ (2.37)

V̇ (α, ε) = kipk
E
s α− kipkEs αeε + kipk

E
s αe

ε − kipkEs α = 0 (2.38)

Thus, both conditions of Lyapunov’s direct method (Eqs. 2.25 and 2.26)
are satisfied, and we conclude that the transformed system is stable in D.
The origin is not asymptotically stable, since V̇ (α, ε) = 0; the origin is
in fact marginally stable, and the system shows conservative oscillations.
Trajectories starting at a Lyapunov surface V (α, ε) = C will always remain
on the same surface. This holds for all kip, k3, kEs , k8 > 0 when KM = 0.
Conservative oscillations are discussed in detail in chapter 5.

Fig. 2.12 shows an example of the behavior when KM = 0. The reduced
system in Eqs. 2.28 and 2.29 shows oscillations in both A and E, with
different amplitudes for different initial conditions, see Fig. 2.12A. The
Lyapunov function (Eq. 2.35) is plotted in Fig. 2.12B, together with the
system trajectories of the transformed system in Eqs. 2.33–2.34.

Figure 2.12: A. Oscillations in A (blue) and E (green) shown for controller motif 5
with autocatalytic formation and first-order removal of E, and with zero-order removal of
A with respect to A (Eqs. 2.28–2.29). At time t = 60 and t = 120 A and E are abruptly
changed to new values (new initial conditions). B. Lyapunov function (Eq. 2.35) of the
transformed system in Eqs. 2.33–2.34. The function value is 0 at the origin and the
function is positive definite. Trajectories of the transformed system remains at a constant
value of V (α, ε). Parameters used: ki

p = 0.5, k3 = 0.2, KM = 0, kE
s = 0.3, and k8 = 0.3;

initial conditions (A,E) = (1, 2), (1, 1.75), (1, 1.5).
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What happens if we include a first-order outflow disturbance

To avoid having to deal with the region of controller breakdown, we analyzed
the controller motif (Eqs. 2.28–2.29) without including outflow disturbance.
Another reason for doing this is that a first-order outflow on the form
kopA acts similar to friction in a physical system. We would thus not have
observed conservative oscillations with KM = 0, if a first-order outflow
disturbance had been included.

It is possible to prove that the controller motif becomes asymptotically
stable in the homeostatic region when a first-order outflow disturbance on
the form kopA is added to A. The homeostatic region is the region where
inflow disturbances are dominating, i.e., kip > kopk8/kEs , see section 2.5. We
will not include the proof here, as the procedure is almost the same as
above14.

2.11.2 Asymptotic stability with KM > 0

We will now consider the more general case with KM > 0. The controller
motif (Eqs. 2.22–2.23) is transformed by the same two step process. First
by doing the variable change ξ = ln(E), and by moving the equilibrium
point the origin15. The transformed system is:

α̇ = kip −
(α+ k8

kE
s

)(kipkEs KM + kipk8)eε

k8(KM + α+ k8
kE

s
)

, α > − k8
kEs

(2.39)

ε̇ = kEs α, ε ∈ R (2.40)

We continue by using the same Lyapunov function as before, which we know
is positive definite (Eq. 2.36). The derivative along the system trajectories
is now given by:

V̇ (α, ε) = ∂V

∂α
α̇+ ∂V

∂ε
ε̇ (2.41)

V̇ (α, ε) = kEs α

kip − (α+ k8
kE

s
)(kipkEs KM + kipk8)eε

k8(KM + α+ k8
kE

s
)

+
(
kipe

ε − kip
)
kEs α

(2.42)
14The proof can be done with the same transformations (note that Ess is changed), but

requires a slightly adjusted Lyapunov function (V (α, ε) = (ki
p−ko

p
k8
kE

s
)(eε−ε−1)+ 1

2k
E
s α

2),
and the theorem of Barbashin and Krasovskii, which is introduced in the following section.

15The procedure is the same as in the previous section, and hence not repeated.
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V̇ (α, ε) = kipk
E
s αe

ε

1−

(
α+ k8

kE
s

) (
kEs KM + k8

)
k8
(
KM + α+ k8

kE
s

)
 (2.43)

We will proceed to show that V̇ (α, ε) is negative semidefinite in D ={
(α, ε) ∈ R2

∣∣∣α > − k8
kE

s

}
by considering the three cases: α < 0, α > 0, and

α = 0.

(i) α < 0
V̇ (α, ε) < 0 when α < 0 if,(

α+ k8
kE

s

) (
kEs KM + k8

)
k8
(
KM + α+ k8

kE
s

) < 1 (2.44)

αkEs KM < 0 (2.45)

which is true for all α < 0.

(ii) α > 0
V̇ (α, ε) < 0 when α > 0 if,(

α+ k8
kE

s

) (
kEs KM + k8

)
k8
(
KM + α+ k8

kE
s

) > 1 (2.46)

αkEs KM > 0 (2.47)

which is true for all α > 0.

(iii) α = 0
V̇ (α, ε) = 0 when α = 0.

Taken together these three cases proves that V̇ (α, ε) ≤ 0.

V̇ (α, ε)|α 6=0 < 0, and V̇ (α, ε)|α=0 = 0 (2.48)

We can however only conclude with stability and not with asymptotic
stability by Lyaponov’s direct method. Asymptotic stability by Lyapunov’s
direct method requires that V̇ is negative definite everywhere except the
origin, see Eq. 2.27.

Finding a Lyapunov function that has a strictly negative definite deriva-
tive can be very difficult compared to finding a function with only a negative
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semidefinite derivative. We can, however, conclude with asymptotic stabil-
ity if the negative semidefinite derivative can be shown to comply with the
so-called theorem of Barbashin and Karsovskii16 [92 chap. 4].

The theorem of Barbashin and Krasovskii. Let x = 0 be an equilibrium
point for the system ẋ = f(x). Let V : D → R be a continuously differentiable
positive definite function on a domain D containing the origin, such that V̇ (x) ≤ 0
in D. Let S be the set of all states where V̇ (x) = 0, that is:

S =
{
x ∈ D

∣∣V̇ (x) = 0
}

(2.49)

Suppose that no solution can stay identically in S, other than the trivial solution
x(t) = 0. Then, the origin is asymptotically stable. For proof see [92 chap. 4].

In our case the set S = {(α, ε) ∈ D |α = 0}. The derivative of α, Eq. 2.39
in S is,

α̇ = kip − kipeε (2.50)

showing that the only solution that can stay identically in S is the trivial
solution. Thus, we conclude that the transformed system is asymptotically
stable in D. This holds for all kip, k3, kEs , k8 > 0 when KM > 0.

Fig. 2.13 illustrates the typical behavior of controller motif 5 with auto-
catalytic formation and removal of E (Eqs. 2.22–2.23) when KM > 0. A
and E ends up at the equilibrium point (Eq. 2.24) for all nonzero initial
conditions, see Fig. 2.13A. The value of V (α, ε) diminishes as the trajecto-
ries of the transformed system (Eqs. 2.39–2.40) spiral down towards the
origin, see Fig. 2.13B.

16The theorem of Barbashin and Karsovskii was published before La Salle published
the better known invariance principle, which is more general [110].
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Figure 2.13: Typical behavior of of controller motif 5 with autocatalytic formation
and removal of E (Eqs. 2.22–2.23) when KM > 0. A. System response in A (blue) and
E (green) shown for three different initial conditions (changed at t = 80 and t = 160).
B. Lyapunov function (Eq. 2.35) plotted together with trajectories of the transformed
system (Eqs. 2.39–2.40). (Note that the Lyapunov function is exactly the same function
as plotted in Fig. 2.12B, but this plot has a slightly different axis and camera angle.)
Parameters used: ki

p = 0.5, k3 = 0.2, KM = 0.5, kE
s = 0.3, and k8 = 0.3; initial conditions

(A,E) = (1, 2), (1, 1.75), (1, 1.5).
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Chapter 3

Modeling glucose transport
and ionic homeostasis in
enterocytes (paper 4)
The study and modeling of ionic homeostasis in enterocytes started off as
an idea to build a mathematical model of a cell; the idea was to have a
virtual cell, implemented in Matlab/Simulink, that we could use to test out
different controller motifs and regulatory structures. The decision to study
enterocytes was partly taken because of the important role they have in
enabling uptake and transport of nutrients; we thought that an enterocyte
model could, in the future, be a piece in studying the regulation of nutrient
uptake and in particular the glucoregulatory system of the whole animal.

Enterocytes are also on their own an intricate and fascinating regulatory
system. The uptake of nutrients like glucose and amino-acids is coupled to
the uptake of sodium [69, 136, 146, 201], and enterocytes therefore must
have regulatory mechanisms that respond to the considerable changes in the
inflow of sodium during absorption. The Na-K-ATPase membrane protein,
a sodium potassium pump, plays a major role in this regulation. When the
inflow of Na+ increases, e.g. due to absorption of glucose, the enterocyte
has to adapt the outflow of Na+. Experiments have shown that there is
no sustained higher concentration of intracellular Na+ during absorption
of nutrients [78, 159]. The outflow of Na+ can be increased through the
Na-K-ATPase, but Na-K-ATPase also imports K+ into the cell; thus an
increase in Na-K-ATPase Na+ outflow must be followed by an increase in
K+ outflow. If not, the enterocyte would be flooded by either Na+ or K+.

To elucidate the regulatory mechanisms behind ionic homeostasis during
changing nutrient transport we have, in this thesis, developed an integrative
model of glucose transport and ionic homeostasis in enterocytes. The
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model is built by combining reaction kinetic expressions for transport
through major transporter proteins and diffusive flows into a set of nonlinear
differential equations. The model also includes calculation of membrane
potentials using the iterative Newton-Raphson method.

3.1 Physiological work mode of enterocytes

The active surface area for absorption in the small intestine is greatly
increased by circular folds lined with intestinal villi. Along these villi
the intestinal epithelium consists of a single columnar layer of nutrient
absorbing enterocytes. The active surface area is increased even more by
the apical brush border membrane (microvilli) on the enterocytes.
Pancreatic enzymes hydrolyze carbohydrates to disaccharides that are

further hydrolyzed into glucose, galactose, and fructose at the brush border
membrane of the enterocytes.

Enterocytes are known to be sodium absorbing epithelia [160]. It has been
shown that Na+ and Cl− enters across the brush border membrane by a
mechanism that behaves as an obligatory one-for-one process [127]. Sodium
is also absorbed in cotransport with glucose and amino-acids. Glucose
is actively transported against its chemical gradient into the enterocyte
by cotransport with sodium in SGLT1 [136, 201], a cotransporter protein
primarily expressed on the apical, brush border, membrane of intestinal
enterocyte. SGLT1 works by undergoing a cycle of conformational changes,
translocating its binding site from the outside to the inside of the cell;
the stoichiometry is two Na+ ions for each glucose molecule [81, 138].
Galactose can also bind to SGLT1 in the same way as glucose. Fructose
enters by facilitated diffusion through GLUT5. Fig. 3.1 gives an overview
of important transporter proteins in the enterocyte.
The sodium concentration inside the enterocyte ([Nac]) is kept low by

basolateral Na,K-ATPase, which cleaves ATP in order to transport sodium
ions against their concentration gradient out of the cell, and potassium ions
against their gradient into the cell [69, 146]. The sodium concentration in
the intestinal chyme ([Nam]) is roughly the same as in extracellular fluid and
plasma, i.e. around 140 mM. This is much higher than the concentration
inside the enterocytes, i.e. around 50 mM [69]. The Na-K-ATPase extrudes
three Na+ ions, takes in two K+ ions, and consumes one ATP molecule in
each pump cycle, under normal in vivo conditions [69, 145].
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The imported glucose, galactose and fructose are transported out of the
enterocytes and into the serosal extracellular area by GLUT2 [114, 177],
except for of the part of it that is metabolized by the enterocyte. Movement
of galactose and fructose is always favorable as their concentrations in blood
are low (they are swiftly taken up by the liver). The cotransport of glucose
through SGLT1 is utilized to up-concentrate glucose in the enterocyte so
that it also can exit through GLUT2 into the extracellular area and further
into the capillaries.

Figure 3.1: Epithelial enterocytes. Subscripts m, c, and s mark mucosal, cell inside,
and serosal side. SGLT1 absorbs glucose on the apical (mucosal) side of the enterocyte.
GLUT2 transports glucose from the cell into the extracellular space on the basolateral
(serosal) side, where the glucose diffuses into capillaries. The absorption of glucose is
driven by a sodium gradient maintained by basolateral Na-K-ATPase. Additional sodium
enter together with chloride by a coupled flow. Dotted arrows shows ions that diffuse in
and out of the enterocyte (paracellular flow is not shown in the figure). The arrows point
in the normal direction of each flow, which may not be the same as the positive defined
direction in the flow expressions used in our model. ψmc is the membrane potential
between the mucosal side and the cell inside, ψsc is the membrane potential between the
serosal side and the cell inside, and ψms is the transepithelial potential from the mucosal
to the serosal side.
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Ions can diffuse in and out of the enterocyte, either directly through the
membrane or through ion channels. The most notable type of ion channels
in enterocytes is the basolateral K channel [74, 185]. These channels give
the basolateral membrane a high K-permeability, thus providing a return
path for the potassium ions that are imported into the cell by Na,K-ATPase.
This allows the absorption of nutrients to continue without a buildup of
positive ions [74, 146]. Ions also diffuse directly from the mucosal to the
serosal space through paracellular tight junctions between the enterocytes.

The SGLT1 and the NA-K-ATPase are both electrogenic transporters, i.e.,
the transport of ions through these proteins constitute electrical currents
flowing in and out of the enterocyte. Diffusive ion flows are also electrical
currents, and this, together with the fact that the flows are driven by
processes that are dependent on the membrane potential, makes it essential
to include the membrane potential of the enterocyte in the modeling.
There is a mucosal to cell (apical) membrane potential ψmc, a serosal to
cell (basolateral) membrane potential ψsc, and a potential over the whole
epithelial layer from mucosal to serosal ψms, see Fig. 3.1.

3.2 Modeling transport across epithelia

While there are no detailed mathematical models of enterocytes, several
models exist for other epithelial cells. A model for transport of Na+, K+

and Cl− in Necturus gallbladder epithelium was developed by Baerentsen
and colleagues in 1982 [9]. At that time little was known on the existence
and kinetics of different transporter proteins, so their model was based on
diffusion and an expression for the flow through Na, K-ATPase. Noteworthy
is also the work of Stephenson and Weinstein [172, 197], and later Weinstein
alone [190, 191, 192, 193, 194, 195, 196], which mainly have focused on
models of kidney epithelium. Weinstein’s model of the rat proximal tubule
is particularly remarkable; this model has been developed and refined
continuously over decades. It started with a cell centric model based on a
metabolically active Na, K-ATPase and passive membrane transport based
on linear equations from nonlinear thermodynamics [190]; linear glucose
and sodium cotransport was added in [191]. The model was extended to
represent a segment of tubule epithelium [192], and then further extended
with pathways for Cl− transport [193], and ammonia [194].

Our enterocyte model is not based on any of these models, i.e. it is
not an old model with new parameters. It is instead a fresh start where
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we have tried to use the available knowledge from studies on individual
transporter proteins to employ flow expressions that are based on kinetics
rather than linear relations. In our modeling, we have followed the principle
that all parameters should be identifiable from experiments reported in the
literature. Using rate expressions where the proteins are considered to be
in steady state (i.e., we do not consider dynamic distribution of different
conformations of the same protein) keeps the mathematical model on a
moderate level of complexity.
The kinetic expressions used to model the flows for the different trans-

porter proteins are summarized in the following. A more detailed assessment
of important aspects with each expression is given in Paper 4 itself.

3.2.1 SGLT1

The flow of glucose and Na+ through SGLT1 can be described by a co-
transport carrier model with six states and ordered binding, see Fig. 2
in Paper 4. The model, first introduced by Parent et. al in 1992 [139],
describes each subreaction by its corresponding forward and reverse rates.
Parent et. al derived the equation for the sodium current through SGLT1
by assuming steady state in the distribution of the different carrier states;
the distribution is estimated by employing the King-Altman procedure
[139]. We use an expression based on these results to describe the flow of
Na+ through SGLT1:

JSGLT
Na = − 2nSGLT

1.672 · 1014

(
ε[Nam]2[Gm] + φ[Nam]2 + γ

α+ β[Gm] + χ[Nam]2 + [Nam]2[Gm]

)
(3.1)

The expression in the parenthesis, from Eq. A21 in [139], is the number
of whole cycles per second. α, β, χ, ε, φ, and γ are macroconstants, they
are functions of the individual rate constants for each step in the six state
model, the concentration of intracellular Na+ ([Nac]), intracellular glucose
([Gc]), and the membrane potential (ψmc). The expressions are too long to
be given here, but they are all listed in Eqs. A22–A28 in [139]. The flow of
Na+ (JSGLT

Na ) is two times the number of cycles (2 Na+ ions and 1 glucose
molecule is transported per cycle) multiplied with the number of SGLT1
transporter proteins situated in the membrane, nSGLT. The division by
1.674·1014 is used to convert from number of Na+ ions transported per
second to the flow JSGLT

Na , which is expressed in µmol/h. The rate constants
and the estimated number of SGLT1 proteins in the membrane are listed
in Table A2 in Paper 4.
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3.2.2 Na-K-ATPase

The expression for the flow through Na-K-ATPase is based on experimental
data from Gadsby and Nakao [57, 125]. The turnover rate (cycles per
second) can be described as a voltage-dependent function of the membrane
potential ψsc (between the serosal side and the inside of the enterocyte). In
our model we describe this voltage-dependent turnover with the function
V NaK(ψsc), which is a polynomial fitted to the experimental data from
Gadsby and Nakao [57] (see Fig. A2 in Paper 4).
Further studies [125] on the change in turnover rate under different

internal concentrations of Na+ and external concentrations of K+ showed
that the turnover rate was scaled by saturable functions of these two
variables. The total rate expression used in our model is,

JNaK = V NaK(ψsc) · nNaK ·
1.13[Nac]1.36

(KNac
0.5 )1.36 + [Nac]1.36

· 1.3[Ks]
KKs

0.5 + [Ks]
(3.2)

where nNaK (the number of Na-K-ATPase transporter proteins in the cell
membrane), KNac

0.5 and KKs
0.5 are given in Table A2 in Paper 4.

External Na+ and internal ATP do not affect this expression at the
concentrations they have in our modeling (see Paper 4).

3.2.3 Coupled sodium chloride inflow

The coupled inflow of sodium and chloride is in our model described by a
simplified expression for the flow through a general cotransporter carrier
model with random binding. The simplification, backed up by experimental
evidence [127], lies in that the disassociation on the cell inside is so fast
that it does not contribute significantly to alter the inflow of ions per time
unit. The expression used is,

JNaCl = 2V NaCl
max ([Nam][Clm]− [Nac][Clc])

2K1K3 +K3[Nam] +K4[Clm] + 2[Nam][Clm] (3.3)

where the parameter values are given in Table A2 in Paper 4.
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3.2.4 GLUT2

To model the flow of glucose through GLUT2 we use an expression based on
the so-called fixed-site carrier model, suggested by Baker and Widdas [11].
This model treats the transporter protein as a pore with two binding sites,
one on the inward facing side (c) and one on the outward facing (s). The
net flow from the inside to the outside of the cell is then given as,

JGLUT = V Gc
maxK

Gs
0.5[Gc]− V Gs

maxK
Gc
0.5[Gs](

KGc
0.5 + [Gc]

) (
KGs

0.5 + [Gs]
) · nGLUT (3.4)

where V Gc
max and V Gs

max are the maximum transport rate out of and into the
enterocyte for one single GLUT2 transporter. KGc

0.5 and KGs
0.5 are the half

saturation constants for the inside facing and the outside facing binding
sites, respectively. [Gc] and [Gs] are the concentrations of glucose inside
and outside of the enterocyte, respectively, and nGLUT is the number of
GLUT2 transporter proteins in the basolateral membrane. The parameter
values are given in Table A2 in Paper 4.

3.2.5 Diffusive flows

Diffusive flows of Na+, K+ and Cl− are also included in our model. We
use the Goldman-Hodgkin-Katz (GHK) flux-equation [157] to describe
the diffusive flows across the apical and the basolateral membrane. The
equation has the form:

JD
i = −PiziFψ

RT

( [iout]− [iin] exp (ziFψ/RT )
1− exp (ziFψ/RT )

)
·A (3.5)

The subscript i denotes the ion (Na+, K+ or Cl−), Pi is the membrane
permeability of ion i, zi is the valence of the ion, [iout] and [iin] are the outer
and inner concentrations of the ion, and ψ is the membrane potential (ψmc
for the apical and ψsc for the basolateral membrane). F , R, and T are the
Faraday constant, the gas constant and the temperature, respectively. The
GHK flux-equation gives the diffusive flow as a flux, i.e. flow per membrane
area, so we multiply with the membrane area A (see Table A2 in Paper 4)
to find the total diffusive flow over the membrane. The diffusive flows given
by Eq. 3.5 are positive when directed into the cell.

The permeability coefficients account for the total diffusive flow, including
diffusion through ion channels. The most notable type of ion channels in
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enterocytes are the basolateral K channels [74, 185]. The K channels give
the enterocyte a high permeability for K+ and provides a return path for
the K+ ions imported into the cell by the Na,K-ATPase.

In addition to diffusive flows into the cell we also include diffusive paracel-
lular flows that allow ions to travel directly from the mucosal to the serosal
side through the tight junctions. These paracellular flows are calculated
by Eq. 3.5 , using the mucosal concentration of the ion as the outer-, the
serosal concentration as the inner concentration, and ψms as the membrane
potential from the mucosal to the serosal side. The paracellular flows are
positive when directed from the mucosal to the serosal side.

3.3 Mathematical model and calculation of mem-
brane potential

The reaction kinetic expressions for SGLT1, Na-K-ATPase, coupled NaCl,
GLUT2, and diffusive flows are combined into a set of nonlinear differential
equations describing the internal concentrations,

[Ġc] = 1
Vc

(1
2J

SGLT
Na − JGLUT

)
(3.6)

[ ˙Nac] = 1
Vc

(
JSGLT

Na − 3JNaK + JNaCl + JDa
Na + JDbl

Na
)

(3.7)

[K̇c] = 1
Vc

(
2JNaK + JDa

K + JDbl
K
)

(3.8)

[Ċlc] = 1
Vc

(
JNaCl + JDa

Cl + JDbl
Cl
)

(3.9)

where the volume of the enterocyte, Vc, is considered to be constant, see
the appendix and Table A2 in Paper 4.

In addition to these concentrations our model also includes the mucosal
to cell (apical) membrane potential ψmc, the serosal to cell (basolateral)
membrane potential ψsc, and the potential over the whole epithelial layer
from mucosal to serosal ψms, see Fig. 3.1. Only two of these are independent
as the potentials are related by the equation:

ψms = ψmc − ψsc (3.10)
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An important principle for any form of transport of ions into and out of
cells is the principle of electroneutrality [98, 157], which states that the
bulk or macroscopic concentrations of positive and negative ions has to
be equal at all times. The reason behind this principle is that only a very
small amount of charge separation is needed to create a large electric field.
Cell electroneutrality holds when there is no net current into the cell,

i.e., ∑
i

zi
(
Ja
i + Jbl

i

)
= 0 (3.11)

where Ja
i and Jbl

i are the inflow of species i, with valence zi, over the apical
and basolateral membrane, respectively. For the same reasons as above, any
buildup of charge on either the mucosal or the serosal side would result in
unphysical high values for the transepithelial potential (ψms). To preserve
mucosal and serosal bath electroneutrality the net epithelial current must
thus also be zero, i.e., ∑

i

zi
(
Jp
i − J

bl
i

)
= 0 (3.12)

where Jp
i is the paracellular inflow into the serosal space of species i, with

valence zi.
The principle of electroneutrality, in the form of Eqs. 3.11 and 3.12, is

used as a condition to help calculate the membrane potentials. The idea is
to compute a value for the membrane potential that, when used to calculate
the individual flows, gives a zero net current.

We use an iterative approach to calculate the membrane potentials. At
each time step we start with guess values for the membrane potentials
and calculate the flows; the estimate for the membrane potentials is then
refined using the Newton-Raphson method and the flows are recalculated
until the net cell current (Eq. 3.11) and the net epithelial current (Eq. 3.12)
are sufficiently close to zero. Once the flows are in keeping with Eqs. 3.11
and 3.12 we integrate the net flow of each species over the length of the
time step to update the concentrations. This iterative calculation of the
membrane potentials is well proven for epithelial models [70, 103, 181]. A
detailed description of our implementation is given in section 3.5, and a
further description and validation of the iterative method is also given in
the appendix of Paper 4.
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3.4 Controller motifs for ionic homeostasis

As presented above the enterocyte model can be used to study short-term
behavior, i.e., behavior over a short timeframe where the amount of the
different transporter proteins and the diffusive permeabilities (amount of
ionic channels) can be considered to remain constant. The model behaves as
expected for short-term dynamic, and some results are given in section 3.6.

Having confirmed that the model is able to simulate short-term dynamics
we extended it by adding regulatory mechanisms for the ionic homeostasis
of Na+ and K+.

3.4.1 Regulation of Na-K-ATPase and Na homeostasis

Experiments show that when mucosal glucose is increased and kept high,
the increase in intracellular Na+ ([Nac]) is followed by a slow decrease
back to basal values, indicating a mechanism that increases the number of
Na,K-ATPase transporter proteins to maintain Na+ homeostasis [78]. This
increase may stem from increased synthesis, as it has been shown to do in
central neurons and cardiocytes [162, 204], or from a cytoplasmic holding
area of available Na,K-ATPase proteins [160].
Our hypothesis is that the observed homeostasis can be explained by

a production of Na,K-ATPase directly regulated by intracellular Na+.
Intracellular Na+ has been shown to directly regulate the Na,K-ATPase
gene expression in other cell types [162, 204].
Because Na,K-ATPase can be said to work as an outflow controller by

transporting Na+ out of the cell, the activating outflow controller (type 5)
is a possible candidate for the mechanism that regulates Na+ by adjusting
the number of Na,K-ATPase proteins. The controller motif is shown in
Fig. 3.2.

Figure 3.2: Controller motif proposed for the regulation of intracellular Na+ by
production of Na,K-ATPase.
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The controller motif treats the concentration of intracellular Na+ as an
activator for the synthesis/insertion of Na,K-ATPase proteins, modeled as
a first-order process, where the insertion rate is given as kNaK · [Nac]. The
degradation (or removal) of Na,K-ATPase is assumed to be similar to an
enzymatic process where the degradation enzyme ENaK

set is saturated. This
extends the model with the following differential equation.

ṅNaK = kNaK · [Nac]−
V
ENaK

setmax · nNaK

K
ENaK

set
0.5 + nNaK

(3.13)

where V ENaK
setmax and KENaK

set
0.5 are the maximum rate and the half saturation

constant for the enzyme/process that removes Na,K-ATPase. Saturation of
the Na,K-ATPase removing process ensures regulation of intracellular Na+

to the setpoint V ENaK
setmax /kNaK, because saturation provides near zero-order

kinetics.
The outflow of Na+ is still given by the JNaK expression (Eq. 3.2), but the

amount of Na,K-ATPase (nNaK) will now change dynamically according to
Eq. 3.13 to counteract the perturbations in Na+ inflow. A transient increase
in intracellular Na+ (from increased apical inflow) causes the amount of
Na,K-ATPase to increase (ṅNaK > 0); this increase continues until the
outflow of Na+ through Na,K-ATPase is so large that the concentration of
intracellular Na+ is brought back down to its setpoint.

3.4.2 Regulation of basolateral K permeability and K home-
ostasis

The pump-leak parallelism between K-permeability and the stimulation
of basolateral Na,K-ATPase is well studied [22, 74, 160]. An increase in
the Na,K-ATPase pump rate, as seen under the uptake of nutrients, is
accompanied by an increase in the basolateral K permeability. Whether
this increase stems from an increased expression of K channels or from
non-transcriptional mechanisms is not yet fully understood as little is known
about changes in K-channel expression in enterocytes [74].

Our attention in this work is on the regulation of K permeability by intra-
cellular ATP. Basolateral KATP-channels have been found in enterocytes [46]
and other epithelia [178]. The increased usage of ATP by Na,K-ATPase dur-
ing absorption lowers the intracellular concentration of ATP; this reduction
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in intracellular ATP relieves the inhibition of basolateral KATP-channels,
thus increasing the K permeability.

Structuring this into a regulatory motif we have that intracellular ATP
acts as an outflow controller of [Kc], see Fig. 3.3. ATP is used by the Na,K-
ATPase at a rate of JATP=JNaK. We propose that the synthesis of ATP can
be modeled by an expression on the form kATP

1
(
KATP

0.5 /
(
KATP

0.5 + [ATP]
))

,
i.e., that the synthesis of ATP increases when the concentration of ATP
decreases. The theoretical maximum rate of synthesis is kATP

1 when [ATP]
is zero, and KATP

0.5 is the concentration of ATP where the rate of synthesis
is half of kATP

1 . The synthesis of ATP must increase as the concentration of
intracellular ATP is reduced in order to reach a new steady state, otherwise
an increase in JNaK would simply deplete the cell of ATP as the synthesis
would never catch up with the increased consumption.

Figure 3.3: Motif proposed for the regulation of intracellular K+. The degradation
of ATP is coupled to the pump rate of the Na,K-ATPase. ATP affects the basolateral
permeability to K+ by inhibiting the K channels. ATP also inhibits its own synthesis.

