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Preface 
This thesis is the final work in a master degree in Risk management at the University of Stavanger 

and is credited with 30 ETC points. 

I first got interested in Heskestad and Hamada’s flame extension formula when I participated in a 

course in advanced fire dynamics on Stord/Haugesund University College in 2014. The fact that fire 

engineers used an empirical formula based on seven experiments without questioning it surprised 

me, and I soon found out that this was something I would like to look closer at. 

The work with models, FDS, MATLAB and data analysis in Excel has been interesting and opened my 

eyes of how we use models and simulations in our daily lives without knowing all the background 

information about them. When performing work like this it is important to work systematically and 

to note specific data down directly. When performing a large amount of simulations and processing 

data it can be hard to remember what has been done and what a specific simulation was named. 

I hope this thesis and the work performed can contribute to the discussion regarding the use of 

empirical models, and the importance of continued studies on flame extensions under ceilings. 

  



III 
 

  



IV 
 

Acknowledgements 
I would like to thank my supervisor Professor Eirik B. Abrahamsen at UiS for the help with this report 

and for all the positive feedback, external supervisor Dr. Bjarne Christian Hagen at Stord/Haugesund 

University College, for always taking time to answer questions and discuss different topics.  

I also would like to thank my colleges at Stord/Haugesund University College, PhD student David R. U. 

Johansen, Assistant Professor Einar Kolstad, Assistant Professor Harald Spångberg and Assistant 

Professor Gisle Kleppe for their interest, questions, and advice during the project. A special thank you 

to PhD student Ingunn Haraldseid for all the invaluable help she has given me. 

At the end I would like to thank my wife Fatima, our children Fabian and Filip for the support and 

understanding throughout the process of writing this master thesis. 

 

  



V 
 

  



VI 
 

Abstract 
Heskestad and Hamada developed a formula in 1992 to calculate the flame extension from a flame 

that impinged on a horizontal ceiling. The developed formula was based on seven experiments with a 

maximum heat release rate of 764 kW. Since 1992 there has been a development of the furniture 

used in homes, which in turn has led to a larger potential heat release rate from furniture fires. 

Today a sofa can have a potential heat release rate of 2500 kW. Since the formula is based on seven 

experiments and the increase of potential heat release rates in furniture fires, it is of interest to 

investigate if the formula developed by Heskestad and Hamada is accurate for fires with a heat 

release rate larger than 764 kW.  

In this report, the model error of Heskestad and Hamada’s flame extension formula is analyzed 

against simulations performed in FDS for heat release rates between 23.2 kW and 7000 kW. In total 

20 simulated results were analyzed against calculations using Heskestad and Hamada’s flame 

extension formula. The results show a standard percentage model error of ±10.8 % between the 

simulated results and the calculated results using Heskestad and Hamada’s flame extension formula. 

The result including the uncertainties and limitations of the simulations show that the formula for 

flame extensions under ceilings developed by Heskestad and Hamada, can be used for fires an heat 

release rate between 23.3 kW to 7000 kW. 
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1 Introduction 

1.1 Background 
The furniture used in homes has changed over the years. In the 1980’s it was not unusual for a sofa in 

the living room to be made out of skin or leather. These materials are difficult to ignite, and it is not 

unusual to see an old leather chair with burn marks from cigarettes. Today the furniture’s are larger 

and are made and filled with synthetic materials. In England upholstered furniture is treated with a 

fire retardant to minimize the fire hazard. This however is not allowed in Norway, since some of the 

chemicals used are cancerous. With larger more synthetic furniture in Norwegian homes the 

potential fire effect has increased. An ordinary corner sofa can have a potential heat release rate 

from a fire of 400 kW/m2 floor area it occupies. A large sofa of 6 m2 can then have a total potential 

heat release rate of 2400 kW, which is equivalent of the heat release rate of a small car. 

The production both oil and gas on offshore and onshore installations are also increasing. There are 

larger amount of gas transported in pipelines under higher pressures. Many of these pipelines go 

through enclosed modules, and an ignited leak from such a pipeline could lead to a very large fire, 

that could affect the surrounding modules. 

Both these scenarios are fires that can occur under a ceiling. When a flame impinges on a ceiling it 

can result in a flame extension. Flame extensions under ceilings are not widely studied. In 1981 a 

report was presented by You and Faeth (1) where they investigated how a fire that impinged on an 

horizontal ceiling behaved. There experiments were small scale and with small fires and low ceiling 

heights. In 1992 Heskestad and Hamada (2) continued this research with larger fires up to a heat 

release rate of 764 kW and higher ceiling heights than You and Faeth. Heskestad and Hamada’s seven 

performed experiments lead to an empirical formula (1.4) that is used today (3) for calculating flame 

extensions under ceilings. 

The small amount of experiments performed by Heskestad and Hamada when developing their flame 

extension formula (1.4), and the low heat release rate by today’s standards, allows the validity of the 

formula to be questioned for the use of fires with an heat release rate higher than 764 kW. It is 

therefore of interest to assess the model error of Heskestad and Hamada’s flame extension formula 

for fires with a heat release rate larger than 764 kW.  

1.2 Purpose and research questions 
The purpose of this master thesis is to assert the model error of Heskestad and Hamada’s formula 

(1.4) for flame extensions under ceiling with the use of FDS, for fires with a heat release rate 

between 23.2 kW and 7000 kW.  

In this thesis the following questions will be investigated: 

1. Can simulations perform in Fire Dynamic Simulator (FDS) be used to calculate flame 

extensions under ceilings? 

2. Can Heskestad and Hamada’s flame extension formula (1.4) be used on fires with a heat 

release rate between 23.2 kW and 7000 kW, based on the model error against simulations 

performed in FDS? 
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1.3 Structure 
This thesis is divided in to seven chapters. Chapter 1 will give an introduction and background to the 

thesis. It will also give the purpose of the thesis and the research questions related to the research in 

this thesis. 

Chapter 2 describes the most relevant theories for the areas of fires and models. There will also be 

given a short introduction to the programs used in the simulations and data analysis. 

How the simulations were setup in FDS will be explained in chapter 3, together with the MATLAB 

script used to calculate the results. 

The results from the simulations in FDS will be presented in chapter 4. The chapter will also present 

the results from the comparison between the simulation results and hand calculations using the 

equation presented by Heskestad and Hamada. 

In chapter 5 the results from the simulations and calculations will be discussed. 

Chapter 6 will give a conclusion of the discussion in chapter 5, and further work will be presented in 

chapter 7. 
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2 Theory 
This chapter will give a short introduction to the most relevant theories regarding fires and models. 

The theories are meant to give the reader an understanding of what this thesis is founded on, and 

some important facts regarding the work performed. 

2.1 Fire theory 

2.1.1 Enclosure fires 

A fire in an enclosed space can develop in many ways. How an enclosed fire develops is dependent 

on several factors (3): 

- Geometry of the enclosure 

- Ventilation 

- Fuel type  

- Amount of fuel 

- Surface area of the fire 

An enclosed fire in its initial stage is fuel controlled and the enclosure does not affect the fire 

development (3). During the growth of the fire it will release energy. The amount of energy the fire 

releases can be calculated using equation (1.1) . The fire also releases particles, toxic and nontoxic 

gasses to the surrounding area, the release of gasses and solids will from here on be referred to as 

smoke. The flames and the smoke it releases is called the fire plume, this will be more described in 

chapter 2.1.2 and 2.1.3.  

 f cQ A m H    (1.1) 

The fire will produce smoke that will rise to the ceiling due to the density difference between the 

smoke and surrounding air. The smoke will create a layer of smoke beneath the ceiling called a 

smoke layer. The behavior of the smoke layer is dependent on the amount of fuel the fire has and 

the ventilation of the enclosure. If the space that the fire is developing has no ventilation, the smoke 

layer will propagate down as shown in Figure 1. This will starve the fire of oxygen and the fire will die 

out (3). If the enclosure however has any kind of ventilation, the fire will continue its development. 

During this development the fire plume will increase its size, as long as it has access to fuel and 

oxygen. After a while the fire plume will have grown so large in size it will hit the ceiling, and flame 

extensions to the sides of the plume will occur (3). This occurrence is described in chapter 2.1.4. 
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Figure 1 Schematic of descending smoke layer (3) 

If the fire is left undisturbed the temperature in the enclosed compartment will reach 500 - 600°C, 

and there will occur a flashover. Flashover is the rapid transition from the growth phase of a fire, to a 

fully developed fire, this transition is illustrated in Figure 2 (3). When a fire reaches this phase it is at 

its largest. It will from here go a fuel controlled fire, to a ventilation controlled fire with temperatures 

in the enclosed room ranging from 700 to 1200°C. It is not unusual to see flames coming out of the 

opening of the room when it is in this phase (3).  

 

Figure 2 Description of temperature variation with time in an enclosed fire (3) 

After a while the fuel the fire is dependent on will start to diminish. With this the energy the fire 

develops will lessen and the temperature in the room will start to decrease. The fire now enters the 

decay phase and can here go from ventilation controlled to a fuel controlled fire. When the fuel for 

the fire is consumed the combustion producing flames will end (3).  
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2.1.2 Diffusion flames 

There exist two types of flames: premixed- and diffusion flame. The main difference between these 

two flames is how fuel and air is mixed. In a premixed flame the fuel and air is mixed before the 

mixture is combusted, and in a diffusion flame the mix of fuel and air occurs in the zone of 

combustion (4). 

Diffusion flames are a common flame in the world of safety 

engineering. Diffusion flames comes from when a volatile 

such as gas, liquid or solid materials are exposed to enough 

energy in the form of heat to release combustible gases, 

which can be ignited together with air. Due to the 

convection from the heat to the gasses, the gasses will rise 

upward leading to a buoyant flame. Since fuel and air is 

mixed in the combustion zone of the flame, turbulence is 

formed as eddies in and around the flame. The turbulence 

leads to a fluctuation in the diffusion flame that can be 

observed. The turbulence induced fluctuation is the cause to 

the flames that can be observed “leaping” of the flame as 

shown in Figure 3. The mixture of fuel and air with its 

resulting turbulence and buoyance is the cause to the non-

homogeneous flame that a diffusion flame is (5).  

 

 

2.1.3 Fire plumes and flame height 

When hot gasses including flames rise upward due to buoyancy, it is referred to in the literature as a 

fire plume (3). This is widely studied and there are many theories developed regarding fire plumes. 

Many of these theories are developed from the ideal fire plume as the reference for their 

development. There are several of the theories that take their basis from the ideal fire plume and are 

further developed with the use of experiments, as for example by, Zukoski, McCaffrey and  

Heskestad. The plume theory developed by Gunnar Heskestad is today one of the most used and can 

be used for most fire sizes (3). 

From the plume theory Heskestad developed a formula to calculate the mean flame height of a fire. 

Since the fire plume is buoyant and turbulent the flame height will fluctuate over time as shown in 

Figure 4. The height of the flame is dependent on what size the fire has, and how much total energy 

it releases (3).  

Figure 3 Picture of diffusion flame from 
experiments performed by Mats Flo on 
HSH 
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Figure 4 Flame height fluctuation (3) 

This formula called Heskestad flame correlation formula is presented in equation (1.2). 

 
2

5
fL 0.235Q 1.02D    (1.2) 

Here 𝐿𝑓 is the mean flame height [m], 𝑄̇ the total energy release rate [kW] and 𝐷 the diameter of the 

fire [m].  

2.1.4 Flame extensions under ceiling 

In some instances the flame of an enclosed fire will be so large that they hit the ceiling of a room. 

When this occurs it is called that the flame impinges on the ceiling. When the flame impinges on an 

unconfined ceiling, hot gasses from the flame will spread out under the ceiling as shown in Figure 5, 

and the gasses from the fire will then spread out radially, and entrain air for combustion, and a 

circular flame will be formed under the ceiling as shown in Figure 6. The extension of this circular 

flame under the ceiling is of interest when calculations of the radiative heat transfer from the fire to 

objects in the enclosed spaced is being performed. (3).  

 

Figure 5 Illustration over flame impingement on ceiling (3) 

Flame extension under ceiling is not widely studied. You and Faeth presented a paper in 1981 (1), 

were they had performed experiments on the radial flame extension under a ceiling. These 

experiments were performed on small flames with low energy release rates and low roof heights. 

You and Faeth flame extension equation is given in equation (1.3) (1). 

 
0.96

fr L H
0.5

D D

 
  

 
  (1.3) 
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Equation (1.3) is intended for rough estimates of the flame extension under ceiling, due to the use of 

small scale fires and low ceiling heights in the experimental setup. 

In 1992 Heskestad and Hamada presented an equation (1.4) based on 7 experiments with a larger 

heat release rate and greater roof heights than the experiments performed by You and Faeth (2). 

 fr 0.95(L H)    (1.4) 

The heat release rates in the experiments ranged from 23.3 kW to 764 kW, and the roof height from 

0.56 m to 1.51 m. Two experiments with different roof heights were performed with 764 kW heat 

release rate. One with a roof height of 0.92 m and one with 1.51 m roof height (2). 

 

Figure 6 Flame extension under ceiling 

Heskestad and Hamada do not present any experimental results for the length of the flame extension 

radius in their paper. The only results that are presented is the constant 0.95, that is derived from 

the mean flame ratio 𝐿𝑟, to the free flame portion intercepted by the ceiling 𝐿𝑓𝑟 −𝐻. The ratio 

ranged from 0.88 to 1.05 in the experiments, giving an average of 0.95 (2). 

In the literature it is stated that equation (1.4) may provide a more realistic estimate for the flame 

extension radius for larger flames than equation(1.3). It is also stated that more experimental data is 

needed as evidence to support equation (1.4) (3). 

There have been done other studies than these two on the flame extension under ceiling radius. 

Among these are an integral model developed by Ding and Quintiere (6). This model is developed 

from the equations presented by You and Faeth, Heskestad and Hamada and a Ph.D dissertation by 

Y. Yokobayashi in Japan. This is an interesting model, however since it is not based on new available 

experimental results, it is not included in this report (6). 

