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”Those fields which most depend upon authoritative opinion for their data least

contain known natural law.”

L. Ron Hubbard



Abstract

The Linear mixed effects model is based on one of the assumptions, which is that

data are normally distributed as the errors and random effects in the model are

assumed to have normal distributions; but in practice, longitudinal data are often

either slightly or very skewed. Hence, they have non-normal distributions. This

thesis is focused on studying the robustness of the linear mixed effects model to

non-normality of error distribution.

The thesis is structured in this way: in the chapter 1, the literature review of the

linear mixed effects model is presented. Chapter 2 contains explanations of the

statistical tools used in checking the goodness of fit for a fitted model. Chapter

3 contains description of the research procedures employed in the implementa-

tions. Chapter 4 contains the simulations and results. All in all, conclusions are

presented in the chapter 5.
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Chapter 1

Introduction

1.1 Longitudinal Data Analysis

The word longitudinal is often used to describe outcomes of repeated measures

that are carried on objects or persons, who are under a treatment, over time to

study their responses to the treatment. Hence, it is more applied to biotechnology

and medicine than to engineering.

Longitudinal data analysis plays an important role in the medical field because

it is mainly used to study a degree to which a response variable responds to its

covariates. The analysis involves follow-up and measurements of the responses of

the variable (a unit) to the treatment over time.

Ideally, the measurements of the responses are meant to be repetitively taken in

such a way that each unit, under the same treatment, has the same number of

measurements taken at the same time points over time; but in practice, it is not

always feasible to realize such balanced measurements, so they (repeated measures

of data) do not have to assume a balanced form, meaning it is allowed that some

units do not have the same number of measurements as others in a sample.

Definition: Longitudinal data are the repeated measures of changes in responses

to a treatment carried on N units over time, where N > 1 is the total number

of units. For example, a research to be conducted to find out the effects of a

new treatment on a viral disease such as Zika virus can be carried out through

administering a medicine on ten patients and taking the measures of counts of

1
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viral loads over time on each patient. At each individual level, such repeated

measures, taken on each individual, yield correlated data that account for each

patient’s unique responses to the medicine.

The measurements, taken on each patient over time, may be or are typically

statistically correlated, but measurements obtained from different patients are

independent. A variation of the measurements taken on each patient shows a

within-individual variation and a variation of the measurements taken on differ-

ent individuals (units) shows a between-individual variation [1]. The difference

between the two variations is called a random effect, which represents the pecu-

liarity of each individual in a population from which a sample is drawn.

αi = βi − β (1.1)

E[αi] = E[βi]- β = 0 and Var[αi] = Var[βi] = σ2. αi ∼ N(0, σ2)

For example, let i be the index for the units in a sample, β be the between-

individual variation, βi be the within-individual variation, and αi be the random

effect for unit i, where i ≥ 1. The random effect is defined in the equation 1.1.

It should be noted that αi ∼ N(0, σ2) is based on a linear-mixed-effects assump-

tion.

In addition, the measurements taken in a closer interval of time are more corre-

lated than the measurements taken in a wider interval of time since the correlation

is reduced as the time interval of measurements is widened. This feature of lon-

gitudinal data is due to the fact that a characteristic of response, on which the

measures are based, randomly changes in time. In other words, the responses of

the units are random as the units are random variables.

As shown in the figure 1.1, the difference between each measured response value

and its corresponding value on a linear model is the error of the measurement,

eij; where Yij is the response variable, µij is its corresponding mean value on the

regression line, i is the index for the number of patients (units) in the study and j

is the index for the number of the response data obtained from each patient over

time, so µij is the expected value for unit i at time j.

eij = Yij − µij (1.2)
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E[eij] = E[Yij]- µij = 0 and Var[eij] = σ2
e , so eij ∼ N(0, σ2

e) (assumption).

It should be noted that eij ∼ N(0, σ2
e) is based on the linear-mixed-effects, LME,

assumption.

Figure 1.1: Example of the Graphical Representation of Logitudinal Data

1.2 The Evolution of Longitudinal Data Analysis

The concept of longitudinal data analysis is derived from the traditional regression

analysis where the main goal is to model the relationship between a dependent

variable and independent variables. The independent variables are often called

the predictors because they determine a responsiveness of the dependent variable

while the dependent variable itself is called the response variable.

Yij = β0 + β1X1ij + β2X2ij + β3X3ij + ...+ βpXpij + eij (1.3)
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The relationship between a dependent variable and independent variables is as

shown in the equation 1.3. Where Yij—the response of unit i at j time; X1ij, X2ij,

X3ij . . . Xpij are the predictor variables, β0, β1, β2, β3, . . . , βp are the fixed effects,

where p is the total number of the fixed effects in a model; and eij are the errors.

The essence of the fixed effects in the model is to quantify the impact of each

predictor variable on a response variable.

As presented in the definition of longitudinal data analysis, let’s suppose N in-

dividuals’ counts of viral loads were measured at three different time points over

time; hence, Yi = [Yi1, Yi2, Yi3]T , where i = 1 . . . N and j = 1 . . . ni. The three

repeated measures on each unit of N units over time is written as:

Yi1 = [1, X1i1, X2i1, X3i1, . . . , Xpi1]×



β0

β1

β2

β3

...

βp


+ ei1 (1.4)

Yi2 = [1, X1i2, X2i2, X3i2, . . . , Xpi2]×



β0

β1

β2

β3

...

βp


+ ei2 (1.5)

Yi3 = [1, X1i3, X2i3, X3i3, . . . , Xpi3]×



β0

β1

β2

β3

...

βp


+ ei3 (1.6)

Where Yi1 is the response measurement of unit i at the time point, j = 1; Yi2

is the response measurement on the same unit at a second successive time point,

j = 2; Yi3 is the response measurement on the unit at a third successive time
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point, j = 3. In this case, the total measures for a unit i, ni, is three (3); that is

ni = 3.

It should be noted that ni, the number of measurements taken on the unit i, is

dependent on the unit i. That is ni may be different for different units.

Yi =


1 X1i1 X2i1 X3i1 . . . Xpi1

1 X1i2 X2i2 X3i2 . . . Xpi2

1 X1i3 X2i3 X3i3 . . . Xpi3





β0

β1

β2

β3

...

βp


+


ei1

ei2

ei3

 (1.7)

Each individual responses to a treatment is written in the matrix form as shown

in the equation 1.7.

Yi = Xiβ + ei (1.8)

Where

Yi =


Yi1

Yi2

Yi3

, Xi =


1 X1i1 X2i1 X3i1 . . . Xpi1

1 X1i2 X2i2 X3i2 . . . Xpi2

1 X1i3 X2i3 X3i3 . . . Xpi3

, β =



β0

β1

β2

β3

...

βp


and ei =


ei1

ei2

ei3

.

Then the equation 1.7 can be summarized as equation 1.8. That means that there

may be different design matrix, Xi, and vector of errors, ei, for different units, i,

while the vector of fixed effects, β, remains the same for each unit of a sample in

a longitudinal data analysis.

Statistically, the measurements that are obtained from each unit are clustered

since they are generally correlated. Hence, there are N clusters of data [2]. The

covariance matrix for Yi is as shown in the equation 1.9.



Chapter 1. Literature Review 6

V ar(Yi) =


V ar(Yi1) Cov(Yi1, Yi2) Cov(Yi1, Yi3)

Cov(Yi2, Yi1) V ar(Yi2) Cov(Yi2, Yi3)

Cov(Yi3, Yi1) Cov(Yi3, Yi2) V ar(Yi3)

 (1.9)

1.3 The Linear Mixed Effects Model

Yij = β0 + α0i + β1tij + αi1tij + β2Xi + eij (1.10)

α0i ∼ N(0, σ2
0), α1i ∼ N(0, σ2

1), eij ∼ N(0, σ2
e); i = 1, 2, . . . , N and j = 1, 2, . . . , ni.

In the linear mixed effects model, the fixed effects and random effects are combined

in a model to capture variabilities around the mean of responses of the units of a

sample, drawn from a population. The regression model that is considered so far

is a typical example of a fixed-effects model because the variability of each unit

is not considered. A typical example of LME model is the simple growth curve

model, which is shown in the equation 1.10.

The growth curve model is an example of a random intercept and random slope,

RIRS, model because it comprises the two random effects: random intercept (α0i)

and random slope (α1i). When random slope is omitted from the model, it is then

reduced to a random intercept, RI, model.

The conceptual idea of the linear mixed effects model is to incorporate a variabil-

ity of a units’ responses to a treatment in the model. As given in the previous

example, let’s suppose that three measurements of count of viral load of Zika virus

in a patient who is subjected to a follow-up are measured over time. The three

measures, plotted against time, give the regression model for his responses to the

treatment. The regression model obtained from the three measurements taken

over time does not include the variability of unit’s responses to the administered

medicine.

The use of linear mixed effects model becomes crucial when there is a need to

model the variabilities of units’ responses to a treatment.

Yi = Xiβ +Zibi + ei (1.11)
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The model shown in the equation 1.11 is a typical linear-mixed-effects model. ni

is the number of measurements taken on a unit i. Where Yi is ni × 1 vector of

responses, Xi is ni × p matrix of covariates, β is p × 1 vector of fixed effects, Zi

is ni × q matrix of covariates associated with random effects, bi is q × 1 vector of

random effects, where q is the number of covariates associated with the random

effects; ei is ni × 1 vector of errors of ni measurements.

Using the equation 1.11 and three (3) measures over time per unit, the vectors

assume these forms:

Xi =


1 ti1 Xi

1 ti2 Xi

1 ti3 Xi

, β =


β0

β1

β2

, Zi =


1 ti1

1 ti2

1 ti3

, bi =

[
α0i

α1i

]
ei =


ei1

ei2

ei3

.

1.4 Generality of the Linear Mixed Effects Model

The linear mixed effects model, shown in the equation 1.11, is a model for a two-

level repeated measures in which the fixed effects and random effects are crossed as

a level of the factor is measured accross multilevels of another factor. For instance,

the responses that are measured accross the units, as given in the previous example

with Zika virus, is the two-level repeated measures with crossed fixed effects and

random effects. For generality, Yi, the responses for unit i, can be extended to

Yi =



Yi1

Yi2

Yi3
...

Yini


∼MVN(Xiβ,Vi),

As previously stated, the number of measures in a unit, ni, depends on unit i.

Hence, the total number of observations, n =
∑N

i=1 ni. Where N is the total

number of units.

Xi=



1 X1i1 X2i1 X3i1 . . . Xpi1

1 X1i2 X2i2 X3i2 . . . Xpi2

1 X1i3 X2i3 X3i3 . . . Xpi3

...
...

...
. . .

...

1 X1ini X2ini X3ini . . . Xpini


,
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The ni × p matrix of covariates, Xi, contains p number of covariates that are

uniquely associated with the p number of fixed effects in an LME model. The

first column of the matrix is usually assigned a vector of ones to recover the fixed

effect, β0, in the model.

β =



β0

β1

β2

β3

...

βp


,

The fixed-effects vector, β, contains p number of fixed effect associated with the

covariates arraigned in the rows of the matrix of covariates, Xi.

Zi=



1 X1i1 X2i1 . . . Xqi1

1 X1i2 X2i2 . . . Xqi2

1 X1i3 X2i3 . . . Xqi3

...
...

...
. . .

...

1 X1ini X2ini . . . Xqini


,

The ni× q matrix, Zi, contains covariates that are associated with random effects

in the model. Hence q ≤ p in the LME models.

The q × 1 column vector of random effects, bi, contains random effects for some

covariates in the design matrix Xi. The column vector of random effect is defined

by

bi =



αi1

αi2

αi3
...

αiq


,

Under the LME assumptions that the random effects are independent of each other,

Var(bi) =
∑

, reduces to a diagonal positive definite matrix and the bi follows a

multivariate normal distribution with mean vector of zeros and the variance,
∑

.
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bi ∼ MVN(0,
∑

).

The covariance of bi is defined by

∑
= Cov(bi) =


V ar(αi1) Cov(αi1, αi2) . . . Cov(αi1, αiq)

Cov(αi2, αi1) V ar(αi2) . . . Cov(αi2, αiq)
...

...
. . .

...

Cov(αiq, αi1) Cov(αiq, αi2) . . . V ar(αiq)

 (1.12)

For example, the matrix, Zi, reduces to a column vector of ones for the random

intercept, RI, model. In the case of random intercept and random slope, RIRS,

model with an intercept and a covariate respectively associated with a random

effect for intercept and a random effect for the covariate, the Zi matrix reduces

to:

Zi=



1 X2i1

1 X2i2

1 X2i3

...
...

1 X2ini


,

The column matrix for the two random effects in the model reduces to:

bi =

[
αi1

αi2

]
,

The covariance matrix of random effects, bi, reduces to:

∑
= Cov(bi)=

[
V ar(αi1) Cov(αi1, αi2)

Cov(αi2, αi1) V ar(αi2)

]

In the case of the random effects being independent, the covariances become zeros

and the matrix further reduces in number of parameter to:

∑
= Cov(bi)=

[
V ar(αi1) 0

0 V ar(αi2)

]
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The errors, ei, which determine the growth curve path of a unit i around the

mean, µ, is defined by

ei =



ei1

ei2

ei3
...

eini


,

The errors, ei, are based on three LME assumptions: in one case, they are assumed

to be uncorrelated; in the second case, they are assumed to be homoscedastic,

meaning they have the same variance. In the third case, they are assumed to follow

multivariate normal distribution with mean vector of zeros and the covariance

matrix, He.

ei ∼MVN(0,He),

Generally,

He = V ar(ei) =


V ar(ei1) Cov(ei1, ei2) . . . Cov(ei1, eini)

Cov(ei2, ei1) V ar(ei2) . . . Cov(ei2, eini)
...

...
. . .

...

Cov(ein, ei1) Cov(ein, ei2) . . . V ar(eini)

 (1.13)

.

For the assumption of uncorrelated errors, the covariance matrix of errors, He,

takes the form

He = Var(ei)=


V ar(ei1) 0 . . . 0

0 V ar(ei2) . . . 0
...

...
. . .

...

0 0 . . . V ar(eini)


.

The vector of random effects, bi, and the vector of errors, ei, are assumed to be

independent [3].
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The vector of errors, ei, is dependent on i. This means that the number of errors

in the vector corresponds with the number of measures carried on the unit. Hence,

the vector of errors for the three measurements, as given in the example, reduces

to:

ei =


ei1

ei2

ei3

 .

