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Abstract

A specialised Mathematica package has been launched, which is intended to become a valuable tool in our line of
work. Old and new code has been compiled to a single, organised and flexible package, featuring a neat document-
ation on usage.

Theoretical foundations of X-ray diffraction and structural analysis has been examined in the thesis and connected
with experimental data. A function has been written to make calculations of structure factors and quantities relevant
to the dynamical theory of diffraction as accessible as possible. Comparison with the crystallographic literature has
verified the output to be in accordance with the selected sources.

The thesis has largely been devoted to an investigation of thiourea-ferrocene inclusion compounds subjected to
cold temperatures. An initial analysis, involving only data at room temperature, was conducted in order to obtain
accurate parameters of the diffractometer’s instrument model, which was used in the following analyses.

A systematic investigation of the reciprocal space of the thiourea-ferrocene crystals has been carried out, in addi-
tion to solving the structure of both ferrocene and thiourea-ferrocene.
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Chapter 1
Introduction

Starting out with the title «n-beam diffraction using Mathematica», the thesis was at the outset about combining
dynamical theory of X-ray diffraction with use of the computation programMathematica by Wolfram Research. The
first months were committed to building a thorough theoretical understanding along with a numerical treatment of
experimental data on silicon crystals.

X-ray diffraction data previously gathered at the European Synchrotron Radiation Facility (ESRF) was provided
for analysis with the CrysAlisPro software by Rigaku Oxford Diffraction†. This served in part as a preparation for
my visit to the facility in November 2015 where I joined professors Thorkildsen, Larsen and Nicholson in the
studies of encapsulated ferrocene and multiple-beam diffraction. I was primarily involved in assisting with the
latter experiment, which aim was to study coherent multiple beam interactions in light-atom organic crystals and
determine its chirality by studying intensity perturbations during an emulated ψ-scan.

Some challenges arose in the multiple-beam project. The Glycyl-L-alanine crystals appeared to be twinned,
rendering them unfit for the project. Emulating the desired ψ angle from the three available rotations on the
instrument also proved to be a mechanical difficulty. Furthermore, a night’s worth of data collection was lost due
to a technical computer error. On the other hand, we had obtained great results from the first thiourea-ferrocene
project. After returning from Grenoble November 10th 2015, focus has been on these data sets.

This thesis consists of three main parts:

I. Dynamical theory of diffraction – An introduction to key concepts in connection with analysis of silicon.

II. Structural analysis of thiourea-ferrocene

III. X-ray computation package – Useful tools and functions have been developed and organised into a robust
Mathematica package.

The thesis starts with a theoretical chapter, with an introduction intended mainly for a review of central quantities
and notation. Thereafter comes a section on fundamental dynamical theory of X-ray diffraction. The purpose
of this element is to shine light at characteristic observations related to highly perfect crystals and the underlying
physical mechanisms. The last theoretical sections are concerned with the framework of structure analysis, as well as
background information on the thiourea-ferrocene compound. The relevant observations and descriptions of what
has been done are to be found in the analysis chapter.

The common thread in the thesis is structure analysis via X-ray diffraction. We measure intensities and proceed
to calculate structure factors either in the dynamical or kinematical regime. The temperature varying thiourea-
ferrocene experiment falls in the category of standard diffraction experiment. This compound has been studied
since the 1970’s and the crystal structure determined, but there haven’t been any substantial crystallographic studies
that follow the cooling processes. [2, p. 236] Detailed calorimetric studies have been undertaken by Sorai et. al [3] in
1981 that revealed six phases of thiourea-ferrocene in the temperature range 120K to 240K. The intention with
our studies is to investigate the effect of cooling from a crystallographic point of view.

† Agilent Technologies used to have a part in CrysAlis.
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Chapter 2
Theory

2.1 Scattering and the structure factor

X-rays are electromagnetic waves with wavelength in the order of 1Å. The radiation interacts with matter by exciting
the electrons, effectively making them oscillate and behave like dipoles. When a crystalline medium is subjected to a
time-varying external electromagnetic field, a time-varying polarisation is induced. Since an oscillating charge gives
rise to so-called electric dipole radiation we have what is termed a scattering process. [4]

R− r
Point of observation

r

R

y

z

x

Ko

Figure 2.1: An incoming plane wave in the Ko direction interacts with a point scatterer at position r and a secondary spherical wave
with the same frequency emerges (for elastic scattering). This re-radiated wave was called a wavelet by Ewald. [5] |R| = R measures
the radial distance from the scattering centre.

For N point scatterers the individual scattered waves are superimposed at the point of observation:

Φh = Φo
ς

R

N∑
n=1

exp (2πi k · rn) . (2.1)

Φh and Φo are the amplitudes of the scattered and incoming plane waves, respectively. ς is the scattering length , a
measure of the interaction and the physical process generating the new wave. It depends on the nature of radiation,
and is in the case of electric dipole radiation given by: [4]

ς = −reC, (2.2)

where re is the classical electron radius and C the polarisation factor . The minus sign indicates a 180° phase shift
with respect to the incoming wave. The scattering vector, k, is defined by:

k = Kh −Ko. (2.3)

Ko

Kh k

2θ

Figure 2.2: The scattering geometry. Note
that the triangle is isosceles if we have elastic
scattering. θ is the Bragg angle.

Figure 2.2 shows the geometrical construction of k.

The sum in (2.1) is in principle over every scatterer within the crystal. Since
(perfect) crystals have a regularly repeated structure, we basically need to
consider the unit cell and its constituents only. The position vector in real
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space rn will therefore be decomposed into

rn = rk + n1a+ n2b+ n3c︸ ︷︷ ︸
all the unit cells

, (2.4)

where rk represents all the scattering centres within the unit cell, n1, n2, and n3 are arbitrary integers, and a, b and
c are the basis vectors of the Bravais lattice. To describe the scattering from the unit cell we further define:

FH =

N∑
n=1

fn exp (2πi h · rn) =
∫

unit cell

ρn(r) exp (2πi h · r) dV. (2.5)

as the strucutre factor, where h is the reciprocal lattice vector associated with reciprocal lattice node H . The so-called
atomic scattering factor (or atomic form factor), fn, has also been introduced, and is a measure of the scattering ability
associated with the n’th of the N atoms or constituents in the unit cell. In view of the probabilistic nature of
quantum mechanics, the electrons are not simply confined to single points. We therefore replace the point scatterers
in the unit cell with an electron density distribution ρn(r), associated with atom n. Also note from (2.5) that the
structure factors are related to the electron density by inverse Fourier transformations.

The structure factor is generally a complex quantity;

FH = |FH | exp (iϕH) . (2.6)

|FH | denotes the amplitude and ϕH the phase characterised by the lattice node H . It is a function that is essential
to the description of scattering from crystal structures as its amplitude is directly related to the diffracted intensities
we measure. It is either directly proportional to the modulus of the structure factor, |FH |, or its square, |FH |2,
depending on the underlying diffraction theory.

In short, the amplitude of a diffracted wave depends on the number of electrons in an atom, and the phase
depends on where the atom is positioned in the unit cell. [6] Since the X-ray detectors do not measure the relative
phases, the experimental data are incapable of assembling a complete picture of the diffraction. Several methods
have been developed to overcome this problem and a brief account on this is given in section 2.3.

2.1.1 The kinematical theory of diffraction
Kh

O
�
2
� �

2�

�
2
��

�
2
��

H

h

Ewald sphere

P

Ko

Figure 2.3: A two-dimensional cross section of
the Ewald sphere corresponding to the scatter-
ing plane, which is defined by Ko and Kh. O
defines the origin of the reciprocal space, andH
is the reciprocal lattice node associated with re-
flection hkl. P is the tie point in the dynamical
theory (see the next section). The radius of the
sphere is equal to 1/λ.

Max von Laue is known for the discovery of X-ray diffraction. He ar-
gued that since the wavelength of X-rays were close to the lattice para-
meters in size, interference due to diffraction would occur in a man-
ner similar to light interferences in optical gratings. This was verified
experimentally in 1912 by Paul Knipping and Walter Friedrich, thus
providing evidence for the lattice arrangement of atoms in crystals. [5]

In Laue’s kinematical theory of diffraction (or geometrical theory), it is
assumed that the incoming photons are only scattered once, and that
the interactions between the diffracted waves and the crystalline matter
may be neglected. Therefore, we may further assume that the amp-
litude incident on every atom is the same (see Figure 2.7a). [5] By taking
the Fourier transform of the density distribution of scattering centres
(in direct space), we get the distribution of the diffracted amplitudes
in reciprocal space. [7] The term kinematical approximation is used to
emphasise that the theory is an approximation of the scattering phe-
nomenon. It is in fact a first Born approximation, i.e. the scattered wave amplitude is considered to be negligible
compared to that of the incoming wave, and the subsequent rescattered waves even more so. [8]
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Although Laue derived an expression for the amplitude of the wave diffracted from an arrangement of atoms,
the Braggs derived a simpler equation, known as Bragg’s law, for describing the condition for producing a diffrac-
tion pattern. In essence, Bragg’s law states that if the relation between the lattice spacing and orientation of the
incident radiation is such that waves are in phase when reflected off a family of parallel lattice planes, constructive
interference occurs and the diffraction patterns emerge. The requirement for constructive interference can also be
seen geometrically through Ewald’s construction. We have constructive interference when the incident and diffracted
wave vectors are situated in reciprocal space in a way such that the scattering vector equals a reciprocal lattice vector
in contact with the Ewald sphere (see Figure 2.3). If this is fulfilled, then k = h. Considering the isosceles triangle
OHP in Figure 2.3 we may find:

|Ko + h|2 = |Kh|2 =⇒ 2dhkl sin θ = nλ. (2.7)
θ

A

B

Cdhkl

θ

KhKo

Figure 2.4: Bragg diffraction in dir-
ect space. The incoming radiation is
represented by a beam Ko which is
scattered at A and B. In order for the
two reflectedbeams tobe in phase (and
interfere constructively) the path AB +

BC must equal an integer multiple of
the wavelength.

This is Bragg’s law. dhkl is an interplanar spacing of the crystal, λ is the
wavelength, and θ is called the Bragg angle, which is the angle between the wave
vector of the incident plane wave and the lattice planes (see Figure 2.4). Since
the phase differences between the scattered waves have to be an integer multiple
of the wavelength for constructive interference to happen, we include an order
of reflection, n, in Bragg’s law.

Diffraction
The ability to resolve optical details is fundamentally limited by diffraction,
with less diffraction being preferable (narrower diffraction pattern). The crys-
tal, which effectively acts as a diffraction grating, has to be irradiated using a
wavelength comparable to the interatomic distances. This fundamental limita-
tion can be seen with Ewald sphere – since the radius decreases as the wavelength
increases, there will be a certain wavelength making the sphere so small that no neighbouring reciprocal lattice nodes
fall within it, preventing Bragg’s condition to be fulfilled. This wavelength corresponds to the maximum interplanar
distance in the crystal. The arrangement of atoms make up the scattering planes, illustrated in Figure 2.4.

It seems logical that gamma rays with even shorter wavelengths would be suitable for this task. These are, how-
ever, «difficult to produce in large numbers, difficult to focus, and interact too strongly with matter, producing
particle-antiparticle pairs.» [9] If one hopes that gamma rays will enable us to “see” atoms, another point to take into
consideration is that «the illumination intensity required to see the individual atoms in a molecule is a many orders
of magnitude larger than the energy required to evaporate the sample.» [10, p. 3042]

extinction
(general  special)

space group

compound

cell metric
Bragg angle

Figure 2.5: A schematic diagram showing what quantities are involved in
the structure factor computation. In order to make the function as versatile
as possible, the quantities in blue will be input variables. The other inform-
ation will be collected from data files (included in the Xray package) or
calculated in the process.

Mathematica function
It is convenient to have a function in Mathemat-
ica that calculates theoretical values of the struc-
ture factor. Such a function would require the
input information shown in Figure 2.5. There
are also some quantities that are of importance
in dynamical theory, including the Pendellösung
distance andDarwinwidth. These will also be cal-
culated along with the structure factor, but fur-
ther remarks on this function will be on hold
until these concepts are introduced in subsec-
tion 2.2.2.
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2.2 The dynamical theory of diffraction
Key differences between the kinematical- and the dynamical theory of diffraction
The difference between the two theories is that so-called multiple scattering is neglected in the kinematical approx-
imation, or at least considered to add incoherently. [8, p. 95] If the crystal is regular over a sufficiently large volume, a
wave reflected off a given plane may be re-reflected off another plane, giving rise to multiple scattering. In the kin-
ematical theory, the reflected waves will not experience any further interactions. Still, the incoming waves experience
absorption in both theories. In the dynamical theory we may have realisation of the phenomenons called primary
and secondary extinction (see more on page 14). The kinematical theory is nevertheless a useful approximation for
small crystals and when the interaction between the incident and the scattered waves can be neglected which is the
case with very thin crystals, surface scattering and diffuse scattering. [11] [12, p. 72]

Figure 2.6: Visualisation of the grains or crystallites in a crystal
making a mosaic.

The kinematical approximation also holds for so-called mo-
saic crystals, in which the grains are slightly tilted from an-
other (see Figure 2.6). We denote a crystal as ideally imperfect
when misorientation is large enough for the kinematical the-
ory to be valid. The successive crystallites or blocks must be
shifted enough for each of them to diffract different portions
of the incident beam. [1] If we irradiate large and highly per-
fect crystals, the amplitude of the diffracted waves become
comparable with that of the incident beam, resulting in an
interchange of energy between them that requires the use
of dynamical theory. [13] Real crystals may be in a condition
that corresponds to a combination of the two theories, but usually the scattering comply very closely with one or
the other extremes. [8, p. 95]

(a) Scattering in the kinematical theory. (b) Scattering in the dynamical theory.

Figure 2.7: Conceptual predictions of how an X-ray beam would be transmitted through the lattice planes of a crystal in (a) the kin-
ematical/geometrical theory and (b) the dynamical theory. We see that in the dynamical theory the reflected waves may be diffracted
multiple times, which corresponds to there being multiple nodes on the Ewald sphere simultaneously (besides the origin). [1] Notice
that attenuation of the incident beam happens in both theories due to absorption, but that further reduction of the intensity is possible
in the dynamical theory by rescattering of waves. The region of rediffraction shown in (b) will for trace out a triangle referred to as the
Borrmann fan.

A shortcoming of Laue’s original kinematical theory is that conservation of energy is not fulfilled, because the amp-
litude of the incoming wave does not attenuate from diffraction as it propagates through the crystal planes, even
though reflected waves emerge from each plane. In fact, this theory predicts that if the crystal were infinitely large,
the diffracted intensities would accumulate and become infinitely large as well.

Stian Penev Ramsnes 
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2.2.1 Fundamental equations of the dynamical theory
Ewald’s dynamical theory of X-ray diffraction is a continuation of his doctoral thesis, while Laue’s dynamical theory is
a reformulation from 1931. [5]

When an electromagnetic plane wave impinges on a crystal, the incoming field sets the electrons into oscillation,
effectively turning them into dipoles that are assumed to be in a three-dimensional array. The oscillating dipoles emit
spherical waves, called wavelets by Ewald, and each wavelet contributes to the excitation of the other dipoles. The
total wave propagating inside the crystal turns out to be a superposition of plane waves, and was called the optical
field by Ewald and the wave field by Laue. [5] [14] Some authors also use «wave field» to refer to a single plane wave
in the unified field. [13] [15]

Owing to the dipole-interaction, the phase velocity of the wave field differs from that of the wavelets (which
propagate with the speed of light), and there appears an index of refraction. [5] Authier [1] states that «the aim of the
theory is to find the possible positions of the tie points and therefore the wave vectors and the possible values of the
index of refraction of the waves propagating in the crystal, as well as their amplitudes.» For now, it suffices to say
that a tie point characterises the wave field.

In Laue’s reformulation of Ewald’s theory, the discrete distribution of single-point dipoles is replaced by a continuous
distribution of electric charge throughout the crystal, being overall neutral. Additionally, the local electric charge and
current densities are zero. As Tanner [13] writes, our aim is now that «we require a solution of Maxwell’s equations in
a periodic medium matched to solutions which are plane waves outside the crystal.» Proceeding with Laue’s method,
one first derives the following propagation equation from Maxwell’s equations: [5]

∆D+ curl curlχD+ 4π2k2D = 0, (Authier 2.55) (2.8)

where ∆ is the Laplacian, D the electric displacement, χ the dielectric susceptibility, and k = 1/λ the wave number
in vacuum. The reason for using the electric displacement field D instead of the electric field E, is because the
divergence ofD is always zero, contrary to that of the electric field. This simplifies the description of the polarization
states of the field inside the crystal. [16] The electric displacement is also triply periodic and can be expanded in a
Fourier series:

D =
∑
h

Dh e
−2πi Kh·r, Kh = Ko + h. (Authier 4.6) (2.9)

The indexed D’s are Fourier components of the electric field displacements, the indexed K’s are wave vectors in the
reciprocal space, and r is a position vector. The summation is over all reciprocal lattice vectors (h, g etc.), and
the common origin of the wave vectors is the tie point, P . Consequently we have that Ko =

−−→
PO, Kh =

−−→
PH ,

Kg =
−−→
PG etc. [1] † (see Figure 2.8b).

(2.9) is the solution of the wave equation (2.8). We can see that a given term in the summation is a plane wave
multiplied by a periodic function – often defined as a Bloch wave. In this case the Bloch wave D describes the wave
field that propagates in the crystal, and may in principle consist of an infinite number of plane waves Dh. [17]

The dielectric susceptibility χ can also be expanded in a Fourier series:

χ =
∑
h

χh e
−2πi h·r, (Authier 2.36) (2.10)

where χh is the Fourier component of the dielectric susceptibility and is associated with reciprocal lattice vector h,

† It is to be noted that these definitions of the wave vectors are reversed in comparison with Authier’s [1] notation. The reason for this is
to keep the notation in accordance with the definitions from subsection 2.1.1 and Ewald’s construction. As a consequence, the minus sign
of the Kh’s in (2.9) have been removed.

Stian Penev Ramsnes 
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and is given by

χh = −re λ
2 FH
π V

, (Authier 2.37) (2.11)

with V denoting the unit cell volume and λ the wavelength. Also, the summation in (2.10) is over all the reciprocal
lattice nodes.

Substituting the series expansions (2.10) and (2.9) into (2.8), the result is an equation with an infinite sum of
terms, which can be shown to be equivalent to a an infinite system of linear equations. [1] Thus, the amplitudes Dh

satisfy a set of equations

Dh =
K2
h

K2
h − k2

∑
h′

χh−h′Dh′[h], (Authier 5.4) (2.12)

where the summations is over all reciprocal lattice vectors h′. The symbols represent the following:

Dh amplitude of a given wave, belonging to the wave field, with associated reciprocal lattice vector h,
Kh magnitude of the reflected wave vector,
k wave number in vacuum (equal to 1/λ),
χh−h′ Fourier coefficient of the polarisability associated with reciprocal lattice vector h− h′,
Dh′[h] denotes the projection of Dh′ onto the plane perpendicular to Kh.

These equations relate the amplitude of a given wave in the wave field with the others, and have been called funda-
mental equations of dynamical theory by Laue. [1]

In (2.12), the terms

1

K2
h − k2

(2.13)

were called the resonance factors by Ewald. It is clear that in order for the terms in the wave field expansion (2.9) to
have a non-negligible amplitude, the resonance factors must be such thatK2

h ≈ k2. Geometrically, this corresponds
to points in reciprocal space that are close to the Ewald sphere, or alternatively, the (tie) points that the wave vectors
converge to if they are drawn from points on the Ewald sphere.

Going back to (2.8), we see that the propagation equation is a second order partial differential equation with a
periodic interaction coefficient accounted for by the polarisability, which is a periodic function in the lattice. As
mentioned, its solution is given by (2.9). From this we infer that the wave field is a superposition of plane waves
with amplitude Dh and wave vectors Kh. [7]

2.2.2 The two-beam case and the dispersion surface
If there are precisely two reciprocal lattice nodes in contact with the Ewald sphere simultaneously, where one of
them defines the origin through the incident wave, we refer to it as a two-beam case. Then there are two waves that
propagate inside the crystal and interfere to generate standing waves: [5] the diffracted wave Kh and the refracted
waveKo. In context with (2.12), this corresponds to there being two significant resonance factors associated with the
two nodes that simultaneously lie on the Ewald sphere. The fundamental equations reduce to the coupled equations:

Do =
K2
o

K2
o − k2

(χoDo + χh̄Dh) , (2.14a)

Dh =
K2
h

K2
h − k2

(χhDo + χoDh) . (2.14b)

Stian Penev Ramsnes 



Aspects of X-Ray Diffraction Using Mathematica Theory The dynamical theory of diffraction

This system of two linear and homogeneous equations has a non-trivial solution if and only if the determinant is
zero. It can be shown that after rearranging and using Ko ≈ k and Kh ≈ k, the determinant of these equations
yields an equation for the so-called dispersion surface: [1]

XoXh =
k2χhχh̄

4
, (Authier 4.15) (2.15)

where

Xo ≡
K2
o − k2

2k
− kχo

2
≈ Ko − k

(
1 +

χo
2

)
,

Xh ≡
K2
h − k2

2k
− kχo

2
≈ Kh − k

(
1 +

χo
2

)
.

(Authier 4.12, 4.13) (2.16)

Thus, the equations in (2.12) represent a set of eigenvalue equations. From (2.14) and (2.15), one may derive useful
expressions such as the the ratio of the amplitudes of the two waves in the wave field and coordinates of the tie
points. A geometrical representation of the dispersion surface is shown in Figure 2.8.

k

H O

(a) Cross sections of Ewald spheres in reciprocal space about the lattice points
H and O. Strong diffraction will only occur close to the intersection of the
spheres.

O

H

P

branch 2

branch 1

to
ward

s

towards

(b) An enlargement of the green rect-
angle shown in (a). The dispersion sur-
face (only for one polarisation shown
here) has to branches.

Figure 2.8: The tie point P is the common extremity of the wave vectors (in the two-beam case: Ko and Kh). La and Lo in (b)
denote the so-called Laue- and Lorentz points, respectively. In the n-beam case, there will be 2n branches; two for each direction of
polarisation. [1] The solid and dashed lines correspond to σ- and π-polarisation, respectively. Based on figures by Authier [1].

Exactly at the Bragg condition, the tie point P is situated on either of the apexes of the dispersion surface. [18, p. 28]

The absolute index of refraction, n, is defined by: [19]

n ≡ c

v
=

√
εµ

ε0µ0
, (2.17)

where c is the speed of light in vacuum, v = νλ the phase velocity, ε the permittivity, and µ the permeability (subscript
zero for vacuum). Neglecting magnetic interactions, µ ≈ µ0, and using the fact that χ is typically on the order of
10−5 to 10−6, the index of refraction can be approximated with a Taylor series: [1]

n ≈
√

ε

ε0
=

√
1 + χo ≈ 1 +

χo
2

, (2.18)

which is slight smaller than unity as χ is negative. As a result, the two concentric spheres (for each node) illustrated
in Figure 2.8 have radii nk (innermost sphere) and k (outermost sphere). Refraction at the crystal surfaces arises due
to interactions between the propagating wave and the matter. [1] In the single-wave solution, i.e. when only a single
plane wave in (2.12) has a significant amplitude, the fundamental equation will give us that |Ko| = nk. [20, p. 1115]
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An infinitely large and perfect crystal should, in the kinematical theory, give rise to a single diffraction spot,
due to its inverse relationship with crystal size. This is the Laue point in Figure 2.8b. The Lorentz point is the
corresponding point for the waves with wave number nk. For an infinitely weak reflection, the dispersion surface
would shrink to this point.

The position of the tie point P determines the direction of propagation as well as the relative ratios of amplitudes
of the waves in the wave field. [1, p. 80]

2.2.3 Pendellösung and Darwin width
Crystal shape and the scattering geometry dictate the boundary conditions for the waves. [18, p. 29] Traditionally, there
are two cases that we consider. See Figure 2.9 below.

(a) Transmission (or Laue) geometry. (b) Reflection (or Bragg) geometry.

Figure 2.9: In the transmission geometry shown in (a) the reflected wave sh is directed inwards to the crystal, and both branches of the
dispersion surface are intersected. In the reflection geometry in (b), the reflected wave is directed away from the crystal, and intersects
only branch at a time. [1]

The ψ’s in Figure 2.9 are angles as indicated. Note that the normal vector n is in either case defined as being normal
to the crystal surface, but directed inwards. so and sh are the unit vectors in the incident and reflected directions.
s is a unit vector parallel to the lattice planes. We define the asymmetry ratio as

γ =
γh
γo

=
cos (ψn − θ)
cos (ψn + θ)

. (Authier 4.24) (2.19)

We may recognise the geometry by noting that γ and γh are positive in the transmission geometry and negative in
the reflection geometry. [1, p. 84]

In the Bragg geometry, we have the possibility of no tie points being excited, which corresponds to no intersection
with either of the branches of the dispersion surface. If we don’t consider absorption, the wave experiences total
reflection. [20] The angular range where this happens is shown as a flat Darwin plateau in the reflection profile. The
full width at half maximum of this peak is what we call the Darwin width, and is dependent on the Pendellösung
distance,† Λo, defined by:

Λo =
π V

√
γo |γh|

re λ C
√
FHFH

, (Authier 4.26) (2.20)

† The quantity is called «Pendellösung distance» in the transmission geometry, and extinction distance in the reflection geometry.
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where the symbols represent the following:

Λo Pendellösung distance (or extinction distance)
V unit cell volume
γo cosine of the angle between the inward normal to the crystal surface and the incident direction
γh cosine of the angle between the inward normal to the crystal surface and the reflected direction
re classic electron radius
λ wavelength
C polarisation factor†

FH structure factor associated with reciprocal lattice node hkl
FH structure factor associated with reciprocal lattice node hkl

We now introduce:

δos =
λ

Λo

|γh|
sin(2θ)

, (Authier 4.26) (2.21)

with the real part of 2δos being the Darwin width. It is the full width at half maximum of the rocking curve in
the transmission geometry, and the width of the total reflection domain in the reflection geometry. [1] In a perfect
infinite crystal, dynamical theory predicts finite widths of the Bragg peaks instead of being delta functions. In the
full dynamic limit, the intensities of the reflections are proportional to the Darwin widths instead. [21]

In the Laue geometry, the beams are restricted within the Borrmann triangle (see Figure 2.7b). Shuffling of
intensity back of forth between the forward transmitted beam and reflected beam give rise to a so-called Pendellösung
effect. [22]

Extinction
The Darwin width is named after Sir Charles Galton Darwin who also developed a dynamical theory of diffraction
in 1914 and came up with the mosaic crystal model in 1922. [23]‡ In early experimentation on reflection of X-ray the
observed intensities were always greater than expected from calculation. It was also found that disorienting a “fairly
deep layer” of crystallites by polishing the crystal could increase the Bragg reflection. [24] On page 9 it was mentioned
that diffraction of mosaic crystals is not described by dynamical theory, because the slight misalignment of the mosaic
blocks will inhibit the occurrence of multiple scattering. Thus we need highly perfect crystals to observe this effect.
Darwin showed that the ideally imperfect mosaic crystal would be at least forty times as intense as a perfect crystal.
In practice, crystals are in between the two extremes, but most crystals are comparatively imperfect. [24]

Attenuation of the X-ray due to the photoelectric effect, incoherent (Compton) scattering and pair production
are attributed to absorption, while intensity lost due to rescattering falls under extinction. If the mosaic blocks are
significantly larger than the Pendellösung distance, the incident beam may be scattered more than once within the
same block, i.e. multiple scattering effects, and we have what is called primary extinction. If we consider multiple
blocks within the crystal that are very close to being parallel, the incident intensity will be less for the blocks further
“down” the direction of transmission. This is referred to as secondary extinction and can mistakenly appear as photo-
electric absorption. [25, p. 182] Primary extinction diminishes the reflected beam because the rescattered waves tend to
interfere destructively with the first beam. [24] In an ideally imperfect crystal, both primary and secondary extinction
is negligible. Crushing the crystal into a powdered form can prevent extinction effects altogether. Extinction tends
to be observable for strong, low-angle reflections from crystals with a small degree of mosaicity. An indication of
dynamical effects in play is that observed intensities are lower than those calculated from the proposed structure,
especially for strong reflections. [26, p. 117] The extinction distance is also of importance, as it limits the diffracting
volume of the crystal.