As presented in the beginning of this chapter, if a flame impinges on an unconfined ceiling a radial 

flame will be produced. This implies that the geometry of the roof is of importance. If the fire would 

be in a corner or up against a wall, the radial flame would be confided by the walls as shown in Figure 

7. The flame extension from such a fire could not be calculated using Equations (1.3) and (1.4). 
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Figure 7 Fire sources near a wall or in a corner 

One other circumstance that can occur is that of a fire in a tunnel. In a tunnel the roof is often curved 

and there is forced ventilation pushing the air in the tunnel in a certain direction. The forced 

ventilation would not only push the air in a certain direction, but also the flame extension as shown 

in Figure 8, producing a flame extension that would be longer in one direction and not radial divided 

in all directions (7). 

 

Figure 8 Flame extension under ceiling with forced ventilation (7) 

2.2 Models 
Mathematical models are commonly used when performing risk analysis or working in the field of 

fire safety engineering. It is important to understand what a model is and what results its use will 

give. 

Oxford English Dictionary defines the word model depending on its indented use. It defines a 

mathematical model as (8): 

“A simplified or idealized description or conception of a particular system, situation, or 

process, often in mathematical terms, that is put forward as a basis for theoretical or 

empirical understanding, or for calculations, predictions, etc.; a conceptual or mental 

representation of something” 

In risk analysis and fire safety engineering, models are used to for example analyze a system or to 

simulate how a real event may occur etc. A model is therefore a representation for a simplified 

version of a system or event. What models that are going to be used to perform the analysis, 

depends on what results are needed by the user for future work (9). 

2.2.1 Models in risk analysis  

A system can be said to consist of different subsystems, representing the different parts and levels of 

the system. An analysis of the system can then be made by analyzing the different subsystems to find 

how the system will be affected when unwanted situations arise in the subsystems. Like systems, 

models can be said to consist of different sub models, and these sub models can in turn be analyzed 

to find problems in the model as a whole. In risk analysis models are in common use, and can be 

divided in to two categories: quantity-oriented (physical) or event-oriented (logical) models (9). 
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Quantity-oriented models are used to find the value of a quantity Z that can be observed in the 

future. Z can be modeled by using the function G together with input quantities (parameters) X (10). 

How function G is setup depends on the model in use. The function is often based models used in 

physics, chemistry or models derived from performed experiments (9). 

Event-oriented models are logical models that are composed of conditions and logical terms. Event-

oriented models outline the conditions for which an event occurs, while quantity-oriented models 

look at numerical values of different quantities and the result of these. The outcome of event-

oriented models is usually binary and can be seen as failure/not failure (9).  

2.2.2 Model uncertainty 

As presented in chapter 2.2 a model is a representation for a simplified version of the system or 

event on which the model is being used. Because of this simplification there will be uncertainties 

connected to the model. The uncertainties connected to the model will be related to the output 

values the model produces, and the true values Xtrue of the input quantities used in the model. In 

quantity-oriented models presented in chapter 2.2.2, a quantity Z that could be observed in the 

future could be modeled using the function G and the input parameters X, giving a model described 

as G(X). The difference of the model output (prediction) of G(X) and the true future value of the 

observed quantity Z will give the model error ∆𝐺(𝑋), and can be calculated using equation (1.5) (10) 

 G (X) G(X) Z     (1.5) 

The model output uncertainty is not the same as the model error ∆𝐺(𝑋), but the epistemic 

uncertainty of the value of the model error ∆𝐺(𝑋), and can be assessed by using for example 

subjective or imprecise probabilities as measures (10). 

The combination of two components in the model results in the model output uncertainty: structural 

model uncertainty and parameter (input quantity) uncertainty (10). 

Structural model uncertainty is the uncertainty that occurs when we are certain of the input 

quantities X and know their true value Xtrue. Uncertainties related to the input quantities can then be 

ignored and the uncertainties are only a factor of the structure of the model G (10).  

Sources of structural uncertainty can come from little understanding or poor knowledge about the 

system the model devised for. It can also be a result from a lack of understanding how natural 

phenomenon’s occur, and contributions of other circumstances that has not been taken into 

consideration. These sources will lead to a “flawed” model structure when the model is devised and 

give the model a structural uncertainty. Models based on mathematical theories can have structural 

uncertainties connected to them due to simplifications and assumptions made when the theories are 

converted to models. Many of the computerized models used today are converted from 

mathematical theories, and can in turn have uncertainties in the form of errors done in the computer 

code when the model is converted, and other uncertainties due to computer limitations (10).  

Input Quantity (parameter) uncertainty is the uncertainty (due to lack of knowledge) about the true 

value Xtrue of the input quantities X. This means that the uncertainties about the structure G can be 

ignored and the uncertainty are only related to the input quantities X and their true value Xtrue (10). 
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2.2.3 Model sensitivity 

Model sensitivity analysis is an analysis on how much the model output are affected from changes in 

the model input values. This is an examination of the imprecisions or uncertainties in the input values 

for the model in a decision-making or modeling process. What character of sensitivity analysis that is 

being performed is dependent on the context and what questions it should answer. This kind of 

analysis can give an indication of the precision of the model used, and it can also give detailed 

information about the significance of error in the model input values used. The results from this kind 

of analysis can be used to identify where efforts should be put to improve the model and its input 

variables (11). 

Methods used in sensitivity analysis are many, divers and can be categorized in different ways. There 

are mathematical, statistical and graphical models. These models focus on the methodology of a 

specific technique, while other models rather focus on the capability. In this thesis a mathematical 

method is used for the sensitivity analysis (12). 

Mathematical methods in sensitivity analyses use a variation of the input values to evaluate the 

sensitivity of the model output. This is usually done by performing calculations of the model output 

for a few values for one input that span the range of that input. Variance in the output due to 

variance in the input is not addressed with mathematical methods. However it can assess the impact 

of range of variation the input values has on the output. Mathematical methods can be used  to 

determine the most significant input quantities in the model, identifying input quantities that can 

require further work. When performing validation or verification of a model, mathematical methods 

can be used (12). 

2.2.4 Validation 

Validation is a derivate of the verb validate which means to “demonstrate or support the truth or 

value of” according to Oxford Dictionary of English (8). There are various definitions today of what a 

model validation is, and since there are different models, there are several different ways to validate 

them (13). Most however define model validation as the process were the mathematical model the 

model is built on is checked to be appropriate for the physical model it is meant to represent. This 

determines how well the model predicts the actual physical phenomena of interest (14). 

The validation process is usually preformed in several steps (14): 

1. Compare the results from the model with experimental results. 

2. Quantify the differences of the model results and experimental results in light of their 

uncertainties. 

3. Determine if the model is suitable for its intended use. 

Since validation is seen as a process, it does not have a final endpoint. The validation process is 

continued as long as new information or knowledge comes in to existence in the intended area for 

the model (13). 

This validation process presented above is very common for CFD programs. CFD programs are used in 

fire safety engineering to help protect individuals, infrastructure and the environment by predicting 

the behavior of fires and to simulate fire scenarios. This makes the validation process important for 

fire safety engineers regarding the output results of the CFD programs. By reading the 

documentation of the validation process for the CFD program, and checking if the process performed 
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is good enough for the intended use of the model, the “goodness” of the output results can be 

decided. This is always the end user of the programs responsibility (14). 

CFD programs are also used in research work today. The programs can then be used to predict 

outcomes of physical events that have no experimental data. This can be because the programs are 

used to model situations that has not yet occurred, or there could be difficulties to replicate the 

scenarios the models predict in reality. The user would then need to look at the validation process 

performed on the program for similar situations and make a judgement if the process and its results 

are good enough to be used in that situation (13). 

2.3 Fire dynamic Simulator 
FDS is a CFD model, used for calculating fire-driven fluid flow using the Navier-Stokes equations. 

These equations are appropriate for the low-speed flow that occurs in a buoyance driven flow from a 

fire with the emphasis on the smoke and heat transport the fire produces (15). 

The model is today used for designing smoke handling systems, sprinkler/detector studies and 

residential and industrial fire reconstruction. Since FDS first was released in February 2000 the goal 

for the development of the model has been to create a model that can solve fire problems in the 

area of fire protection engineering, and to provide a tool for the study of fundamental fire dynamics 

and combustion (15). 

Some of the important features in are: 

Hydro dynamic model FDS solves the fire-driven fluid flow with a form of the Naivier-Stokes 

equation. The core algorithm used for this is an explicit predictor-corrector scheme which is second 

order accurate in space and time. The turbulence flow in FDS is solved by using Large Eddy Simulation 

(LES). This lets FDS solve the large eddies created by the turbulence in the simulation, the smaller 

eddies that cannot be solved with LES is solved with the use of the Navier-Stokes equation. If the 

mesh of the simulation is fine enough, there is a possibility to use Direct Numerical Simulation (DNS) 

to solve the calculation of the turbulence, but LES is the default model used by the program (15). 

 

Mesh and Grid When setting up a simulation in FDS 

the user specifies a mesh or multiple meshes for the 

simulation. The size of the spacing in the mesh or 

meshes for the simulation is specified as the grid 

size in the setup. If the mesh has a uniform grid size 

Figure 9 only one mesh and grid size needs to be 

specified in the setup of the simulation. If the 

simulation on the other hand has multiple meshes 

as illustrated in Figure 10, each of the mesh needs to 

be specified separately. When using multiple 

meshes there is a possibility in FDS to use different grid sizes on the meshes. In that case is it 

important that the sizes of the meshes align and have the same cross sectional area (Figure 11) (15). 

Figure 9 Uniform grid size one mesh setup in FDS 
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Figure 10 Multiple mesh simulation in FDS 

 

Figure 11 Unaligned and aligned mesh in FDS 

 

Geometry Since simulations in FDS are run with a rectilinear mesh, the geometry of the setup 

simulations must conform to the underlying mesh. This means that obstructions or other geometry in 

FDS that has another shape than squared will be adapted to a square geometry by the program (15).  

Parallel Processing FDS has the possibility to use multiple processor units on a computer to solve a 

simulation (15). This is done with the use of OpenMP (16). With the use of OpenMP, FDS divides the 

simulation in to equal parts as the number of processors the simulation will be run on. The number 

of processors to be used in OpenMP is chosen by the user and the number of processors used will 

speed up the simulation to a point. For example, using 8 cores instead of 2 will probably increase the 

simulation speed with a factor of 2. The other option is to use MPI. This lets the user setup the 

simulation using multiple meshes and choosing which mesh should be run on which computer. This is 

normally in use when clusters of computers are available for simulation work (15). 
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2.3.1 Important parameters in Fire Dynamic Simulator 

When setting up a simulation in FDS there are certain parameters that are important to minimize the 

uncertainty in the output results. Some of these will be presented here and how they are calculated. 

Dimensionless energy release rate 𝑸̇∗ is a very important parameter in controlling the geometry of 

fire plumes and in the research on flame height. This parameter will be less than 10 in most fires, and 

less than 2 in larger fires. Experiments have shown that the normalized mean flame height (𝐿𝑓) 

correlates well with a 𝑄̇∗ in the range 1<𝑄̇∗<1000. It is therefore of importance that the value of 𝑄̇∗ is 

greater than 1 in simulations performed in FDS with regards to flame height. The parameter 𝑄̇∗ can 

be calculated using equation (1.6) (3). 
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  (1.6) 

Characteristic fire diameter 𝑫∗ is the effective fire diameter of the fire, based on the heat release 

rate. It can be calculated using equation (1.7).  

 

2

5
*

p

Q
D

c T g 

 
 
  
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Grid cell size 𝜹𝒙. This represents the characteristic size of a grid cell in X direction. 

2.4 Validation of Heskestad flame height correlation formula in FDS 
Heskestad flame correlation formula (1.2)has been validated for FDS. This was done by finding the 

distance above the burner which 99 % of the fuel has been consumed compared with results from 

performed experiments. The method of finding the distance were 99 % fuel has been consumed is 

the same as, the distance above the burner were 99 % of the total heat release rate from the fire can 

be found. This method is admittedly arbitrary (14) when flame height results from FDS are compared 

to experimental results. The results from experiments performed on Heskestad flame height 

correlation formula are often based on measures of the radiation emissions from soot (luminosity) 

the flame produces. The result from different experiments using luminosity as the measurement to 

find the flame height varies significantly. This variation is especially noted at low values of 𝑄̇∗ were 

the way the burner is configured is important (14). 

The validation team also presents results for the distance above the burner were 95% of the fuel had 

been consumed. This method was used to find the lower boundary for the simulated results using 

the 99% fuel consumption method (14).  

Simulations in FDS performed by NIST, and experiments performed by Tamanini Factory Mutual with 

a 𝑄̇∗ ranging from 0.1 to 10000 were analyzed in the validation. The simulations in FDS were 

performed with three different resolutions, 5, 10 and 20 that can be characterize with the use of 

equation (1.8). The resolution gain from equation (1.8) can be seen as the number of grid cells that 

span the effective fire diameter. The results from the simulations with three different resolutions 

were then compared to the experimental results (14). The results from FDS were calculated in 

MATLAB using a script developed by Randall McDermott (17). 
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
  (1.8) 

The comparison of the results shows that when the numerical grid is refined the predicted spatial 

distribution of the energy release is improved. Giving the use of this method of finding the distance 

of were 99% of the fuel has been consumed from simulations performed in FDS, with results from 

Heskestad’s flame correlation formula an uncertainty (maximum variation) of ±15 % for fires with a 

𝑄̇∗ > 1. If however the 𝑄̇∗ = 0,1 the uncertainty is approximately ±65 % (14). 
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3 Methods 
To assess the model error for equation (1.4) for the heat release rates of Heskestad and Hamada’s 

experiments, and outside the experimental range of these experiments, it was determined that a 

computerized model was the best choice. This since there is no nearby facilities that can handle an 

enclosed fire of 764 kW or larger under controlled conditions. The choice of FDS as the CFD program 

was based on that FDS is open-source software available for download. This makes the program 

available for any user that would try to reproduce the simulations performed. FDS is also a widely 

used CFD program for performing simulation of this type of fires, and is seen as one of the most 

advanced CFD programs for this use. 