1.5 Covariance Structure

A covariance structure refers to the structure that determines the number of co-

variance parameters that are in a model. The covariance parameters are stored in

a vector called vector of covariance parameters, θ.

The two most often used covariance structures for a positive definite symmetric

matrix of a vector of random effects,
∑

shown in equation 1.12, are the unstruc-

tured and structured covariance structure. Let’s suppose that two random effects

are used in a model, where the vector of random effects is defined by

bi =

[
α1

α2

]

The unstructured covariance structure for the two-random-effects model is defined

by ∑
=

[
σ2

1 σ12

σ21 σ2
2

]
(1.14)

The vector of covariance parameters, θ∑, for the covariance structure is defined

by

θ∑ =


σ2

1

σ12

σ2
2

 (1.15)

The vector of covariance parameters, shown in the equation 1.15, contains three

elements because the covariances between the two random effects are the same, so

the number of the elements contained in the vector is three.
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A structured covariance structure of the two-random-effects model is defined by

∑
=

[
σ2

1 0

0 σ2
2

]
(1.16)

The structure (structured covariance structure) is simpler because of independency

between the two random effects. Such structure in which the covariance elements

of a positive definite matrix are zeros except variance elements is called diagonal

matrix. The variance elements of the matrix are not equal.

The corresponding vector of covariance parameters, θ∑, is defined by

θ∑ =

[
σ2

1

σ2
2

]
(1.17)

The vector contains only two elemets in this case.

If the variances are assumed equal, the diagonal matrix reduces to a multiple of

an identity matrix, which is defined by

∑
= σ2

1

[
1 0

0 1

]
= σ2

2

[
1 0

0 1

]
(1.18)

The corresponding vector of covariance parameters, θ∑, is defined by

θ∑ =
[
σ2

1

]
(1.19)

Moreover, for a model in which there are nested random effects in a random effect,

a compound-symmetry or diagonal-block structure may represent a true covari-

ance structure. Let’s suppose that there are i units in which j subcomponents are

nested, where j = 1, 2, 3; each unit has a random effects, αi, and each subcompo-

nent nested within the unit has the random effect, αi,j, where αi ∼ N(0, σ1) and

αi,j ∼ N(0, σ2). The vector of the random effects for unit i could be defined by

bi =


αi + αi,1

αi + αi,2

αi + αi,2

 (1.20)



Chapter 1. Literature Review 13

Under the assumption of independency among the random effects and the same

variance, σ2
1, for the random effects of unit and the same variance, σ2

2, for the

random effects of subcomponents, the covariance structure is defined by

∑
=


σ2

1 + σ2
2 σ2

1 σ2
1

σ2
1 σ2

1 + σ2
2 σ2

1

σ2
1 σ2

1 σ2
1 + σ2

2

 (1.21)

The covariance structure (1.21) is called compound-symmetry [4]. Its correspond-

ing vector of covariance parameters, θ∑, is defined by

θ∑ =

[
σ2

1

σ2
2

]
(1.22)

The vector of the random effects, bi, could also be defined by

bi =


αi

αi,1

αi,2

αi,2

 (1.23)

The block-diagonal structure for the vector (1.23) is defined by

∑
=


σ2

1 0 0 0

0 σ2
2 0 0

0 0 σ2
2 0

0 0 0 σ2
2

 (1.24)

The covariance structure (1.24) is derived from these assumptions: the random

effects are independent; the variances for the units are same, σ2
1; the variances for

the subcomponents nested within the units are also the same, σ2
2. The covariance

structure is represented as block diagonals such as σ2
1 and σ2

2I. The identity matrix,

I, is a j × j matrix, where j = 3 in this case. Its vector of covariance parameters

is the same with that of the compound-symmetry structure (1.22).

The block-diagonal covariance matrix may take other forms depending on a vector

of random effects, bi. If a vector of random effects of a model is defined by
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bi =


αi

αi,j

αi,k

αi,l

 (1.25)

where j = 1, 2, 3, 4, k = 1, 2, 3, and l = 1, 2, 3; αi ∼ N(0, σ2
1), αij ∼ N(0, σ2

2),

αik ∼ N(0, σ2
3), and αil ∼ N(0, σ2

4). The block-diagonal covariance structure

takes a form that is different from the first block-diagonal structure(1.24). The

covariance structure for the vector of random effects, (1.25), becomes

∑
=


σ2

1 0 0 0

0 σ2
2I 0 0

0 0 σ2
3I 0

0 0 0 σ2
4I

 (1.26)

There are different orders of the identity matrixes in the covariance structure

(1.26): σ2
2I has a j × j order of identity matrix, σ2

3I has a k × k order of identity

matrix, and σ2
4I has an l × l order of identity matrix. Its vector of covariance

parameter has four parameters as defined by

θ∑ =


σ2

1

σ2
2

σ2
3

σ2
4

 (1.27)

Furthermore, the two most used covariance structures for the positive definite

symmetric matrix, ei shown in the equation 1.13, are diagonal symmetric structure

and compound symmetric structure.

A diagonal structure contains the same variance along the diagonal of the covari-

ance matrix and zeros in other parts of the matrix. The reason for the diagonality

is due to the assumption that the errors are not correlated and they have the same

variance. Hence, the diagonal structure assumes this form for a single unit i:
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He = V ar(ei) =


σ2
e 0 . . . 0

0 σ2
e . . . 0

...
...

. . .
...

0 0 . . . σ2
e

 (1.28)

The vector of the covariance parameters, θHe , contains only one parameter,

θHe = σ2
e . (1.29)

A compound symmetry structure is derived from the combination of the diagonal

structure (symmetric covariance structure), which is based on the assumptions

that errors are uncorrelated and homoscedastic and the unsymmetric covariance

structure, which is based on the assumptions that the errors are correlated. Hence,

the compound symmetric structure is obtained from the combination of both struc-

tures.


σ2
e 0 . . . 0

0 σ2
e . . . 0

...
...

. . .
...

0 0 . . . σ2
e

 +


σ1 σ1 . . . σ1

σ1 σ1 . . . σ1

...
...

. . .
...

σ1 σ1 . . . σ1

 =


σ2
e + σ1 σ1 . . . σ1

σ1 σ2
e + σ1 . . . σ1

...
...

. . .
...

σ1 σ1 . . . σ2
e + σ1


Thus, the compound symmetric structure for the covariance matrix of a vector of

errors is

He = V ar(ei) =


σ2
e + σ1 σ1 . . . σ1

σ1 σ2
e + σ1 . . . σ1

...
...

. . .
...

σ1 σ1 . . . σ2
e + σ1

 (1.30)

The vector of covariance parameters, θHe , for the compound symmetric structure

is

θHe =

[
σ2
e

σ1

]
(1.31)
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The diagonal structure and structured covariance structure are based on ho-

moscedastic assumption. In the case of the heteroscedastic assumption, the vari-

ances and covariances may differ, which impose structures that are different from

the ones presented here.

The vectors of covariance parameters, θ∑ and θHe , are contained in a vector, θ;

that is,

θ =

[
θ∑
θHe

]
(1.32)

1.6 The Distribution of Response Variable, Yi

The marginal distribution of the vector variable of responses, Yi, can be derived

from the equation 1.11. The equation can be presented as,

Yi = Xiβ +Ri (1.33)

where

Ri = Zibi + ei

As both bi and ei are assumed to follow multivariate normal distributions with

zero mean vector, bi ∼ MVN(0,
∑

) and ei ∼ MVN(0, He). Where bi and ei are

assummed independent. The expectation of Ri is

E[Ri] = Zi 0 + 0 = 0

The variance of Ri, Vi, is

Var[Ri] = ZiCov(bi)Z
T
i + Cov(ei)

Then

Vi = V ar[Ri] = Zi
∑
ZTi +He (1.34)

Hence, Ri ∼ MVN(0, Vi) and Yi ∼ MVN(Xiβ, Vi)
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1.7 The Maximum Likelihood Estimation

The response vector variable for unit i, Yi, which is given in the equation 1.11 has

a multivariate normal probability distribution function.

f(yi;β) = (
1

2π
)−

ni
2 |Vi|−

1
2 e−

1
2

((yi−Xiβ)TVi
−1(yi−Xiβ)) (1.35)

Where the Vi is given in the equation 1.34.

The maximum likelihood function, Li(β;θ), for observation yi of the response

vector variable, Yi, for unit i becomes,

Li(β;θ)= ( 1
2π

)−
ni
2 |Vi|−

1
2 e−

1
2

((yi−Xiβ)TVi
−1(yi−Xiβ))

As the units are independent, the joint likelihood function for all the units becomes

L(β;θ)=
N∏
i=1

Li(β;θ)

=
N∏
i=1

( 1
2π

)−
ni
2 |Vi|−

1
2 e−

1
2

((yi−Xiβ)TVi
−1(yi−Xiβ))

The log likelihood function for the joint likelihood function becomes

l(β;θ) = −1

2
n ln (2π)− 1

2

N∑
i=1

ln (|Vi|)−
1

2

N∑
i=1

(yi−Xiβ)TVi
−1(yi−Xiβ) (1.36)

Where the total number of data, n =
N∑
i=1

ni.

The score of the log-likelihood function, U(β) = ∂l(β)
∂β

when θ is constant, is

U(β)=1
2

N∑
i=1

XT
i V

−1
i (yi −Xiβ) + 1

2

N∑
i=1

XiV
−1
i (yi −Xiβ)T .

The score function, U(β), is zero when the fixed-effects vector, β, is very close to

its maximum value or at the maximum value. Hence, estimator for the fixed-effects

vector, β̃, is obtained by setting U(β) = 0.

β̃ = (
N∑
i=1

XT
i V

−1
i Xi)

−1

N∑
i=1

XT
i V

−1
i yi (1.37)
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The estimator of the fixed effects, β̃, is unbiased as its expectation is the same

with the estimate for the fixed effects, E[β̃] = β. This can be shown by replacing

the expectation of the response variable, E[yi], with Xiβ in the model, shown in

the equation 1.37.

The next is estimation of θ. The parameters in the vector are estimated using

numerical approach as it (θ) cannot be expressed in a closed form; because of the

reason, a profiled log likelihood is constructed by replacing β with its estimate,

as shown in the model of equation 1.37, in the log likelihood function. Then

the profiled log likelihood function becomes the function of a vector of covariance

parameters.

l(θ) = −1

2
ln (2π)

N∑
i=1

ni −
1

2

N∑
i=1

ln (|Vi|)−
1

2

N∑
i=1

eTi Vi
−1ei (1.38)

where

ei = yi −Xi(
N∑
i=1

XT
i V

−1
i Xi)

−1

N∑
i=1

XT
i V

−1
i yi (1.39)

The estimation of a vector of covariance parameters, θ, is done by applying numer-

ical optimization: the optimization concept implemented in R by Pinheiro (2010)

used a combination of the expectation-maximization method and the Newton-

Raphson method to find estimate of θ, θ̃, using the profiled log likelihood function.

The expectation-maximization method is based on an iterative method: the vector

of covariances, θ, is firstly calculated. Then, the calculated vector is inserted in

the log-likelihood function to find the expectation of the (log likelihood) function.

The expectation of the log likelihood function is derived and the derived function is

maximized to obatin θk. The steps are repeated iteratively until the 25 iterations

are elapsed. Where 1 ≤ k ≤ 25.

The next step of the method is to use the vector, θk, obtained after the twenty-five

iterations to optmize the estimates of the parameters contained in the vector by

using the Newton-Raphson method [5].

θm = θk
m−1 +

U(θm−1
k )

U ′(θm−1
k )

(1.40)
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Where U(θk) is the score vector and U
′
(θk) is a partial derivative of the score

vector, which is the same with second derivative of the log likelihood function.

The iteration is repeated until convergence in the vector of covariance parameters

occurs; that is θm is approximately the same with θ̃ at the iteration at which the

convergence occurs.

Moreover, the vector of covariance parameters is unpacked and its elements are

correspondingly arrayed in He and
∑

to calculate the Vi.

Ṽi = Zi
∑̃
ZTi + H̃e (1.41)

Then the fixed effects can be estimated:

β̃ = (
N∑
i=1

XT
i Ṽ

−1
i Xi)

−1

N∑
i=1

XT
i Ṽ

−1
i yi (1.42)

The variance of the fixed-effects vector, Var(β̃), can be estimated using the equa-

tion 1.42. It is defined by

V ar(β̃) = Qi(
N∑
i=1

XT
i Ṽi

−1
V ar(yi)X

T
i Ṽi

−1
)QT

i (1.43)

Where the symmetric matrix Qi = (
∑N

i=1X
T
i Ṽ

−1

i X i)
−1.

The equation 1.43 can be reduced to:

Var(β̃)= QiQ
−1
i V ar(yi)Ṽi

−1
QT
i = QT

i

Thus, the variance of the estimator (1.42) is defined by

V ar(β̃) = (
N∑
i=1

XT
i Ṽi

−1
X i)

−1 (1.44)

1.8 Restricted maximum likelihood estimation

The restricted maximum likelihood estimation method is used to estimate un-

biased covariance parameters contained in the vector, θ. This method achieved
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unbiasedness of the covariance parameters through compensating the lost degrees

of freedom that occurred during estimation of the fixed effects (β) and adding an

additional term to the log likelihood function. That is

l(θ) = −1

2
(n−p) ln (2π)− 1

2

N∑
i=1

ln (|Vi|)−
1

2

N∑
i=1

eTi Vi
−1ei−

1

2
|XT

i V
−1
i X i| (1.45)

Where the column vector of errors, ei, is shown in the equation 1.39. The

expectation-maximization method and the Newton-Raphson method are applied

to the restricted log likelihood to estimate the covariance parameters of the vector,

θ. Then, the vector is unpacked and its parameters are correspondingly arrayed

in He and
∑

to calculate Vi (equation 1.41). Then, Vi is used to estimate β as

shown in the maximum likelihood method. The estimate of β from this method

is called restricted maximum likelihood estimate, REML, of fixed effects.

1.9 Robust Inference

The estimation of the variance of fixed-effects vector, β, shown in the equation 1.44

is dependent on the covariance matrix, Vi. Hence, the correct specification of

covariance structure of the matrix, Vi, contributes to an unbiasedness of the esti-

mator, Var(β̃).