† C = 1 (σ-polarisation; orthogonal component) or C = cos(2θ) (π-polarisation; planar component).
‡ Supposedly, it was Ewald who first suggested the name «mosaic». Darwin had used the term «conglomerate of crystalline blocks». [1, p. 8]
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Mathematica function
The function that is to calculate FH , Λo, and 2δos should have the following features:

1. Be able to generate an appropriate list of reflections.
2. Filter out reflections from said list that do not comply with the reflection conditions, also taking special rules

into account.
3. Identify symmetry equivalent reflections, as they will all share the same value for the structure factor.
4. Delete impossible reflections that correspond to sin θ > 1.
5. Calculate the desired quantities for the remaining reflections.

With this in mind, StructureFactorTable has been created. Documentation on usage is found in appendix
A. Please see subsection 3.1.1 for an example and comparison of computed values with literature.
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2.3 Data acquisition and relevant software

2.3.1 Structure analysis

Diffraction data
The Laue classes are the 11 centrosymmetric point groups out of the total 32 crystallographic point groups. An
important property of these classes is that all the non-centrosymmetric point groups are subgroups of these. Adding
the symmetry operation of inversion to any point group will make it equivalent to one of the Laue classes. [27] This is
also a feature in every diffraction pattern, as long as the X-ray energy is not close to matching any absorption edges.
If we also assume that all atoms diffract with the same relative phase, Friedel’s law holds, i.e. the modulus of the
structure factor associated with Miller indices hkl is equal to that with indices hkl. When this is true, the symmetry
of a diffraction pattern we may only distinguish between the 11 Laue classes. A general reflection (not lying on a
symmetry element) may be used to generate all symmetry equivalent reflections by applying the symmetry operators
of the Laue class point group. [28] The process of determining the reciprocal cell parameters from the diffraction
pattern is called indexing . [29]

The further out the X-rays scatter (larger Bragg angles θ), the higher the resolution of the data set becomes. For
a given maximum scattering angle θmax, there corresponds a minimum interplanar spacing dmin that we can resolve
in a diffraction pattern. From Bragg’s law (2.7) we find:

dmin =
λ

2 sin θmax
(2.22)

The resolution is normally in the range from 0.5Å to 3.0Å†. Resolution is in theory limited by the wavelength
of the X-rays; In practice by the crystal quality. The portion of the structure that is ordered for the longest range
throughout the crystal will cause the reflections farthest from the axis of the incoming X-ray beam. Conversely,
disorder in the crystal will lower the maximum scattering angle observed, thus also lowering the resolution. A
drawback to high-resolution reflections is that intensity falls off at higher diffraction angles. [30]

When symmetry equivalent reflections are merged we are left with a list of the unique reflections. Symmetry
equivalence is be defined by the Laue class. In diffraction experiments we define completeness as the percentage of
unique reflections measured out of all possible. We also denote the average number of times each unique reflection
(whether single or merged) has been measured as the redundancy, [31] which may take a value up to the reflection
multiplicity of the Laue class of the crystal. The term outlier is used to describe reflections that deviate significantly
in intensity compared to symmetry equivalents. These may be removed or given lower weights in the refinement
process. [29]

Reciprocal lattice nodes are called reflections in association with diffractograms. Ideally, the scattering centres
of the crystal would be aligned perfectly in planes, and would literally become points when Fourier transformed
to the reciprocal space. In the real case, however, crystals are comprised of domains which are slightly misaligned
with each other, usually in the range from 0.2° to 0.4° for a good crystal sample. [32] This will basically keep certain
lattice planes in reflection condition over some rotation interval about a goniometer axis, and the corresponding
reflections appear elongated in the diffraction pattern. Assuming the orientations to follow a Gaussian distribution,
a measure of this misalignment, the mosaicity, is normally assigned as its standard deviation. [33] If the increment of
the rotational angle is set to be greater than the effective mosaicity, the data sets are said to be thick or the slicing is
coarse. Conversely, if the slicing is smaller than the width of a reflection it is called fine, and the data sets are called
thin. [34] [35] We also describe the reflections in such circumstances as partial or partially recorded, and fully recorded
if the spot comes entirely within a single diffractogram. Finer slicing is preferred as larger rotation steps result in
increased X-ray background of the image as well as more saturated pixels and spatial overlaps of reflections. [34]

† Lower numerical values for dhkl are better and correspond to a higher (finer) resolution.
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Phase transitions
The term phase transition is used to express the restructuring of a substance by varying external conditions such as
temperature, pressure, magnetic field etc. A thorough study on the subject is out of the scope of this thesis, but the
most relevant technical terms will be discussed briefly. A phase transformation is classified into either first- or second
order. A first-order transition is a transition with latent heat and exhibits a discontinuity in the first derivative of the
Gibbs free energy, which is reflected in thermodynamic quantities such as enthalpy and entropy. [36] A fair amount of
heat is either absorbed or released while the temperature of the system remains constant, with the melting of solids
or vaporisation of liquids being familiar examples. [37] [38]. A second-order transition (also known as continuous phase
transitions) does not involve latent heat, but has discontinuities in the heat capacity (second derivative of Gibbs free
energy). [36] Common examples are the ferromagnetic transition to the paramagnetic state and transformation to
and from chemical ordered state. [38].

Some compounds, like Cu3Au or brass (CuZn), can have the constituents occupying random lattice points
(disordered structure) at a high-temperature phase, regardless of element type. If cooling causes the distinct elements
to occupy the lattice points in a regular manner (ordered structure), we call it a order–disorder transition. [36] [38]

If displacements in the fundamental structure follow a periodic atomic displacement field, we have a modu-
lated crystal structure. A modulation with a longer period than that of the underlying lattice gives rise to so-called
satellite reflections around the fundamental reflections. Modulations with longer but still an integral number of the
fundamental period may create a so-called superlattice. [38]

Phase transitions can lead to a new structure whose periodicity cannot be expressed as an integral ratio of the
original structure’s periodicity. We then label the new structure as incommensurate. [38]

Structure determination and direct methods
The process of determining the positional coordinates of the scatterers within the unit cell is called «structure de-
termination» or «solving the structure», and usually includes describing the chemical structure as well as anisotropic
displacement parameters. [39] The measured intensities Ihkl are corrected for various effects from the geometry of
measurement:

|Fhkl|2 = Ihkl (y · k · Lp ·A)−1 (2.23)

where y is an extinction factor, k a scaling factor, Lp the Lorentz-polarisation correction, and A the absorption factor.
Effects related to multiple beam scattering are ascribed to the extinction factor. Reflections that spend a longer time
crossing the Ewald sphere will be attributed a higher intensity, and an equalisation of this is the purpose of the
Lorentz factor. [40] Radiation will be partially polarised on reflection from a monochromator crystal and its intensity
reduced by some factor that depends on the Bragg angle. At synchrotron beamlines, the polarisation is exclusively
in the plane. The Lorentz and polarisation factors are normally applied as a single correction factor, Lp.

The best way to handle absorption would be to first identify the crystal faces and dimensions, then apply correc-
tions after calculating the various path lengths through the crystal. Spherical crystals have the advantage of having a
more uniform absorption correction. [40] [41] There are also numerical solutions that are based on the intensity vari-
ation of certain intense Bragg reflections during a rotation experiment. [40, p. 65] In contrast to the absorption correc-
tions of the raw data, extinction corrections are usually incorporated as part of the structure refinement. [26, p. 127]

Other factors to bear in mind are the decay of the synchrotron beam over time and potential degeneration of the
crystal.

The notorious phase problem in crystallography is in practice circumvented by techniques such as statistical methods
or iterative refinement, collectively knowns as direct methods. Another tool of historical importance is the Patterson
function:

P (r) =
1

V

∑
H

|FH |2 exp (−2πi h · r) , (2.24)
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which is a Fourier series based on the intensities rather than the structure factors. The distances from the origin to
the peaks in the Patterson map correspond to interatomic distances in the unit cell†. The Patterson function consists
of N2 terms (with N of them at the origin), each carrying a weight proportional to the products of the two atomic
form factors involved in the given separation vector. [42, p. 836] Therefore, any heavy atoms present in the unit cell will
dominate the Patterson map. Using the phase of the largest vector of the Patterson map as a first approximation to
the structure factor of the heaviest atom, followed by recalculation of the electron density, constitutes the iterative
Fourier method [42, p. 838], also known as Patterson synthesis. [26, p. 131] Positions of certain atoms can sometimes be
ascertained entirely from symmetry considerations.

Dual space methods involve successive use of Fourier- and inverse Fourier transformations of the electron density.
For each iteration adjustments are made to the density. In the method of charge flipping , an initial set of random
phases are generated (only at the first iteration) associated with the observed intensities. The structure factors are
created and the electron density calculated by Fourier transformation. The density is then divided into two regions
by a small, positive threshold value. A new density is constructed by subtracting the lower region from the upper.
Temporary structure factors are next calculated by an inverse Fourier transform, and the actual structure factors
are constructed with the phases of these, as long as the reflections are within the resolution sphere with radius
|h|max = 1/dmin. The cycle is completed by computing the new electron density, and repeated until a convergence
of the structure. Charge flipping is based on the assumption that the unit cell is mostly empty. [43]

for how well the modelled structure agrees with experimental values

SHELX and structure refinement
SHELX is a renowned program suite for solving and refining crystal structures developed mainly by the British chem-
ist George Michael Sheldrick. Three of the program components are of interest: SHELXS employs classical direct
methods for solving the structure; SHELXL is concerned with structure refinement, mainly for small-molecule struc-
tures, [44] and the final component, SHELXT , is a fairly recent addition that employs a novel dual-space algorithm
to solve the phase problem. [45] The SHELX programs are normally implemented in a more user-friendly software
program such as WinGX or Olex2. [46]

The level of agreement between the modelled structure and experimental values is indicated by various R-factors‡.
One of them, the merging residual value, measures the internal consistency of data and is defined by:

Rint =
∑
j

[∑
i

∣∣F 2
obs −

⟨
F 2

obs
⟩∣∣∑

i

∣∣F 2
obs

∣∣
]

(2.25)

where the inner summations are over each reflection i in a symmetry equivalent set j, F 2
obs denotes an intensity

calculated from the data reduction and
⟨
F 2

obs
⟩

is the average intensity of a set of equivalents. The outer sum is over
all sets of reflections containing at least two symmetry equivalent reflections. The quality of the observed structure
factors is also quantified by the ratio:

Rsigma =
∑
j

[∑
i σint

(
F 2

obs
)∑

i F
2
obs

]
(2.26)

where the summation is as in (2.25), but with σint
(
F 2

obs
)
signifying the calculated standard uncertainty of the intensity

of the merged reflection; [47]

σint
(
F 2

obs
)
=

√√√√∑
i

(
F 2

obs −
⟨
F 2

obs
⟩ )2

Nred
, (2.27)

whereNred is the number of redundant reflections. The standard uncertainties are calculated during the stage called
† Although r are spatial coordinates of direct space, they are not related to the positions in the electron density of (2.5).
‡ Synonyms for R-factor: reliability index residual factor and discrepancy index.
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data reduction, which is when the raw intensities from the detector are translated into |Fobs|2. [44, p. 7]. CrysAlis
predicts reflection positions based on the orientation matrix and reconstruct their profiles across the frames. Partial
reflections that are split across frames are also treated at this stage. The Lorentz and absorption corrections in (2.23)
are applied as well as calculation of the standard deviations given by (2.27). Note that only observed quantities are
required to calculate Rint and σint.

Once the atoms of the asymmetric unit have been located† and the proposed structure is in reasonable agreement
with the observed data (and the iterative methods described give no significant changes), the model parameters are
adjusted through non-linear least-squares refinement, with iterations until convergence of refinement. [26, p. 138] The
function to be minimised is usually one of the following:

Mabs =
∑
i

wi
(
|Fobs| − |Fcalc|

)2 (2.28)

Msquare =
∑
i

wi
(
F 2

obs − F 2
calc

)2 (2.29)

where wi denotes individual weights for each reflection (where applicable) and Fcalc the calculated structure factor
from the current model. The quality of the refinement is assessed!!!!! by the R-factors:

R = R1 =

∑
i

∣∣ |Fobs| − |Fcalc|
∣∣∑

i |Fobs|
(2.30)

Rw = wR2 =

√
Msquare∑
iwiF

2
obs

(2.31)

GooF = S =

√
Msquare

Nind −Npar
(2.32)

whereNind is the number of independent reflections andNpar is the number of refined parameters. «GooF» stands
for «goodness of fit» and should be close to 1. [48] As for the R-factors; the merging factor Rint should generally be
below 10% and R < 5% is considered good. [48, p. 24]

The weights are usually based on the standard uncertainty, for example:

w =
1

σint (Fobs)
(2.33)

w =
1

σ2int (Fobs)
2 (2.34)

w =
1

σ2int
(
F 2

obs
)
+ (extra terms)

(2.35)

where the «extra terms» could be functions of the structure factors, Bragg angle etc. [26, p. 139] SHELX uses the fol-
lowing weighting scheme, which can have up to six parameters a, . . . , f :

w =
q

σ2int
(
F 2

obs
)
+ (aP )2 + bP + d+ e sin(θ)/λ

, (2.36a)

P = f max
(
0, F 2

obs
)
+ (1− f) · F 2

calc, (2.36b)

q =


1 c = 0

exp
[
c
(
sin θ
λ

)2]
c > 0

1− exp
[
c
(
sin θ
λ

)2]
c < 0

(2.36c)

† Hydrogen atoms are normally not included at this stage.
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It is prompted by the WGHT command in the .ins file, and the default parameters are a = 0.1, f = 1/3 and
the rest zero. Sheldrick recommends keeping them until all atoms have been found and the structure has practically
converged to a solution. [49] A different weighting scheme can be applied to improve the goodness of fit. Olex2 uses
only the two parameters a and b by default, and suggested values for these are provided by the refinement program
SHELXL. [50]

The data reduction in CrysAlis produces six output files: [47] [51, p. 65] The .cif files contain detailed information
on the structure (description of data collection, cell and space group, fractional coordinates of atoms); The .hkl
files contain columns of hkl and the corresponding values for observed intensities F 2

obs and standard deviations
σint

(
F 2

obs
)
; The.ins files contain commands for the SHELX programs (see figure X); The.p4p files are alternative

parameter files; Finally, a log of the data reduction procedure by CrysAlis is given in a .sum file.

.cif crystallographic information file

.cif_od Oxford Diffraction formatted .cif

.hkl SHELX reflection data file

.ins SHELX instruction file

.p4p XPREP†data collection parameter file

.sum summary file of data reduction procedure

Table 2.1: Data reduction output files from CrysAlis.

Normally, a couple of data reduction output files mentioned above are needed as input files in structure solution
and refinement software. Olex2 requires the .hkl and .ins files.

† XPREP is another SHELX program component.
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2.3.2 Instrumentation setup
All data have been collected with a diffractometer based on the first generation of the DECTRIS PILATUS 2M area
detector. [52] The instrument is located at the Swiss-Norwegian beamline (SNBL) at the ESRF. In order to control the
experiment a special software called Pylatus is used. Data is collected by the rotation method ; the crystal is rotated
about one of the goniometer axes and diffractograms are recorded and stored in the form of crystallographic binary
files (.cbf). The set of all such files from a single experiment will be referred to as a data set†. For each data set an
initial parameter file (.par) containing instrument and sample information has to be created with the application
called Crysis found in the SNBL ToolBox. Finally, the data can be read and processed in CrysAlis.

This subsection will cover the necessary definitions of the instrument parameters involved in CrysAlis. The dif-
fracting geometry is to a high extent based on a paper by Paciorek, Meyer and Chapuis. [53] [54]

The orientation matrix
The orientation matrix UB describes the crystal orientation with respect to the orientation of the diffractometer
angles. It is the product of an orthogonal rotation matrix U and an orthonormalisation matrix B. The matrix B

transforms crystallographic coordinates in reciprocal space to Cartesian coordinates local to the crystal. The standard
way of constructing the latter system is to first let its x-axis, eBx , coincide with the reciprocal unit cell vector a∗.
Then, the eBy -axis is set so that it is normal to the eBx -axis in addition to lying in the a∗b∗ plane. Finally, the eBz -axis
completes a right-handed coordinate system. [55] From this we obtain an upper triangular B matrix with element
Bij being the projection of eC∗

j onto eBi , where the superscript C∗ refers to the crystallographic coordinate system
of the reciprocal unit cell and the indices denote the natural place of the i’th or j’th basis direction‡. The exact
definition of the orientation matrix can depend on the actual diffractometer. For our setup we get from Busing and
Levy: [56]

B =

a∗ b∗ cos γ∗ c∗ cosβ∗

0 b∗ sin γ∗ −c∗ sinβ∗ cosα
0 0 1/c

 , (2.37)

Note that B only depends on the unit cell parameters. Any coordinate vector h in a reciprocal crystallographic
reference frame will have a magnitude given by the standard norm, ∥h∥ =

√
⟨h,h⟩. By transforming to Cartesian

coordinates first, we get the magnitude to be:

∥h∥ =
√
⟨Bh,Bh⟩ =

√
(Bh)TBh =

√
hTBTBh. (2.38)

From this we may define the reciprocal space metric tensor: [55]

G−1 ≡ BTB (2.39)

Since this is a symmetric and positive definite matrix, we may recognise B as its Cholesky factor.
Next we need to transform from the Cartesian crystal frame to the Cartesian laboratory coordinate system.This

is done by the use of Euler angles and is in practice represented by a product of three elementary rotations: [53]

U = Rz(ϕz)Ry(ϕy)Rx(ϕx), (2.40)

where Ri denotes the clockwise rotation matrix about axis i. The ϕx, ϕy and ϕz angles are the r1, r2 and r3
angles in CrysAlis. [47]

The two matrices, U and B, are also regarded as QR factors where U is the orthogonal matrix (UT = U−1)
and B is an upper triangular matrix. [53] It can also be noted that the orthonormalisation matrix B does not have to
be defined by (2.39).

† In cases where it is natural to associate multiple data sets to the same experiment (such as temperature development of a particular
sample) the term data subset has been used instead. The whole collection of subsets for a given experiment then make up a «data set».

‡ i ∈ {x, y, z} and j ∈ {a∗,b∗, c∗}. For example, element B23 contains the projection of c∗ onto the y-axis.
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The orientation matrix is defined for the setting with all diffractometer angles set to zero and relates any reflection
vector h with a position vector r in the Cartesian laboratory frame: [55, p. 55]

r = UB h. (2.41)

The right-hand side of (2.41) may be further expanded with misorientation matrices to correct for deviations about
the laboratory axes. [57]

To summarise:
1. A reciprocal lattice vector h is defined according to the crystallographic directions of the reciprocal unit cell.
2. The coordinate system of the reciprocal unit cell is orthogonalised by the matrix B.
3. A transformation between this system and the orthonormal laboratory frame is realised with U.
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Parameters in the instrument model
For the PILATUS 2M detector each .cbf file corresponds to a 1475×1679 image approximately 2.5MB in size.
The images are generated from an 8×3 array of modules at 487×195 pixels each with an intermodule gap of 7×17
pixels. [54] Our data have been collected using a Huber 515 series κ-goniometer where the crystal has been rotated
about the ϕ axis only†. [58]

(a) A κ-goniometer and the three
rotation axes.

ex
ey

ez d0
eCA
x

eCA
y

(b) The laboratory coordinate system and the detector.

Figure 2.10: (a) A sketch of the goniometer (based on a figure by Brockhauser et al. [59]). The sample is positioned in the ω–κ–ϕ
intersection, which corresponds to the ex–ey–ez intersection in (b) and is also called the instrument centre. [60] The latter coordinate
system, called the laboratory frame, is defined with ex pointing towards the X-ray source; ez coinciding with the ω-rotation axis, and
ey completing the right-hand coordinate system. [53] eCA

x and eCA
y show the detector coordinate system used by CrysAlis. The plate in

(b) represents the PILATUS detector screen with the array of modules.

CrysAlis symbol Description Unit

C
ry

sta
l

r1 crystal rotation about ex-axis

[°]

r2 crystal rotation about ey-axis
r3 crystal rotation about ez-axis
w1 crystal wobbling about ex-axis
w2 crystal wobbling about ey-axis
w3 crystal wobbling about ez-axis

G
on

io
m

et
er

b2 beam rotation about ey-axis

[°]

b3 beam rotation about ez-axis
al goniometer angle α
be goniometer angle β
o0 goniometer software zero ω
t0 goniometer software zero θ
k0 goniometer software zero κ
p0 goniometer software zero ϕ

D
et

ec
to

r

d1 detector rotation about ex-axis
[°]d2 detector rotation about ey-axis

d3 detector rotation about ez-axis
x0 detector offset of eCA

x -axis
[px]

y0 detector offset of eCA
y -axis

dd distance from goniometer to detector [mm]

Table 2.2: CrysAlis symbols associated with the parameters of the
instrument model and short descriptions.

The laboratory reference frame is shown in Figure 2.10b
above. Note that the rotation axes of the goniometer use
a left-hand system. If we were to swing the goniometer
equipment shown in Figure 2.10a about the κ-axis back
into alignment with ω (κ = 0°), the goniometer angle
β would ideally become zero as theϕ-axis coincides with
the ω-axis, but can be included to model any misalign-
ment. Preliminary adjustments are done to centre the
sample to the origin of the laboratory reference system.

The three angles r1, r2 and r3 are rotations of the
crystal lattice with respect to the laboratory frame. The
“wobbling” parameters shown in Table 2.2 can be used
to account for any wobbling of the crystal as it rotates
during data collection. Detector rotations d1, d2 and
d3 refer to rotations of the detector screen.

The origin of the laboratory system is also taken to
be the origin both of the crystal and the abstract Ewald
sphere. The point where the incoming X-ray beam
would intersect the sphere marks the origin of the re-
ciprocal space.

† The ϕ-axis may be visualised as the axis that “impales” the sample.
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Contribution of the background radiation decreases with the square of the distance, so a longer crystal-to-detector
distance may be preferable. [34] The resolution of individual reflections, however, decreases with increasing crystal-to-
detector distance (as they span fewer pixels). A shorter detector distance will allow for greater θmax, thus increasing
the resolution of the data set.

The exposure time also needs to be set to an optimal value, as too short exposure time results in noisy images with
poor resolution, and too much exposure leads to saturated spots. [61] It is also important to centre the crystal correctly
for it to have a constant amount of volume in the X-ray beam (thus providing a constant diffracting power). [26, p. 128]

An advantage with pixel area detector systems is that they record many reflections simultaneously, not just regions
around certain reciprocal lattice points, and we their profiles are effectively three-dimensional. [26, p. 127] The diffrac-
tion pattern is also recorded directly on the detector surface by charge-coupled devices (CCD) – radiation sensitive
semi-conductor capacitors that convert light into a digital signal. [40, p. 64] The use of such detectors together with
synchrotron radiation enables us to collect vast amounts of data in the matter of minutes or hours. It is also easier
to acquire complete diffraction patterns at a high degree of redundancy.
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2.3.3 An overview of the CrysAlis software
For single-crystal diffraction experiments, CrysAlis is used to handle and analyse data. Primary tasks include determ-
ining the unit cell and checking the crystal quality.

Setup

Peak hunt Unit cell
Lattice trans-

formation

Reindexation
Refine

instrument
model

Ewald
explorer

Peak table End

manual transformation

Figure 2.11: CrysAlis flowchart of the initial procedures for
unit cell determination and refinement. Elaboration on the
steps involved are presented in the text. Any data reduction
and structure analysis comes after.

The main window of CrysAlis is shown in Figure 2.12
below, along with its Lattice wizard to the right.

The «Setup» comprises, for our purposes, any preset-
ting of the instrument model parameters or polarisation
factor and can be reached from the Command shell or the
Lattice wizard .

The next step is the crucial «Peak hunt». Here the data
from the X-ray diffraction experiment is processed to de-
termine which reflections are present. The peak table is a list
of hkl values assigned to the observed reflections with the
corresponding coordinates and intensity. As the screenshot
in Figure 2.13 shows, there are three build-in methods to
choose from; an automatic threshold method, a traditional
peak hunt, and a smart peak hunt. There is also another
automatic peak hunting method called «Auto analyse unit
cell», see Figure 2.14.

(a) The main window of CrysAlis. (b) The Lattice wizard .
Figure 2.12: (a) The main window of CrysAlis. The two top buttons to the left open the Lattice wizard and Command shell . We can also
see details about the unit cell in the «Crystal» tab to the right. In this case, we are looking at the data subset Crystal_1_(01). (b) The
Lattice wizard , which contains the necessary tools for data treatment. These screenshots are from the Crystal_4_(01) data subset.

Figure2.13: Thepeakhuntingwizard. Threemainmethods for find-
ing peaks are presented.

Figure 2.14: The preferred automatic peak hunt method.

The different peak searching algorithms make CrysAlis
more versatile, but finding the optimal settings can be
a challenge. Ideally, one would try all possibilities and
choose the method that resulted in finding the largest
amount of peaks. Too many peaks, however, could be
the result of a background threshold being too low, and
a majority of the peaks would not fit the lattice anyway.
The «auto analyse unit cell»-method takes some extra
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time, but has the benefit of being more thorough, at least seemingly. It has also proved to be consistent in regards to
reproducing the same peak table for the same data sets. The purpose of the peak table is to construct an orientation
matrix as accurate as possible, which will, for instance, be employed in the data reduction.

After determining the peaks comes the task of assigning a unit cell to them. This is usually done automatically
by CrysAlis, but the user may influence the decision by setting the cell constants (if known), orientation matrix or
other constraints. The unit cell obtained from analysing the data does not necessarily correspond to the Bravais
lattice. [62] CrysAlis does, however, provide a list of closely-related cells that may be used instead. Whether “wrongly”
determined unit cells imply an inaccurate peak table, wrong program settings or simply a correct but unexpected
cell, is hard to say.

Figure 2.15: The Ewald explorer provides a three-dimensional overview of the
peaks, here in the c∗ direction.

In addition to the amount of peaks found,
one may judge the peak table quality by view-
ing them in Ewald explorer , shown in Fig-
ure 2.15. This application gives a three-
dimensional overview of the peaks, reveal-
ing obvious faults such as substantial voids†

of reflections or concentric shells of reflec-
tions, which is the case with non-crystalline
samples. Inspection for twinning can also be
done here.