3.1 Limitations regarding simulations and calculations 
Before a plan for the simulations of the flame extension under ceiling can be made, limitations and 

applied solutions to these must be found. The limitations considered are listed below in point 1-7: 

1. Deciding what method should be used for determining the length of the flame extension. 

A. A measurement for the position where 99 % of the heat release rate is. 

B. Measuring the area where the flame temperature is higher than 550°C. 

2. Decide the simulation time. 

3. Decide which model of roof temperature that should be used 

A. Full heat transfer model through the roof. 

B. Constant temperature on the underside of the roof at 20°C. 

C. Constant temperature on the underside of the roof at 600°C. 

4. Grid sensitivity analysis 

5. Decide the effect for experiments outside 764 kW 

Before any simulations could be run, a decision on which method A or B for measuring the flame 

extension length had to be made. Method A is used in the validation of Heskestad flame correlation 

formula (14). This gives this method more credibility to use, and there is documentation on how the 

method was used. How the method was setup and used is presented in chapter 3.2. Using method B 

gives certain problems. To be able to find the area where the temperature of the flame is 550°C (18), 

a slice file was going to be placed under the ceiling of the simulation. A slice file give the temperature 

for a very thin slice of the simulation in x, y and z direction chosen making its placement crucial. Since 

the thickness of the flame extension is not known, were to place the slice file could be hard to 

ascertain, and the results from this model could not be trusted. It was determined to use method A 

since it is used successfully to determine flame height, and since the placement for the slice file in 

method B introduces a new uncertainty, this method was deemed less suitable. 

Three 764 kW simulations were run for 100 seconds, and the results from these simulations are 

shown in Table 1 and Figure 12. The setup of the simulations performed in FDS is presented in 

chapter 3.2, and the calculations performed in MATLAB in chapter 3.3. The results of the flame 

extension with the three roof temperature models showed a small deviation, the method with full 

heat transfer model was chosen. 

 



16 
 

Table 1 Results of flame extension for simulations with different methods of heat transfer into the ceiling. Heat release 
rate for the simulations were 764 kW. 

 

Flame extension [m] 
Time (s) Full heat transfer model 20 °C 600 °C 

10 0.9767 1.0012 0.9695 

20 1.0743 1.0923 1.0688 

30 1.1106 1.1124 1.1066 

40 1.1361 1.1261 1.1353 

50 1.1436 1.1397 1.1489 

60 1.1409 1.1494 1.1432 

70 1.1429 1.1447 1.1491 

80 1.1481 1.1433 1.1433 

90 1.146 1.1393 1.1435 

100 1.1461 1.1417 1.1422 

 

 

Figure 12 Graph showing mean flame extension for three simulations with different heat transfer models to the ceiling, 
with an heat release rate of 764 kW and a grid size of 0.0405 m 

After the results regarding the choice of heat transfer model had been made, the same results were 

used to determine the simulation time for the simulations. This decision was made in regard to how 

long run time each simulation would need on the servers, and how stable the flame extension length 

was in the simulations. It was concluded from the results from the first simulations that the flame 
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extension length does not vary in length after 50 s as can be seen in Table 1 and Figure 12. The 

simulation time were therefore set to simulate over 100 s. The simulations will have a run time on 

the servers of about 4 – 7 days, this length of time for a simulation was deemed practical. 

A grid sensitivity analysis was performed. This was done using simulations with three grid sizes and 

compare the results with Heaskestad and Hamada’s equation (1.4). The grid sizes were set to 0.081 

m, 0.0405 m, and 0.02025 m. After four months the simulation with a 0.02025 m grid size was turned 

off. The simulation had then simulated 47 s of the total 100s simulation time, and it was deemed 

impractical to continue. The results from the 0,081 m simulation and 0.0405 m simulation are 

presented in Table 2 and Figure 13. As can be seen from the results, there is a difference of about 34 

cm between the two simulations. However the results from the simulation with 0.0405 m grid size 

correlates with the results given by equation (1.4). It was therefore decided that all simulations on 

Heskestad and Hamada’s equation should be run with this grid size. 

Table 2 Results from simulations with a heat release rate of 764 kW and a grid cell size of 0.0405 m, 0.081 m and 
equation (1.4) 

  

Time (s) 0.081 m grid [m] 0.0405 m grid [m] Equation (1.4) 

10 0.6821 0.9767 1.1515 

20 0.756 1.0743 1.1515 

30 0.7864 1.1106 1.1515 

40 0.7952 1.1361 1.1515 

50 0.8007 1.1436 1.1515 

60 0.8047 1.1409 1.1515 

70 0.8028 1.1429 1.1515 

80 0.8063 1.1481 1.1515 

90 0.808 1.146 1.1515 

100 0.8091 1.1461 1.1515 
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Figure 13 Graph over flame extension length in simulations with a heat release rate of 764 kW and a grid cell size of 
0.0405 m, 0.081 m and Heskestad and Hamada’s equation (1.4) 

The range of the simulation outside the experiments performed by Heskestad and Hamada were 

decided to be set to 7000 kW with 500 kW increases between each simulation. This would give 

results for the flame extension length for heat release rates almost 10 times as large as Heskestad 

and Hamadas experiments. The results for the simulations performed on Heskestad and Hamadas 

experiments and from 972 kW to 7000kW in presented in chapter 4. 

After the simulations from 23.2 – 7000 kW was run, a sensitivity analysis of the model was 

performed. 5 exactly equal simulations at 764 kW where run and the result of the simulation 

showing the sensitivity of the simulation. These results are presented in chapter 4. 

3.2 Setup of simulations in FDS 
The simulations were setup in FDS to mimic as closely as possible the setup of Heskestad and 

Hamada’s experiments (2). The same materials valueswere used in the simulations as in Heskestad 

and Hamada’s experiments (2), the properties of the materials used can be found in Appendix A. 

Some simplifications were made in the setup of the simulations; the legs of the table and the 

supports for the roof were removed. These do not impact the way the fire behaves, and were only 

removed reduce processing time. Heskestad and Hamada used circular sandbox burners and an 

octagonal ceiling (2). Since FDS conforms to a square grid, square burners and a square ceiling were 

used in the simulations for this reason, as can be seen in Figure 14. As an example of the programing 

code used for the simulations in FDS, a 764 kW simulation is presented in Appendix B. In the setup of 
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the simulation codes a MATLAB script were used for placing the devices measuring the HRRPUV 

(Heat release rate per unit volume). The script used is presented in Appendix C. 

 

Figure 14 Screenshot of 7 000 kW fire simulated in FDS from Smokeview 

In total 60 simulations were run in FDS. The effect, burner diameters, ceiling heights and grid cell 

sizes of the simulations for mean flame extension length performed in FDS is presented in Table 3. 

The same effects, burner diameter and grid cell size used in the simulations for mean flame 

extension length, were used when simulation the mean flame height. 

Table 3 Effect, burner diameter, roof height and grid size for performed simulations 

Number Effect [kW] Burner diameter 
[m] 

Roof height [m] Grid cell size 
[m] 

1 23.2 0.15 0.56 0.0405 

2 46.2 0.15 0.56 0.0405 

3 92.6 0.30 0.92 0.0405 

4 185 0.30 0.92 0.0405 

5 382 0.61 1.51 0.0405 

6 764 0.61 1.51 0.0405 

7 764 0.61 0.92 0.0405 

8 764 0.61 1.51 0.081 

9 972 0.61 1.51 0.0405 

10 1500 0.85 1.51 0.0405 

11 2000 1.00 2.00 0.0405 

12 2500 1.10 2.50 0.0675 

13 3000 1.30 2.50 0.075 

14 3500 1.30 3.00 0.081 
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15 4000 1.40 3.00 0.081 

16 4500 1.50 3.50 0.081 

17 5000 1.60 3.50 0.09 

18 5500 1.70 3.5 0.1 

19 6000 1.70 3.50 0.1 

20 6500 1.80 4.00 0.1 

21 7000 1.85 4.00 0.1 

22 23.2 0.15 0.56 0.01 

23 46.2 0.15 0.56 0.015 

24 382 0.61 1.51 0.03 

25 4500 1.50 2.10 0.081 

26 5000 1.60 2.10 0.09 

27 5500 1.70 2.32 0.1 

28 6000 1.70 2.32 0.1 

29 6500 1.80 2.30 0.1 

30 7000 1.85 2.40 0.1 

 

The burner diameters and ceiling heights for the simulations of Heskestad and Hamada’s 

experiments (2), are the same as in the performed experiments. The range of HRRPUA (Heat release 

rate per unit area) produced from the burner area in these experiments is between 1000 kW/m2 to 

2050 kW/m2. The burner diameter on the following experiments were set to a size were the HRRPUA 

corresponded with Heskestad and Hamada’s HRRPUA at about 2000 kW/m2, and did not exceed 

3000 kW/m2. It was also important to spread out the heat release area of the larger simulations to 

prevent jet fires, since it is diffusion flames that are of interest for the simulations of the flame 

extension length. The ceiling heights for the simulations outside 764 kW were set at a height were 

the flame extensions were deemed suitable for the intended purpose to determine the length of the 

flame extensions.  

Simulations of the open flame height were also performed for each fire effect. The results from these 

simulations were used together with hand calculations using Heskestad’s flame height correlation 

formula (1.2) to control the choice of grid cell size for the simulations. The results from these 

simulations could also be used in Heskestad and Hamada’s flame extension formula (1.4) to calculate 

an expected value for the length of the flame extension expected from the simulations performed on 

this. The results for all the simulations are presented in chapter 4. 

After simulations 1-7 were run, there were seen a deviation in the results of the flame extension 

length and flame height, compared to the calculated values using Equation(1.4) and Equation(1.2), in 

simulations 1, 2 and 5 as shown in Figure 16 and Figure 17. A resolution calculation of simulations 1-6 

were then performed using Equation(1.8). It was found that the resolution of these three simulations 

where 5, 7 and 16. In the simulation on 764 kW which had a very good corresponding result, the 

resolution where 21. A resolution of 20 for a simulation is the resolutions used when validating 

Heskestad flame correlation formula in FDS (14). It was then decided that simulations 1, 2 and 5 

should be run again with a new grid size that would give them a resolution of 20. It was also decided 

that all the simulations being run outside the experimental range of Heskestad and Hamada’s 

experiments (2) should all have a resolution close to 20. 
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When the mean flame extension results from simulations 9 – 21 were analyzed, it showed a 

deviation of about 120 % for the simulations with an effect between 4500 – 7000 kW against the 

results from equation (1.4) shown in Figure 18. A first no reason for this could be found, until the 

results where closer studied. It was then discovered that the mean length of the flame extension was 

about the same length as half the burner size. From this the assumption that the energy in the flame 

extension was lower than 1% and that most of the energy where in the fire plume from the burner 

was made. It was then decided to lower the roof on these simulations to see if the amount of energy 

in the flame extension would increase and results could be made regarding the mean flame 

extension length on these fire effects. 

3.2.1 Setup of 99 % heat release model in FDS 

The method of finding the position where 99 % of the total heat release rate of the fire is was used to 

calculate the flame extension. This method was used when validating Heskestad flame height 

correlation formula as mentioned in chapter 2.4.  

To be able to find the length of the flame extension under the ceiling, devices to measure heat 

release must be positioned in the FDS simulation. This can be done in two ways: 

1. Placement of a device measuring the heat release rate for each timestep of the simulation in 

each grid cell of the simulation. 

2. Placement of devices in the center of each grid cell in the centerline in x and y direction of 

the simulation. Measuring heat release rate per unit volume for each timestep of the 

simulation.  

Method 2 was chosen because the amount of data method 1 would produce. An average simulation 

has 4920000 grid cells. If each of these had a device giving a measurement for each timestep of a 

100s simulation, there would be 2.46·1010 readings for one simulation. This amount of data requires 

a lot of computer processing power that were not available. Method 2 would produce 2000400 

readings for a 100s simulation, giving a more reasonable amount of data. As mentioned above, in 

method 2 a device is place in the center of each grid cell in the centerline in x and y direction of the 

simulation. Each device will measure the heat release per unit volume in x and y direction. This is 

done for each cell by first multiplying the 𝛿𝑥  width of the cell in x direction of the grid cell the device 

is placed in, times the length of the cell in y direction, times the height z of the cell as shown in Figure 

15. The length in y and z direction is from ymin to ymax and zmin to zmax for the simulation. The device 

then measures the heat release rate for this volume for each timestep. The devices placed in y 

direction in the center line, does the measurements the same way. The only difference is that it is 

done with a width of 𝛿𝑦 for the grid cell, and from xmin to xmax for the simulation. The measuring 

devices placed in a simulation can be seen as the small green circles in Figure 14. 
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Figure 15 Sketch for measuring heat release rate per unit volume in a grid cell 

The data given from the measuring devices allows the calculation of the flame extension length in –x, 

+x, -y and +y direction from the center of the fire. 

3.3 Calculations 
The calculations of flame extension length and flame height were performed using MATLAB. 

The mean flame extension length and the mean flame height were calculated using scripts presented 

in Appendix D, and Appendix E. The scripts were an expansion of Randall McDermott’s MATLAB 

script (17) used in validating Heskestad flame height correlation formula. 

Both the flame extension and flame height was calculated as an average between 50 s and 100 s of 

the simulations. It in this time interval the fires were in a stable state giving the most representative 

readings. 

3.3.1 Calculation of flame extension length performed in MATLAB 

The flame extension was calculated in MATLAB using the script presented in Appendix D. This was 

done the following way: 

1. The total heat release rate per unit volume was calculated in –x direction for each timestep, 

by adding each measured value from each device in each grid cell volume in the centerline 

from the center of the burner to xmin. 

2. The measured values from the devices were then added, starting from the burner ending in 

the grid cell volume were the added value were 99 % of the total heat release per unit 

volume for that timestep. 