The inverse relation between the concentration of intracellular ATP and
current through KATP-channels has been quantified in cardiac myocytes [86].
The current through the K channels is inhibited by [ATP] with an inhibition
constant KATP

I of 0.8 mM. From this basis we express the relationship
between ATP and basolateral K-permeability on a standard inhibition form
as: P bl

K = P bl
Kmax

(
KATP

I /
(
KATP

I + [ATP]
))

.
This motif leads to a differential equation describing the dynamics in
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[ATP], and an expression for the basolateral K permeability as1,

[ ˙ATP] = 1
Vc

(
kATP

1
KATP

0.5
KATP

0.5 + [ATP]
− JNaK

)
(3.14)

P bl
K = P bl

Kmax

(
KATP

I
KATP

I + [ATP]

)
(3.15)

where Vc is the cell (cytoplasm) volume, and KATP
I = 0.8 mM. P bl

Kmax can
be found from P bl

K and the steady-state level of [ATP], which is around
4.3 mM in enterocytes [41]. We have adjusted kATP

1 so that [ATP] is in
steady state (4 mM in our simulations) before the addition of nutrients;
KATP

0.5 is set to 0.5 mM.

3.5 Enterocyte simulator built in Matlab/Simulink

We used Matlab/Simulink from MathWorks to implement the enterocyte
model. The implementation creates an enterocyte simulator, which nu-
merically solves the model equations for a given set of parameters and
initial conditions. Simulink is a graphical block diagram interface where
the overall implementation/program is made by connecting blocks that
perform different mathematical operations. Each block have inputs and/or
outputs and may consist of several subblocks that each performs one or
several operations. The overall look and feel is close to that of an ordinary,
hand drawn, block schematic diagram in control engineering. Simulink is
more or less seamlessly integrated with the rest of the Matlab environment,
and one of its strengths is the possibility to create blocks out of ordinary
Matlab-code. Once the model is implemented, it can be simulated (solved)
through the graphical user interface of Simulink.

Fig. 3.4 shows the main view of our the enterocyte simulator. It consists
two blocks (marked in blue) that defines the external concentration of
glucose (G), sodium (Na), potassium (K), and chloride (Cl) in the mucosal
lumen (m) and on the serosal (s) side of the enterocyte. These external

1This motif is strictly speaking not a controller motif as we defined them in chapter 2
(Papers 1 and 3). There is a negative feedback, but the feedback stems from the inflow
of Kc and not from the concentration of Kc. Thus there is no way Eq. 3.14 can provide a
well-defined setpoint for Kc, as this equation can not be written like the standard integral
control law. The negative feedback still performs a regulatory job, although without
perfect adaptation. It may be tempting to change the motif, however this cannot be
done unless there are experimental evidence to support it.
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variables are passed to the Enterocyte subblock (marked in white), wherein
they are used to calculate the flows and the states (Eqs. 3.1–3.15). The
flows and states are then passed, along with the external variables, to two
blocks that create various plots of the simulation results, and that also
export the results to the Matlab workspace (marked in green).

Figure 3.4: Main level of the enterocyte simulator implemented in Simulink. The
model consists of several subblocks. The enterocyte model itself is implemented in the
big white block in the center, named Enterocyte. External concentrations are passed to
the Enterocyte block from input blocks (blue), and simulation results are treated and
visualized inside the output blocks (green). Parameters are set by a separate Matlab
script before running the enterocyte simulator. A detailed view of the Enterocyte subblock
is given in Fig. 3.5.

To facilitate the use of different parameters, a Matlab script (Parameter-
sNTModNR.m) is run before running the simulator. This script sets all the
different parameters required to simulate a specific experiment. Parameters
are listed in Table A2 in Paper 4, and it is clearly noted, in the following
results section, if an experiment uses different parameter values.
The detailed contents of the Enterocyte block in Fig. 3.4 is shown in

Fig. 3.5, and this block is again a collection of different subblocks. The
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Figure 3.5: Detailed view of the Enterocyte subblock from Fig. 3.4. This block does
again consist of several subblocks. The Core block (white) is responsible for the iterative
calculation of flows and membrane potentials. The flow calculation by the GLUT2 block
and the Coupled NaCl block is not included in the iterative Core block, because these
flows are not dependent on membrane potential. The blocks marked in yellow implements
numerical integration of the differential equations for the concentration of glucose and
ionic species (Eqs. 3.6–3.9). The bottom inset shows the details of the Sodium block
as an example; the individual flows are summed, converted from mass (umol/h) to
concentration (mM/h), and then integrated.
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iterative calculation of membrane potentials and membrane-potential de-
pendent flows are collected in a subblock named Core (marked in white).
The glucose flow through GLUT2 (Eq. 3.4) and the coupled sodium chloride
inflow (Eq. 3.3) are calculated in their own subblocks (marked in grey), as
they do not depend on the membrane potential. The cellular concentrations
of each species: glucose, sodium, potassium, and chloride, are calculated by
numerically integrating the flows of each species according to Eqs. 3.6–3.9
(subblocks marked in yellow). The calculated flows and states are passed
up to the main level as outputs of the Enterocyte block, see Fig. 3.4.
The Core subblock is responsible for the calculation of membrane po-

tentials and membrane-potential dependent flows. This is carried out in
a subblock of Matlab-code (not shown)2. For each time step the Core
subblock runs an iterative Newton-Raphson procedure; it adjusts and re-
calculates the flow and membrane potentials until the electroneutrality
constraints are met (Eqs. 3.11 and 3.12), i.e., until the net cell current
and the net epithelial current are sufficiently close to zero. The following
criteria are used:

|Ic| = |
∑
i

zi
(
Ja
i + Jbl

i

)
| < 10−9 pmol/h (3.16)

|Ie| = |
∑
i

zi
(
Jp
i − J

bl
i

)
| < 10−9 pmol/h (3.17)

For our enterocyte, which has a volume of 450 µm3 (see Table A2 and
appendix of Paper 4), these criteria correspond to a maximum charge
difference of 2.22 nM/h (monovalent ions). A charge unbalance in this
order will only affect the membrane potential by a few tens of a microvolt.

The iterative calculation of membrane potentials is based on the procedure
outlined in [103]. It utilizes two nested Newton-Raphson steps to refine
the estimates until the conditions for cell and epithelial electroneutrality
are met. The two loops are organized into an inner loop that adjusts
ψmc so that Ic(ψmc) = 0, and an outer loop that adjusts ψms so that
Ie(ψms) = 0. The Newton-Raphson adjustments require the computation
of the derivatives dIc(ψmc)/dψmc and dIe(ψms)/dψms. We estimate these
by calculating polynomial approximations of Ic(ψmc), treating ψms and all
the other parameters as constants, and Ie(ψms), treating ψmc and all the
other parameters as constants.

2The two added controller motifs (Eqs. 3.13–3.15) are also subblocks of the Core
block. They are, however, only calculated once at each time step, and are not a part of
the iterative procedure.
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The procedure for the iterative method, implemented by Matlab-code in
the Core block in Fig. 3.5, is as follows for each time step in the simulation:

(i) Use the membrane potentials from the last time step as starting
guesses.

(ii) Estimate ψmc and ψms by two nested Newton-Raphson loops.

(a) Find a polynomial approximation of the net cell current Ic as a
function of ψmc. This is done by calculating the individual flows
for a range of different ψmc values.

(b) Estimate ψmc by an inner loop.
i. Calculate the individual flows for the current ψmc and ψms.
ii. Calculate the apical and the basolateral membrane currents,

Ia =
∑
i ziJ

a
i and Ibl =

∑
i ziJ

bl
i .

iii. Calculate the net cell current Ic = Ia + Ibl.
iv. If |Ic| = |

∑
i zi
(
Ja
i + Jbl

i

)
| < 10−9 pmol/h exit the inner

loop with the current ψmc value. Otherwise update ψmc by
a Newton-Raphson step: ψmc = ψmc− Ic/(dIc(ψmc)/dψmc),
where the polynomial approximation of Ic(ψmc) is used to
estimate the derivative, then restart the inner loop.

(c) Find a polynomial approximation of the net epithelial current
as a function of ψms. This is done by calculating the individual
flows for a range of different ψms values.

(d) Calculate the individual flows for the current ψmc and ψms.
(e) Calculate the current over the basolateral membrane, Ibl =∑

i ziJ
bl
i , and the paracellular current, Ip =

∑
i ziJ

p
i .

(f) Calculate the net epithelial current Ie = Ip − Ibl.

(g) If |Ie| = |
∑
i zi
(
Jp
i − Jbl

i

)
| < 10−9 pmol/h exit the outer loop

with the current ψms. Otherwise update ψms by a Newton-
Raphson step: ψms = ψms − Ie/(dIe(ψms)/dψms), where the
polynomial approximation of Ie(ψms) is used to estimate the
derivative, then restart the outer loop.

(iii) The conditions for electroneutrality are now met. Calculate ψsc =
ψmc − ψms. Output the flows so that they can be integrated to the
next time step.
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The numerical integration of the differential equations (yellow blocks in
Fig. 3.5) is done by using the Matlab/Simulink solver ode23tb. The solver
is set to use an absolute and relative tolerance of 10−6 and a variable time
step length between 3.6 and 360 ms.

3.6 Simulation results

The model can be simulated either with or without the added regulatory
mechanisms provided by Eqs. 3.13 to 3.15. During a short timeframe it is
reasonable to assume that the amount of Na-K-ATPase and ATP remains
constant. The parameters used in the simulations are listed in Table A2 in
Paper 4.

3.6.1 Short-term response to mucosal glucose

Short term response to changes in mucosal glucose is well studied in vitro
[22, 78, 151], and thus, provides a sound basis for testing our model. We
have simulated its response to a short term increase in mucosal glucose
([Gm]) similar to the experimental studies performed on rabbit ileum by
Rose and Schultz [151]. Mimicking the conditions of Rose and Schultz,
we abruptly increase the mucosal glucose concentration from 100 µM to
20 mM, and then let it fall back to 100 µM in an exponential manner, as
to simulate glucose being flushed out, see Fig. 3.6A. The response in state
variables from the model is shown in Fig. 3.6 panels B-H, whereas the flows
are shown in Fig. 3.7.
The steady-state levels of cell Na+, K+ and Cl− are in the expected

range [127, 128]. The short term increase in cell Na+, see Fig. 3.6C, is
supported by experiments [78], but is reported to fall over time if the
mucosal concentration is kept high instead of being flushed out, indicating
a slower regulatory mechanism that increases the number of Na,K-ATPase
transporters.

The reduced concentration of intracellular K+ (Fig. 3.6D) is a result of
an increased outflow of K+ (Fig. 3.7E) due to membrane depolarization.
The change in membrane potential towards more positive values increases
the diffusive K+ outflow, in agreement with Eq. 3.5. K+ is removed faster
than the Na,K-ATPase imports K+, a property which is anticipated based
on experimental results [22, 65].
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Figure 3.6: Simulated model response to a short term change in mucosal glucose. A. At
t=1 min mucosal side glucose concentration ([Gm]) is increased from 100 µM to 20 mM
(step). The mucosal side is then flushed with media without glucose (using a flush time
of 20 seconds as in [151]). This gives in an impulse shaped change in [Gm]. B. Cell
glucose concentration ([Gc]). C. Concentration of cell sodium ([Nac]). D. Concentration
of cell potassium ([Kc]). E. Concentration of cell chloride ([Clc]). F. Mucosal to cell
membrane potential (ψmc). G. Serosal to cell membrane potential (ψsc). H. Mucosal to
serosal membrane potential (ψms).
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Figure 3.7: Simulated model flows during a short term change in mucosal glucose.
A. Glucose inflow through SGLT1 (solid) and outflow through GLUT2 (dashed). B.
Coupled NaCl inflow. C. Outflow of Na+ through Na,K-ATPase. D. Diffusive inflow
of Na+ (top), K+ (middle) and Cl− (bottom) over the apical membrane. E. Diffusive
inflow of Na+ (top), K+ (middle) and Cl− (bottom) over the basolateral membrane. F.
Diffusive inflow to the serosal side of Na+ (top), K+ (middle) and Cl− (bottom) through
the paracellular junctions. (The expression for diffusion Eq. 3.5 is positive into the cell,
a calculated negative inflow in panels D, E and F is thus an outflow.)

The simulation shows that the addition of mucosal glucose leads to a less
negative mucosal to cell membrane potential (ψmc, Fig. 3.6F) and a more
positive mucosal to serosal membrane potential (ψms, Fig. 3.6H), in good
agreement with the experimental findings of Rose and Schultz [151]. Figure
3.8 shows the membrane potential response from our simulated change
in mucosal glucose (from Fig. 3.6) together with the experimental data
from the study by Rose and Schultz [151] on rabbit ileum. The match is
remarkable considering the fact that most of our parameters (Table A2
in Paper 4) are gathered from the literature of single transporter type
studies, done with proteins from different organisms including human type
SGLT1 expressed in oocytes [201], guinea pig Na,K-ATPase from ventricular
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myocytes [57, 125], and GLUT2 from rat enterocytes [114]. The spikier
simulated response in membrane potential (Fig. 3.8) may be related to the
effect of unstirred layers around the microvilli. A gradual equilibrating
between the mucosal bath and the microvilli area will effectively drag out
the response.
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Figure 3.8: Simulated model response in membrane potential (solid) and replotted
experimental values from [151] (dashed). At t=1 min the mucosal side glucose concentra-
tion ([Gm]) is increased from 100 µM to 20 mM (step). The mucosal side is then flushed
so that [Gm] falls back to 100 µM (using a flush time of 20 seconds). A. Mucosal to cell
potential ψmc. B. Mucosal to serosal potential ψms.

Because the kinetic flow expressions and physiological parameters are
based on single transporter type studies, parameter fitting would probably
be needed if we were to evaluate the model’s ability to exactly match
quantitative results from studies done on whole enterocytes. Cell variance
would in that case also have to be considered, e.g. the membrane potential
of rabbit enterocytes bathed in a control medium was in the study of Rose
and Schultz [151] shown to range from −15 mV to −55 mV indicating
considerable variance among cells.
Net epithelial flows of Na+, K+, and Cl− are found by summing the

basolateral and paracellular flows. Figure 3.9 shows the net flows during
the short term increase in mucosal glucose. Focusing on the steady state
before and after the step in mucosal glucose we see that Na+ and Cl−
are absorbed from the intestine, in keeping with enterocytes being Na+

absorbing epithelia [160]. There is a small leak of K+ in the opposite
direction which is expected because some of the K+ pumped into the cell at
the basolateral membrane will escape through K-conductance in the apical
membrane (Fig. 3.7D). The rate of K+ secretion is very low (0.14 pmol/h)
compared to the inflow of Na+ and Cl− (1.82 pmol/h and 1.68 pmol/h),
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about 8 % of the Na+ inflow, and is believed to be of little physiological
significance [158]. Although there is an increase in Na+ pumped by the
Na,K-ATPase (Fig. 3.7C) the net epithelial Na+ inflow decreases during the
transient phase (Fig. 3.9A). This is caused by the increase in paracellular
back flow of Na+ into the lumen (Fig. 3.7F); a more positive transepithelial
potential ψms (Fig. 3.6H) drives this paracellular movement of Na+.
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Figure 3.9: Simulated net inflows (positive into serosal area) over the epithelial layer;
this is the net sum of transcellular and paracellular flows. A. Inflow of Na+ (JEpi

Na =
3JNaK − JDbl

Na + JDp
Na ). B. Inflow of K+ (JEpi

K = −2JNaK − JDbl
K + JDp

K ). C. Inflow of
Cl− (JEpi

Cl = −JDbl
Cl + JDp

Cl ).

3.6.2 Short term response to mucosal Na

The enterocyte response to short term changes in mucosal Na+ is well
studied [128, 133, 151]. We simulated short term changes in the concentra-
tion of mucosal Na+ ([Nam]) by changing the mucosal Na+ from its base
value of 140 mM to 100 mM, and back again in a stepwise manner. The
concentration of mucosal glucose was kept constant at 0.5 mM. Figure 3.10
shows the simulated model response. When the mucosal sodium concentra-
tion is kept at 100 mM the model reaches a new steady state; the reduced
availability of mucosal Na+ leads to a decrease in the intracellular Na+
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concentration ([Nac]) (see Fig. 3.10A). The decrease in intracellular Na+ is
balanced by decrease in intracellular Cl− (Fig. 3.10C) and an increase in
intracellular K+ (Fig. 3.10B).
The simulation also shows cell hyperpolarization (see Fig. 3.10 panels

D-F) as a result of decreased mucosal Na+. The reversal of polarity from
positive to negative of the transepithelial potential ψms is particularly
noteworthy. These results are similar to what have been observed in rat
duodenum [133]. The change in ψmc and ψms of about -6 mV is in the
same range as reported for the same change in mucosal Na+. Changing
the mucosal Na+ concentration back to 140 mM causes the enterocyte to
return to its initial state.
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Figure 3.10: Simulated model response to a short term change in mucosal sodium. At
t=1 min to t=6 min mucosal side Na+ concentration ([Nam]) is decreased from 140 mM
to 100 mM (step). A. Cell sodium concentration ([Nac]). B. Concentration of cell
potassium ([Kc]). C. Concentration of cell chloride ([Clc]). D. Mucosal to cell membrane
potential (ψmc). E. Serosal to cell membrane potential (ψsc). F. Mucosal to serosal
membrane potential (ψms).

There is a continuous net absorbance of Na+ and Cl− from the intestine
during the whole simulated response to this change in mucosal Na+. The
net inflow of Na+ goes from 1.86 pmol/h to 0.85 pmol/h when mucosal
Na+ changes from 140 mM to 100 mM (results not shown).
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3.6.3 Long term response with controller motifs

Adding the regulatory motifs to the model gives the long term response
shown in Figs. 3.11 and 3.12 (solid lines) for a stepwise increase in mucosal
glucose (note the time scale). The results show perfect adaptation in the
concentration of intracellular Na+ (Fig. 3.11C), and partly adaptation in
K+ (Fig. 3.11D). The concentrations are regulated towards their setpoints
of approximately 49 mM and 130 mM, respectively. Comparing this to
the simulation results of an enterocyte without the regulatory mechanisms
(dashed lines in Figs. 3.11 and 3.12), which has no adaptation at all, shows
how much is gained by these motifs.

A B

C D E

F G H

0 10 20 30 40
0

2

4

6

8

10

M
uc

os
al

 g
lu

co
se

 (
G

m
) 

[m
M

]

Time [min]
0 10 20 30 40

12

14

16

18

20

C
el

l g
lu

co
se

 (
G

c) 
[m

M
]

Time [min]

0 10 20 30 40

50

60

70

80

Time [min]

C
el

l s
od

iu
m

 (
N

a c) 
[m

M
]

0 10 20 30 40
100

110

120

130

140

Time [min]

C
el

l p
ot

as
si

um
 (

K
c) 

[m
M

]

0 10 20 30 40
56

58

60

62

64

66

Time [min]

C
el

l c
hl

or
id

e 
(C

l c) 
[m

M
]

0 10 20 30 40
−50

−45

−40

−35

−30

Time [min]M
uc

os
al

 to
 c

el
l p

ot
en

tia
l (

 ψ
m

c) 
[m

V
]

0 10 20 30 40
−55

−50

−45

−40

−35

Time [min]S
er

os
al

 to
 c

el
l p

ot
en

tia
l (

 ψ
sc

) 
[m

V
]

0 10 20 30 40
3

4

5

6

7

Time [min]

M
uc

os
al

 to
 s

er
os

al
 p

ot
en

tia
l (

 ψ
m

s) 
[m

V
]

Figure 3.11: Simulated model response to long term change in mucosal glucose with
(solid lines) and without (dashed lines) the two regulatory mechanisms. A. At time
t=4 min mucosal glucose concentration ([Gm]) is stepped from 0.1 mM to 10 mM. B. Cell
glucose ([Gc]). C. Cell sodium ([Nac]) D. Cell potassium ([Kc]). E. Cell chloride ([Clc]).
F. Mucosal to cell membrane potential (ψmc). G. Serosal to cell membrane potential
(ψsc). H. Mucosal to serosal membrane potential (ψms).
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The adaptation in K+ is not perfect in the sense that exactly the same
concentration is achieved before and after the step; the concentration of K+

is close to 129 mM before the step in mucosal glucose and 136 mM after
the step. There is a slight overadaptation [44] (Fig. 3.11D). As expected
there is no adaptation in the concentration of Cl− (Fig. 3.11E) as there is
no specific controller motif regulating Cl−.
The amount of Na,K-ATPase and ATP is shown in Fig. 3.12. The

reduction in ATP from 4 mM to 2.8 mM fits well with reported values for
absorbing epithelial cells in the renal proximal tubule [178].

In addition to maintaining the ionic concentration at their setpoints the
regulation also enables a higher total flow through the enterocyte (data not
shown). The net epithelial flow of Na+ increases by 20% after the step in
mucosal glucose with regulation (from 1.8 pmol/h to 2.2 pmol/h) whereas
it without regulation only increases by 5% (from 1.8 pmol/h to 1.9 pmol/h).
The net flow of glucose is 13% higher with regulation than without.

The results also show a hyperpolarization of the membrane potential
compared to the situation with no regulation (Fig. 3.11F-H). The transep-
ithelial potential (ψms) increases with the step in mucosal glucose and is
higher with regulatory motifs than without. This fits with the higher total
ionic flow from mucosal to serosal with regulation.
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Figure 3.12: Simulated model response to long term change in mucosal glucose.
A. Amount of Na,K-ATPase (nNaK). B. Concentration of ATP ([ATP]).
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3.7 Regulatory mechanisms for Na/K homeosta-
sis

When the inflow of Na+ increases due to absorption of glucose the entero-
cyte has to adapt the Na,K-ATPase driven compensatory outflow of Na+.
Besides a transient increase, there is no sustained higher concentration of
intracellular Na+ during absorption of nutrients [78, 159]. This means that
the Na,K-ATPase driven outflow has to increase by other means than mass
action kinetics. The explanation suggested by our controller motif is that
the transient increase in intracellular Na+ brings about an increase in the
number of active Na,K-ATPase proteins in the basolateral membrane. This
can explain the results of Rokaw et al. [148], which show that the amount
of Na,K-ATPase in A6 model cells for kidney collecting ducts epithelium is
regulated in correspondence to inflow of Na+.
The intracellular Na+ activation of Na,K-ATPase synthesis has been

shown for other cell types, where it increases the amount of mRNA coding
for both the α and β subunits that combine into Na,K-ATPase [162, 204].
Yamamoto et al. [204] showed that this increase, in cardiocytes, was directly
caused by Na+ due to Na+ responsive sequences located within the 5’-
flanking regions of the α-gene (α1, α2, and α3 isoforms). Parallels can be
drawn to the intestinal enterocytes as they express the α1 isoform [106]. Our
simulations confirm that the regulation of Na,K-ATPase by intracellular
Na+ (Fig. 3.2) is a controller motif that is able to achieve homeostasis, thus
being a plausible mechanism for how the enterocytes manage to adapt and
survive in a changing environment.
In addition to synthesis of Na,K-ATPase, posttranslational regulation

by the insertion of pre-existing transporter molecules from cytoplasmic
storage pools can also be a contributing factor. Such regulation in re-
sponse to intracellular Na+ has been indicated in rabbit cortical collecting
tubules [20]. Given the many similarities between kidney and intestine
epithelial cells we cannot rule out the possibility that the abundance of
membrane bound Na,K-ATPase in enterocytes is regulated by both trans-
lational and posttranslational pathways that are dependent on intracellular
Na+. Although we have focused on regulation by synthesis of new Na,K-
ATPase in our argument, the ability of the controller to achieve homeostasis
is coupled to the action where intracellular Na+ regulates the number of
active transporters, and not whether this happens by de novo synthesis or
by insertion/activation of latent transporters.
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Earlier work on sodium transporting epithelial cells have speculated
whether the relationship between the Na,K-ATPase turnover and intracellu-
lar Na+ can be so steep that small changes in the latter may result in very
large changes in the former [78, 159], enabling Na+ outflow adaptation to
occur without an increase in the amount of Na,K-ATPase. This alterna-
tive hypothesis is, however, considered unlikely and has also been shown
to be incompatible with the experimental measurement of Na,K-ATPase
kinetics [57, 125].
Nevertheless, an increase in the amount of Na,K-ATPase can possibly

be induced by other means than direct activation by intracellular Na+.
Other mechanisms for the regulation of Na,K-ATPase are known; many
studies have focused on the hormonal regulation through protein kinase
A and C (PKA and PKC) pathways, see [175] for a review. Although
important, hormonal mechanisms (involving sensing or prediction of the
Na+ inflow in enterocytes and secretion of hormones by some organ distant
to the enterocyte) may be slower than the direct regulation by intracellular
Na+ and might thus play a secondary role. Effect of hormones on Na,K-
ATPase activity have also been shown to be dependent on intracellular
Na+ in proximal tubule cells, suggesting that the level of intracellular
Na+ modulates whether hormones stimulate, inhibit, or have no effect on
Na,K-ATPase levels [50].

A coupling between activity of the Na,K-ATPase and the basolateral K
permeability have been experimentally shown [22, 65]. While this coupling
have been confirmed for decades it is still not clear what mechanism lies
behind it [74]. Our proposed regulatory motif (Fig. 3.3) is a mechanism
where ATP acts as a regulator. Since intracellular ATP concentration is
dependent on the current ATP usage by Na,K-ATPase, i.e. the pump
rate, the ATP concentration contains information about the inflow of K+.
ATP regulates the intracellular K+ concentration by acting as an outflow
controller modulating the outflow of K+ through KATP-channels which
are inhibited by ATP. This mechanism has only one intermediate between
Na,K-ATPase pump rate and the basolateral K permeability.
Tsuchiya et al. [178] have reported that ATP is the main coupling

modulator between Na,K-ATPase and K-channel activity in epithelial cells
in the renal proximal tubule; they showed that an increase in Na,K-ATPase
activity due to luminal addition of glucose and alanine leads to a 57%
decrease in intracellular ATP, from 3.7 mM to 2.1 mM, followed by an
increase in K conductance. Similar experiments [15] report of a reduction
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from 4.4 mM to 2.7 mM. These studies show that ATP sensitive KATP-
channels react to a decrease in ATP caused by an increase in Na,K-ATPase
activity during transcellular Na+ transport. The role of ATP as a regulator
is supported by the observation that an increase in K permeability is
not seen in ATP loaded proximal tubule cells [178]. The kinetics of the
inhibition by ATP has a KI of 0.8 mM (in cardiac myocytes) [86]. ATP
sensitive K channels have also been found in enterocytes [46]. Our proposed
motif is based on the same type of coupling as is reported for ATP, and
our results confirm that this is a mechanism that can provide homeostasis.
For simplicity we did only include consumption of ATP by the Na,K-

ATPase. Other usage of ATP can however be included without changing
the main results as long as these consumptions are approximately constant
or increasing during nutrient transport. The only change is that the kATP

1
parameter must be adjusted so that the synthesis and consumption balance
each other at steady state.

The synthesis of ATP, see Eq. 3.14, must increase when the intracellular
ATP concentration falls in order for the ATP concentration to reach a new
steady state. If not, an increase in JNaK will deplete the cell from ATP;
the rate of consumption is in this case always greater than the rate of
production. The increase in ATP synthesis with falling ATP concentration
is conceivable as this will shift the ATP/ADP balance. The amount of
ATP is reduced, and the amount of ADP available for new synthesis into
ATP increases. A possible expansion of the current model would be the
inclusion of differential equations describing the dynamic relations between
ATP and ADP.

The reported [15, 178] and simulated (Fig. 3.12) reduction in intracellular
ATP during transport may give reason to speculate whether it also directly
affects the pump rate of Na,K-ATPase. Although possible, it is unlikely
because studies in red blood cells, done by Marjonovic and Willis [115], have
shown that the Na,K-ATPase is ATP saturated already at a concentration
of 1.5 mM. The reduction in ATP during transport can thus regulate the K-
permeability and the outflow of K+ without impeding the net transport by
lowering the Na,K-ATPase pump rate. We have assumed that Na,K-ATPase
is saturated with respect to ATP in our model, i.e. the flow expression,
Eq. 3.2, does not include [ATP].
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Chapter 4

Implementing a Cu
regulating controller in yeast
(unpublished)
Copper is essential for cell functioning and survival, but becomes toxic at
high concentrations. Copper is an important cofactor for several enzymes
such as plastocyanin, an electron transfer protein involved in photosynthe-
sis [154]; superoxide dismutase (SOD), which protects against oxidative
stress [144]; and hemocyanins, which act as oxygen transporters (instead
of hemoglobin) in some invertebrates [77]. High copper concentrations
are toxic because copper can participate in Fenton-like redox reactions
with hydrogen peroxide (H2O2), a byproduct of oxygen metabolism. These
reactions produce highly reactive chemical intermediates, such as hydroxyl
(HO•) and superoxide (O•−2 ) radicals, as well as Cu(III) [141]. Copper
can also nonspecifically interact and bind to chains of amino acids, thus
causing proteins to fold and bind incorrectly [99]. Excess of misfolded
proteins caused by dysfunctional copper homeostasis are in humans con-
nected to neurodegenerative disorders like Alzheimer’s, and Parkinson’s
[58, 150]. Many organisms have developed methods that enable them to
obtain the necessary amount of copper, together with methods that prevent
the internal concentration from becoming too high.

This chapter explores the mechanisms behind copper homeostasis in the
model organism Saccharomyces cerevisiae (baker’s yeast). This single cell
organism is able to live and grow in environments ranging from having
trace amounts of copper to concentrations of Cu2+ in the millimolar range
[198]. We will show how the inflow/outflow controller framework can be
used to model and understand homeostatic control of copper in yeast.

Furthermore, by using molecular and synthetic biology tools, we design a
homeostasis extending outflow controller, and transform it into S. cerevisiae
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by genomic integration. The controller is only active when needed and
provides the transformed yeast with an improved resistance towards external
copper. The outflow controller consists of the gene of a copper transporting
Cu-ATPase from another yeast species and a copper dependent promoter
controlling this gene. This Cu-ATPase is able to pump copper ions out of
the cytoplasm.

This chapter is structured as follows: first a short introduction to yeast
as a model system is given in section 4.1. The native copper regulatory
system of S. cerevisiae is described in section 4.2. Section 4.3 describes
the added outflow controller and explains how this controller is built and
works. Section 4.4 presents the experimental methods used, and the results
are shown in section 4.5. Finally some remarks on the further directions of
this project are given at the end of the chapter.