The next step is to refine the parameters of
the diffractometer (see Table 2.2). Depend-
ing on the symmetry of the unit cell (known
or apparent from the previous steps), con-
straints on the lattice parameters may be spe-
cified at this stage; see Figure 2.16 below. Only checked quantities will be run through least-square refinements.

Figure 2.16: The Refine instrument model . In this example with a hexagonal lattice, the
only free lattice parameters are a and c.

After performing some preliminary re-
finements, a residual factor is presented
as res‡ in the Lattice wizard to show
the level of agreement with the peak
table. In the flowchart in Figure 2.11
we see that the last steps are concerned
with refining the peak table and in-
strument parameters. «Reindexation»
refers to adjusting the allowed devi-
ation from a reciprocal lattice node.
Reflections outside this threshold will
not be considered to have integer
hkl indices and thus tagged with wi

(wrong index) in the peak table.
The «End» stage consists of saving

the progress in CrysAlis and gathering files that may be of use, such as peak table data or the project log file. The
log files are very useful as the instrument parameters and various matrices are contained in them. Extraction of the
latest refined values can be done with the RefinedValues function in the Xray package.

† Voids could result from the nature of the experiment.
‡ This residual factor, which concerns the refinement of the instrument model, is not to be confused with the R-factors in (2.25) or

(2.30).
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Figure 2.17: CrysAlis’ Unwarp feature.

The so-called Unwarp feature of CrysAlis, found in the
Lattice wizard , allows one to create images of the reciprocal space
at a desired orientation and resolution. This process uses all the rel-
evant image data. Although it is unaffected by any manipulation
of the peak table, an accurate orientation matrix is crucial. With
this tool, thousands of cross sections of reciprocal space have been
generated. The purpose of this is to gain insight to the structure,
indirectly, by revealing any characteristic features in the reciprocal
space.

This window in Figure 2.17 shows the step where the specific
properties of a layer is defined. A list of layers may be generated
with UnwarpLayerList in the Xray package.

Data reduction
When we come to the «end» in the flowchart in Figure 2.11 with
satisfactory peak table and model refinements, we may initiate the “data reduction”, i.e. the process of reconstructing
the peak profiles (as mentioned briefly on page 19).

(a) Step 1. (b) Step 3. (c) Step 4.

Figure 2.18: Screenshots of the data reduction steps in CrysAlis – continued in Figure 2.20.

The data reduction procedure in CrysAlis is broken into six main steps. In the first step we have the option to ignore
reflections that should be absent for a given lattice centring. Analysis of incommensurate and twinned crystals is
also enabled at this stage.

Figure 2.19: Extra profile fitting options.

In step 2 (omitted in Figure 2.18) the user can choose to only
evaluate a partial set of the whole experiment, but this is not of interest
of us as we only have one run per data subset.

Step 3 lets us adjust parameters of the algorithms for determin-
ing the peak profiles. The “special parameters” are shown in Fig-
ure 2.19. Note that the option «HKL check in 3D peak analysis»
has been checked manually.

In step 4 we normally choose the «smart background» integration
method and uncheck «Reduce background accumulation».

We can choose to reject outliers in step 5. Symmetry equivalent
reflections are compared using a selected Laue class.
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In the final step we choose whether to take part in the space group determination or not. The chemical compos-
ition may be provided here as well.

(a) Step 5. (b) Step 6.

Figure 2.20: The final steps in the data reduction.

The SNBL Toolbox
Shown in Figure 2.21 are screenshots from the SNBL Toolbox [63] mentioned in subsection 2.3.2.

(a) Main window of the SNBL Toolbox. (b) Crysis in operation.

Figure 2.21: The SNBL Toolbox version 0.5 and the Crysis component

Figure 2.22: The program used to bin the images.

Figure 2.21b shows the Crysis program, which pre-
pares the initial parameter file for CrysAlis. The «De-
lete angles» option in should not be checked, and has in
some cases removed angular metadata from the headers
of .cbf files. It is likely a compatibility issue between
the toolbox and newer versions of CrysAlis.
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2.4 Ferrocene and thiourea-ferrocene

2.4.1 Ferrocene
Ferrocene (C10H10Fe or Fe(C5H5)2) was discovered in 1951 by the chemist Peter Ludwig Pauson and his student Tom
Joseph Kealy†. They were supposed to make pentafulvalene, which has a similar but linear structure without iron [66].
The “sandwich”-like structure, where an iron atom is positioned between two cyclopentadienyl rings (Cp), was first
suggested by Robert Burns Woodward and Sir Geoffrey Wilkinson, and independently by Ernst Otto Fischer, and
was later confirmed by X-ray studies. [64] [67] If one replaces the iron with any metal cation, the general structure is
referred to as a metallocene, which in turn is a subset of the broader class of so-called sandwich compounds. [68] Fischer
and Wilkinson were awarded the Nobel Prize in Chemistry in 1973 for the structure determination of ferrocene and
their research on other sandwich compounds. [67]

We distinguish between three possible ways the two carbon rings can be rotated in relation to each other: If they
are oriented exactly the same they are in an eclipsed conformation; If one of the rings is rotated 36° from the other
they are said to be in staggered conformation. Rotation by any other amount is referred to as twisted .

(a)

ψ

(b)

Figure 2.23: (a) The atomic structure of ferrocene. : Iron, : Carbon,
: Hydrogen. The two parallel pentagons are the cyclopentadienyl

anion rings. The “edges” of the rings (carbon–carbon bond distances)
are (1.403± 0.020)Å and the distance from iron to the nearest carbon
(2.045± 0.010)Å. [69] (b) Top view of the rings. ψ = 0° and ψ = 36°
correspond to eclipsed and staggered conformations, respectively.

Staggered ferrocene has an inversion centre and
belongs to the non-crystallographic point group
5̄m (D5d), while the eclipsed conformation has
point group 10m2 (D5h). At room temperature,
the conformation and orientation of the ferrocene
molecules are reported to be random. [70] [71] Pos-
sible structures consistent with observations may be
staggered or nearly eclipsed conformations, but di-
vided into regions not necessarily having the same
orientations. [72] [73] Nevertheless, it is believed that
the molecule experiences the least repulsion from
neighbouring atoms (Steric effects) in the staggered
conformation, although others claim this conforma-
tion is energetically unfavoured. [68] [74] In gas phase
and at low temperatures, the Cp rings are ec-
lipsed. [64] [75] [76]

Crystallographic studies show that ferrocene is
monoclinic with space group P21/a at room temperature with lattice parameters: [69] [77]

a = 10.561(11)Å, b = 7.597(8)Å, c = 5.952(6)Å, β = 121.02(12)°; (2.42)

Ferrocene is very non-rigid and said to possess conformational freedom. Structural flexibility is a characteristic
trait of organometallic molecules. [78, p. 466] Above 190K, the cyclopentadienyl rings are rotating, being staggered
on average [74], but freeze into nearly eclipsed conformation at 164K [79]. At this point, ferrocene transitions to a
triclinic structure with the rings twisted 9° and the colour changes from orange to yellow [76] [75] [2].

Bermúdez-García et al. [79] have also studied the electrical dipole moment of ferrocene and concluded that in
this low-temperature phase, the molecules will either have a dipole moment pointing parallel to the plane of the
cyclopentadienyl rings (type I) or normal to them (type II). Moreover, Type I has a dipole magnitude that is about
twice that of type II. In the transition process the iron cation is shifted off centre, removing the inversion symmetry
of ferrocene. Seiler and Dunitz state that crystals cooled from room temperature to the triclinic phase will always be
twinned. [76]

An orthorhombic phase of ferrocene has also been attained in the temperature range 78K to 250K, but crys-

† Ferrocene was made earlier by Samuel A. Miller, John A. Tebboth and John F. Tremaine, but they published later. [64] [65].
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tallisation occurs at 110K or less. [77] Ferrocene is then eclipsed [74] and the space group is found to be Pnma and
lattice parameters (at 98K): [76]

a = (6.987± 0.006)Å, b = (8.995± 0.007)Å, c = (12.196± 0.005)Å. (2.43)

A crystal size roughly between 40 µm to 300µm is necessary for obtaining the orthorhombic structure. [77]

2.4.2 Thiourea-ferrocene
Thiourea (SC(NH2)2) is a ferroelectric which crystallises in an orthorhombic cell at room temperature with para-
meters: [80]

a = (7.5429± 0.0008)Å, b = (8.5422± 0.0007)Å, c = (5.4647± 0.0004)Å, (2.44)

in the space group Pnma with Z = 4. Cooling it below T1 = 202K changes the crystal from a paraelectric to
a ferroelectric phase. Going below the critical temperature T2 = 169K, a transition to the space group Pmc21
occurs. [81]

It is of interest to us because mixing it with ferrocene results in an inclusion compound . S

C

NH2 NH2

Figure 2.24: The structural
formula of thiourea. Urea
would have oxygen in place
of the sulphur atom.

This is a system in which one of the components, called the guest, is confined within
the structure of the host. [82] The host-to-host interactions dominate the crystal structure,
and the two components can be distinguished individually. [2]

Thiourea is categorised as a soft host, meaning its structure changes substantially in
the presence of guest components – we also say that its framework is interrupted by the
guest introduction. The term clathrate compound is further used to emphasise the guest
molecules being caged by arrays of the host molecules. If the guest molecules align linearly
in the clathrate we may describe it as a tunnel inclusion complex†.

Urea (CO(NH2)2), a compound very similar to thiourea, is a referred to as a versatile host since it may form
hexagonal, orthorhombic or rhombohedral tunnel inclusion compounds. [2] On the contrary, thiourea is regarded
as non-versatile in the sense that when structural changes occur, it will only form rhombohedral tunnel inclusion
complexes. [2] Nevertheless, thiourea is able to form inclusion complexes with a greater variety of guests than urea,
and has a larger tunnel diameter of about 6.1Å compared to urea (5.25Å). [3] In hexagonal inclusions, the host
molecules have a helical and chiral arrangement, contrary to the layered and non-chiral arrangements found in the
rhombohedral complexes. This comes from the fact that the tunnels of the hexagonal type have a uniform force
field both along the tunnel direction and normal to it, giving the guest molecules of cylindrical shapes no preferred
location in it. On the other hand, the force field along the tunnel axis of rhombohedral complexes have a period
of about 5.5Å. If guest molecules have similar periodicity, rhombohedral formation is favoured over hexagonal
formation. [2]

The cell dimensions of thiourea complexes, in hexagonal setting, are generally about a ≈ 15.8Å and c ≈ 12.5Å
with Z = 6 formula units per unit cell, space group R3̄c and the edge of the hexagonal tunnel approximately
5.37Å. [2, p. 231].

Figure 2.25: The three possible subconfigurations of the per-
pendicular orientation as given by Sorai et al. [3] The hexagons
are crude representations of thiourea.

The tunnels of the urea and thiourea inclusion complexes
all have hexagonal cross sections, and the host molecules
form spirals whose axes are centred between three adjacent
tunnels.

In the thiourea-ferrocene clathrate (C13 H22 Fe N6 S3),
thiourea acts as the host and form a honeycomb of tunnels
with trigonal symmetry. Within these tunnels, the ferro-

† The word channel is sometimes used instead of «tunnel».
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cene may be aligned either parallel to the host lattice, i.e. its fivefold molecular axis coincide with that of the tunnel,
or perpendicular, meaning the molecular axis lies in the plane of the host lattice. The three possible subconfigura-
tions of the perpendicular orientation are shown in Figure 2.25. Nuclear magnetic resonance studies by Lowery et
al. [83] indicate, however, that the parallel orientation is an approximation, and that there are three subconfigurations
also here, tilted about 17° from the tunnel axis and related by a threefold axis.

The cyclopentadienyl rings of neighbouring ferrocene molecules repel each other, which leads to tilting and
rotation of the ferrocenes. The rings are also reported to be three-dimensionally disordered at room temperature,
and that finding two neighbouring ferrocenes in the parallel orientation was unlikely due to the cyclopentadienyl
rings being very close. [84] Monte Carlo simulations by Drew et al. [85] show that the parallel orientation is preferred
over the perpendicular by a ratio of 3: 2, while Gibb claims the exact opposite. [86] At 140K, Lowery et al. [83] state
that about 55% of the ferrocenes are in the perpendicular orientation.

Nicholson and Hough [84] have determined the crystal structure of 3: 1 thiourea-ferrocene to be rhombohedral
with space group R3̄c and cell parameters:

a = (16.360± 0.003)Å, c = (12.395± 0.002)Å, (2.45)

with Z = 6 in a unit cell based on the hexagonal setting. Sorai et al. [3] measured slightly larger parameters;

a = 16.40Å, c = 12.50Å. (2.46)

Phase transitions
In 1981 Sorai et al. [3] used an adiabatic-type calorimeter to measure excess heat capacities in the range 13K to
280K and found five phase transitions occurring at the critical temperatures:

T1 = 147.2K, T2 = 159.79K, T3 = 171.4K, T4 = 185.5K, T5 = 220K, (2.47)

where T2 is associated with first-order transition, the higher temperatures with second-order, and T1 is ambiguous.
The different phases are labelled with Roman letters I–VI, with the first phase I being above T5, phase II between
T4 and T5, and so on – see Figure 2.26. Results from this study and Clement et al. [87] indicate that the transition
at T2 is the strongest and involves a volume change.
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Figure 2.26: The excess heat capacities arising from the phase transitions.
Dashed grey lines indicate where transitions occur, and the purple lines at what
temperature our crystallographic studies have taken place (some are out of
range). The plot is reproduced from Sorai et al. [3] Temperatures on the hori-
zontal axis are in kelvins.

The two lowest temperature transitions are
linked with reorientation of the ferrocenes.
Below 141K the ferrocenes are static and ef-
fectively frozen-in, with an equal probabil-
ity of finding the ferrocene in the parallel
and perpendicular orientations. [86] [83] Going
from phase VI to V, multiple ferrocene mo-
lecules will collectively form a spiral pattern
along the tunnel axis with specific phase re-
lations. This restriction is then lifted in the
V to IV-transition, which is associated with
the ferrocene flipping up to the parallel ori-
entation, as well as a rapid reorientation of
these molecules about the channel axis. [86] [3]

Hough and Nicholson [84] also found that
the crystal twins reversibly below T2. Above
300K, the ferrocenes are believed to tumble
rapidly between all positions. [83]

Very little is known about changes in the
thiourea matrix, [2] but the host lattice forming the hexagonal tunnels are stationary from 140K to 298K. [83]
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Chapter 3
Analysis

3.1 Silicon data
Data has been collected on six different silicon crystals at the ESRF in the autumn of 2014. First, the Mathematica
function calculating and presenting the related quantities will be introduced and validated in subsection 3.1.1.
Thereafter, intensities obtained from data reduction of the silicon data will be compared to theoretical values in
subsection 3.1.2.

3.1.1 Comparing calculations with literature
Structure factors and checking of absent reflections are calculated by Mathematica functions developed earlier by
Thorkildsen and Larsen. These have been integrated in the StructureFactorTable function in a way that
allows for a relatively quick and easy way of obtaining the most significant structure factors, along with the quantities
relevant to the study of dynamical effects in silicon. An example is given in Figure 3.1.
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(a) Input example inMathematica.

Structure factor Phase Bragg angle Pendellösung distance Darwin width
(hkl) |Fhkl | ϕhkl [°] θB [°] Λ0 [µm] 2δos [µrad]
(111) 59.374 -179.620 6.493 42.140 14.881
(220) 68.225 -179.540 10.641 36.275 10.586
(311) 44.716 -179.510 12.506 54.979 5.957
(400) 57.093 -179.470 15.138 42.576 6.378
(331) 38.199 0.554 16.534 63.198 3.943
(422) 49.472 0.593 18.653 48.227 4.597
(333) 33.235 0.617 19.831 71.276 2.933
(511) 33.235 0.617 19.831 71.276 2.933
(440) 43.239 0.658 21.674 54.122 3.548

(b) The corresponding output.

Figure 3.1: Example of input and output of the StructureFactorTable function. The first input argument is the wavelength (here:
λ = 0.709 317 13Å for MoKα1 from Authier [1, p. 438]). The next two arguments request data for the actual compound and Laue class,
respectively (here: silicon and m3m). The remaining arguments are optional; The first of them takes extra reflection conditions into
consideration (here: Miller index h needs to be odd or the digit sum h+k+lmust be divisible by four), while the last two are concerned
with the table formatting; The table is sorted by increasing values in the fourth column (Bragg angles) and only the first nine entries are
presented.

The user needs to at least input the radiation wavelength, the name of the crystal† and the Laue class. The procedure
starts by reading in the compound data. Scattering factors are computed using a function that is a linear combination

† Information on the unit cell, asymmetric unit and scattering coefficients is contained in a .dat file of the same name as the compound
or crystal. The Xray package currently contains 29 such data files.
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of five Gaussians:

f(s) =

5∑
i=1
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−bis2
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+ c, s ≡ sin(θ)

λ
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440 43.239 43.3 48.341
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642 29.830 29.86 0
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311 121.92 126.58 114.920 113.646

400 154.4 163.68 144.690 143.089

331 102.72 110.22 95.924 94.846

422 132.05 144.55 122.610

511 88.449 97.986

440 114.78 129.71 105.620

444 89.613 108.03

642 80.194 0

660 65.594 87.245

555 44.794 60.316

844 54.981 74.447

880 47.039 64.138

111

G
al

liu
m

ar
se

ni
de

C
u
K

α
1

146.220 147.971

200 6.754 15.809

220 174.310 174.219

311 114.130 114.179

222 5.760

400 142.360 142.769

331 93.860 95.032

420 6.052 6.538

422 119.830

333 80.228 80.251

440 102.590 103.526

442 5.832 6.538

Table 3.1: Comparison of the structure factors generated from Struc-

tureFactorTable and other sources. The wavelengths used were λMo =

0.709 317Å and λCu = 1.540 593Å from Authier [1, p. 438].

The function is an analytical approximation and
is based on tabulated values from volume C of the
International Tables for Crystallography. [89] Our
values for the eleven parameters (scattering coef-
ficients), a1, a2, . . . , b1, . . . , b5, c, are gathered
from Waasmaier and Kirfel, who claim f(s) is
valid for values of sin(θ)/λ up to 6.0Å−1. [90]

Corrections of the atomic scattering factor due
to anomalous scattering, f ′ and f ′′, is computed
by interpolating in tabulated values for the ap-
propriate wavelength. The calculations are based
on work by Cromer and Liberman. [91]

A list of reflections is generated with the func-
tion ReflectionList, which filters away
systematic absent reflections. From Bragg’s (2.7)
we have (for the first-order reflection):

sin θ =
λ

2dhkl
=
λ

2

√
hTG−1h, (3.2)

where h is a reciprocal lattice vector and G−1 is
the metric tensor of the reciprocal space. From
(3.2) we see that certain h may correspond to a
complex angle for a given wavelength. The func-
tion also removes these reflections before mer-
ging by symmetry equivalence. Next the quantit-
ies we see in the table of Figure 3.1 are computed.

Comparing structure factors
Theoretical values from the Structure-

FactorTable function have been compared
to three other sources, as shown in Table 3.1 to
the right. Comparisons have been made for the
three compounds silicon (Si), germanium (Ge)
and gallium arsenide (GaAs) at the two charac-
teristic wavelengths of Mo Kα1 and Cu Kα1 .

We see that silicon values are in good agree-
ment with Authier [1] with our values being just
0.74% less than his on average. Given that
the energy corresponding to the wavelength of
MoKα1 is 17.479 keV [1, p. 438], we can com-
pare with matching data from Cornell Univer-
sity’s CHESS database. [88] This time our values
are 13.1% less than those found in the database
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on average. We also see a clear tendency of the discrepancy increasing for each reflection having a greater Bragg angle
(as the hkl list here is sorted by), which is likely due to different displacement parameters being used.

The discrepancies we see are likely to emerge from using different sources for scattering factors.

Comparing the Darwin width with literature
A table analogous to Table 3.1 can be made for Darwin widths. Again, Cornell University’s database has been used
to provide values, now also for Cu Kα1 at 8.048 keV. [1, p. 438] A table with ten Darwin widths was found in a book
by Pike and Sabatier [20, p. 1121], but these corresponded to a wavelength of one ångström. For the CHESS database,
a wavelength of 1.0Å was obtained for 12.398 keV.
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.1
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C
H

ES
S

da
ta

ba
se

[8
8]

Si
M

o
K

α
1

111 14.885 15.2 14.719

Si
C

u
K

α
1

33.691 33.8 32.767

Si
1
.0

Å

21.245 20.847 20.885

220 10.589 10.6 10.757 25.176 24.6 25.067 13.304 7.272 15.438

311 5.958 6.147 14.627 14.770 8.677 8.727 8.885

422 4.599 4.995 13.507 14.293 6.946 3.103 7.476

333 2.934 3.221 9.112 9.736 4.473 1.309 4.865

440 3.549 3.6 3.966 12.354 12.0 13.413 5.502 6.087

G
e

M
o
K

α
1

111 35.561 35.6 35.741

G
e

C
u
K

α
1

75.323 75.4 79.404
G

e
1
.0

Å
48.154 49.936 50.688

220 26.518 26.6 27.187 58.115 58.0 62.976 36.063 18.423 39.358

311 14.939 15.511 33.531 36.931 20.390 21.332 22.372

422 11.259 12.325 29.003 34.194 15.686 7.757 18.345

333 7.157 7.929 19.243 23.039 10.029 3.151 11.898

400 8.627 8.6 9.749 25.274 25.2 31.045 12.217 14.839

Table 3.2: Comparison of the Darwin widths from StructureFactorTable and other sources. The same values for the characteristic
wavelengths as in Table 3.1 were used.

Most likely, the values in Authier’s table 15.2 [1, p. 447] denote δos. These were therefore doubled in Table 3.2 in order
to make comparisons. We see that the computed values are in general agreement with the other sources, except
for some of Darwin widths provided by Pike and Sabatier [20, p. 1121], which are close to exactly half of our values.
Discrepancies are addressed to different sources for input data.
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3.1.2 Intensity comparison
Each sample consists of six data subsets with name format x_y_z. The three parameters denote by which amount of
millimetres the detector was shifted in the corresponding direction. Values used in this project are listed in Table 3.3
along with the number of reflections found with each setting.

Setting Sample A Sample B Sample C Sample D Sample E

0_0_0 287 303 300 312 311
0_0_90 270 275 274 278 276
0_100_0 102 118 118 113 125
0_100_90 137 141 130 135 147
0_200_0 50 46 51 52 46
0_200_90 61 64 75 79 67

Total 907 947 948 969 972

Table 3.3: The amount of reflections after data reduction in CrysAlis for a given sample and setting.

Details on the CrysAlis procedure may be read in subsection 6.2.1 of appendix B. We will be using output generated
from StructureFactorTable as reference values. These are presented in Figure 3.2.

Structure factor Phase Bragg angle Pendellösung distance Darwin width
(hkl) |Fhkl| ϕhkl [°] θB [°] Λ0 [µm] 2δos [µrad]
(220) 68.193 -179.570 10.335 37.393 10.270
(111) 59.351 -179.640 6.307 43.408 14.447
(400) 57.062 -179.500 14.697 43.938 6.180
(422) 49.442 0.560 18.103 49.830 4.449
(311) 44.694 -179.540 12.144 56.697 5.776
(440) 43.209 0.621 21.027 55.993 3.429
(331) 38.177 0.523 16.050 65.248 3.819
(620) 37.976 0.685 23.650 62.522 2.747
(444) 33.554 -179.250 26.068 69.391 2.259
(511) 33.214 0.582 19.243 73.679 2.837
(333) 33.214 0.582 19.243 73.679 2.837
(642) 29.803 -179.180 28.337 76.551 1.896
(531) 29.091 0.644 22.039 82.589 2.223
(800) 26.609 0.890 30.492 83.939 1.618
(533) 25.619 -179.290 24.578 92.010 1.800
(822) 23.878 -179.040 32.562 91.488 1.399
(660) 23.878 -179.040 32.562 91.488 1.399

Figure 3.2: Output from the mentionedMathematica function serving as reference for the subsequent analysis.

The wavelength applied to the function, λ = 0.688 94Å, was extracted from the header information of the first
.cbf file in each data directory belonging to the this project.

When comparing the six different detector orientations in Table 3.3 we see that the most amount of reflections were
obtained with the 0_0_0 setting; we will therefore be using this setting exclusively in the following analysis. The
Mathematica function IntensityTable has been written for the task of extracting desired information from
the reflection files (.hkl). The function gathers symmetry equivalent reflections at a single row in a table along
with some statistics. Input example:

������������������������ ������ {�_� �_� �_} /� ����[�] || ���������[� + � + �� �]� ����

Figure 3.3: Input example for the IntensityTable function. The first three arguments (in the curly bracket) have the same function
as in StructureFactorTable. The next argument, file, represents the path to an .hkl file. The condition on the Miller indices are
used to remove reflections that should be systematically absent.
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Intensity Uncertainty Tally Range Relative span
(hkl) [counts] [counts] (min; max) from middle
(400) 302,105 9,213 10 (263,369; 359,524) 16%
(422) 290,509 7,093 29 (234,183; 355,750) 21%
(440) 288,375 9,692 8 (245,688; 320,673) 13%
(220) 259,799 14,452 10 (212,089; 336,725) 24%
(620) 255,654 8,935 16 (207,929; 346,015) 27%
(444) 225,244 4,469 6 (210,815; 238,629) 6%
(331) 214,718 4,243 30 (168,749; 251,939) 19%
(311) 212,078 2,877 42 (178,398; 263,524) 20%
(333) 199,318 5,577 6 (174,890; 210,979) 9%
(511) 199,021 4,655 33 (151,641; 263,242) 28%
(111) 198,894 4,515 12 (174,190; 224,184) 13%
(642) 188,820 5,489 8 (166,000; 213,356) 13%
(531) 175,507 2,651 44 (147,942; 218,718) 20%
(533) 154,454 3,654 12 (132,497; 178,059) 15%
(711) 144,927 6,132 8 (121,304; 167,211) 16%
(551) 130,708 2,203 13 (120,556; 149,297) 11%

(a) Si_A(0_0_0).

Intensity Uncertainty Tally Range Relative span
(hkl) [counts] [counts] (min; max) from middle
(220) 455,867 16,064 12 (398,549; 542,246) 16%
(400) 455,713 8,458 10 (404,294; 490,025) 9%
(422) 452,059 8,559 32 (378,676; 532,951) 17%
(440) 412,427 10,397 15 (347,552; 473,401) 15%
(620) 346,414 5,776 16 (298,420; 406,427) 16%
(111) 323,475 8,008 12 (283,016; 371,179) 14%
(311) 317,127 4,087 40 (263,478; 372,354) 17%
(331) 312,905 5,271 26 (277,674; 377,988) 16%
(444) 297,759 10,473 6 (271,163; 332,699) 10%
(333) 273,472 14,800 5 (242,672; 315,530) 13%
(511) 266,508 3,047 32 (222,964; 301,589) 15%
(642) 240,679 4,872 10 (216,091; 269,940) 11%
(531) 228,459 2,254 50 (191,288; 256,168) 14%
(533) 189,058 2,723 14 (178,884; 214,053) 9%
(711) 154,606 1,929 11 (147,255; 165,094) 6%
(551) 152,052 1,480 12 (143,399; 159,735) 5%

(b) Si_B(0_0_0).