3. The length for the flame extension length is then calculated using linear interpolation with 

the 𝛿𝑥  width of the cells included. 

4. To find the mean flame extension length in –x direction for 50 to 100 s, the results for each 

flame extension length for each timestep from 50s to 100s, is added together and divided by 

the number of timesteps in this time period. 

5. Steps 1 – 4 is then performed for +x, -y and +y direction. 

6. The last step is to find the mean flame extension length for the simulation. This is done by 

adding the mean results from all the directions together and dividing by 4. 
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3.3.2 Calculation of model error 

Calculations of the model error ∆𝐺(𝑋) were made of the preformed simulations of mean flame 

extension length and mean flame height. The calculations were done using equation (1.5).In equation 

(1.5) the results from the simulations are set as Z, and the results from hand calculations using 

equation (1.4) for flame extension length, and equation (1.2) for flame height were set as G(X). The 

results acquired from equation (1.5)are in meters [m]. 

A percentage calculation of the model error was also performed using equation(1.9). The values of 

G(X), and Z used in equation (1.9) are the same as when the model error were calculated. 
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The average percentage model error was calculated using equation (1.10): 
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The standard percentage model error was calculated using equation (1.11): 
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4 Results 
In this chapter the results from the simulations will be presented. All the results from the performed 

simulations are available in Appendix F. 

4.1 Results to improve simulations 
The results presented here were used in the improvements of the simulations performed in FDS 

regarding the grid cell sizes, simulation resolution and adjustment of ceiling heights.  

 

Figure 16 Flame extension length as a function of heat release rate results for simulations 1-7 from Table 3 and the 
results from Heskestad and Hamada’s equation (1.4) as a function of the same heat release rates. 

The mean flame extension for simulations 1 to 7 (see Table 3), and the calculated flame extension 

length using equation (1.4) are presented in Figure 16. As can be seen from the graph there are large 

deviations between the two curves at several heat release rates. The deviations shown in Figure 16 
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and Figure 17 resulted in the changes to the grid cell size for simulations 1, 2 and 5. This gave the 

simulations a resolution of 20 as presented in chapter 3.2. The results were also used in the decision 

to set the simulation resolution at 20 for the simulations with a heat release rate greater than 764 

kW. 

 

Figure 17 Mean flame height as a function of HRR for simulations 1 – 6 in Table 3 and the results from Heskestad flame 
correlation formula equation (1.2) as a function of the same heat release rates. 

Figure 17 presents the mean flame height results from simulations with an heat release rate of 23.2 

to 764 kW, against the results for these heat release rates calculated using Heskestad flame 

correlation formula equation (1.2). These effects are the same as the effects used in simulations 1 to 

7. The two curves show two deviations in the flame height at 23.2 kW and 46.2 kW. These two 

deviations together with the deviations seen in Figure 16, led to the changes of grid cell size and 

simulation resolution presented in chapter 3.2. 
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Figure 18 Mean flame extension length as a function of heat release rate for simulations 9-21 from Table 3 and the 
results from Heskestad and Hamada’s equation (1.4)as a function of the same heat release rates. 

Figure 18 shows the mean flame extension length for simulations 9 to 21 from Table 3 and the 

expected flame extension length for these effects using equation (1.4). Between 4500 kW and 7000 

kW the simulated results for the mean flame extension varies significantly and irrationally. The 

difference between the simulated results and the calculations from equation (1.4) had an average 

deviation of 120 % at these heat release rates. The erratic behavior of the results is assumed to be 

related to the way the flame extension length is calculated, as discussed in chapter 3.2. Due to the 

low heat release rate in the flame extension it was decided that the ceiling height should be lowered 

for the simulations with heat release rates between 4500 kW and 7000 kW and that they should be 

repeated with an adjusted ceiling height. 
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4.2 Final simulation results 
The figures in this chapter show the final results for flame extension and flame height. The simulated 

results come from the simulations with the finalized simulation resolution and adjusted ceiling height 

as presented in chapter 3.2. The calculated results are done using Heskestad and Hamada’s flame 

extension equation (1.4) and Heskestad flame height correlation formula equation (1.2). The results 

for the percentage model error are available in Appendix G. 

 

Figure 19 Mean flame extension as a function of heat release rate for the final simulations and Heskestad and Hamada’s 
equation (1.4) as a function of the same heat release rates, with factor 0.88 and 1.05 used in equation 1.4 instead of 0.95  
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Figure 19 shows the curves of the final simulation results for the mean flame extension for the 

effects 23.2 kW to 7000 kW, the results from equation (1.4), calculated with the same input 

parameters that were used in the simulations. There are also added two dotted curves for the factors 

0.88 and 1.05 used in equation (1.4) instead of 0.95. The interval between 0.88 and 1.05 was the 

amount of the free flame portion intercepted by the ceiling found by Heskestad and Hamada (2). The 

results in used in the curve for the mean flame extension for the simulations, are from the final 

simulations run (3, 4, 9 - 15, 22 – 30 from Table 3). As can be seen in Figure 19 the simulated results 

for the flame extension has the same overall shape as the results from equation (1.4). There are 

some simulated results that can be seen deviating from the calculated results, but most of the results 

are in between the upper and lower boundary of Heskestad and Hamada’s estimation (0.88(L-

H)<rf<1.05(L-H)). The standard percentage model error (equation (1.12)) between simulated and 

calculated results (equation (1.4)) is ±10.80 %. The average percentage model error is 0.76 % when 

using equation (1.11).  

The standard percentage model error of Heskestad and Hamada’s seven performed experiments and 

the simulations for the same input quantities are ± 17.14 % with an average percentage model error 

of 0.34 %. Since it is only the model error of seven experiments used in these calculations it can be 

expected that the standard percentage model error is higher than the one calculated for the 20 

simulations. 

Heskestad and Hamada’s flame extension equation (1.4) shows a standard percentage model error of 

±3.48 % and an average model error of 0.98 % against the simulated results for heat release rates 

larger than 764 kW. 
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Figure 20 Mean flame height as a function of heat release rate from simulations with an heat release rate between 23.2 
kW and 7000 kw, and Heskestad flame height correlation formula (1.2) as a function of the same heat release rates, with 
±15 % curves of the calculated results from equation (1.2) 

The mean flame height results from the simulations with an effect of 23.2 kW to 7000 kW, together 

with the results from Heskestad flame height correlation formula (1.2) for the same effects are 

presented in Figure 20. There are also two dotted curves in the graph, representing ±15 % of the 

flame height (L) as a result using equation (1.2). ±15 % was found as the uncertainty when Heskestad 

flame correlation formula was validated for FDS (14). As for Figure 19 the simulated results follow the 

overall shape of the calculated results using equation (1.2). There are some small deviations between 

the results in the two curves but nothing significant, and all the results are between the two stapled 

lines of ±15 % of the calculated values from equation (1.2). The standard percentage model error is 

±8.13 % for the two curves. The average percentage model error is 1.75 %. 
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Figure 21 Mean flame extensions length as a function of heat release rate from performed simulations, the expected 
flame extension lengths calculated using equation (1.4) with the simulated flame heights as input values as a function of 
heat release rate, and flame extension as a function of heat release rate using Heskestad and Hamada’s equation (1.4) 
with flame height from equation(1.2). 

The curves in Figure 21 shows the results of the flame extension from the performed simulations, the 

expected flame extension calculated using equation(1.4) with the simulated flame height as a input 

quantity L in the equation, and the flame extension calculated using equation (1.4) with the flame 

height (L) calculated using equation (1.2) . As can be seen in the graph there are some differences 

between the curves. By comparing the differences in the curves in Figure 21 at 2000 kW, 2500 kW, 

3000 kW and 5000 kW to 6500 kW, with the curves in Figure 19 and Figure 20, it can be seen that the 

simulated results at these points has some deviation from the calculated results. The standard 

percentage model error between the simulated results and the results from calculating the flame 

extension using equation (1.4) with the simulated flame height as input quantity is ± 28.33 %. The 

average percentage model error is -7.21 %. A negative percentage model error shows that the 

simulated results are larger than the calculated.  
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The standard percentage model error between Heskestad and Hamada’s equation (1.4) with the 

flame height input quantity calculated using equation (1.2), and Heskestad and Hamada’s equation 

(1.4) calculated with the simulated flame height as input quantity in the equation is ±29.26 %, with 

an average percentage model error of -7.55 %. 

4.3 Sensitivity results 
Table 4 Results from model sensitivity simulations 

Simulation Simulated mean flame 
extension length [m] 

Expected flame extension 
length from equation (1.4) 

1 1.1486 1.1495 

2 1.1485 1.1495 

3 1.1486 1.1495 

4 1.1486 1.1495 

5 1.1484 1.1495 

 

A sensitivity analysis was conducted for a heat release rate of 764 kW.5 simulations where 

performed and the results are shown in Table 4. The results from the simulations show an extremely 

small variance in the results. There is a difference of ±1·10-4 m between the simulations from the 

mean result of 1.14854 m. This difference can come of numerical diffusion in the solutions of the 

Naiver-Stokes equations in FDS.  
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5 Discussion 

5.1 Heskestad and Hamada’s experiments 
As presented in chapter 2.1.4 Heskestad and Hamada only performed seven experiments with a heat 

release rate between 23.2 and 764 kW when they developed equation (1.4) for calculating the flame 

extension length from a flame that impinges on a ceiling. There are no detailed results presented 

from these experiments in their article “Ceiling jets of strong fire plumes” (2), only that the factor of 

the free flame portion that were intercepted by the ceiling ranged from 0,88 to 1,05, with an average 

of 0,95 (2). Heskestad and Hamada does not specify in the article (2) which of the experiments gave 

what factor. The small number of experiments and the lack of details make comparative analysis 

difficult with respect on new experiments or simulations.  

Since the flame extension equation (1.4) developed by Heskestad and Hamada is only based on seven 

experiments, the results the equation must be used with caution, and that until further experiments 

and validation work is performed on equation (1.4) it will only give rough uncertain estimates for the 

flame extension length under ceiling. 

5.2 Simulation setup 
The simulations performed in FDS where setup to resemble the experiments Heskestad and Hamada 

executed when developing equation (1.4) as closely as possible as presented in chapter 3.2. Some 

simplifications were made both to preserve processing power and to conform the simulations to the 

constraints in FDS. The simplification made to remove the table legs and the support of the roof 

should not have any impact on the simulations, but this can be discussed. One could argue that the 

roof supports and table legs could affect the air flow in the room, and thereby adding extra 

turbulence to the air flow for the fire, which in turn would affect the flame produced. The effect this 

would have on the fire depends on the size and placement of the ceiling supports and table legs. 

Heskestad and Hamada only mentions in their article (2) that the roof were hydraulically suspended, 

and that the burner were placed on a table. They do not mention the placement or size of either the 

suspension or table legs which makes them difficult to place in the simulations. The overall effect the 

ceiling support and table legs would have on the air flow is therefore hard to predict, but since the do 

not impact the fire directly the effect is seen as negligible. On the other hand, by removing the ceiling 

supports and table legs, processing power is saved when rendering the simulations. This decreases 

the simulations time for each simulation, allowing for faster results and more simulations to be run in 

a shorter time period. 

There are two more simplifications made in the simulation setup in regard to Heskestad and 

Hamada’s experiments (2) presented in chapter 3.2: 

The first is the use of square burners instead of the circular burner Heskestad and Hamada used (2). 

This is done to conform the burner to the square grid of FDS. FDS has the ability to insert something 

circular in the simulation code. When the simulation is run however, FDS will rearrange this into 

squares again and numerically calculate the difference between the square and the circle. This can 

lead to numerical errors in the simulation and increase the uncertainty of the results. Since the 

square burner used in the simulations have the same HRRPUA as the circular burner used in the 

experiments, there should be no difference between the flames produced by the two types of 

burners, and there will be no numerical errors due to an eventual recalculation by FDS. The diameter 
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(D) of the burners in the simulations performed on heat release rates outside Heskestad and 

Hamada’s experiment were all setup to give an HRRPUA that were in the same size as the HRRPUA of 

Heskestad and Hamada’s experiments (2). It was also important that the flames produced by the 

burners were diffusion flames and not flames from a jet fire. Heskestad and Hamada’s burners did 

not produce jet fires, and it was therefore important that the burners used in the experiment did no 

either. 

The second simplification is the rearrangement of the roof from octagonal to a square roof. The 

shape of the roof the flame plume impinges on to produce a flame extension does not matter, as 

long as there are no confinements on the ceiling that will impact the behavior of the flame. The 

ceiling must however be wide enough for the flame extension, and not let any of the flame extension 

go outside its outmost edge. The flame extension will then turn upward, and its total length cannot 

be measured. The width of the roof is therefore increased beyond the 6,1 m used in the experiments 

for simulations where  longer flame extension length then 2,0 m are anticipated. 

As presented in chapter 3.2 the first simulation of 764 kW that was run had an grid dell size of 0.0405 

m. The results from this simulation where so good compare to the expected result from equation 

(1.4), that the grid cell size was not changed when simulations 1 – 7 from Table 3 was simulated. This 

lead to the results presented in Figure 16 and Figure 17, where three simulations gave results that 

were questionable. After this a grid resolution calculation were made, and it was discovered that the 

resolution for the performed simulation where between 5 and 20. At this time the validation 

protocol for the validation of Heskestad flame correlation formula (14) for FDS were checked. In the 

protocol there had been performed simulations with three different resolutions 5, 10 and 20. Since 

the simulation with 764 kW heat release rate was shown to have a resolution of 21 and its results 

were shown to be good, and the validation were performed with a resolution of 20, it was decided 

that all the simulations performed on a heat release rate over 764 kW should have a grid cell size 

that gave the simulations a resolution of about 20. It was also decided that simulations 1, 2 and 5 

from Table 3 should be rerun with new grid cell sizes. 