4.1 Yeast as a model organism

S. cerevisiae is a unicellular eukaryotic organism known to most of us simply
as the yeast used for baking, brewing, and wine-making. Its popularity
as a model system, used to study fundamental cellular mechanisms, has
several reasons. It is easy to grow, and can grow on defined synthetic
media making it possible to control all environmental parameters. It grows
fast with generation times down to around 90 min in nutrient rich media.
Yeast grows vegetatively both as a diploid with chromosome pairs, and as
a haploid with only a single set of chromosomes. Haploid cells are either
of mating type a or α, and may mate to form a diploid. Diploids cannot
mate, but can undergo miosis and sporulate into four haploids.
The genome of S. cerevisiae was the first eukaryotic genome to be

fully sequenced (released in April 1996) [61]. The genome and curated
information about every gene is available in an online genome database
[30, 163]. DNA manipulation is very easy to do in S. cerevisiae, partly
because of the ease of deleting and disrupting genes in haploids with
only single chromosomes, and partly because of the yeast’s ability to
integrate DNA into its genome by homologous recombination [47]. DNA
can be manipulated not only by ordinary shuttle vectors (plasmids), but
also directly by PCR products. Selection is easy due to several common
selectable markers, most of which complement specific auxotrophies caused
by disruptions of particular genes [47, 53]. The S. cerevisiae strain we
use (YPH500) is for example unable to grow without supplements of
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leucine and tryptophan due to deletions in its LEU2 and TRP1 genes.
Transformants can be selected by using media without leucine, as only
cells which have successfully adopted new DNA (conveniently designed to
include a functional LEU2 gene) will be able to survive without leucine.
Apart from being easy to work with, basic functions in yeast cells are

almost surprisingly similar to higher eukaryotes such as mammals. Ex-
amples include: (i) biosynthetic pathways and their regulation, (ii) cell
division and cell cycle , (iii) DNA replication, recombination and repair, (iv)
transcriptional regulation and activation, (v) signal transduction pathways,
(vi) stress responses, (vii) prion development, and (viii) mitochondrial
metabolism [30, 53]. A good representation of the similarities was provided
by a Science paper published this year, which revealed that nearly half
of 414 essential yeast genes could be replaced by their human orthologs
[87]. That is, human protein-coding DNA can in many cases replace that
of yeast.

4.1.1 A note on yeast genetic nomenclature

We will here use conventional S. cerevisiae nomenclature to describe gene
names and proteins (gene products). Most noteworthy is:

• Wild-type genes have names with three letters and up to three num-
bers relevant to gene function1. Dominant genes are written with
uppercase letters in italics: CTR1, LEU2, CUP1.

• Recessive and nonfunctional genes are written with their respective
names in lowercase letters in italics. Mutant alleles are marked
by numbers, and/or by a symbol indicating the type of alteration:
leu2-∆1, ura3-52.

• Gene products, i.e., proteins, are denoted by their corresponding gene
name, but written with normal font and only with the first letter in
capital. A «p» is added at the end: Ctr1p, Leu2p, Cup1p.

Notice that the notation of proteins names (gene products) is different
from the nomenclature used in the previous chapter. Proteins are for most
mammals written by their name in uppercase letters. For more detailed
conventions we refer to [29, 47].

1The letters are somewhat random, but in some way relevant to gene function,
localization, or phenotype. It is not always easy for non-geneticists and non-biologists to
understand why a gene is given a specific name. The meaning behind the three letters
can be found by looking the gene up in the Saccharomyces Genome Database [163].
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4.2 Regulation of copper in yeast

The dominant form of copper in the cytoplasm of S. cerevisiae is cuprous
Cu+ [99, 189]. S. cerevisiae maintains internal copper homeostasis in envi-
ronments with low copper concentrations by using the copper transporter
Ctr1p, which is bound to the plasma membrane2 [39, 53]. The Ctr1p
transporters have very high affinity for Cu+. Environmental copper in the
oxidized Cu2+ form is reduced to Cu+ by the reductase Fre1p, which is
expressed on the cell outside. Fre1p is both an iron (ferric) and a copper
reductase. The transport appears to be passive as Ctr1p lacks motifs
for ATP binding [39]. The human analogue, hCr1p, is a trimer with a
channel- or pore-like structure [2, 131]. The transport through Ctr1p shows
Michaelis–Menten kinetics against external Cu2+, with an apparent KM

estimated around 1-4 µM [40]. Notice, however, that the use of Cu2+

implies that the measured kinetics include both reductase and transport3.
Transcription of CTR1 is activated at low levels of intracellular copper

and inhibited at high levels [101]. The transcription factor Mac1p binds
to a promoter element of CTR1 and activates transcription. Cu+ binds
to Mac1p at high concentrations, causing it to no longer function as an
activator [53], see Fig. 4.1. The expression of CTR1 is thus reduced when
sufficient amounts of copper are available. Transcription of the reductase
gene FRE1 is also controlled by Mac1p [101]. In addition to blocking
production of Ctr1p, high concentrations of copper are also claimed to
activate degradation of already produced and functional Ctr1p [134].

At high external concentrations of copper it is not always enough to stop
production of high affinity inflow transporters to maintain intracellular
homeostasis. Copper can leak into the cell through low affinity transporters
with less ionic specificity. One such transporter is Fet4p, a low affinity
transporter of several metal ions including iron, zinc and copper. Transcrip-
tion of its gene, FET4, is regulated by zinc and iron, but not by copper
[71, 187].

2Another copper transporter Ctr3p is encoded by the CTR3 gene of S. cerevisiae.
This gene is however disrupted and nonfunctional in most laboratory strains, including
the S288C strain [97]. It is also nonfunctional in the strain used in this work: YPH500,
see methods section 4.4.

3Most experiments on copper transport use Cu2+ in the external medium. Cu+ is
highly insoluble at neutral pH, and will rapidly oxidize to Cu2+ under aerobic conditions.
The cytoplasm of most eukaryotic cells is on the other hand a reducing environment, and
internal copper is thus very often in the Cu+ form [99]. Cu+ can be used in experiments
if the yeast is grown at anaerobic and acidic conditions (pH ≈ 3) [198].
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Figure 4.1: Transcription of CTR1 is inhibited at high internal concentrations of copper.
Cu+ inactivates the transcription factor Mac1p by binding to it.

S. cerevisiae has a copper detoxification system that relies on copper
dependent activation of transcription of copper chelators, so called copper
metallothioneins. Metallothioneins are small proteins that tightly bind
heavy metal ions. Copper metallothioneins provide a buffering mechanism
for the cytoplasmic concentration of free copper [42, 53 chap. 8]. The Cup1p
metallothionein is the primary copper buffer in S. cerevisiae [84]; it binds
up to eight Cu+ ions in a tight cysteinyl thiolate cluster [23]. The tight
binding of Cu+ to Cup1p effectively prevents nonspecific copper binding,
i.e., it prevents copper mediated protein misfolding.

Transcription of the CUP1 gene is regulated by the transcription factor
Cup2p. Cup2p is activated by copper, in more or less the opposite way of
Mac1p. Cu+ binds to Cup2p causing it to bind to a promoter upstream of
the CUP1 gene, see Fig. 4.2. The CUP1 promoter contains so-called metal
regulatory elements (MREs), specific DNA sequences that Cup2p binds to
in the presence of Cu+ [100].

Fig. 4.3 illustrates the main parts of the system for regulation of internal
copper in S. cerevisiae. Looking at this system in the light of the controller
motif framework, we see that the high affinity inflow transporter Ctr1p acts
as an inflow controller. The structure is similar to that of controller motif 3
in Fig. 2.1. Copper (A) inhibits the production of Ctr1p (E), and Ctr1p acts
as a controller by adjusting a compensatory inflow of copper. The inflow of
copper through Ctr1p depends linearly on the amount of active Ctr1p (E)
situated in the membrane. As mentioned, high concentrations of copper
may also cause degradation of already produced and functional Ctr1p. A
dominating Cu+ activated removal of Ctr1p makes the structure more like
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Figure 4.2: Transcription of CUP1 is activated at high internal concentrations of
copper. Cu+ activates the transcription factor Cup2p by binding to it.

controller motif 1, Fig. 2.1. Arguably this duality calls for an extension of
the controller motifs4. Depending on the actual kinetics, controller motif 1
or controller motif 3 may nevertheless be a sufficient description alone.

Figure 4.3: Illustration of the copper regulatory system in S. cerevisiae. Parts and
interactions described in main text.

4We did originally only consider motifs where A acts on either the inflow or the
outflow for E, not both at the same time, see chapter 2.

78



CHAPTER 4. A CU REGULATING CONTROLLER IN YEAST

An interesting question is whether the inhibition of CTR1 transcription
by Mac1p and Cu+ can be described as done in the theoretical analysis
of the controller motifs, i.e., on the simple form gcKI/(KI + Cu) (Eq. 2.5
assuming g(·) = 1). The actual kinetics is to our knowledge not yet known,
but experiments have shown that the binding of Cu+ to Mac1p can be
described by a (reversed) Hill-equation5 with n=1 [189]; a form which is
equivalent to the simple inhibition expression. The overall inhibition of
transcription will in addition also depend the binding characteristics of
Mac1p to DNA and the recruitment of RNA polymerase. Still, the above
suggests that a simple inhibition term may be an adequate description, at
least as long as the amount of Mac1p remains constant.

The regulation of Cup1p appears to work similar to an outflow controller
motif of type 5 in Fig. 2.1. The actual kinetics is however, as for the
regulation of Ctr1p, not known in detail. Regardless, Cup1p does in essence
work as a storage buffer capable of storing excess Cu+ when availability is
high, and supplying necessary Cu+ when external copper is limiting.

4.3 Extending copper homeostasis by adding an
outflow controller

The high affinity Crp1p transporters enable S. cerevisiae to survive and
grow in environments with very little copper, and the copper binding
metallothioneins provides detoxification and supports growth in environ-
ments with moderate copper concentrations. There is, however, an obvious
limitation in the capacity of the Cup1p system. Copper is never really
removed from the cytoplasm, just stored; and the storage capacity is limited
both by space and by the metabolic load caused by Cup1p production.
A continued production of Cup1p puts a strain of the cell’s molecular
production machinery, and drains available recourses (amino acids). In our
experiments growth is significantly inhibited in synthetic media when Cu2+

concentration is around 1 mM. What S. cerevisiae lacks is a mechanism
5The Hill equation describes a saturable function on the form V xn/(Kn

0.5 + xn),
which is 0 for low x and saturates at V for high x [35]. The exponent n is called the
Hill-coefficient and may be any positive number; higher n results in a greater steepness in
the saturation curve. The opposite function, which is 0 at high x and saturates at V for
low x, is often also called a Hill-equation or a reversed Hill-equation: V Kn

0.5/(Kn
0.5 + xn).

The Hill-equation was first proposed by A. V. Hill as an empirical description of oxygen
binding to hemoglobin [76].
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that can maintain nontoxic levels of cytoplasmic copper in environments
with a high copper concentration.

Candida albicans is a pathogenic yeast that shows higher resistance to
copper than S. cerevisiae. Weissman et al. [198] found that C. albicans is
able to grow with concentrations of external copper that are much higher
than what S. cerevisiae is capable of, see Fig. 4.4. The increased resistance
is attributed to a P-type ATPase coded by the C. albicans CRP1 gene.
This ATPase functions as a copper pump; it is bound to the cytoplasmic
membrane, and cleaves ATP in order to transport Cu+ ions out of the
cytoplasm [147, 198].

Figure 4.4: Copper resistance of C. albicans (left) and S. cerevisiae (right). C. albicans
strain CAF3-1 and S. cerevisiae strain W303 were grown for 2 days at 30°C on yeast
extract/peptone/dextrose (rich medium) supplemented with 12 mM Cu2+ (CuSO4).
Reprinted from [198]. Copyright © 2000, The National Academy of Sciences.

The goal of this work is to synthetically add a copper outflow controller to
S. cerevisiae as to extend the region of homeostatic copper regulation. The
idea is to use the copper transporting P-type ATPase from C. albicans as
a candidate, and fuse it together with a copper dependent promoter. This
promoter should be tunable, that is, we should be able to create mutants
with different regulatory capabilities and different (tunable) resistances to
copper.
The transcription of CRP1 in C. albicans is activated when copper

is added to the growth medium [198], indicating that the gene is under
control of intracellular copper. It is likely that the upstream regions of
CRP1 contains a copper dependent promoter; this promoter has however
not been characterized, and its exact function is therefore unknown.
A more promising candidate for a copper dependent promoter is the

CUP1 promoter native to S. cerevisiae, which was described in the previous
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section. This promoter is very well characterized, and has been used as a
promoter for controlled expression of heterologous proteins in S. cerevisiae
[100]. It exhibits rapid induction with a maximal level of transcripts
detected 30 minutes after addition of external copper [140]. It is also highly
tunable; Thiele and Hamer [176] have characterized the induction ratio of
nearly 20 different mutations of the promoter.

Fig. 4.5 shows the extended regulatory system of S. cerevisiae with the
outflow controller added in this study. Crp1p works as an outflow controller
motif of type 5, see Fig. 2.1, with its CRP1 gene under control of a copper
activated CUP1 promoter. We are able to monitor the production of Crp1p
by fusing it to a fluorescent protein (enhanced green fluorescent protein:
Egfp). The pCUP1-CRP1-EGFP fusion is integrated into the genome of
S. cerevisiae by homologous recombination, explained in the next section.

Figure 4.5: Illustration of the copper regulatory system in S. cerevisiae extended with
an added outflow controller (in blue). The main part of the outflow controller is the
Crp1p Cu-ATPase from C. albicans, which pumps Cu+ ions out of the cell. The CRP1
gene from C. albicans is fused to a EGFP gene, and is under control of the copper
dependent promoter pCUP1.
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4.4 Experimental methods

4.4.1 Strains, media and reagents

All yeast experiments are done in S. cerevisiae haploid strain YPH500,
originally created by Sikorski and Hieter6 [165]. YPH500 has the following
genotype: MATα ura3-52 lys2-801amber ade2-101ochre trp1-∆63 his3-∆200
leu2-∆1 [165]. Chromosomal integrations were targeted to the leu2-∆1
locus. Synthetic drop-out medium without leucine (SC-Leu) was prepared
according to standard protocols with the following components (Supplier
and product numbers in parenthesis): 1.7 g yeast nitrogen base without
amino acids and ammonium sulfate (Sigma-Aldrich Y1251), 5 g ammonium
sulfate (NH4)2SO4 (Sigma-Aldrich A4418), 1.3 g yeast synthetic drop-out
medium supplement without leucine (Sigma-Aldrich Y1376), 30 mg adenine
hemisulfate (Sigma-Aldrich A9126), 20 g glucose (VWR-BDH BDH0230),
and double-distilled water, ddH2O, to 1 liter. Synthetic complete medium
(SC) was made by adding leucine (Sigma-Aldrich L8000) to SC-Leu. Final
leucine concentration in SC medium is 380 mg/l. Media for plates were
made by the same recipes with the addition of 20 g agar (BioShop Canada
AGR001). Copper in the form of Cu2+ was added to media from a 0.25 M
stock solution of CuSO4 (BioShop Canada CUS803) dissolved in ddH2O.

All plasmids were grown in, and harvested from, E. coli strain DH5α.

4.4.2 Plasmid construction and genomic integration

The CRP1 gene was kindly donated by D. Kornitzer on plasmid KB806,
described in [198]. In our construct CRP1 is fused to a yeast codon
optimized EGFP gene [34], followed by a transcription terminator, CYC.
The EGFP-CYC fusion was obtained from plasmid pLAREG, earlier created
at the McMillen lab by Mazumder and McMillen [118]. To prepare a
plasmid for integration into the yeast genome we used a pRS405 based
vector backbone7, with a CUP1 promoter already present. The backbone
was generated from plasmid pRS5-pCUP1-ClpP (in the McMillen plasmid
collection when I joined the lab8). The donor plasmids and the parts used
in our construct are shown in Fig. 4.6.

6YPH500 is based on YNN216, which is congenic with S288C.
7pRS405 is structurally similar to pRS305 (see Addendum in [165]), which was

developed by Sikorski and Hieter for use in YPH500 [165].
8Accurate origin will be tracked down before this work is published in a journal.
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Figure 4.6: Parts used in our constructs, outlined, were copied by PCR from these
donor plasmids. KB806 was donated by D. Kornitzer. pLAREG was created at the
McMillen lab [118]. pRS5-pCUP1-ClpP is of unknown origin.

Plasmids were harvested from E.coli and purified by using a QIAprep
Spin Miniprep Kit from QIAGEN. DNA fragments of the different parts,
CRP1 from KB806, EGFP-CYC from pLAREG, and the pRS5-pCUP1
backbone from pRS5-pCUP1-ClpP, were amplified from purified plasmids
by PCR. NEB Q5 High-Fidelity 2X Master Mix, product number M0492,
was used for PCR reactions. We used extended primers with overhang;
the overhang creates homology needed for Gibson Assembly [60]. Egfp
is fused to Crp1p by removing the stop codon of CRP1 and inserting a
glycine linker (GGTGGTGGT), creating a fused CRP1-EGFP gene. The
primer design and the target plasmid, named pRS5-pCUP1-CRP1-EGFP,
are shown in Fig. 4.7. The primer sequences are listed in Table 4.1.

Figure 4.7: A. Primer design for PCR of fragments for use in Gibson Assembly. The
primers have added tails to create regions of overlapping DNA of about 40 bp. The
reverse CRP1 primer and the forward EGFP-CYC primers exclude the CRP1 stop
codon and adds a glycine linker. The primers are listed in Table 4.1. B. Target plasmid,
pRS5-pCUP1-CRP1-EGFP, created by Gibson Assembly of the fragments in A.
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Name Sequence

P_CRP_F CATAAATCCGGACGACAGAC ATGCAGAAATTTATCATTAATTTTGC

P_CRP_R TCACCTTTAGACAT ACCACCACC TACTTCGTTTGGTGAAA

P_EGFP_F TTTCACCAAACGAAGTA GGTGGTGGT ATGTCTAAAGGTGA

P_EGFP_R GCTCCACCGCGGTGGCGGCC ATCCGCTCTAACCGAAAAGG

P_BB_F CCTTTTCGGTTAGAGCGGAT GGCCGCCACCGCGGTGGAGC

P_BB_F TTAATGATAAATTTCTGCAT-

GTCTGTCGTCCGGATTTATGTGATGATTGATTGATTGATTGTACAGT

Table 4.1: Primers used to create DNA fragments for use in Gibson Assembly. F and
R denotes forward and reverse primers. Sequence overlap is color coded, red is CRP1,
green is EGFP-CYC, and brown is the vector backbone. Spaces are used to improve
readability.

All fragments (PCR-products) were confirmed by gel electrophoresis.
PCR-products showing only one band of correct size were directly purified
using a QIAquick PCR Purification Kit from QIAGEN. PCR-products
showing multiple bands were separated by gel electrophoresis, extracted,
and purified using a QIAquick Gel Extraction Kit from QIAGEN. The
purified fragments were glued together by Gibson Assembly [60] using a
Gibson Assembly Master Mix from NEB, product number E2611. Gibson
products were treated by DpnI, NEB product number R0176, to destroy
any viable background plasmids.

The DpnI treated Gibson product was transformed into E. coli by elec-
troporation, and transformed bacteria were plated on LB-AMP plates and
incubated at 37°C overnight. Only a single colony was detected on the
plate the following day. Colony PCR with primers in backbone and EGFP
revealed that a promising construct was present. Plasmids from this colony
were then harvested and purified. Restriction digest, PCR, and sequencing
were used to confirm that the construct was the correct target plasmid,
pRS5-pCUP1-CRP1-EGFP9.

9We experienced some difficulties with getting the Gibson Assembly to work, and
when it worked it had a very low yield. We have hypothesized that the relative short
regions of overlap compared to the overall size of the construct may have been an issue;
this hypothesis is based on experience later gained from other projects using the same
Gibson kit. Another issue may have been that the concentration of our fragments was in
the lower region of what is suggested in the kit protocol. Nevertheless, we finally ended
up with the correct construct.
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Transformation into yeast was done using a transformation kit from
G-Biosciences (Fast Yeast Transformation, product number GZ-1). Trans-
formation competent yeast cells were prepared according to the protocol
provided by the kit. pRS5-pCUP1-CRP1-EGFP is an integrative plasmid in
yeast (YIp). We linearized the plasmid with BstEII, NEB product number
R0162, prior to transformation; BstEII cuts the plasmid in the LEU2 gene.
Linearization facilitates homologous recombination into the nonfunctional
leu2-∆1 allele of YPH500 [47, 165]. Recombination results in a functional
LEU2 gene, which is used for selection. Transformation was done by adding
a total of 1.8 µg of linearized plasmid (in 5 µl) to 50 µl of component cells
prepared according to kit protocol10 and appropriate amount of reagents
from the transformation kit. After having been incubated at 30°C for 90 min
the transformed yeast cells were spread on a selective SC-Leu agar plate.
The plate was then incubated at 30°C for one week, after which around 100
colonies of transformants had grown to colony sizes approximately equal to
this dot: •.

4.4.3 Growth and fluorescence experiments

Measurements of optical density (OD600) were done on a Spectronic 200
spectrophotometer from Thermo Scientific; each sample of cell culture was
compared to a blank sample of the medium used in the culture.
Experiments comparing growth in Cu2+ of transformed and untrans-

formed yeast cells were done in 24 well plates (Corning Costar 3526). Wells
were seeded from cultures grown in appropriate media (SC-Leu and SC)
without added copper. The equivalent of 200 µl of a culture with an OD600
of 0.9 was seeded to each well, and medium with the appropriate amount of
Cu2+ was added to a total volume of 1.4 ml. One row of wells containing
only media with appropriate amounts of Cu2+ was added to each well
plate as a reference, and used for blanking. Cells were grown at 30°C with
orbital shaking. Growth was measured at different intervals (see results)
by taking a 12 µl sample of each well. Samples were added to disposable
hemocytometers (InCyto C-Chip), which were digitally photographed by
microscopy. This allowed us to sample all wells in short time. Cells were
later manually counted from the hemocytometer images.

10Equivalent to 0.5 ml of liquid cell culture in log-phase (exponential) growth. Culture
used was in log-phase growth with an optical density of 1.4 (OD600), measured on a
Spectronic 200 spectrophotometer from Thermo Scientific.
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Relative fluorescence was measured directly from each well in a plate
reader (Tecan Infinite M1000 Pro, excitation wavelength at 488 nm and
emission wavelength at 509 nm). Fluorescence of corresponding wells with
only medium was substracted from the measured values. Furthermore, all
fluorescence values were normalized by hemocytometer cell counts. We
experienced that our yeast cells had a tendency to settle at the bottom of
the wells. Therefore, wells were thoroughly mixed by vigorously pipetting
up and down before measuring fluorescence.

4.5 Experimental results and discussion

Note that the following results are preliminary and still unpublished. Ex-
periments will be redone with replicates before final publication.

4.5.1 Confirmation of inserted construct

Growth of transformants on SC-Leu show that the LEU2 gene is functional.
To verify genomic integration and function of the whole construct we picked
9 colonies from the selective plate and cultured them in liquid SC-Leu media.
Seven of these cultures exhibited green fluorescence after induction with
1 mM Cu2+, confirming the production of the fusion protein Crp1p-Egfp
in response to copper. We selected one colony to continue with as our
transformed YPH500-pCUP1-CRP1-EGFP. For this colony we confirmed
the genomic integration of pCUP1-CRP1-EGFP by genomic PCR and
sequencing.

4.5.2 Copper resistance

S. cerevisiae is fairly resistant to copper, and is able to grow in synthetic
media with copper concentrations up to 1 mM Cu2+, albeit at a lower than
normal growth rate. Fig. 4.8A shows measured growth (cell counts) for
untransformed yeast.
Growth is markedly affected in higher copper concentrations with a

concentration of 1 mM inhibiting growth by around 65%, Fig. 4.8B. These
results fit well with earlier reports of a mean 50% inhibitory concentration of
Cu2+ at 740 µM for S. cerevisiae strain SY1699 in synthetic medium [144].

The transformed YPH500-pCUP1-CRP1-EGFP shows significantly higher
resistance to copper. It is able to grow in almost twice the concentration
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Figure 4.8: A. Growth of S. cerevisiae YPH500 in synthetic complete media with
different concentrations of Cu2+ (CuSO4). Amount of cells per ml is estimated from
hemocytometer counts, notice the logarithmic y-axis. Counts include all cells; dead cells
may have been counted as no staining was used. B. Growth inhibition by copper as
fraction of normal growth without added copper, based on cell counts after 26.5 hours
of growth. C. Image of well plate showing the difference in growth after 26.5 hours,
concentration of Cu2+ from left to right: 0, 1, 1.5, 2, 2.5, 3 mM.

of copper as the untransformed yeast. Fig. 4.9 shows the number of cell
doublings over 50 hours for both untransformed and transformed yeast.
These results indicate that the added outflow controller works as expected.
It is able to maintain nontoxic levels of cytoplasmic copper, and extends
the homeostatic range towards external copper.

Looking closer at the results shown in Fig. 4.9, we see that the transformed
yeast has normal growth rate in 1 mM Cu2+, with a small, but probably
unimportant increase compared to without added Cu2+. The untransformed
yeast on the other hand shows a more significant reduction of cell doublings
from 5.9 to 4.4, corresponding to a growth reduction to 35% of normal
growth. The growth of the transformed yeast is affected and reduced at
1.5 mM Cu2+. This suggests that the range where internal copper is kept
within homeostatic limits is extended to somewhere between 1 and 1.5 mM
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Figure 4.9: Growth after 50 hours shown as number of cell doublings for transformed
YPH500-pCUP1-CRP1-EGFP (left) and untransformed YPH500 (right). Gray levels
correspond to different concentrations of Cu2+, see legend, black is 0 mM and white is
3 mM. Number of doublings are based on cell counts from hemocytometers. Negative
values indicates fewer cells after 50 hours than at the start of the experiment.

in the transformed yeast. The reduced growth at higher concentrations
may indicate that the controller at this point is saturated and in its region
of breakdown, refer to sections 2.5 and 2.6. It is however not entirely clear
that this is the case, because reduced growth may also be caused by the
energetic needs of producing and running the pump. After all, the cell uses
ATP to pump Cu+ out.

We wondered what would happen over a longer time period; would
cultures grown with different concentration of Cu2+ eventually reach the
same saturated growth? Fig. 4.10 shows both yeast-types after 1 week
of incubation. We do not have cell counts, but the transformed YPH500-
pCUP1-CRP1-EGFP shows visual growth at all copper concentrations,
including the highest of 3 mM. Visual growth is only seen up to 1.5 mM
for the untransformed yeast.

The clumpy, flocculating-like, behavior of the transformed yeast at higher
copper concentrations seen in Fig. 4.10 was typical, and was observed
in several experiments. We do not know exactly why this happens, but
speculate that it is an environmental response. Although the transformed
yeast grows at high copper concentrations, it grows significantly slower
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Figure 4.10: Saturated growth after 7 days. YPH500-pCUP1-CRP1-EGFP in top row
and untransformed YPH500 in bottom row. Concentration of Cu2+ from left to right: 0,
1, 1.5, 2, 2.5, 3 mM.

than normal. Cellular responses may therefore be focused more strongly
towards survival than growth.

4.5.3 Controller response

The relative amount of Crp1p can be measured by fluorescence from the
Crp1p-Egfp fusion. Fig. 4.11 shows the relative fluorescence (light emis-
sion) from cells measured after 7.5 hours and 50 hours. Fluorescence of
transformed cells growing without added copper is around the same as the
basal level of autofluorescence measured from untransformed cells, showing
that very little Crp1p-Egfp is produced. This fits with our expectations,
indicating that the outflow controller is only active when needed. The
results in Fig. 4.11 also show that the fluorescence of the transformed cells
is stronger at higher concentrations of copper, showing that the amount of
Crp1p increases with copper concentration.

It is also interesting to see how the fluorescence changes with time after
copper is added to the growth medium, which can be used as an estimate
of production and insertion of Crp1p into the membrane. Fluorescence
microscopy shows that detectable amounts of Crp1-Egfp fusion is produced
over a couple of hours, Fig. 4.12. The fusion protein is primarily located
in the plasma membrane. For cells grown in copper for longer periods
we typically observed an additional spotty glow, indicating some sort of
clustering or compartmentalization of the fusion protein.

89



CHAPTER 4. A CU REGULATING CONTROLLER IN YEAST

Figure 4.11: Normalized relative fluorescence measured from yeast cells grown at
different concentrations of Cu2+. Measurements taken after 7.5 hours (left) and 50 hours
(right) of growth. The plate reader is set to take 4 fluorescence measurements of each
well, errorbars represent standard deviation of these measurements. Notice that detector
gain is set automatically by the plate reader to ensure good dynamic range in the
measurements. The fluorescence at 7.5 h and 50 h can because of this not be compared
directly, as the relationship between sensitivity and gain in the plate reader is nonlinear.

4.6 Further directions

Our preliminary results clearly show that the outflow controller is working,
and that it extends copper homeostasis in S. cerevisiae. Nevertheless, we
feel that more work is needed before this work is ready for publication in
a journal. We want to repeat the experiments done so far with several
replicates. This will give us an indication of reproducibility and robustness
against cell variance. There is also room to improve our experimental
protocols to reduce experimental variability.

Figure 4.12: Microscope epifluorescence images taken of transformed yeast cells growing
in medium with 1.5 mM Cu2+. Time-stamp indicates time after copper was added to
medium. All images are taken with the same microscope settings.
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We would also like to do further experiments on how the controller
responds when copper is added to the medium. One way to do this is
to make more detailed series of images from fluorescence microscopy, like
the ones shown in Fig. 4.12. In particular, we would like to test how
cells already growing in a certain concentration of copper react to further
addition of copper, and also how they react to complete removal of copper
from the medium. Data from such experiments can tell us whether the
controller acts as expected from theory.
Furthermore, there are two remaining major goals in this project that

will be discussed in the two following sections.