Intensity Uncertainty Tally Range Relative span
(hkl) [counts] [counts] (min; max) from middle
(400) 258,704 9,121 12 (215,109; 317,193) 20%
(422) 250,687 5,654 31 (209,264; 323,202) 23%
(220) 246,201 6,453 16 (207,404; 307,981) 20%
(440) 233,294 7,163 10 (213,318; 297,072) 18%
(620) 195,678 4,274 18 (169,061; 227,685) 15%
(311) 180,074 4,045 40 (143,539; 238,198) 26%
(444) 179,132 9,778 4 (159,413; 206,410) 13%
(331) 169,414 3,893 30 (135,505; 223,353) 26%
(511) 161,820 2,787 35 (135,046; 193,173) 18%
(111) 159,127 6,988 12 (129,985; 218,639) 28%
(333) 158,878 4,041 12 (144,557; 186,123) 13%
(642) 141,999 3,584 5 (133,599; 153,972) 7%
(531) 135,788 2,125 40 (117,571; 172,886) 20%
(533) 116,826 3,446 10 (101,465; 138,141) 16%
(551) 95,894 2,315 14 (81,552; 110,893) 15%
(711) 94,387 2,736 10 (82,025; 104,639) 12%
(731) 78,147 1,690 1 (78,147; 78,147) 0%

(c) Si_C(0_0_0).

Intensity Uncertainty Tally Range Relative span
(hkl) [counts] [counts] (min; max) from middle
(220) 222,807 5,786 16 (181,201; 264,868) 19%
(400) 213,571 10,211 11 (157,574; 254,739) 23%
(422) 199,955 5,448 32 (129,283; 250,631) 30%
(440) 181,192 3,973 8 (167,151; 204,462) 10%
(620) 142,295 4,422 17 (121,396; 177,051) 20%
(111) 140,880 9,650 16 (67,650; 192,591) 44%
(331) 121,323 3,637 36 (44,562; 160,482) 48%
(444) 119,077 8,427 5 (93,844; 139,717) 19%
(311) 114,014 5,733 38 (31,526; 171,739) 61%
(333) 106,266 3,361 12 (88,291; 121,073) 15%
(642) 102,616 4,654 5 (95,036; 119,544) 12%
(511) 99,940 3,544 30 (54,606; 123,738) 35%
(531) 85,656 1,589 44 (54,009; 110,484) 33%
(533) 71,091 1,382 14 (65,973; 86,875) 15%
(711) 63,214 2,090 12 (52,012; 70,332) 14%
(551) 62,042 1,690 14 (53,246; 70,931) 14%
(731) 58,925 559 1 (58,925; 58,925) 0%
(553) 46,594 567 1 (46,594; 46,594) 0%

(d) Si_D(0_0_0).
Intensity Uncertainty Tally Range Relative span

(hkl) [counts] [counts] (min; max) from middle
(220) 358,444 24,531 14 (210,211; 542,258) 46%
(422) 347,456 12,053 27 (215,973; 453,606) 34%
(440) 290,903 15,770 16 (178,865; 368,165) 33%
(620) 247,137 8,286 15 (183,806; 310,318) 26%
(400) 239,077 37,579 8 (112,751; 378,785) 56%
(111) 233,713 15,880 16 (162,820; 381,803) 47%
(444) 211,417 11,331 6 (167,676; 245,089) 18%
(311) 211,347 11,055 47 (82,774; 353,284) 64%
(511) 202,272 7,390 20 (130,918; 253,109) 30%
(331) 198,119 11,164 36 (79,745; 317,080) 60%
(333) 187,903 11,070 8 (151,479; 238,309) 23%
(642) 165,683 5,842 12 (129,936; 197,875) 21%
(531) 161,882 3,246 43 (102,078; 217,798) 36%
(533) 132,094 3,215 18 (98,637; 151,789) 20%
(711) 105,292 2,616 15 (87,008; 121,973) 17%
(551) 101,279 5,097 8 (80,461; 121,397) 20%
(731) 80,323 5,839 2 (74,722; 86,411) 7%

(e) Si_E(0_0_0).

Figure 3.4: Tables over the intensities for all the 0_0_0 detector
settings, sorted by decreasing value of intensity. The «Intensity»
column is the weighted mean of the equivalents. The fourth
«Tally» column denotes the number of symmetry equivalent
reflections in the specific row. «Range» gives the smallest and
largest intensities within the set, and the final column gives the
middle value in a set of equivalent reflections divided by the
weighted mean.

Although modulus of the structure factor has been used in Figure 3.2 and photon counts in Figure 3.4, the relative
intensities of the various reflections should still be the same. For these silicon crystals we were unable to acquire
details on the absorption frame scaling by CrysAlis and do not have any detailed assessment of the crystal shapes.
This limits our ability to come with decisive conclusions. Some macroscopic details on the six silicon samples are
listed in Table 3.4. Sample Description Dimensions

Si_A Big sphere/ellipsoid 0.5mm

Si_B Pronounced axis ≤ 0.3mm

Si_C Arrowhead ≤ 0.3mm

Si_D Thin sheet ≈ 50 by 80µm
Si_E Wedge shaped ≤ 50µm

Table 3.4: Shape descriptions of silicon crystals and ap-
proximate dimensions.

We note, however, that order of the strongest reflections are
shuffled both among the samples and in comparison to the ref-
erence values. For instance, observe that in sample A and C the
220 reflection ranks fourth and third, respectively, despite being
strongest in Figure 3.2. We also see that 111 appear to be relat-
ively weak in all samples. If we compare sample A with sample
D and take their sizes into account, we see that two mentioned
reflections advance in the strength order with decreasing crystal size. These are typical signs of dynamical effects.

A Mathematica procedure has been written by Thorkildsen that performs a data reduction independent of
CrysAlis. Tables corresponding to Figure 3.4 can be found in Figure 6.1 in appendix C. A comparison between
the two sets of tables show that more reflections are found by Thorkildsen’s method and that the «relative spans from
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middle» are smaller. The order of most intense reflections in Figure 6.1 do not match the reference order nor the
corresponding orders in Figure 3.4. Decline of strong reflections is still visible.

Inconsistency within same data sets
It was discovered that reprocessing the same data sets would produce different reflection files every time. Also per-
forming the data reduction again on the sameCrysAlis project would give different results. A case withSi_E_0_0_0
is presented in Figure 3.5.

Intensity Uncertainty Tally Range Relative span
(hkl) [counts] [counts] (min; max) from middle
(220) 372,564 22,838 14 (226,229; 522,440) 40%
(422) 353,822 13,067 27 (232,338; 483,552) 36%
(440) 318,943 12,076 16 (201,610; 382,387) 28%
(400) 254,202 40,146 8 (118,162; 399,349) 55%
(620) 251,171 8,176 15 (188,772; 301,814) 23%
(111) 234,337 12,259 16 (169,924; 324,339) 33%
(311) 213,477 11,772 47 (89,179; 391,777) 71%
(511) 212,221 7,378 20 (122,286; 259,918) 32%
(444) 211,032 8,365 6 (177,406; 234,177) 13%
(333) 202,543 11,890 8 (157,822; 254,728) 24%
(331) 182,826 13,461 36 (34,771; 324,544) 79%
(642) 161,631 4,926 12 (134,891; 191,043) 17%
(531) 159,809 3,507 43 (91,836; 210,233) 37%
(533) 130,526 3,047 18 (98,550; 148,517) 19%
(711) 105,599 2,655 15 (89,733; 122,784) 16%
(551) 101,770 4,593 8 (80,337; 116,398) 18%
(731) 80,400 2,605 2 (77,903; 83,118) 3%

(a) Third run.

Intensity Uncertainty Tally Range Relative span
(hkl) [counts] [counts] (min; max) from middle
(422) 378,538 13,513 27 (256,172; 499,099) 32%
(440) 374,626 16,204 16 (267,988; 479,259) 28%
(220) 353,777 19,802 14 (252,854; 496,112) 34%
(620) 275,012 9,116 15 (228,671; 345,382) 21%
(444) 271,981 12,037 6 (237,337; 323,851) 16%
(400) 245,735 38,327 8 (115,354; 384,922) 55%
(511) 238,924 7,174 20 (191,010; 287,902) 20%
(331) 225,694 9,006 36 (119,063; 320,373) 45%
(642) 222,096 10,879 12 (161,232; 270,576) 25%
(333) 220,824 17,010 8 (154,279; 288,663) 30%
(311) 220,634 9,705 47 (99,503; 337,271) 54%
(111) 199,319 11,276 16 (131,059; 272,346) 35%
(531) 192,747 4,149 43 (137,711; 257,049) 31%
(533) 166,802 7,139 18 (112,416; 221,046) 33%
(711) 137,485 4,166 15 (108,686; 168,342) 22%
(551) 135,190 5,387 8 (113,859; 150,547) 14%
(731) 107,170 18,303 2 (89,583; 126,218) 17%

(b) Fourth run.
Intensity Uncertainty Tally Range Relative span

(hkl) [counts] [counts] (min; max) from middle
(422) 375,558 13,099 27 (249,847; 520,978) 36%
(440) 351,405 16,748 16 (189,473; 416,217) 32%
(220) 314,622 25,901 14 (151,523; 503,279) 56%
(444) 274,076 18,247 6 (218,003; 329,158) 20%
(620) 270,512 8,334 15 (241,075; 352,925) 21%
(400) 255,527 37,221 8 (114,424; 386,270) 53%
(333) 220,652 15,168 8 (153,245; 281,894) 29%
(511) 219,988 8,215 20 (179,533; 283,672) 24%
(311) 211,038 10,515 47 (84,355; 363,221) 66%
(642) 206,311 8,263 12 (163,851; 256,027) 22%
(111) 197,276 10,256 16 (150,790; 270,692) 30%
(331) 188,305 14,366 36 (36,067; 310,017) 73%
(531) 185,514 3,499 43 (131,684; 226,408) 26%
(533) 160,213 4,854 18 (124,412; 205,520) 25%
(551) 131,141 6,049 8 (109,560; 154,386) 17%
(711) 129,438 4,199 15 (99,577; 153,063) 21%
(731) 93,049 3,911 2 (89,289; 97,117) 4%

(c) Sixth run.

Intensity Uncertainty Tally Range Relative span
(hkl) [counts] [counts] (min; max) from middle
(220) 400,768 18,062 14 (325,107; 545,922) 28%
(422) 326,268 20,353 27 (123,557; 475,620) 54%
(440) 296,607 16,080 16 (191,702; 386,308) 33%
(620) 252,205 8,706 15 (189,452; 325,109) 27%
(400) 251,622 38,497 8 (119,012; 411,110) 58%
(111) 248,828 16,005 16 (170,813; 426,174) 51%
(311) 235,962 10,863 47 (125,846; 405,553) 59%
(511) 213,697 6,316 20 (139,981; 256,428) 27%
(331) 212,325 9,737 36 (110,513; 334,516) 53%
(444) 211,072 9,013 6 (175,792; 235,075) 14%
(333) 196,804 11,767 8 (149,913; 235,053) 22%
(642) 163,529 5,310 12 (129,623; 191,725) 19%
(531) 163,489 2,966 43 (120,937; 212,033) 28%
(533) 132,485 3,056 18 (95,147; 148,066) 20%
(711) 105,565 2,578 15 (86,808; 126,369) 19%
(551) 102,113 3,793 8 (87,300; 114,710) 13%
(731) 79,932 2,311 2 (77,717; 82,342) 3%

(d) Seventh run.
Intensity Uncertainty Tally Range Relative span

(hkl) [counts] [counts] (min; max) from middle
(422) 395,375 15,126 27 (261,237; 550,753) 37%
(440) 378,345 18,164 16 (201,435; 494,536) 39%
(220) 346,920 19,553 14 (257,022; 514,176) 37%
(620) 278,772 8,538 15 (245,249; 365,988) 22%
(444) 276,172 15,045 6 (231,010; 337,577) 19%
(400) 265,419 37,730 8 (116,707; 401,741) 54%
(511) 236,746 8,763 20 (188,964; 308,591) 25%
(331) 227,699 9,462 36 (116,220; 329,781) 47%
(333) 227,063 19,825 8 (150,675; 296,933) 32%
(311) 223,728 9,298 47 (121,115; 345,713) 50%
(642) 220,158 10,287 12 (169,717; 273,071) 23%
(111) 207,011 10,831 16 (145,899; 276,701) 32%
(531) 194,365 3,800 43 (136,131; 240,470) 27%
(533) 173,730 6,392 18 (130,862; 232,959) 29%
(551) 142,341 5,407 8 (119,882; 163,513) 15%
(711) 135,159 4,915 15 (103,768; 162,507) 22%
(731) 96,726 3,698 2 (93,168; 100,569) 4%

(e) Eight run.

Intensity Uncertainty Tally Range Relative span
(hkl) [counts] [counts] (min; max) from middle
(422) 368,259 14,902 27 (216,182; 516,207) 41%
(440) 341,295 18,748 16 (187,211; 446,722) 38%
(220) 320,635 26,252 14 (150,384; 490,762) 53%
(620) 269,591 8,150 15 (240,378; 348,847) 20%
(444) 258,564 14,484 6 (214,134; 316,486) 20%
(400) 249,856 40,854 8 (110,391; 417,225) 61%
(511) 231,023 9,342 20 (179,559; 295,103) 25%
(331) 226,680 8,258 36 (118,886; 307,028) 41%
(311) 217,742 9,472 47 (123,070; 363,759) 55%
(642) 207,166 9,426 12 (159,726; 256,645) 23%
(111) 199,315 10,084 16 (149,115; 266,985) 30%
(333) 194,052 24,975 8 (91,222; 280,277) 49%
(531) 193,209 4,583 43 (128,292; 267,185) 36%
(533) 164,204 5,667 18 (122,297; 214,709) 28%
(711) 131,768 3,775 15 (99,465; 150,677) 19%
(551) 126,619 7,687 8 (93,412; 155,292) 24%
(731) 105,195 8,729 2 (96,032; 113,511) 8%

(f) Ninth run.

Figure 3.5: Tables over the intensities for the Si_E_0_0_0 detector setting, reprocessed more than nine times. The ninth run is the
result of another data reduction of run number eight. The tables do not follow a natural sequence as some were test runs.

The peak tables of all the separate iterations have been verified to be identical. The observations raises concern with
the credibility of the output data from CrysAlis. More on this topic will be discussed in section 4.1.
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3.2 Thiourea-ferrocene room temperature analysis
A total of ten X-ray data sets were acquired in the thiourea-ferrocene project at the ESRF in November 2015. Each
data set represents a different sample† and has been labelled with a prefix «Crystal» in the analysis. All samples
were recorded using 0.1° increments in ϕ. The wavelength was 0.698 04Å for all recordings. Table 3.5 below gives
an overview of the data sets and the temperatures at which measurements have taken place.

Crystal/sample ID
Data subset 0 1 2 3 4 5 6 7 8 9

01 290 290 290 290 290 290 290 290 290 290
02 290 240 290 240 320 240
03 200 200 350 200
04 180 180 380 180
05 165 165 410 165
06 155 155 155
07 140 140 140
08 100 100 100
09 90 100 140
10 100 140 155
11 140 155 165
12 155 165 290
13 165 180
14 180 200
15 200 240
16 240 290
17 290 290

Table 3.5: Thiourea-ferrocene data overview. The table shows data subset number (01–17) and the corresponding temperature, meas-
ured in kelvins, for a given data set. Data sets 2, 3, 5 and 6 (in grey frames) are pure ferrocene; the rest are thiourea-ferrocene. The
complete data collection comprises 59 data subsets, each containing 3600 crystallographic images, amounting to a total of 527GB of
raw data.

The particular temperatures have been chosen relative to the calorimetry measurements done by Sorai et al. [3], who
observed five temperature-induced phase transitions at temperatures given in (2.47) (included here for convenience):

T1 = 147.2K, T2 = 159.79K, T3 = 171.4K, T4 = 185.5K, T5 = 220K.

The purpose of the three temperature data series (data sets 1, 4 and 9) was to re-examine the reported phases from a
crystallographic point of view. Also notice in Table 3.5 that measurements are taken symmetrically about the coldest
point. This has been done to check whether the transitions are reversible. The crystal associated with data set 1 was
also subjected to temperatures above 290K, which constitutes data set 7.

The first step in the analysis is to establish an orientation matrix as accurate as possible for the data sets. Sources
contributing to uncertainty in the measurements come from both the beamline instruments and the sample. The
samples are inspected both visually and by test runs before doing any large scale data collections. If any twinning or
particular flaw is uncovered, the sample may be useless for the specific project.

To arrange for the best starting point possible, the instrument parameters of the diffractometer have been refined
at room temperature. The results from these 16 data subsets have been weighted according to their residual factors,
and these final parameters are implemented on the initial setup for all data subsets of the temperature series.

Correcting the peak table
In order to obtain accurate values for the parameters of the diffractometer’s instrument model, a correct peak table
is needed. The task following the peak hunt is to remove incorrect reflections.

Unlike the silicon data, CrysAlis tends to split some of the reflections into multiple registrations. For instance, the
peak table extract of Crystal_2_(test1)_290K in Table 3.6 shows that reflection 125 has been registered

† The data sets labelled Crystal_1 and Crystal_7 are recorded from the same sample.
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33 times. The corresponding plot in Figure 3.6 clearly shows two peaks. It appears that CrysAlis misinterpret the
partial reflections, which have likely been moving slowly through the Ewald sphere. We would expect to measure
a single reflection up to two times, depending on whether the scattered beams strike the detector. In this example
only the two registrations labelled 1242 and 1332 ought to be kept.

1211 −1 −2 5 233.45 65

1214 −1 −2 5 233.85 145

1225 −1 −2 5 234.35 302

1230 −1 −2 5 235.25 652

1232 −1 −2 5 235.85 941

1236 −1 −2 5 236.45 2648

1241 −1 −2 5 236.95 3772

1242 −1 −2 5 237.25 4269

1249 −1 −2 5 237.75 2525

1256 −1 −2 5 238.45 669

1259 −1 −2 5 238.95 495

1266 −1 −2 5 240.45 161

1270 −1 −2 5 241.45 99

1275 −1 −2 5 242.25 95

1279 −1 −2 5 242.95 93

1281 −1 −2 5 243.25 84

1285 −1 −2 5 243.55 90

1288 −1 −2 5 243.85 82

1291 −1 −2 5 244.25 95

1295 −1 −2 5 244.65 86

1302 −1 −2 5 245.45 120

1304 −1 −2 5 247.25 219

1316 −1 −2 5 248.75 1549

1326 −1 −2 5 248.75 1549

1329 −1 −2 5 249.25 3822

1332 −1 −2 5 249.55 4029

1337 −1 −2 5 250.15 3162

1341 −1 −2 5 250.95 1420

1344 −1 −2 5 251.45 935

1349 −1 −2 5 252.15 424

1352 −1 −2 5 252.85 166

1356 −1 −2 5 253.55 97

1357 −1 −2 5 253.75 59

Table 3.6: Extract from an unbalanced peak
table showing all registrations of 1̄2̄5. Left-
most column contains registration numbers
set by CrysAlis. Fourth column contains ϕ
values and last column intensity values. The
rows with green background correspond to
the two local peaks.

All reflections in the peak table have to be processed in a systematic
and in a semi-automatic manner due to the large number of peaks and
data sets. The following rules are suggested for the general case:

1. Taking standpoint of the largest intensity value in the set of con-
flicting registrations (such as Table 3.6), entries with an intensity
reading less than 85% of this local maximum value will be deleted.

2. In this result, we take the maximum and all other registrations that
are within 5° in ϕ to be a single group. The process is repeated until
all registrations have been grouped.

3. For each group, all but the strongest registrations are deleted.
This procedure constitutes the algorithm behind PeakTableHelper.

12.3°

ϕ angle

In
te
n
si
ty

Figure 3.6: Plot of the intensity data from Table 3.6. The two peaks are 12.3° apart
in ϕ. The orange line is placed at 0.85 times the maximum intensity of the set.

Obtaining refined instrument parameters
The handling of the peak table was the most time-consuming step in the
data process, mainly due to CrysAlis lacking an effective method for re-
moving bulks of reflections†. For other details concerning the procedure,
please see subsection 6.2.2 of appendix B.

An overview of the refined instrument parameters for the individual room temperature sets may be found in
Table 3.8 in appendix B. Some data sets were processed up to three times due to “unsatisfactory” results. For
example, crystal 8 was processed a second time with the only difference being that the setting pt num (peak table
entry number) in CrysAlis Command shell Options RED Peak table was changed from 20 000 to 200 000. This
was done because a relatively large residual factor of 3.37% was observed the first time, and it was suspected that too
few peaks were found. As repeated reflections were not thoroughly removed the second time, a third analysis was
needed. The vast amount of reflections found in this particular sample might indicate a flawed crystal (the crystal
is analysed further in section 3.6). If we look at the initial amount of reflections in accordance with the orientation
matrix, however, 9570 fit the third time compared to 6550 the second time. About 3000 reflections were kept in
the end in both cases.

† A possible workaround seems to be possible with use of the CrysAlis command wd t oldascii, but this will have to be added to the
Xray package at a later time.
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A second proceeding with crystals 3 and 4 was also needed, as neither of these were cleared of multiple-registered
reflections the first time. In all cases, we observe in Table 3.8 that an improvement in the res factor results from
this peak table trimming.

Afterwards, the instrument parameters were weighted using the residuals as uncertainties. In cases where data has
been analysed multiple times, only the latest proceeding was used to represent the data subset in the weighting. The
refined instrument parameters are presented in Table 3.7. The uncertainties in the weighted means are standard
deviations σ̃x̄ calculated according to

σ̃x̄ =

√√√√ 1∑n
i=1 σ

−2
i

· 1

n− 1

n∑
i=1

(xi − x̄)2

σ2i
, (3.3)

where xi denotes the i’th refinement of instrument parameter x and residual factors have been used in place of σi.
x̄ represents the weighted mean of the relevant parameter;

x̄ =

∑n
i=1wixi∑n
i=1wi

, wi =
1

σ2i
. (3.4)

Weighted values
Parameters Best estimate With uncertainty

b2 [10−3 °] −2.189 −2 ± 4
d1 [10−3 °] 56.858 57 ± 6
d2 [10−3 °] −3.627 −4 ± 4
d3 [°] −0.138 926 −0.139 ± 0.014
x0 [px] 26.9703 27.0 ± 0.2
y0 [px] 741.182 741.18 ± 0.07
dd [mm] 146.391 146.39 ± 0.04

Table 3.7: Refined instrument parameters. The best estimates will be used when setting the instrument model in advance.

Table 3.8 below gives an overview of all refinements. We see that the residual factors are less than one percent, giving
us confidence in the refined parameters of the diffractometer given in Table 3.7.

n0 n res [%] b2 [°] d1 [°] d2 [°] d3 [°] x0 [px] y0 [px] dd [mm]
[2nd]Crystal_3_290K 4762 1768 0.2985 −0.024 523 0.085 068 −0.022 558 −0.054 378 28.134 741.022 146.232
[2nd]Crystal_4_(01)_290K 3689 1607 0.6486 −0.025 714 0.110 336 −0.088 672 0.127 106 30.844 742.212 145.544
[2nd]Crystal_8_290K 44 640 3064 1.5041 −0.016 241 0.017 191 −0.034 943 0.004 532 28.708 741.893 145.405
[3rd]Crystal_8_290K 44 640 3019 0.4845 −0.031 541 0.024 471 −0.044 801 −0.188 891 26.014 741.914 146.891
Crystal_0_(test1)_290K 10 248 9719 0.2038 0.007 022 0.048 421 0.006 481 −0.160 705 26.624 741.336 146.454
Crystal_0_(test2)_290K 8569 5957 0.3155 0.008 930 0.047 939 0.000 074 −0.161 940 26.647 741.454 146.434
Crystal_1_(01)_290K 7701 7207 0.1946 −0.000 513 0.048 481 −0.002 517 −0.163 955 26.535 741.323 146.408
Crystal_1_(17)_290K 4570 4333 0.2525 −0.006 725 0.046 776 −0.009 169 −0.147 439 26.918 741.150 146.401
Crystal_2_(test1)_290K 1954 1732 0.2405 0.003 949 0.052 202 0.004 213 −0.111 014 27.396 740.954 146.350
Crystal_2_(test2)_290K 2807 2375 0.1796 0.004 432 0.052 698 0.004 705 −0.120 834 27.280 740.942 146.368
Crystal_3_290K 4762 2465 1.0638 −0.022 279 0.088 543 −0.021 666 0.037 892 29.619 740.965 146.038
Crystal_4_(01)_290K 3689 2287 0.8131 −0.017 721 0.100 468 −0.075 604 0.096 920 30.363 742.073 145.507
Crystal_4_(16)_290K 3645 2602 0.9111 −0.024 057 0.182 666 −0.019 387 −0.149 067 26.889 740.960 146.337
Crystal_4_(test)_290K 3821 2754 0.9013 −0.053 303 0.153 978 −0.012 153 −0.259 439 25.521 740.431 146.418
Crystal_5_290K 4411 3904 0.6286 0.012 640 0.056 828 0.019 653 −0.114 202 27.539 740.765 146.310
Crystal_6_290K 3012 2868 0.4537 −0.014 718 0.043 892 −0.008 874 −0.127 558 27.157 741.565 146.415
Crystal_7_(01)_290K 7628 5264 0.4466 0.003 844 0.053 132 0.006 262 −0.133 507 27.028 741.139 146.391
Crystal_9_(01)_290K 7099 3732 0.5498 0.021 999 0.104 597 0.010 141 −0.345 906 24.279 741.115 146.458
Crystal_9_(test)_290K 6893 3621 0.4709 −0.043 008 0.107 532 −0.031 533 −0.174 748 26.278 740.906 146.497

Table 3.8: Parameters acquired from careful inspection of the room temperature data. The n0 column shows the number of reflections
in the peak table that match the initial lattice (after peak hunt and automatic lattice determination). n shows the corresponding final
number of reflections (after refinements). Residual factors are listed in the res column. The remaining columns display the instrument
parameters in CrysAlis. The shorthand labels in the title row, descriptions may be found in Table 2.2.

Observe that there is a correlation between parameters of the instrument model, especially d3 and dd.
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3.3 Ferrocene
Recall that out of the ten crystals studied at the ESRF four of them were found to be pure ferrocene (crystals 2, 3,
5 and 6). The samples were recognised to be ferrocene by their lattice parameters from preliminary analyses.

Absorption correction
We may check if the absorption correction seems to be in order. This was also an opportunity to get acquainted with
the available options regarding absorption in CrysAlis.
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Figure 3.7: Results of scaling corrections done by CrysAlis’ so-called
scale3 abspack, with a scaling factor plotted against frame number. Res-
ults for unbinned data are shown on the left; binned on the right. The mod-
ule scales the .hkl file in order to compensate for effects like detector vari-
ations, crystal decay and absorption. [47] Scalings seem to be in order for
every crystal except number 3.

The project files of the mentioned data sets†

were kept aside, then the data sets were repro-
cessed using the refined values from Table 3.7.
In the case of crystal 2, two data sets were collec-
ted at room temperature; the others contained
only one data set each (see Table 3.5). At this
point, binned versions of the four data sets in
question were made with the Pylatus image con-
verter application in the SNBL ToolBox [63] (see
Figure 2.22). The crystallographic image files are
compressed in the sense that every five images are
merged into one, cutting the number of .cbf
files from 3600 to 720. The binning reduces the
processing time at the cost of a little information
loss.