It is important to remember to perform this calculation and to change the grid cell size accordingly 

when either changing the heat release rate (𝑄̇) of the fire or the diameter (𝐷) of the burner. Both 

these input parameters will have great effect on the simulations and will both affect the values of 𝑄̇∗ 

and 𝐷∗ that are important when a simulation is setup. As it is shown in the results in Figure 19 and 

Figure 20, after the grid cell sizes where changed most of the results corresponded well to the 

calculated results from equation (1.4). 

 

5.3 The choice of method 
It is not easy to measure a flame length or flame height. When these measurements are performed 

in experiments it is often done visually by the luminosity of the flame. This is however not possible to 

do with simulations performed in FDS. FDS comes with a visualization program called Smokeview 

that is able to visualize the output of FDS. The visualization given by the program is only a rough 

rendering of the simulation as shown in Figure 22 and not good enough to use for exact 

measurements.  
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Figure 22 Screenshot from Smokeview showing the heat release per unit volume from a 7000 kW fire impinging on a 
ceiling 

The method of finding the position of 99 % heat release rate from the fire in the simulation was used 

when calculating the flame extension. By using this method we would be able to calculate the flame 

extension length in four directions, and find a mean value for its length. 

This method was however not without its limitations. When analyzing the data from simulations 9 – 

21 from Table 3, something seemed to transpire with the mean flame extension for simulations 16 -

21 with an heat release rate between 4500 – 7000 kW as can be seen in Figure 18. How this could 

occur were at first unknown, until the data and results was more closely analyzed. It was the 

discovered that the mean flame extension for these simulations had the same approximate length as 

half the diameter of the burner, except for the simulation performed with an heat release rate of 

5000 kW. Why the results from the 5000 kW simulation had a smaller deviation than the others are 

unknown. The roof height of this simulation was the same as for the simulations of 4500 kW, 5500 

kW and 6000 kW and should have given the same kind of result as the other simulations. This will 

require further investigation in the future to find out why this occurred. 

When the data from the simulations was analyzed, and the simulations were visually looked at using 

Smokeview, it showed that the simulations with a heat release rate between 4500 – 7000 kW had a 

flame extension from the fire. The reason why the flame extension calculations from the simulations 

did not include these flame extensions was still unclear. A more in depth analysis was performed on 

the calculations method, and it showed that the total heat release rate in the flame extension was 

less than 1 %. The calculation method finds the position where 99 % of the total heat release rate for 

the simulation is located, the flame extensions was not included in this calculation due to the low 

amount of the heat release rate in the extension.  
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This clearly shows a weakness with this method. To investigate this further, the ceiling height of the 

simulations were lowered, allowing for a larger amount of heat release rate in the flame extension. 

The results from these simulations (25-30 in Table 3) corresponded nicely with the results given by 

equation (1.4) as can be seen in Figure 19.  

5.4 Uncertainty 
When using models or simulations to describe experiments it is important to remember that these 

are only a simplified version of the event or system the model are representing or that are being 

simulated. When something is simplified from reality it will have uncertainties connected to it. The 

uncertainties regarding the simulations and Heskestad and Hamada’s flame extension formula will be 

discussed in the following subheadings. 

5.4.1 Simulation uncertainty 

When performing simulations there are uncertainties associated with them. A simulation in FDS 

computes a solution of the Navier-Stokes equations for each grid cell volume. This computation 

involves an approximation of these equations, so it might not be correct to state that it solves the 

Navier-Stokes equations. The approximation performed by FDS includes a simplification of the 

physical assumptions regarding fires. This can for example be a simplification of the various 

techniques used for treating turbulence on a sub-grid scale (14). One of the most critical 

approximation FDS perform is the discretization of the governing equations. The discretization 

preformed can in turn lead to discretization errors in the calculations. How the approximations and in 

turn the discretization error will affect the uncertainty of a performed simulation is difficult to 

determine. A detailed convergence analysis can be performed to estimate the magnitude of the 

discretization error, but this will not give any direct answers to the size of the uncertainties (14). This 

is not the only area that affects the uncertainties of the simulations. In a CFD program there are a 

substantial amount of different subroutines used to make up a fire model. Each of these subroutines 

uses simplifications to solve their intended tasks. This lets more uncertainties be connected to a 

simulation. The more advanced the simulation is, the more subroutines are used, and this will in turn 

affect the uncertainty of the output result (14).  

The simulations performed on Heskestad and Hamada’s experiments (2), and on heat release rates 

outside their range of heat release rates can be viewed as simple simulations. Since the fuel used is 

propane gas was also used by Heskestad and Hamada (2). The use of this fuel in the simulation gives 

an advantage, since there is no need to use subroutines for pyrolysis modeling. In the simulations 

performed full heat transfer model is used on the ceiling. This subroutine allows for some 

uncertainties in the output result regarding the measurements of heat release rate in the grid cell 

volumes. 

Uncertainties will always be connected to any simulation no matter how simple to simulate. How 

large the uncertainties are in the simulations performed here cannot be stated due to the complexity 

of the simulations despite that they can be seen as simple simulations. But it is important to 

remember that they are there when analyzing the results and drawing conclusions. 

5.4.2 Uncertainty in the flame extension under ceiling formula 

Equation (1.4) that Heskestad and Hamada developed for calculating the flame extension under a 

ceiling can be seen as a model. This since it calculates in mathematical terms a simplification of a 

specific situation that can occur when a fire plume impinges on a ceiling. By seeing equation (1.4) as 
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a model, the uncertainties connected to it can be discussed using the theory presented in chapter 

2.2.2. By using this theory, the uncertainty in the model comes from two sources: input quantity 

(parameter) uncertainty and structural uncertainty. Each of these sources will here be discussed. 

Input quantity (parameter) uncertainty is the uncertainty due to lack of knowledge about the input 

quantities X true values Xtrue. In equation (1.4) the input parameters are the open flame height L and 

the ceiling height (H). In most cases when this equation is used the ceiling height is known, and its 

value can often be seen as constant. The open flame height quantity (L) is however a quantity that is 

calculated from Heskestad flame height correlation formula (equation (1.2)). This formula will in turn 

have its own uncertainties connected to it that will affect the output results from its use. Since the 

output (L) is used as an input quantity in equation (1.4) it will increase the uncertainty of this 

equation by being an uncertain quantity in itself. There has been performed a lot of experiments on 

equation (1.2) over the years to assess the equations validity, and they show that the equation gives 

a good estimation of the mean open flame height (3), allowing for a more certain value of the 

quantity (L). This is good when using the results from equation (1.2) as an input quantity in equation 

(1.4) for the kind of fire scenarios investigated here. Here there is a constant fire with a known heat 

release rate (𝑄̇), a known, constant fire diameter (𝐷), and a known ceiling height (𝐻). Both the heat 

release rate (𝑄̇) and the fire diameter (𝐷) are input quantities used in equation (1.2), since the true 

values in the simulations are known there will be no input quantity uncertainty from these impacting 

the input parameter (L) used in equation (1.2), and since the ceiling height (H) is known, both the 

true values of the input quantities used in equation (1.4) can be said to be known. 

However, if equation (1.4) is used to calculate the flame extension length from a developing enclosed 

fire, the situation would be different. In such a scenario the fire starts small with a low heat release 

rate (𝑄̇) and a small fire diameter (𝐷). As the fire develops, these quantities will change with time. 

This change of the values of the input quantities (𝑄)̇  and (𝐷) used in equation (1.2) over time, will 

produce an input quantity uncertainty in the equation since we then do not know their true values 

Xtrue. This in turn will give a more uncertain output result in the form of mean flame height (L), which 

is then used in equation (1.4) giving this equation an input quantity uncertainty from the quantity (L). 

So if equation (1.4) is used in scenarios such as these the results of the flame extension length under 

the ceiling would be uncertain due to the input quantity uncertainties in the equation. 

Structural uncertainty is the uncertainty of the structure (G) of the model G(X) when the true values 

Xtrue of the input quantities X used in the model are certain. In the case of equation (1.4) the structure 

of the equation was built on the results from seven experiments. The factor 0.95 in equation (1.4) is 

the amount of the free flame that impinged on the ceiling. The value 0.95 is an average value from 

the results of 0.88 – 1.05 in the performed experiments. The fact that the structure is built on such a 

small amount of data, the structure of the model must be seen as uncertain.  

In the simulations performed for this thesis, we are certain of the true values Xtrue for the input 

quantities used in equation (1.4). Any uncertainties connected to the equation and the output result 

of the flame extension length from using equation (1.4) must therefore in this case be seen as 

structural uncertainties.  
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5.5 Results 
In this chapter the results from the final simulations will be discussed. The results to improve 

simulations are discussed in chapter 5.2 and 5.3. 

5.5.1 Flame extension results 

When calculating the model error between the result given by Heskestad and Hamada’s equation 

(1.4) seen as G(X) and the results from the simulations performed in FDS seen as Z, the resulting 

model error is has a unit in meters. This is relevant when looking at the model error between G(X) 

and Z for each heat release rate. Here there is one model error calculated for each heat release rate 

with corresponding ceiling height with results varying from -0.18 m to +0.18 m with an average of -

0.02 m. The calculated flame extensions using equation (1.4) for heat release rates between 23.2 kW 

to 7000 kW varies between 0.12 m and 3.63 m. If the model error in meter were used to discuss and 

present these results they would not show how big the actual difference is between G(X) and Z. It 

was therefore decided to present and discuss the percentage difference of the model error between 

G(X) and Z and also to calculate the standard percentage model error between G(X) and Z. 

It is also important to remember that simulations and their results are used to check the model error 

of a model. This will give an indication of how big the model error is, but any solid conclusions cannot 

be made regarding how well Heskestad and Hamada’s equation (1.4) will calculate the flame 

extension from fires with flame that impinges on a ceiling. 

It should also be mentioned that the code in FDS used in these simulations has not been altered to 

give the results discussed here. There is also no use of equation (1.4) when the mean flame extension 

was calculated in MATLAB by using the scripts presented in the appendix and the values given by the 

simulations. 

As can been seen in Figure 19 the two curves have the same overall shape. The detailed results in 

Appendix F, for the results from using Heskestad and Hamada’s equation (1.4), and the simulated 

results for the flame extension corresponds nicely. When the average percentage model error was 

calculated between the results it was surprising that it was only 0.8 % with a standard percentage 

model error of ±10.8 %. It was not expected that the simulated results would be as good as they are 

in regard to the calculated results using equation (1.4), and that they would correspond so well for 

fires with an heat release rate of more than 764 kW. The standard percentage model error of ±10.8 

% clearly indicates that the flame extension formula (1.4) developed by Heskestad and Hamada can 

be used to calculate the flame extension of a fire that impinges on a ceiling.  

There are however some results that needs mentioning. In the simulation with a heat release rate of 

382 kW the percentage model error is -32.34 %. This heat release rate was simulated twice, once 

with a grid size of 0.0405 m and the second time with a grid cell size of 0.03 m. Why the result for the 

mean flame extension has not changed considerably between the two simulations is unknown. The 

grid cell size was also changed for the simulations with a heat release rate of 23.2 kW and 46.2 kW. 

When these simulations were run, the resulting flame extension results were more corresponding to 

the values expected using equation (1.4). Why this did not occur in the 382 kW simulation needs to 

be studied further. There is also a large percentage model error in the 185 kW simulation of 28.38 %. 

This equals a model error of 0.14 m for the calculated flame extension using equation (1.4) of 0.64 m. 

This was deemed an acceptable model error for this simulation, since the simulated flame extension 
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result of 0.50 m is still in the interval0.59 – 0.70 m given by equation (1.4) with the lower and upper 

boundary 0.88 and 1.05 found by Heskestad and Hamada. 

5.5.2 Flame height results 

When studying the flame height results from the simulations, and calculated results using Heskestad 

flame height correlation formula (1.2), for heat releases between 23.2 kW and 7000 kW (Figure 20 

and in Appendix F), it can be seen that the two curves follow the same overall shape. The average 

percentage model error between the simulations and calculated results is 1.8 %, with a standard 

percentage model error of ±8.1 %. That the model error is so low is not surprising, since there has 

been performed a validation of Heskestad flame height correlation formula (1.2) in FDS. This 

validation gave an uncertainty (maximum variation) of ±15 % between the simulated results and the 

results from performed experiments. Here only two of the simulated results (23.2kW and 46.2 kW) 

are outside ±15 % of the calculated results using equation (1.2). These are the fires with the lowest 

heat release rate and smallest flame height, so any deviation between the calculated result and the 

simulated results will have a large percentage impact on the model error. The results for flame height 

were mostly used to check that the choice of grid cell sizes for the simulations was correct, and that 

the MATLAB model functioned correctly. 

5.5.3 Flame extension for simulated flame heights 

The three curves presented in Figure 21 shows the simulated mean flame extension and the flame 

extension calculated using equation (1.4) with the simulated flame height and the calculated flame 

height using equation (1.2) as an input parameter in equation (1.4). These three curves are meant to 

show the difference of the length of the flame extensions when using three different methods to 

calculate it. 

As could be seen from the results regarding the flame extension discussed in chapter 5.5.1 the 

standard percentage model error between the two curves were only ±10.8 %. In that case the results 

from equation (1.4) was calculated using the mean flame height acquired from Heskestad flame 

height correlation formula (1.2). Here the results from equation (1.4) were also calculated using the 

simulated results for mean flame height that was discussed in chapter 5.5.2. The standard 

percentage model error between the two flame height curves were ±8.13 %. When the model error 

between the simulated mean flame extension and the flame extension calculated using equation 

(1.4) with the simulated flame height was analyzed it showed a standard percentage model error of 

±28.3 %. If the same analysis is made between equation (1.4) with the simulated flame height and 

equation (1.4) with the calculated flame height using equation (1.2) the standard percentage model 

error is ±29.3 %. 

Since the standard percentage model error is less when performing simulations of the mean flame 

extension and comparing the results with calculated results using Heskestad and Hamada’s equation 

(1.4) with a flame height calculated using equation (1.2), then simulating the flame height and using 

it as an input quantity in equation (1.4), it is recommended to either simulate the flame extension in 

FDS or to calculate the flame extension using equation (1.4). 
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6 Conclusion 
There are several conclusions that can be drawn from the simulations in FDS on flame extensions 

under ceiling, and the hand calculations using Heskestad and Hamada’s flame extension formula (1.4) 

performed for this thesis. 