For robust inference, Liang and Zeger (1986) proposed sandwich estimator. The

estimator is obtained by replacing Var(ỹi) with eie
T
i in the equation 1.43, where

ei = yi −Xiβ [6].

V ar(β̃(θ̃)) = Qi(
N∑
i=1

XT
i V

−1
i (θ̃)eie

T
i X

T
i V

−1
i (θ̃))QT

i (1.46)

Where θ̃ is the REML estimates for the parameters in the vector, θ.
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1.10 The Likelihood Ratio Test

The likelihood ratio test is mainly used to reduce a number of parameters of a

model. To reduce parameters of a model, a vector of parameters that defines the

minimum number of parameters that can be in a model, Ωmin, and another vector

that defines the maximum number of parameters in the model are evaluated, Ωmax.

The two vectors of parameters are used to parametrize two log likelihood functions.

Then the log likelihood ratio test is used to choose between the two vectors of

parameters considering the difference between the values of the two parameterized

log likelihood functions. The difference between the values of the two functions is

called deviance, Λ.

Λ = 2(l(Ωmax)− l(Ωmin)) (1.47)

where Ω =βmin,βmax or Ω=θmin,θmax. The deviance, Λ, is χ2
df distributed with

the degree of freedom, df , being equivalent to the difference between the numbers

of parameters in the two vectors. The log likelihood function, l, is the same as

shown in equation 1.36. Then two hypotheses are set up to assess the validity of

the two models.

H0: Ω = Ωmin versus H1: Ω 6= Ωmin

If the deviance, Λ, is sufficiently small, there is evidence for the null hypothesis,

which means that a model with a vector (of parameters) that has the minimum

number of parameters, Ωmin, is the best fit for the data; but when the deviance

is sufficiently large, there is evidence against the null hypothesis, which indicates

that the model with the vector that has the maximum number of parameters,

Ωmax, is the best fit for the data.

p =
1

2
(1− χ2

Λ,1)− 1

2
(1− χ2

Λ,2) (1.48)

The p-value, p, is the probability with which to assess whether the null hypothesis

should be accepted or rejected: if the deviance, which is the test statistic, is

significant on α, the null hypothesis is rejected if p < α; but it is accepted if p > α

[5].



Chapter 1. Literature Review 22

1.11 The t-test

The t-test is used to test fixed effects in the linear mixed effects model. It tests

the two hypotheses

H0: β = 0 versus H1: β 6= 0

The t-test statistic is defined by

t =
β̃

se(β̃)
(1.49)

The t-test follows a t distribution and the degree of freedom is evaluated by con-

sidering the grouping level at which a term, fixed effect, is estimated.

1.11.1 The Confidence Interval

In the linear mixed effects model implemented by J.C Pinheiro, the confidence

intervals, CI, are based on an approximated t distribution rather than Z distri-

bution as in the Wald confidence interval. The interval is created for each fixed

effect in the model. Let’s suppose that a vector of fixed effects, β, comprises βj

where j = 1, 2, 3 . . . , p. The interval for each fixed effect in the model is defined

by

CIj = β̃j ± tdf,α
2

√
V ar(β̃j) (1.50)

Where β̃j is an estimate in the estimated vector of fixed-effects (1.42), β̃ , α is the

level which is usually assigned 0.05, Var(β̃j) is a variance estimate for β̃j in the

matrix (1.44) or (1.46) and df is the degree of freedom.

1.12 The Information Criteria

The information criteria are used to choose the best fitted model for data. The

two often used information criteria are Akaike Information Criterion and Bayesian

Information Criterion.
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The Akaike Information Criterion, AIC, is defined by

AIC = −2l(β̃; θ̃) + 2p (1.51)

where p is the number of parameters in a model. l(β̃; θ̃) is either the log likelihood

function shown in the equation 1.38 or the restricted log likelihood function shown

in the equation 1.45

The Bayesian Information Criterion is defined by

BIC = −2l(β̃; θ̃) + 2p ln (n) (1.52)

where n =
N∑
i=0

ni is the total number of data in a dataframe. In a case where AIC

is used to choose a best fitted model to data, smaller AIC indicates a best model.

In a model where BIC is used for the same purpose, smaller BIC indicates a best

fitted model to the data. According to Pinheiro (2000), the BIC for restricted log

likelihood can be calculated by using the equation 1.45 and substituting n with

(n− pβ). Where pβ is the number of fixed effects parameters [5] .

1.13 The assumptions of the LME Model

The linear mixed effects models, LME, are built on four keys assumptions that

are structured on the normal distribution and covariance structure. The key as-

sumptions are as listed in the following items:

� That the random effects have normal distributions;

� That the errors are normally distributed;

� That the errors are independent as responses are independent given random

effects though not in general. The errors are sometimes correlated;

� That the errors are independent of the random effects, and

� That the errors are homoscedastic though not also in general. They are

sometimes heteroscedastic.
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The assumptions had led to many researches: it had been demostrated that the

maximum likelihood inference is robust to non-normal distributions of random

effects (Butler and Louis, 1992; Verbeke and Lasaffre, 1997; Zhang and Davidian,

2001)[7].

As shown above, the maximum likelihood estimation (MLE) of a model parameters

is usually obtained with the equation of the log likelihood function, shown below,

under the Guassian assumption. In the case where optimization is required, the

Newton-Raphson Method is often applied.

l(β̃) = −1
2

∑N
i=1{ni ln (2π) + ln ˜|Vi|+ (Ỹi − X̃iβ̃)T Ṽi

−1
(Ỹi − X̃iβ̃)}

β̃(θ̃) = (XTV (θ̃)−1X)−1XTV (θ̃)−1Ỹ

β̃ = β̃i−1 + U(β̃i−1)

U ′ (β̃i−1)

Furthermore, Lange and Laird (1989) have showed that the variance of MLE of

fixed effects is strongly dependent on a covariance structure, but the variance

estimates of fixed effects in a model with random intercept and random slope are

unbiased even when the true covariance structure implies more random effects

than specified.

So far, the robustness of the fixed effects of the LME models to non-normal dis-

tribution of random effects and misspecified covariance structure had been well

researched on, but robustness of the fixed effects, from the MLE inference, to non-

normal distribution of errors does not seem to have gotten enough attention of

researchers. Then these questions come up: Is maximum likelihood inference from

the linear mixed effects model robust to non-normal distribution of errors? If it

is, how robust is it? The answers to these questions are the motivations of this

thesis [7].
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Checking an LME Fitted model

2.1 The Goodness of Fit of a Model

One of the traditional practices of fitting with the linear mixed effects model is

checking goodness of fit of an LME fitted model. The checking of the fitted model

consists of verification of whether the assumptions of the normal distributions

of the random effects and the errors and homoscedasticity (constant variance of

errors) are achieved in the model.

There is a number of test, which is often applied to check a model’s goodness of fit

such as the QQ plot of Cholesky residuals, the Shapiro-Wilk test, the Royston’s

V
′

Statistic, and χ2 distribution. The tests are mainly used to check a deviation

from the LME assumption of normal distribution.

2.2 Cholesky Residuals

In the linear mixed effects model, the Cholesky residuals are crucial to check a

departure from the normal distribution. Sometimes, residuals are correlated and

cannot be used to perform the test for a deviation from the normal distribution.

In the case of residual correlation, the Cholesky residuals are calculated which are

used to perform the test.

R̃i = L̃
T

(Ỹ i − X̃iβ̃) (2.1)

25
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The uncorrelated residuals are calculated by using the upper triangle of Cholesky

decomposed covariance matrix (Vi), L
T . The computation is done as shown in

the equation 2.1. Then, the QQ-plot of the Cholesky residuals are used as the

good basis to check departure from a normal distribution. The quantiles of stan-

dard normal are usually plotted against the standardized residuals to assess the

assumption (of normal distribution).

The figure 2.1 shows that a fitted model is good as there is a linear relationship

between the quantiles of standard normal and the standardized residuals. The

linearity between the quantiles of standard normal and the standardized residuals

means that the assumption (of the normal distribution) is satisfied.

However, the figure 2.2 shows a model that does not satisfy the assumption of

the (normal) distribution since there is a non-linearity between the quantiles of

standard normal and the standardized residuals [7].

Figure 2.1: A QQ-Plot for Checking Departure from Normal a Distribution
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Figure 2.2: A QQ-Plot for Checking Departure from a Normal Distribution

2.3 χ2 Distribution for a Model Check

Sometimes, the need to check an influential subject or unit in a model may present

itself. When such a need arises, it is accomplished using χ2 distribution for the

model check. In 2004, Park and Lee made such proposition to check departure

from normal distribution using the equation 2.2. On the other hand, it is advisable

to use the QQ-plot to check departure from a normal distribution because χ2 is

less sensitive to a deviation from normality assumption [7].

R̃i = (Ỹi − X̃iβ̃)T Ṽi
−1

(θ̃)(Ỹi − X̃iβ̃) (2.2)

Ỹi−X̃iβ̃

L̃
∼ N(0, 1) whereas ( Ỹi−X̃iβ̃

L̃
)2 = (Ỹi − X̃iβ̃)T Ṽi

−1
(θ̃)(Ỹi − X̃iβ̃) ∼ χ2(ni)
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2.4 Shapiro-Wilk Test

The Shapiro-Wilk test is often used to test whether a sample is from a normal

distribution. The test was published by Samuel Sanford Shapiro and Martin Wilk

in 1965 . The test statistic is as shown in the equation 2.3.

p− value =
(
∑n

i=1 ciyi)
2∑n

i=1(yi − ȳ)2
(2.3)

yi - the ith ordered statistic; that is the ith smallest number in a sample and ȳ -

the average of the ordered statistic.

C̃ =
M̃

T
Ṽ

−1

(M̃
T
Ṽ

−1
Ṽ

−1
M̃)

1
2

(2.4)

The vector C̃ = [c1, c2, . . . , cn] is caculated as shown in the equation 2.4, where

M̃ = [m1,m2, . . . ,mn] - the expected values of the ordered statistic and V −1 -

the covariance matrix of the ordered statistic Ỹ = [y1, y2, . . . , yn].

The test is based on null hypothesis that a population is normally distributed: the

null hypothesis is rejected if p− value is less than a chosen α level, which means

that the sample of the data is not from a normal distribution or not normally

distributed. When the p− value is greater than the chosen α level, it an evidence

for the null hypothesis, which is that the sample is from a normal distribution or

normally distributed [8].

For example, the often used α level is 0.05. If p− value < 0.05, the sample of the

data is not from a normal distribution. If p − value > 0.05 , it an evidence that

the sample is from a normal distribution.
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Research Procedure

3.1 The Simulation Setup

The simulation setup was planned in a way to study the robustness of the param-

eter estimates to the linear mixed effects model with independent, homoscedastic,

but not normally distributed errors. The growth curve model shown in the equa-

tion 1.10 was used to generate datasets with conformity to the LME assumptions

such as the normal distributions of random effects and errors, homoscedasticity of

error variances, and independence of errors.

The datasets were generated from a random intercept and random slope, RIRS,

model and random intercept, RI, model using the growth curve model (equa-

tion 1.10). The reason for the generated datasets from the two models that con-

formed to the LME assumptions was to fit the generated data and study the es-

timation property of the linear mixed effects model to such dataset, which would

pinpoint difference in the (estimation) properties when the errors are not from a

normal distribution.

Assuming correlated random effects, the values for the random intercept, αi0, and

random slope, αi1, for the unit i in the sample were sampled from a multivariate

normal distribution using Cholesky upper triangle matrix of the random-effects

covariance matrix. The sampling model is shown in the equation 3.1.

[
αi0

αi1

]
=

[
0

0

]
+ chol(

[
32 −0.225

−0.225 0.12

]
)T

[
Z1

Z2

]
(3.1)

29
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Where Z1 ∼ N(0, 1) and Z2 ∼ N(0, 1). The normally distributed errors, eij ∼
N(0, σ2

e = 25) and the sampled values for the random intercept and random slope

for unit i were used in the growth curve model to generate datasets for the case

where all the LME model assumptions were conformed to.

The true values that were assigned to the fixed effects of the growth curve model

were obatined from the MADRS data. The Montgomery–Åsberg Depression Rat-

ing Scale, abbreviated as (MADRS), is a ten-item diagnostic questionnaire which

psychiatrists use to measure the severity of depressive episodes in patients with

mood disorders. It was designed in 1979 by British and Swedish researchers as an

adjunct to the Hamilton Rating Scale for Depression (HAMD), which would be

more sensitive to the changes brought on by antidepressants and other forms of

treatment than the Hamilton Scale was [9]. Hence, the fixed effects were assigned

as: β0 = 27, β1 = −0.2, β2 = −2, and β3 = −0.15 using MADR data.

Yij = β0 + α0i + β1tij + αi1tij + β2Xi + β3Xitij + eij. (3.2)

The representations of the fixed effects can be inferred from the growth curve

model shown in the equation 3.2. The β3 is the fixed effect for interaction between

time and the discrete covariate, Xi, in the model, which can be estimated when

data are fitted with interaction between the two covariates.

The discrete covariate, Xi that takes zero or one , is the covariate for a treatment

received by a unit. let’s suppose that the treatment is t. Then Xi is one for

individuals (units) that received the t treatment, but it is zero for the individuals

that did not receive the treatment.

Xi = {
1 ∀ t

0 ∀ otherwise

The times of measurements, tij, were spaced at the interval of ten. That is

the time vector, ti = [0, 10, 20, 30, 40] for sparsely balanced data; where j =

1, 2, 3, . . . , ni = 5. For densely balanced data, ti = [0, 10, 20, 30, 40, 50, 60, 70]

where j = 1, 2, 3, . . . , ni = 8.

In the case of unbalanced data, the interval of measurement is the same as in the

balanced measurement. The only difference is that the number of measurements,
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ni, is dependent on a unit i where ni = 3, 4, 5, 6 or 8. That is the length of the

time vector, ti, can be three, four, five, six or eight in this case depending on a

unit.

3.2 Sampling Process

The sample size, N , which is the number of units or individuals can be chosen

from 6 to 1000. The reason for the design is to create many options for chosing

sample size which is important to run a simulation on any setting and make an

observation. Mainly, the sample sizes, 6, 10, 16, 20, 40, 60, 100 and 200, were used

in the simulation. The intra-subject structure of generated datasets is made to

assume balanced or unbalanced form.