The results from automatic absorption pro-
cessing by CrysAlis is shown in Figure 3.7 on
the right. We see that for the most part absorp-
tion correction is handled smoothly. The pro-
files of the curves correlate to variations in path
length due to crystal rotation. The plot associ-
ated with crystal 3 stands out as incorrectly pro-
cesses, as several frame scaling factors closed to
a pronounced peak have been set to zero. The
reason for this absorption curve being different
from the other three variants is probably due
to this crystal’s particular shape or misaligned
mounting on the goniometer, but the errors with
the scaling factors are probably linked to an issue with the scaling algorithm and this particular sample. [51, p. 70]

It is possible to choose some manual settings for the absorption correction procedure. After data reduction has
been completed, one may go to CrysAlis Inspect data reduction results Refinalize and tweak various parameters.
In the case of crystal 3 the best results were accomplished when setting Frame scaling to either 5 or 8 frames
per scale and refining the (Debye–Waller) B-factors with either 10 or 15 frames per factor. In Figure 3.8 we see the
binned version of crystal 3 was successfully cleared of the zero scalings; the non-binned version was not. Increasing or
decreasing the Restraint (ESD), which «represents expected standard deviation of differences between adjacent
scales» [47], did not yield any improvement either.

† Crystal 6 is not included, as it was discovered to be ferrocene after this absorption analysis.
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Figure 3.8: Best results obtained from scaling corrections with manual set-
tings. Only the binned version was noticeably improved.

A final attempt was made with a manual
flux correction. First a monitor .ini file
is generated with the CrysAlis command xx

monitorinifromrunlist (monitor–ini–
form–run–list). Next the values of that file,
which are all initially set to 1.0000, need to be
edited, and the Mathematica function Monit-
orIni was written for this purpose. Decreas-
ing the frame values linearly from 1 to 0.75 was first tried, but a more purposeful approach would be to extract
the registered flux values from the headers of .cbf files. This was done with the Head Extractor application in
SNBL Toolbox and the content has been plotted in Figure 3.9. In order to load the altered monitor file, one has
to select Use file monitor values after checking Apply monitor renormalization in CrysAlis
Data reduction with options Step 3: Edit special parameters (see Figure 2.19). Sadly, neither outcomes of these

methods surpassed the manual corrections.
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Figure 3.9: Plot over the incoming radiation flux on crystal 3. The flux is monitored by counting photons scattered vertically from a
Kapton foil.
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3.3.1 Further inspection of crystal 3
As refinalisation with different parameters of the absorption correction did not yield satisfactory results, the data was
reprocessed in order to check the peaks more carefully. Results from the peak hunt are presented in Figure 3.10.

(a) Crystal 2 (test 1). (b) Crystal 3

Figure 3.10: Screenshots from Ewald explorer immediately after peak hunt, showing reciprocal space in the b∗ direction. We see that
crystal 3 has an additional streak pattern. Notice also that this pattern is asymmetric. The other two data subsets were similar to (a).

This time it was recognised that, when using the «auto analyse unit cell» method, the unit cell of crystal 3 matched
only 62% of the initially found peaks. The other four ferrocene crystals matched at least 95%. Crystal 5 also showed
a slight tendency of streaks, but the peak table was not much affected by the reindexation to 0.05 (reduced from
97% to 88%). Ewald explorer was unable to determine any meaningful twin component to the wrong peaks.

Apart from the streaks in crystal 3, the reflections fit the lattice quite well, and has about the same amount of
peaks matching the orientation matrix as the others after refinements. It appears that the scaling module (Scale3
abspack, version 1.0.7) or the profile fitting module is unable to process this ferrocene sample correctly.

Using the Unwarp feature, reconstructions of reciprocal space were made. It was revealed that the mentioned
streaks were unique to crystal 3, and could be seen in all of the crystallographic directions.

(a) (0kl) plane. (b) (h0l) plane. (c) (hk0) plane.

Figure 3.11: Reciprocal space reconstructions of crystal 3 at 0.8Å resolution.

In addition to the streaks, notice also in Figure 3.11 that many of the peaks in the (0kl) and (hk0)-planes are
“accompanied” by a very close reflections. This becomes even more apparent in Figure 3.12.

We observe that the reflections on the lattice can have up to three accompanying reflections, or satellites. Moreover,
the specific orientation of the satellites tend to remain the same along a particular direction in reciprocal space. If
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(a) Crystal 3, (1kl) plane. (b) Crystal 3, (2kl) plane.

Figure 3.12: Reconstructions of reciprocal space for crystal 3. Note the local clustering of peaks around the lattice points.

we examine the images carefully, it seems like the reflections further out also have this property.

Intermediate reflections
Another feature of crystal 3 is that the streaks tend to be present also between integer Miller indices, especially in
the a∗ and b∗ directions, where there are always some peaks in reflection condition (at least in steps of ±0.1 units).

If we start in the (0hk) plane and consider consecutive planes in the a∗ direction in steps of 0.05 units of that
lattice parameter, a “line” of reflections being in reflection condition seems to be propagating in the plane, completing
a full cycle in one unit of a∗.

The streaks appear to have “tails” attached to the reflections. These tails will always be oriented the same way as a
given reflection leaves and re-enters reflection condition. As we enter a reflection condition, some streaks will merge
to a single reflection, while others will split into a reflection with two or three satellites.

The structure of crystal 3 appears to be modulated and incommensurate with the main structure. The Ewald explorer
has an option for setting a so-called q-vector to describe the modulation, but experimentation with this was unsuc-
cessful.

Of course, the reflections not belonging to the main lattice could simply be due to poor crystal quality.

A final remark on the ferrocene crystals is that the most intense and diffuse reflections linger out to about h± 0.15

and k± 0.20 and l± 0.20 for integer h, k, l. Also, crystal 5 had a significantly higher background in the reciprocal
space reconstructions.
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3.3.2 Structure solution
The structure of ferrocene has been solved, and the effect of binning has been checked as well. Structure solution
and refinement was carried out in Olex2 [46]; a screenshot is shown in Figure 3.13. We see that SHELXS could only
determine the iron atom in the asymmetric unit. After identifying parts of the cyclopentadienyl ring, the structure
could be completely solved.

Figure 3.13: Main window of Olex2, showing the structure after solution by the SHELXS program. The bronze coloured spheres rep-
resent peaks of the electron density and serve as suggested atoms, and are labelled Q as the element type is unknown. Here four of
them are recognised to be carbon atoms. The last one is found after subsequent refinement.

Employing SHELXT, however, succeed in finding the correct structure in all of the ten cases (the five data sets, with
and without binning) immediately. In the final iterations of refinement, a weighting scheme with two parameters
(suggested by the program) was engaged. Goodness parameters from the solution and refinements are presented in
Table 3.9.

Sample Crystal_2_test(1) Crystal_2_test(2)

Completeness 75% 75%

Binned? 5 ✓ 5 ✓
Rint [%] 1.55 1.36 1.25 0.89

I/σ 21.9 32.2 41.5 51.0

Hydrogen? 5 ✓ 5 ✓ 5 ✓ 5 ✓
GooF 1.138 1.128 1.162 1.125 1.140 1.140 1.149 1.137

Rw [%] 20.34 16.07 19.43 14.64 19.87 16.35 19.03 15.12

R [%] 5.84 5.15 5.54 4.80 5.87 5.24 5.54 4.88

Sample Crystal_3 Crystal_5 Crystal_6

Completeness 66% 64% 78%

Binned? 5 ✓ 5 ✓ 5 ✓
Rint [%] 3.01 2.48 0.90 0.80 2.48 1.77

I/σ 22.6 23.7 79.4 87.5 26.0 27.1

Hydrogen? 5 ✓ 5 ✓ 5 ✓ 5 ✓ 5 ✓ 5 ✓
GooF 1.157 1.157 1.015 1.029 1.224 1.211 1.217 1.213 1.176 1.185 1.152 1.128

Rw [%] 23.17 19.92 19.24 14.96 24.38 20.76 22.07 18.52 23.02 18.46 24.41 20.22

R [%] 6.78 6.25 5.73 4.97 8.54 7.99 7.32 6.76 7.49 6.70 7.61 6.87

Table 3.9: Parameters from the ferrocene refinement. Each block is for a particular data subset, which are divided into two halves for
comparison between binned and unbinned versions. The GooF and R-factor (including only data with I ≥ 2σ(I)) before and after
adding hydrogen is also provided.

In addition to testing the effect of binning, when each structure had converged to a solution, hydrogen atoms were
added using an automatic feature. We see that adding them decreased theR-factor by around 0.5 percentage points,
while Rw dropped with about 4.
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(a) Ferrocene molecule with anisotropic displace-
ment parameters (except hydrogen).

(b) Ferrocene crystal structure along a∗. Red unit cell is used by
crystals 2 and 3; blue cell by crystals 5 and 6.

Figure 3.14: Images of crystal 3 rendered by Olex2.

Weighted mean of the ferrocene lattice parameters are calculated to be:

a = 5.926(2)Å, b = 7.611(3)Å, c = 9.033(4)Å, β = 93.160(7)° (3.5)

in the monoclinic space group P21/n (# 14). This is the second cell choice according to the International Tables,
volume A [92, p. 187], whereas the values by Seiler and Dunitz [69] in (2.42) are given in the third cell choice, P21/a
(with b being the unique axis). Transformation of our values in (3.5) are given below, along with Seiler and Dunitz’
values for convenience:

a′ = 10.523(8)Å, b′ = 7.611(4)Å, c′ = 5.926(2)Å, β′ = 121.041°. (3.6)

a = 10.561(11)Å, b = 7.597(8)Å, c = 5.952(6)Å, β = 121.02(12)°. (S & D)

The numbers are in reasonable agreement with Seiler and Dunitz’.

c

a

b

Figure 3.15: Viewing down the mo-
lecular axes of ferrocene (here: crys-
tal 5), which is close to [11̄1].

It was also seen that crystals 2 and 3 have been determined with the ferrocene in
centre of the unit cell having its molecular axis coinciding (almost) with the space
diagonal through the origin, while crystals 5 and 6 have axes almost coinciding
with the [11̄1] direction. In the reciprocal space reconstructions of the two cases
it is clear that the c∗ direction in crystals 5 and 6 is the b∗ direction in 5 and
6. When solving the structure we find the individual ferrocene molecules to be
in the staggered conformation in all four crystals. This gives us, however, only a
picture of the molecule on average. The relative large anisotropic displacement
parameters of the carbon atoms also give an indication of a disordered state, in
accordance with the literature. [74]

Despite having the peculiar streaks, crystal 3 did not stand out in the structure
solution.
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3.4 Thiourea-ferrocene – crystal 1
17 data sets were recorded with this crystal while it was configured with a liquid nitrogen cryostat. The specific
measurement points are listed in Table 3.5.

The initial procedure is the same for all data sets and may be reviewed in subsection 6.2.3. The are two main
differences with this procedure compared to that for room temperature; the refined values for the instrument model
are set immediately at startup, which leaves only the lattice parameters, a and c, and the rotation angles available for
refinement. The second change is that Ewald explorer has been used to check for twinning. A graphic overview of
the procedure for each data subset is given in Figure 2.11.

The automatic peak hunt usually found sufficient peaks, but at the colder temperatures unexpected cell identi-
fications occurred. Whenever this particular issue arose, inspection with Ewald explorer often showed a sizeable void
of reflections, or quite simply too few reflections. If unable to transform to the desired unit cell in CrysAlis, the peak
hunt was redone using another method or specifying other threshold values.† As a “last resort”, it is possible to force
the unit cell parameters or orientation matrix on the data (not used in this thesis).

Luckily, for this particular crystal it was possible to transform all data sets to the same configuration – which
was hexagonal 6/m lattice, primitive centring – with the feature Lattice Wizard Lattice reduction . Even so, some
special observations were made: The lattice parameter c was initially set to about 61.7Å for data subsets 03, 04
and 14 (temperatures 200K, 180K and 180K). This value is more or less exactly five times larger than observed
in the other data sets. This integer multiple of the cell length could be an indication of a commensurate structure.
In this particular analysis, however, we strive for consistency among the data subsets. The “problem” was simply
circumvented with the command:

um c 1 0 0 0 1 0 0 0 0.2,

which performs a user-specified transformation of the orientation matrix (in direct space).
Refining the instrument model (rotation angles and lattice parameters), reindexation, clearing the peak table of

wrongly indexed reflections is straightforward.

From the two 290K data subsets of crystal 1, we find our best estimates for the lattice parameters to be

a = (16.3691± 0.0003)Å, c = (12.4036± 0.0004)Å. (3.7)

These values are in accordance with those of Hough and Nicholson [84] in (2.45). Uncertainties are taken from
CrysAlis, then weighted means are calculated to get the result above.

Imposing a “common orientation”
After all 17 data subsets of Crystal_1 have been processed using this procedure, the next step is to make sure
they are all oriented the same way, so that comparisons will be more meaningful. Although they have the same unit
cell, they may be rotated and/or mirrored compared to each other. The way to ascertain similar orientations is to
compare the UB orientation matrices. If they are different, the three crystal rotation angles (r1, r2 and r3) will
also differ.

TwoMathematica functions now come into play: First, RefinedValues is needed to extract the matrices from
the log files of CrysAlis. The first data set is (arbitrarily) chosen to provide the reference orientation, the orientation
matrices of the others will have to be transformed to match the reference. This is done by UBtransformation,
and the whole operation consists of four steps:

1. All Laue equivalent bases are calculated.
2. Every equivalent matrix is subtracted from the reference matrix.

† It was later found out that certain transformations between an orthorhombic and hexagonal cell could have given the desired results.
The required transformation matrix is readily found in The International Tables for Crystallography, volume A [92, p. 81].
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3. The resulting matrices are squared element-wise, and the largest element of the matrix with the smallest total
squared deviation is chosen as the correct matrix.

4. The corresponding Laue equivalent matrix is found. The transformation code for CrysAlis is printed.

A final note on the orientation process of crystal 1: In some cases, it was not possible to find any matching transform-
ations. This was resolved by assuming a higher Laue symmetry. It appears that CrysAlis uses the symmetry of the
lattice, 6/mmm, rather than that of the crystal, which is 3̄m. This observation is attributed to an obverse–reverse
twinning of the crystal (continued discussion in subsection 3.4.2).
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3.4.1 Preliminary room temperature reconstructions of reciprocal space
At first, planes in reciprocal space of the kind

(hkl) : l ∈ {−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6} . (3.8)

were created. The diffraction pattern for a given l is identical to that of−l, so only non-negative l’s will be considered.
The first six reconstructions are shown in Figure 3.16.

Figure 3.16: Reconstructions of reciprocal space for crystal 1 at the initial room temper-
ature. The images are cross sections of the (hkl) plane where l varies in integer steps
from 0 to 6 (see the lower right corners). Cross sections at corresponding negative val-
ues of l look identical. There seem to be threemain patterns repeating in anABC ACB
cycle. Notice that the strong and diffuse reflections are only present when l is even. The
more diffuse reflections could represent the ferrocene component, assuming thesemo-
lecules are more disordered than the thiourea framework.

It may not be obvious from Figure 3.16, but there are three distinct patterns repeating along l with a period of six
units. If we call these patterns A, B and C, we have that

A : l ≡ 0 (mod 3) ⇐⇒ l ∈ {. . . , 0, 3, 6, 9, 12, . . . } (3.9a)

B : l ≡ 1 or 5 (mod 6) ⇐⇒ l ∈ {. . . , 1, 5, 7, 11, 13, . . . } (3.9b)

C : l ≡ 2 or 4 (mod 6) ⇐⇒ l ∈ {. . . , 2, 4, 8, 10, 14, . . . } (3.9c)

Equivalently, the pattern is ABC ACB. Within one of these types, the main lattice remains the same. Patterns of
type B and type C look almost the same, but more reflections are seen in type C and they are more intense.
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3.4.2 Twinning of crystal 1
There are several observations that point to crystal 1 being twinned:

1. It does not have the space group R3̄c (#167) as indicated by the literature [84].
2. The metric symmetry (6/mmm) is higher than the Laue symmetry (6/m). [44, p. 121]

3. According to Herbstein [2, p. 200], thiourea will only form rhombohedral tunnel inclusion compounds, but this
is not reflected in the space group, which was found to be P63/mcm (#193) in an initial data reduction.

4. Comparison with crystals 4 and 9 (see ref )

Signs of reticular merohedry
It was discovered that all reflections would fit combinations of the conditions:

hkl : −h+ k + l = 3n, (obverse) (3.10a)

hkl : h− k + l = 3n (reverse) (3.10b)

for various choices of l. These are the reflection conditions for a rhombohedrally centred cell in the obverse and
reverse setting, respectively. [92, p. 29] The function ReflectionConditionCheckwas written in order to easily
extract reflections from raster graphics, i.e. the reconstruction images, and show which adhered to a specific reflection
condition. More details of this function will be given in subsection 6.3.2.

(a) The (hk1)-plane of crystal 1 at 290K.
0 500 1000 1500

0

200

400

600

800

1000

1200

1400

(b) Extraction of the reflections in (a).

Figure 3.17: (a) Reconstruction of the (hk1) plane in reciprocal space of crystal 1. (b) ReflectionConditionCheck applied at the
same image. Yellow dots represent reflections fulfilling the condition in (3.10a), and the blue dots the rest of the lattice.

Figure 3.17b shows that only half of the reflections in the (hk1) plane of data subset Crystal_1_(01)_290K
fulfil the reflection condition of (3.10a); the other half adhere to (3.10b). Further inspection revealed that when
l ∈ {0, 3, 6, . . . }, i.e. the pattern type A of (3.9a), both reflection conditions of (3.10) were fulfilled, and the
reflections overlap. For pattern types B and C we get two domains of reflections as seen in Figure 3.17b.

This pattern we see where reflections alternate between overlapping and not, is called reticular merohedry, and is
typical for rhombohedral crystals. [93] The point group of the twin lattice is 6/mmm, while 3̄m1 is the Laue group
associated with the structure. By performing a coset decomposition we find that the two-fold rotation axis 2[001] is
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a suitable twin operator, giving to the twin law:

T =

−1 0 0

0 −1 0

0 0 1

 (3.11)

According to Herbst-Irmer and Sheldrick [94], there reflections from an obverse–reverse twin adhere to one of four
types, as stated in Table 3.10.

Type Condition Observed in

I
−h+ k + l = 3n

main domain
h− k + l ̸= 3n

II
−h+ k + l ̸= 3n

second domain
h− k + l = 3n

III −h+ k + l ̸= 3n and h− k + l ̸= 3n none domain

IV −h+ k + l = 3n and h− k + l = 3n both domains

Table 3.10: The four obverse–reverse twin reflection types according to Herbst-Irmer and Sheldrick [94].

These descriptions are in accordance with our findings with the ReflectionConditionCheck function.

Solving the structure
Although CrysAlis has the ability to operate with multiple lattices for twins, we were unable to assign distinct lattices
for the obverse and reverse settings. Instead, the peaks that should be systematic absent in the reverse setting were
hid in Ewald explorer so that the program would select a rhombohedral lattice instead of hexagonal. After data
reduction the structure was solved correctly, but with refinement parameters converging to poor values such as
R = 15.76% and GooF = 2.341. Since the structure solutions and refinements gave much better results for the
other thiourea-ferrocene crystals (4 and 9), this topic was not pursued further for crystal 1.

Stian Penev Ramsnes 



Aspects of X-Ray Diffraction Using Mathematica Analysis Thiourea-ferrocene – crystal 1

3.4.3 Low temperature inspection
As temperature decreases from room temperature, the most evident changes occur at the transition from 155K to
140K. We observe a splitting of the nodes, which persists at least down to 90K.

Figure 3.18: Reconstructions of reciprocal space for crystal 1 at the coldest temperature
recorded in this project, 90K. Presented here are cross sections of the (hkl) plane
where l varies in integer steps from 0 to 6 (see the lower right corners), i.e. the same
planes as presented in Figure 3.16.

For data subsets in this temperature region, the percentage of peaks matching the lattice fell from about 90%
to 65% after reindexation with tolerance set to 0.05 with Lattice wizard Reindexation with current cell . This is
probably linked to the splitting of nodes, rendering a single lattice determination difficult.

The bright and split patterns we see in Figure 3.18 do not change significantly in size nor position in the range
from 140K to 90K. The reflections seem to split into two or three streaks with the streaks being perpendicular
to a line towards the origin, and growing in length further out in reciprocal space; see Figure 3.19. The rotational
broadening is likely due to thiourea being a «soft host».

If we consider the transition from 200K to 180K carefully, we notice an emergence of weak satellites near the
origin. Proceeding to 165K shows an increase in both the number of satellites and the intensity of the existing ones.
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(a) Crystal 1 at 155K. (b) Crystal 1 at 140K.

Figure 3.19: Reflections splitting somewhere in the temperature range 155K to 140K. Both images are centred at (hkl) =

(13.5, 13.5, 0) with resolution 3.0Å. When reflections split, they tend to become the streak closest to the origin, or the middle one
when splitting in three.

Distinction between 140K and 100K
Although the appearance of the diffraction patterns look overall the same in the temperature range 90K to 140K,
a minor detail distinguishes the 140K patterns from those at 100K.

(a) Crystal_1_(11)_140K at (hk0). (b) Crystal_1_(10)_100K at (hk0).

(c) Crystal_1_(07)_140K at (hk3). (d) Crystal_1_(08)_100K at (hk3).

Figure 3.20: Two examples of transition from 140K to 100K, showing appearance of new satellites or intensifying of the intermediate
structure. All images are reconstructed sections in reciprocal space at 3.0Å.

If we look closely at the top images in Figure 3.20, we see that a secondary set of reflections appear at 100K that
either were not there at 140K or were very weak. This is true for the whole diffraction pattern, also at other integer
l’s, but most prominent near the origin. The bottom row of the same figure shows another example. The main
feature we see at these transitions is an intensifying of intermediate reflections.
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3.4.4 Finer sampling of reciprocal space
A new series of reconstructions were produced with a smaller step size in the l direction. Images were still in the
(hk)-plane and with l going from 0 to 6 but now in increments of 0.05 units of c∗. The process is time-consuming
as a single image takes about seven minutes to create, and the same procedure was done on all 17 data subsets. At
this stage CrysAlis was installed on computers at the University’s physics laboratory so that the reconstructions could
be made in parallel†.

Figure 3.21: Intermediate reflections in the (h, k, 0.20)-plane. The clear diffuse
spots are the same as mentioned in Figure 3.16. The overall pattern of this
cross section shows some resemblance to the (hk3)-plane in Figure 3.16, while
the (h, k, 0.80)-plane (not shown) has a pattern more like the (hk1)-plane in the
same figure.

Intermediate reflections at l ± 0.2
After completion, we were able to see some
interesting new features in the reciprocal
space. Most notably were the intermediate
peaks at ±0.2 units away from integer l for
about half of the data subsets. From a temper-
ature developing point of view, we see an out-
line of ordering starting at 200K, reaching
maximum peaks at 165K and remaining the
same at 155K, but vanish sometime before
reaching 140K. Figure 3.21 shows a cross
section at 165K. Accordingly, these inter-
mediate peaks are present in 8 of the 17 data
subsets. The process also seems to be fully
reversible as identical patterns appear at the
same temperatures when returning to room
temperature.

The five-doubling of lattice parameters
observed for some of the crystal 1 data
(page 47) were in this temperature range, sig-
nalising a connected between these reflections and a modulation or increase of the unit cell.

Intermediate reflections at l ± 0.4
A secondary type of intermediate peaks were observed at ±0.4 units away from integer l at temperatures 180K,
165K and 155K. Whereas the primary type of intermediate peaks at l ± 0.2 were existent in the whole range
l ∈ {0.2, 0.8, 1.2, . . . , 5.8}, these only appear at some values and vary with temperature. An overview is given in
Table 3.11 below.

Figure 3.22: Tendency of ring formation.

From the striking symmetry of Table 3.11 it is evident that the transitions
of the crystal are reversible. The discrepancy between some of the same tem-
peratures are likely due to difference in the exposure of the images, making the
patterns more obscure in the darker variants (which here correspond to the
second half of the data subsets). The most prominent reconstructions from
the secondary type of intermediate reflections are shown in Figure 3.23.

Even finer sampling
Another series of reconstructions with the same parameters except for incre-
ments lowered to 0.01 units of c∗ was also made. These images did not reveal
any new features. They did, however, make it more apparent that random but sharp reflections always are present
between the planes of integer indices.

† Constructing these images on a single computer would require at least 10 days for the complete data set of crystal 1.
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240K
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Table 3.11: Overview of where the intermediate reflections are observed at the various temperatures, with the first temperature being
the first data subset and l shown in the top row. Black diamonds designate the primary intermediate reflections, while the secondary
are grey for clarity. The asterisks represent observations where the patterns are somewhat (or very) unclear.

Although these sharp reflections seem to emerge randomly around reciprocal space, they still tend be fairly
equidistant from the origin. In the temperature range 165K to 90K, starting at l ≈ 2.30 faint rings start to
appear close to the centre. Three concentric rings can be distinguished, gradually shrinking as we move along c∗,
before vanishing at about l ≈ 3.60. The rings do not form fully connected circles and are very weak, but the outline
can still be seen. The same phenomenon was seen at (1.2, k, l) for Crystal_1_(06)_155K.

3.4.5 The modulation patterns
The patterns we see at integer l repeats itself every six units of l, as seen at ambient temperatures in Figure 3.16 and
even more clearly when the reflections split, as seen in Figure 3.18.

Like the diffraction patterns at integer l, the patterns appearing at l ± 0.2, l ± 0.4, l ± 0.6 and l ± 0.8 has a
period of six units of l, but emerge only at the specific temperatures listed in Table 3.11. In all cases, there is no
significant change between the temperatures 165K and 155K. Since the diffractograms show no asymmetry before
and after reaching the minimum temperature of 90K, there are effectively just three unique images of each of the
six patterns. These are shown in Figure 3.24.

(a) Intermediate reflections at 155K in the (h, k, 3.60)

plane.
(b) Intermediate reflections at 155K in the (h, k, 5.60)

plane.

Figure 3.23: Intermediate reflections of the second type at the same temperature, but in two different planes. If we zoom in on the
reflections in, we will see that many of them are clusters of two or three spots. In (b) we clearly see that the reflections are arranged in
hexagons, and that these follow a hexagonal pattern themselves. The reflections in (a) fit in the middle of the smallest hexagons in (b).
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Figure 3.24: Reconstructions of reciprocal space for crystal 1 at the l + 0.2-patterns for the three temperatures where these appear.
Each row corresponds to a certain plane in reciprocal space, while each column a fixed temperature (see bottom corners).

We see the same pattern at each l + 0.2-plane: As we decrease the temperature from ambient conditions, the
intermediate reflections first appear at 200K. They grow in numbers until reaching a maximum at around 165K

to 155K, before abruptly disappearing at or before 140K.

Complementary modulation patterns
The relation between the modulation patterns seems to be more complex than the ABC ACB pattern for the
integer l-planes in ref. Still, the planes come in “pairs” that complement each other in the sense that they do not
overlap but belong to the same diffraction pattern. The pair of intermediate patterns at l± 0.2 are centrosymmetric
about that given l. Some pairs have overlap of reflections; a brief overview is given in Table 3.12.

l1 l2 Note on overlapping
0.8 1.2 No overlap
1.8 2.2 No overlap
2.8 3.2 Somewhat overlap
3.8 4.2 No overlap
4.8 5.2 No overlap
5.8 0.2 Somewhat overlap

Table 3.12: Overview for the complementary layers (hkl1) and (hkl2).