In FDS the heat release per unit volume was measured for each simulation. These results was then 

used to calculate the position were 99 % of the heat release rate was in the simulation with the help 

of MATLAB. The calculated results from the simulation compared to the results from equation (1.4) 

shows that the 99 % model can be used to find the mean flame extension from simulations in FDS. 

This model has its limitations and uncertainties when it comes to flame extensions with a low 

percentage of the total heat release rate. If the total heat release rate in the flame extension is below 

1 % of the total heat release rate from the fire, the result from the 99 % model will be inaccurate due 

to the calculation method used. This model functions for the simulations performed for this report, 

but further work is needed to develop this model and look at alternative methods for calculating the 

mean flame extension from simulations performed in FDS. 

By letting the simulated results regarding the mean flame extension represent the observed quantity 

Z, and the results calculated using Heskestad and Hamada’s equation (1.4) be represented as G(X), 

the model error for Heskestad and Hamada’s flame extension formula (1.4) could be calculated. The 

results from these calculations were surprisingly good. The standard average model error for the final 

20 simulations is ±10.8 % with an average percentage model error of 0.8 %. However, it is important 

to remember that a model (simulations in FDS) is used to find the model error of another model. 

Since there are uncertainties connected to any simulation performed in a CFD-program, the results 

from the simulations cannot be seen as 100 % accurate. There are also some uncertainties regarding 

the formula developed by Heskestad and Hamada, since the factor of 0.95 used in the formula came 

from only seven experiments, with results spanning between 0.88 and 1.05. In regard to the 

uncertainties connected to the two models used, a definite conclusion about the model error and 

accuracy of Heskestad and Hamada’s formula cannot be made. It can however be said that the 

results here gives an indication that Heskestad and Hamada’s formula can be used for fires with an 

heat release rate between 23.2 kW and 7000 kW. To be able to make a more definite conclusion 

more real experiments on flame extensions is needed with a heat release rate higher than 764 kW. It 

should also be performed more simulations on flame extensions in FDS, with a narrower interval 

between the heat release rates used in the simulations, to improve the standard deviation of the 

model error between the simulated results and the results from equation (1.4). 

A calculation was also performed of the model error between the simulated flame extension and a 

calculated flame extension using the simulated flame height results as an input quantity in equation 

(1.4), and a calculation using equation (1.4) with a flame height calculated from equation (1.2). These 

results showed that the standard percentage model error is larger if the flame extension is calculated 

using the simulated flame height in equation (1.4), than using the flame height calculated from 

Heskestad flame correlation formula (1.2) in equation (1.4). This shows, that if the flame extension is 

of interest from a flame that impinges on a ceiling, it is better to set up a full simulation and use the 

99 % heat release model or calculating the flame extension with equation (1.4) and using a flame 

height calculated using equation (1.2) as an input parameter.  
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7 Further work 
As presented in both the discussion and conclusion, this thesis has given several ideas for further 

work in the future. 

In the simulations performed for this thesis the 99 % heat release rate model was used to find the 

flame extension. As has been presented this model needs some refinement work regarding flame 

extensions with a low percentage of the total heat release rate. If this model is proven not to be able 

to handle that kind of scenarios, another method needs to be developed for future use in FDS. 

There were also some problems with the 382 kW and 5000 kW simulations performed. These 

simulations need to be investigated further, to find out why they did not produce the expected 

results. 

It also needs to be performed more simulations with a narrower interval between the heat release 

rates in the simulations. This will give more results to compare with results from Heskestad and 

Hamada’s flame extension formula and give a more reliable standard percentage model error. 

The most important work in the future is however to perform more real experiments on flame 

extensions. These experiments would help to continue the development of Heskestad and Hamada’s 

flame extension formula. The results from the experiments could also be used together with 

simulation results to validate Heskestad and Hamada’s flame extension formula for FDS. 
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8.1 Appendix A 

Material properties used in FDS simulations 

Marinite I 

Thermal conductivity (24 - 538°C) 0,12 W/mK 

Specific heat capacity at 425°C  1,424 J/gK 

Density     737 kg/m3 

 

Asbestos-cement board 

Thermal conductivity   0,744 W/mK 

Specific heat capacity   0,84 kJ/kgK 

Density     1400 kg/m3 

 

Plywood 

Thermal conductivity   0,12 W/mK 

Specific heat capacity   1,215 kJ/kgK 

Density     545 kg/m3 
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8.2 Appendix B  

Setup in FDS of 764 kW simulation. 

/ Setup simulation master thesis  

&HEAD CHID= 'full-100s-764kw', TITLE= 'Setup' /  

&TIME T_END= 100, / Length of simulation, 0 for setup 

/*******************  COMPUTATIONAL GRID  ***************************************** 

&MESH IJK=   100, 100, 62, XB= -4.05, 4.05, -4.05, 4.05, -1.42, 3.602 / 4 920 000 cells 

/*********************** Obstructions ******************************************* 

/Gulv 

&OBST XB= -2.44, 2.44, -2.44, 2.44, 0.0, -0.0095, SURF_ID= 'FLOOR1'/ Cement-asbestos 

&OBST XB= -2.44, 2.44, -2.44, 2.44, -0.0095, -0.0345, SURF_ID= 'FLOOR2'/ Plywood 

/Burner 

&OBST XB= -0.305, 0.305, -0.305, 0.305, 0.0, 0.3843, SURF_ID= 'BURNER'/ Burner 

/Tak 

&OBST XB= -3.05, 3.05, -3.05, 3.05, 1.8943, 1.907, SURF_ID= 'ROOF1'/ Marinite XL 

&OBST XB= -3.05, 3.05, -3.05, 3.05, 1.907, 1.932, SURF_ID= 'ROOF2'/ Steel channel lattice 

/********************* Passive ventilations openings: *************************** 

&VENT XB= -4.05, 4.05, -4.05, -4.05, -1.42, 3.602, SURF_ID='OPEN',/ Ventilation front 

&VENT XB= -4.05, 4.05, 4.05, 4.05, -1.42, 3.602 , SURF_ID='OPEN',/ Ventilation back 

&VENT XB= -4.05, -4.05, -4.05, 4.05, -1.42, 3.602, SURF_ID='OPEN',/ Ventilation left side 

&VENT XB= 4.05, 4.05, -4.05, 4.05, -1.42, 3.602, SURF_ID='OPEN',/ Ventilation right side 

 

&VENT XB=-4.05, 4.05, -4.05, 4.05, 3.602, 3.602, SURF_ID='OPEN',/-1.42 Ventilation top 

/*********************** Fire ********************************************* 

 

&REAC ID =  'PROPANE' 

  FUEL='PROPANE' 

  SOOT_YIELD = 0.01 
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  C = 3. 

  H = 8. 

  HEAT_OF_COMBUSTION = 46460. 

  IDEAL = .TRUE. / 

&SURF ID='FIRE1',HRRPUA=2053.211502, COLOR='RED', /  

&VENT XB= -0.305, 0.305, -0.305, 0.305, 0.3843, 0.3843, SURF_ID= 'FIRE1',/ Constant 764 kW fire  

 

/*********************** Output ******************************************* 

&DUMP DT_RESTART=10, DT_SLCF=0.5, DT_DEVC=0.02, DT_ISOF=10, DT_PL3D=20, DT_BNDF=1., 

PLOT3D_QUANTITY(5)='VISIBILITY' 

/ DT_RESTART=10: Backup for hvert 10 sek, således at hvis simuleringen går ned kan 

startes herfra. 

/ DT_SLCF=0.5: Time between each picture in slice file  

/ DT_DEVC=0.02: Time between each output of devices.  

/ DT_ISOF=10: Time between each picture of Isosurfaces, billeder. 

/ DT_PL3D=20: Time between each picture in 3D plotfiles. 

/ DT_BNDF=1: Time between each picture i boundaryfiles. 

/ PLOT3D_QUANTITY(5)='visibility' Changesdefault 3D plotfiles from HHR to visibility. 

 

&SLCF PBY= 0.0, QUANTITY='VELOCITY', / 

&SLCF PBY= 0.0, QUANTITY='TEMPERATURE', / 

&SLCF PBY= 0.0, QUANTITY='HRRPUV', / 

&SLCF PBX= 0.0, QUANTITY='TEMPERATURE',VECTOR=.TRUE., / 

&ISOF QUANTITY='TEMPERATURE', VALUE(1)=540, VALUE(2)=550,/  

&BNDF QUANTITY='RADIATIVE HEAT FLUX', / 

&BNDF QUANTITY='WALL TEMPERATURE', / 

 