3.2.1 Balanced Data

The balanced data are either densely balanced or sparsely balanced: the intra-

subject structure of the sparsely balanced data has 5 calculated data at five differ-

ent time points and the structure of the densely balanced data has 8 data calcu-

lated at 8 different time points for each individual in a sample to create a balanced

longitudinal-data form; that is the same with saying that n1 = n2, . . . ,= nN , where

i = 1, 2, . . . , N . The examples of the generated sparsely balanced data and densely

balanced data are shown in the table 3.1 and the table 3.2 respectively.

Table 3.1: Sparsely balanced data, ni = 5

Unit Xi tij Yij

1 1 0 0 29.490115
2 1 0 10 25.001415
3 1 0 20 19.365212
4 1 0 30 14.967274
5 1 0 40 11.056047
6 2 1 0 25.617040
7 2 1 10 27.536993
8 2 1 20 29.151730
9 2 1 30 31.393381
10 2 1 40 33.669943
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Table 3.2: Densely balanced data, ni = 8

Unit Xi tij Yij

1 1 0 0 29.795796
2 1 0 10 26.463944
3 1 0 20 25.716627
4 1 0 30 21.327139
5 1 0 40 18.638561
6 1 0 50 15.919713
7 1 0 60 13.419375
8 1 0 70 11.824865
9 2 1 0 29.060260
10 2 1 10 26.887011
11 2 1 20 24.660482
12 2 1 30 22.797123
13 2 1 40 20.557486
14 2 1 50 18.147173
15 2 1 60 16.132496
16 2 1 70 13.997739

3.2.2 Unbalanced Data

Unlike the balanced data, the unbalanced data have intra-subject structure in

which individuals can have different number of data calculated at different number

of time points.

In the case of unbalanced data, there is a random intra-subject structure. The

random intra-subject structure is modeled with the equation 3.3.

nr = sscale(ni − 1) (3.3)

where ni was randomly sampled from this set of number: {3,4,5,6,8}, sscale - the

longitudinal interval between two data, nr - the randomly sampled number of data

calculated for an individual in a sample. An example of generated unbalanced data

is shown in the table 3.3.
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Table 3.3: Unbalanced data

Unit Xij tij Yij

1 1 0 0 37.537016
2 1 0 10 18.138316
3 1 0 20 27.103178
4 1 0 30 23.413606
5 1 0 40 33.874424
6 1 0 50 31.232964
10 2 0 0 35.082150
11 2 0 10 21.260379
12 2 0 20 9.909056
13 2 0 30 6.443633
19 3 1 0 31.987610
20 3 1 10 14.960095
21 3 1 20 17.879594
22 3 1 30 10.838117
28 4 1 0 20.765595
29 4 1 10 18.750420
30 4 1 20 9.934463
31 4 1 30 4.668222
32 4 1 40 8.720113

3.3 Models for Data Generation

The data used in running the simulation were generated using the model shown

in equation 1.10. The datasets for the random intercept and random slope model,

abbreviated as RIRS, were generated by sampling from two different normal dis-

tributions for the random effects in the model - αi0 ∼ N(0, σ2
0) and αi1 ∼ N(0, σ2

1).

The errors were either sampled from a normal distribution or skewed distribution

depending on a simulation setting. The fixed effects used in the model were the

ones specified on the MADRS data description. Also, the R facilities for U [0, 1],

N(µ, σ2), and other distributions such as exponential distribution and gamma

distribution were used for the data generation.

On the other hand, the data for the random intercept, RI, model were generated by

omitting the random slope and sampling from normal distribution for the random

intercept in the model and hence, the effect of the random slope was not considered

in the RI model. Apart from the omission of the random slope, the fixed effects

and sampling processes in the RI model were implemented exactly as they were
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done in the RIRS model. The data generated are in long format as shown in the

table [3.1 3.2, 3.3].

3.4 RIRS Models

Step One

In the first step, the two functions called BalancedData and UnbalancedData were

implemeted to generate data from RIRS model where all the LME assumptions

were exactly implemented as stated in the assumptions; they are: αi0 ∼ N(0, σ2
0),

αi1 ∼ N(0, σ2
1), eij ∼ N(0, σ2

e) and
∑

= σ2
eI which implies independency and

homoscedasticity of errors. The data generated in the step one were used as

validation bases.

The only difference between the two functions is that the BalancedData is used to

generate balanced longitudinal data, but the function, UnbalancedData, is used to

generate unbalanced data. Data generated from the two functions are important

to study and verify whether there is any impact on the LME model due to the

balancedness or unbalancedness of data.

Step Two

In the step two, data were generated using the same model (1.10). However, a

corrupted normal distribution was used as the error distribution in this case. While

generating each datum, the error used in the calculation was sampled from the

corrupted normal distribution which is a combination of two normal distributions.

The functions that were implemented and used to generate the data in this step

were called SymBalancedData and SymUnbalancedData. The prefix of the func-

tion, Sym, was derived from the fact that the error distribution is symmetric. The

distribution is as shown in the following.

f(eij) = 0.5
1

0.6
√

2π
exp(−1

2

(eij − 1.9)2

0.62
) + 0.5

1

0.6
√

2π
exp(−1

2

(eij + 1.9)2

0.62
) (3.4)

Let’s suppose that the first normal distribution is N1 and the second normal dis-

tribution is N2 in the equation 3.4. Hence the equation is reduced to:
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f(eij) = 0.5N1(−1.9, σ2 = 0.62) + 0.5N1(1.9, σ2 = 0.62),

E(eij) = 0.5E[N1] + 0.5E[N2] = 0.5×−1.9 + 0.5× 1.9 = 0,

Var(eij) = 0.52Var[N1] + 0.52Var[N2] = 0.52 × 0.62 + 0.52 × 0.62 = 0.18.

Figure 3.1: The Symmetric Corrupted Normal Distribution of Error

Step Three

f(eij) = 0.3
1

1.9
√

2π
exp(−1

2

(eij − 1.3)2

1.92
) + 0.7

1

3.1
√

2π
exp(−1

2

(eij + 0.6)2

3.12
) (3.5)

In the step three, the errors were sampled from a slightly asymmetric distribution

shown in the equation 3.5. The sampled errors were also used to produce the data

which their errors are from the (asymmetric) distribution. The distribution has

expectation that is approximately zero.

f(eij) = 0.3N1(1.3, σ2 = 1.92) + 0.7N1(−0.6, σ2 = 3.12),

E(eij) = 0.3E[N1] + 0.7E[N2] = 0.3× 1.3 + 0.7×−0.6 ≈ 0,
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Figure 3.2: The Asymmetric Corrupted Normal Distribution of Error

Var(eij) = 0.32Var[N1] + 0.72Var[N2] = 0.32 × 1.92 + 0.72 × 3.12 = 5.

The functions that were implemented and used to generate data in the step three

were called AsymBalancedData and AsymUnbalancedData.

Step Four

The gamma probability distribution function is

f(x) =
baxa−1exp(−bx)

Γ(a)
(3.6)

The expectation of the probability distribution function (3.6), E[X] = a
b

and the

variance, Var(X) = a
b2

.

eij = X − a

b
(3.7)

Where X was sampled from the gamma distribution with the shape parameter,

a = 2, and rate parameter, b =
√

1.9
2

. Then the E[eij] = 0 and Var[eij] = 2 2
19

.
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Figure 3.3: The Skewed Distribution: Gamma

The functions that were implemented and used to generate the skewed data with

the error samples from the distribution shown in the equation 3.7 were: GamBal-

ancedData and GamUnbalancedData.

Step Five

Highly skewed data were synthesized by using the errors sampled from an expo-

nential distribution with mean that is equal to zero. The rate parameter, λ = 0.9.

f(x) = λexp(−λx)H(x) (3.8)

eij = X − 1

λ
(3.9)

Where X was sampled from the exponential distribution (3.8). Hence E[eij] = 0.

and Var[eij] = 1
λ2

.

The functions that were implemented and used to produce the highly skewed data

were: ExpoBalancedData and ExpoUnbalancedData.
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Figure 3.4: The Very Skewed Distribution: Exponential

3.5 RI Models

The data of the random intercept, RI, model were generated in the same way other

datasets in the random intercept and random slope, RIRS, model were generated.

The only difference between the data of the two models is that the impact of

random slope is omitted in the RI model, but random slope is present in the RIRS

model and influenced its data generation.

The functions that were used in the RIRS models were used in the RI models with

random slope deleted from the model of the equation 1.10.



Chapter 4

Simulations and Results

In this chapter, simulations to study the robustness of the LME model to non-

normal distributions of errors were carried out and the results presented. There

are five cases for which the simulations were performed. In the case 1, the errors

and random effects are normally distributed. However, only the probability dis-

tribution of error is deformed in contrast to the LME assumptions in the case 2

through to the case case 5.

The simulations were carried out methodically; that is that the ’goodness-of-fit’

analyses were firstly checked to assess the distributions of the errors and random

effects. The observed responses were plotted against the fitted values of the units

to check for a mismatch or an outlying observation before assesing the robustness

of the LME model to a deformed error distribution.

4.1 Case 1: Model Validation

The case 1 was used as the validation case (because all the assumptions for the

random effects and errors in the typical LME models were strictly considered in

this case as it would help to pinpoint a change in the parameter estimates due to

a deformation of error distribution). The error distribution is normal with mean,

µ = 0 and the variance, σ2
e = 25. The random effects are correlated and they are

generated from the multivariate normal distribution as shown in the equation 3.1.

39
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4.1.1 Simulation Settings for Case 1

In reference to the equation 1.10, Yij = β0+α0i+β1tij+αi1tij+β2Xi+β3Xitij+eij,

the errors, eij ∼ N(0, σ2
e = 25) and the random-effects vector, α =

[
α0i

α1i

]
∼

MVN(0,
∑

). Where

∑
=

[
32 −0.225

−0.225 0.12

]

In this case 1, the data generated from the model (1.10), in which all the LME

assumptions were considered, were fitted using the LME method implemenented

by Jose C. Pinheiro. The ’goodness-of-fit’ analysis and the validation of the LME

estimation property to the error distribution were assessed as shown in the follow-

ing.

Checking the Goodness of Fit for Case 1

Figure 4.1: Validation Model: qqnorm Plot for Residuals

The figure 4.1 shows that residuals were samples drawn from a normal distribution,

so errors, eij, are normally distributed. The samples of the residuals were also

tested with the Shapiro-Wilk test and the test statistic shows that the samples
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Figure 4.2: Validation Model: qqnorm Plot for Random Effects

Figure 4.3: Validation Model: Responses against Fitted Values

were also from a normal distribution as the value of the statistic is, W= 0.9988

with the p− value = 0.7419. The p− value implies that null hypothesis that the
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samples were drawn from a normal distribution is not rejected.

The figure 4.2 shows that the samples of the random effects for intercept and

slope were also drawn from normal distributions. The figure 4.3, the plot of the

responses against fitted values, shows the responses match with the fitted values.

Case 1: the LME Validation

The validation of the LME model was simulated and the obtained results are

presented in the following tables. The LME validation as well as the robustness

was measured with coverage probability, the proportion of times a confidence

interval contains the parameter values. Such interval is mostly based on 95%

(0.95) confidence interval.

The simulation iteration was set to 1000. The number of units, N , used in the

simulation were 6,10, 16, 20, 40, 60, 100, and 200. The number of data points in

each unit, ni, used in the simulation were 5 and 8. In the case of unbalanced data,

ni = 3, 4, . . . , or 8.

The simulations were run for balanced random intercept and random slope model,

abbreviated as RIRSb, unbalanced random intercept and random slope model,

RIRSu, balanced random intercept model, RIb, and unbalanced random intercept

model, RIu.

The tables are arranged in two columns: the first column contains tables for

simulated models where ni = 5 for sparsely balanced data . The second column

contains tables for simulated models where ni = 8 for densely balanced data.

However, the unbalanced data where the number of measurements, ni = 3, 4, 5, . . .

or 8, is random and dependent on a unit i is included both in the first column and

the second column.

N = 6
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.972 0.952 0.950 0.940
β1 0.964 0.974 0.954 0.940
β2 0.986 1.000 0.990 0.985
β3 0.954 0.960 0.947 0.950

N = 6
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.965 0.951 0.937 0.946
0.954 0.951 0.957 0.956
0.984 0.981 0.983 0.984
0.933 0.961 0.947 0.948
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N = 10
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.965 0.963 0.944 0.939
β1 0.967 0.971 0.947 0.950
β2 0.975 0.976 0.971 0.974
β3 0.957 0.957 0.951 0.948

N = 10
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.948 0.948 0.930 0.942
0.947 0.956 0.942 0.949
0.975 0.981 0.960 0.967
0.954 0.954 0.958 0.952

N = 16
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.948 0.943 0.942 0.943
β1 0.963 0.945 0.965 0.950
β2 0.969 0.970 0.951 0.955
β3 0.957 0.946 0.943 0.962

N = 16
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.944 0.954 0.947 0.949
0.939 0.951 0.955 0.934
0.961 0.960 0.967 0.962
0.946 0.949 0.945 0.943

N = 20
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.956 0.958 0.960 0.934
β1 0.944 0.944 0.953 0.950
β2 0.966 0.960 0.975 0.951
β3 0.956 0.926 0.952 0.948

N = 20
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.945 0.949 0.935 0.939
0.944 0.934 0.951 0.950
0.962 0.975 0.955 0.947
0.931 0.944 0.943 0.940

N = 40
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.944 0.931 0.942 0.952
β1 0.960 0.949 0.940 0.950
β2 0.963 0.953 0.959 0.952
β3 0.960 0.925 0.947 0.943

N = 40
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.937 0.953 0.943 0.947
0.947 0.940 0.952 0.953
0.937 0.940 0.963 0.950
0.949 0.936 0.957 0.944

N = 60
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.933 0.946 0.948 0.955
β1 0.948 0.931 0.958 0.944
β2 0.965 0.949 0.964 0.954
β3 0.936 0.926 0.954 0.958

N = 60
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.935 0.959 0.960 0.941
0.942 0.942 0.963 0.948
0.945 0.955 0.952 0.962
0.944 0.947 0.950 0.946
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N = 100
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.950 0.939 0.940 0.944
β1 0.949 0.944 0.934 0.950
β2 0.954 0.954 0.947 0.955
β3 0.953 0.952 0.942 0.957

N = 100
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.933 0.947 0.949 0.956
0.937 0.942 0.946 0.944
0.946 0.935 0.964 0.948
0.947 0.945 0.951 0.950

N = 200
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.955 0.942 0.946 0.947
β1 0.959 0.950 0.958 0.951
β2 0.941 0.946 0.957 0.948
β3 0.951 0.956 0.957 0.944

N = 200
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.942 0.946 0.946 0.957
0.943 0.942 0.943 0.948
0.943 0.949 0.941 0.959
0.942 0.940 0.949 0.952

4.2 Case 2: The Corrupted Distribution of Error

4.2.1 Simulation Settings for Case 2

As the simulation settings of case 1, the same settings were used in the case

2 except that the corrupted normal distribution, a combination of two normal

distributions, was used in this case as the distribution of error. The expectation of

the corrupted distribution is zero. The distribution is shown in the equation 3.4;

that is:

f(eij) = 0.5N(1.9, 0.6) + 0.5N(−1.9, 0.6). Where E[eij] = 0 and Var[eij]=0.18.