The six pairs of the mentioned planes have been combined to produce new images, shown in Figure 3.25. These
images have some common features in their patterns, but it is difficult to say anything conclusive. They also seem
to bear some resemblance to the planes in Figure 3.18 with split reflections.
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(a) (h, k, 0.8) and (h, k, 1.2). (b) (h, k, 5.8) and (h, k, 0.2).

(c) (h, k, 1.8) and (h, k, 2.2). (d) (h, k, 3.8) and (h, k, 4.2).

(e) (h, k, 2.8) and (h, k, 3.2). (f) (h, k, 4.8) and (h, k, 5.2).

Figure 3.25: Complementary l± 0.2modulations. All reconstructions are from the Crystal_5_(05)_165K data subset.
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3.5 Crystal 4
17 data subsets have been collected also for crystal 4, but they differ from crystal 1 in that we have two data subsets
on 100K (one replaces 90K) and one extra «test run» at room temperature. Recall the specific measurement points
from Table 3.5. The CrysAlis procedure is identical to that of crystal 1. The three mains steps are:

1. Setting the diffractometer instrument parameters to values obtained from room temperature data (Table 3.7).
2. Finding peaks, determining the unit cell, reindexing, removing wrongly indexed peaks and refining the in-

strument model parameters.
3. Extracting refined instrument parameters and orientation matrices from log files.

For this crystal, the data was also processed without presetting the refined instrument parameters in order to check
the necessity of the refinement procedure. The whole process from peak hunt to right before data reduction is the
same.

Like before, once each data subset has been processed and refined they need to be “aligned” by transformation
of the orientation matrix, as it affects the orientation of the reconstructions of reciprocal space. We did not experi-
ence the same trouble with transformations of the orientation matrix as with crystal 1; the required transformation
matrices were obtained using the UBtransformation function (as explained on page 47) with Laue class 3̄m
(orientation 3̄m1).

Comments on the analysis without preset instrument parameters
It was discovered at this point that performing the peak hunt using the option «auto analyse unit cell» yielded
much better results. Using the «automatic threshold and background detection» method found in Lattice wizard
Peak hunting wizard (see Figure 2.13), CrysAlis tends to find a rhombohedral lattice that accounts for about 35%

of the found peaks, for the seven first data subsets. When going into the Ewald explorer and checking for twins,
the program finds a twin, rotate 120° about the original lattice, that indexes about the same amount of peaks. After
using the «auto analyse unit cell», however, the amount of matching peaks had risen to about 90%. This method
has since been used on all data sets.

The two methods – with and without preset instrument parameters – both had one instance each where CrysAlis
did not succeed in setting a rhombohedral lattice automatically. With preset parameters the case was data subset 09
at 100K, in which the lattice was initially suggested to be 2/m, C-centred. The lattice was, rather surprisingly, sat
correctly after performing the «auto analyse unit cell» a second time. With no initial instrument settings, we had the
same problem with data subset 10 at 140K. In this case the refined parameters were used, giving the rhombohedral
lattice after a second peak hunt.

In retroperspective, the desired unit cells could most probably have been obtained with transformation matrices
found in chapter 5.1 of the International Tables for Crystallography, volume A [92]†.

† This was accomplished when the same problem arose during a reprocessing of data.
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3.5.1 Investigation of the reciprocal space
We see right away that the reciprocal space of crystal 4 is quite different from that of crystal 1.

Figure 3.26: Reconstructions of the reciprocal space of crystal 4, using data subset Crystal_4_(01)_290K. The (hkl) planes with
l ∈ {0, 1, 2, 3, 4, 5} are shown here.

ReflectionConditionCheck was used to confirm that all reflections adhere to (3.10a), i.e. the obverse
setting of the rhombohedral cell. The space group was for all data subsets determined to be R3̄c (#167), which is
the same found by Hough and Nicholson [84].

When we go though the reciprocal planes in steps of 0.05 units along c∗ we notice that the nodes are not in
reflection condition simultaneously. Reflections with maximum intensity rather seem to propagate along “lines” in
the plane perpendicular to the c∗ axis, very much like the lines seen in crystal 3 (see page 44). In this crystal, we
notice two nearly parallel lines that propagate symmetrically towards the origin. We have the most amount of nodes
in reflection condition when the lines meet, which can take place up to 0.05 units away from integer l. This may be
due to an inaccurate orientation matrix.

Intermediate reflections
The only noticeable signs of modulation are observed in the (h, k, 2.8) planes and can be seen in ??.

Figure 3.27: Diffuse pattern at 3.0Å
resolution in the (h, k, 2.8) plane in
crystal 4.

When we check the (h, k, 3.2) planes we may notice a very faint pattern similar
to ref, but it is in more or less indistinguishable from the background. Similarly to
crystal 1, this modulation is only visible in the temperature range from 200K to
155K.

Lower temperatures
The first significant changes to the diffraction pattern is observed in the transition
from 155K to 140K. We see the same two traits as we did for crystal 1: nodes of
the reciprocal lattice are split in two or three and satellite reflections appear.

For crystal 1 we perceived a faint build-up of satellite reflections in the temperature shifts between 200K to
165K, but the same cannot be said for crystal 4.
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3.5.2 Solving the thiourea-ferrocene structure
In regards to the structure solution, only the data subsets processed with refined instrument parameters were used.

Thiourea structure only (at room temperature)
According to Hough and Nicholson [84], the iron atoms have site symmetry 32, making them systematically absent
for odd l. A reflection file (.hkl) generated for thiourea-ferrocene at room temperature has been truncated so that
only entries with odd values of the Miller index l are present. This leaves us with the structure of thiourea only, as
seen in Figure 3.28.

a

b

c

(a) Thiourea structure, looking down a.

a

b

c

(b) Thiourea structure, looking down c.

Figure 3.28: The thiourea-ferrocene structure with ferrocene suppressed.

Thiourea-ferrocene solution
All 17 data subsets were solved and refined to values presented in Table 3.13 below.

Data subset 01 02 03 04 05 06 07 08

Temperature 290K 240K 200K 180K 165K 155K 140K 100K

Completeness [%] 92 94 93 94 93 93 94 94

Rint [%] 6.07 6.00 6.25 6.25 7.75 6.43 8.67 13.03

I/σ 14.9 16.3 17.1 17.4 13.8 16.9 9.0 6.6

R [%] 8.49 8.14 7.95 8.03 8.72 8.27 18.13 21.81

GooF 1.189 1.134 1.112 1.071 1.093 1.062 1.978 1.961

Data subset 16 15 14 13 12 11 10 09

Temperature 290K 240K 200K 180K 165K 155K 140K 100K

Completeness [%] 93 93 93 94 93 92 93 93

Rint [%] 7.56 6.80 7.38 6.78 9.09 11.45 17.97 10.63

I/σ 12.6 14.8 14.9 15.6 11.5 11.3 4.7 2.5

R [%] 8.59 8.20 8.23 8.38 7.86 10.71 15.66 —
GooF 1.116 1.096 1.075 1.053 1.086 1.123 1.550 —

Table 3.13: Goodness parameters from the solving the structure of crystal 4 at all temperatures except the second data subset at 100K.
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The structure was in all cases solved with SHELXT and refined by least square methods by the same program.

Figure 3.29: Q-peaks
surrounding iron atom.

Olex2 has trouble ascertaining the cyclopentadienyl rings of the ferrocene molecule when
the temperature has decreased to 140K. Firstly, the rings are not found to be five-fold, but
six-fold, which must due to the non-crystallographic point group of the molecule. Secondly,
the Q-peaks surrounding the iron atom almost form a spherical shell, as seen in Figure 3.29.

A selection of these Q-peaks must be carbon atoms of the cyclopentadienyl rings, but if
care is not taken the carbon atoms will attain unreasonably large anisotropic displacement
parameters. Both the R-factor and Goof would slightly increase as well.

When comparing the solved structures at the various temperatures we find that not much
changes for temperatures above 140K. Going below the temperature of T1 = 147.2K should transition the
structure into the final phase VI according to Sorai et al. [3]

(a) Thiourea-ferrocene structure, looking down a∗. (b) Thiourea-ferrocene structure, looking down c∗.

Figure 3.30: Thiourea-ferrocene (crystal 4) at 200K.

When we reach 140K we notice an important difference in the structure:

(a) Thiourea-ferrocene structure, looking down a∗. (b) Thiourea-ferrocene structure, looking down c∗.

Figure 3.31: Thiourea-ferrocene; data subset Crystal_4_(07)_140K.

The most noticeable change is in the anisotropic displacement parameters of the thiourea structure and iron atoms,
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which appear to have been “squeezed” in the hexagonal base plane. The change we see could indicate that the
ferrocene molecules have gone from what we (in subsection 2.4.2) called a «parallel orientation» to a «perpendicular
orientation». Furthermore, this new alignment could alter the thiourea framework and thus be responsible for the
split reflections we see at this temperature.

We note, however, that the structure of data subset Crystal_(10)_140K did not show a distinct elongation
of the iron atom in the plane; its displacement parameters were rather isotropic. The thiourea framework still had
the same appearance in both cases.

When it comes to the lowest temperature in our data set, 100K, we succeeded in obtaining the familiar thiourea-
ferrocene structure for one of the data subsets only, and with substandard refinement. Visually, the structure appeared
similar to Figure 3.31a at 140K, but with the anisotropic parameters flattened out even more in the plane.
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3.6 Crystals 7 and 8

Crystal 7
Recall that the sample called «crystal 7» was the same thiourea-ferrocene crystal as «crystal 1». It stands out as the
only data set going up in temperature. Five data subsets were collected at 290K, 320K, 350K, 380K and 410K.
The crystal was critically damaged at the highest temperature, as is evident from Figure 3.32.

(a) The peaks shown in Ewald explorer . (b) A reconstruction of the (hk0) plane.

Figure 3.32: The condition of crystal 7 at 410K.

A short list of the lattice parameters in Table 3.14 shows sign of expansion in the heating process.

Temperature a c

290K 16.3812 12.4114

320K 16.4086 12.4353

350K 16.4376 12.4617

380K 16.4686 12.4900

Table 3.14: The lattice parameters as determined by CrysAlis.

Crystal 8
This crystal was flawed and discarded after the test run.

Figure 3.33: Reconstruction of crystal 8 in the
(hk0) plane.

It was still possible to solve the structure correctly and obtain the re-
finement parameters:

Rint: 5.02%

I/σ: 18.4

R: 7.75%

Rw: 24.34%

GooF: 1.068.
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3.7 Crystal 9
12 data subsets have been collected for crystal 9 in total, and the specific temperatures are found in Table 3.5. The
data was once again processed without presetting the refined instrument parameters.

The two data subsets (07)_140K and (08)_100K were not determined to have rhombohedral lattices ini-
tially. Reiterating the peak hunt with refined instrument parameters was successful only for the former data set. A
rhombohedral lattice was sat for the 100K data through Ewald explorer . By viewing the peaks the (hk1) plane
and hiding those systematically absent in the reverse setting, a rhombohedral unit cell was determined from the
remaining peaks. This had to be refined in order to include the rest of the peak table.

3.7.1 Investigation of the reciprocal space

Figure 3.34: Reconstructions of the reciprocal space of crystal 9 at room temperature. Like Figure 3.16 and Figure 3.34, the first six
(hkl) planes with integer l are shown.
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Figure 3.35: ReflectionConditionCheck

applied to the (hk0) plane to distinguish the
main lattice from the satellites. The yellow dots
represent reflections fulfilling (3.10a).

Although we could not discern any significant difference between crys-
tal 4 and 9 in the structure solution, the images of reciprocal planes are
clearly different. Observe in Figure 3.34 the numerous satellite reflec-
tions amounting to small circles in the plane.

Another trait we see in this crystal is that the it has a smoother back-
ground. This is probably related to the higher signal-to-noise ratio, which
on average is 53.9 for crystal 9; over four times greater than crystal 4’s
average of 12.5.

The “lines of propagating reflections” mentioned in connection with
crystal 3 and 4 are present also here. Unlike before, all nodes enter re-
flection condition simultaneously an precisely at integer l.

There is no difference between crystal 4 and 9 with regards to inter-
mediate reflections at specific l ± 0.2 layers.
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Inspection of lower temperatures
For this crystal we observe that the evident splitting of reciprocal nodes happens at 100K, contrary to 140K as seen
in crystals 1 and 4. The transition from 155K to 140K shows splitting of the lattice to a very small degree, and
even less for the satellite reflections; compare Figure 3.36a and Figure 3.36b.

(a) Crystal_9_(06)_155K at (hk0). (b) Crystal_9_(07)_140K at (hk0).

(c) Crystal_9_(08)_100K at (hk0). (d) Crystal_9_(09)_140K at (hk0).

Figure 3.36: Reconstructions of the reciprocal plane (hk0) for crystal 9 at the temperatures 155K, 140K and 100K.

Comparing the first image at 140K (Figure 3.36b) with the second image at this temperature (Figure 3.36d), we
see that it appears to not have “recovered” from splitting of nodes at 100K. The next data subset in this sequence,
(10)_155K (not shown here), is indistinguishable from the corresponding image in Figure 3.36a.
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3.7.2 Solving the thiourea-ferrocene structure
The structure has been solved and refined in the same manner as with crystal 4 in Table 3.13.

Data subset 01 02 03 04 05 06

Temperature 290K 240K 200K 180K 165K 155K

Completeness [%] 85 86 85 85 86 86

Rint [%] 2.85 5.95 2.66 2.15 2.05 2.06

I/σ 43.4 32.9 67.0 69.1 66.4 70.7

R [%] 7.85 7.45 7.31 7.42 7.68 7.74

GooF 1.130 1.066 1.085 1.083 1.104 1.056

Data subset 07 08 09 10 11 test

Temperature 140K 100K 140K 155K 165K 290K

Completeness [%] 86 85 87 86 85 85

Rint [%] 2.03 9.60 6.14 2.08 1.91 3.07

I/σ 61.4 14.4 25.6 76.8 77.3 41.9

R [%] 8.11 20.85 10.49 8.07 7.87 8.24

GooF 1.120 3.482 1.560 1.059 1.075 1.128

Table 3.15: Goodness parameters from the solving the structure of crystal 9.

The structure was solved at 100K for this crystal, but very poor refinement resulted. We saw the same characteristic
flattening of anisotropic parameters in the hexagonal base plane, just as described for crystal 4 (see page 63).

Comparing this with crystal 4, we see that the refinement indicators R and GooF are on the same order of
magnitude. Crystal 4 has higher completeness, but crystal 9 excel with great signal-to-noise ratio and better internal
consistency among symmetry equivalent reflections.

Stian Penev Ramsnes 



Chapter 4
Discussion

4.1 Challenges with CrysAlis
CrysAlis, like most crystallographic software, can be characterised as a so-called black box system, meaning the internal
algorithms are hidden to us. Thus, we cannot fully explain the inconsistency among the reprocessed silicon data in
subsection 3.1.2 nor the errors with frame scaling of crystal 3 (ferrocene) in Figure 3.8.

Figure 4.1: Data reduction stuck on
frame 7189. Version: 171.38.41

Other issues with the silicon data were also present. The newest version of
CrysAlis at the time silicon data were processed was 171.37.35h, but data
reduction on this version would never finish properly. The current version,
171.38.41, would also get stuck in the procedure (see Figure 4.1). When
inspecting the data reduction results we found under «error model calculation»
that no reflections were located in a certain .tmp file. This was checked on the
two data subsets Si_A_0_0_0 and Si_A_0_0_90. We had to switch to the
older 171.35.21 version to run the data reduction successfully. The program
could also fail in this version, in which case it would usually help to uncheck
«Reduce background accumulation to SHORT type» in Data reduction assistant
Step 4: Background evaluation .

Refinalisation on newer versions were investigated. For the particular data set
(Si_D_0_100_90) data reduction was first executed in 35.21 version. Refinalising within the same version
produced the same .hkl files. The CrysAlis project was then loaded in the two newer versions mentioned above
and refinalised once more. All reflections were in the same order, but intensities varied.

Performing the peak hunt in version 38.41 (automatic and traditional methods for Si_B_0_0_0 and Si_B-
_0_0_90, respectively) led to a «runtime error» when trying to reduce the data in version 35.21 stating an
«unsuccessful reading of image header». Initiating data reduction in version 38.41 (or 37.35h) instead did not
prompt the error.

(a) Results from first run. (b) Results from second run.

Figure 4.2: Screenshots fromCrysAlis showing differences despite all paramet-
ers being identical up to data reduction.

A final data process was done where as
much variation as possible was eliminated;
The data subset Si_E_0_0_0 was arbitrar-
ily selected for the task. Following the stand-
ard procedure (see ref ), all the related project
files in the data directory were copied to an-
other location once data reduction was com-
plete. The whole process was then redone. All
details, including lattice parameters and ori-
entation matrix, are identical up to data re-
duction. See Figure 4.2. After this step we
find that the reflection files differ.

The challenges we have seen with CrysAlis
thus far in this section seem to be related to
specific crystal; silicon. The program is likely
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created with the aim of being versatile in or-
der to cover as many fields of applications as possible, and not optimised for highly perfect crystals. For instance,
we did not face any problems of this kind with the ferrocene or thiourea-ferrocene crystals (but data reductions on
the same projects would still differ slightly). Even if we do not encounter any bugs in the software, finding the best
parameters for the specific project can be a challenge in any case. Performing initial testing of different settings as a
matter of usual practice is recommended.

A final note to keep in mind: After transforming the UB matrix (using the um crec command from the
UBtransformation function), the instrument model refinement needs to be executed at least twice in order
for the residue value to return to “normal”. Increasing the number of cycles in a single refinement will not help.

4.2 Thiourea-ferrocene

4.2.1 The temperature’s impact on relevant parameters
In our investigation of the crystal structure – via the images of reciprocal space – we use the hexagonal thiourea-
lattice as a reference system or a “background” to contrast any temperature related changes we might observe. An
underlying assumption is that the thiourea framework is not altered significantly in the cooling process.

The next four pages contain two sets of three plots each; one for the lattice parameters a, c and γ, and the another
of the three rotations angles r1, r2 and r3. Each page is for a particular crystal, with an additional page for the
alternative processing of crystal 4.

Starting with crystal 1, we first notice an abrupt change in the lattice parameters a, c and γ as the temperature
decreases to 140K or lower; a is lowered while c and γ increase. Another feature in the plots is a clear tendency for
the a and c parameters to decline with lower temperature, which is also very symmetric about the turning point at
90K. The same pattern is evident in the rotation angles, too.

Moving on to the first processing of crystal 4 – which followed the same standard procedure as the previous
crystal – the same traits observed for crystal 1 also apply for a, c and γ. The development of the rotation angles
as function of temperature follow a less clear pattern here. All plots, except for γ, in the case where no instrument
parameters were preset are very chaotic, even though some resemblance with the previous descriptions can be seen.
The lattice parameter a does not show the same abruptness as commented for crystal 1.

Finally, in crystal 9 we see the same decline of the a and c parameters with colder temperature, but a does not
follow an obvious pattern around the coldest temperatures.

The uncertainties provided by CrysAlis seem suspiciously small; nonetheless, all data has been subjected to the
same calculation procedures by the software.

Stian Penev Ramsnes 



Aspects of X-Ray Diffraction Using Mathematica Discussion Thiourea-ferrocene

The temperature’s impact on crystal 1
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(a) Lattice parameter a.
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(b) Lattice parameter c.
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(c) Interaxial angle γ.

Figure 4.3: (a) and (b): Lattice parameters a and c of
crystal 1 at various temperatures with ångströms on the
vertical axes. (c): The cell parameter γ as calculated for
an unconstrained cell (in degrees).
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(a) Rotation angle r1.
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(b) Rotation angle r2.
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(c) Rotation angle r3.

Figure 4.4: Rotation angles r1, r2 and r3 of crystal 1
after transformations. Values on vertical axes are in
degrees.

Stian Penev Ramsnes 



Aspects of X-Ray Diffraction Using Mathematica Discussion Thiourea-ferrocene

The temperature’s impact on crystal 4 (presetting instrument model with refined values)
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(a) Lattice parameter a.
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(b) Lattice parameter c.
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Figure 4.5: (a) and (b): Lattice parameters a and c of
crystal 4 at various temperatures with ångströms on the
vertical axes. (c): The cell parameter γ as calculated for
an unconstrained cell (in degrees).
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(a) Rotation angle r1.
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(b) Rotation angle r2.
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(c) Rotation angle r3.

Figure 4.6: Rotation angles r1, r2 and r3 of crystal 4
after transformations. Values on vertical axes are in
degrees.
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The temperature’s impact on crystal 4 (no presetting of the instrument model parameters)
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(a) Lattice parameter a.
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(c) Interaxial angle γ.

Figure 4.7: (a) and (b): Lattice parameters a and c of
crystal 4 at various temperatures with ångströms on the
vertical axes. (c): The cell parameter γ as calculated for
an unconstrained cell (in degrees).
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(c) Rotation angle r3.

Figure 4.8: Rotation angles r1, r2 and r3 of crystal 4
after transformations. Values on vertical axes are in
degrees.
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The temperature’s impact on crystal 9

16.20

16.25

16.30

29
0
K

24
0
K

20
0
K

18
0
K

16
5
K

15
5
K

14
0
K

10
0
K

14
0
K

15
5
K

16
5
K

29
0
K

(a) Lattice parameter a.

12.36

12.38

12.40

12.42

12.44
29
0
K

24
0
K

20
0
K

18
0
K

16
5
K

15
5
K

14
0
K

10
0
K

14
0
K

15
5
K

16
5
K

29
0
K

(b) Lattice parameter c.

119.92

119.94

119.96

119.98

120.00

120.02

120.04
29
0
K

24
0
K

20
0
K

18
0
K

16
5
K

15
5
K

14
0
K

10
0
K

14
0
K

15
5
K

16
5
K

29
0
K

(c) Interaxial angle γ.

Figure 4.9: (a) and (b): Lattice parameters a and c of
crystal 9 at various temperatures with ångströms on the
vertical axes. (c): The cell parameter γ as calculated for
an unconstrained cell (in degrees).
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(a) Rotation angle r1.
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(b) Rotation angle r2.
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(c) Rotation angle r3.

Figure 4.10: Rotation angles r1, r2 and r3 of crystal 9
after transformations. Values on vertical axes are in
degrees.
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Aspects of X-Ray Diffraction Using Mathematica Discussion Thiourea-ferrocene

Mosaicity parameters
The peaks are assumed to follow a Gaussian distribution; the mosaicity is defined as the standard deviation of this
curve. Figure 4.11 show plots of mosaicities extracted from data (after data reduction). The degree of mosaicity is
given for three different scanning directions.

0.0

0.5

1.0

1.5

2.0

2.5
29
0
K

24
0
K

20
0
K

18
0
K

16
5
K

15
5
K

14
0
K

10
0
K

90
K
10
0
K

14
0
K

15
5
K

16
5
K

18
0
K

20
0
K

24
0
K

29
0
K

(a) Crystal 1, e1
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(b) Crystal 1, e2
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(c) Crystal 1, e3
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(d) Crystal 4, e1
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(e) Crystal 4, e2
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(f) Crystal 4, e3
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(g) Crystal 9, e1
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(h) Crystal 9, e2
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(i) Crystal 9, e3

Figure 4.11: Mosaicity parameters of crystals 1, 4 and 9. e1 and e2 are directions in the detector plane, while e3 is in the scanning
direction. [47] Note that all vertical axes show the same range; 0.0° to 2.5°.

It is clear that the colder temperatures affect the mosaicity in the e3 direction most.
When looking over the structure solved in Olex2 for the data points in Figure 4.11f and Figure 4.11i with

mosaicity over 1.0°, we find that they correspond to the cases where the iron atoms had anisotropic displacement
parameters visible flattened in the hexagonal plane (normal to the tunnel axis).

Also note that the 100K data point with the large mosaicity in Figure 4.11i correspond to when the prominent
splitting of reflections occurs, as seen in Figure 3.36d. This provides a link between the three observations: (i)
splitting of reflections, (ii) large mosaicity and (iii) the shift of the iron atom’s anisotropic displacement parameters.
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Chapter 5
Conclusion

Structure factors and silicon data
The StructureFactorTable, which is a continuation of Mathematica code written by Thorkildsen and
Larsen, has shown to produce values in good agreement with the literature. Structure factors generated with the
Mathematica function were compared with results from experimental silicon data. We saw a decline in the intensity
of the normally strong reflections, which we interpreted as a consequence of dynamical effects.

Room temperature analysis and refinement
An improvement of the instrument model residual factor could be traced back to a thorough inspection of the peak
table, while its effect on the analysis and refinement of thiourea-ferrocene data remains inconclusive.

The «auto analyse unit cell» peak hunting method seems to find more peaks than the regular automatic method,
and has since its discovery, been the preferred choice.

Temperature-induced phase transitions
Descriptions of the development of reciprocal for the thiourea-ferrocene crystals:

Transition Description
290K to 240K (no special remarks)
240K to 200K (no special remarks)
200K to 180K Emergence of weak satellites and intermediate reflections (crystal 1);
180K to 165K Satellites increase in numbers and intensity (crystal 1)
165K to 155K (no special remarks)

155K to 140K
The most significant change – splitting of reflections (crystals 1 and 4);
Disappearance of intermediate reflections (crystal 1)

140K to 100K Satellites increase in numbers and intensity (crystal 1); splitting of nodes (crystal 9)
100K to 90K (no special remarks)

Table 5.1: Characteristic observations of the reciprocal space at studied temperature transitions.

The observation of splitting of reflections was linked to both a relatively large mosaicity (over 1.0°) and a shift of
the iron atom’s anisotropic displacement parameters to be most prominent in the plane perpendicular to the tunnel
axis.

Twinning
The thiourea-ferrocene sample referred to as «crystal 1» is concluded to be twinned by so-called «reticular merohedry».
Remarkable diffraction patterns emerge in the temperature range from 155K to 200K at specific fractions of l
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Aspects of X-Ray Diffraction Using Mathematica Conclusion Future work

5.1 Future work

Further studies of thiourea-ferrocene
Although the structures of ferrocene and thiourea-ferrocene have been solved with resulting lattice parameters in
accordance with the crystallographic literature, a complete understanding of the observations has not been achieved.
Further work on this project should be focused on simulating modulations of the structure, followed by comparison
with observations, in order to uncover more details of the structure. As a first step, reconstructions of reciprocal
space can be simulated; Figure 5.1 shows an example.

Figure 5.1: A simulation of the (hk3) plane in a thiourea-ferrocene crystal. Developed by Thorkildsen.

Mathematica package
The Mathematica package has mainly served as a computational tool, and has the advantage of being independent
of «black box» systems such as CrysAlis. The package has great expansion potential for our line of work; it has been
an indispensable tool for handling the huge amount of data and for solving the specific problems encountered.
Although the project has not come to a closure, far less would have been achieved without this package.
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Chapter 6
Appendices

6.1 Appendix A – Mathematica documentation
Included here is a static version of the Mathematica documentation for the Xray application. The Mathematica
package is “installed” by simply placing the package folder Xray in ($UserBaseDirectory) Applic-

ations and is loaded with the command:
<< Xray`

Alternatively, the user may set the Mathematica to load the package automatically on start-up by writing the com-
mand above in ($UserBaseDirectory) Kernel init.m.
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Aspects of X-Ray Diffraction Using Mathematica Appendices Appendix A – Mathematica documentation

X-Ray Diffraction Package
Helge Bøvik Larsen ▪ Stian Penev Ramsnes ▪ Gunnar Thorkildsen — University of Stavanger ▪ 2016

CrysAlis

Unwarping

UBtransformation — Derives the CrysAlis code needed to transform UB matrices.