4.6.1 Concentration of internal copper and integral action

The controlled variable of the added outflow controller is the intracellular
concentration of copper. Our experiments have so far only shown extended
homeostasis of this variable indirectly, i.e., a regulation of internal copper
is implied by the observation that the transformed cells have a higher resis-
tance towards external copper. We have not done or designed experiments
that show the actual intracellular level of copper.

One challenge in measuring internal copper is whether to measure total
copper content or free cytoplasmic copper. The first is definitely doable;
total copper content can be measured in harvested yeast cells by chemical
methods, for example by elemental analysis [144]. One issue with measuring
total copper is that such measurements cannot be done in vivo.
On the other hand, measuring free intracellular copper is not straight-

forward. The total copper concentration in S. cerevisiae can be as high
as 10-100 µM, but virtually all of this is bound to proteins and ligands
[189]. It has been estimated that the concentration of free intracellular
copper is so low that there in practice is not even a single free (unbound)
copper ion in the cytoplasm [144]. Copper is primarily bound to Cup1p
metallothioneins, and is only available to be transferred to other high
affinity binding sites. A possible in vivo copper sensor must therefore have
a very high affinity to compete for copper in the cytoplasm. The picomolar
affinity for Cu+ that can be achieved by some synthetic small molecule
sensors [43] is insufficient [188]. More promising is the work on genetically
encoded reporters by Wegner et. al [188]; they inserted a high affinity
copper binding site from Amt1p of the yeast Candida glabrata [188], the
homolog of Cup2p from S. cerevisiae, between two fluorescent proteins that
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are fluorescence resonance energy transfer (FRET) pairs. This causes the
emitted fluorescence from the two proteins to differ depending on whether
copper ions are bound to the site or not. Since Amt1p is used to activate
the promoter of copper defending metallothioneins, its binding site is strong
enough to sense free copper. The same group have also used the technique
to create a copper sensor with a Cup2p binding site in a YFP11 protein
[107]. The actual change in fluorescence caused by a copper ion binding
to the site is however very low, only a 16% change in peak ratios for the
FRET [188] and only around 30% for the YFP [107]. It can therefore be
difficult to get good measurements. These sensors have also so far only
been used in human cells. With these difficulties in mind, we feel that there
are more important experiments to consider before we look into in vivo
measurements of free intracellular copper.

The primary goal of measuring internal copper, either total or free, is to
examine whether or not the internal concentration remains more or less
constant for a range of different external concentrations. A near constant
level of internal copper would show that the outflow controller provides
robust perfect adaptation, and as a consequence also show that the outflow
controller has integral action, see section 1.2. Showing that this is the case
would provide proof of a successful implementation of an integral controller
in synthetic biology.

An alternative way to show that Crp1p has integral action is to examine
the kinetics of its synthesis and removal. Future work should therefore also
include experiments designed to look into these kinetics.

4.6.2 Controller tuning

This work can also be extended in a different direction by investigating
the tunability of the added outflow controller. A relevant question is: Can
we tune the controller so that a specified concentration of external copper
will cause a certain fractional reduction in cell growth? One way to tune
the controller is to adjust the strength of the CUP1 promoter by mutating
it [176]; a change in promoter strength will, in theory, result in a change
in the setpoint of the controller. How this affects growth rate in practice
remains to be elucidated.

11Yellow Fluorescent Protein.
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Chapter 5

Linking homeostasis and
oscillatory behavior
(paper 2 and 5)
Oscillatory systems, so-called oscillators, are common in biology [18, 62,
132, 180]. Examples are seen in circadian rhythms [121, 135], metabolism
[21, 38, 161], and signaling systems [17, 85, 129]. With oscillation being
prevalent one may ask how, if at all, they are related to homeostatic systems.
This is in essence what is done in Paper 2 and Paper 5.

The work in this part of the thesis first shows how the controller motifs
from Paper 1 and Paper 3 can be modified into oscillatory system. These
systems are then shown to have regulatory properties in the sense that
they, in spite of external disturbances, maintain the average value in the
controlled species. Furthermore this part also shows how controller motifs
may be added to achieve robustness in an oscillator’s frequency.
The two main types of oscillators that show sustained oscillations are

conservative systems, which may be linear or nonlinear, and nonconservative
self-oscillating systems, which are always nonlinear [5]. This thesis will
deal with oscillatory systems that are characterized by that the motions
of its variables are periodic, i.e., that they in phase space make out a
closed path1. Phase space is formed by the state variables; a set of values
A(t1) = A1 and E(t1) = E1 make out a point with coordinates (A1, E1).
Fig. 5.1 shows the oscillations in both time and phase space for two different
oscillatory systems. Panel A shows a conservative system, and panel B
shows a self-oscillating system. Both systems have closed paths in phase

1Some systems of dimension 3 or higher may have motions in phase space that are
bounded, but which never settle at a fixed point or a closed orbit. Such chaotic systems
may show irregular, aperiodic, oscillations that never repeats exactly [173].
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space, but their appearance is different; the distinction will be made clear
in the following sections.

Figure 5.1: Conservative oscillator (A) and self-oscillating nonconservative oscillator
(B). State variables, A (blue) and E (green), are shown in time (left) and phase space
(right). The two systems are given new initial conditions at time 0, 60 and 120.

All of the two component controller motifs in Fig. 2.1 can, with some
modification, show oscillations.

5.1 Conservative oscillators

The most primitive oscillations that can be generated with the controller
motifs are of the conservative type. A necessary attribute of a conservative
system is, as defined in [5], the existence of a single valued integral on the
form,

F (u, v) = C (5.1)

where u and v are the state variables, i.e., the coordinates in phase space (u
and v are in our case A and E). C is a third coordinate measured along the
normal to the phase surface. A closed curve in phase space has the property
that the value of C is constant, C = C0, along the curve. Furthermore,
conservative systems are characterized by that there cannot exist just one
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isolated closed path in phase space, but a continuum of such curves, as
seen in Fig. 5.1A. If there is a closed path for C = C0, then there are also
neighboring closed curves for neighboring values of C [5].
Furthermore, the oscillations of a conservative system have amplitudes

determined by initial conditions, see Fig. 5.1A. This follows from the
multiple possible closed paths in phase space.
Many of the conservative systems considered in this thesis can be de-

scribed by Hamilton-Jacobi type differential equations,

Ȧ = −∂H
∂E

Ė = ∂H

∂A
(5.2)

where the role of F in Eq. 5.1 is replaced by an H-function, also known as
an energy or Hamiltonian function2.

The following two requirements are needed to get conservative oscillations
for any motif from Fig. 2.1: 1, Integral control must be implemented in the
rate equation for E, either by perfect zero-order degradation (section 2.3)
or by autocatalytic formation and first-order degradation (section 2.10).
2, Integral control of E must likewise be implemented in the rate equation
for A, either by zero-order degradation of A, with respect to A, or auto-
catalytic formation and first-order degradation3. When conditions 1 and
2 are fulfilled, we should be able to find a function that satisfies Eq. 5.1.
This function may in some cases be H-function that conforms to Eq. 5.2
constructed as:

H = −
∫
Ȧ dE +

∫
Ė dA (5.3)

5.1.1 Controller motif 2 and Goodwin’s oscillator

I will here use controller motif 2 with zero-order removal of A and E as
an example, and illustrate how it can behave as a conservative oscillator.
The conservative variant of controller motif 2, shown in Fig. 5.2, is realized
when there is zero-order removal4 of both A and E.

2Conservative systems can be further generalized by Pfaff’s equations, see [5 p. 131].
3I.e., a conservative system is created by having two integrators and no damping.
4The zero-order removal is, modeled with very low, but nonzeroKM value, as explained

in section 2.9. The oscillators are thus strictly speaking not conservative systems. A
conservative system is an idealized type of system. The definition requires that the
H-value, often interpreted as the total energy, remains constant for all time. Although
oscillations in systems with very low KM will eventually die out, this happens so slow
that the system can be analyzed as a conservative system.
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Figure 5.2: A. Inflow controller motif 2. This motif behaves as a conservative oscillator
when both species are removed by zero-order kinetics. B. Conservative oscillations shown
in time. At time t = 40 A (blue) and E (green) are abruptly changed to new values (new
initial conditions). This gives rise to a different amplitude in the oscillations. C. Phase-
space paths for the oscillations in panel B plotted together with the H-function from
Eq. 5.7. Parameters used: k1 = 0, k2 = 1, k3 = 6, k4 = 1, KA

M = 10−6, KEset
M = 10−6,

V Eset
max = 2, KE

I = 0.5; initial conditions (2,1) and (2,1.5).

Perfect zero-order means setting KEset
M and KA

M to zero; the motif equa-
tions can then be written as.

Ȧ = k1 + k3KE
I

KE
I + E

− k2 (5.4)

Ė = k4A− V Eset
max (5.5)

In the following we assume that k1 = 0 (alternatively that k1 and k2
are combined into a new k2 constant). The H-function is, as in Eq. 5.3,
constructed by integrating Ȧ and Ė,

H = −
∫ (

k3KE
I

KE
I + E

− k2

)
dE +

∫ (
k4A− V Eset

max

)
dA (5.6)

which leads to the final expression for H:

H = k2E − k3K
E
I ln

(
KE
I + E

)
+ 1

2k4A
2 − V Eset

max A (5.7)

This function is shown in Fig. 5.2C together with H-values calculated for
the oscillations in A and E.

The conservative version of motif 2 bears close resemblance with Good-
win’s oscillator. In the literature the Goodwin oscillator comes in two
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versions, one conservative version with two components from 1963 [63]
and one version with three components from 1965 [64]. Goodwin’s two
component oscillator is described by the following equations (Eq. 14 in [63]),

dXi

dt
= ai
Ai + kiYi

− bi (5.8)

dYi
dt

= αiXi − βi (5.9)

which is structurally similar to Eqs. 5.4 and 5.5. Goodwin later expanded
this oscillator to a three component version, with first-order removal of the
individual components instead of zero-order5.
Conservative oscillators can in the same way be constructed for all

the eight basic motifs from Fig. 2.1. This can be done both with zero-
order removal, or with autocatalytic formation and first-order degradation.
Paper 5 shows the construction for controller motif 5 in addition to motif
2. The construction of a H-functions is shown for all four combinations of
zero-order removal and first-order removal with autocatalytic synthesis in
the supporting material of Paper 5.

5.1.2 Controller motif 5 and the Lotka-Volterra oscillator

The Lotka-Volterra oscillator is arguably one of the best known oscillators
in biology. It was formulated independently by Lotka and Volterra [19,
111, 112, 182], and have been the subject of many studies especially within
chemical oscillator theory [75, 112] and predator-prey interactions [19, 111].
The Lotka-Volterra oscillator is described by the following equations:

Ȧ = k1A− k3AE (5.10)
Ė = k6AE − k8E (5.11)

where A and E are two interacting species, either in the chemical or
ecological sense. The Lotka-Volterra oscillator can be viewed as having an
outflow controller 5 structure relative to A, Fig. 5.3A, with autocatalysis

5A reason for doing so was the fact that only the slightest deviation from perfect
zero-order removal breaks the conservativeness of the system. See also section 2.9, and
the previous footnote. Goodwin’s three component system is an oscillator of the self-
oscillating type [64]. Later analysis proved, however, that the three component system is
only an oscillator for a very restricted parameter space; it requires cooperativity larger
than 8 in the inhibition of the synthesis of A/Xi [66].
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and first-order removal in both A and E6. This setup has perfect integral
control of both A and E. The Lotka-Volterra oscillator is in this way
similar to the Goodwin oscillator described in the previous section in that
they both consists of two interconnected perfect integrators. Fig. 5.3B
shows that different initial conditions gives rise to oscillations with different
amplitudes, indicating that the Lotka-Volterra oscillator is conservative.

Figure 5.3: A. Inflow controller 5 with autocatalysis and first-order degradation in
both A and E. B. Conservative oscillations shown in time. At time t = 20 A (blue) and
E (green) are abruptly changed to new values (new initial conditions). This gives rise to
oscillations of different form and amplitude. C. Phase-space paths for the oscillations in
panel B plotted together with the F -function from Eq. 5.15. Parameters used: k1 = 1,
k3 = 2, k6 = 1, and k8 = 2; initial conditions (1.5,0.5) and (0.8,0.5).

We will now show that there exists a function F that satisfies Eq. 5.1.
Consider first the transformed system defined by the transformation α =
ln(A), ε = ln(E) (valid for all A, E > 0).

α̇ = k1 − k3e
ε (5.12)

ε̇ = k6e
α − k8 (5.13)

The H-function of this system, satisfying Eqs. 5.2 and 5.3, is:

H(α, ε) = −k1ε+ k3e
ε + k6e

α − k8α (5.14)

Replacing α and ε with A and E gives,

F (A,E) = −k1 ln(E) + k3E + k6A− k8 ln(A) (5.15)

which is plotted in Fig. 5.3C, together with the F -values calculated for
the oscillations in A and E. The value of F is constant along every closed

6It can also be alternatively interpreted as having the structure of inflow controller 1
by interchanging Eqs. 5.10 and 5.11, shown in Fig. 6b in Paper 2.
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path created by different initial conditions, Fig. 5.3C. This can be proven
analytically by taking the total derivative of F with respect to time.

dF

dt
= ∂F

∂A
Ȧ+ ∂F

∂A
Ė (5.16)

=
(
k6 −

k8
A

)
(k1A− k3AE) +

(
k3 −

k1
E

)
(k6AE − k8E) (5.17)

= k1k6A− k3k6AE − k1k8 + k3k8E

+ k3k6AE − k3k8E − k1k6A+ k1k8 (5.18)
= 0 (5.19)

Thus the value of F is constant along paths in phase space, as required by
Eq. 5.1. Although illustrative for our case this proof is nothing new in itself,
as the Lotka-Volterra system is a well known conservative oscillator. Notice
that although the F function satisfies the requirement of a conservative
system in Eq. 5.1, it is not a H-function as defined in Eqs. 5.2–5.3.
The controller motif interpretation of the Lotka-Volterra oscillator is

further examined in Paper 2.

5.2 Limit-cycle oscillators

Self-oscillating systems have limit-cycles in phase space. Limit cycles may in
general be stable or unstable, but we will limit ourself to stable limit cycles.
Stable limit-cycles are closed paths that are attractive, that is, nearby
motions in the phase space are drawn to, and ends up, at this particular
closed-path, see Fig. 5.1B. Because of this, oscillations in self-oscillating
systems have amplitudes determined by the properties of the system itself,
instead of initial conditions [5].

The controller motifs can be extended into self-oscillating oscillators by
including an additional intermediate species in the overall feedback loop.
In this work the intermediate may either be on the synthesis of A or the
synthesis of E. This makes it possible to create three possible variants
of motifs 2 and 3, and one variant of motifs 1, 4, 5, and 8; motif 6 and 7
cannot be extended in this way7. The possible extended motifs are shown
in Fig. 5.4.

7Only extra species upstream of A and E are considered, as this setup preserves the
feedback loop. A and E are affected by what happens upstream, but are in most cases
not affected by what happens downstream. Further extension with downstream species
may be done in cases where the amount of downstream species ad, or ed, actually affects
the rate of conversion from A to ad, or E to ed.
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Self-oscillating systems are not only stable in the sense that their limit-
cycles are attractive, they are also stable in the sense that their oscillatory
behavior is preserved for a large range of system parameters compared to
conservative system [5]. The self-oscillating systems in Fig. 5.4 does, for
example, not require perfect zero-order degradation of A to show sustained
oscillations. However, even self-oscillators may become systems that tend
to stationary or diverging solutions for some system parameters. All of
the extended systems in Fig. 5.4 can, nevertheless, show self-oscillatory
behavior for a certain set or range of system parameters.

Figure 5.4: Possible realizations of extended controller motifs that may behave as
self-oscillators. The motifs are extended by intermediates a and e, but only structures
that extend and preserve the feedback loop are considered. For example there is no point
in including an intermediate of E in motif 1, as this does not extend the feedback loop.

An underlying condition from the extension scheme is that the outflow
of the intermediate species is an inflow of the main species, that is, interme-
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diates are converted to the main species. The intermediate species a and e
may be considered to be precursors for A and E. Possible interpretations
are that a and e may be: protein subunits, unfolded proteins that take some
time to fold, or unactive protein that is activated at a certain rate (and
cannot, or is not, deactivated back). Another interpretation where the main
species don’t have to be proteins is that a and e are compartmentalized in
a different compartment than A and E. Remark that a and e should not
be thought of as mRNA coding for proteins, as more than just one protein
can be translated from one individual mRNA.

5.2.1 Extended controller motif 1 with autocatalysis

All the extended motifs in Fig. 5.4 can be implemented with either the
ordinary zero-order removal of E or autocatalytic synthesis combined with
first-order removal.
Using inflow controller motif 1 with autocatalysis in E as an example

the extended system equations are:

ȧ = k1E − k9a (5.20)
Ȧ = k9a+ kip − kopA (5.21)
Ė = k4E − k6AE (5.22)

Fig. 5.5 shows the oscillations in A, E and a and the 3-dimensional limit
cycle in phase space. The system ends up at the same limit cycle for
different initial conditions. Whether this or any of the extended controller
motifs show oscillations or not, depends on the parameter values, explored
further in section 5.5.

5.3 Control of concentration during oscillatory
conditions

That the controller motifs, with some extensions, can show oscillations
is in itself fascinating, nevertheless, it is not the main point of this part
of the thesis. More significant is the point that the oscillations, due to
the underlying integral action, show homeostatic properties. From the
above examples, in Figs. 5.1, 5.2, and 5.5, we notice that oscillations in
A oscillates around the same mean value of A. However, that it does so
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Figure 5.5: Extended controller motif 1 with autocatalysis in E showing self-oscillations.
Eqs. 5.20–5.22 with parameter values k1 = 20, k4 = 20, k6 = 10, k9 = 10, ki

p = 1, and
ko

p = 5. A. Oscillations of A, E, and a plotted against time. Two different sets of initial
conditions are used (A0 = 1, E0 = 2, a0 = 3) in black and (A0 = 2, E0 = 0.1, a0 = 1) in
blue. B. A, E and a plotted in phase space. Both initial conditions approach the same
limit cycle.

for different initial conditions may not be surprising, the more important
question is what happens when external disturbances are introduced.

Sections 1.2 and 2.3 showed how regulation towards a setpoint is achieved
in the controller motifs; the underlying point is that the steady-state
condition of Ė provides a unique solution of A. With zero-order removal
the equation for Ė has A as its only variable, that is:

Ė = h(A) (5.23)

The setpoint is then defined by the steady-state condition, i.e., h(A) = 0.
This can be extended to oscillatory systems by realizing that all sustained

oscillations are periodic motions. For each whole cycle E is back at exactly
the same value,

E(t+ T ) = E(t) (5.24)

where T is the period time, the time of one cycle. We will in the following
use the periodic average of a signal defined as:

<x> ,
1
nT

∫ nT

0
x dt (5.25)
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In this setting the average value is only meaningful for a positive number
of whole cycles, nT (n is a positive integer).

Whereas the change in E cannot be assumed to be zero as in the case of
nonoscillatory systems, the integrated change in E over one period must
be zero. ∫ t+T

t
Ė dt = E(t+ T )− E(t) = 0 (5.26)

From this the periodic average value of Ė, denoted <Ė> must also be zero.

<Ė> ,
1
nT

∫ nT

0
Ė dt = 0 (5.27)

The rate equation of E for a specific motif can now be inserted into Eq.
5.27. The case of a controller activated by E will be demonstrated by using
the expression for Ė from motif 2 and 5. Inserting Ė from Eq. 2.6 into Eq.
5.27 gives:

<Ė> = 1
nT

∫ nT

0
k4A−

V Eset
max E

KEset
M + E

dt (5.28)

= k4

(
1
nT

∫ nT

0
Adt

)
− V Eset

max

(
1
nT

∫ nT

0

E

KEset
M + E

dt

)
(5.29)

By applying the condition of zero-order, KEset
M = 0, this reduces to,

<Ė> = k4

(
1
nT

∫ nT

0
Adt

)
− V Eset

max

(
1
nT

∫ nT

0
1 dt

)
(5.30)

= k4

(
1
nT

∫ nT

0
Adt

)
− V Eset

max (5.31)

where the periodic average of A, denoted <A> can be identified. Using
this and <Ė> = 0 (Eq. 5.27) we find that the controller maintains the
periodic average of A at a setpoint.

<A> ,
1
nT

∫ nT

0
Adt = V Eset

max

k4
= <A>set (5.32)

Notice that this derivation of the setpoint also holds for nonoscillatory
controller motifs. A system in steady state is a trivial solution of Eq. 5.24.
A similar derivation can be done for controller motifs where A inhibits

E, shown in the Supporting Material of Paper 5.
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5.3.1 Conservative case with controller motif 2

The reaction kinetic scheme of controller motif 2 is shown in Fig. 5.2A, and
given by Eqs. 5.4 and 5.5. In this inflow-type controller, increased outflow
disturbances (i.e, increased k2 values) are compensated by an increase in
the compensatory flow.

j(E) = k3
KE
I

KE
I + E

(5.33)

If the average level of j(E) is to increase then the average level of E, <E>,
has to decrease. In this way the average level of A, <A> is kept at its
setpoint at V Eset

max /k4, see Fig. 5.6.

Figure 5.6: Adaptation in periodic average of A, <A>, for the conservative version of
controller motif 2. Oscillations in A and E when k2 changes from 1 to 3 is shown in the left
panel. <A> is maintained at the same value for a range of different disturbance strengths,
right panel. <E> decreases with increasing disturbance strength. The frequency of
the oscillations is also calculated, right panel. Motif 2 is given by Eqs.5.4 and 5.5; the
parameters used are the same as in Fig. 5.2.

The simulation shows that changing disturbances (when k2 is changed)
affects the controller’s frequency as well as the periodic average; the fre-
quency of controller motif 2 seems to increase with increasing disturbance
strength in k2. At high k2 values, i.e., when the level of <E> becomes
lower than KE

I , the compensatory flow j(E) approaches its maximum value
k3. At this stage the homeostatic capacity of the controller is reached. Any
futher increase of k2 cannot be met by an increased compensatory flow, and
will therefore lead to a breakdown of the controller. Controller breakdown
and controller accuracies are already discussed in sections 2.5, 2.6, and 2.9.
Paper 5 shows a similar example for controller motif 5.
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5.3.2 Self-oscillating version of controller motif 5

Maintaining the periodic average of A is also an ability of the self-oscillating
controller motifs in Fig. 5.4. The derivation in Eqs. 5.28 to 5.32 holds for
the motifs that are extended with only an a intermediate, but becomes
somewhat different for motifs extended with an e intermediate. This case
will be illustrated here by a self-oscillating version of controller motif 5, see
Fig. 5.4. The equations for this motif are:

Ȧ = k1 − k2E
A

KA
M +A

− k3A (5.34)

ė = k4A− k5e (5.35)

Ė = k5e−
V Eset
max E

KEset
M + E

(5.36)

As above the equation for Ė is inserted into Eq. 5.27:

<Ė> = k5

(
1
nT

∫ nT

0
e dt

)
− V Eset

max

(
1
nT

∫ nT

0

E

KEset
M + E

dt

)
= 0 (5.37)

The condition of zero-order and the definition of periodic average, Eq. 5.25
gives,

<e> = V Eset
max

k5
(5.38)

where <e> is the periodic average of e. Furthermore, Eq. 5.27 must also
hold for ė. Inserting Eq. 5.35,

<ė> = k4

(
1
nT

∫ nT

0
Adt

)
− k5

(
1
nT

∫ nT

0
e, dt

)
= 0 (5.39)

and using the definition of periodic average together with the setpoint for
<e> found in Eq. 5.38 gives the setpoint for the periodic average of A:

<A> = k5
k4
<e> = V Eset

max

k4
= <A>set (5.40)

Interestingly this periodic average of A is the same as in the case without
the e intermediate, as given in Eq. 5.32.
A simulation illustrating how this controller maintains the periodic

average of A, <A> in spite changes in the disturbing inflow di(·) = k1, is
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shown in Fig. 5.7. An increase in k1 leads to an increase in <E> (Fig. 5.7E),
which again leads to an increased outflow of A and homeostasis in <A>.
The parameter values used in this example are chosen so that they give
nice, near sinusoidal, oscillations; this is done to makes it easier to grasp
what’s going on. The self-oscillating motifs can dependent on rate constants
also show more exotic relaxation and pulsative type behavior, and some
examples are given in Paper 5.

5.4 Control of frequency by quasi-harmonic ki-
netics

Looking at the simulation of the self-oscillating version of controller 5 in
Fig. 5.7 it seems that the period, T , is conserved in addition to <A>. This
is obviously not the case for the conservative version of controller motif 2
(Fig. 5.6), and is neither the case for most of the self-oscillatory extended
controller motifs in Fig. 5.4.

To understand what occurs in the self-oscillating version of controller 5
(Eqs. 5.34–5.36) consider the case where the dynamics of the intermediate,
e, is much faster than the dynamics in A. The differential equation ė =
f(A, e, k4, k5) can then be replaced with an algebraic equation relating e(t)
to A(t) given by f = 0, in this case e(t) = k4A(t)/k5. The system behaves
very similar to the two component conservative version with the equations:

Ȧ = k1 − k2E
A

KA
M +A

(5.41)

Ė = k4A−
V Eset
max E

KEset
M + E

(5.42)

Replacing the differential equation with an algebraic expression for a
component with fast dynamics is called the quasi-steady-state assumption8.
It relies on that the approach to the nullcline9 f = 0 in phase space is
fast, and that motion along or near the nullcline is slow [55]; i.e., if initial
conditions or disturbances move e(t) away from the nullcline, then ė is
large; and once e(t) is near the nullcline, then ė is small.

8The same steady-state assumption that is used in the Briggs-Haldane derivation of
the Michaelis–Menten equation.

9The nullcline is the set of points that satisfy f = 0, for this system (Eqs. 5.34–5.36)
the nullcline forms a surface in 3-dimensional phase space.
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Figure 5.7: A self-oscillating version of controller motif 5 showing adaptation in periodic
average of A. System equations in Eqs. 5.34 to 5.36 with parameter values k2 = 0.05,
k3 = 0, k4 = 0.8, k5 = 5, V Eset

max = 10, and KA
M = KEset

M = 10−6. A. Outflow controller
motif 5 extended by an intermediate e. B. Homeostatic response in <A> (squares)
and period T (circles) with different perturbations in k1. <A> is kept at the setpoint
<A>set = V Eset

max /k4 = 12.5. C-E. Oscillations in A, e, and E shown for three different
k1 values; k1 starts at 0.5, and is perturbed to 1 at t = 300, and to 1.5 at t = 600. The
period (in panel B) is calculated by taking the time difference between the peaks (in
panels C-E) found by the Matlab function findpeaks. The periodic average of a system
variable (black lines) is calculated for each cycle by integrating the response between two
peaks and dividing by the period.
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So when does this hold for ė in the self-oscillating version of controller 5?
We will first look at movements on the nullcline. The total time derivative
df/dt is zero, i.e.,

df

dt
= ∂f

∂A
Ȧ+ ∂f

∂e
ė = 0 (5.43)

df

dt
= k4Ȧ− k5ė = 0 (5.44)

⇓

ė = k4
k5
Ȧ (5.45)

if k4/k5 is small, then ė ≈ 0, and e(t) changes slowly like A(t). Also, once
trajectories are near or on the nullcline then changes in A(t) are unlikely to
move the trajectory far away from the nullcline, as long as k4/k5 is small
(Eq. 5.45: f = ė ≈ 0).

The next step is to look at movements far from the nullcline, i.e., when
e(t) has a value so that ė is far from 0. This can be done by solving the
differential equation for e(t) at some point in time A(t) = A0.

de(t)
dt

= k4A0 − k5e(t) (5.46)

A general solution is,

e(t) = k4A0
k5

[
1− Ce−k5t

]
(5.47)

where C is a constant, and the time constant te = 1/k5 is a measurement
of the speed of the movement. For the quasi-steady-state assumption to be
valid te must be small, i.e., k5 must be large. Although A(t) may not stay
constant at A0 during the whole movement, Eq. 5.47 is a good estimate
of the initial speed of the movement of the trajectory along the e-axis in
phase space.

Based on the above, a requirement for the quasi-steady-state assumption
for this system is that k5 is large. The intermediate will in this case, after
a transient, always be in a quasi steady state10.

10One could have argued that k5 must be large from just inspecting the differential
equation for e in Eq. 5.35; this was done in Paper 5. I do hope however, that the short
analysis above clarified this realization.
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In this thesis we term an self-oscillating oscillator’s behavior (for a certain
set of parameters) quasi-conservative if the intermediate compounds (a and
e) obeys approximately the quasi-steady-state assumption. These oscillators
are still self-oscillating systems, but behave closely to conservative systems.
Moving back to the apparent homeostasis in frequency in the results

shown in Fig. 5.7, the conservative version of controller motif 5 is actually the
well known linear harmonic oscillator. In the case of zero-order conditions
in the removal of A and E, Eqs. 5.41 and 5.42 reduce to:

Ȧ = k1 − k2E (5.48)
Ė = k4A− V Eset

max (5.49)

Taking the second time derivative of Eq. 5.48 and inserting the expression
of Ė, leads to,

Ä = −k2k4A+ k2V
Eset
max (5.50)

which can be written as:

Ä

k2k4
+A = vEset

max

k4
(5.51)

This is the equation of a harmonic oscillator, which is well known to have
a solution on the form [5],

A(t) = Aamp sin(
√
k2k4t+ φ) + V Eset

max

k4
(5.52)

where Aamp denotes the amplitude of the oscillations,
√
k2k4 is the angular

frequency, and φ is a phase angle. The frequency is independent of k1!
This property is inherited when the self-oscillating version of controller 5

behaves quasi-conservative. The simulation in Fig. 5.7 used k2 = 0.05 and
k4 = 0.8 giving a frequency of 0.032, corresponding to a period of 31.4,
which is very close to the results in the simulation. Being a self-oscillating
system the three component controller motif 5 is a structurally more robust
way of achieving frequency homeostasis by near harmonic behavior. The
parameter region where the extended controller motif 5 is self-oscillating,
and where it shows robust homeostasis in frequency, is examined in the
next section.
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5.5 Oscillatory regions and quenching of oscilla-
tions

Perfect zero-order removal of both A and E, in regard to themself, is a
way to obtain conservative oscillations (see section 5.1). A problem with
conservative oscillators is that they are structurally unstable; even the
tiniest deviation from perfect zero-order removal in A and E will break
down the oscillations in a conservative system11.