Checking the Goodness of Fit for Case 2

The figure 4.4 shows that residuals were drawn from a normal distribution as the

standardized residuals linearly match with the quantiles of standard normal. The

Shapiro-Wilk test was tested on the residuals and the test statistic also showed

that the residuals were from the normal distribution as the value is W = 0.9979

with p−value = 0.2224 for acceptance against 0.05 for rejection of the hypothesis.

Also, the figure 4.5 shows that the random effects for intercept and slope of the

model were also drawn from normal distributions. Hence, they are normally dis-

tributed.

The figure 4.6, the plot of responses against fitted values, depicts that the responses

are matches of the fitted values as outliers are not present in the plot.
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Figure 4.4: Corrupted Distribution: qqnorm Plot for Residuals

Figure 4.5: Corrupted Distribution: qqnorm Plot for Random Effects
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Figure 4.6: Corrupted Distribution: Responses against Fitted Values

The LME Robustness for Case 2

N = 6
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.900 0.886 0.885 0.901
β1 0.900 0.898 0.950 0.958
β2 0.944 0.946 0.955 0.955
β3 0.895 0.887 0.945 0.948

N = 6
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.892 0.894 0.893 0.902
0.895 0.904 0.956 0.943
0.952 0.954 0.955 0.943
0.884 0.910 0.948 0.949

N = 10
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.905 0.923 0.920 0.934
β1 0.911 0.922 0.948 0.946
β2 0.939 0.950 0.952 0.952
β3 0.920 0.920 0.951 0.950

N = 10
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.919 0.917 0.909 0.920
0.917 0.931 0.956 0.950
0.953 0.945 0.937 0.945
0.920 0.916 0.953 0.953
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N = 16
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.926 0.930 0.939 0.949
β1 0.930 0.921 0.950 0.949
β2 0.933 0.951 0.968 0.950
β3 0.932 0.924 0.951 0.959

N = 16
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.942 0.937 0.938 0.942
0.940 0.931 0.963 0.956
0.947 0.943 0.946 0.943
0.934 0.931 0.939 0.951

N = 20
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.938 0.938 0.926 0.945
β1 0.942 0.940 0.945 0.958
β2 0.948 0.954 0.953 0.955
β3 0.937 0.942 0.946 0.949

N = 20
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.928 0.946 0.932 0.943
0.941 0.940 0.939 0.949
0.946 0.956 0.949 0.952
0.926 0.932 0.946 0.955

N = 40
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.946 0.940 0.949 0.948
β1 0.938 0.944 0.954 0.952
β2 0.945 0.954 0.948 0.950
β3 0.949 0.952 0.941 0.944

N = 40
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.935 0.953 0.954 0.943
0.938 0.948 0.953 0.951
0.949 0.946 0.958 0.959
0.927 0.947 0.954 0.946

N = 60
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.953 0.949 0.936 0.945
β1 0.945 0.942 0.971 0.943
β2 0.945 0.959 0.936 0.945
β3 0.937 0.954 0.955 0.935

N = 60
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.944 0.951 0.956 0.940
0.939 0.953 0.953 0.941
0.959 0.955 0.947 0.935
0.956 0.950 0.953 0.950

N = 100
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.942 0.949 0.940 0.963
β1 0.938 0.936 0.948 0.949
β2 0.945 0.949 0.940 0.960
β3 0.937 0.947 0.942 0.955

N = 100
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.941 0.951 0.946 0.945
0.945 0.940 0.947 0.949
0.956 0.937 0.949 0.950
0.946 0.934 0.962 0.960
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N = 200
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.945 0.939 0.941 0.956
β1 0.948 0.961 0.946 0.944
β2 0.942 0.938 0.942 0.955
β3 0.944 0.951 0.950 0.952

N = 200
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.950 0.941 0.941 0.954
0.934 0.955 0.947 0.961
0.945 0.948 0.954 0.960
0.939 0.944 0.953 0.959

4.3 Case 3: Asymmetric Distribution of Error

4.3.1 Simulation Settings for Case 3

In the case 3, asymmetric distribution was used as the probability density func-

tion of the error. The distribution is the combination of two normal probabil-

ity density functions. The difference between the corrupted distribution and

the asymmetric distribution is that it is more skewed than the corrupted dis-

tribution. The distribution is detailed in the equation 3.5. That is f(eij) =

0.3N(1.3, 1.9) + 0.7N(−0.6, 3.1). The E[eij] ≈ 0 and Var[eij] = 5.

The simulation settings were the same with case 1 except that the probability

distribution of error used in this case was asymmetric.

Checking the Goodness of Fit for Case 3

The figure 4.7 depicts that the samples for the errors were sampled from a normal

distribution as in the previous cases. The Shapiro-Wilk test was conducted with

the samples and it indicates that the errors were from the distribution as the

values of the test statistic was W = 0.9991 with p−value = 0.8917 for acceptance

against 0.05 for rejection of the null hypothesis. The figure 4.8 shows also that

the random effects were drawn from a normal distribution. The figure 4.9 shows

that the responses match with the fitted values.
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Figure 4.7: Asymmetric Distribution: qqnorm Plot for Residuals

Figure 4.8: Asymmetric Distribution: qqnorm Plot for Random Effects
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Figure 4.9: Asymmetric Distribution: Responses against Fitted Values

The LME Robustness for Case 3

N = 6
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.944 0.923 0.925 0.920
β1 0.960 0.923 0.953 0.946
β2 0.981 0.972 0.977 0.967
β3 0.958 0.921 0.946 0.943

N = 6
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.924 0.938 0.889 0.919
0.896 0.942 0.946 0.945
0.974 0.978 0.980 0.976
0.905 0.954 0.937 0.955
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N = 10
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.927 0.938 0.939 0.930
β1 0.956 0.926 0.951 0.934
β2 0.957 0.958 0.950 0.964
β3 0.963 0.936 0.949 0.939

N = 10
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.928 0.915 0.933 0.925
0.926 0.922 0.949 0.947
0.959 0.957 0.954 0.965
0.924 0.920 0.953 0.945

N = 16
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.944 0.934 0.941 0.935
β1 0.951 0.917 0.946 0.950
β2 0.961 0.940 0.961 0.961
β3 0.942 0.923 0.948 0.956

N = 16
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.931 0.935 0.938 0.943
0.932 0.936 0.957 0.950
0.935 0.958 0.950 0.963
0.931 0.915 0.950 0.961

N = 20
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.952 0.934 0.950 0.947
β1 0.943 0.937 0.932 0.950
β2 0.959 0.952 0.960 0.957
β3 0.946 0.931 0.948 0.944

N = 20
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.933 0.942 0.931 0.948
0.928 0.934 0.951 0.957
0.938 0.955 0.946 0.953
0.926 0.931 0.955 0.958

N = 40
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.946 0.941 0.951 0.950
β1 0.942 0.955 0.948 0.937
β2 0.952 0.957 0.951 0.954
β3 0.954 0.942 0.944 0.939

N = 40
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.949 0.961 0.945 0.949
0.944 0.942 0.958 0.952
0.933 0.961 0.936 0.943
0.936 0.937 0.948 0.953

N = 60
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.948 0.950 0.943 0.961
β1 0.947 0.940 0.933 0.948
β2 0.942 0.943 0.953 0.966
β3 0.942 0.944 0.947 0.951

N = 60
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.947 0.951 0.947 0.950
0.948 0.942 0.962 0.959
0.958 0.961 0.955 0.958
0.955 0.945 0.947 0.952
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N = 100
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.942 0.951 0.950 0.953
β1 0.942 0.948 0.943 0.940
β2 0.943 0.949 0.951 0.964
β3 0.933 0.948 0.948 0.946

N = 100
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.949 0.949 0.949 0.946
0.954 0.946 0.960 0.948
0.942 0.949 0.955 0.950
0.950 0.945 0.951 0.953

N = 200
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.959 0.953 0.948 0.955
β1 0.958 0.949 0.946 0.958
β2 0.952 0.955 0.955 0.967
β3 0.965 0.947 0.946 0.943

N = 200
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.950 0.950 0.954 0.945
0.960 0.938 0.948 0.928
0.946 0.946 0.959 0.946
0.950 0.950 0.949 0.947

4.4 Case 4: Gamma Distribution of Error

Gamma distribution was used in the case 4 as the probability density function of

the error. The distribution is significantly more skewed than the other distributions

of error considered in the previous cases. For more details, reference can be made

to the equation 3.6.

4.4.1 Simulation Settings for Case 4

The simulation settings in this case were the same with the settings in the case 1,

the validation model. As usual, the only difference was that gamma distribution

was used as the distribution of the error. That is f(x) = Gamma(b, a). Where

b =
√

1.9
2

and a = 2; eij = X − a
b
. Then E[eij]=0 and Var[eij]= 2 2

19
.

Checking the Goodness of Fit for Case 4

Figure 4.10 depicts that the errors were drawn from a non-normal distribution as

the quantiles of standard normal are not linearly matched with the standardized

residuals. Hence, the errors are not normally distributed. The Shapiro-Wilk test

was performed with the samples and the test statistic was W = 0.9601 with

p− value < 2.2e−16. The p− value shows that the null hypothesis that the error

samples were drawn from a normal distribution was rejected.
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Figure 4.11 depicts that the random effects for intercept and slope were drawn

from normal distributions.

Figure 4.12 shows that the responses matched with the fitted values in this case.

Figure 4.10: Gamma Distribution: qqnorm Plot for Residuals

Figure 4.11: Gamma Distribution: qqnorm Plot for Random Effects
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Figure 4.12: Gamma Distribution: Responses against Fitted Values

The LME Robustness for Case 4

N = 6
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.903 0.893 0.913 0.912
β1 0.919 0.912 0.952 0.930
β2 0.961 0.957 0.963 0.962
β3 0.917 0.913 0.956 0.952

N = 6
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.904 0.893 0.900 0.906
0.896 0.915 0.936 0.957
0.975 0.963 0.956 0.969
0.905 0.914 0.960 0.960

N = 10
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.915 0.931 0.921 0.921
β1 0.923 0.921 0.942 0.950
β2 0.963 0.954 0.950 0.951
β3 0.937 0.934 0.937 0.942

N = 10
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.934 0.943 0.928 0.925
0.933 0.925 0.951 0.947
0.956 0.970 0.953 0.955
0.928 0.943 0.957 0.946
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N = 16
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.933 0.935 0.945 0.929
β1 0.933 0.929 0.958 0.940
β2 0.942 0.941 0.953 0.944
β3 0.946 0.928 0.948 0.949

N = 16
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.929 0.946 0.937 0.939
0.938 0.932 0.961 0.954
0.955 0.966 0.932 0.954
0.929 0.915 0.946 0.957

N = 20
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.930 0.931 0.943 0.952
β1 0.934 0.921 0.940 0.949
β2 0.939 0.940 0.950 0.953
β3 0.926 0.927 0.942 0.958

N = 20
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.951 0.929 0.922 0.943
0.940 0.937 0.961 0.950
0.946 0.944 0.956 0.953
0.944 0.936 0.944 0.957

N = 40
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.950 0.941 0.945 0.945
β1 0.941 0.943 0.957 0.939
β2 0.956 0.938 0.958 0.938
β3 0.949 0.951 0.957 0.948

N = 40
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.948 0.956 0.938 0.950
0.968 0.952 0.953 0.957
0.959 0.952 0.946 0.957
0.964 0.952 0.949 0.951

N = 60
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.947 0.935 0.952 0.948
β1 0.936 0.940 0.948 0.960
β2 0.944 0.947 0.950 0.951
β3 0.947 0.934 0.950 0.950

N = 60
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.954 0.945 0.946 0.950
0.952 0.939 0.944 0.957
0.951 0.936 0.939 0.946
0.940 0.945 0.950 0.957

N = 100
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.946 0.953 0.950 0.941
β1 0.958 0.947 0.946 0.956
β2 0.954 0.954 0.956 0.956
β3 0.951 0.953 0.963 0.951

N = 100
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.954 0.937 0.951 0.958
0.949 0.937 0.952 0.955
0.949 0.943 0.944 0.955
0.945 0.943 0.954 0.965
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N = 200
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.941 0.952 0.949 0.946
β1 0.949 0.957 0.945 0.960
β2 0.940 0.950 0.952 0.943
β3 0.960 0.951 0.944 0.937

N = 200
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.946 0.954 0.952 0.945
0.939 0.954 0.956 0.947
0.959 0.952 0.944 0.961
0.947 0.948 0.946 0.951

4.5 Case 5: Exponential Distribution of Error

In this case, the most skewed data were generated. The exponential distribution

was used. It was more skewed than the gamma distribution used in the case 4. For

more details about the distribution, reference can be made to the equation 3.8.

4.5.1 Simulation Settings for Case 5

Also, the simulation settings used in the case 5 were the same with the settings

used in the case 1, the validation model, except that the exponential probability

desnity function was used as the distribution of the error. That is f(x) = exp(λ);

where λ = 0.9; eij = X − 1
λ
. Then E[eij]= 0 and Var[eij] = 1

λ2
.

Checking the Goodness of Fit for Case 5

The figure 4.13 depicts that the error samples were drawn from a non-normal

distribution because the quantiles of standard normal were not linearly matched

with standardized residuals. The Shapiro-Wilk test conducted on the samples

confirmed that the errors were not from a normal probability distribution as the

value of the statistic was W = 0.9601 with p − value < 2.2e−16. The value

shows that the hypothesis that the samples were from a normal probability density

function was rejected as the value is smaller than 0.05.