UnwarpLayerList — Produces a list of unwarping commands that can be imported into CrysAlis.

ImgJpgScript — Generates a script file that converts the .img format to .bmp or .jpg when loaded in CrysAlis.

Post-analysis

MergeLogs — Merges multiple log files from the same project.

RefinedValues — Extracts the refined model values from log files.

IntensityTable — Produces a table over intensities and more from .hkl files.

ReflectionConditionCheck — Shows which nodes fulfil given reflection conditions in an image of the reciprocal space.

GeneratePixelData ▪ FindPixelClusters ▪ $PixelData

Other tools

PeakTableHelper — Given the peak table, this function produces a list of which duplicates to delete.

MonitorIni — Auxiliary tool for the xx monitorinifromrunlist command.

UBfix ▪ ReflectionSetInspection

Structure factor calculations

StructureFactorTable — Generates a table of structure factors, phases, Bragg angles and more.

Reflections

ReflectionCheck — Checks if a given reflection is extinct.

SymmetryReduction — Delete duplicates by symmetry equivalence.

FindLaueClassRep — A representative reflection among symmetry equivalent reflections.

ReflectionList — Generates a suitable list of reflections.

ToMiller ▪ FromMiller ▪ $LaueClasses

Crystal data

$Crystals ▪ ReadCrystalData

Miscellaneous tools

$XrayExamples — A special directory containing files for demonstration purposes.

String manipulation

ChangeExtension — Changes the file extension of a given file.

UpdateString — Replaces string expressions inside files with new ones.

ConvertToDat ▪ UpdateFullForm

Images

GifGenerator — Produces a .gif or .mp4 animation of the input.

MarkImages — Puts tags in lower left and right corners of images.

Usage messages

ExtractUsage — Extracts usage message from notebooks.

NeatUsage — Tool for writing formatted usage messages.
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StructureFactorTable
StructureFactorTable[λ, crystal, class] 

produces a table of structure factors, phases, Bragg angles, Pendellösung distances and Darwin widths for a given 
wavelength λ, crystal and Laue class.

StructureFactorTable[λ, crystal, class, condition]
produces the same table, but reflections that do not follow the pattern of condition will be disregarded.

Details

◼ The Pendellösung distance is calculated from equation (4.26) [Authier, 2001]:

◼ Λo #
π V γo &γh'

C λ re FH FH

◼ The symbols represent the following:

      Λ0 Pendellösung distance (or extinction distance)

      V unit cell volume

      γo cosine of the angle between the inward normal to the crystal 
surface and the incident direction

      γh cosine of the angle between the inward normal to the crystal 
surface and the reflected direction

      re classic electron radius. Value used: 2.818×10-15 m

      λ wavelength

      C polarisation factor

      FH structure factor associated with reciprocal lattice node hkl

      FH structure factor associated with reciprocal lattice node hkl

◼ The Darwin width is also calculated from equation (4.26) [Authier, 2001]:

◼ δos #
λ
Λo

&γh'
sin(2 θ)

◼ In addition to the options of ReflectionList, the following options can be given:

      "Sort" 0 determines which column the table will be 
sorted by. Negative values reverses the 
direction.

      "Keep" All truncates the table so that only a chosen 
number of reflections are displayed.

◼ Please see the documentation of ReflectionCheck  for some examples of how to set the condition.

◼ For a given reflection to be listed in the table, it has to not be extinct and also yield True  when tested by the condition. 
Sometimes, the table may appear to not comply with the condition set by condition. This may be due to symmetry 
equivalence with one of the reflections listed in the table, and can be checked by using the setting True  for the 
"SplitEquivalent" option.

Examples  (7)

Basic Examples  (1)

Aspects of X-Ray Diffraction Using Mathematica Appendices Appendix A – Mathematica documentation
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To get an overview of which crystals have available data, use the following: 

In[1]:= $Crystals

Out[1]= {ag2so4_HTP_460C, ag2so4_HTP, ag2so4_LTP_340C, ag2so4_LTP, almgzn_Model_X_sim,
almgzn_Model_Y_sim, aluminium, caf2, cof2, copper, corund, cuwo4, cuwo4_new,
cuwo4_new_sasaki, diamond, gaas, german, german_new, glycyl-l-alanine, mgzn2_zero,
mnsi, nacl, nickel, oxalic, silicon, silver_460C, silver, squaric, zinc_zero}

As an example, let the wavelength be 0.987 Å and the crystal NaCl, which has space group Fm3m (and thus 
Laue class m3m).

In[2]:= StructureFactorTable0.987, "nacl", "m3m"

Out[2]=

Structure factor Phase Bragg angle Pendellösung distance Darwin width
(hkl) Fhkl ϕhkl [°] θB [°] Λ0 [µm] 2δos [µrad]
(664) 11.194 2.749 55.167 103.400 1.163
(662) 13.827 2.539 49.712 94.768 1.365
(660) 14.861 2.468 47.942 91.346 1.455
(644) 15.988 2.397 46.182 87.756 1.559
(642) 20.043 2.182 40.904 76.414 1.973
(640) 21.670 2.109 39.122 72.547 2.156
(622) 25.461 1.960 35.479 64.812 2.624
(620) 27.685 1.883 33.600 60.965 2.926
(600) 30.186 1.805 31.668 57.135 3.290
(555) 6.245 -175.750 49.268 211.720 0.615
(553) 7.705 -175.920 42.229 194.740 0.754
(551) 8.437 -175.950 38.673 187.520 0.842
(533) 9.098 -175.920 35.014 182.410 0.943
(531) 9.602 -175.800 31.175 180.560 1.056
(511) 9.857 -175.550 27.043 183.100 1.186
(444) 23.467 2.035 37.317 68.676 2.371
(442) 30.186 1.805 31.668 57.135 3.290
(440) 33.024 1.724 29.668 53.318 3.740
(422) 40.101 1.550 25.383 45.655 5.043
(420) 44.671 1.454 23.036 41.746 6.042
(400) 50.323 1.349 20.487 37.721 7.476
(333) 9.857 -175.550 27.043 183.100 1.186
(331) 9.926 -175.190 22.421 188.710 1.371
(311) 10.768 -175.180 16.870 180.080 1.889
(222) 57.624 1.231 17.644 33.512 9.717
(220) 67.641 1.096 14.329 29.026 13.740
(200) 82.743 0.936 10.079 24.113 23.390
(111) 18.310 -176.920 8.717 109.390 5.953

Options  (5)

"Sort"  (2)

This option lets you sort the table by one of the columns. It needs to take an integer value that corresponds to 
one of the columns of the table.

Sort by increasing Bragg angle (fourth column from the left):

Aspects of X-Ray Diffraction Using Mathematica Appendices Appendix A – Mathematica documentation
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In[1]:= StructureFactorTable0.70931713, "silicon",
"m3m", {h_, k_, l_} /; OddQ[k] || Divisible[h + k + l, 4], "Sort" → 4

Out[1]=

Structure factor Phase Bragg angle Pendellösung distance Darwin width
(hkl) Fhkl ϕhkl [°] θB [°] Λ0 [µm] 2δos [µrad]
(111) 59.374 -179.620 6.495 42.129 14.885
(220) 68.226 -179.540 10.644 36.265 10.589
(311) 44.717 -179.510 12.509 54.964 5.958
(400) 57.093 -179.470 15.142 42.564 6.380
(331) 38.199 0.554 16.538 63.180 3.944
(422) 49.473 0.594 18.658 48.213 4.599
(333) 33.235 0.618 19.836 71.255 2.934
(511) 33.235 0.618 19.836 71.255 2.934
(440) 43.239 0.658 21.680 54.106 3.549
(531) 29.112 0.683 22.727 79.764 2.302
(620) 38.004 0.726 24.395 60.330 2.847
(533) 25.639 -179.250 25.355 88.734 1.867
(444) 33.582 -179.200 26.900 66.857 2.345
(551) 22.700 -179.180 27.799 98.106 1.550
(711) 22.700 0.823 27.799 98.106 1.550
(642) 29.830 -179.130 29.255 73.633 1.971
(553) 20.203 -179.100 30.107 107.800 1.312
(731) 20.203 -179.100 30.107 107.800 1.312
(800) 26.635 0.943 31.496 80.595 1.685
(733) 18.074 -179.030 32.313 117.720 1.127
(660) 23.904 -178.980 33.650 87.672 1.460
(822) 23.904 -178.980 33.650 87.672 1.460
(555) 16.251 1.047 34.440 127.760 0.982
(751) 16.251 -178.950 34.440 127.760 0.982
(840) 21.559 -178.910 35.739 94.784 1.281
(753) 14.684 1.123 36.509 137.810 0.865
(664) 19.537 1.171 37.778 101.850 1.137
(844) 17.786 1.247 39.780 108.780 1.019
(755) 12.155 1.275 40.524 157.430 0.693
(771) 12.155 1.275 40.524 157.430 0.693
(862) 16.263 1.321 41.757 115.480 0.922
(773) 11.132 1.349 42.494 166.760 0.630
(775) 9.447 -178.510 46.407 183.760 0.533
(880) 12.730 1.537 47.632 133.270 0.720
(866) 11.816 -178.390 49.603 138.090 0.674
(884) 11.001 -178.330 51.596 142.160 0.637
(777) 7.579 -178.310 52.351 202.890 0.442

——————————————————————————————————————————————————————————————————————————————————————

Sort by decreasing value of the structure factor (first column, a negative sign is used):

Aspects of X-Ray Diffraction Using Mathematica Appendices Appendix A – Mathematica documentation
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In[1]:= StructureFactorTable0.70931713, "silicon", "m3m",
{h_, k_, l_} /; OddQ[k] || Divisible[h + k + l, 4], "Sort" → -1

Out[1]=

Structure factor Phase Bragg angle Pendellösung distance Darwin width
(hkl) Fhkl ϕhkl [°] θB [°] Λ0 [µm] 2δos [µrad]
(111) 59.374 -179.620 6.495 42.129 14.885
(220) 68.226 -179.540 10.644 36.265 10.589
(311) 44.717 -179.510 12.509 54.964 5.958
(331) 38.199 0.554 16.538 63.180 3.944
(333) 33.235 0.618 19.836 71.255 2.934
(400) 57.093 -179.470 15.142 42.564 6.380
(422) 49.473 0.594 18.658 48.213 4.599
(440) 43.239 0.658 21.680 54.106 3.549
(444) 33.582 -179.200 26.900 66.857 2.345
(511) 33.235 0.618 19.836 71.255 2.934
(531) 29.112 0.683 22.727 79.764 2.302
(533) 25.639 -179.250 25.355 88.734 1.867
(551) 22.700 -179.180 27.799 98.106 1.550
(553) 20.203 -179.100 30.107 107.800 1.312
(555) 16.251 1.047 34.440 127.760 0.982
(620) 38.004 0.726 24.395 60.330 2.847
(642) 29.830 -179.130 29.255 73.633 1.971
(660) 23.904 -178.980 33.650 87.672 1.460
(664) 19.537 1.171 37.778 101.850 1.137
(711) 22.700 0.823 27.799 98.106 1.550
(731) 20.203 -179.100 30.107 107.800 1.312
(733) 18.074 -179.030 32.313 117.720 1.127
(751) 16.251 -178.950 34.440 127.760 0.982
(753) 14.684 1.123 36.509 137.810 0.865
(755) 12.155 1.275 40.524 157.430 0.693
(771) 12.155 1.275 40.524 157.430 0.693
(773) 11.132 1.349 42.494 166.760 0.630
(775) 9.447 -178.510 46.407 183.760 0.533
(777) 7.579 -178.310 52.351 202.890 0.442
(800) 26.635 0.943 31.496 80.595 1.685
(822) 23.904 -178.980 33.650 87.672 1.460
(840) 21.559 -178.910 35.739 94.784 1.281
(844) 17.786 1.247 39.780 108.780 1.019
(862) 16.263 1.321 41.757 115.480 0.922
(866) 11.816 -178.390 49.603 138.090 0.674
(880) 12.730 1.537 47.632 133.270 0.720
(884) 11.001 -178.330 51.596 142.160 0.637

"Keep"  (1)

The "Keep" option truncates the table and keeps a desired amount of reflections in the table.

Let's say that we're only interested in the top nine strongest reflections:

In[1]:= StructureFactorTable0.70931713, "silicon", "m3m",
{h_, k_, l_} /; OddQ[k] || Divisible[h + k + l, 4], "Sort" → -2, "Keep" → 9

Out[1]=

Structure factor Phase Bragg angle Pendellösung distance Darwin width
(hkl) Fhkl ϕhkl [°] θB [°] Λ0 [µm] 2δos [µrad]
(220) 68.226 -179.540 10.644 36.265 10.589
(111) 59.374 -179.620 6.495 42.129 14.885
(400) 57.093 -179.470 15.142 42.564 6.380
(422) 49.473 0.594 18.658 48.213 4.599
(311) 44.717 -179.510 12.509 54.964 5.958
(440) 43.239 0.658 21.680 54.106 3.549
(331) 38.199 0.554 16.538 63.180 3.944
(620) 38.004 0.726 24.395 60.330 2.847
(444) 33.582 -179.200 26.900 66.857 2.345

"SplitEquivalent"  (1)

By default, only one reflection from a set of symmetry equivalent reflections is represented in the table. This 
can be turned off by setting "SplitEquivalent" → True .

Aspects of X-Ray Diffraction Using Mathematica Appendices Appendix A – Mathematica documentation
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In[1]:= StructureFactorTable0.70931713, "silicon", "m3m",
{h_, k_, l_} /; h ⩵ 1 && Divisible[k, 3], "SplitEquivalent" → True

Out[1]=

Structure factor Phase Bragg angle Pendellösung distance Darwin width
(hkl) Fhkl ϕhkl [°] θB [°] Λ0 [µm] 2δos [µrad]
(137) 20.203 0.897 30.107 107.800 1.312

(135) 29.112 0.683 22.727 79.764 2.302

(133) 38.199 -179.450 16.538 63.180 3.944

(131) 44.717 -179.510 12.509 54.964 5.958

(131) 44.717 0.489 12.509 54.964 5.958

(133) 38.199 0.554 16.538 63.180 3.944

(135) 29.112 -179.320 22.727 79.764 2.302

(137) 20.203 -179.100 30.107 107.800 1.312

(137) 20.203 -179.100 30.107 107.800 1.312

(135) 29.112 0.683 22.727 79.764 2.302

(133) 38.199 0.554 16.538 63.180 3.944

(131) 44.717 -179.510 12.509 54.964 5.958
(131) 44.717 -179.510 12.509 54.964 5.958
(133) 38.199 0.554 16.538 63.180 3.944
(135) 29.112 0.683 22.727 79.764 2.302
(137) 20.203 -179.100 30.107 107.800 1.312

"CustomReflections"  (1)

StructureFactorTable  produces a list of possible reflections automatically, but this step can be omitted if 
desired, and a list of custom reflections inputted instead.

In[1]:= StructureFactorTable0.70931713, "silicon",
"m3m", "CustomReflections" → {{1, 1, 1}, {3, 1, 1}, {6, 4, 2}}

Out[1]=

Structure factor Phase Bragg angle Pendellösung distance Darwin width
(hkl) Fhkl ϕhkl [°] θB [°] Λ0 [µm] 2δos [µrad]
(111) 59.374 -179.620 6.495 42.129 14.885
(311) 44.717 -179.510 12.509 54.964 5.958
(642) 29.830 -179.130 29.255 73.633 1.971

Possible Issues  (1)

In some cases, there may be additional extinct reflections:
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In[1]:= StructureFactorTable0.70931713, "silicon", "m3m"

Out[1]=

Structure factor Phase Bragg angle Pendellösung distance Darwin width
(hkl) Fhkl ϕhkl [°] θB [°] Λ0 [µm] 2δos [µrad]
(886) 0.000 0.000 56.751 ComplexInfinity 0.000
(884) 11.001 -178.330 51.596 142.160 0.637
(882) 0.000 0.000 48.615 ComplexInfinity 0.000
(880) 12.730 1.537 47.632 133.270 0.720
(866) 11.816 -178.390 49.603 138.090 0.674
(864) 0.000 0.000 44.696 ComplexInfinity 0.000
(862) 16.263 1.321 41.757 115.480 0.922
(860) 0.000 0.000 40.771 ComplexInfinity 0.000
(844) 17.786 1.247 39.780 108.780 1.019
(842) 0.000 0.000 36.764 ComplexInfinity 0.000
(840) 21.559 -178.910 35.739 94.784 1.281
(822) 23.904 -178.980 33.650 87.672 1.460
(820) 0.000 0.000 32.582 ComplexInfinity 0.000
(800) 26.635 0.943 31.496 80.595 1.685
(777) 7.579 -178.310 52.351 202.890 0.442
(775) 9.447 -178.510 46.407 183.760 0.533
(773) 11.132 1.349 42.494 166.760 0.630
(771) 12.155 1.275 40.524 157.430 0.693
(755) 12.155 1.275 40.524 157.430 0.693
(753) 14.684 1.123 36.509 137.810 0.865
(751) 16.251 -178.950 34.440 127.760 0.982
(733) 18.074 -179.030 32.313 117.720 1.127
(731) 20.203 -179.100 30.107 107.800 1.312
(711) 22.700 0.823 27.799 98.106 1.550
(666) 0.000 0.000 42.739 ComplexInfinity 0.000
(664) 19.537 1.171 37.778 101.850 1.137
(662) 0.000 0.000 34.702 ComplexInfinity 0.000
(660) 23.904 -178.980 33.650 87.672 1.460
(644) 0.000 0.000 32.582 ComplexInfinity 0.000
(642) 29.830 -179.130 29.255 73.633 1.971
(640) 0.000 0.000 28.094 ComplexInfinity 0.000
(622) 0.000 0.000 25.669 ComplexInfinity 0.000
(620) 38.004 0.726 24.395 60.330 2.847
(600) 0.000 0.000 23.068 ComplexInfinity 0.000
(555) 16.251 1.047 34.440 127.760 0.982
(553) 20.203 -179.100 30.107 107.800 1.312
(551) 22.700 -179.180 27.799 98.106 1.550
(533) 25.639 -179.250 25.355 88.734 1.867
(531) 29.112 0.683 22.727 79.764 2.302
(511) 33.235 0.618 19.836 71.255 2.934
(444) 33.582 -179.200 26.900 66.857 2.345
(442) 0.000 0.000 23.068 ComplexInfinity 0.000
(440) 43.239 0.658 21.680 54.106 3.549
(422) 49.473 0.594 18.658 48.213 4.599
(420) 0.000 0.000 16.981 ComplexInfinity 0.000
(400) 57.093 -179.470 15.142 42.564 6.380
(333) 33.235 0.618 19.836 71.255 2.934
(331) 38.199 0.554 16.538 63.180 3.944
(311) 44.717 -179.510 12.509 54.964 5.958
(222) 0.000 0.000 13.075 ComplexInfinity 0.000
(220) 68.226 -179.540 10.644 36.265 10.589
(200) 0.000 0.000 7.505 ComplexInfinity 0.000
(111) 59.374 -179.620 6.495 42.129 14.885

Here, the silicon has space group #227 in the International Tables for Crystallography. For this particular case, 
we find that the extra reflection condition h = 2 n+ 1 or h+ k+ l = 4 n must be fulfilled. This will have to be 
incorporated as a condition:
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In[2]:= StructureFactorTable0.70931713, "silicon",
"m3m", {h_, k_, l_} /; OddQ[k] || Divisible[h + k + l, 4], "Sort" → 4

Out[2]=

Structure factor Phase Bragg angle Pendellösung distance Darwin width
(hkl) Fhkl ϕhkl [°] θB [°] Λ0 [µm] 2δos [µrad]
(111) 59.374 -179.620 6.495 42.129 14.885
(220) 68.226 -179.540 10.644 36.265 10.589
(311) 44.717 -179.510 12.509 54.964 5.958
(400) 57.093 -179.470 15.142 42.564 6.380
(331) 38.199 0.554 16.538 63.180 3.944
(422) 49.473 0.594 18.658 48.213 4.599
(333) 33.235 0.618 19.836 71.255 2.934
(511) 33.235 0.618 19.836 71.255 2.934
(440) 43.239 0.658 21.680 54.106 3.549
(531) 29.112 0.683 22.727 79.764 2.302
(620) 38.004 0.726 24.395 60.330 2.847
(533) 25.639 -179.250 25.355 88.734 1.867
(444) 33.582 -179.200 26.900 66.857 2.345
(551) 22.700 -179.180 27.799 98.106 1.550
(711) 22.700 0.823 27.799 98.106 1.550
(642) 29.830 -179.130 29.255 73.633 1.971
(553) 20.203 -179.100 30.107 107.800 1.312
(731) 20.203 -179.100 30.107 107.800 1.312
(800) 26.635 0.943 31.496 80.595 1.685
(733) 18.074 -179.030 32.313 117.720 1.127
(660) 23.904 -178.980 33.650 87.672 1.460
(822) 23.904 -178.980 33.650 87.672 1.460
(555) 16.251 1.047 34.440 127.760 0.982
(751) 16.251 -178.950 34.440 127.760 0.982
(840) 21.559 -178.910 35.739 94.784 1.281
(753) 14.684 1.123 36.509 137.810 0.865
(664) 19.537 1.171 37.778 101.850 1.137
(844) 17.786 1.247 39.780 108.780 1.019
(755) 12.155 1.275 40.524 157.430 0.693
(771) 12.155 1.275 40.524 157.430 0.693
(862) 16.263 1.321 41.757 115.480 0.922
(773) 11.132 1.349 42.494 166.760 0.630
(775) 9.447 -178.510 46.407 183.760 0.533
(880) 12.730 1.537 47.632 133.270 0.720
(866) 11.816 -178.390 49.603 138.090 0.674
(884) 11.001 -178.330 51.596 142.160 0.637
(777) 7.579 -178.310 52.351 202.890 0.442

Related Guides

◼ X-Ray Diffraction Package
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XRAY SYMBOL Related Guides ▼ URL ▼

ReflectionConditionCheck
ReflectionConditionCheck[imgfile, system, P1, P2, l, pattern] 

plots reciprocal lattice nodes that match pattern in imgfile. See details for syntax meaning.

Details

◼ imgfile must be a string that represents an image file. system denotes the cyrstal system (currently, only "Hexagonal" is 
supported). P1 and P2 are two points each containing a reciprocal lattice node and the corresponding pixel coordinate set 
by CrysAlis. Format:  Pi = {{hi, ki}, {xi, yi}}. Example of such points:

In[1]:= {p1, p2} = {
{{3, 0}, {983, 739}},
{{0, 3}, {912, 862}}

};

◼ l denotes the third Miller index and is used to check whether the image matches a given reflection condition set by 
pattern. The pattern must be a Condition  that restricts the values of hkl somehow. Examples:

      {h_, k_, l_} /; EvenQ[h] reflections with even values of h

      {h_, k_, l_} /; Divisible[h + k, 4] reflections where h + k is divisible by 4

      {h_, k_, l_} /; h ⩵ 0 || l ⩵ 3 reflections where either h = 0 or l = 3

◼ There may be up to three different groups in the output data:

      Reciprocal lattice nodes not matching the pattern

      Reciprocal lattice nodes matching the pattern

      Weak or invalid nodes

◼ Please keep in mind that the algorithm filtering invalid nodes is not optimal at the moment.

◼ In addition to the options of FindPixelClusters and the three options Frame , ImageSize  and PlotRange  from 
Plot , further settings may be assigned with the following:

      "CountNonInteger" False whether to display the number of non-integer 
nodes

      "Threshold" 0.35 threshold for rounding Miller indices to nearest 
integer

      "Round" True whether to round pixels to nearest integer when 
checking reciprocal nodes with the image lattice

      "LoadPixelData" False option for loading $PixelData from a file

      "RetrieveData" True whether to check $PixelData

      "LatticeMethod" "Correspondence" method for establishing the image lattice

      "Colours" {col1, col2, col3} specify the colours in output

◼ The option "LatticeMethod" has two settings:

      "Correspondence"

      "Scaling"

◼ With "LatticeMethod" → "Correspondence", the lattice of the image is determined from the linear system for the b 
matrix:


h1 k1
h2 k2

 
b11 b12
b21 b22

 = 
x1* x2*
y1* y2*



Aspects of X-Ray Diffraction Using Mathematica Appendices Appendix A – Mathematica documentation

Stian Penev Ramsnes 



◼ where the stars denote modified values;

xi
* = xi -midx yi

* = yi -midy {midx, midy} = ImageDimensions[image]/2 + 1

◼ to compensate for the difference in the origin of the pixels and the origin of the reciprocal space in the image.
A basis change from b to B, the reciprocal lattice of CrysAlis, is then realised with:

Γ = Inverse[B.Inverse[B].b]

◼ Finally, for any pixel coordinate {x, y}, the reciprocal lattice point associated with that coordinate is now found by 
computing:

Γ.({x, y} - ({midx, midy} + 1))

◼ With "LatticeMethod" → "Scaling", the lattice basis Γ is found like with the "Correspondence" method, but with 
the final inversion operation substituted with a transposition. Afterwards, Γ is divided by B componentwise. The mean of 
the resulting components are taken to be a scaling factor c, and the lattice is instead defined by:

Γ′ = Inverse[c*Transpose[B]]

Examples  (9)

Basic Examples  (2)
In[1]:= image1 = FileNameJoin[

{$XrayExamples, "Unwarps", "Crystal_1_(01)_290K_UnwarpTemp_20perunit_001.bmp"}];

In[2]:= {p1, p2} = {{{3, 0}, {983, 739}}, {{0, 3}, {912, 862}}};

In[3]:= ReflectionConditionCheck[
image1,
"Hexagonal",
p1, p2,
0,
{h_, k_, l_} /; Divisible[h - k + l, 3],
"DeleteSmallComponents" → "Mean"]

Out[3]=

——————————————————————————————————————————————————————————————————————————————————————
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In[1]:= image2 = FileNameJoin[
{$XrayExamples, "Unwarps", "Crystal_1_(05)_165K_UnwarpTemp_20perunit_057.bmp"}];

Use the PlotRange  option to zoom in on a specific region:

In[2]:= ReflectionConditionCheck[
image2,
"Hexagonal",
{{3, 0}, {983, 739}},
{{0, 3}, {912, 862}},
0,
{h_, k_, l_} /; IntegerQ[h] && IntegerQ[k],
PlotRange → {{600, 1100}, {475, 975}}]

Out[2]=

Options  (7)

"CountNonInteger"  (1)
In[1]:= image3 = FileNameJoin[{$XrayExamples, "Unwarps", "Crystal_2_(test1)_290K_autotest_4.bmp"}];

In[2]:= ReflectionConditionCheck[
image3,
"Hexagonal",
{{3, 0}, {983, 739}},
{{0, 3}, {912, 862}},
0,
{h_, k_, l_} /; h - k > l,
ImageSize → Medium,
"CountNonInteger" → True]

ReflectionConditionCheck::threshold: 17 reflections were outsidethe thresholdfor integerdetermination. #

Out[2]=
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"Threshold"  (2)
In[1]:= image3 = FileNameJoin[{$XrayExamples, "Unwarps", "Crystal_4_(01)_290K_20perunit_021.bmp"}];

In[2]:= ReflectionConditionCheck[
image3,
"Hexagonal",
p1, p2,
1, {h_, k_, l_} /; IntegerQ[h] && IntegerQ[k],
"Threshold" → 0.25,
"CountNonInteger" → True]

ReflectionConditionCheck::threshold: 4 reflections were outsidethe thresholdfor integerdetermination. #

Out[2]=

——————————————————————————————————————————————————————————————————————————————————————
In[1]:= image4 = FileNameJoin[{$XrayExamples, "Unwarps", "Crystal_4_(01)_290K_20perunit_061.bmp"}];

In[2]:= ReflectionConditionCheck[
image4,
"Hexagonal",
p1, p2,
3, {h_, k_, l_} /; IntegerQ[h] && IntegerQ[k],
"Threshold" → 0.10,
"CountNonInteger" → True]

ReflectionConditionCheck::threshold: 19 reflections were outsidethe thresholdfor integerdetermination. #

Out[2]=
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"Round"  (1)

Once the lattice of the image has been determined, a «pixel-to-node» function ξ is defined for converting 
pixels to nodes.