The self-oscillating extended controller motifs in Fig. 5.4 are on the other
side structurally stable against small deviations away from perfect zero-
order removal. Fig. 5.8 shows how deviation from zero-order removal in A
affects the oscillatory behavior in the extended controller 5 (see Fig. 5.7A).
A smaller KA

M gives a larger region of oscillatory behavior, but oscillatory
behavior exists for some combinations of other parameter values even at
higher KA

M values. A deviation from perfect zero-order removal of A is not
the only factor added to the controller in the simulation results shown in
Fig. 5.8. The removal of E is not perfect zero-order, with a KEset

M of 0.01,
and in addition an uncontrolled first-order removal of A is added by having
k3 = 0.01, see Fig. 5.7A.

Figure 5.8: Period of oscillations in the extended self-oscillating version of controller 5
(Eqs. 5.34–5.36) for varying k1 and k5. The period is set to −1 when there are no
oscillations (black area). Panels A, B, and C show the results for different values of
KA

M . The parameter values used are: k2 = 0.5, k3 = 0.01, k4 = 0.7, V Eset
max = 0.5, and

KEset
M = 0.01.

11Note that systems that are very close to being conservative may still be modeled as
conservative, at least within a finite timeframe before the oscillations stop.
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The results in Fig. 5.8 nicely shows when the motif behaves as an quasi-
harmonic oscillator, indicated by when the period surface is flat and above
0. This confirms the analysis in the previous section in that a large k5 leads
to a stable frequency, i.e., a flat surface in Fig. 5.8. Nevertheless, the results
also show that an increased k5 also acts to quench the oscillations. This is
the result of moving the behavior of the self-oscillating three component
motif too close to the conservative two component variant, which does not
oscillate when it is far from perfect zero-order removal of A and E.

As shown above, the self-oscillating motifs can oscillate even when there
are uncontrolled first-order type disturbances in the outflow of A. Such
disturbances do, however, put a significant restrain on the region of oscilla-
tions. First-order removal is equivalent to friction in a mechanic system,
which effectively dampens oscillations. Fig. 5.9 shows how an increasing
first-order rate constant in uncontrolled removal of A reduces the region of
oscillatory behavior.

Figure 5.9: Period of oscillations in the extended self-oscillating version of controller 5
(Eqs. 5.34–5.36) for varying k1 and k5. The period is set to −1 when there are no
oscillations (black area). Panels A, B, and C show the results for different values of
k3 (uncontrolled outflow of A). The parameter values used are: k2 = 0.5, k4 = 0.7,
V Eset

max = 0.5, KA
M = 0.004, and KEset

M = 0.01.

5.6 Robust control of frequency by control of E

After studying several of the non-quasi-harmonic oscillators we observed
that the oscillators in general seem to change frequency when the periodic
average of the controller species E changes. (Remember that <E> changes
to counter disturbances so that <A> is maintained at its setpoint.). This
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realization lead us to hypothesize whether it may be possible to design an
oscillator with robust frequency homeostasis by using additional species to
control E.

For this purpose, two extra controllers I1 and I2 with their own setpoints
for <E> are introduced. Fig. 5.10A shows the two extra controllers added
to a self-oscillatory version of controller 2. I1 and I2 controls the level of E,
but do so through A; a necessary arrangement if homeostasis in <A> is to
be maintained12. The total system is defined by five differential equations:

Ȧ = kip + k2a+ k3I1 − k5I2
A

KA
M2 +A

− kop
A

KA
M1 +A

(5.53)

ȧ = k1
KE
I

KE
I + E

− k2a (5.54)

Ė = k6A−
V Eset
max E

KEset
M + E

(5.55)

İ1 = k8 − k9E
I1

KI1
M + I1

(5.56)

İ2 = k10E − k11
I2

KI2
M + I2

(5.57)

Without the added I-controllers the oscillator changes its frequency when
perturbed by disturbances in the uncontrolled inflow and outflow of A,
Fig. 5.10C. The frequency is fixed by adding I1 and I2, Fig. 5.10D.

The proposed system, see Fig. 5.10A, uses I1 and I2 in a combined setup
where they function as inflow and outflow controllers, respectively. This
type of combination is conceptually the same as discussed in section 2.7, in
which several E-controllers where combined. I1 compensates for increased
disturbances in outflow and I2 compensates for increased disturbances in
inflow. The regulatory properties of each controller can be identified by
simulating the system with only one controller active. Fig. 5.11 shows the
results for the system simulated with I1 and I2 disabled; I2 enabled and
I2 disabled; I1 disabled and I2 enabled; and with both controllers enabled.
The upper panels (A) shows the response in average level of A and E, and
the lower panels (B) shows the response in frequency. The results show
robust control of frequency for dominating outflow disturbances (high kop)
when only I1 is active, and contrariwise, robust control of frequency for
dominating inflow disturbances (low kip) when only I2 is active. Robust

12I1 and I2 may also act on E through both A and a, see Paper 5.
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Figure 5.10: Self-oscillating version of controller motif 2 with added I1 and I2 controllers
for robust control of frequency (Eqs. 5.53–5.57). Parameter values: k1 = 20, k2 = 30,
k3 = 0.1, k5 = 0.1, k6 = 0.1, V Eset

max = 1.5, k8 = 1, k9 = 0.1, k10 = 0.1, k11 = 1, KE
I = 2,

and KA
M1 = KA

M2 = KEset
M = KI1

M = KI2
M = 0.001. A. Reaction kinetic scheme. B.

Disturbances are given as changing values of ki
p and ko

p. C. Simulation of system without
I1 and I2, by setting k3 = k5 = 0. Oscillations in A (blue), and periodic average <A>
calculated for each cycle (black). D. Simulation of system with I1 and I2 active.
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control of frequency for a wide range of disturbances is achieved when both
I-controllers are active.

Figure 5.11: Self-oscillating version of controller motif 2 with added I1 and I2 controllers
for robust control of frequency (Eqs. 5.53–5.57, Fig. 5.10A). Parameter values: k1 = 20,
k2 = 30, k3 = 0.1, k5 = 0.1, k6 = 0.1, V Eset

max = 1.5, k8 = 1, k9 = 0.1, k10 = 0.1, k11 = 1,
KE

I = 2, KA
M1 = KA

M2 = KEset
M = KI1

M = KI2
M = 0.001, and ki

p = 1. Results are shown
for combinations of active and inactive I1 and I2. Leftmost column: I1 and I2 inactive
(k3 = k5 = 0). Second column: I1 active and I2 inactive (k5 = 0). Third column: I1
inactive (k3 = 0) and I2 active. Rightmost column: I1 and I2 active. A. Periodic average
in A and E shown for different levels of disturbance in ko

p. B. Frequency of oscillations
shown for different levels of disturbance in ko

p.

The rationale behind the setup is in effect to control the average level of
<E>. The setup achieves this, Fig. 5.11A, and the homeostasis in frequency
comes as an added bonus. We have so far no analytic explanation to
exactly why this setup with control of <E> gives homeostasis in frequency.
Nevertheless, the setup is the first, with realistic biochemical kinetics, that
can achieve robust frequency control. Furthermore, the strategy can be
extended to all the oscillating controllers, some examples are shown in
Paper 5. Note that the E controlled level of <A> is kept at its setpoint
independently of whether <E> and the frequency is regulated or not,
Figs. 5.10C and 5.10D.
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5.7 Oscillator with two homeostatic frequency do-
mains

Both I1 and I2 define their own setpoints for <E>. The requirement
of zero-order removal of I1 in Eq. 5.56 gives a theoretical setpoint of
<E>I1

set = k8/k9, and likewise zero-order removal of I2 in Eq. 5.57 gives a
theoretical setpoint of <E>I2

set = k11/k10. The same setpoint was used for
both I1 and I2 in the simulations above. <E>I1

set = <E>I2
set = 10.

It is possible to use different setpoints to create an oscillator with two
distinct frequency domains, where both domains are correspondingly robust
towards disturbances in either inflow or outflow. This is made possible
by the structure of combined controllers, and is completely equivalent to
the case with two E-controllers of A as discussed in section 2.7. Fig. 5.12
illustrates this by the same system as above (Eqs. 5.53–5.57), but with the
setpoint of the outflow acting I2-controller changed to <E>I2

set = 15. The
result is an oscillator that based on whether inflow or outflow disturbances
in A are dominating changes between the frequencies of approximately 0.025
(corresponding to <E>I2

set = 15) and approximately 0.035 (corresponding
to <E>I1

set = 10), Fig. 5.12 panels A and B. Note that, although <E>
changes between the two different setpoints at different disturbances (kpp),
<A> is kept at its homeostatic setpoint even during the transition zone
when both I1 and I2 controllers are inactive.

Fig. 2.8 in section 2.7 shows how an inflow controller and outflow con-
troller with different setpoints for A are active at different levels of distur-
bances/perturbations. The same type of behavior is observed in the periodic
average of the I1 and I2 controllers when they have different setpoints for
<E>, Fig. 5.12 panels C and D.

A different setup for two frequency domains, where I1 affects the inflow of
a and I2 affects the outflow of A is examined in Paper 5. Yet another setup
is given in the Supporting Material of Paper 5; the e-extended version of
controller 2 is used as the inner oscillator instead of the a-extended version.
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Figure 5.12: Self-oscillating version of controller motif 2 showing two distinct frequency
domains, by different <E>-setpoints defined by I1 and I2 (10 and 15). The system is
based on Eqs. 5.53–5.57, Fig. 5.10A. Parameter values: k1 = 20, k2 = 30, k3 = 0.1,
k5 = 0.1, k6 = 0.1, V Eset

max = 1.5, k8 = 1, k9 = 0.1, k10 = 0.1, k11 = 1.5, KE
I = 2,

KA
M1 = KA

M2 = KEset
M = KI1

M = KI2
M = 0.001, and ki

p = 1. All panels show values for
different levels of outflow disturbances (ko

p). A. Frequency of oscillations. B. Periodic
average of A and E. C. Periodic average of I1; I1 is active at relative high levels of
outflow disturbances. D. Periodic average of I2; I2 is active at relative high levels inflow
disturbances.
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Chapter 6

Discussion and concluding
remarks
Altogether, the work in this thesis presents a way of analyzing regulatory
systems in biology. This final chapter ties the different facets of the work
together, highlighting strength and usefulness. It also discusses the results
of the thesis as a whole, with the ambition of connecting it to a broader
view of control and communication. It has been a goal to make this
chapter something else than a collection of the discussion sections from
each individual paper, many of which have instead been combined into
their respective chapters where they have a natural place.
This chapter allows for a discussion that includes a more hypothetical

and visionary view of biological control systems. In this light we discuss
possible interesting extensions and further developments of our work.

6.1 Strength and suitability of the controller mo-
tif framework

The controller motifs can be applied to explain, and/or model, control and
regulation both on the level of physiology of a whole organism and on the
level of cell physiology. The two species scheme with a controlled species
A and a controller species E can be applied to a range of diverse systems.
The controlled species A can on the cellular level be: the concentration
of cytosolic copper ions in yeast cells, controlled by a copper inflow (Crt,
E1) and a copper outflow (Crp, E2) controller, as seen in chapter 4; or
A can be the concentration of intracellular sodium ions in enterocytes, as
described in chapter 3. On the level of a higher organism, A can be the
blood glucose controlled by the effects of insulin E1 and glucagon E2; or
A can be the concentration of blood calcium controlled by the effects of
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calcitonin and parathyroid hormone. An extensive list of hormonal systems
that can be related to combinations of controller motifs is given in the
supporting material of Paper 1.

The set of controller motifs is strengthened by its generality. The basic
structure of the controller motifs (Fig. 2.1) allows for a range of different
kinetics in the inflow and outflow of A and E. All motifs have an underlying
regulatory function through negative feedback, although the possibilities
for perfect adaptation in A is somewhat limited in that it requires zero-
order degradation of E or autocatalysis of E combined with first-order
degradation. The applicability of the controller motifs in theoretical biology
is illustrated by the fact that many of the well known biological model
oscillators, such as the Goodwin oscillator (section 5.1.1) and the Lotka
Volterra oscillator (section 5.1.2) can be considered to be special cases of
oscillators formed by the controller motifs.

6.1.1 Building blocks and submodules

A powerful feature of the controller motif framework is the modularity and
the way each motif functions as a building block or submodule. Modularity
gives an advantage to both the modeling of existing biological systems
within the framework and to the design of new systems, whether those
are mostly theoretical as in chapter 5 or practical systems implemented by
methods from synthetic biology.

The translation of an existing biological system into the controller motif
framework promotes the investigator to separate a complex system into
smaller parts that at first can be understood on their own, and then as
a part of the whole. An example is how the enterocyte model in chapter
3 was built by combining submodules modeling the inflow and outflow of
different species. The enterocyte model was initially built without specific
regulatory mechanisms for the control of Na+ and K+. These mechanisms
were later added by simply including a controller submodule to the model,
as described in section 3.4. Although it is a natural feature of the controller
motif framework, it should be noted that, the concept of dividing a system
into subsystems, or a task into subtasks, is by no means new.

To illustrate how larger systems can be designed in a step-by-step fashion
from subsystems, we use the example of robust frequency control from
section 5.6. This system, shown in Fig. 6.1, consists of an inner oscillator
(marked with red); a subsystem made out of an extended version of controller
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motif 2. By itself this subsystem may exhibit self-oscillation, but in general
with a frequency that varies with perturbations. This inner oscillator is
extended with two additional controllers, I1 and I2, each of which may be
considered as subsystems (marked with green and yellow). It is relatively
easy to distinguish the role of each component, even though the overall
system is 5-dimensional. E acts to control the periodic average of A towards
a setpoint defined by the kinetics of the inflow and outflow of E. From the
perspective of E all inflows and outflows of A, except for the E mediated
compensatory flow through a, acts as disturbances. I1 and I2 acts to control
the periodic average of E, where I1 primarily compensates for outflows of
A (which leads to reduced inflow in E) and I2 primarily compensates for
inflows of A (which leads to increased inflow of E). The setpoints of the
periodic average of E, and thus the frequency, are defined by the kinetics
of the inflows and outflows of I1 and I2.

Figure 6.1: 5-dimensional oscillator with robust control of frequency made out of
controller motif subsystems. The inner system is a self-oscillating version of controller
motif 2, shown in red. The inner system is extended by two controller motifs I1 (green)
and I2 (yellow), which acts to control the periodic average of E through the inflow and
outflow of A, respectively.

We are confident that creating a 5-dimensional oscillatory system with
robust control of frequency from scratch, without using the step-by-step
process which is inherent in the controller motif framework, would have
been very difficult. Especially when one considers the constraint of having
a system that is biologically realizable with plausible structure and kinetics.

The controller motif framework fits very well with the essence of synthetic
biology, i.e., the idea that complex network behavior can be understood
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by well-characterized submodules. We think it can be a useful tool in the
design and construction of novel regulatory networks. The extension of the
regulatory system for internal copper in yeast by the addition of an extra
outflow controller submodule in chapter 4 is a promising example.

Enterocytes: a small part in a large system

Relevant to modularity is the question of how regulation in higher organisms
integrates functions on both the cellular and organismal level. We will
illustrate some aspects of this by using the enterocyte as an example.
Being vital for cell survival, the regulation of intracellular ionic home-

ostasis must from the enterocyte’s viewpoint, and for any other cell, have
high priority. For the whole organism that the enterocyte is a part of,
however, other transport related regulatory mechanisms may have just as
crucial implications. Regulation of the capacity of nutrient uptake, and the
focus of nutrient uptake (sugar, proteins, or lipids), plays a major role in
securing organism survivability, but is only of secondary importance for
the enterocyte itself. One of the reasons to develop an enterocyte model
in the first place was that an enterocyte model could, in the future, be a
piece in studying the regulation of nutrient uptake and in particular the
glucoregulatory system of the whole animal.

For enterocytes in particular, it has been shown that the capacity of the
uptake system can be increased to respond to a high luminal concentration
of glucose. This is an important mechanism for securing that as much as
possible of the nutrients are absorbed when they are available. Studies
have revealed intracellular stores of the glucose transporter SGLT1 [93, 94],
which are thought to play a role in the regulation of SGLT1 mediated
glucose uptake. SGLT1 has also been shown to be rapidly upregulated by
sweet taste receptors [169]. In addition, there is evidence for trafficking
of GLUT2, which is normally situated only in the basolateral membrane
(Fig. 3.1), to the apical brush border membrane during high luminal glucose
concentrations [113, 206]. Due to its properties as a facilitated transporter,
GLUT2 can in contrast to SGLT1 only be used when the glucose concentra-
tion in the intestinal lumen is higher than inside the enterocyte. This makes
GLUT2 a candidate responsible for the observed non-saturable component
of glucose uptake from the small intestine [90]. The usage of apical GLUT2
may be of advantage for the enterocyte; it enables the enterocyte to increase
the glucose uptake without the ionic and osmotic challenges associated
with the Na+ coupled uptake through SGLT1.
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6.1.2 Similarities with industrial controllers

As discussed, there is an abundance of regulatory biological systems where
two antagonistic mechanisms cooperate to control one variable, i.e., systems
where one mechanism controls supply and one mechanism controls removal.
At first this may seem as a somewhat unfamiliar arrangement for most
control engineers, who often design systems by the principle of one variable,
one controller. As an example, traditional cruise control systems does only
use the throttle to maintain a steady speed. Brakes are not even used if the
car is going downhill and is overspeeding; the control system just passively
waits for the speed to drop down by itself1.

Figure 6.2: A. A typical biological system where A is controlled by a pair of antagonistic
controller motifs. B. The analogous process and instrumentation diagram using a water
tank, control valves, level controllers (LC) and level transmitters (LT).

In the following we will compare the general model of biological antago-
nistic control of a variable A by inflow and outflow controllers, Fig. 6.2A, to
an industrial control system. A corresponding process and instrumentation
diagram using a water tank, control valves, level controller (LC) and level
transmitters (LT) is shown in Fig. 6.2B. The measurement of the level of A
in Fig. 6.2B is indicated as a dotted line into the level transmitter (LT) and
further into the level controller (LC). In relation to the biological system
in Fig. 6.2A the corresponding measurement is A’s activation/inhibition

1Some modern, so-called adaptive cruise control, systems will use the brakes, such
systems often includes functions to automatically keep a set distance to other vehicles.
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on the generation/removal or E (dotted line). Reduced accuracy in the
biological controller motifs (section 2.6) is analog to a level transmitter that
transfers a measured value of A which is different from the actual value. The
controller variables Ein and Eout adjust the opening of the control valves.
If E = 0 corresponds to a closed valve, the controller is based on activation
from E to A. If E = 0 corresponds to a fully open valve, the controller is
based on inhibition from E to A. These two cases are equivalent to the use
of normally closed (NC) and normally opened (NO) valves. The system
will only function properly when the setpoint of the inflow controller Ainset
is lower or equal to the setpoint of the outflow controller Aoutset , as discussed
in section 2.7.

Antagonistic control design is in fact emerging as a solution to traditional
control engineering problems. One example is modern thermostats that
combine both heating and cooling (AC) to keep the temperature inside
a predefined range, i.e., within two setpoints. Such solutions can be
advantageous in climates that require cooling during the day and heating
at night.

6.2 Future development of the controller motifs

The work done in this thesis has explored and evolved the theory of
controller motifs to an extent where it is matured and ready to be applied
to examine and model practical cases. In addition to the practical cases
presented herein we are in the process of using the controller motifs to
examine and model several biological systems. I am myself involved in two
projects. The first is a project on iron regulation in plants, specifically
the control of intracellular iron by high affinity IRT1 transporters. We
have worked with this project for some time and presented some results at
the 26th International Conference on Arabidopsis Research in Paris this
summer (ICAR2015). The second project is currently under development
and involves the study of biological rhythms in plants and the apparent
homeostasis of the circadian period. Some aspects of this second project
are discussed in section 6.3.2.
In addition to modeling existing biological systems the controller motif

framework is also suitable to be used together with synthetic biology to
design novel regulatory systems. The copper regulatory system in yeast is
one system that we think have great potential for the future, with several
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interesting directions, as discussed in section 4.6. I personally would also
like to try to build some of the oscillators from chapter 5.
In parallel to practical applications there are many potentially fruitful

directions into which to drive the theoretic development of the controller
motifs, discussed in the following sections.

6.2.1 Setpoint tracking

From a control theoretic point of view the performance of a regulatory
system can be described in the context of disturbance rejection and setpoint
tracking. The work in this thesis is mostly concerned with disturbance
rejection, which is the ability to adapt to environmental disturbances.
Setpoint tracking, or simply just tracking, which is the ability to follow
a changing setpoint or reference, is a very important design criteria in
many man-made systems. A car’s cruise control system may for instance
experience a stepwise setpoint change from 60 to 90 km/h following a
change in the speed limit. It is crucial that engineers are able to design the
cruise control systems so that this change happens without overshoot or
oscillations; no driver would accept a 20% overshoot and a following ticket
for speeding.

Biological setpoint tracking has by Mrosovsky [123] been described under
the term rheostasis. Rheostasis is presented as an extension of homeostasis,
as to allow for an interpretation where the deviation away from the limits
set by homeostasis is not seen as a failure of the regulatory system to
compensate for environmental disturbances. The trivial example is the
case of fever; fever can be interpreted as a change in the setpoint of
the thermoregulatory system, where the increase in body temperature is
mediated by a still functioning regulatory mechanism. Some physiological
examples where setpoint tracking is investigated are incubation weight loss
[124, 164], seasonal weight changes [122, 124], lowered body temperature
during hibernation [37] and persistent obesity [149]. However, research on
setpoint tracking in biology is still relatively rare compared to disturbance
rejection.
We have already shown how different setpoints can arise due to the

combination of controllers, see section 2.7. While such combinations are
useful for defining lower and higher limits of the homeostatic range, as
shown by the addition of an Cu-regulating outflow controller in chapter
4, they are different from the concept of rheostatic setpoint shifting. A
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rheostatic setpoint shift is the same as moving the whole homeostatic
range upwards or downwards. An illustrative example is the regulation
of body core temperature. Two important mechanisms for control of the
human body temperature are sweating and shivering, which respectively
acts to lower and raise the body temperature2. These two mechanisms are
both primarily controlled by the hypothalamus and have slightly different
setpoints [69 chap. 73], i.e., there is a narrow range in temperature for
which neither sweating (above basal level) or shivering occurs. Rheostasis
describes the combined shifting of both setpoints, which for example occurs
during fever. This is illustrated by Fig. 6.3. Rheostasis can also occur in
systems with only one controller, where it simply corresponds to shifting of
the single setpoint.

Figure 6.3: Example of a so-called rheostatic shift in setpoints in the control system for
core body temperature. Fever causes the whole homeostatic range, the interval between
the setpoints where sweating and shivering begins, to shifts upwards. The values for the
upper and lower setpoints depends on skin temperature and differs between individuals
[69 chap. 73].

It is possible to realize a shifting setpoint within the controller motif
framework without much trouble, and we will here demonstrate how. Con-
sider inflow controller 4 shown in Fig. 6.4A. The change in E is described

2Although not directly transferable to our two-species controllers, we can think of
sweating as the dissipation (outflow) of heat and shivering as the creation (inflow) of
heat.
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by the following differential equation,

Ė = kEs −
V Eset
max E

KEset
M + E

KA
I

KA
I +A

(6.1)

where the theoretical setpoint is found by assuming perfect zero-order
degradation with respect to E (KEset

M � E) (section 2.4).

Aset = V Eset
maxK

A
I

kEs
−KA

I (6.2)

Figure 6.4: A. Inflow controller motif 4. B. Realization of a changing setpoint controlled
by species S.

One way to allow a changing setpoint is to have one of the parameters
in Eq. 6.2 change over time. Consider for example a plant cell where kEs
depends on light or temperature, where the controlled variable A may then
have two different setpoints for day and night.

Another possible mechanism is shown in Fig. 6.4B. The inflow of E is now
dependent on a specific species S. The result is an S-dependent setpoint,

Aset = V Eset
maxK

A
I

kEs S
−KA

I (6.3)

where S can be thought of as an external signal that controls the setpoint
of the controller. We find it highly probable that this or very similar
mechanisms are responsible for many of the hormone controlled regulatory
networks in cells and organisms, and that examples are sure to be found by
careful study of the vast amount of already published research on hormonal
control.
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A related project would be to implement this sort of setpoint shifting in
a synthetic regulatory network. The added outflow controller for copper
designed in chapter 4 is a candidate system that may be extended to
show this kind of behavior. A promising idea is to develop a dual-mode
type modified pCUP1 promoter. A dual mode promoter activated by
testosterone through the testosterone-responsive androgen receptor, and
repressed (inhibited) by IPTG3 through the LacI repressor, was recently
developed for yeast [118].

6.2.2 Three-component motifs with double integral action

When two controller motifs are combined to model antagonistic regulation,
the resulting system does in general not have a single unique setpoint.
Each of the two individual controllers have their own setpoint, making
the resulting system overspecified. The steady-state level of the regulated
species A will, depending on the inflow or outflow disturbances, either end
up at one of the setpoints or stay somewhere in-between them, Fig. 2.8.
We have found an alternative way to combine two controller motifs to

get a system with only one setpoint. This is achieved by having the two
controller motifs act in series rather than parallel, illustrated by Fig. 6.5A.
This system consists of an outflow controller (E1) and an inflow controller
(E2), but only one of the controllers are affected directly by A; the second
controller E2 is now instead affected by the first controller E1. There is only
one setpoint, defined by the differential equation for E1 as Aset = k4/k3. A
series arrangement of controller motifs like this creates an inner loop and
an outer loop, highlighted in Fig. 6.5B. There is one feedback path directly
from A and back to A via E1, and a longer feedback path via E1 and E2.
An interesting feature of this series arrangement is that it does include

both integral action and double integral action in the control of A. This can
be realized by inspecting the block schematic representation in Fig. 6.5B.
The error between A and the setpoint is first integrated once by E1 and
then integrated once more by E2, and both the integrated error and the
double integrated error is fed back to A through the inner and outer
loop, respectively. The block schematic representation can be rearranged
to clearly separate the controllers from the system being controlled, see
Fig. 6.5C. The two controllers compensate for disturbances, i.e., kip and

3IPTG stands for Isopropyl β-D-1-thiogalactopyranoside, a compound which mimic
the lactose metabolite allolactose.
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Figure 6.5: A. Reaction kinetic representation of a three-component antagonistic
system with only a single setpoint of A. B. Block schematic representation. The inner
integral loop and the outer double integral loop are highlighted in red and green. C.
Block schematic representation redrawn to show the distinction between the controller
and the controlled system. E1 and E2 acts as two inputs to the controlled system, and
are respectively proportional to the integral and the double integral of the error between
the setpoint and the current value of A.
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kop, affecting A. A feature added by dual integral action is the ability to
perfectly follow a ramping reference, a linearly increasing setpoint. It is
well known from control theory that a control system made to perfectly
follow, i.e., with no steady-state error, a parabolic reference of order m
must, at least, have m+ 1 integrators in the control loop [51].
Regulation of blood glucose by the antagonistic hormones insulin and

glucagon is one system which has been thought to have an parallel arrange-
ment, where glucose directly affects both insulin and glucagon [69 chap. 73].
More recent studies have, however, revealed that insulin directly affects
the release of glucagon [67, 89, 202]. Glucagon is produced in α-cells in
the pancreas; the α-cells are located downstream of the insulin producing
β-cells, making them highly exposed to secreted insulin [202]. The presence
of insulin has been shown to be essential for the suppression of glucagon
secretion [202], and studies done in insulin receptor knockout mice have
provided direct in vivo evidence for how insulin modulates the secretion of
glucagon [67, 89].

The three-component structure shown in Fig. 6.5A can be extended to a
whole class, or family, of three-component antagonistic regulatory systems.
Fig. 6.6 shows the basic reaction kinetic structure for this class of systems.
The controlled species A is regulated by two regulatory species E1 and
E2. The inner loop between A and E1 is constructed by one of the two-
component controller motifs, and there is in general 16 different possible
combinations (8 with negative feedback and 8 with positive feedback). The
outer loop is constructed by letting E1 act on either the inflow or the outflow
of E2 by either activation or inhibition (extending the number of possible
configurations to 64), and having E2 affecting A by either activation or
inhibition of the flow not affected by E1. This gives a total of 128 possible
configurations, of which only 32 have a negative feedback in both the inner
and outer loop. This class of three-component controller motifs is so-far
largely unexplored.

6.2.3 Further mathematical analysis and limitations of mod-
eling by ordinary differential equations

One of the goals of this thesis has been to present a control engineer’s
interpretation of regulation and control in biology through the controller
motif framework, and to show how the controller motifs can be applied
and used in biology. Having laid out the theoretic foundation we have
hence continued to focus much of the work towards establishing biological
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Figure 6.6: Basic structure of a three-component antagonistic controller motif. Dotted
lines show possible interactions, which can either be activating or inhibiting (round
symbols). Not all interactions are allowed at the same time, see main text. Insets show 3
of the 32 possible configurations with negative inner loop and negative outer loop.

relevance, instead of exploring every nuance of controller motif systems by
mathematical analysis. It has still always been the plan to do a further
more rigorous mathematical analysis of the controller motifs once we can
defend that such work is worthwhile. Some of the areas we plan to look
into are stability properties, bifurcation behavior, and tunability.