The figure 4.15 illustrates that responses correspond with the fitted values. The

outliers are not present in the figure.
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Figure 4.13: Exponential Distribution: qqnorm Plot for Residuals

Figure 4.14: Exponential Distribution: qqnorm Plot for Random Effects
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Figure 4.15: Exponential Distribution: Responses against Fitted Values

The LME Robustness for the Case 5

N = 6
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.892 0.902 0.887 0.909
β1 0.896 0.923 0.953 0.946
β2 0.956 0.973 0.955 0.965
β3 0.901 0.927 0.968 0.952

N = 6
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.898 0.895 0.907 0.886
0.897 0.908 0.949 0.960
0.960 0.957 0.961 0.959
0.900 0.905 0.958 0.939

N = 10
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.922 0.916 0.922 0.924
β1 0.919 0.934 0.942 0.942
β2 0.952 0.953 0.956 0.946
β3 0.926 0.920 0.963 0.942

N = 10
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.918 0.913 0.927 0.929
0.923 0.924 0.944 0.946
0.955 0.951 0.963 0.954
0.916 0.932 0.952 0.950



Chapter 4. Simulations and Results 59

N = 16
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.942 0.940 0.947 0.938
β1 0.915 0.935 0.950 0.942
β2 0.953 0.956 0.963 0.954
β3 0.926 0.934 0.954 0.957

N = 16
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.922 0.947 0.938 0.937
0.918 0.923 0.956 0.944
0.941 0.951 0.951 0.952
0.944 0.923 0.949 0.949

N = 20
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.945 0.942 0.940 0.941
β1 0.936 0.942 0.958 0.952
β2 0.953 0.951 0.962 0.954
β3 0.936 0.936 0.963 0.942

N = 20
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.930 0.934 0.942 0.936
0.929 0.932 0.943 0.955
0.953 0.947 0.950 0.952
0.938 0.935 0.941 0.955

N = 40
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.944 0.956 0.941 0.937
β1 0.952 0.964 0.953 0.948
β2 0.942 0.960 0.945 0.947
β3 0.945 0.956 0.946 0.960

N = 40
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.940 0.943 0.943 0.953
0.940 0.948 0.955 0.945
0.945 0.937 0.951 0.955
0.933 0.948 0.952 0.949

N = 60
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.950 0.950 0.944 0.952
β1 0.941 0.959 0.951 0.953
β2 0.948 0.953 0.950 0.958
β3 0.949 0.960 0.956 0.963

N = 60
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.957 0.947 0.950 0.941
0.945 0.949 0.952 0.942
0.956 0.953 0.958 0.965
0.956 0.948 0.954 0.942

N = 100
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.951 0.951 0.944 0.953
β1 0.950 0.952 0.949 0.955
β2 0.944 0.961 0.951 0.949
β3 0.960 0.945 0.946 0.941

N = 100
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.955 0.948 0.946 0.958
0.959 0.949 0.942 0.955
0.965 0.938 0.938 0.954
0.957 0.939 0.945 0.945

N = 200
RIRSb RIb RIRSu RIu

ni 5 5 3-8 3-8
β0 0.949 0.958 0.946 0.954
β1 0.937 0.952 0.957 0.956
β2 0.964 0.946 0.949 0.949
β3 0.953 0.946 0.940 0.949

N = 200
RIRSb RIb RIRSu RIu

8 8 3-8 3-8
0.941 0.957 0.947 0.949
0.952 0.949 0.947 0.952
0.951 0.950 0.948 0.948
0.948 0.956 0.952 0.945
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Conclusions

The method and covariance structure used in the simulation were respectively

restricted maximum likelihood (REML) (1.45) and general symmetric positive-

definite matrix, (pdSym), which are defaults in the LME.

The rule of thumb, RT=[p̃−2σ, p̃+2σ], is used to pinpoint an unusual estimate for

the coverage probability, p; where p̃ is the average and σ is the standard deviation

of the estimates for the probability. An interval of rule of thumb is created for

each fixed effect in the model: β0, β1, β2, and β3. These are the averages of the

estimates of coverage probability and rules of thumb for the fixed effects in the

model; β0 : p̃0 = 0.949, RT0 = [0.929, 0.966]; β1 : p̃1 = 0.952, RT1 = [0.932, 0.972];

β2 : p̃2 = 0.963, RT2 = [0.935, 0.991]; β3 : p̃3 = 0.949, RT3 = [0.930, 0.969]. Only

the simulated results from the validation model were used with respect to the fixed

effects to make the estimate for p̃ and create the interval, RT , as they represent

the true estimation properties of the linear mixed effects model, LME.

Using the intervals of rule of thumb for the fixed effects to assess the statistical

uncertainty of the LME estimation property, the validation case shows a property

by which a very few estimates for the coverage probability for the fixed effects

fall outside the intervals of the rule of thumb. The falling of estimate outside the

interval, RT, is observed among the estimates (of coverage probability) for the

fixed effects in the random intercept, RI, model. In the tables, only the estimates

which are below the lower boundary of the intervals (RTs) are indicated with bold

face.

60
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Generally, the simulation results (of the validation case) indicate that the vali-

dation case works as expected because the proportions of times the confidence

intervals of the fixed-effects estimates contain the parameter values of the model

converges to 0.95 (95 %), which is 1−α confidence interval with the level, α = 0.05.

The details can be observed from the simulated results of the validation case.

In the case 2 where the symmetric corrupted normal distribution of error was

used, the LME robustness is impaired when the number of units used in the

simulation was set to N=6 as it can be seen from the tables for case two (2) that

many of the estimates fall outside their RT intervals though the fixed effect for

discrete covariate (β2) remains highly robust as observed in the validation. The

most affected are the fixed effect for the intercept (β0), time (β1), and interaction

between discrete covariate and time (β3). However, the robustness was recovered

as the number of units was increased from N=6 to N=200. The details can be

observed from the simulated results of the case two (2).

In the case 3 where the asymmetric corrupted normal distribution of error was

used, the robustness, measured by coverage probability, of the fixed effect for the

intercept (β0), slope (β1), interaction (β3) is impaired when N = 6. Meanwhile, the

robustness of fixed effect for the discrete covariate, β2, remains robust. While the

number of units was increased from N=6 to N=200, the robustness was recovered

as in the case two. The details can be observed from the simulated results of the

case three (3).

In the case 4 and case 5 where skewed responses and very skewed responses were

respectively generated with gamma error distribution and exponential error dis-

tribution, the same patterns that were observed in the case 2 and case 3 were also

observed in the case 4 and case 5.

When N = 6, another noticed property is that the robustness for the fixed ef-

fects for intercept and time were more impaired in the case 2 and case 5 where

symmetric corrupted normal distribution and exponential distribution were used

as the error distributions. This could be due to the fact that the symmetric cor-

rupted normal distribution looks more corrupted than the asymmetric corrupted

normal distribution and exponential distribution is more skewed than the gamma

distribution.

The observations that are extracted from the simulation results coincide with the

previous observations from the research conducted earlier by Jacqmin-Gadda H. et
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al: that the fixed-effects parameters from the linear mixed effects model are robust

irrepective of whether the error distribution is normal distribution or non-normal

distribution [7].

Additionally, the robustness of the fixed-effects parameters from the LME model

are generally more stable when the number of units is greater than or equal to

sixty, N ≥ 60. However, the robustness of the fixed effects for intercept (β0),

time (β1), and interaction between time and discrete covariate (β3) are impaired

when N < 60 in the cases where the errors have non-normal or corrupted normal

distribution. This could only be attributed to the growth curve model studied in

this thesis research.

The reason why the LME robustness is recovered when the number of units, N , is

increased, but impaired when the number of the units is decreased may be because

of the central limit theorem. The central limit theorem seems manifesting itself in

the equation 1.42. Hence, the estimate for the fixed-effects vector, β, is unbiased

and standard deviation of the estimate, SD(β), is fairly realistic which lead to

making a realistically better confidence interval when there is a sufficient number

of units irrespective of whether the errors have normal or non-normal distributions.

However, the confidence interval may shift to the right because of larger standard

deviation (larger variance) and the estimates for the fixed effects which are close

to the lower boundary of (confidence) interval may fall out of the interval, which

reduces the measure of robustness when the number of units is not sufficient.
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Appendix

The function, CoverageProbability, is used to estimate the coverage probability.

******************************************************************************

How to run the function:

Choose the option:

1 - Validation model

2 - Corrupted distribution: symetric distribution

3 - Asymetric distribution

4 - Skewed distribution: Gamma

5 - Very Skewed distribution: Exponential

Example , option <- 1

iteration <- 1000

N_Group <- 10 ,20...or 200 % Number of Units. Note: Any even number.

TimeVector <- c(0,10 ,20,30 ,40) or c(0 ,10,20,30 ,40,50,60 ,70)

MAX <- 9 % The maximum column number of a matrix

Step_Size <- 10

Start <- 0

*******************************************************************************

CoverageProbability <- function(option ,iteration , N_Groups , TimeVector , MAX , Step

_Size ,Start){

#Creation of Vector Variables

Bool.Vector1 <- vector(mode = "integer", length = iteration)

Bool.Vector2 <- vector(mode = "integer", length = iteration)

Bool.Vector3 <- vector(mode = "integer", length = iteration)

Bool.Vector4 <- vector(mode = "integer", length = iteration)

Bool.Vector5 <- vector(mode = "integer", length = iteration)

Bool.Vector6 <- vector(mode = "integer", length = iteration)

Bool.Vector7 <- vector(mode = "integer", length = iteration)

Bool.Vector8 <- vector(mode = "integer", length = iteration)

Bool.Vector9 <- vector(mode = "integer", length = iteration)
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Bool.Vector10 <-vector(mode = "integer", length = iteration)

Bool.Vector11 <-vector(mode = "integer", length = iteration)

Bool.Vector12 <-vector(mode = "integer", length = iteration)

Bool.Vector13 <-vector(mode = "integer", length = iteration)

Bool.Vector14 <-vector(mode = "integer", length = iteration)

Bool.Vector15 <-vector(mode = "integer", length = iteration)

Bool.Vector16 <- vector(mode = "integer", length = iteration)

i <- 1

B0 <- 27

B1 <- -0.2

B2 <- -2

B3 <- - 0.15

if(option ==1){

#For Balanced with Random Intercept and Random Slope

for(i in 1: iteration){

data <- BalancedData(N_Groups ,TimeVector)

data.lme <- try(lme(Response~Time*Type , data=data ,random=~Time|Id), silent=

TRUE)

interval.BalancedData <-try(intervals(data.lme), silent=TRUE)

if (class(data.lme)== ’try -error’ | class( interval.BalancedData)== ’try -

error’){

Bool.Vector1[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector2[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector3[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector4[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

}

else if(class( data.lme)!= ’try -error ’ & class( interval.BalancedData)!= ’

try -error’){

Bool.Vector1[i] <- 1*(interval.BalancedData$fix[1,1] < B0 & interval.

BalancedData$fix[1,3] > B0)

Bool.Vector2[i] <- 1*(interval.BalancedData$fix[2,1] < B1 & interval.

BalancedData$fix[2,3] > B1)

Bool.Vector3[i] <- 1*(interval.BalancedData$fix[3,1] < B2 & interval.

BalancedData$fix[3,3] > B2)

Bool.Vector4[i] <- 1*(interval.BalancedData$fix[4,1] < B3 & interval.

BalancedData$fix[4,3] > B3)

}

}

#For Balanced Without Random Slope

for(i in 1: iteration){

data <- BalancedData_RI(N_Groups ,TimeVector)
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data.lme <- try(lme(Response~Time*Type , data=data ,random=~1|Id), silent=TRUE

)

interval.BalancedData <-try(intervals(data.lme), silent=TRUE)

if (class(data.lme)== ’try -error’ | class( interval.BalancedData)== ’try -

error’){

Bool.Vector5[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector6[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector7[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector8[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

}

else if(class( interval.BalancedData)!= ’try -error’ & class( interval.

BalancedData)!= ’try -error ’){

Bool.Vector5[i] <- 1*(interval.BalancedData$fix[1,1] < B0 & interval.

BalancedData$fix[1,3] > B0)

Bool.Vector6[i] <- 1*(interval.BalancedData$fix[2,1] < B1 & interval.

BalancedData$fix[2,3] > B1)

Bool.Vector7[i] <- 1*(interval.BalancedData$fix[3,1] < B2 & interval.

BalancedData$fix[3,3] > B2)

Bool.Vector8[i] <- 1*(interval.BalancedData$fix[4,1] < B3 & interval.

BalancedData$fix[4,3] > B3)

}

}

#For Unbalanced with Random Intercept and Random Slope

for(i in 1: iteration){

data <- UnbalancedData(N_Groups ,MAX ,Step_Size ,Start)

data.lme <- try(lme(Response~Time*Type , data=data ,random=~Time|Id), silent=

TRUE)

interval.BalancedData <-try(intervals(data.lme), silent=TRUE)

if (class(data.lme)== ’try -error’ | class( interval.BalancedData)== ’try -

error’){

Bool.Vector9[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector10[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector11[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector12[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

}

else if(class( interval.BalancedData)!= ’try -error’ & class( interval.

BalancedData)!= ’try -error ’){

Bool.Vector9[i] <- 1*(interval.BalancedData$fix[1,1] < B0 & interval.

BalancedData$fix[1,3] > B0)
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Bool.Vector10[i] <- 1*(interval.BalancedData$fix[2,1] < B1 & interval.

BalancedData$fix[2,3] > B1)

Bool.Vector11[i] <- 1*(interval.BalancedData$fix[3,1] < B2 & interval.

BalancedData$fix[3,3] > B2)

Bool.Vector12[i] <- 1*(interval.BalancedData$fix[4,1] < B3 & interval.

BalancedData$fix[4,3] > B3)

}

}

#For Unbalanced without Random Slope

for(i in 1: iteration){

data <- UnbalancedData_RI(N_Groups ,MAX ,Step_Size ,Start)

data.lme <- try(lme(Response~Time*Type , data=data ,random=~1|Id), silent=TRUE

)

interval.BalancedData <-try(intervals(data.lme), silent=TRUE)

if (class(data.lme)== ’try -error’ | class( interval.BalancedData)== ’try -

error’){

Bool.Vector13[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector14[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector15[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector16[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

}

else if(class( interval.BalancedData)!= ’try -error’ & class( interval.