In[1]:= ξ (x, y) : (x, y) ⟶ (h, k)

An inverse «node-to-pixel» function χ is also defined. The option "Round" decides whether to round the 
assigned pixels to nearest integer.

In[2]:= χ (h, k) : (h, k) ⟶ (x, y)

"LoadPixelData"  (1)

GeneratePixelData may be used to map FindPixelClusters on a batch of images and store the data 
in a file. Load that file with this option.

In[1]:= datafile = FileNameJoin[{$XrayExamples, "Unwarps", "PixelData_example.dat"}];

In[2]:= image5 = FileNameJoin[
{$XrayExamples, "Unwarps", "Crystal_1_(08)_100K_UnwarpTemp_20perunit_001.bmp"}];

In[3]:= ReflectionConditionCheck[
image5,
"Hexagonal",
{{3, 0}, {983, 739}},
{{0, 3}, {912, 862}},
0,
{h_, k_, l_} /; IntegerQ[h] && IntegerQ[k],
"LoadPixelData" → datafile]

Out[3]=
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"RetrieveData"  (1)

Set this option to False  if you do not want ReflectionConditionCheck  to check $PixelData  for 
previously collected data.

Consider one of the example images:

In[1]:= image1 = FileNameJoin[
{$XrayExamples, "Unwarps", "Crystal_1_(01)_290K_UnwarpTemp_20perunit_001.bmp"}];

In[2]:= hash = IntegerString[FileHash[image1], 16, 32]

Out[2]= 60942f0b0733577068956b00e2a5a54a

Confirm that pixel data for this image is contained in a given data file:

In[3]:= datafile = FileNameJoin[{$XrayExamples, "Unwarps", "PixelData_example.dat"}];

In[4]:= $PixelData = ToExpression@Import[datafile, "String"];

In[5]:= KeyExistsQ[$PixelData, hash]

Out[5]= True

Computation where data is loaded:

In[6]:= Timing@ReflectionConditionCheck[image1, "Hexagonal", p1, p2, 0,
{h_, k_, l_} /; IntegerQ[h + k]]

Out[6]= 1.99216, 

Computation where data is not loaded:

In[7]:= Timing@ReflectionConditionCheck[image1, "Hexagonal", p1, p2, 0,
{h_, k_, l_} /; IntegerQ[h + k],
"RetrieveData" → False]

Out[7]= 98.4847, 
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"LatticeMethod"  (1)

The slight difference in the methods may for instance be seen by the number of reflections that fall outside the 
threshold for integer determination.

In[1]:= image1 = FileNameJoin[
{$XrayExamples, "Unwarps", "Crystal_1_(01)_290K_UnwarpTemp_20perunit_001.bmp"}];

In[2]:= type1 = ReflectionConditionCheck[
image1,
"Hexagonal",
{{3, 0}, {983, 739}},
{{0, 3}, {912, 862}},
0,
{h_, k_, l_} /; IntegerQ[h] && IntegerQ[k],
"LatticeMethod" → "Correspondence",
"CountNonInteger" → True]

ReflectionConditionCheck::threshold: 58 reflections were outsidethe thresholdfor integerdetermination. #

Out[2]=

In[3]:= type2 = ReflectionConditionCheck[
image1,
"Hexagonal",
{{3, 0}, {983, 739}},
{{0, 3}, {912, 862}},
0,
{h_, k_, l_} /; IntegerQ[h] && IntegerQ[k],
"LatticeMethod" → "Scaling",
"CountNonInteger" → True]

ReflectionConditionCheck::threshold: 71 reflections were outsidethe thresholdfor integerdetermination. #

Out[3]=

Related Guides

◼ X-Ray Diffraction Package
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XRAY SYMBOL Related Guides ▼ URL ▼

RefinedValues
RefinedValues[file] 

extracts the instrument parameters from a CrysAlis log file.

RefinedValues[project]
extracts the instrument parameters given a CrysAlis project path.

RefinedValues[file/ project, "UB"]
extracts the UB-, U- and B matrices from the CrysAlis file or project.

Details

◼ The output is a list with four sublists. The first sublist contains information about the reflections:

      initial number of reflections

      final number of reflections

◼ The second sublist contains:

      the residue parameter Rint

◼ The third sublist contains information about the unit cell:

      a lattice paramter

      b lattice paramter

      c lattice paramter

      α interaxial angle

      β interaxial angle

      γ interaxial angle

◼ The fourth sublist contains information about the orientation of the crystal:

      crystal rotation about x-axis Cryst. Rot. X r1

      crystal rotation about y-axis Cryst. Rot. Y r2

      crystal rotation about z-axis Cryst. Rot. Z r3

      crystal wobbling about x-axis Cryst. Dance X w1

      crystal wobbling aboyt y-axis Cryst. Dance Y w2

      crystal wobbling about z-axis Cryst. Dance Z w3

◼ The fifth sublist contains information about the goniometer:

      beam rotation about y-axis Beam. Rot. Y b2

      beam rotation about z-axis Beam. Rot. Z b3

      goniometer angle α Alpha Value al

      goniometer angle β Beta Value be

      goniometer zero ω Omega Offset o0

      goniometer zero θ Theta Offset t0

      goniometer zero κ Kappa Offset k0

      goniometer zero ϕ Phi Offset p0
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◼ The sixth sublist contains information about the detector:

      detector rotation about x-axis Det. Rot. X d1

      detector rotation about y-axis Det. Rot. Y d2

      detector rotation about z-axis Det. Rot. Z d3

      detector offset of x-axis Det. Offset X x0

      detector offset of y-axis Det. Offset Y y0

      detector distance scale Det. D. Scale dd

◼ CrysAlis will sometimes also give the UB orientation matrix in the so-called Busing & Levy style, which utilises the 
Cholesky decomposition instead of QR decompoistion. The Cholesky decomposition is an upper-triangular matrix that is 
also conjugate transpose of the input matrix. The U matrix will in any case be identical.
If we let g denote the unit cell metric, then the B will be the Cholesky decomposition of the inverse of g.

Examples  (2)

Basic Examples  (2)
In[1]:= logfile = FileNameJoin[{$XrayExamples, "logfile.txt"}];

In[2]:= RefinedValues[logfile]

Out[2]= {{8569, 5957}, {0.003155},
{16.373108, 16.373679, 12.404242, 89.999096, 89.999335, 120.001241},
{-176.979626, 0.112673, -151.793781, 0.000000, 0.000000, 0.000000},
{0.008930, 0.000000, 50.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000},
{0.047939, 0.000074, -0.161940, 26.646797, 741.454074, 146.433622}}

——————————————————————————————————————————————————————————————————————————————————————

Extracting the UB orientation matrix and its QR (orthogonal and upper-triangluar) components:

In[1]:= logfile = FileNameJoin[{$XrayExamples, "logfile.txt"}];

In[2]:= mat = RefinedValues[logfile, "UB"]

Out[2]= {{{-0.0433835, -0.00156628, 0.00130457},
{0.0232678, 0.0491491, 0.00266427}, {0.0000971083, 0.00229504, -0.0561961}},

{{-0.881253, 0.472077, 0.023170}, {0.472641, 0.879981, 0.047369},
{0.001973, 0.052695, -0.998609}}, {{0.049229, 0.024615, -0.000001},
{0.000000, 0.042632, -0.000001}, {0.000000, 0.000000, 0.056274}}}

The output consists of three 3×3 matrices, the UB-, U- and B matrices:

In[3]:= Dimensions@mat

Out[3]= {3, 3, 3}

In[4]:= MatrixForm /@ mat

Out[4]= 
-0.0433835 -0.00156628 0.00130457
0.0232678 0.0491491 0.00266427

0.0000971083 0.00229504 -0.0561961
,

-0.881253 0.472077 0.023170
0.472641 0.879981 0.047369
0.001973 0.052695 -0.998609

,
0.049229 0.024615 -0.000001
0.000000 0.042632 -0.000001
0.000000 0.000000 0.056274



Related Guides

◼ X-Ray Diffraction Package
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Aspects of X-Ray Diffraction Using Mathematica Appendices Appendix B – Details of the CrysAlis procedures

6.2 Appendix B – Details of the CrysAlis procedures

6.2.1 Silicon data processing
1. Use the Crysis application in the SNBL ToolBox to generate a .par file from the .cbf files.
2. Open CrysAlis version 171.37.35h.
3. A message about having got set «basic settings» may appear. Click «OK» then «OK» again.
4. Use «Browse experiments» to locate the .par file from step 1.
5. Go to Lattice wizard Peak hunting , but click on the option button to select «Peak hunting with user settings»

5.1. Set «Threshold» to 20 and «7×7 average» to 1.
5.2. Click «OK» and wait for the program to find peaks.

6. Go to Lattice wizard Unit cell finding but, again, use the option button to select «Unit cell finding with
options».
6.1. Check the «Search known cell» box in the last setup section and write:

5.431 5.431 5.431 90.00 90.00 90.00.
6.2. Click «OK»
Go to Lattice wizard Refine instrument model but use the option button to select «Refine instrument model
with user settings»
6.1. Deselect «Automatic selection of parameters» near the top right corner.
6.2. In the first pop-up box choose LAT_AAA.
6.3. In the next pop-up box choose ANG_909090.
6.4. Uncheck the box for the lattice constant a and edit its value to be 5.431.
6.5. Uncheck the box next to o0.
6.6. Check the box next to t0.
6.7. Click «OK».

7. Go to Lattice wizard Ewald explorer but use the option button to select «Peak table editing».
7.1. Sort the table by «intensity», in increasing value from top to bottom.
7.2. Delete values that have an intensity of about 100 or lower. (A range of values can be selected by click in

the first one, holding the key, then selecting the last one. A quick way to reach the top or bottom
is to use Page Up or Page Down keys, which can be combined with the button.)

7.3. Sort the table by «angles» in the «Coordinates» section at the bottom. Go through the list manually and
look for listings of the same hkl value, but where one of them as a weak intensity. Delete the weaker
listings.

7.4. Select all the values and click on «Copy to Clip» and save if off in a .dat file. Use the label go-
niometer somewhere in the filename.

7.5. In the «Coordinates» section, change to «detector» and save the new table to another .dat file labelled
detector somewhere in the filename.

7.6. Click on «Exit» when done
8. Go to Lattice wizard Refine instrument model but use the option «Refine instrument model with user set-

tings».
8.1. Check the box by the lattice constant a.
8.2. Click «OK».

9. In the Lattice wizard click on «Save information», then «Close».
10. Go to the Command shell using the button in the left panel.

10.1. Type ty u and hit .
10.2. Locate the data for the UB matrix in the console. Copy it and store it in a .dat file. Use the label

ubmatrix somewhere in the filename. It should be a line looking something like:
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UM S 9.2230804E-002 4.4456168E-002 7.4967560E-002

5.6571981E-002 -1.1356460E-001 -2.2620480E-003

6.6334529E-002 3.5113183E-002 -1.0240130E-001

10.3. In the command shell, click on «Options RED».
10.4. In the program window click on the «Monochromator» tab.
10.5. Click on «Edit polfac» and set its value to 0.05. Click «OK».
10.6. Check the «Save to par file on exit« box in the lower left corner. Click «OK», and then «Yes» when a

warning message pops up.
10.7. Close the commando shell.

11. Data reduction – versions171.37.35h and171.38.41 have issues with this step, but version171.35.21
works.
11.1. On the right-hand menu click on the text «Data reduction» and choose «Data reduction with options»

(second from the top).
11.2. In the «Profile fitting data reduction» window click on the «Next» button until step 5.
11.3. In step 5 choose «Don’t use outlier rejection». Go to the next step.
11.4. In step 6 choose «Manual» in the «Finalization options» section and click on «Finish».
11.5. Wait for the processing to finish (this will take some time).

12. Determining the space group – You may now choose to go back to version 171.37.35h.
12.1. If the «Space group determination» window did not open upon completing the previous task, it may be

executed from Data reduction Finalize .
12.2. In the main window make sure the correct .hkl file is displayed and click «Apply».
12.3. In the «Centering» tab make sure the «Lattice type» is set to F .
12.4. Keep clicking «Apply» until the «Ins-File» tab appears. Set Z to 8 and type Si in the «Chemical for-

mula».
12.5. Click «Finish». The program should produce a reflection file (.hkl) in the directory (Project

directory) struct temp.
13. Gather the relevant output files for the project (goniometer.dat, detector.dat, ubmatrix.dat

and <project name>.hkl).
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6.2.2 Room temperature thiourea-ferrocene treatment
1. Use the Crysis application in the SNBL ToolBox to generate a .par file from the .cbf files. No binning.
2. Open CrysAlis version 1.171.38.41.
3. Go to Command shell Options RED .

3.1. In the tab Instrument model I set x to 27 and y to 741.
3.2. In the tab Monochromator set polfac to 0.05.
3.3. Check «Save to par file on exit» and exit the commando shell.

4. Go to Lattice Wizard Peak hunting and perform an automatic peak hunt.
5. Go to Lattice Wizard Unit cell finding and let the program find the unit cell automatically.
6. Go to Lattice Wizard Refine instrument model with users settings.

6.1. Uncheck «Automatic selection of parameters». The next action depends on whether the crystal appears
to be ferrocene or a thiourea-ferrocene clathrate.

6.1.1. Ferrocene: Select the angles to be ANG_90BE90.
6.1.2. Thiourea-ferrocene: Choose LAT_AAB and ANG_9090120. Uncheck a and c, and set their

values to 16.3735 and 12.4041, respectively.
6.2. Uncheck w1, w2, w3 and t0.
6.3. Press alt + E to reveal “hidden parameters”. Check all of d1, d2, d3, x0, y0 and dd under «De-

tector» and click «OK».
7. Go to Lattice Wizard Ewald Explorer Peak table editing and delete reflections flagged with wi.
8. Go to Lattice Wizard Reindexation with current cell and change the tolerance of indexation to 0.05.

8.1. Go back to the peak table editing and delete reflections flagged as wi.
8.2. Sort the table by the ϕ angle. Use the table with PeakTableHelper to find which registrations (that

appear to be split across frames) to delete.
9. Perform a new refinement of the instrument model with user settings (all settings should be preserved).

9.1. Take a screen shot of the Lattice Wizard Refine model window.
9.2. Go back to Lattice Wizard Ewald Explorer Peak table editing . Sort the table by «Goniometer» and

save the table in a .dat file.
9.3. Go to the Command shell . Type ty u and save the orientation matrix in a .dat file.
9.4. Find the log file that has red in its file name in the log folder; (Project directory) log

crysalispro_red*.txt, and save it somewhere with the other .dat- and picture files.

Crystal Filter Other notes
0 — same sample as crystal 1 (trial run)
1 —
2 no
3 ✓ rather big with irregular shape
4 ✓
5 no
6 no
7 no same sample as crystal 1
8 no flawed
9 no

Table 6.1: Some notes concerning the data sets.

Stian Penev Ramsnes 



Aspects of X-Ray Diffraction Using Mathematica Appendices Appendix B – Details of the CrysAlis procedures

6.2.3 Investigation of crystals 1 and 4
1. Use the Crysis application in the SNBL ToolBox to generate a .par file from the .cbf files. No binning†.
2. Open CrysAlis version 1.171.38.41.
3. Go to Command shell Options RED .

3.1. In the tab Instrument model I set:
d1 0.056 858 2

d2 −0.003 627 09
dd 146.391

x 26.9703

y 741.182

t0 −0.138 926
3.2. In the tab Instrument model II set:

b2 −0.002 189 41
3.3. In the tab Monochromator set:

polfac 0.05

3.4. Check «Save to par file on exit» and exit the commando shell.
4. Go to Lattice Wizard Peak hunting and perform an automatic peak hunt.
5. Go to Lattice Wizard Unit cell finding and let the program find the unit cell automatically.
6. Go to Lattice Wizard Refine instrument model with users settings.

6.1. Uncheck «Automatic selection of parameters». The next action depends on whether the crystal appears
to be ferrocene or a thiourea-ferrocene clathrate.

6.1.1. Ferrocene: Select the angles to be ANG_90BE90.
6.1.2. Thiourea-ferrocene: Choose LAT_AAB and ANG_9090120. Uncheck a and c, and set their

values to 16.3735 and 12.4041, respectively.
6.2. Uncheck w1, w2, w3 and t0.
6.3. Press alt + E to reveal “hidden parameters”. Move the value of t0 to d3, set t0 to zero and uncheck

t0.
6.4. Uncheck everything except the three r parameters and the lattice parameters. Click «OK».

7. Go to Lattice Wizard Ewald explorer and take screenshots of:
the default view of the reciprocal space;
the views along the a∗, b∗ and c∗-axes;

8. Go to Lattice Wizard Ewald Explorer Peak table editing and delete reflections flagged with wi.
9. Go to Lattice Wizard Reindexation with current cell and change the tolerance of indexation to 0.05.

10. Go back to the peak table editing and delete reflections flagged as wi.
11. Perform a new refinement of the instrument model with user settings (all settings should be preserved).

11.1. Take a screen shot of the Lattice Wizard Refine model window.
11.2. Go back to Lattice Wizard Ewald Explorer Peak table editing . Sort the table by «Goniometer» and

save the table in a .dat file.
11.3. Go back to Lattice Wizard Ewald Explorer and take new screenshots.
11.4. Go to the Commando shell . Type ty u and save the orientation matrix in a .dat file.
11.5. Find the log file that has red in its file name in the log folder; (Project directory) log

crysalispro_red*.txt, and save it somewhere with the other .dat- and picture files.
12. Click on «Save information» in the Lattice Wizard and exit CrysAlis.

† Binning data into bins of five was tried, but this resulted in reciprocal space reconstructions having lesser quality.

Stian Penev Ramsnes 



Aspects of X-Ray Diffraction Using Mathematica Appendices Appendix B – Details of the CrysAlis procedures

Miscellaneous CrysAlis notes and results

Initially After reindexation 2nd twin Unindexed
Crystal_1_(01)_290K 97.03 99.61

Crystal_1_(03)_200K 77.69

Crystal_1_(04)_180K 78.14

Crystal_1_(05)_165K 69.40 99.80 31.8 27

Crystal_1_(06)_155K 68 99.76

Crystal_1_(07)_140K 49.44 56.90

Crystal_1_(08)_100K
44.98 47.17 26.6 45

43.12 27.51 29.2 43

Crystal_1_(09)_90K 45.46 50.96

Crystal_1_(10)_100K 52.33 47.53 25.6 46

Crystal_1_(11)_140K 54.45 99.79 28.9 41

Crystal_1_(12)_155K 76.48 99.79

Crystal_1_(13)_165K 80.74 99.86

Crystal_1_(14)_180K 95.62 81.80

Crystal_1_(15)_200K 86.23 99.61

Crystal_1_(16)_240K 97.97 99.26

Crystal_1_(17)_290K 99.06 99.14

Table 6.2: Observations from treatment of crystal 1 data. Empty cells correspond to quantities that were not looked at. Data set 8 was
redone as a check. «Initially» and «after reindexation» signify the percentage of peaks matching the current lattice. «Second twin» and
«unindexed» represent the same, only for twinning analysis.

Before transformation After transformation
r1 r2 r3 r1 r2 r3

(01)_290K −0.724 431 −9.478 273 70.788 002 −0.724 431 −9.478 273 70.788 002
(02)_240K −0.839 393 −9.525 172 70.772 049 −0.839 393 −9.525 173 70.772 048
(03)_200K 172.164 593 5.539 002 −48.796 194 −0.914 878 −9.542 185 70.747 818
(04)_180K −0.953 772 −9.557 753 70.719 486 −0.953 772 −9.557 754 70.719 485
(05)_165K 179.051 692 −9.572 049 70.718 081 −0.948 309 −9.572 049 70.718 080
(06)_155K 179.036 736 −9.582 367 70.747 824 −0.963 264 −9.582 368 70.747 823
(07)_140K 8.449 659 4.066 888 −169.251 108 −0.689 822 −9.346 117 70.992 250
(08)_100K 8.487 321 4.062 114 −169.185 122 −0.712 121 −9.376 132 71.058 021
(09)_90K 179.356 838 −9.340 375 71.140 806 −0.643 162 −9.340 373 71.140 806
(10)_100K 7.790 122 −5.221 809 131.499 877 −0.657 533 −9.347 437 71.091 342
(11)_140K −179.382 023 9.335 749 −108.917 893 −0.617 977 −9.335 747 71.082 107
(12)_155K −7.841 876 5.555 538 −48.817 986 −0.926 246 −9.555 940 70.723 515
(13)_165K −7.839 875 5.548 454 −48.789 916 −0.920 992 −9.550 714 70.752 651
(14)_180K −0.912 257 −9.545 419 70.756 170 −0.912 257 −9.545 419 70.756 170
(15)_200K 172.157 176 5.514 505 −48.810 913 −0.889 575 −9.536 527 70.736 579
(16)_240K 0.819 439 9.502 305 −109.212 514 −0.819 439 −9.502 306 70.787 485
(17)_290K −172.159 359 −5.328 718 131.288 302 −0.726 817 −9.442 978 70.862 834

Table 6.3: The three rotation angles for the data sets of crystal 1, before and after transformation.
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6.3 Appendix C – Miscellaneous

6.3.1 Alternative silicon intensities
Included here are alternative calculations of the silicon intensities (see subsection 3.1.2) by Thorkildsen. Intensities
have been corrected by Lorentz and polarisation factors in addition to reduction in incident X-ray flux.
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Figure 6.1: Silicon intensities calculated by Thorkildsen’sMathematica function, sorted by mean intensity.
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6.3.2 Algorithm behind the ReflectionConditionCheck function
The procedures of this function can be broken into four main steps:

Figure 6.2: In order from left to right the first image shows a reconstruction of reciprocal space, which is the essential input to this
function. The second image is a binarised version. Next is a plot of the two-dimensional list obtained from the previous image, and
lastly we see reciprocal lattice superimposed on the image, representing a way to associate the points with reciprocal nodes.

Figure 6.3: Example of how
pixel clusters may look like if we
zoom in. The three frames illus-
trate an iteration in the Find-

PixelClusters function. 8-
connected pixels are joined to-
gether to eventually make a
single cluster.

The function requires four inputs:
1. An image of reciprocal space
2. The crystal system
3. Two correspondence points (will be explained shortly)
4. A reflection condition to highlight the points fulfilling this rule.

After importing the image it is binarised in order to simplify the task of converting
“spots” to pixels. A challenge here is to find a balanced threshold, as having too much
information in the image will take a great amount of processing time. Depending on
the amount of pixels found in the binarised image, it may be further refined by remov-
ing noise with various built-in functions of Mathematica. ReflectionCondi-

tionCheck applies a suitable filtering method automatically, with threshold values
based on trial and error.

The next step is the most time-consuming phase; Merging clusters of pixels to single
points. This task is done by a standalone function called FindPixelClusters.
The idea behind its algorithm is illustrated in Figure 6.3. It groups together pixels that
neighbour other pixels one unit horizontally, vertically or diagonally – this is referred
to as 8-connected [95]. When all pixels have been assigned to a cluster, each cluster is
reduced to a single point by averaging the coordinates. The third picture in Figure 6.2
is an example of this result.

We now need the ability to associate any point found in the reconstructed image
with the correct reciprocal node. For our purposes, it will suffice to construct a simple
transformation matrix P : (x, y) 7−→ (h, k). Since translation has to be involved we
have an affine transformation. In accordance with the International Tables for Crystal-
lography, the transformations between bases is written on the form: [96]

(new basis) = (old basis) ·P, (6.1)

where P defines the transformation matrix. In this setting, the “old basis” is the system of pixel coordinates and the
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“new basis” the two-dimensional reciprocal hexagonal lattice used by CrysAlis. This reciprocal coordinate system is
rotated 30° clockwise compared to the standard setting, resulting in a∗ pointing East and b∗ 60° North of East.
The transformation matrix P may be determined from two corresponding points in the old and new bases:

P =

[
x̃1 x̃2
ỹ1 ỹ2

]−1 [
h1 h2
k1 k2

]
. (6.2)

These have to be found manually by inspecting the reconstructed image in CrysAlis. In the case of hexagonal lattice
and 0.8Å resolution, the correspondence is found to be:

(3, 0)hk ←→ (983, 739)px (6.3a)

(0, 3)hk ←→ (912, 862)px (6.3b)

To compensate for the difference in the origin of the pixels (CrysAlis origin) and the origin of the reciprocal space in
the image, a translation of the pixel coordinates is performed:

x̃i = xi − tx, ỹi = yi − ty, (6.4)

where (tx, ty) is an adjustment defined as the midpoint of the image plus one pixel unit. The pixel coordinates
presented in (6.3) represent xi and yi in (6.4). When transforming the other way around this translation has to be
reversed:

h̃i = hi + tx, k̃i = ki + ty. (6.5)

Coordinates may now be transformed back and forth by computing[
h

k

]
= P

[
x̃

ỹ

]
,

[
x

y

]
= P−1

[
h̃

k̃

]
. (6.6)
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List of symbols

□j If □ = {B,D,E,H} and j = {o,h,g}: Fourier com-
ponent of□ associated with the given reciprocal lattice vec-
tor.
j = {r, i} denotes respectively the real and imaginary com-
ponent of □. (May be stacked with other indices.) . . . . 10

A absorption factor (correction of experimental measure-
ments) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

a, b, c lattice parameters/constants. . . . . . . . . . . . . . . . . . . . . . . . . . 7

a,b, c crystallographic vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

B (Bλ) orthonormalisation matrix of reciprocal space (scaled by
wavelength λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

C polarisation factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

c speed of light in vacuum. . . . . . . . . . . . . . . . . . . . . . . . . . . 12

.cbf crystallographic binary file . . . . . . . . . . . . . . . . . . . . . . . . . 21

CCD charge-coupled device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

D electric displacement field. . . . . . . . . . . . . . . . . . . . . . . . . . 10

dmin resolution; minimum interplanar spacing that may be re-
solved for a given wavelength and incidence angle (Bragg’s
law) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

E electric field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

ei laboratory coordinate system, i ∈ {x, y, z}. . . . . . . . . . . 23

eB
i orthonormalised coordinate system of the unit cell, i ∈

{x, y, z}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

eC∗
i crystallographic coordinate system, i ∈ {a∗,b∗, c∗}. . 21

eCA
i coordinate system used by CrysAlis, i ∈ {x, y}. . . . . . . . 23

ESRF European Synchrotron Radiation Facility . . . . . . . . . . . . . .5

f ′, f ′′ corrections of the atomic scattering factor due to anomal-
ous scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
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