/*********************** DEVICES ********************************************* 
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&DEVC ID='hrrpuv_x1', XB=-4.05,-3.969,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x2', XB=-3.969,-3.888,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x3', XB=-3.888,-3.807,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x4', XB=-3.807,-3.726,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x5', XB=-3.726,-3.645,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x6', XB=-3.645,-3.564,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x7', XB=-3.564,-3.483,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x8', XB=-3.483,-3.402,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x9', XB=-3.402,-3.321,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x10', XB=-3.321,-3.24,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x11', XB=-3.24,-3.159,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x12', XB=-3.159,-3.078,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x13', XB=-3.078,-2.997,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x14', XB=-2.997,-2.916,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x15', XB=-2.916,-2.835,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x16', XB=-2.835,-2.754,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x17', XB=-2.754,-2.673,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x18', XB=-2.673,-2.592,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x19', XB=-2.592,-2.511,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x20', XB=-2.511,-2.43,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x21', XB=-2.43,-2.349,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x22', XB=-2.349,-2.268,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x23', XB=-2.268,-2.187,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x24', XB=-2.187,-2.106,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x25', XB=-2.106,-2.025,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x26', XB=-2.025,-1.944,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x27', XB=-1.944,-1.863,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 
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&DEVC ID='hrrpuv_x28', XB=-1.863,-1.782,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x29', XB=-1.782,-1.701,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x30', XB=-1.701,-1.62,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x31', XB=-1.62,-1.539,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x32', XB=-1.539,-1.458,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x33', XB=-1.458,-1.377,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x34', XB=-1.377,-1.296,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x35', XB=-1.296,-1.215,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x36', XB=-1.215,-1.134,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x37', XB=-1.134,-1.053,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x38', XB=-1.053,-0.972,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x39', XB=-0.972,-0.891,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x40', XB=-0.891,-0.81,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x41', XB=-0.81,-0.729,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x42', XB=-0.729,-0.648,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x43', XB=-0.648,-0.567,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x44', XB=-0.567,-0.486,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x45', XB=-0.486,-0.405,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x46', XB=-0.405,-0.324,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x47', XB=-0.324,-0.243,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x48', XB=-0.243,-0.162,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x49', XB=-0.162,-0.081,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x50', XB=-0.081,0.0,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x51', XB=0.0,0.081,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x52', XB=0.081,0.162,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x53', XB=0.162,0.243,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x54', XB=0.243,0.324,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 
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&DEVC ID='hrrpuv_x55', XB=0.324,0.405,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x56', XB=0.405,0.486,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x57', XB=0.486,0.567,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x58', XB=0.567,0.648,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x59', XB=0.648,0.729,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x60', XB=0.729,0.81,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x61', XB=0.81,0.891,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x62', XB=0.891,0.972,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x63', XB=0.972,1.053,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x64', XB=1.053,1.134,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x65', XB=1.134,1.215,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x66', XB=1.215,1.296,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x67', XB=1.296,1.377,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x68', XB=1.377,1.458,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x69', XB=1.458,1.539,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x70', XB=1.539,1.62,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x71', XB=1.62,1.701,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x72', XB=1.701,1.782,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x73', XB=1.782,1.863,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x74', XB=1.863,1.944,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x75', XB=1.944,2.025,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x76', XB=2.025,2.106,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x77', XB=2.106,2.187,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x78', XB=2.187,2.268,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x79', XB=2.268,2.349,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x80', XB=2.349,2.43,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x81', XB=2.43,2.511,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 
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&DEVC ID='hrrpuv_x82', XB=2.511,2.592,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x83', XB=2.592,2.673,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x84', XB=2.673,2.754,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x85', XB=2.754,2.835,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x86', XB=2.835,2.916,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x87', XB=2.916,2.997,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x88', XB=2.997,3.078,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x89', XB=3.078,3.159,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x90', XB=3.159,3.24,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x91', XB=3.24,3.321,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x92', XB=3.321,3.402,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x93', XB=3.402,3.483,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x94', XB=3.483,3.564,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x95', XB=3.564,3.645,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x96', XB=3.645,3.726,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x97', XB=3.726,3.807,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x98', XB=3.807,3.888,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x99', XB=3.888,3.969,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_x100', XB=3.969,4.05,-4.05,4.05,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y1', XB=-4.05,4.05,-4.05,-3.969,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y2', XB=-4.05,4.05,-3.969,-3.888,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y3', XB=-4.05,4.05,-3.888,-3.807,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y4', XB=-4.05,4.05,-3.807,-3.726,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y5', XB=-4.05,4.05,-3.726,-3.645,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y6', XB=-4.05,4.05,-3.645,-3.564,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y7', XB=-4.05,4.05,-3.564,-3.483,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y8', XB=-4.05,4.05,-3.483,-3.402,-1.42,3.602, QUANTITY='HRR'/ 
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&DEVC ID='hrrpuv_y9', XB=-4.05,4.05,-3.402,-3.321,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y10', XB=-4.05,4.05,-3.321,-3.24,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y11', XB=-4.05,4.05,-3.24,-3.159,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y12', XB=-4.05,4.05,-3.159,-3.078,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y13', XB=-4.05,4.05,-3.078,-2.997,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y14', XB=-4.05,4.05,-2.997,-2.916,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y15', XB=-4.05,4.05,-2.916,-2.835,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y16', XB=-4.05,4.05,-2.835,-2.754,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y17', XB=-4.05,4.05,-2.754,-2.673,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y18', XB=-4.05,4.05,-2.673,-2.592,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y19', XB=-4.05,4.05,-2.592,-2.511,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y20', XB=-4.05,4.05,-2.511,-2.43,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y21', XB=-4.05,4.05,-2.43,-2.349,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y22', XB=-4.05,4.05,-2.349,-2.268,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y23', XB=-4.05,4.05,-2.268,-2.187,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y24', XB=-4.05,4.05,-2.187,-2.106,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y25', XB=-4.05,4.05,-2.106,-2.025,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y26', XB=-4.05,4.05,-2.025,-1.944,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y27', XB=-4.05,4.05,-1.944,-1.863,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y28', XB=-4.05,4.05,-1.863,-1.782,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y29', XB=-4.05,4.05,-1.782,-1.701,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y30', XB=-4.05,4.05,-1.701,-1.62,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y31', XB=-4.05,4.05,-1.62,-1.539,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y32', XB=-4.05,4.05,-1.539,-1.458,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y33', XB=-4.05,4.05,-1.458,-1.377,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y34', XB=-4.05,4.05,-1.377,-1.296,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y35', XB=-4.05,4.05,-1.296,-1.215,-1.42,3.602, QUANTITY='HRR'/ 
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&DEVC ID='hrrpuv_y36', XB=-4.05,4.05,-1.215,-1.134,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y37', XB=-4.05,4.05,-1.134,-1.053,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y38', XB=-4.05,4.05,-1.053,-0.972,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y39', XB=-4.05,4.05,-0.972,-0.891,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y40', XB=-4.05,4.05,-0.891,-0.81,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y41', XB=-4.05,4.05,-0.81,-0.729,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y42', XB=-4.05,4.05,-0.729,-0.648,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y43', XB=-4.05,4.05,-0.648,-0.567,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y44', XB=-4.05,4.05,-0.567,-0.486,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y45', XB=-4.05,4.05,-0.486,-0.405,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y46', XB=-4.05,4.05,-0.405,-0.324,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y47', XB=-4.05,4.05,-0.324,-0.243,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y48', XB=-4.05,4.05,-0.243,-0.162,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y49', XB=-4.05,4.05,-0.162,-0.081,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y50', XB=-4.05,4.05,-0.081,0.0,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y51', XB=-4.05,4.05,0.0,0.081,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y52', XB=-4.05,4.05,0.081,0.162,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y53', XB=-4.05,4.05,0.162,0.243,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y54', XB=-4.05,4.05,0.243,0.324,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y55', XB=-4.05,4.05,0.324,0.405,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y56', XB=-4.05,4.05,0.405,0.486,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y57', XB=-4.05,4.05,0.486,0.567,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y58', XB=-4.05,4.05,0.567,0.648,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y59', XB=-4.05,4.05,0.648,0.729,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y60', XB=-4.05,4.05,0.729,0.81,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y61', XB=-4.05,4.05,0.81,0.891,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y62', XB=-4.05,4.05,0.891,0.972,-1.42,3.602, QUANTITY='HRR'/ 
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&DEVC ID='hrrpuv_y63', XB=-4.05,4.05,0.972,1.053,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y64', XB=-4.05,4.05,1.053,1.134,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y65', XB=-4.05,4.05,1.134,1.215,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y66', XB=-4.05,4.05,1.215,1.296,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y67', XB=-4.05,4.05,1.296,1.377,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y68', XB=-4.05,4.05,1.377,1.458,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y69', XB=-4.05,4.05,1.458,1.539,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y70', XB=-4.05,4.05,1.539,1.62,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y71', XB=-4.05,4.05,1.62,1.701,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y72', XB=-4.05,4.05,1.701,1.782,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y73', XB=-4.05,4.05,1.782,1.863,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y74', XB=-4.05,4.05,1.863,1.944,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y75', XB=-4.05,4.05,1.944,2.025,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y76', XB=-4.05,4.05,2.025,2.106,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y77', XB=-4.05,4.05,2.106,2.187,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y78', XB=-4.05,4.05,2.187,2.268,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y79', XB=-4.05,4.05,2.268,2.349,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y80', XB=-4.05,4.05,2.349,2.43,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y81', XB=-4.05,4.05,2.43,2.511,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y82', XB=-4.05,4.05,2.511,2.592,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y83', XB=-4.05,4.05,2.592,2.673,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y84', XB=-4.05,4.05,2.673,2.754,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y85', XB=-4.05,4.05,2.754,2.835,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y86', XB=-4.05,4.05,2.835,2.916,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y87', XB=-4.05,4.05,2.916,2.997,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y88', XB=-4.05,4.05,2.997,3.078,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y89', XB=-4.05,4.05,3.078,3.159,-1.42,3.602, QUANTITY='HRR'/ 
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&DEVC ID='hrrpuv_y90', XB=-4.05,4.05,3.159,3.24,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y91', XB=-4.05,4.05,3.24,3.321,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y92', XB=-4.05,4.05,3.321,3.402,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y93', XB=-4.05,4.05,3.402,3.483,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y94', XB=-4.05,4.05,3.483,3.564,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y95', XB=-4.05,4.05,3.564,3.645,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y96', XB=-4.05,4.05,3.645,3.726,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y97', XB=-4.05,4.05,3.726,3.807,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y98', XB=-4.05,4.05,3.807,3.888,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y99', XB=-4.05,4.05,3.888,3.969,-1.42,3.602, QUANTITY='HRR'/ 

&DEVC ID='hrrpuv_y100', XB=-4.05,4.05,3.969,4.05,-1.42,3.602, QUANTITY='HRR'/ 

/*********************** MATERIAL & SURFACE *************************************** 

&MATL ID                 = 'ASBESTOS-CEMENT' 

      DENSITY            = 1400. 

      CONDUCTIVITY       = 0.744 

      SPECIFIC_HEAT      = 0.84 / 

&MATL ID                 = 'PLYWOOD' 

      DENSITY            = 690. 

      CONDUCTIVITY       = 0.13 

      SPECIFIC_HEAT      = 1.215 / 

&MATL ID                 = 'MARINITE' 

      DENSITY            = 737. 

      CONDUCTIVITY       = 0.12 

      SPECIFIC_HEAT      = 1.424 / 

&MATL ID                 = 'STEEL' 

      EMISSIVITY         = 0.5 

      DENSITY            = 7850. 
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      CONDUCTIVITY       = 45.8 

      SPECIFIC_HEAT      = 0.46 / 

&SURF ID                 = 'FLOOR1' 

      RGB                = 170,170,170 

      MATL_ID            = 'ASBESTOS-CEMENT' 

      THICKNESS          = 0.0095 / 

&SURF ID                 = 'FLOOR2' 

      COLOR              = 'BRICK' 

      MATL_ID            = 'PLYWOOD' 

      THICKNESS          = 0.025 / 

&SURF ID                 = 'BURNER' 

      COLOR              = 'BLACK' 

      MATL_ID            = 'STEEL'      

      GEOMETRY   = 'CYLINDRICAL' 

      THICKNESS          = 0.005 / 

&SURF ID                 = 'ROOF1' 

      COLOR              = 'GRAY' 

      BACKING   = 'EXPOSED' 

      MATL_ID            = 'MARINITE' 

      THICKNESS          = 0.0127 / 

&SURF ID                 = 'ROOF2' 

      COLOR              = 'BLACK' 

      MATL_ID            = 'STEEL' 

      THICKNESS          = 0.025 / 

&TAIL / 

/*********************** End *******************************************  
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8.3 Appendix C  

MATLAB script used for placing devices in FDS 

 
clear all 

  
%%%%%%%% INPUT %%%%%%%%%%%%% 

  
%NB: fire must be place in center of domain (0,0,0) 

  
horizontal = 1; %logical expression; if value == 0 then vertical direction 

is printed 

  
dx = 0.1; %grid dimension in meters, dx=dxy=dz 
x_min = -6.5; %[m] 
x_max = 6.5; %[m] 
z_min = -1.42; %[m] 
z_max = 5.48; %[m] 

  

  
%%%%%%%% PROGRAM %%%%%%%%%%%%% 

  
y_min = x_min; %[m] 
y_max = x_max; %[m] 

  
dy = dx; 
dz = dx; 

  
n_x = (x_max-x_min)/dx; 
n_y = n_x; 
n_z = (z_max-z_min)/dz; 

  
if horizontal == 1 
    x(1) = x_min; 
    for i=1:n_x+1 
        x(i+1) = x(i) + dx; 
        disp(['&DEVC ID=''hrrpuv_x' num2str(i) ''', XB=' num2str(x(i)) ',' 

num2str(x(i+1)) ',' num2str(y_min) ',' num2str(y_max) ',' num2str(z_min) 

',' num2str(z_max) ', QUANTITY=''HRR''/']) %center point 
    end 
    y(1) = y_min; 
    for i=1:n_y+1 
        y(i+1) = y(i) + dy; 
        disp(['&DEVC ID=''hrrpuv_y' num2str(i) ''', XB=' num2str(x_min) ',' 

num2str(x_max) ',' num2str(y(i)) ',' num2str(y(i+1)) ',' num2str(z_min) ',' 

num2str(z_max) ', QUANTITY=''HRR''/']) %center point 
    end 
else %vetical == .true. 
    z(1) = z_min; 
    for i=1:n_z+1 
        z(i+1) = z(i) + dz; 
        disp(['&DEVC ID=''hrrpuv_z' num2str(i) ''', XB=' num2str(x_min) ',' 

num2str(x_max) ',' num2str(y_min) ',' num2str(y_max) ',' num2str(z(i)) ',' 

num2str(z(i+1)) ', QUANTITY=''HRR''/']) %center point 
    end 
end 
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8.4 Appendix D  

MATLAB script used for calculating mean flame extension length 

clear all 

  
file='full-4500-100s-newroof.xlsx'; 

  
[num,txt,raw] = xlsread(file); 

  
horizontal = 1; %if == 0 then vertical flame height i calculated 

  
tstep = 5001; %number of timesteps 
xmpnt = 80; %measuring points 
zmpnt = 0; %measuring points 
dx = 0.081; %størrelse griddcelle meter 

  
x_max=6.48; %bredde + og - for center i 0 
y_max=x_max; 

  
dy = dx; 
dz = dx;%må gjøres om for vertikal 
ympnt = xmpnt; %measuring points 
x = x_max -(dx*0.5); %possition av siste device 
y = y_max -(dy*0.5); % 
z = 180 - (dz*0.5); %ymax 
criteria=0.99; 
%sum1=0.0; 
%sumold = sum1; 

  
%x negativ retting 

  
for i = 1:tstep 
    t(i) = num(i,1);%viser til at tidsstegen finnes i kollonne 1 i 

excelarket 

     
    for j = 1:xmpnt; 
        hrrx1(i,j) = num(i,j+1);%viser at hrr for hvert tidssteg finnes fra 

kolonne 2 og bort over    
    end 
end 
hrr_totx1=sum(hrrx1,2); 
i=2;%Må settes til 1 så in if setting med når hrr_tot=0 = poss=0 
while i<=tstep; 
    j=xmpnt; 
    hrr=hrrx1(i,j); 
    while j<=xmpnt; 
        if hrr<=hrr_totx1(i)*criteria; 
        hrr_old=hrr; 
        hrr=hrr+hrrx1(i,j-1); 
        else  
        possx1(i) = ((xmpnt-j)-1)*dx + ((xmpnt-j)*dx - ((xmpnt-j)-

1)*dx)*(criteria*hrr_totx1(i) - hrr_old)/(hrr-hrr_old);         
        j=xmpnt+2; 
        end 
        j = j - 1; 
    end 
    i=i+1; 
end 
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distx1=mean(possx1([2503:tstep])); 
hrr_tot_mean_x1=mean(hrr_totx1); 
%x possitiv retting 

  
for i = 1:tstep 
    t(i) = num(i,1);%viser til at tidsstegen finnes i kollonne 1 i 

excelarket 

        
    for j = 1:xmpnt; 
        hrrx2(i,j) = num(i,j+xmpnt);%viser at hrr for hvert tidssteg finnes 

fra kolonne 2 og bort over 
    end 
end 
hrr_totx2=sum(hrrx2,2); 
i=2; 
while i<=tstep; 
    j=1; 
    hrr=hrrx2(i,j); 
    while j<xmpnt; 
        if hrr<=hrr_totx2(i)*criteria; 
        hrr_old=hrr; 
        hrr=hrr+hrrx2(i,j+1); 
        else  
        possx2(i) = (j-1)*dx + (j*dx - (j-1)*dx)*(criteria*hrr_totx2(i) - 

hrr_old)/(hrr-hrr_old);        
        j=xmpnt+1; 
        end 
        j = j + 1; 
    end 
    i=i+1; 
end 
hrr_tot_mean_x2=mean(hrr_totx2); 
distx2=mean(possx2([2503:tstep])); 

     
 %y negativ retting 

  
for i = 1:tstep 
    t(i) = num(i,1);%viser til at tidsstegen finnes i kollonne 1 i 

excelarket 

     
    for j = 1:ympnt; 
        hrry1(i,j) = num(i,j+(2*xmpnt));%viser at hrr for hvert tidssteg 

finnes fra kolonne 2 og bort over    
    end 
end 
hrr_toty1=sum(hrry1,2); 
i=2;%Må settes til 1 så in if setting med når hrr_tot=0 = poss=0 
while i<=tstep; 
    j=ympnt; 
    hrr=hrry1(i,j); 
    while j<=ympnt; 
        if hrr<=hrr_toty1(i)*criteria; 
        hrr_old=hrr; 
        hrr=hrr+hrry1(i,j-1); 
        else  
        possy1(i) = ((ympnt-j)-1)*dx + ((ympnt-j)*dx - ((ympnt-j)-