BalancedData)!= ’try -error ’){

Bool.Vector13[i] <- 1*(interval.BalancedData$fix[1,1] < B0 & interval.

BalancedData$fix[1,3] > B0)

Bool.Vector14[i] <- 1*(interval.BalancedData$fix[2,1] < B1 & interval.

BalancedData$fix[2,3] > B1)

Bool.Vector15[i] <- 1*(interval.BalancedData$fix[3,1] < B2 & interval.

BalancedData$fix[3,3] > B2)

Bool.Vector16[i] <- 1*(interval.BalancedData$fix[4,1] < B3 & interval.

BalancedData$fix[4,3] > B3)

}

}

}

if(option ==2){

#For Balanced With Random Intercept and Random Slope

for(i in 1: iteration){

data <- SymBalancedData(N_Groups ,TimeVector)

data.lme <- try(lme(Response~Time*Type , data=data ,random=~Time|Id), silent=

TRUE)

interval.BalancedData <-try(intervals(data.lme), silent=TRUE)



Appendix A. Appendix 67

if (class(data.lme)== ’try -error’ | class( interval.BalancedData)== ’try -

error’){

Bool.Vector1[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector2[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector3[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector4[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

}

else if(class( interval.BalancedData)!= ’try -error’ & class( interval.

BalancedData)!= ’try -error ’){

Bool.Vector1[i] <- 1*(interval.BalancedData$fix[1,1] < B0 & interval.

BalancedData$fix[1,3] > B0)

Bool.Vector2[i] <- 1*(interval.BalancedData$fix[2,1] < B1 & interval.

BalancedData$fix[2,3] > B1)

Bool.Vector3[i] <- 1*(interval.BalancedData$fix[3,1] < B2 & interval.

BalancedData$fix[3,3] > B2)

Bool.Vector4[i] <- 1*(interval.BalancedData$fix[4,1] < B3 & interval.

BalancedData$fix[4,3] > B3)

}

}

#For Balanced Without Random Slope

for(i in 1: iteration){

data <- SymBalancedData_RI(N_Groups ,TimeVector)

data.lme <- try(lme(Response~Time*Type , data=data ,random=~1|Id), silent=TRUE

)

interval.BalancedData <-try(intervals(data.lme), silent=TRUE)

if (class(data.lme)== ’try -error’ | class( interval.BalancedData)== ’try -

error’){

Bool.Vector5[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector6[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector7[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector8[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

}

else if(class( interval.BalancedData)!= ’try -error’ & class( interval.

BalancedData)!= ’try -error ’){

Bool.Vector5[i] <- 1*(interval.BalancedData$fix[1,1] < B0 & interval.

BalancedData$fix[1,3] > B0)

Bool.Vector6[i] <- 1*(interval.BalancedData$fix[2,1] < B1 & interval.

BalancedData$fix[2,3] > B1)

Bool.Vector7[i] <- 1*(interval.BalancedData$fix[3,1] < B2 & interval.

BalancedData$fix[3,3] > B2)

Bool.Vector8[i] <- 1*(interval.BalancedData$fix[4,1] < B3 & interval.

BalancedData$fix[4,3] > B3)
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}

}

#For Unbalanced with Random Intercept and Random Slope

for(i in 1: iteration){

data <- SymUnbalancedData(N_Groups ,MAX ,Step_Size ,Start)

data.lme <- try(lme(Response~Time*Type , data=data ,random=~Time|Id), silent=

TRUE)

interval.BalancedData <-try(intervals(data.lme), silent=TRUE)

if (class(data.lme)== ’try -error’ | class( interval.BalancedData)== ’try -

error’){

Bool.Vector9[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector10[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector11[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector12[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

}

else if(class( interval.BalancedData)!= ’try -error’ & class( interval.

BalancedData)!= ’try -error ’){

Bool.Vector9[i] <- 1*(interval.BalancedData$fix[1,1] < B0 & interval.

BalancedData$fix[1,3] > B0)

Bool.Vector10[i] <- 1*(interval.BalancedData$fix[2,1] < B1 & interval.

BalancedData$fix[2,3] > B1)

Bool.Vector11[i] <- 1*(interval.BalancedData$fix[3,1] < B2 & interval.

BalancedData$fix[3,3] > B2)

Bool.Vector12[i] <- 1*(interval.BalancedData$fix[4,1] < B3 & interval.

BalancedData$fix[4,3] > B3)

}

}

#For Unbalanced without Random Slope

for(i in 1: iteration){

data <- SymUnbalancedData_RI(N_Groups ,MAX ,Step_Size ,Start)

data.lme <- try(lme(Response~Time*Type , data=data ,random=~1|Id), silent=TRUE

)

interval.BalancedData <-try(intervals(data.lme), silent=TRUE)

if (class(data.lme)== ’try -error’ | class( interval.BalancedData)== ’try -

error’){

Bool.Vector13[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector14[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector15[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))
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Bool.Vector16[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

}

else if(class( interval.BalancedData)!= ’try -error’ & class( interval.

BalancedData)!= ’try -error ’){

Bool.Vector13[i] <- 1*(interval.BalancedData$fix[1,1] < B0 & interval.

BalancedData$fix[1,3] > B0)

Bool.Vector14[i] <- 1*(interval.BalancedData$fix[2,1] < B1 & interval.

BalancedData$fix[2,3] > B1)

Bool.Vector15[i] <- 1*(interval.BalancedData$fix[3,1] < B2 & interval.

BalancedData$fix[3,3] > B2)

Bool.Vector16[i] <- 1*(interval.BalancedData$fix[4,1] < B3 & interval.

BalancedData$fix[4,3] > B3)

}

}

}

if(option ==3){

#For Balanced With Random Intercept and Random Slope

for(i in 1: iteration){

data <- AsymBalancedData(N_Groups ,TimeVector)

data.lme <- try(lme(Response~Time*Type , data=data ,random=~Time|Id), silent=

TRUE)

interval.BalancedData <-try(intervals(data.lme), silent=TRUE)

if (class(data.lme)== ’try -error’ | class( interval.BalancedData)== ’try -

error’){

Bool.Vector1[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector2[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector3[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector4[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

}

else if(class( interval.BalancedData)!= ’try -error’ & class( interval.

BalancedData)!= ’try -error ’){

Bool.Vector1[i] <- 1*(interval.BalancedData$fix[1,1] < B0 & interval.

BalancedData$fix[1,3] > B0)

Bool.Vector2[i] <- 1*(interval.BalancedData$fix[2,1] < B1 & interval.

BalancedData$fix[2,3] > B1)

Bool.Vector3[i] <- 1*(interval.BalancedData$fix[3,1] < B2 & interval.

BalancedData$fix[3,3] > B2)

Bool.Vector4[i] <- 1*(interval.BalancedData$fix[4,1] < B3 & interval.

BalancedData$fix[4,3] > B3)

}

}

#For Balanced Without Random Slope
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for(i in 1: iteration){

data <- AsymBalancedData_RI(N_Groups ,TimeVector)

data.lme <- try(lme(Response~Time*Type , data=data ,random=~1|Id), silent=TRUE

)

interval.BalancedData <-try(intervals(data.lme), silent=TRUE)

if (class(data.lme)== ’try -error’ | class( interval.BalancedData)== ’try -

error’){

Bool.Vector5[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector6[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector7[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector8[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

}

else if(class( interval.BalancedData)!= ’try -error’ & class( interval.

BalancedData)!= ’try -error ’){

Bool.Vector5[i] <- 1*(interval.BalancedData$fix[1,1] < B0 & interval.

BalancedData$fix[1,3] > B0)

Bool.Vector6[i] <- 1*(interval.BalancedData$fix[2,1] < B1 & interval.

BalancedData$fix[2,3] > B1)

Bool.Vector7[i] <- 1*(interval.BalancedData$fix[3,1] < B2 & interval.

BalancedData$fix[3,3] > B2)

Bool.Vector8[i] <- 1*(interval.BalancedData$fix[4,1] < B3 & interval.

BalancedData$fix[4,3] > B3)

}

}

#For Unbalanced with Random Intercept and Random Slope

for(i in 1: iteration){

data <- AsymUnbalancedData(N_Groups ,MAX ,Step_Size ,Start)

data.lme <- try(lme(Response~Time*Type , data=data ,random=~Time|Id), silent=

TRUE)

interval.BalancedData <-try(intervals(data.lme), silent=TRUE)

if (class(data.lme)== ’try -error’ | class( interval.BalancedData)== ’try -

error’){

Bool.Vector9[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector10[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector11[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector12[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

}
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else if(class( interval.BalancedData)!= ’try -error’ & class( interval.

BalancedData)!= ’try -error ’){

Bool.Vector9[i] <- 1*(interval.BalancedData$fix[1,1] < B0 & interval.

BalancedData$fix[1,3] > B0)

Bool.Vector10[i] <- 1*(interval.BalancedData$fix[2,1] < B1 & interval.

BalancedData$fix[2,3] > B1)

Bool.Vector11[i] <- 1*(interval.BalancedData$fix[3,1] < B2 & interval.

BalancedData$fix[3,3] > B2)

Bool.Vector12[i] <- 1*(interval.BalancedData$fix[4,1] < B3 & interval.

BalancedData$fix[4,3] > B3)

}

}

#For Unbalanced without Random Slope

for(i in 1: iteration){

data <- AsymUnbalancedData_RI(N_Groups ,MAX ,Step_Size ,Start)

data.lme <- try(lme(Response~Time*Type , data=data ,random=~1|Id), silent=TRUE

)

interval.BalancedData <-try(intervals(data.lme), silent=TRUE)

if (class(data.lme)== ’try -error’ | class( interval.BalancedData)== ’try -

error’){

Bool.Vector13[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector14[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector15[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector16[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

}

else if(class( interval.BalancedData)!= ’try -error’ & class( interval.

BalancedData)!= ’try -error ’){

Bool.Vector13[i] <- 1*(interval.BalancedData$fix[1,1] < B0 & interval.

BalancedData$fix[1,3] > B0)

Bool.Vector14[i] <- 1*(interval.BalancedData$fix[2,1] < B1 & interval.

BalancedData$fix[2,3] > B1)

Bool.Vector15[i] <- 1*(interval.BalancedData$fix[3,1] < B2 & interval.

BalancedData$fix[3,3] > B2)

Bool.Vector16[i] <- 1*(interval.BalancedData$fix[4,1] < B3 & interval.

BalancedData$fix[4,3] > B3)

}

}

}

if(option ==4){

#For Balanced With Random Intercept and Random Slope

for(i in 1: iteration){

data <- GamBalancedData(N_Groups ,TimeVector)

data.lme <- try(lme(Response~Time*Type , data=data ,random=~Time|Id), silent=

TRUE)

interval.BalancedData <-try(intervals(data.lme), silent=TRUE)
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if (class(data.lme)== ’try -error’ | class( interval.BalancedData)== ’try -

error’){

Bool.Vector1[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector2[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector3[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector4[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

}

else if(class( interval.BalancedData)!= ’try -error’ & class( interval.

BalancedData)!= ’try -error ’){

Bool.Vector1[i] <- 1*(interval.BalancedData$fix[1,1] < B0 & interval.

BalancedData$fix[1,3] > B0)

Bool.Vector2[i] <- 1*(interval.BalancedData$fix[2,1] < B1 & interval.

BalancedData$fix[2,3] > B1)

Bool.Vector3[i] <- 1*(interval.BalancedData$fix[3,1] < B2 & interval.

BalancedData$fix[3,3] > B2)

Bool.Vector4[i] <- 1*(interval.BalancedData$fix[4,1] < B3 & interval.

BalancedData$fix[4,3] > B3)

}

}

#For Balanced Without Random Slope

for(i in 1: iteration){

data <- GamBalancedData_RI(N_Groups ,TimeVector)

data.lme <- try(lme(Response~Time*Type , data=data ,random=~1|Id), silent=TRUE

)

interval.BalancedData <-try(intervals(data.lme), silent=TRUE)

if (class(data.lme)== ’try -error’ | class( interval.BalancedData)== ’try -

error’){

Bool.Vector5[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector6[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector7[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector8[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

}

else if(class( interval.BalancedData)!= ’try -error’ & class( interval.

BalancedData)!= ’try -error ’){

Bool.Vector5[i] <- 1*(interval.BalancedData$fix[1,1] < B0 & interval.

BalancedData$fix[1,3] > B0)

Bool.Vector6[i] <- 1*(interval.BalancedData$fix[2,1] < B1 & interval.

BalancedData$fix[2,3] > B1)

Bool.Vector7[i] <- 1*(interval.BalancedData$fix[3,1] < B2 & interval.

BalancedData$fix[3,3] > B2)
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Bool.Vector8[i] <- 1*(interval.BalancedData$fix[4,1] < B3 & interval.

BalancedData$fix[4,3] > B3)

}

}

#For Unbalanced with Random Intercept and Random Slope

for(i in 1: iteration){

data <- GamUnbalancedData(N_Groups ,MAX ,Step_Size ,Start)

data.lme <- try(lme(Response~Time*Type , data=data ,random=~Time|Id), silent=

TRUE)

interval.BalancedData <-try(intervals(data.lme), silent=TRUE)

if (class(data.lme)== ’try -error’ | class( interval.BalancedData)== ’try -

error’){

Bool.Vector9[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector10[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector11[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector12[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

}

else if(class( interval.BalancedData)!= ’try -error’ & class( interval.

BalancedData)!= ’try -error ’){

Bool.Vector9[i] <- 1*(interval.BalancedData$fix[1,1] < B0 & interval.

BalancedData$fix[1,3] > B0)

Bool.Vector10[i] <- 1*(interval.BalancedData$fix[2,1] < B1 & interval.

BalancedData$fix[2,3] > B1)

Bool.Vector11[i] <- 1*(interval.BalancedData$fix[3,1] < B2 & interval.

BalancedData$fix[3,3] > B2)

Bool.Vector12[i] <- 1*(interval.BalancedData$fix[4,1] < B3 & interval.

BalancedData$fix[4,3] > B3)

}

}

#For Unbalanced without Random Slope

for(i in 1: iteration){

data <- GamUnbalancedData_RI(N_Groups ,MAX ,Step_Size ,Start)

data.lme <- try(lme(Response~Time*Type , data=data ,random=~1|Id), silent=TRUE

)

interval.BalancedData <-try(intervals(data.lme), silent=TRUE)

if (class(data.lme)== ’try -error’ | class( interval.BalancedData)== ’try -

error’){

Bool.Vector13[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector14[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))
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Bool.Vector15[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector16[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

}

else if(class( interval.BalancedData)!= ’try -error’ & class( interval.