A possible future direction to extend the description of controller motifs
to other types of mathematical models, such as partial differential equation
and stochastic systems. The choice of ordinary differential equations has two
inherent weaknesses that may be of concern for certain biological systems
[32]. The first is the lack of spatial information, i.e., that the concentration
of a species is assumed to be evenly distributed in a compartment. The
second is the assumption of continuity i.e., that the state variables are
continuous (making it possible to have a non-integer amount of molecules).

Both the above assumptions are reasonably true for our model of transport
and ionic homeostasis in enterocytes, and the use of ordinary differential
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equations is a common approach in studies of epithelial transport [9, 103,
196]. The molecules considered (ionic species and glucose) are small and
are easily mixed throughout the cell by molecular diffusion. The modeled
concentrations are in the mM range4, and the flows into and out of the
enterocyte are in the range from 10−14 to 10−12 mol/h. These numbers are
well above the range where discreteness plays a role.

Things are a bit less obvious for a future quantitative model of copper
regulation in yeast. It is no problem to consider amount of total copper
(normally 10–100 µM) as continuous. The amount of free copper is however
certainly not continuous, since the binding to proteins such as Cup1p is
so strong that there in practice is not even a single unbound copper ion
in the cytoplasm [144]. A discrete stochastic model may thus be a more
fitting option.

6.3 Homeostasis and oscillatory behavior

Seen from the perspective of control engineering it is no surprise that the
presence of negative feedback and integral control can lead to oscillatory
behavior, such systems have an innate possibility to exhibit damped and
even sustained oscillations [27, 116, 180]. However, that oscillations are so
ubiquitously prevalent in biological systems is more of a puzzle. Engineering
has taught us that a well designed control system should not oscillate.

It has been argued that oscillations observed in biological systems may, at
least in some cases, be without any functional significance [28]. Oscillations
are, as discussed above, emergent to occur in adaptive systems, and may
be observed simply as a consequence. Experimental procedures have the
potential of creating artifactual oscillatory processes by using unnaturally
high stimulus, and this is argued by some to be the reason for oscillations
seen in NF-κB signaling [13, 27].
Stimulus-dependent oscillations do, however, also occur naturally, and

research has shown that such oscillations have functional significance in
some biological systems. One system that shows oscillations based on
stimulus strength is found in pancreatic β-cells, which are responsible for
the production and secretion of insulin in response to elevated levels of
glucose. The level of cytosolic Ca2+ in these cells oscillates when the cells

4In an enterocyte compartment volume of 450 µm, 1 mM correspond to 4.5 ·10−16 mol
or roughly 270 million molecules, a more than sufficient amount to assume continuity.
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are exposed to high concentrations of external glucose, and there is indeed
an abundance of studies linking insulin release to these Ca2+ oscillations
[14, 56, 174]. Fig. 6.7 shows experimental measurements of cytosolic Ca2+

in β-cells for different concentrations of glucose. Interestingly, the same
type of stimulus-dependent behavior is seen in our oscillatory controller
motifs; Figs. 5.8 and 5.9 show how the behavior of the extended version
of controller motif 5 depends on the level of disturbance in k1 (stimulus).
Oscillations are seen for low k1’s, but they disappear when k1 is increased
above a certain level.

Figure 6.7: Effect of glucose on the behavior of cytosolic Ca2+ concentration in β-
cells in a pancreatic islet. (The islets of Langerhans are regions in the pancreas with
hormone producing cells; β-cells make out 60-70% of the cells in an islet [96].) Glucose
concentrations was increased from 5 to 6, 7, 8 and 10 mM as indicated. The response
changes from adaptive to oscillatory. Reprinted from [14] with permission. Copyright ©
2006, The American Physiological Society.

6.3.1 Control and communication

The key to the prevalence of oscillators in biological systems is likely related
to the second part of the subtitle of Cybernetics, i.e., communication. Engi-
neers can design systems that are separated, and which carries information
and matter over different mediums or channels. The information grid, the
power grid, the water grid, and the sewage grid are still mostly separated,
even though solutions exist that allows for the combination of them. There
is an inherent simplicity in the principle of one system, one media, one job.
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Biological systems are on the other hand very different, due to the process
of evolution. New systems are most likely to arise from adaptation and/or
augmentation of existing systems. Cells and organisms have to maintain
homeostasis and at the time same allow signaling, a combination of control
and communication. There is no particular reason to assume that protective
homeostatic mechanisms should cease to exists once a compound becomes
oscillatory and starts to function, as in case of calcium, as a signaling
device. In fact, as shown in section 5.5, a regulatory systems based on the
controller motifs may behave as an oscillator for some parameter value and
as an ordinary damped feedback controller for another value.
Then why do communication systems show oscillatory behavior? A

steady-state signal has its level/value as its only characteristic property. An
oscillatory signal, on the other hand, has several characteristic properties,
such as average level, amplitude, period/frequency, phase, and shape.
Oscillatory signals are for this reason better suited to carry information.
Indeed almost all modern electronic communication is based on oscilla-

tory signals; contrary to popular belief, most communication signals are
not digital step-type, zero-or-one, signals. Such signals are only used at
very close distances, such as inside a device or between devices in close
proximity. Most communication signals are modulated, that is, the signal is
reshaped before it is sent through the medium, or channel. Information is
encoded into some characteristic features of a signal. Many modern com-
munication systems uses modulation techniques that encodes information
into the phase or the frequency of an oscillating signal. Modern «digital»
systems such as DVB-S/T5, GSM6, IEEE 802.117, Bluetooth, and RFID8

uses so-called frequency shift keying (FSK) and phase shift keying (PSK).
These technologies are again modifications of the old-fashioned frequency
modulation (FM) of analog radios. In its simplest form frequency shift
keying modulation can be done by an oscillator that changes between two
different frequencies (so called binary frequency shift keying), see Fig. 6.8.

The controller motifs presented in this thesis can explain how a biological
system may achieve the same. One way to do this is discussed in section
5.7 of chapter 5, which presents an oscillator with two homeostatically
defended frequencies. The frequency changes based on whether inflows or

5Digital Video Broadcasting Satellite/Terrestrial, broadcasting of audio and video.
6Global System for Mobile Communications, used in mobile phones.
7Institute of Electrical and Electronics Engineers standard number 802.11, defines

the common wireless network known as WiFi.
8Radio-frequency identification, ID-tags used in bus-passes, and employee cards.
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Figure 6.8: Binary frequency shift keying (BFSK). Binary information is encoded into
the frequency of an oscillating signal by a modulator. In this example the modulator
converts a binary 0 or 1 input into a sinusoidal output with a frequency of either 300 kHz
or 150 kHz. In electronics this type of modulation may be realized by a voltage controlled
oscillator (VCO).

outflows of A are dominating. Another way for a controller motif based
biological system to encode information into frequency is to have a stimulus
acting directly on the frequency controller (I).
Fig. 6.9A shows a biological system based on a self-oscillating version

of controller motif 2, extended with one frequency controlling motif I1.
A stimulus S acts on the inflow of I1. The frequency of the oscillator
changes when the stimulus changes, because S affects the I1-controller’s
setpoint for <E>. In the case where S has switch-like behavior this system
functions similarly to a binary frequency shift keying (BFSK) modulator,
see Fig. 6.9B. If S has a more continuous behavior the system functions as
an ordinary frequency modulator (FM), Fig. 6.9C.
Several oscillatory biological systems are claimed to exhibit frequency

modulation [105, 137]. We have, however, not yet examined whether such
systems have similar structures as proposed above. The structure is in any
case interesting in itself and may, even if it does not exist in biology today,
be implemented by synthetic biology in the future.
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Figure 6.9: Self-oscillating version of controller motif 2 with frequency control by I1
(Eqs. 5.53–5.56). Parameter values: k1 = 20, k2 = 30, k3 = 0.1, k5 = 0 (I2 not included)
k6 = 0.1, V Eset

max = 1.5, k8 = 1, k9 = 0.3, KE
I = 2, KA

M1 = KEset
M = KI1

M = 0.001, ki
p = 10,

and ko
p = 1. A. Reaction kinetic scheme, a stimulus S affects the inflow of I1. B. The

system shows BFSK-like behavior when S changes between distinct values. C. Ordinary
FM-like modulation of frequency is observed when S changes continuously from 1 to 2.
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6.3.2 Homeostasis of the circadian period

Biological oscillators may also serve other purposes than communication.
One example is the internal circadian clocks, which have a period close
to 24 hours. Circadian rhythms participate in the homeostatic control of
a variety of physiological variables, such as body temperature, potassium
content, hormone levels as well as sleep [48]. Circadian rhythms can be
viewed as the adaptation of organisms to life on a rotating planet. Fig. 6.10
shows how a plant (Mimosa) opens its leafs before the light is turned on
in the morning and closes them before the light is turned off at night,
anticipating the coming of light/dark. The images are from a recently
started project on circadian rhythms by our group.

Figure 6.10: Mimosa grown under a controlled light/dark regime. The top left image
shows how the leafs have started to open up at 7.30 am, anticipating the coming of light
at 8.00 am, top right. The bottom left image shows how the leafs have started to close
at 7.30 pm, half an hour before the set of dark at 8.00 pm, bottom right. Note that the
camera sensitivity is enhanced at night to make the plant visible.
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Circadian clocks allows organisms to predict changes in the external
environment associated with the day/night cycle. Their period is under
homeostatic regulation towards a variety of environmental influences, such
as temperature (temperature compensation), or food supply (nutritional
compensation). Although circadian rhythms may be entrained, they func-
tion somewhat independently of the day/night cycle. Circadian rhythms
are sustained for a certain time even though the day/night cycle is changed,
as is what happens when we experience jet-lag. Fig. 6.11 shows how a
Mimosa plant reacts to a change in the day/night cycle.

Figure 6.11: Mimosa grown under a controlled light/dark regime. The graph shows
how the degree of leaf opening, estimated as amount of green pixels in the image, changes
over time. On the 30th of June the day-night cycle is changed from a 16+8 regime
(24 hours day) to a 16+12 regime (28 hours day), and then back to a 16+8 regime
(24 hours day) on the following day. The change in regime causes the leafs to open too
early (after only 8 hours of dark), and to close too early. The internal clock is entrained
to the new regime after couple of days.

6.4 The future of cybernetics and biology

Norbert Wiener’s concept of cybernetics was at its birth just as much
directed towards biology as towards the machine. Maybe not surprising,
as Wiener was well aware of the concept of homeostasis and the work
of Walter B. Cannon. They both even shared a common co-author in

136



CHAPTER 6. DISCUSSION AND CONCLUDING REMARKS

Arturo Rosenblueth. Coming from today’s machine based field of control
engineering it is almost surprising to see that so many of the ideas in
Cybernetics [200] were focused on, and discussed in relation to, regulation
in biological systems.

It is also surprising that a lot of these concepts at many times seems to
be forgotten in modern molecular biology. The excellent article «Can a
biologist fix a radio» from 2002 by Yuri Lazebnik [104] is an illustrative and
funny analogy, where the modern methods of biology is tested by whether
or not they are applicable to a fix an old broken radio. Lazebnik argues
that the lack of an engineering language is a flaw of modern biology.
One should maybe be careful with calling modern biology flawed, but

there is an apparent tendency of new discoveries in biology to rapidly
evolve with dynamics of a Klondike gold rush, only to crash some years
later with failed attempts to develop wonder drugs [104]. Recent reports
describe very low success rates for pharmaceutical companies attempting
to reproduce seminal biomedical research [16, 120, 142], especially for
cancer research. Amgen, a biotechnology company producing drugs for
chemotherapy, reported that they were only able to confirm scientific
findings in 6 out of 53 published studies [16]. This story has gotten much
attention in the research community, and there is now a nonprofit effort
trying to replicate 50 high impact cancer papers from 2010 to 2012 [88].
Journal editors and others have called for more rigorously designed

experiments, publishing of original data, publishing of negative results, and
vigorous peer review [49, 203]. These are all excellent suggestions, but
we think, as Lazebnik, that it will help to describe results in a clearer,
more formalized, language. Although mathematical models can also be
wrong in the sense that they poorly represent empirical data and underlying
mechanisms, they are inherently logical, and conveys information with less
ambiguity than ordinary language.

The behavior of complex cellular networks can indeed at many times be
far from intuitive. Oscillators are good examples of systems that cannot
be understood on basis of genetics and molecular biology alone. Their
behavior is best described by characteristics such as average level, amplitude,
and frequency, and best understood through quantitative mathematical
models and system concepts, such as feedback, nonlinearity, phase space,
conservative systems, self-oscillations, and attractive limit-cycles.

The rapidly growing fields of systems and synthetic biology are excellent
examples of what can be achieved by combining biology with mathematics
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and engineering. One of the great achievements of engineering is the
creation of new and useful systems and entities that have never before
existed. As put by Rosenblueth et al. [152] «no living organism is known
that rolls on wheels—imagine what the result would have been if engineers
had insisted on copying living organisms and had therefore put legs and
feet in their locomotives, instead of wheels». We can only imagine how
the powers of synthetic biology will forever change not only biology and
medicine, but how it will challenge our society’s understanding of what life
really is.

My own view, after being exposed to biology, is that a stronger focus on
regulatory mechanisms is exactly what is needed to drive research forward.
System components should be understood not only by genetic codes and
chains of amino-acids (what it is), but by how different molecular species
interact in the dynamical sense (how it behaves). The proper way to do
this is by mathematical models and the concepts from systems and control
theory.
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Abstract

Homeostatic and adaptive control mechanisms are essential for keeping organisms structurally and functionally stable.
Integral feedback is a control theoretic concept which has long been known to keep a controlled variable A robustly (i.e.
perturbation-independent) at a given set-point Aset by feeding the integrated error back into the process that generates A.
The classical concept of homeostasis as robust regulation within narrow limits is often considered as unsatisfactory and
even incompatible with many biological systems which show sustained oscillations, such as circadian rhythms and
oscillatory calcium signaling. Nevertheless, there are many similarities between the biological processes which participate in
oscillatory mechanisms and classical homeostatic (non-oscillatory) mechanisms. We have investigated whether biological
oscillators can show robust homeostatic and adaptive behaviors, and this paper is an attempt to extend the homeostatic
concept to include oscillatory conditions. Based on our previously published kinetic conditions on how to generate
biochemical models with robust homeostasis we found two properties, which appear to be of general interest concerning
oscillatory and homeostatic controlled biological systems. The first one is the ability of these oscillators (‘‘oscillatory
homeostats’’) to keep the average level of a controlled variable at a defined set-point by involving compensatory changes in
frequency and/or amplitude. The second property is the ability to keep the period/frequency of the oscillator tuned within a
certain well-defined range. In this paper we highlight mechanisms that lead to these two properties. The biological
applications of these findings are discussed using three examples, the homeostatic aspects during oscillatory calcium and
p53 signaling, and the involvement of circadian rhythms in homeostatic regulation.
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Introduction

The biological motivation of this work can be summarized as

follows: How can homeostatic mechanisms possibly work when

many or even most of the regulatory processes within a cell are

based on oscillations? Versions of this question and how oscillatory

processes participate in homeostatic and adaptive mechanisms

have been repeatedly asked and discussed [1–5]. Our aim is to

identify and build homeostatic/adaptive motifs on a rational basis

with possible applications within physiology and synthetic biology.

In this paper we apply control-engineering and kinetic methods

and show how the classical concept of homeostasis [6,7] is linked

to oscillatory behavior. We demonstrate how biological oscillators

can have robust (perturbation-independent) homeostatic/adaptive

behaviors both with respect to average concentration of a

regulated variable and with respect to a robust control of the

oscillator’s frequency. By taking three examples, we argue that

such properties appear closely linked to the controlled period

lengths of the p53-Mdm2 oscillatory system and circadian rhythms

[1,8] or to the homeostatic regulation of cytosolic calcium during

signaling [9].

Organisms have developed defending homeostatic mechanisms

in order to survive changing or stressful conditions by maintaining

their internal physiologies at an approximately constant level

[7,10,11]. In this respect, many compounds are tightly regulated

within certain concentration ranges, because they are essential for

cellular function, but may lead to dysfunction and diseases when

their concentrations are outside of their regulated regimes. The

term ‘‘homeostasis’’ was introduced by Cannon [6,7] to indicate

that the internal milieu of an organism is regulated within narrow

limits. The examples Cannon addresses in 1929 [6] are still actual

research topics, such as the regulations of body temperature, blood

sugar, blood calcium and blood pH levels [12–15]. Today many

more homeostatic controlled compounds have been identified,

including hormones [16], transcription factors and transcription

factor related compounds [17], cellular ions such as plant nitrate
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levels [18,19], iron [20], and calcium [21]. The Supplementary

Material of Ref. [22] contains further examples.

Because many biochemical processes are oscillatory [1,8,23–

27], Cannon’s definition of homeostasis has been perceived as

unsatisfactory and various alternative homeostasis concepts have

been suggested. The term predictive homeostasis [1] has been

introduced in order to stress the anticipatory homeostatic behavior

of circadian regulation. Other concepts include allostasis [2,5] to

focus on the concerted and interwoven nature of the defending

mechanisms, rheostasis [3] to put emphasis on set-point changes,

and homeodynamics [4] to stress the nonlinear kinetic behaviors of

the defending mechanisms as part of an open system.

The appearance of cybernetics together with system theory [28–

31] caused an interest to understand homeostasis and biological

control from the angle of system analysis and control theory [32–

39] by introducing control-engineering concepts such as integral
control [22,40–45]. Integral control allows to keep a controlled

variable (say A) precisely and robustly at a given set-point Aset by

feeding the integrated error back into the process by which A is

generated [46]. To gain insights how integral control and

homeostasis may appear in biochemical and physiological

processes, we started [43] to study two-component negative

feedback controllers, where one component is the (homeostatic)

controlled variable A, while the other is the manipulated or

controller variable E. Each controller consists of the two species A
and E and three fluxes, the inflow and outflow to and from E and

an E -controlled compensatory flux (either inflow or outflow) of A,

denoted jcomp. The compensatory flux compensates for distur-

bances in the level of A caused by perturbations in other

uncontrolled inflows/outflows of A. By considering activating or

inhibitory signaling events from A to E and vice versa, eight basic

negative feedback configurations (controller motifs, Fig. 1a) can be

created [22,47]. Two kinetic requirements leading to integral

control have so far been identified, one based on a zero-order

kinetic removal of the manipulated variable E [22,43,48], the

other on an autocatalytic formation of E in association with a first-

order degradation [45]. Fig. 1b gives a brief summary of these two

kinetic approaches by using motif 5 as an example. For details, the

reader is referred to [22,45]. We feel that this approach provides a

rational basis to build networks which allow to view the behaviors

of the individual controllers and to understand emergent

properties of the overall network. By combining individual

controller motifs with integral control we previously showed that

an integrative and dynamic approach to cellular homeostasis is

possible, which includes storage, excretion and remobilization of

the controlled variables [19,22,49].

In the present study we extend the concept of homeostasis to

include sustained oscillatory or pulsatile conditions. We show that

oscillatory homeostats based on the controller motifs in Fig. 1a can

maintain robust homeostasis in A. For controllers where E is

inhibiting the compensatory flux (motifs 2, 4, 6, and 8, Fig. 1a), the

frequency can be shown to depend on the level of E and therefore

on the applied perturbation strength. In this class of controllers the

frequency generally increases upon increased perturbation

strengths; here we use motif 2 as a representative example. For

the remaining controller motifs the frequency has been found to be

less dependent upon perturbations. As a representative example

for this behavior we use motif 5. We further show that robust

frequency control can be achieved by either using additional

controllers, which keep the average levels of A and E homeostatic

regulated, or by using the intrinsic harmonic/quasi-harmonic

properties of motifs 1 or 5. The biological significance of these

findings is discussed with respect to the oscillatory signaling of

cytosolic calcium and p53, as well as the regulating properties of

circadian rhythms with respect to homeostasis and temperature

compensation.

Results

Kinetic Approach to Implement Integral Control
We consider the negative feedback motifs in Fig. 1. A general

condition for integral control can be formulated if the rate

equation of the manipulated variable E allows for a rearrangement

in form of two functions g(E) and h(A), and where the integral of

1=g(E) with respect to E exists and can be written as G(E). Then,

the set-point in A is determined by the solution of h(A)~0, i.e.

_EE~h(A):g(E) ð1Þ

Rearranging Eq. 1 and requiring steady state conditions gives:

_EE

g(E)
~ _GG(E)~h(A)~0 ð2Þ

Eq. 2 has been applied for nonoscillatory steady states with

g(E)~1 by using zero-order kinetic degradation/inhibition of E
[22,43] or with g(E)~E by using first-order autocatalytic

formation and degradation in E [45]. Other functions of g(E)
may be possible but plausible reaction kinetic mechanisms need to

be identified. For the sake of simplicity, we consider here that

integral control is achieved by a zero-order removal of E using

g(E)~1.

To extend the condition of Eq. 2 to sustained stable and

marginally stable oscillations, we observe that the integral of the

periodic reaction rates _AA and _EE along a closed orbit c in the

system’s phase space is zero. For _EE this can be written as:

v _EEwc ~

þ
c

_EE dt~

þ
c

h(A)dt~0 ð3Þ

Dependent on whether A is activating or inhibiting the

production or removal of E, two expressions for the set-point of

the oscillatory controller can be derived from Eq. 3. In case A is

activating (motifs 1, 2, 5, 6) and by assuming first-order kinetics

with respect to A in the rate equation for E, the set-point of A is

given by (see Eq. S1 in (File S1))

vAwc~

þ
c

A(t)dt~vAwset ð4Þ

where the integral is taken along one (or multiple) closed and

stable orbit(s) in the system’s phase space. With increasing time t,

the average concentration of A, vAwt, will approach its set-point

vAwset, i.e.,

vAwt~
1

t
:
ðt

0

A(t)dt?vAwset when t?? ð5Þ

When A is inhibiting the production or removal of E (motifs 3,

4, 7, 8) and assuming (for the sake of simplicity) that the inhibiting

term has a first-order cooperativity with respect to A with an

inhibition constant KA
I , the following expression is conserved and

perturbation-independent (see derivation in File S1, Eq. S8):

Oscillatory Homeostats
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v

1

KA
I zA

wc~

þ
c

dt

KA
I zA(t)

~constant ð6Þ

Homeostasis by Oscillatory Controllers
To illustrate the homeostatic response of the oscillatory

controllers, we use, as mentioned above, conservative and limit-

cycle versions of inflow controller motif 2 and outflow controller

motif 5 as representative examples. These motifs have been

chosen, because they represent different ways to achieve negative

feedback and homeostasis of the controlled variable A. In motif 2

(as in motifs 4, 6, and 8) E inhibits the compensatory flux, while in

motif 5 (as in motifs 1, 3, and 7) the compensatory flux is activated

by E. A limit-cycle version of motif 6 will be used to discuss

cytosolic Ca2+ oscillations in terms of a homeostatic mechanism.

Conservative Oscillatory Controllers. A conservative sys-

tem is a system for which an energy or Hamiltonian function (H-

function) can be found and for which the values of H remain

constant in time. Conservative oscillators show periodic motions

characterized by that they in phase space do not occur in isolation

(i.e. they are not limit cycles). For a given H-level h a periodic

motion (a closed path in phase space) is surrounded by a

continuum of near-by paths, obtained for neighboring values of

h [50]. The dynamics of a two-component conservative oscillator

can be derived from the H-function using the following equations:

LH

LE
~{ _AA ;

LH

LA
~ _EE ð7Þ

which are analogous to the Hamilton-Jacobi equations from

classical mechanics. In general, solutions of these equations are not

necessarily oscillatory, but here we focus only on the conservative

Figure 1. A basic set of two-component homeostatic controller motifs with two implementations of integral control. (a) Compound A
is the homeostatic controlled variable and E is the controller or manipulated variable [22]. The motifs fall into two classes termed as inflow and
outflow controllers, dependent whether their compensatory fluxes jcomp add or remove A from the system. In motifs outlined in gray the controller
compound E inhibits the compensatory flux, while in the other motifs E activates the compensatory flux. (b) middle figure shows a standard control
engineering flow chart of a negative feedback loop, where the negative feedback results in the subtraction of the concentration of A (blue line) from
A’s set-point (red line) leading to the error (Aset{A). The error feeds into the integral controller (brown box). The controller output (the integrated
error) is the concentration of E (green line) which regulates the process that creates A. The perturbations which affect the level of A are indicated in
orange color. (b) left panel shows the structure of negative feedback (outflow) controller 5. The colors correspond to those of the control engineering
flow chart. For example, the set-point (red) is given by the ratio between removing and synthesis rates of E, while the integral controller (brown) is
related to the processing kinetics of E, in this case E is removed by zero-order [22,43]. (b) right panel shows the same outflow controller (motif 5).
The only difference is that the integral controller is now represented by a first-order autocatalytic formation (indicated by brown dashed arrow) and a
first-order removal with respect to E [45].
doi:10.1371/journal.pone.0107766.g001
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oscillators, which can be derived from the eight controller motifs

(Fig. 1a). Dependent on how integral control is implemented,

some of the conservative oscillators are well-known; they are: the

harmonic oscillator [51] based on either motifs 1 or 5 (using zero-

order implementation of integral control; see left panel in Fig. 1b),

the Lotka-Volterra oscillator [45,52,53] also here based on motifs 1

or 5 (but using the autocatalytic implementation of integral

control; see right panel in Fig. 1b), and Goodwin’s oscillator from

1963 [54] based on motif 2. In the literature the Goodwin

oscillator comes in two versions, which are both based on motif 2.

There is a conservative oscillator version from 1963 [54] with two

components. There is also another version from 1965 with three

components [55]. The difference between the two versions lies in

the kinetics of the degradation rates of the oscillators’ components.

In the 1965 three-component version the degradation rates are

first-order with respect to the degrading species, while in the

conservative case (1963 version) the degradation rates have zero-

order kinetics. These kinetic differences change the oscillatory

behavior of the two systems significantly. To get limit-cycle

oscillations, it is well-known from the literature [56] that the three-

dimensional system where the components are degraded by first-

order kinetics requires a cooperativity of the inhibiting species of

about 9 or higher. Our results presented here using motif 2

confirms Goodwin’s 1963 results that when components are

degraded by zero-order kinetics the system can oscillate with a

cooperativity of 1 with respect to the inhibiting species E. Here we

also extend Goodwin’s results by showing that limit-cycle
oscillations can be created based on motif 2, but still using a

cooperativity of 1 with respect to the inhibiting species E (see

below).

The following two requirements are needed to get conservative

oscillations for any motif from Fig. 1a: (i) integral control has to be

implemented in the rate equation for E, and (ii) all removal of A
should either occur by zero-order kinetics with respect to A, or,

when the removal of A is first (or nth)-order with respect to A, the

formation of A needs to be a first (or nth)-order autocatalytic

reaction [45]. When conditions (i) and (ii) are fulfilled, a function

H(A,E) can be constructed, which describes the dynamics of the

system analogous to the Hamilton-Jacobi equations from classical

mechanics, where the form of H depends on the system’s kinetics.

Details on how H is constructed for the various situations is given

in File S1.

Fig. 2a shows a reaction kinetic representation of motif 2, which

is closely related to Goodwin’s 1963 oscillator [54]. It was

Goodwin who first drew attention to the analogy between the

dynamics of a set of two-component cellular negative feedback

oscillators and classical mechanics [54]. In this inflow-type of

controller, increased outflow perturbations (i.e., increased k2

values) are compensated by a decreased average amount of E (i.e.,

vEw, Fig. 2b), thereby neutralizing the increased removal of A

by use of an increased compensating flux

jcomp~k3
:KE

I =(KE
I zE) ð8Þ

In this way the average level of A, vAw, is kept at its set-point

VEset
max=k4 (see Eq. S5 in the File S1). During the adaptation in

vAw (when k2 is changed) the controller’s frequency as well as

the vEw-level are affected. The frequency v for each of the

eight conservative oscillators can roughly be estimated by a

harmonic approximation (see File S1), which in case of motif 2

(Fig. 2a) is given by (assuming k1~0)

v~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3
:k4
:KE

I

p
KE

I zEss

ð9Þ

Ess (~k3KE
I =k2{KE

I ) is the steady state of E, which is obtained

when _AA~0 (Fig. 2a). Because the level of vEw is decreasing with

increasing k2 values, Eq. 9 indicates, and as shown by the

computations in Figs. 2b and 2c, that the frequency of the

oscillator increases with increasing perturbation strengths (k2

values) while keeping vAw at its set-point. In fact, the increase in

frequency upon increased perturbation strengths appears to be a

general property of oscillatory homeostats, where the manipulated

variable E inhibits the compensatory flux (for limit-cycle examples,

see below).

At high k2 values, i.e., when the E level becomes lower than

KE
I , the compensatory flux jcomp approaches its maximum value

k3. At this stage the homeostatic capacity of the controller is

reached. Any further increase of k2 cannot be met by an increased

compensatory flux and will therefore lead to a breakdown of the

controller. For discussions about controller breakdowns and

controller accuracies, see Refs. [22,48].

The scheme in Fig. 2d shows outflow controller motif 5, which

will compensate any inflow perturbations of A (due to changes in

k1) by increasing the compensatory flux

jcomp~k3
:E ð10Þ

When KA
M%A and KEset

M %E the oscillator is harmonic and is

described by a single sine function which oscillates around the set-

point vAwset~VEset
max=k4 with frequency v~

ffiffiffiffiffiffiffiffiffiffiffi
k3
:k4

p
and a

period of 2p=
ffiffiffiffiffiffiffiffiffiffiffi
k3
:k4

p
. Increased levels in k1 (Figs. 2e and 2f) are

compensated by increased vEw levels which keep vAw at its

set-point. Harmonic oscillations can also be obtained for the

counterpart inflow motif 1 (see Fig. S9 and Eqs. S44–S50 in File

S1).