1)*dx)*(criteria*hrr_toty1(i) - hrr_old)/(hrr-hrr_old);        
        j=ympnt+2; 
        end 
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        j = j - 1; 
    end 
    i=i+1; 
end 
hrr_tot_mean_y1=mean(hrr_toty1); 
disty1=mean(possy1([2503:tstep])); 

  
%y possitiv retting 

  
for i = 1:tstep 
    t(i) = num(i,1);%viser til at tidsstegen finnes i kollonne 1 i 

excelarket 

        
    for j = 1:ympnt; 
        hrry2(i,j) = num(i,j+(ympnt+(2*xmpnt)));%viser at hrr for hvert 

tidssteg finnes fra kolonne 2 og bort over 
    end 
end 
hrr_toty2=sum(hrry2,2); 
i=2; 
while i<=tstep; 
    j=1; 
    hrr=hrry2(i,j); 
    while j<ympnt; 
        if hrr<=hrr_toty2(i)*criteria; 
        hrr_old=hrr; 
        hrr=hrr+hrry2(i,j+1); 
        else 
        possy2(i) = (j-1)*dx + (j*dx - (j-1)*dx)*(criteria*hrr_toty2(i) - 

hrr_old)/(hrr-hrr_old);     
        j=ympnt+1; 
        end 
        j = j + 1; 
    end 
    i=i+1; 
end 
hrr_tot_mean_y2=mean(hrr_toty2); 
disty2=mean(possy2([2503:tstep])); 

  
flame_radius=((distx1+distx2+disty1+disty2)/4) 
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8.5 Appendix E  
MATLAB script used to calculating mean flame height 

clear all 

  
file='open-23.2-0.01-100s.xlsx'; 

  
[num,txt,raw] = xlsread(file); 

  
horizontal = 1; %if == 0 then vertical flame height i calculated 

  
tstep = 5001; %number of timesteps 
zmpnt = 200; %measuring points 
dz = 0.01; %størrelse griddcelle meter 

  
x_max=1; %bredde + og - for center i 0 
y_max=x_max; 
z_max=2.0; 

  

  

  
z = z_max - (dz*0.5); %ymax 
criteria=0.99; 
%sum1=0.0; 
%sumold = sum1; 

  
%x possitiv retting 

  
for i = 1:tstep 
    t(i) = num(i,1);%viser til at tidsstegen finnes i kollonne 1 i 

excelarket 

        
    for j = 1:zmpnt; 
        hrrz(i,j) = num(i,j);%viser at hrr for hvert tidssteg finnes fra 

kolonne 2 og bort over 
    end 
end 
hrr_totz=sum(hrrz,2); 
i=2; 
while i<=tstep; 
    j=1; 
    hrr=hrrz(i,j); 
    while j<zmpnt; 
        if hrr<=hrr_totz(i)*criteria; 
        hrr_old=hrr; 
        hrr=hrr+hrrz(i,j+1); 
        else  
        possz(i) = (j-1)*dz + (j*dz - (j-1)*dz)*(criteria*hrr_totz(i) - 

hrr_old)/(hrr-hrr_old);        
        j=zmpnt+1; 
        end 
        j = j + 1; 
    end 
    i=i+1; 
end 

  
distz=mean(possz([2503:5001])); 
flame_height=(distz-0.3843) 
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8.6 Appendix F 

Results from performed simulations in FDS 

Simulation 23.2 kW 100s 0.0405m 
  

 
Simulation Heskestad Deviation   

 

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 

[m] 0.88 0.95 1.05 
Flameheight 

[m] [m] [%] [m] [%] [kW] [m] 

 
0.12 0.46 0.56 -0.09 0.10 0.11 0.12 0.67 0.02 -12.73 -0.21 45.13 23.20 0.15 

Simulation 46.2 kW 100s 0.0405m 
  

 
Simulation Heskestad Deviation 

  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
0.23 2.74 0.56 2.07 0.33 0.36 0.39 0.94 

-
0.13 54.86 1.80 -65.79 46.20 0.15 

Simulation 92.6 kW 100s 0.0405m 
  

 
Simulation Heskestad Deviation 

  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
0.20 1.00 0.92 0.08 0.19 0.20 0.22 1.13 0.00 2.21 -0.13 12.81 92.60 0.30 
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Simulation 185 kW 100s 0.0405m 

 
Simulation Heskestad Deviation 

  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
0.50 1.42 0.92 0.48 0.59 0.64 0.70 1.59 

-
0.14 28.38 -0.17 11.62 185.00 0.30 

Simulation 382 kW 100s 0.0405m 
  

 
Simulation Heskestad Deviation 

  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
0.57 2.01 1.51 0.48 0.35 0.38 0.42 1.91 0.18 -32.43 0.10 -5.03 382.00 0.61 

Simulation 764 kW 100s 0.0405m 
  

 
Simulation Heskestad Deviation 

  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
1.15 2.74 1.51 1.17 1.07 1.15 1.27 2.72 0.00 0.25 0.02 -0.64 764.00 0.61 
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Simulation 764 kW 100s 0.081m 

 
Simulation Heskestad Deviation 

  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
0.82 2.74 1.51 1.17 1.07 1.15 1.27 2.72 

-
0.33 40.82 0.02 -0.64 764.00 0.61 

Simulation 764 kW 100s 0.0405m 0.92m roof 
  

 
Simulation Heskestad Deviation 

  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
1.63 2.74 0.92 1.73 1.59 1.71 1.89 2.72 

-
0.08 4.79 0.02 -0.64 764.00 0.61 

Simulation 972 kW 100s 0.0405m 
  

 
Simulation Heskestad Deviation 

  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
1.41 2.99 1.51 1.41 1.36 1.47 1.63 3.06 

-
0.07 4.80 -0.07 2.25 972.00 0.61 
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Simulation 1500 kW 100s 0.0405m 

 
Simulation Heskestad Deviation 

  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
1.94 3.57 1.51 1.96 1.76 1.90 2.10 3.51 0.04 -2.08 0.06 -1.56 1500.00 0.85 

Simulation 2000 kW 100s 0.0405m 
  

 
Simulation Heskestad Deviation 

  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
1.91 4.14 2.00 2.03 1.67 1.80 1.99 3.89 0.12 -6.01 0.24 -5.87 2000.00 1.00 

Simulation 2500 kW 100s 0.0675m 
  

 
Simulation Heskestad Deviation 

  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
1.69 4.02 2.50 1.44 1.54 1.66 1.84 4.25 0.02 -1.31 -0.23 5.74 2500.00 1.10 
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Simulation 3000 kW 100s 0.075m 

 
Simulation Heskestad Deviation 

  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
1.82 4.80 2.50 2.18 1.72 1.86 2.05 4.45 

-
0.04 1.95 0.34 -7.11 3000.00 1.30 

Simulation 3500 kW 100s 0.081m 
  

 
Simulation Heskestad Deviation 

  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
1.67 4.91 3.00 1.81 1.60 1.73 1.91 4.82 

-
0.06 3.47 0.08 -1.71 3500.00 1.30 

Simulation 4000 kW 100s 0.081m 
  

 
Simulation Heskestad Deviation 

  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
1.86 5.17 3.00 2.06 1.81 1.95 2.16 5.06 

-
0.09 4.94 0.11 -2.12 4000.00 1.40 
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Simulation 4500 kW 100s 0.081m 

 
Simulation Heskestad Deviation 

  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
0.93 5.36 3.50 1.77 1.56 1.68 1.86 5.27 

-
0.75 81.14 0.09 -1.74 4500.00 1.50 

Simulation 5000 kW 100s 0.09m 
  

 
Simulation Heskestad Deviation 

  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
1.72 5.80 3.50 2.19 1.72 1.86 2.06 5.46 

-
0.14 8.27 0.34 -5.91 5000.00 1.60 

Simulation 5500 kW 100s 0.1m 
  

 
Simulation Heskestad Deviation 

  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
0.95 5.90 3.50 2.28 1.88 2.03 2.24 5.63 

-
1.08 113.91 0.27 -4.55 5500.00 1.70 
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Simulation 6000 kW 100s 0.1m 

 
Simulation Heskestad Deviation 

  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
1.01 6.05 3.50 2.42 2.11 2.27 2.51 5.89 

-
1.26 124.71 0.15 -2.55 6000.00 1.70 

Simulation 6500 kW 100s 0.1m 
  

 
Simulation Heskestad Deviation 

  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
0.87 6.08 4.00 1.97 1.79 1.94 2.14 6.04 

-
1.07 122.41 0.04 -0.61 6500.00 1.80 

Simulation 7000 kW 100s 0.1m 
  

 
Simulation Heskestad Deviation 

  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
0.96 6.20 4.00 2.09 1.96 2.11 2.34 6.22 

-
1.15 120.12 -0.03 0.47 7000.00 1.85 
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Simulation 23.2 kW 100s New Grid 0.01m 

 

Simulation Heskestad Deviation 
  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
0.12 0.55 0.56 -0.01 0.10 0.11 0.12 0.67 0.01 -9.89 -0.12 21.47 23.20 0.15 

 

Simulation 46.2 kW 100s New Grid 0.015 m 
 

 

Simulation Heskestad Deviation 
  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
0.33 0.79 0.56 0.22 0.33 0.36 0.39 0.94 

-
0.03 8.99 -0.14 18.21 46.20 0.15 

 

Simulation 382 kW 100s New Grid 0.03 m 
 

 

Simulation Heskestad Deviation 
  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
0.56 2.01 1.51 0.48 0.35 0.38 0.42 1.91 0.18 -32.34 0.10 -4.86 382.00 0.61 
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Simulation 4500 kW 100s 0.081m New Roof 

 

Simulation Heskestad Deviation 
  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
3.12 5.36 2.10 3.10 2.79 3.01 3.33 5.27 0.11 -3.51 0.09 -1.72 4500.00 1.50 

 

Simulation 5000 kW 100s 0.09m New Roof 
 

 

Simulation Heskestad Deviation 
  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
3.01 5.80 2.10 3.52 2.96 3.19 3.53 5.46 

-
0.18 5.98 0.34 -5.89 5000.00 1.60 

 

Simulation 5500 kW 100s 0.1m New Roof 
 

 

Simulation Heskestad Deviation 
  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
3.28 5.90 2.10 3.61 3.11 3.36 3.71 5.63 

-
0.07 2.28 0.27 -4.55 5500.00 1.70 
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Simulation 6000 kW 100s 0.1m New roof 

 

Simulation Heskestad Deviation 
  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
3.34 6.05 2.32 3.54 3.14 3.39 3.75 5.89 

-
0.06 1.68 0.16 -2.60 6000.00 1.70 

 

Simulation 6500 kW 100s 0.1m New roof 
 

 

Simulation Heskestad Deviation 
  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
3.47 6.08 2.30 3.59 3.29 3.55 3.93 6.04 

-
0.08 2.38 0.04 -0.68 6500.00 1.80 

 

Simulation 7000 kW 100s 0.1m New Roof 
 

 

Simulation Heskestad Deviation 
  

 
        

Flameradius 
[m]   Flameradius Flameheight Effect Burner size 

 

Mean flameradius 
[m] 

Mean flameheight 
[m] 

Roofheight 
[m] 

Expected radius 
using formula 0.88 0.95 1.05 

Flameheight 
[m] [m] [%] [m] [%] [kW] [m] 

 
3.70 6.20 2.40 3.61 3.37 3.63 4.02 6.22 0.07 -1.77 -0.03 0.47 7000.00 1.85 
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8.7 Appendix G 

Model error calculation results 

Table 5 Calculations of precentral model error for performed flame extension simulations, flame height simulations, 
calculations performed using equation (1.2) and (1.4), and the expected flame extension using equation (1.4) and the 
simulated flame height as input quantity. 

 
Flame extension Flame height Expected Simulering Error 

Equation 
1.4 

     
radius radius 

  HRR % m % m m m % % 

23.2 -9.89 0.01 21.47 -0.03 -0.01 0.12 -104.37 -104.84 

46.2 8.99 -0.03 18.21 -0.14 0.22 0.33 -32.82 -38.36 

92.6 2.21 0.00 12.81 -0.13 0.08 0.20 -59.81 -60.68 

185.0 28.38 -0.14 11.62 -0.17 0.48 0.50 -3.33 -24.70 

382.0 -32.34 0.18 -4.86 0.10 0.48 0.56 -15.91 24.28 

764.0 0.25 0.00 -0.64 0.02 1.17 1.15 1.71 1.45 

764.0 4.79 -0.08 
  

1.73 1.63 5.82 0.98 

972.0 4.80 -0.07 2.25 -0.07 1.41 1.41 0.25 -4.35 

1500.0 -2.08 0.04 -1.56 0.06 1.96 1.94 0.65 2.79 

2000.0 -6.01 0.12 -5.87 0.24 2.03 1.91 6.04 12.82 

2500.0 -1.31 0.02 5.74 -0.23 1.44 1.69 -14.30 -13.17 

3000.0 1.95 -0.04 -7.11 0.34 2.18 1.82 19.75 17.46 

3500.0 3.47 -0.06 -1.71 0.08 1.81 1.67 8.24 4.61 

4000.0 4.94 -0.09 -2.12 0.11 2.06 1.86 10.53 5.33 

4500.0 -3.51 0.11 -1.74 0.09 3.10 3.12 -0.70 2.92 

5000.0 5.98 -0.18 -5.91 0.34 3.52 3.01 16.77 10.18 

5500.0 2.28 -0.07 -4.55 0.27 3.61 3.28 10.05 7.60 

6000.0 1.68 -0.06 -2.55 0.15 3.54 3.34 6.17 4.41 

6500.0 2.38 -0.08 -0.61 0.04 3.59 3.47 3.51 1.11 

7000.0 -1.77 0.07 0.47 -0.03 3.61 3.70 -2.52 -0.77 

         Average 
percentage 

model 
error 0.76 -0.02 1.75 0.06 

  
-7.21 -7.55 

Variance 116.69 0.01 66.10 0.03 
  

802.81 855.99 

Standard 
percentage 

model 
error 10.80 0.09 8.13 0.16 

  
28.33 29.26 

 