BalancedData)!= ’try -error ’){

Bool.Vector13[i] <- 1*(interval.BalancedData$fix[1,1] < B0 & interval.

BalancedData$fix[1,3] > B0)

Bool.Vector14[i] <- 1*(interval.BalancedData$fix[2,1] < B1 & interval.

BalancedData$fix[2,3] > B1)

Bool.Vector15[i] <- 1*(interval.BalancedData$fix[3,1] < B2 & interval.

BalancedData$fix[3,3] > B2)

Bool.Vector16[i] <- 1*(interval.BalancedData$fix[4,1] < B3 & interval.

BalancedData$fix[4,3] > B3)

}

}

}

if(option ==5){

#For Balanced With Random Intercept and Random Slope

for(i in 1: iteration){

data <- ExpoBalancedData(N_Groups ,TimeVector)

data.lme <- try(lme(Response~Time*Type , data=data ,random=~Time|Id), silent=

TRUE)

interval.BalancedData <-try(intervals(data.lme), silent=TRUE)

if (class(data.lme)== ’try -error’ | class( interval.BalancedData)== ’try -

error’){

Bool.Vector1[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector2[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector3[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector4[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

}

else if(class( interval.BalancedData)!= ’try -error’ & class( interval.

BalancedData)!= ’try -error ’){

Bool.Vector1[i] <- 1*(interval.BalancedData$fix[1,1] < B0 & interval.

BalancedData$fix[1,3] > B0)

Bool.Vector2[i] <- 1*(interval.BalancedData$fix[2,1] < B1 & interval.

BalancedData$fix[2,3] > B1)

Bool.Vector3[i] <- 1*(interval.BalancedData$fix[3,1] < B2 & interval.

BalancedData$fix[3,3] > B2)

Bool.Vector4[i] <- 1*(interval.BalancedData$fix[4,1] < B3 & interval.

BalancedData$fix[4,3] > B3)

}

}

#For Balanced Without Random Slope
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for(i in 1: iteration){

data <- ExpoBalancedData_RI(N_Groups ,TimeVector)

data.lme <- try(lme(Response~Time*Type , data=data ,random=~1|Id), silent=TRUE

)

interval.BalancedData <-try(intervals(data.lme), silent=TRUE)

if (class(data.lme)== ’try -error’ | class( interval.BalancedData)== ’try -

error’){

Bool.Vector5[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector6[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector7[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector8[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

}

else if(class( interval.BalancedData)!= ’try -error’ & class( interval.

BalancedData)!= ’try -error ’){

Bool.Vector5[i] <- 1*(interval.BalancedData$fix[1,1] < B0 & interval.

BalancedData$fix[1,3] > B0)

Bool.Vector6[i] <- 1*(interval.BalancedData$fix[2,1] < B1 & interval.

BalancedData$fix[2,3] > B1)

Bool.Vector7[i] <- 1*(interval.BalancedData$fix[3,1] < B2 & interval.

BalancedData$fix[3,3] > B2)

Bool.Vector8[i] <- 1*(interval.BalancedData$fix[4,1] < B3 & interval.

BalancedData$fix[4,3] > B3)

}

}

#For Unbalanced with Random Intercept and Random Slope

for(i in 1: iteration){

data <- ExpoUnbalancedData(N_Groups ,MAX ,Step_Size ,Start)

data.lme <- try(lme(Response~Time*Type , data=data ,random=~Time|Id), silent=

TRUE)

interval.BalancedData <-try(intervals(data.lme), silent=TRUE)

if (class(data.lme)== ’try -error’ | class( interval.BalancedData)== ’try -

error’){

Bool.Vector9[i] <- (3*(class(data.lme)== ’try -error ’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector10[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector11[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector12[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

}
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else if(class( interval.BalancedData)!= ’try -error’ & class( interval.

BalancedData)!= ’try -error ’){

Bool.Vector9[i] <- 1*(interval.BalancedData$fix[1,1] < B0 & interval.

BalancedData$fix[1,3] > B0)

Bool.Vector10[i] <- 1*(interval.BalancedData$fix[2,1] < B1 & interval.

BalancedData$fix[2,3] > B1)

Bool.Vector11[i] <- 1*(interval.BalancedData$fix[3,1] < B2 & interval.

BalancedData$fix[3,3] > B2)

Bool.Vector12[i] <- 1*(interval.BalancedData$fix[4,1] < B3 & interval.

BalancedData$fix[4,3] > B3)

}

}

#For Unbalanced without Random Slope

for(i in 1: iteration){

data <- ExpoUnbalancedData_RI(N_Groups ,MAX ,Step_Size ,Start)

data.lme <- try(lme(Response~Time*Type , data=data ,random=~1|Id), silent=TRUE

)

interval.BalancedData <-try(intervals(data.lme), silent=TRUE)

if (class(data.lme)== ’try -error’ | class( interval.BalancedData)== ’try -

error’){

Bool.Vector13[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector14[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector15[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

Bool.Vector16[i] <- (3*(class(data.lme)== ’try -error’ | class( interval.

BalancedData)== ’try -error ’))

}

else if(class( interval.BalancedData)!= ’try -error’ & class( interval.

BalancedData)!= ’try -error ’){

Bool.Vector13[i] <- 1*(interval.BalancedData$fix[1,1] < B0 & interval.

BalancedData$fix[1,3] > B0)

Bool.Vector14[i] <- 1*(interval.BalancedData$fix[2,1] < B1 & interval.

BalancedData$fix[2,3] > B1)

Bool.Vector15[i] <- 1*(interval.BalancedData$fix[3,1] < B2 & interval.

BalancedData$fix[3,3] > B2)

Bool.Vector16[i] <- 1*(interval.BalancedData$fix[4,1] < B3 & interval.

BalancedData$fix[4,3] > B3)

}

}

}

B_RIRS <-c(mean(Bool.Vector1[Bool.Vector1!=3]),mean(Bool.Vector2[Bool.Vector2!=3])

,mean(Bool.Vector3[Bool.Vector3!=3]),mean(Bool.Vector4[Bool.Vector4!=3]))

U_RIRS <-c(mean(Bool.Vector5[Bool.Vector5!=3]),mean(Bool.Vector6[Bool.Vector6!=

3]),mean(Bool.Vector7[Bool.Vector7!=3]),mean(Bool.Vector8[Bool.Vector8!=3]))

B_RI<-c(mean(Bool.Vector9[Bool.Vector9!=3]),mean(Bool.Vector10[Bool.Vector10!=3])

,mean(Bool.Vector11[Bool.Vector11!=3]),mean(Bool.Vector12[Bool.Vector12!=3]))
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U_RI<-c(mean(Bool.Vector13[Bool.Vector13!=3]),mean(Bool.Vector14[Bool.Vector14!=

3]),mean(Bool.Vector15[Bool.Vector15!=3]),mean(Bool.Vector16[Bool.Vector16!=

3]))

Coverage.Prob.Matrix <- cbind(B_RIRS ,B_RI,U_RIRS ,U_RI)

return(signif(Coverage.Prob.Matrix ,digits =3))

}

Listing A.1: Code for Simulating the LME Robustness
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The function, BalancedData, generates balanced data in a dataframe. There are

eight other functions that are derived from this function with respect to different

distributions of errors and the random slope, but they are not included here. They

are saved to the CD.

******************************************************************************

How to run the function

N_Data_Groups <- 10,20,or 200 % Number of units. Note: any even number

FollowUp_Times <- c(0,10 ,20,30 ,40) or c(0 ,10,20,30 ,40,50,60 ,70)

******************************************************************************

BalancedData <-function(N_Data_groups ,FollowUp_Times){

##Header Files

library(nlme)

N_Measures <-length(FollowUp_Times)

N_Dataset <-N_Data_groups*N_Measures

LikeForLike.Response <-matrix(nrow=N_Data_groups ,ncol=N_Measures)

Week <- matrix(nrow=N_Data_groups ,ncol=N_Measures)

discrete.covariate <-matrix(nrow=N_Data_groups ,ncol=N_Measures)

PatId <- matrix(nrow=N_Data_groups ,ncol=N_Measures)

Samples <- matrix(nrow=N_Data_groups ,ncol=N_Measures)

## Generating samples for discrete covariate: categorical variable X

Discrete.sample <- sample(rep(0:1, each=(N_Dataset/2)))

discrete.covariate <- matrix(sort(Discrete.sample), nrow=N_Data_groups , ncol=N_

Measures , byrow=TRUE)

B.Intercept <- 27

B.Time <- -0.2

B.Xi <- -2

B.X.time <- -0.15

##Assuming Correlated Random Effects and sampling from multivariate normal

distribution

S.Intercept <- 3*3
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S.Slope <- 0.1*0.1

Corr .01 <- -0.75

Cov .01 <- Corr .01*3*0.1

Sigma <- matrix(c(S.Intercept ,Cov.01,Cov.01,S.Slope),ncol=2,nrow =2)

U<-t(chol(Sigma))

i<-1

j <-1

for(i in 1:N_Data_groups){

FollowUp_Times

b.rand <- U%*%c(rnorm (2,0,1))

for(j in 1:N_Measures){

Errors <- rnorm(1, mean=0, sd=5)

Week[i,j] <- FollowUp_Times[j]

PatId[i,j] <- i

LikeForLike.Response[i,j] <- ((B.Intercept + b.rand [1]) + ((B.Time + b.rand

[2])*FollowUp_Times[j])+ (B.Xi*discrete.covariate[i,j])+ (B.X.time*FollowUp_

Times[j]*discrete.covariate[i,j])+Errors)# equation 1

}

}

discrete.covariate <- as.vector(t(discrete.covariate))

## Arranging the different Data in a Data frame

Response <- as.vector(t(LikeForLike.Response))

Type <- sort(as.factor(discrete.covariate ))

Time <- as.vector(t(Week))

Id <- as.vector(t(PatId))

Dataset <- data.frame(Id,Type ,Time ,Response )

Dataset[,’Type’] <- as.factor(Dataset[,’Type’])

return(Dataset)

}

Listing B.1: Code for Generating Balanced Data
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The function, UnbalancedData, generates unbalanced data in a dataframe. There

are eight other functions that are derived from this function with respect to dif-

ferent distributions of errors, but they are not included here. They are saved to

the CD.

******************************************************************************

How to run the function

DATA_GROUP <- 10,20,or 200 % Number of units. Note: any even number

PRE_SET_MAX <- 9 % Note always choose 9

STEP_SIZE <- 10

FROM <- 0

******************************************************************************

UnbalancedData <- function(DATA_GROUP ,PRE_SET_MAX ,STEP_SIZE ,FROM )

{##Header File

library(nlme)

UNBALANCED_CD4<<- matrix(nrow=DATA_GROUP ,ncol=PRE_SET_MAX , byrow=TRUE)

WEEK <- matrix(nrow=DATA_GROUP ,ncol=PRE_SET_MAX , byrow=TRUE)

GROUPINGS <- matrix(nrow=DATA_GROUP ,ncol=PRE_SET_MAX , byrow=TRUE)

TRTART <- matrix(nrow=DATA_GROUP ,ncol=PRE_SET_MAX , byrow=TRUE)

j <-1

i<-1

TimePoints <- 0

B.Intercept <- 27

B.Time <- -0.2

B.Xi <- -2

B.X.time <- -0.15

##Assuming Correlated Random Effects and sampling from multivariate normal

distribution

S.Intercept <- 3*3

S.Slope <- 0.1*0.1

Corr .01 <- -0.75

Cov .01 <- Corr .01*3*0.1
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Sigma <- matrix(c(S.Intercept ,Cov.01,Cov.01,S.Slope),ncol=2,nrow =2)

U<-t(chol(Sigma))

## Random Generation of Samples for Discrete Variable , which is later converted

to factors.

Trt<<-matrix(sort(sample(rep(0:1, each=(PRE_SET_MAX*DATA_GROUP/2)))),nrow=DATA_

GROUP , ncol=PRE_SET_MAX ,byrow=TRUE) #matrix(runif(PRE_SET_MAX*DATA_GROUP ,min

=0, max =1) ,nrow=DATA_GROUP , ncol=PRE_SET_MAX ,byrow=TRUE)

for(i in 1:DATA_GROUP){

n <- runif(1, min=0, max=1)

n_i1 <- 3*(0 <= n & n <0.2)

n_i2 <- 4*(0.2 <= n & n < 0.4)

n_i3 <- 5*(0.4 <= n & n < 0.6)

n_i4 <- 6*(0.6 <= n & n < 0.8)

n_i5 <- 7*(0.8 <= n & n < 1)

n_i <- (n_i1 + n_i2 + n_i3 + n_i4 +n_i5) # the number of measurement

TO <- STEP_SIZE*(n_i-1)

TimePoints <- seq(from=FROM ,to=TO, by=STEP_SIZE)

b.rand <- U%*%c(rnorm (2,0,1)) # Multivariate Sampling - Just one sample for each

random effect

for(j in 1:PRE_SET_MAX) {

if (j <= n_i)

{

Errors <-rnorm(1,mean=0,sd=5)

UNBALANCED_CD4[i,j]<- ((B.Intercept + b.rand [1] ) + ((B.Time + b.rand

[2])*TimePoints[j]) + (B.Xi*Trt[i,j]) + (B.X.time*Trt[i,j]*TimePoints[j])+

Errors)

TRTART[i,j] <-Trt[i,j]

WEEK[i,j] <- TimePoints[j]

GROUPINGS[i,j] <- i

}

}

}

## Building the Data Frame to contain all datasets in a one frame

Id <- as.vector(t(GROUPINGS)) # converting each matrix to vector , so that they

can fit into dataframe structure.

Type <- as.factor(sort(Trt))

Time <- as.vector(t(WEEK))

Response <- as.vector(t(UNBALANCED_CD4))

Dataframe <- data.frame(Id ,Type ,Time ,Response)

NA.in.Dataframe.Removed <-na.omit(Dataframe)

NA.in.Dataframe.Removed[,’Type’] <- as.factor(NA.in.Dataframe.Removed[,’Type’])

return(NA.in.Dataframe.Removed)

}

Listing C.1: Code for Generating Unbalanced Data
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