For the harmonic oscillators (motifs 1 or 5) vAw-homeostasis

is kept by an increase in vEw, which matches precisely the

increase in the (average) compensatory flux without any need to

change the frequency. For the other motifs either an increase or a

decrease in frequency is observed with increasing perturbation

strengths dependent whether E inhibits or activates the compen-

satory flux, respectively.

Limit-Cycle Controllers. The conservative oscillatory con-

trollers described above can be transformed into limit-cycle

oscillators by including an additional intermediate, and, as long

as integral control is present, homeostasis in A is maintained by

means of Eq. 4 or 6. Fig. 3a gives an example of a limit-cycle

homeostat using motif 2. Dependent on the rate constants the

oscillations can show pulsatile/excitable behavior (Fig. 3b). In

these pulsatile and highly nonlinear oscillations vAw homeosta-

sis is maintained at the set-point vAwset~VEset
max=k4, although the

peak value in A exceeds the set-point by over one order of

magnitude (Fig. 3b). As already observed for the conservative case,

an increase in the perturbation strength (i.e., by increasing k2)

leads to an increase in frequency while homeostasis in vAw is

preserved (Fig. 3c).

Similarly, a limit-cycle homeostat of motif 5 can be created

(Fig. 4a) by including intermediate e and maintaining integral

control with respect to A. With increasing perturbation strengths

(k1 values, Fig. 4b), homeostasis in vAw is maintained by

increasing vEw. Compared to the conservative situation

Oscillatory Homeostats
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Figure 2. Representation and kinetics of conservative oscillators based on motif 2 and motif 5. (a)–(c) ‘‘Goodwin’s oscillator’’ (motif 2).
Conservative oscillations occur when KA

M%A and E%KEset

M ; the latter condition introduces integral feedback and thereby robust homeostasis [22,43].

(b) Conservative oscillations in A and E, with k1~0:0, k2~1:0, KA
M~1|10{6 , k3~6:0, KE

I ~0:5, k4~1:0, VEset
max~2:0, KEset

M ~1|10{6 . Initial
concentrations: A0~1:5, E0~1:0. At time t = 50.0 k2 is changed from 1.0 to 3.0. (c) vAw, vEw, and frequency as a function of the perturbation k2.
While the frequency increases and vEw decreases with increasing k2 , vAw is kept at its set-point V Eset

max=k4~2:0. (d)–(f) Harmonic oscillator

representation of motif 5. Conservative (harmonic) oscillations occur when KA
M%A (or k2~0) and E%KEset

M . (e) Harmonic oscillations in A and E, with

k1~1:0 (the perturbation), k2~0:0, k3~1:0, KA
M2~1|10{6 , k4~1:0, V Eset

max~2:0, and KEset

M ~1|10{6 . At time t = 50.0 k1 is changed from 1.0 to 3.0.
Initial concentrations: A0~1:5, E0~1:0. (f) vAw, vEw, and frequency as a function of the perturbation k1 . Typical for the harmonic oscillator is the
constancy of the frequency upon changing k1 values. vEw increases with increasing k1 , while vAw is kept at its set-point VEset

max=k4~2:0.
doi:10.1371/journal.pone.0107766.g002

Oscillatory Homeostats

PLOS ONE | www.plosone.org 5 September 2014 | Volume 9 | Issue 9 | e107766



(Fig. 2f), the frequency now shows both slight decreasing and

increasing values. However, the overall frequency changes are not

as large as for motif 2, indicating that similar to the harmonic case,

the frequency of the motif 5 based oscillator has a certain intrinsic

frequency compensation on k1-induced perturbations (Fig. 4c).

Robust Frequency Control and Quenching of Oscillations
In this section we present for the first time biochemical models

that can show robust (perturbation-independent) frequency

control. There are several biological oscillators where the

frequency/period is under homeostatic regulation. Probably the

best known example is the temperature compensation of the

circadian period, i.e. these rhythms show an approximately

constant period length of about 24 h at different but constant

temperatures [57]. Temperature compensation is also observed in

certain ultradian rhythms [58,59]. Another biological oscillator

with a fairly constant period is the p53-Mdm2 system [60], where

the number of oscillations may indicate the strength of the DNA

damage in the cell [61].

We show two ways how robust frequency control can be

achieved. One is due to the presence of quasi-harmonic kinetics,

i.e. the system, although still being a limit-cycle oscillator, behaves

more like a harmonic oscillator. On basis of experimental results,

we believe that the p53-Mdm2 system falls into this category (see

discussion below). In the other approach, frequency homeostasis is

obtained by regulating E itself by additional inflow/outflow

controllers I1,I2. This approach leads to many possible ways how

I1,I2 can interact with the central negative feedback A-E loop/

oscillator and several ways are illustrated using motif 2 and motif

5. Such an approach may apply to the period homeostasis of

circadian rhythms (see discussion below).

Robust Frequency Control by Quasi-Harmonic

Kinetics. We consider now the case when the intermediate

that has been implemented to obtain limit-cycle behavior

(compounds a or e in Figs. 3a or 4a) obeys approximately the

steady-state assumption, i.e., _aa&0 or _ee&0. We term the

oscillators’ resulting behavior as quasi-conservative, because these

systems still have a limit-cycle, but behave also as a conservative

system. An interesting case occurs when the system is quasi-

harmonic, i.e. when motifs 1 or 5 are used. In this case the limit-

cycle oscillations and the frequency can approximately be

described by a harmonic oscillator, i.e., a single sine function.

This is illustrated in Fig. 5 where an increased k5 value is applied

to the scheme of Fig. 4a (which leads to _ee&0). Fig. 5a shows the

oscillations for three different perturbations (k1 values). The

oscillations in A show a practically perfect overlay with a single

sine function, outlined in black for k1~1:0: When k1 is increased

the oscillations (outlined in blue) undergo a phase shift and an

increase in amplitude, but the frequency stays constant at the value

of the (quasi) harmonic oscillator. For high k1 values the

Figure 3. A limit-cycle model of controller motif 2. (a) Reaction scheme. Rate equations: _AA~k1 { k2
:A=(KA

MzA)zk9
:a;

_EE~k4
:A{V Eset

max
:E=(KEset

M zE); _aa~k3
:KE

I =(KE
I zE) { k9

:a. (b) Homeostatic response of the model for three different perturbations (k2 values).

For time t between 0 and 50 units, k2~1:0|103 , for t between 50 and 100 units, k2~2:0|103 , and for t between 100 and 150 units, k2~3:0|103 . In
the oscillatory case vAw at time t is given as vAwt~(1=t)|

Ð
t
0 A(t’)dt’ (ordinate to the right) showing that vAw is under homeostatic control

despite the fact that A peak values may be over one order of magnitude larger than the set-point. (c) vAw, vEw, and frequency values as a
function of k2 . Simulation time for each data point is 100.0 time units. Note that vAw is kept at vAwset independent of k2. Rate constant values (in

au): k1~1:0, k3~1:0|105 , k4~1:0, KE
I ~1:0|10{3 , KA

M~1:0, V Eset
max~2:0, KEset

M ~1:0|10{6 , and k9~2:0. It may further be noted that the
degradation kinetics with respect to A are no longer zero-order as required in the conservative case (Figs. 2a–c). Initial concentrations in (b): A0~1:5,
E0~0:3, and a0~166:17. Initial concentrations in (c) for each data point: A0~1:725|10{6 , E0~1:585, and a0~0:861.
doi:10.1371/journal.pone.0107766.g003
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A-amplitude of the oscillator becomes saturated, which is a

secondary effect of the oscillator’s homeostatic property. Due to

symmetry reasons and because the oscillator is locked on to the

harmonic frequency, the value of A cannot exceed beyond twice

the level of its set-point, which in this case has been set to 12.5

(Figs. 5a and 5b). As in the harmonic case (Fig. 2f), vEw

increases with increasing k1 (Fig. 5b). Fig. 5c shows the approach

to the limit-cycle (outlined in black). When k5 increases further

and the steady state approximation for e becomes better and

better, the limit-cycle disappears and the system becomes purely

harmonic.

Quenching of Oscillations in Quasi-Conservative

Systems. A requirement to obtain conservative oscillations

and an oscillatory promoting condition for limit cycle oscillations

is the presence of zero-order degradation in A. Changing the zero-

order degradation in A may lead to the loss of oscillations. For

example, in quasi-conservative systems the oscillations can be

effectively quenched by either adding a first-order removal term

with respect to A (with rate constant k3, Fig. 4a) or by replacing

the zero-order kinetics degradation in A (using k2, KA
M ) by first-

order kinetics with respect to A, or by increasing KA
M . Fig. 5d

illustrates the suppression of the quasi-harmonic oscillations by

adding a first-order removal with respect to A. In contrast, when

an oscillatory system does not show quasi-conservative kinetics,

addition of a first-order removal with respect to A does not

necessarily abolish the oscillations. A detailed parameter analysis

showing how the value of k5 affects the period of the oscillations

and how first-order degradation in A affects the size of the

parameter space in which sustained oscillations are found is given

in (Figs. S10 and S11 in File S1).

Robust Frequency Homeostasis by Control of

vEw. When considering the relationship between vEw and

the frequency, as for example shown in Fig. 3c, we wondered

whether it would be possible to design an oscillator with a robust

frequency homeostasis by using an additional control of vEw.

For this purpose, two extra controllers I1 and I2 with their own set-

points for vEw are introduced. Note, that the integral control for

vAw by E is still operative and has its own defined set-point. In

the following we show three examples of robust frequency control

using motifs 2 and 5. Two of the examples illustrate different

feedback arrangements of I1 and I2 using motif 2. An example

using still another arrangement using motif 2 is described in File

S1 (Figs. S12–S14).

In Fig. 6a a set-up for robust frequency homeostasis is shown by

using a limit-cycle oscillator based on controller motif 5. The set-

points for vEw, given by the rate equations for I1 and I2, are

vEw
I1
set = k6=VI1

max and vEw
I2
set = VI2

max=k7. Fig. 6b shows the

results for a set of calculations when k1 varies from 1 to 20 au. In

these calculations it was assumed that the I1 and I2 controllers

have the same set-point of 20.0 au. In the absence of controllers I1

and I2, the frequency varies as indicated in Fig. 4c, which in

Fig. 6b is shown as gray dots. When I1 and I2 controllers are both

Figure 4. A limit-cycle model of controller motif 5. (a). Rate equations: _AA~k1{k2
:E:A=(KA

MzA){k3
:A; _ee~k4

:A{k5
:e;

_EE~k5
:e{VEset

max
:E=(KEset

M zE). (b) Homeostatic behavior in vAw illustrated by three different perturbations (k1 values). At time t~500:0 k1 is
changed from 4.0 to 10.0, and at t~1000:0 k1 is changed from 10.0 to 20.0 (indicated by solid arrows). The set-point of vAw is given as

V Eset
max=k4~2:0. Rate constant values: k1 is variable, k2~1:0, KA

M~0:1, k3~0:0, k4~0:5, k5~0:2, VEset
max~1:0, and KEset

M ~1:0|10{6 . Initial

concentrations: A0~1:9964|10{2 , e0~8:0983, and E0~12:0258. (c) vAw, vEw, and frequency values as a function of k1 showing that vAw is
kept at the set-point independent of k1 . Rate constants as in (b). Initial concentrations for each data point: A0~7:6383|10{1 , e0~1:6887, and
E0~18:8155. Simulation time for each data point is 10000.0 time units.
doi:10.1371/journal.pone.0107766.g004
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Figure 5. Quasi-harmonic behavior of motif 5 oscillator (Fig. 4a). For time tv300, a perfect overlay between the numerical calculation of A(t)
(blue color) and the single harmonic A(t)~Aampl

: sin (2p=Pzw) zvAwset (black color) is found, where k1~1:0, Aampl~5:0791, P~31:44,

w~{0:05, and vAwset~V Eset
max=k4 ~12:5. Aampl and P represent the numerically calculated amplitude and period length, respectively. w was

adjusted to give a closely matching overlay. Other rate constant values (numerical calculations): k2~5:0|10{2 , k3~0:0, KA
M~1:0|10{6 , k4~0:8,

k5~20:0, VEset
max~10:0, and KEset

M ~1:0|10{6 . Initial concentrations: A0~12:4290, e0~0:4952, and E0~1:0139|10{4. At times t~300 and t~600
(solid arrows) k1 is changed to respectively 5.0 and 10.0. For these k1 values the amplitude of A has reached its maximum, which is twice the value of
the set-point. (b) vAw, Aampl , vEw, and frequency as a function of k1 . Simulation time for each data point is 1000.0 time units. (c) Demonstration
of limit-cycle behavior of the quasi-harmonic oscillations. Same initial conditions as in (a) with k1~1:0, and e0~0:4952. (d) Same system as in (a), but
at times t~200 and t~500 (solid arrows) k3 is changed and kept to 0.1. The oscillations are efficiently quenched, but A remains under homeostatic
control.
doi:10.1371/journal.pone.0107766.g005
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active, vEw shows robust homeostasis at 20.0 (Fig. 6b) and the

frequency is practically constant (black dots). Fig. 6c shows the

response when controller I1 has been ‘‘knocked out’’. While in this

case the vAw values are still under homeostatic control, vEw

approaches its set-point (defined by vEw
I2
set) only at high k1

values, but without a control of the frequency. When controller I2

is knocked-out (Fig. 6d), control of vEw and frequency

homeostasis is observed. Due to the absence of controller I2,

homeostasis in vEw and in the frequency is lost for higher k1

values. The role of I2 in this type of regulator is to diminish/

suppress the inflow to A by k1, such that controller I1 can supply

the necessary amount of A in order to keep vEw and the

frequency under homeostatic control. This mechanism is illustrat-

ed in Fig. 6e by a ‘‘static’’ work mode of I2, where the

concentration of I2 is kept constant. In this case the k1-region of

frequency homeostasis increases with increasing but constant

concentrations of I2 (Fig. 6f).

A corresponding approach to achieve robust frequency homeo-

stasis by using motif 2 is shown in Fig. 7a. The set-up differs from

that used for motif 5 (Fig. 6a) by allowing that I1 and I2 act upon a
and upstreams of A. For the sake of simplicity, both controllers are

assumed to have set-points at 20.0 au. Note that in this version of

the motif 2 oscillator, the removal of A is now purely first-order

with respect to A (using only k2). Because motif 2 has been the

core for many circadian rhythm models, we will below discuss

implications of robust frequency control with respect to properties

of circadian rhythms. In this context we note that the region

outlined in gray in Fig. 7a shows the part of the oscillator where

rate constants have no influence on the frequency, i.e. the

sensitivity coefficients L(frequency)=Lki are zero.

Fig. 7b shows the homeostatic behavior in frequency (black

dots) in comparison with the uncontrolled oscillator (gray dots). In

the controlled case, both vAw and vEw are under homeostatic

regulation with set-points of 2.0 au and 20.0 au, respectively. To

elucidate the effect of the added controllers I1 and I2, we removed

them one by one (knocking them out). In Figs. 7c and 7d

controllers I1 and I2 have been removed, respectively. When

outflow controller I1 is not operative, the system is not able to

remove sufficient a at low k2 values. In this case vEw levels are

high and unregulated at low k2’s and showing an increase in

frequency. Only at sufficiently high k2 values controller I2 is able

to compensate for the decreased levels in vEw. The situation is

reversed in Fig. 7d, when controller I2 is not operative. At low k2

values controller I1 can remove excess of E by diminishing the

level of a and keeping vEw at its set-point. However, the vEw

regulation breaks down at high values of k2, because no additional

supply for E via a can now be provided. In this way controllers I1/

I2 act as an antagonistic pair of outflow/inflow controllers,

respectively. Note that the by E controlled level of vAw (with

set-point of 2.0 au) is kept at its set-point independently whether

vEw is regulated by I1/I2 or not. Fig. 7e shows the oscillations

when both I1 and I2 are operative (Fig. 7b, black dots) and k2

being changed from 3.0 to 8.0 at t = 250.0 units (indicated by

arrow). The level of vEw is controlled to its set-point (20.0),

while the amplitude of A has increased with the increase of k2. For

each spike (after steady state has been established) the average

amount of A is the same and independent of the value of k2,

leading to the same frequency and homeostasis in vAw.

Oscillator with Two Homeostatic Frequency Domains
In the I1 and I2-controlled oscillators described above the set-

point of vEw will determine the frequency. Fig. 8a shows an

example of a motif-2-based homeostat, where I1 and I2 feed back

to A and a, respectively. For an example where I1 and I2 feed back

to A only, see Fig. S12 in File S1. In the calculations of Fig. 8,

different set-points for vEw by controllers I1 and I2 have been

chosen. As a result, dependent whether the perturbation strength

(value of k2) is high or low, the oscillator shifts between two

different homeostatic controlled frequency regimes separated by a

transition zone (Fig. 8b). Fig. 8c shows the oscillations, vAw and

vEw values and the frequency switch when k2 is changed from

3.0 to 8.0.

Discussion

Classifications of Biochemical Oscillators and Influence of
Positive Feedback

There has been several approaches how chemical and

biochemical oscillators can be understood and classified [62–66].

The controller motifs shown in Fig. 1a can be considered as a

basic set of negative feedback oscillators. For example, the Lotka-

Volterra oscillator can be viewed as a negative feedback oscillator

based on motifs 1 or 5, but where integral control is implemented

in terms of autocatalysis [45] and where the controlled variable A
is formed by autocatalysis and degraded by a first-order process

with respect to A. The same motif can show harmonic oscillations,

when integral control and removal of the controlled variable is

incorporated by means of zero-order kinetics. Two additional

oscillator types based on the same motif can be created by

implementing mixed autocatalytic/zero-order kinetics for integral

control and for the generation/degradation of the controlled

variable (‘Text S1’). The other motifs can be extended in a similar

way, giving rise to 32 basic (mostly unexplored) oscillator types.

This type of classification supplements the one given earlier by

Franck, where the eight negative feedback loops where combined

with their positive counterparts to create what Franck termed

antagonistic feedback [63] An often discussed question is the role

positive feedback, or autocatalysis, may play in biological

oscillators. Using a Monte-Carlo approach Tsai et al. [26] studied

the robustness and frequency responses of oscillators with only

negative feedback loops and oscillators with a combined positive-

plus-negative feedback design. The authors concluded that the

combination of a negative and a positive feedback is the best

option for having robust and tunable oscillations. In particular, the

positive loop appears necessary to make the oscillator tunable at a

constant amplitude. We here have shown how homeostasis and

tunable oscillators may be achieved without any positive feedback

(but generally associated with a changing amplitude). To put our

results in relation to those from Tsai et al. [26], we wondered,

triggered by the comments from a reviewer, how an oscillator with

an autocatalytic-based integral controller might behave in

comparison. For this purpose we used controller motif 2 (Fig. 9a),

analogous to the scheme shown in Fig. 3a. Interestingly, and in

agreement with the findings by Tsai et al. [26], the autocatalytic

step resulted now in relaxation-type of oscillations. As expected,

the frequency of the oscillator increases with increasing perturba-

tion strengths k2, and vAw is under homeostatic control

(Fig. 9b). However, as indicated by the results of Tsai et al. the

oscillator’s amplitude has now become independent of k2! These

results show that Franck’s original concept of antagonistic

feedback, i.e. combining positive and negative feedback loops in

various ways [63] appear to be of relevance for many biological

oscillators [26].

Homeostatic Regulation under Oscillatory Conditions
In his definition of homeostasis Cannon introduced the term

homeo instead of homo to indicate that certain variations in the

concentrations of the homeostatic controlled species are still

Oscillatory Homeostats
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allowed, but within certain limits [6]. As typical examples, Cannon

mentions the variations of body temperature, variations in blood

sugar, blood calcium, and blood pH levels [6]. We have shown

that the concept of homeostasis can be extended to oscillatory

conditions and that the term set-point still can be given a precise

meaning, even when peak values of the controlled variable may

exceed the set-point by over one order of magnitude (Figs. 3 and

7). In these cases the set-point relates to the mean value of the

oscillatory species, vAw. Many compounds are known to be

under a tight homeostatic regulation to avoid cellular dysfunction,

such as is the case for cytosolic calcium. There is no particular

reason to assume that protective homeostatic mechanisms should

cease to exist once a compound becomes oscillatory and functions,

as in case of calcium, as a signaling device. Allowing a species (such

as cytosolic calcium) to oscillate while defending the mean value of

these oscillations makes it possible to relay signaling without

exposing the cell to long term overload. In the following we discuss

three examples where oscillatory homeostats appear to be

involved: in the homeostatic regulation of calcium and p53 during

oscillations/signaling, and in the homeostatic function and period

regulation of circadian rhythms.

Figure 6. Oscillator based on motif 5 with robust frequency control. (a) Reaction scheme. Rate equations:
_AA~k1

:KI2

I =(KI2

I zI2)zkg
:I1{k2

:E:A=(KA
MzA){k3

:A; _ee~k4
:A{k5

:e; _EE~k5
:e{V Eset

max
:E=(KEset

M zE); _II1~k6{E:V I1
max

:I1=(KI1

MzI1); _II2~k7
:E{

V I2
max

:I2=(KI2

MzI2). (b) Demonstration of robust frequency control. vAw, vEw, and frequency are shown as functions of k1 . Rate constants:

k1~1:0, k2~1:0, KA
M~0:1, k3~0:0, k4~0:5, k5~0:2, V Eset

max~1:0, KEset

M ~1:0|10{6 , k6~20:0, V I1
max~1:0, KI1

M~1:0|10{6, k7~1:0, VI2
max~20:0, and

KI2

M~1:0|10{6 . Set-points for E by controllers I1 and I2 are given as vEw
I1
set~k6=V I1

max~20:0 and vEw
I2
set~V I2

max=k7~20:0, respectively. Initial

concentrations for each data point (black dots): A0~0:7638, E0~18:8155, e0~1:6887, I1,0~1:6695|103 , and I2,0 ~ 2:7657|102. Gray dots show
the frequency as a function of k1 without control by I1 and I2 . (c) System as in (b), but controller I1 not present. (d) System as in (b), but controller I2

not present. (e) Reaction scheme of oscillator, but with a constant I2 concentration. Rate constants otherwise as in (b). (f) Frequency as a function of
k1 for the system described in (e) using different constant I2 concentrations (indicated within the graph). The homeostatic region of the frequency
increases with increasing I2 concentrations.
doi:10.1371/journal.pone.0107766.g006
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Figure 7. Oscillator based on motif 2 with robust frequency control. (a) Reaction scheme. Rate equations: _AA~k1{k2
:Azk9

:a;
_EE~k4

:A{V Eset
max

:E=(KEset

M zE); _aa~(k3zki
g
:I2):KE

I =(KE
I zE){(k9zko

g
:I1):a; _II1~k11

:E{VI1
max

:I1=(KI1

MzI1); _II2~k14{E:V I2
max

:I2=(KI2

MzI2). Shaded

area indicates part of the model for which the control coefficents of the frequency/period with respect to the parameters within this area become
zero when frequency homeostasis is enforced by controllers I1 and I2. (b) Demonstration of frequency homeostasis by varying k2 . Black dots show
the frequency when controllers I1 and I2 are active. Rate constants: k1~0:0, k2~1:0, k3~1:0|106 , k4~1:0, KE

I ~1:0|10{6 , VEset
max~2:0,

KEset

M ~1:0|10{6, k9~2:0, ki
g~1:0|102 , ko

g~1:0|10{3 , k11~5:0, VI1
max ~ 1:0|102 , KI1

M~1:0|10{6 , k14~99:99, VI2
max~5:0, and KI2

M~1:0|10{6 .

Set-points for E by controllers I1 and I2 are given as vEw
I1
set~V I1

max=k11~20:0 and vEw
I2
set~k14=VI2

max ~ 19:998, respectively. The set-point

vEw
I1
set of the outflow controller I1 has been set slightly higher than vEw

I2
set for the inflow controller I2 to avoid integral windup and that the

controllers work ‘‘against’’ each other [22]. Initial concentrations for each data point (black dots): A0~50:4903, E0~23:9425, a0~3:2629,
I1,0~8:2955|103 , and I2,0~57:8533. Gray dots show the frequency as a function of k2 for the uncontrolled case, i.e., in the absence of controllers I1

and I2 . (c) System as in (b), but controller I1 is ‘‘knocked out’’ by setting k11 and I1,0 to zero. Homeostasis occurs only at high k2 values when
controller I2 is active. (d) System as in (b), but inflow controller I2 is inactivated by setting k14 and I2,0 to zero. Frequency homeostasis is observed for
low k2 when controller I1 is active. At high k2 values the frequency homeostasis breaks down, because controller I2 is not present to compensate the
increased outflow of A, which leads to low vEw values. (e) Oscillations of system in (b) illustrating frequency homeostasis. At time t~250 (solid
arrow) k2 is changed from 3.0 to 8.0. Initial concentrations: A0~27:3167, E0~31:7283, a0~0:1237, I1,0~1:3473|104 , and I2,0~5:0919|102 .
doi:10.1371/journal.pone.0107766.g007
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Calcium Signaling. Cytosolic calcium (Ca2+) levels are

under homeostatic control to concentrations at about 100 nM

while extracellular levels are in the order of 1 mM. High Ca2+

concentrations are also found in the endoplasmatic reticulum (ER)

and in mitochondria (between 0.1–10 mM), which act as calcium

stores. To keep cytosolic Ca2+ concentrations at such a low level

Ca2+ is actively pumped out from the cytoplasm into the

extracellular space and into organelles by means of various Ca2+

ATPases located in the plasma membrane (PMCA pumps) and in

organelle membranes [21,67]. Dysfunction of these pumps leads to

a variety of diseases including cancer, hypertension, cardiac

problems, and neurodegeneration [68–70]. During Ca2+ signaling

[71,72] cytosolic Ca2+ levels show oscillations [73–75] but

signaling can also occur as individual sparks or spikes [76]. Ca2+

oscillations have been found to occur in many cell types and differ

considerably in their shapes and time scales with peak levels up to

one order of magnitude higher than resting levels. Similar to the

behavior of stimulated (perturbed) oscillatory homeostats as for

example shown in Fig. 3b, Ca2+ oscillations have been found to

increase their frequency upon increased stimulation of cells [73–

75]. The frequency modulation of Ca2+ oscillations [77] is

considered to be an important property for controlling biological

processes [75]. The tight homeostatic regulation of cytosolic

calcium combined with its oscillatory signaling suggests that

oscillatory homeostats appear to be operative also under signaling

conditions.

Although a variety of mathematical models have been suggested

to describe Ca2+ oscillations [78–84], none of them have so far

included an explicit homeostatic regulation of cytosolic Ca2+.

Fig. 10a shows how Ca2+ oscillations can be obtained based on an

outflow homeostatic controller, which removes excess and toxic

amounts of cytosolic Ca2+. The model considers a stationary

situation of an activated cell, where a Ca2+ channel is activated by

an external signal leading to the inflow of Ca2+ into the cytosol.

The increased Ca2+ levels in the cytosol induce an additional

inflow of Ca2+ from the internal Ca2+ store, a mechanism termed

‘‘Calcium-Induced Calcium Release’’ (CICR) [85]. Both inflows

are lumped together and described by rate constant k1. The CICR

flux is maintained by pumping cytosolic Ca2+ into the ER and

keeping the Ca2+ load in the ER high. It should be mentioned that

Figure 8. Oscillator based on motif 2 with robust frequency control but alternative feedback regulation by I1 and I2. (a) Reaction

scheme. Rate equations: _AA~k9
:a{k2

:A=(KA
M1zA){ko

g
:A:I1=(KA

M2zA), _EE~k4
:A{V Eset

max
:E=(KEset

M zE); _aa~k3
:KE

I =(KE
I zE){k9

:azki
g
:I2 ; _II1~

k11
:E{VI1

max
:I1=(KI1

MzI1); _II2~k14{E:V I2
max

:I2=(KI2

MzI2). (b) Using different set-points vEw
I1
set~VI1

max=k11~10:0 and vEw
I2
set~k14=VI2

max ~ 5:0,
the frequency (solid dots) can switch between two homeostatic frequency regimes, dependent whether k2 is low or high. The two regimes are

separated by a transition zone. Rate constants: k2~1:0, k3~20:0, k4~0:1, VEset
max~1:5, KEset

M ~1:0|10{6, k11~1:0, V I1
max~10:0, KI1

M~1:0|10{6,

k14~5:0, VI2
max~1:0, KI2

M~1:0|10{6 , KE
I ~1:0, ki

g~ko
g~1:0|10{2 , KA

M1~KA
M2~1:0|10{6 . Initial concentrations: A0~0:6677, E0~1:0536,

a0~2:5828|10{2 , I1,0~1:1614|103 , and I2,0~7:5008|102 . (c) Oscillations of system in (b) illustrating frequency switch. At time t~500 (solid
arrow) k2 is changed from 2.0 to 8.0. Initial concentrations: A0~19:7178, E0~0:6272, a0~0:4178, I1,0~1:3696|102 , and I2,0~12:9828.
doi:10.1371/journal.pone.0107766.g008
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the cause of the Ca2+ entry across the plasma membrane into the

cytosol is not fully understood and different views have been

expressed how this can occur [86,87].

For the sake of simplicity, the Ca2+ concentration in the ER is

considered to be constant and only the pumping of Ca2+ from the

cytosol into the extracellular space is taken into account without an

increased cooperativity (Hill-function) with respect to the Ca2+

concentration. Fig. 10b shows the oscillations of cytosolic Ca2+

and the homeostat’s performance at different inflow rates k1
:Ca2z

ext

into the cytosol, which can reflect different external Ca2+

concentrations and/or different activation levels of the cell. As

observed experimentally [74] the period of the oscillations

decreases with increased external Ca2+ concentration or with an

increased stimulation of the cell. As shown by vCa2z
cyt wt in

Fig. 10b and by total vCa2z
cyt w in Fig. 10c, on average, robust

Ca2+ homeostasis is preserved at varying Ca2+ inflow rates. In the

absence of oscillations the Ca2+ concentration is still kept at its

homeostatic set-point (Fig. 10b).

Why Ca2+ oscillations? A non-oscillatory signaling mechanism

by cytosolic Ca2+ would clearly be limited, because a homeostatic

regulation of cytosolic Ca2+ would not allow varying Ca2+ levels as

a function of external stimulation strengths. On the other hand, a

frequency-based signaling due to an oscillatory Ca2+-homeostat

would overcome these limitations, because homeostasis is still

maintained. This has been a brief outline on how Ca2+ oscillations

may be understood on basis of oscillatory homeostasis. More

detailed studies will be needed, for example by including the

homeostatic aspect in existing models in order to investigate in

more detail the implications oscillatory homeostats have on the

regulatory role of Ca2+.

p53 Signaling. p53 is a transcription factor with tumor

suppressor properties. In more than half of all human tumors p53

is mutated and in almost all tumors p53 regulation is not

functional [88]. In the presence of DNA damage and other

abnormalities p53 initiates the removal of damaged cells by

apoptosis. A central negative feedback component in p53

regulation is Mdm2, an ubiquitin E3 ligase, which leads to the

proteasomal degradation of p53 and other tumor suppressors [89].

In the presence of DNA damage, p53 is upregulated by several

mechanisms [90–92], and both p53 and Mdm2 have been found

to oscillate [60]. An interesting feature of these oscillations is that

their amplitude is highly variable, while their frequency is fairly

constant [60]. The mean height of the oscillations was found to be

constant [61]. It was also found that with an increased strength of

DNA damaging radiation the number of cells with increased p53

cycles increased statistically [61]. Jolma et al. [51] used the basic

negative feedback motif 5 (where A is p53 and E is Mdm2) and

found that the influence of noise on the harmonic properties of the

oscillations was able to describe the variable amplitudes and the

approximately constancy of the period. Fourier analysis of the

experimental data indeed showed that the p53-Mdm2 oscillations

have a major harmonic component [93] supporting a quasi-

harmonic character of the p53-Mdm2 oscillations. For such

Figure 9. A limit-cycle model of controller motif 2 using autocatalysis as an integral controller. (a) Reaction scheme. Rate equations:
_AA~k1{k2

:A=(KA
MzA)zk9

:a; _EE~k4
:A:E{k6

:E; _aa~k3
:KE

I =(KE
I zE){k9

:a. (b) Homeostatic response of the model for three different
perturbations (k2 values). For time t between 0 and 250 units, k2~0:5, for t between 250 and 500 units, k2~2:0, and for t between 500 and 750
units, k2~5:0. vAw at time t is defined as in Fig. 3. (c) vAw, vEw, and frequency values as a function of k2 . Simulation time for each data point is
2000.0 time units. Note that vAw is kept at Aset~15:0 (solid black line) independent of k2 . Rate constant values (in au): k1~0:0, k3~20:0, k4~0:1,
KE

I ~1:0, KA
M~1:0|10{3, k6~1:5, and k9~30:0. Initial concentrations in (b): A0~22:09, E0~1:71|1010, and a0~4:0|10{11. Initial concentrations

in (c) for each data point are the same as in (b).
doi:10.1371/journal.pone.0107766.g009
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harmonic or quasi-harmonic oscillations our results (Figs. 2f and

5b) indicate that p53 is homeostatic regulated both in average

concentration and in period length to allow to expose the system

probably to an optimum amount of p53 during each cycle.

Because the number of p53 cycles appear positively correlated

with an increased exposure of damaging radiation, the total

amount of released p53 may be related to a repair mechanism. A

support along these lines comes from a recent study, which

indicates that p53 oscillations lead to the recovery of DNA-

damaged cells, while p53 levels kept at their peak value lead to

senescence and to a permanent cell cycle arrest [94]. Thus, like for

cytosolic Ca2+, elevated and oscillatory p53 levels seem to remain

under homeostatic control in order to mediate signaling events

and information which appear to be encoded in the oscillations.

Homeostasis of the Circadian Period. Circadian rhythms

play an important role in the daily and seasonal adaptation of

organisms to their environment and act as physiological clocks

[8,95,96]. Functioning as clocks, their period is under homeostatic

regulation towards a variety of environmental influences, such as

changing temperature (‘‘temperature compensation’’) or food

supply (‘‘nutritional compensation’’). Circadian rhythms partici-

pate in the homeostatic control of a variety of physiological

variables, such as body temperature, potassium content, hormone

levels, as well as sleep [1,8,95,96]. As an example, potassium

homeostasis in our bodies is under a circadian control, where

potassium ion is daily excreted with peak values at the middle of

the day [1].

One of the questions still under discussion is how the circadian

period P is kept under homeostatic control as for example seen in

temperature compensation. In the antagonistic balance approach

[97] the variation of the period P with respect to temperature T ,

expressed as d ln P=d ln T , is given as the sum of the control

Figure 10. A homeostatic model of cytosolic Ca2z oscillations. The model considers a stimulated non-excitable cell under stationary
conditions using an extended version of outflow controller motif 6, where E is the controller molecule. Intermediate e has been included to get limit-
cycle oscillations. Rate constant k1 describes the total inflow of Ca2z from the ER and from the extracellular space into the cytosol and reflects the
strength of the stimulation. For the sake of simplicity the external Ca2z concentration (Ca2z

ext ) is considered to be constant (Ca2z
ext ~1:0). Ca2z

cyt

denotes cytosolic Ca2z and its concentration. (a) Reaction scheme. Rate equations: Ca2z
cyt ~k1{k2

:KI
:Ca2z

cyt =((KMzCa2z
cyt ):(KI zE));

_ee~k3{k4
:e:Ca2z

cyt =(Kset
M ze); _EE~k5

:e{k6
:E. Rate constants: k1 , variable; k2~500; k3~2:0; k4~1:0; Kset

M ~1:0|10{6 ; k5~k5~1:0; KI ~0:1. The

homeostat’s set-point for Ca2z
cyt is given by k3=k4~2:0. (b) Ca2z

cyt oscillations and average cytosolic Ca2z concentration, vCa2z
cyt wt, at different

stimulations and as a function of time t. Initial concentrations: Ca2z
cyt,0~1:772, e0~2:908|10{3 ; E0~1:643. The quenching of oscillations at low k1 is

due to an increased KM value. (c) Period length and average cytosolic Ca2+ concentration (vCa2z
cyt w) calculated after 2000 time units for different

stimulation strengths (k1 values). Same rate constants as in (b) with KM~0:01. Initial concentrations for each calculated data point:

Ca2z
cyt,0~6:126|10{2 , e0~30:693; E0~28:806.

doi:10.1371/journal.pone.0107766.g010
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coefficients [36] CP
ki
~L ln P=L ln k1 multiplied with the RT-

scaled activation energies Ei (R is the gas constant):

CP
T~

d ln P

d ln T
~
X

i

L ln P

L ln ki

� �
: L ln ki

L ln T

� �
~
X

i

CP
ki
: Ei

RT

� �
ð11Þ

The sum runs over all temperature-dependent processes i with rate

constants ki, where the temperature dependence of the rate

constants is expressed in terms of the Arrhenius equation

ki~Ai
: exp ({Ei=RT) [98]. Ai is the so-called pre-exponential

factor and can, to a first approximation, be treated as temperature-

independent. Eq. 11 applies to any kinetic model as long as the

temperature dependence of the individual reactions are formulat-

ed in terms of the Arrhenius law.

The condition for temperature compensation is obtained by

setting Eq. 11 to zero. Because in oscillatory systems the CP
ki

’s have

generally positive and negative values, there is a large set of

balancing Ei combinations which can lead to temperature

compensation. The various combinations can be considered to

arise by evolutionary selective processes acting on the activation

energies [99]. Because the temperature homeostasis of circadian

rhythms involves a compensatory mechanism [100], which needs

to be distinguished from temperature-independence where all

CP
ki

’s are zero, temperature compensation implies that there is a

certain set of non-zero control coefficients with associated

activation energies which (under ideal conditions) will satisfy the

balancing condition CP
T~0 within a certain temperature range.

The argument has been made that the balancing condition

CP
T~0 should be non-robust and should therefore not match the

many examples where mutations have no influence on the

circadian period [101]. However, it should be noted that Eq. 11

is model-independent and provides a general description how the

period of an oscillator will depend on temperature in terms of the

individual reactions defined by the ki’s. Robustness, on the other

hand, is a property of the actual oscillator model, where the

number of zero CP
ki

’s can be taken as a measure for robustness. For

the frequency controlled oscillators described earlier, there are

certain regions in parameter space such as the shaded region in

Fig. 7a, for which the oscillator’s period is independent towards

variations of those ki’s which lie within this region. As a result,

frequency controlled oscillators will show an increased robustness

against environmental factors that affect rate constants, such as

pH, salinity, or temperature [43,98] and therefore appear to be

candidates for modeling temperature compensation.

We feel that the here shown possibilities how robust concen-

tration and period homeostasis can be achieved provide a new

handle how the negative (and positive) feedback regulations in

circadian pacemakers [102] can be approached. The incorpora-

tion of these principles into models of circadian rhythms may

provide further insights how temperature compensation is

achieved and how circadian rhythms participate in the homeo-

static regulation of organisms [1,103].

Materials and Methods

Computations were performed by using Matlab/Simulink

(mathwork.com) and the Fortran subroutine LSODE [104]. Plots

were generated with gnuplot (www.gnuplot.info)/Matlab. To

make notations simpler, concentrations of compounds are denoted

by compound names without square brackets. All concentrations,

time units, and rate constants are given in arbitrary units (au).

Supporting Information

File S1 (with Figs. S1–S14 and Eqs. S1–S57), contains
derivation of the set-point under oscillatory conditions,
construction of the H-function in conservative systems,
the harmonic approximation of the frequency in con-
servative controllers, quenching of quasi-harmonic
oscillations, and an alternative example of I1=I2 feed-
back leading to robust frequency control in a motif 2
based limit-cycle oscillator.

(PDF)
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Set-point of Controlled Variable A under Oscillatory Conditions

A-Activating Controller Motifs

TheA-activating motifs are 1, 2, 5, and 6 (Fig. 1, main paper). As an example
we use the harmonic oscillator described in Fig. 2d. The rate equation for E
is given as:

Ė = k4·A− V Eset
max ·E

KEset
M + E

(S1)

Integral control is introduced by zero-order kinetics when KEset
M becomes

negligible in comparison to E (1, 2). Under oscillatory conditions the set-
point in the average concentration of A, <A>c, is obtained by using the
following condition

<Ė>c =

∮

c

Ė dt =
1

P

∫ P

0

Ė dt = 0 (S2)

where integration occurs along one orbit/cycle of stable oscillations with
period P . By inserting the expression of Ė (Eq. S1) into Eq. S2 we get

<Ė>c = k4·<A>c − V Eset
max

〈
E

KEset
M + E

〉

c

= 0 (S3)

Using ideal zero-order condition, KEset
M → 0, we have <E/(KEset

M +E)>c → 1,
i.e.,

〈
E

KEset
M +E

〉

c

= lim
KM→0

{
1

P

∫ P

o

(
E

KM+E

)
dt

}
=
1

P

∫ P

o

lim
KM→0

{
E

KM+E

}
dt

=
1

P

∫ P

o

1 dt = 1 (S4)

Inserting this result into Eq. S3, we get

<A>c =
V Eset
max

k4
= <A>set (S5)

Note that <A>c is identical with the set-point of A when the system is non-
oscillatory. This is shown in Fig. 3b and Fig. 5d for limit-cycle oscillators
based on motif 2 and 5, respectively.
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A-Inhibiting Controller Motifs

The A-inhibiting controller motifs are 3, 4, 7 and 8. As an example we use
controller motif 3.

+

−

A
,

E

Figure S1. Motif 3.

The rate equation for E is given as:

Ė =
k4·KA

I

KA
I + A

− V Eset
max ·E

KEset
M + E

(S6)

Considering zero-order conditions in the Michaelis-Menten removal of E, the
condition <Ė>c=0 gives:

<Ė>c = k4·KA
I

〈
1

KA
I + A

〉

c

− V Eset
max = 0 (S7)

⇒
〈

1

KA
I + A

〉

c

def
=

1

P

∫ P

o

1

KA
I + A

dt =
V Eset
max

k4·KA
I

(S8)

where P is the period of the oscillator and V Eset
max /k4·KA

I is the homeostatic
conserved property. In case the system becomes non-oscillatory the homeo-
static set-point of A, Aset, is given as (2):

1

KA
I + Aset

=
V Eset
max

k4·KA
I

⇒ Aset =
k4·KA

I

V Eset
max

−KA
I (S9)

Conservative Oscillator Types and Construction of their H-functions

We illustrate here the construction of the H-functions of the four different
conservative oscillator types that can be constructed by using motif 2.
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Oscillator with both A and E Removals Being Zero-Order

Fig. 2a in the main paper shows the reaction scheme and rate equations for
this case. For the sake of simplicity we assume that k1=0. The H-function
obeys the following equations, which are analogous to the Hamilton-Jacobi
equations (3)

∂H

∂E
= −Ȧ ;

∂H

∂A
= Ė (S10)

The H-function is constructed by integrating Ȧ and Ė, i.e.,

H = −
∫

Ȧ dE +

∫
Ė dA (S11)

Applying the zero-order conditions with respect to the removal kinetics of A
and E, we get

H = −
∫ (

−k2 +
k3·KE

I

KE
I + E

)
dE +

∫ (
k4·A− V Eset

max

)
dA (S12)

which leads to the final expression of H (see also Fig. S2)

H = k2·E − k3·KE
I · ln(KE

I + E) + 1
2
k4·A2 − V Eset

max ·A (S13)

 0  0.5  1  1.5  2  2.5  3  3.5  4
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Figure S2. Left panel: conservative oscillations in A and E using motif 2
with rate constant as given in Fig. 2b (t<50, k2=1). Initial concentrations
A0=0.1 and E0=1.0. Right panel: H-function (Eq. S13) showing the oscilla-
tions of the left panel as curves in A-E phase space and on the surface of H.
Dashed line indicates the oscillator’s set-point <A>c=2.0.
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Oscillator with Autocatalysis in A and E and First-Order Removals

In the case the degradation of E is first order, integral control in A can
be implemented by first-order autocatalysis in E (3). To keep the system
conservative with first-order degradation in A, the formation in A needs to
be first-order autocatalytic as indicated in Fig. S3 and shown by the rate
equations.

A

+

−

E

+

+

Figure S3. Motif 2 with autocatalysis and first-order degradations in A
and E.

The rate equations are:

Ȧ =
k3·KE

I

KE
I + E

·A− k2·A (S14)

Ė = k4·A·E − k5·E (S15)

Introducing the variables ξ = lnA and η = lnE, the rate equations can be
transformed to:

ξ̇ =
Ȧ

A
=

k3·KE
I

KE
I + E

− k2 =
k3·KE

I

KE
I + eη

− k2 (S16)

η̇ =
Ė

E
= k4·A− k5 = k4·eξ − k5 (S17)

By expressing E and A in Eqs. S16 and S17 in term of ξ and η, the function

H(ξ, η) =

∫
ξ̇ dη −

∫
η̇ dξ (S18)
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describes the kinetics of this conservative system and, after integration, is
given by

H(ξ, η) = (k3 − k2)·η−k3· ln(KE
i +eη)−k4·eξ+k5·ξ (S19)

By using ξ = lnA and η = lnE, H can be expressed in terms of A and E,
i.e,

H(A,E) = (k3 − k2)· lnE−k3· ln(KE
i +E)−k4·A+k5· lnA (S20)

 1  2  3  4  5

A
 0

 2

 4

 6

 8

E

-5.5

-4.5

-3.5

-2.5

-1.5

H

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  10  20  30  40  50

A
, 
<

A
>

t,
 E

  
 (

a
u

)

time (au)

A

E

<A> t

Figure S4. Left panel: conservative oscillations in A, E, and <A>t as
a function of time using motif 2 when both A and E are formed autocat-
alytically and degraded by first-order reactions (eqs. S14 and S15). Rate
constants: KE

I =0.1, k2=1.0, k3=10.0, k4=1.0, k5=2.0 Initial concentrations
A0=5.0 and E0=1.0. Right panel: H-function (Eq. S20) showing the oscilla-
tions of the left panel as curves in A-E phase space and on the surface of H.
Dashed line indicates the oscillator’s set-point <A>c=2.0.

Oscillator with Autocatalysis in A and Zero-order Removal of E

The scheme of this conservative oscillator is given in Fig. S5. The rate
equations are:

Ȧ =
k3·KE

I

KE
I + E

·A− k2·A (S21)

Ė = k4·A− V Eset
max ·E

KEset
M + E

(S22)
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A

+

−

E

+

Figure S5. Motif 2 with autocatalysis and first-order degradation in A
and and zero-order removal of E.

The H-function is given by the following integral:

H(ξ, E) = −
∫

ξ̇ dE +

∫
Ė dξ (S23)

= −k3k6 ln(k6+E) + k2E + k4e
ξ − k5ξ (S24)

where

ξ̇ =
Ȧ

A
=

k3·KE
I

KE
I + E

− k2 (S25)

Inserting the expression ξ= ln(A) into Eq. S24 gives the final form ofH(A,E):

H(A,E) = −k3·k6· ln(k6+E) + k2·E + k4·A− k5· ln(A) (S26)

Fig. S6 shows the numerically calculated oscillations and the constructed
H-function describing these oscillations in phase-space.

Oscillator with Zero-order Removal of A and Autocatalysis in E

The reaction scheme of this conservative oscillator is given in Fig. S7.
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Figure S6. Left panel: conservative oscillations in A, E, and <A>t

as a function of time using motif 2 (Fig. S5) and rate eqns. S21 and
S22. Rate constants: KE

I =0.1, k2=1.0, k3=10.0, k4=1.0, V Eset
max =2.0, and

kEset
M =1×10−6. Initial concentrations A0=5.0 and E0=1.0. Right panel: H-

function (Eq. S26) showing the oscillations of the left panel as curves in A-E
phase space and on the surface of H. Dashed line indicates the oscillator’s
set-point <A>c=2.0.

A

+

−

E

+

,

Figure S7. Motif 2 with autocatalysis and first-order degradation in A
and zero-order removal in E.

The rate equations are:

Ȧ =
k3·KE

I

KE
I + E

− k2·A
KA

M+A
(S27)

Ė = k4·A·E − k5·E (S28)
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The H-function is given by the integral:

H(A, η) = −
∫

Ȧ dη +

∫
η̇ dA (S29)

where

η = lnE and η̇ =
Ė

E
= k4·A− k5 (S30)

⇒ H(A, η) = −
∫ (

k3K
E
I

KE
I +eη

−k2

)
dη +

∫
(k4A− k5) dA (S31)

= −k3K
E
I

∫
dη

KE
I +eη

+k2η +
1
2
k4·A2 − k5A (S32)

= −k3η+k3 ln(K
E
I +eη)+k2η +

1
2
k4·A2 − k5A (S33)

where ∫
dη

KE
I +eη

=
1

KE
I

(
η − ln(KE

I +eη)
)

(S34)
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Figure S8. Left panel: conservative oscillations in A, E, and <A>t as a
function of time using motif 2 (Fig. S7) and rate eqns. S27 and S28). Rate
constants: KE

I =0.1, k2=1.0, k3=10.0, k4=1.0, k5=2.0, and KA
M=1×10−6.

Initial concentrations A0=3.0232 and E0=10.2342. Right panel: H-function
(Eq. S35) showing the oscillations of the left panel as curve in A-E phase
space and on the surface of H. The curve on the H-surface is located at
H=0.9464 (calculated from the initial concentration A0 and E0). Dashed
line indicates the homeostats’s set-point <A>c=2.0.
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Inserting η= ln(E) into Eq.S33 leads to

H(A,E) = −k3 ln(E)+k3 ln(K
E
I +E)+k2 ln(E) + 1

2
k4·A2 − k5A (S35)

Fig. S8 shows the numerically calculated oscillations and the constructed
H-function.

Harmonic Approximation of Frequency in Conservative Oscillatory
Controllers

The harmonic approximation of the frequency in conservative controllers
provides insights why oscillatory controllers based on even-numbered mo-
tifs (Fig. 1) increase their frequency upon increased perturbation strengths.
As an example we show how the harmonic approximation of the frequency
can be obtained for the conservative oscillatory controller based on motif 2
(Fig. 2a). We assume zero-order removal in A and E and k1 = 0. The rate
equations read then:

Ȧ =
k3·KE

I

KE
I +E

− k2 (S36)

Ė = k4·A− V Eset
max (S37)

Taking the second time derivative of Eq. S36 gives:

Ä = − k3·KE
I

(KE
I +E)2

· Ė = − k3·KE
I

(KE
I +E)2

(k4A− V Eset
max ) (S38)

Eq. S38 can be rearranged into the following form:

Ä
k3·k4·KE

I

(KE
I +E)2

+ A =
V Eset
max

k4
= Ass = <A>set (S39)

When E in Eq. S39 is replaced by Ess we get the equation of a harmonic
oscillator, i.e., Ä/ω2+A=constant, with frequency ω given as

ω=

√
k3·k4·KE

I

(KE
I +Ess)2

(S40)
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and which approximately describes the frequency of the conservative oscil-
lator (Eq. S39). A corresponding second-order differential equation can be
derived for E:

Ë
k3·k4·KE

I

(KE
I +E)(KE

I +Ess)

+ E =
k3·KE

I

k2
−KE

I =Ess (S41)

Ass and Ess denote the steady state concentrations when Ȧ=0 and Ė=0.
When replacing E by Ess in Eq. S41 the same harmonic frequency approx-
imation as described by Eq. S40 is obtained. Similar expressions are found
for the other E-inhibiting oscillatory controllers. Because the level of E
decreases with increasing perturbation strength, Eq. S40 indicates that the
E-inhibiting controllers will increase their frequency when perturbations are
increased as shown in Fig. 3 for the motif-2-based controller.

For the conservative oscillators based on motifs 4 and 8, i.e., when both A
and E are inhibiting, the harmonic oscillator approximations are:

Ä
ki·kj ·KE

I ·KA
I

(KE
I +Ess)2(KA

I +Ass)2

+ A = Ass (S42)

Ë
ki·kj ·KE

I ·KA
I

(KE
I +Ess)2(KA

I +Ass)2

+ E = Ess (S43)

where ki and kj denote rate constants of the reactions which are inhibited
by A and E.

For conservative oscillators based on motifs 1 and 5, the frequency is not
dependent on either A or E giving harmonic oscillators (see next section).

Harmonic Oscillations (Inflow Controller Motif 1)

Fig. S9 shows a two-component representation of motif 1. When KA
M ≪ A

and KEset
M ≪ E the system becomes an harmonic oscillator with set point

<A>c=k4/V
Eset
max .

10



A

E

+

+

,

Figure S9. Motif 1. The two-component system shows harmonic oscil-
lations when KA

M ≪ A and KEset
M ≪ E, i.e. removal of A and E follow

zero-order kinetics.

We consider the rate equations:

Ȧ = k3·E − k2·A
KA

M+A
(S44)

Ė = k4 −
V Eset
max ·E

KEset
M + E

·A (S45)

In case of zero-order conditions in the removal of A and E they reduce to:

Ȧ = k3·E − k2 (S46)

Ė = k4 − V Eset
max ·A (S47)

Taking the second time derivative of Eq. S46 and inserting the expression of
Ė into it, leads to:

Ä = k3·Ė = k3·k4 − k3·V Eset
max ·A (S48)

Dividing Eq. S48 by k3·V Eset
max gives the equation of a harmonic oscillator

around the set-point <A>c:

Ä

ω2
+ A =

k4
V Eset
max

= <A>c (S49)

where A(t) is given as:

A(t) = Aamp sin(ω·t+ φ) +<A>c (S50)

Aamp denotes the A-amplitude of the oscillations, ω is the frequency, and φ
is a phase angle.
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Quenching of Oscillations in Quasi-Conservative Systems

First-Order Degradation Restrains Oscillations

The amount of uncontrolled first-order degradation of A has a major influence
on the size of the parameter space for the extended motif 5 (Figs. 4a and 5d
in main paper) in which sustained oscillations are observed.Our results show
that first-order degradation has the ability to quench the oscillations and does
so for a large range of parameters. Fig. S10 shows how an increasing first-
order rate constant in the removal of A reduces the oscillatory behavior in the
k1 (uncontrolled inflow of A)-k5 (conversion of precursor e into E) parameter
space. The parameter space in which sustained oscillations are observed
shrinks markedly when when the first-order degradation rate constant k3 is
increased by one order of magnitude, i.e. from 0.01 to 0.1 (Fig. S10, panel c)

Figure S10. Period of oscillations for varying k1 and k5 values using the
limit-cycle verion of motif 5 described in the main paper (Fig. 4a). The
period is set to −1 when there are no oscillations (black area). Panels (a),
(b), and (c) show the results for three different values for the first-order A-
removing rate constant k3. The parameter values used are: k2=0.5, k4=0.7,
V Eset
max =0.5, KA

M=4× 10−3, and KEset
M =1× 10−2.

Fig. S10 also shows the propagation towards quasi-harmonic kinetics. With
increasing k5 values the periods approaches the harmonic values of 2π/

√
k2k4.

When the conversion from e to E is fast (high k5), the motif gives quasi-

12



harmonic oscillatory period homeostasis as discussed in the main paper. A
very fast conversion from e to E does however lead to a non-oscillatory home-
ostasis in A, i.e., the range of k1 values that give oscillations shrinks with
increasing k5.

Zero-Order Degradation Facilitates Oscillations

How close the controlled degradation of A is to a perfect zero-order degrada-
tion is another factor that influences the size of the oscillatory regime. With
a controlled degradation of A by the compensatory flux jcomp

jcomp =
k2·A·E
KA

M + A
(S51)

KA
M becomes an indicator of how close the degradation is to perfect zero-

order, i.e. when KA
M → 0. Fig. S11 shows the size of the parameter space in

which one observes oscillatory behavior in the extended motif 5 (Fig 4a in the
main paper) for three different values of KA

M . The uncontrolled first-order
degradation rate constant k3 is 1× 10−2 in all cases.

Figure S11. Period of oscillations for varying k1 and k5 values using the
limit-cycle verion of motif 5 described in the main paper (Fig. 4a). The period
is set to −1 when there are no oscillations (black area). Panels (a), (b), and
(c) show the results for three different values of KA

M . The parameter values
used are: k2=0.5, k3=1× 10−2, k4=0.7, V Eset

max =0.5, and KEset
M =1× 10−2.
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Robust Frequency Control With Inflow Controller Motif 2 and Al-
ternative I1/I2 Feedback

In the main manuscript the feedbacks from I1 and I2 were applied on inter-
mediate a (Fig. 7) or were ”mixed”, i.e. were applied to both ”a” and ”A”
(Fig. 8). In the following we show a model where the feedbacks from I1/I2
are returned to A only. The scheme is given in Fig. S12.

I
2

I
1

+

+

+

14

1

11

A

+

−

Ee
9

+

Figure S12. Alternative I1/I2 feedback arrangement in a motif-2-based
oscillator. The feedbacks from I1 and I2 act on A only.

The rate equations are:

Ȧ =
k3·KE

I

KE
I +E

+ ki
g·I2 −

(
ko
g·A

KA
M2+A

)
·I1 −

k2·A
KA

M1+A
(S52)

ė = k4·A− k9·e (S53)

Ė = k9·e−
V Eset
max ·E

KEset
M +E

(S54)

İ1 = k11·E − V I1
max·I1

KI1
M+I1

(S55)

İ2 = k14 −
(
V I2
max·I2

KI2
M+I2

)
·E (S56)
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The controller molecules (manipulated variables) E, I1, and I2 define the
set-points <A>set, <E>I1

set, and <E>I2
set, respectively, which are given by

<A>set =
V Eset
max

k4
; <E>I1

set =
V I1
max

k11
; <E>I2

set =
k14

V I2
max

(S57)

Fig. S13 shows the oscillator’s behavior, i.e., <A>, <E>, and the frequency
as a function of the perturbation k2 when <A>set=2.0, <E>I1

set = 5.0, and
<E>I2

set = 2.0. Due to the two set-points <E>I1
set and <E>I2

set the frequency
has a corresponding homeostatic regulation at two frequencies. Note that,
although<E> changes between different set-points when k2 is changed, <A>
is kept at its homeostatic set-point <A>set=2.0.
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Figure S13. <A>, <E>, and the frequency as a function of the per-
turbation strength k2. Rate constant values: k3=100.0, k4=1.0, KE

I =0.1,
V Eset
max =2.0, KEset

M =1×10−6, KA
M1=1×10−6, k9=20.0, k11=1.0, V I1

max=5.0,
KI1

M=1×10−6, k14=2.0, V I2
max=1.0, KI2

M=1×10−6, ko
g=1×10−2, KA

M2=1×10−6,
ki
g=1×10−2. Initial concentrations (the same for each k2 value): A0=0.6677,

E0=1.0536, e0=2.5827×10−2, I10=1.1614×10−3, I20=7.5008×102. The val-
ues of <A>, <E>, and the frequency were determined after 1500 time units.
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Figure S14. Time plot of the system from Fig. S13 at low and high k2 val-
ues. At k2=1.0 controller I1 dominates and removes A to achieve the set-point
<E>I1

set=5.0. When k2 is high (7.0) controller I2 is up-regulated and adds A
such that <E> homeostasis at <E>I2

set=2.0 is obtained. A0=6.1923×10−3,
E0=5.9023, e0=2.5385×10−3, I10=153.26, I20=5.1252×10−7.

Fig. S14 shows the oscillations and the I1/I2 regulation of the system when k2
is changed from a relative low value (k2=1.0) to a relative high value (k2=7.0)
at time t=50.0 (dashed line). At low k2 values controller I1 is dominant and
removes A such that this controller’s set-point in <E> is maintained. At
high k2 values I2 is up-regulated and I1 downregulated. I2 now adds A to
the system in order to keep the <E> level at the set-point determined by
controller I2.
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